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ABSTRACT
We use a novel non-equilibrium algorithm to simulate steady-state fluid transport through a two-dimensional (2D) membrane due to a
concentration gradient by molecular dynamics (MD) for the first time. We confirm that, as required by the Onsager reciprocal relations in
the linear-response regime, the solution flux obtained using this algorithm agrees with the excess solute flux obtained from an established
non-equilibrium MD algorithm for pressure-driven flow. In addition, we show that the concentration-gradient-driven solution flux in this
regime is quantified far more efficiently by explicitly applying a transmembrane concentration difference using our algorithm than by applying
Onsager reciprocity to pressure-driven flow. The simulated fluid fluxes are captured with reasonable quantitative accuracy by our previously
derived continuum theory of concentration-gradient-driven fluid transport through a 2D membrane [D. J. Rankin, L. Bocquet, and D. M.
Huang, J. Chem. Phys. 151, 044705 (2019)] for a wide range of solution and membrane parameters, even though the simulated pore sizes are
only several times the size of the fluid particles. The simulations deviate from the theory for strong solute–membrane interactions relative to
thermal energy, for which the theoretical approximations breakdown. Our findings will be beneficial for a molecular-level understanding of
fluid transport driven by concentration gradients through membranes made from 2D materials, which have diverse applications in energy
harvesting, molecular separations, and biosensing.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0178576

I. INTRODUCTION

Transport of liquid mixtures and solutions through porous
membranes is pivotal to many applications, including water
desalination and purification,1 chemical separations, energy gener-
ation2 and storage,3 and biological and chemical sensing.4 How-
ever, the inadequate performance of current membranes limits the
widespread adoption of these technologies.5 Membranes made from
two-dimensional (2D) materials, such as graphene, molybdenum
disulfide (MoS2), or hexagonal boron nitride (hBN), hold great
promise for tackling these challenges.6–9 However, gaps in knowl-
edge of fundamental aspects of transport processes in 2D mem-
branes, particularly those driven by the concentration gradients10

that are central to many applications, hinder the predictive design
of 2D membranes.

The atomic-scale thickness of 2D membranes confers funda-
mentally different properties compared with conventional mem-
branes, that are highly beneficial. For example, 2D membranes can
circumvent the permeability–selectivity trade-off that often plagues
conventional desalination or filtration membranes,6 whereby selec-
tivity against transport of an unwanted component of a mixture is
generally associated with reduced permeability to a desired com-
ponent, with computer simulations of 2D graphene membranes
achieving almost complete salt rejection along with water fluxes
orders of magnitude larger than those of current desalination
membranes.11 The extreme thinness of 2D membranes also means
that transmembrane gradients of, e.g., pressure, concentration, or
electric potential can be enormous, resulting in huge driving forces
for fluid transport. The orders-of-magnitude higher power densi-
ties for osmotic power generation of single-layer MoS2 membranes
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compared with conventional membranes were attributed partly to
the massive salt gradient.12 In nanopore-based sensing or sequenc-
ing of macromolecules, which provides a cheap, fast, and portable
method of chemical or biological sensing, the single-atom thickness
of 2D membranes offers the possibility of discriminating single
monomers in biopolymers due to the membrane thickness being
comparable to the inter-monomer spacing.6,9 Achieving this goal,
however, requires precise quantification of ion fluxes both in the
absence and presence of the biomolecule.

Although numerical simulations of fluid transport across
2D membranes have been carried out in the presence of concen-
tration gradients using both continuum13,14 and molecular11,12,15–19

models, until our recent work,20 no analytical theory existed to
quantify the relationship between the solution and solute flow
through a 2D membrane driven by a solute concentration gra-
dient and basic parameters such as the membrane pore size and
the strength and range of solute–membrane interactions. This the-
ory was derived from a continuum hydrodynamic model of the
fluid, and its quantitative accuracy was verified by comparison
with computational fluid dynamics simulations.20 However, the
continuum fluid approximation can break down when the dimen-
sions of the confining pores become comparable to the size of
the fluid molecules,21 which could be an issue for 2D membranes
even with large pores due to their atomic-scale thickness. Further-
more, continuum models cannot easily account for the effects of
mechanical flexibility of the membrane, which can be significant for
2D membranes.16,22,23 They also do not readily predict from first
principles some phenomena that can strongly impact nano-scale
fluid transport, such as finite solid–fluid friction, inhomogeneous
fluid properties, non-electrostatic ion-specific interactions, and
non-ideal solutions.

However, modeling fluid transport due to a concentration dif-
ference across a porous membrane using molecular simulations is
not straightforward. This is because the periodic boundary condi-
tions that are generally used in such simulations creates an artificial
concentration jump across the periodic boundary when a concentra-
tion difference is applied across the membrane. Without constraints,
mixing of the solution would occur across the periodic boundary
instead of across the membrane. Until recently, a generally suitable
molecular algorithm for simulating steady-state transport of liquid
mixtures driven by concentration gradients had not existed. To the
best of our knowledge, all molecular simulations of concentration-
gradient-driven transport through a 2D membrane until now have
used a non-equilibrium molecular dynamics (NEMD) method in
which the solute concentrations on either side of the membrane are
set to be initially different and the resulting transient fluxes mea-
sured over time.11,12,15–19 Such simulations generally do not enable
the solution and solute fluxes for a given transmembrane concentra-
tion difference to be accurately quantified since the concentrations
change measurably over time in the relatively small systems that
can be practically simulated. This can be especially problematic for
electrolyte solutions since electrostatic screening depends on con-
centration, which could have a significant impact on fluid transport
as a result of the large concentration gradients that occur across
2D membranes.

Methods for calculating concentration-gradient-driven trans-
port from equilibrium simulations in the absence of a concentra-
tion gradient24 also have deficiencies, particularly in the case of

electrolytes, since they do not account for the effects of spatial vari-
ations of concentration-dependent properties such as electrostatic
screening. On the other hand, stochastic algorithms that combine
molecular dynamics (MD) with a grand canonical Monte Carlo
(GCMC) method for maintaining constant reservoir concentrations
by inserting, deleting, or exchanging particles in the reservoirs25–28

suffer from low acceptance rates of stochastic particle moves at
the high densities in liquids, and unphysical particle insertions can
perturb the flow.29 Deterministic MD algorithms have also been
developed to simulate steady-state flow in a periodic system due
to a concentration gradient by applying a supplementary force
to solute and/or solvent molecules to mimic a chemical potential
gradient,30–34 either throughout the system33 or in small transi-
tion regions far from the membrane.30–32,34 Significant advantages
of these methods over stochastic algorithms are that they are effi-
cient even at liquid densities and that they do not involve unphysical
particle insertion or deletion steps. However, most of these algo-
rithms have significant deficiencies that limit their utility, such as not
being applicable to complex geometries such as 2D membranes,33

not explicitly modeling the concentration difference (and thus not
accounting for spatial variations in concentration-dependent prop-
erties),33 or not enabling independent control of differences in solute
concentration and pressure across the membrane,30–32 which can
lead to spurious effects, particularly at high solute concentrations, as
discussed later on. One recent algorithm34 has been developed that
does not suffer from these issues, but it controls the solute chemical
potential difference across the membrane, whereas the solute con-
centration difference is a more useful control parameter for direct
comparison with experiments.

In this work, we have modified a previous deterministic NEMD
algorithm31 for constraining the solute concentration difference
across a porous membrane in a periodic system to enable inde-
pendent control of the transmembrane pressure difference. As a
proof-of-principle of its ability to simulate and accurately quantify
steady-state concentration-gradient-driven fluid transport through
2D membranes, we have applied this algorithm to a model system
comprising a binary Lennard-Jones (LJ) liquid mixture and a 2D LJ
membrane. Using this model system, we have systematically inves-
tigated the effects of key parameters such as the membrane pore
size, average solute mole fraction, and the strength and range of
the solute–membrane interactions on the solution and solute fluxes.
We have used these molecular simulation results to evaluate the
accuracy of our previously developed continuum theory for pre-
dicting concentration-gradient-driven fluid transport through these
atomically thin membranes.

II. COMPUTATIONAL METHODS
A. System details

All MD simulations were performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS)
[3 March 2020 graphics processing unit (GPU)-accelerated
version],35,36 with initial simulation configurations constructed
using Moltemplate (version 2.16.1)37 and visualization of simulation
trajectories carried out using OVITO (version 3.0.0).38 The system
comprised a binary liquid mixture (solute and solvent) and a single-
layer planar solid membrane parallel to the x, y planes, containing
an approximately circular hole centered at the origin [Fig. 1(a)].
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FIG. 1. (a) Snapshot of a typical MD simulation system, consisting of a binary LJ
liquid mixture (solvent particles are translucent) and a single-layer planar fcc (111)
lattice membrane with a circular pore. (b) Schematic of constrained concentration-
and pressure-difference algorithm: a force fi is applied perpendicular to the mem-
brane to each particle of type i (solute or solvent) within a transition region (red)
of width d; the concentration ratio and pressure difference are measured between
control regions (yellow) of width db on either side of the membrane a distance lb
from the transition region; the applied forces are dynamically adjusted to converge
the concentration ratio and pressure difference to target values.

The solid particles were placed in a single layer of the (111) surface
of a close-packed face-centered cubic (fcc) lattice (lattice constant
√

2σ), and their positions were fixed throughout the simulations.
The Lennard-Jones (LJ) potential

uij(rij) = 4ϵij

⎡
⎢
⎢
⎢
⎢
⎣

(
σij

rij
)

12

− (
σij

rij
)
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, (1)

was used for the interactions between particles, where rij is the
distance between particles i and j, and ϵij and σij are parameters
quantifying the strength and range, respectively, of their inter-
actions. The solute–solute, solvent–solvent, and solute–solvent
interaction parameters, ϵij, and σij, were set to the same values,
ϵ and σ, respectively, in all simulations, while the parameters
for the interactions between solute and solid (wall) particles,
ϵuw and σuw, respectively, were varied for different simulations.
(Throughout this paper, we use subscripts “u,” “v,” and “w” to
denote solute, solvent, and wall particles, respectively.) Therefore,
the solute and solvent particles were identical in all respects except
for their interactions with the membrane. The potential was
cutoff at a distance of 4σ, and all particles had mass m. LJ units
are used throughout this work, with masses, distances, energies,
temperatures, pressures, and times in units of m, σ, ϵ, ϵ/kB, ϵ/σ3,

and τ =
√

mσ2
/ϵ, respectively, where kB is the Boltzmann con-

stant. In all simulations, time integration was performed with the
velocity-Verlet integrator with a time step of 0.005τ, and periodic
boundary conditions were applied in all dimensions. Unless oth-
erwise stated, simulations were carried out in the canonical (NVT)
ensemble at a temperature of ϵ/kB using a Nosé–Hoover39,40

style thermostat,41 with only the velocity components
perpendicular to the flow (z) direction thermostatted in NEMD
simulations.

B. Constrained concentration-
and pressure-difference algorithm

To carry out NEMD simulations of steady-state flow due to
concentration and/or pressure gradients, we adapted an algorithm
by Khalili-Araghi et al.31 designed to maintain unequal solute con-
centrations across a membrane in a system with periodic boundary
conditions. Specifically, we modified it to enable independent con-
trol of concentration and pressure differences. Here, we use the
convention that the membrane lies in the x, y-plane at z = 0 in the
primary simulation box.

The algorithm in Ref. 31 applies a supplementary constant force
fi in the direction perpendicular to the membrane to particles of
type i in a small transition region of width d far from the membrane,
as illustrated in Fig. 1(b). The algorithm was called the nonperiodic
energy step method since the addition of this force is equivalent to
applying a nonperiodic energy step or ramp of size Δεi = − fid across
the transition region to the particles, which induces a concentration
difference between the two sides of the membrane. The energy step
Δεi needed to achieve a target ratio of the concentrations c+i0 and c−i0 of
species i in the upper and lower fluid reservoirs, respectively, can
be estimated from the relationship for a system of non-interacting
(ideal) particles at infinite dilution, c+i0/c

−
i0 = exp (Δεi/(kBT)). The

applied force required to maintain this concentration ratio in this
case is

f ideal
i = −

kBT
d

ln(
c+i0
c−i0
), (2)

which is used as the initial value of the applied force in the algorithm,
i.e., fi(t = 0) = f ideal

i . In general, an analytical relationship between
the force and concentration difference or ratio does not exist for
interacting particles. To account for the effect of particle–particle
interactions, the forces are adjusted dynamically to converge to the
target concentration ratio according to

f KA
i (t + Δt) = f KA

i (t) +
Δt
ατc

Δ f KA
i (t), (3)

with

Δ f KA
i (t) =

kBT
d
[⟨ln(

c+i
c−i
)⟩ − ln(

c+i0
c−i0
)], (4)

where Δt is the simulation time step, α and τc are tunable para-
meters, c+i and c−i are the instantaneous concentrations in the upper
and lower reservoirs, respectively, and ⟨⋅ ⋅ ⋅⟩ denotes a time aver-
age over the interval (t − τc, t], i.e., over a duration τc immediately
preceding the current time step. (We use the superscript “KA” to
distinguish the equations in Ref. 31 from those in our modified
algorithm, which are described below.) The instantaneous concen-
trations are measured in control regions each of width db on either
side of the membrane and far from it [shown in yellow in Fig. 1(b)]
that is sufficiently wide to calculate the average in Eq. (4) accurately.
From Eq. (3), the concentration ratio is expected to converge to the
target ratio c+i0/c

−
i0 over a duration on the order of ατc.

To avoid calculating the average in Eq. (3) every time step and
to reduce the chance of Δ fi(t) becoming undefined due to c+i or
c−i being zero, we have modified the force update algorithm from
that in Ref. 31 such that the applied force is updated every τc time
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steps instead of every time step and the instantaneous concentra-
tions are averaged over time before taking the logarithm. Therefore,
we replace Eqs. (3) and (4) by

fi(t + τc) = fi(t) +
Δ fi(t)

α
, (5)

and

Δ fi(t) =
kBT

d
[ln(

⟨c+i ⟩
⟨c−i ⟩
) − ln(

c+i0
c−i0
)], (6)

respectively, where the time average ⟨⋅ ⋅ ⋅⟩ is taken over the interval
[nτc, (n + 1)τc) for n ≤ t/τc < n + 1 and n ∈ Z. As in Ref. 31, Eq. (2)
is used to initialize the applied force, and convergence to the tar-
get concentration ratio is expected to occur over a duration on the
order of ατc. τc should be chosen sufficiently large to accurately esti-
mate the time averages in the control regions and thus avoid large
fluctuations in the applied forces calculated from these averages;
α (and thus ατc) should be chosen small enough that convergence to
the target occurs on a reasonable time scale, but too small a value can
lead to large fluctuations in the applied forces that hinder conver-
gence. The optimal choice of these parameters is expected to depend
on the particular system as well as the size of the system.

In principle, the force update scheme specified by Eqs. (3) and
(4) from Ref. 31 or our modified version specified by Eqs. (5) and
(6) can be used to constrain the concentration difference across
the membrane of any or all species in a multicomponent mixture.
In Ref. 31, the external force was only applied to solute species
(electrolyte ions in that case), whereas no external force was applied
to the solvent (water). However, in general, applying an external
force to solutes in the transition region without doing the same to
the solvent will induce a hydrostatic pressure difference across the
membrane that will affect the fluid fluxes, as we show below. There-
fore, an external force must also be applied to the solvent particles
to achieve the desired pressure difference. Instead of constraining
the solvent concentration using Eq. (6) to achieve this goal, we use
a force update scheme for the solvent that directly controls the pres-
sure difference, which more closely mimics how applied fields would
be controlled experimentally. Therefore, while we use Eqs. (5) and
(6) to update the applied force on the solute particles, for the solvent
particles (type i = v), we replace Eq. (6) by

Δ fv(t) =
A

Nv(t + τc)
(⟨ΔP⟩ − ΔP0), (7)

where A is the cross-sectional area of the simulation box, ΔP0 is the
target pressure difference, Nv(t + τc) is the instantaneous number of
solvent particles in the transition region at time t + τc, ΔP = P+ − P−

is the instantaneous pressure difference between the control regions
on either side of the membrane, and the time average ⟨⋅ ⋅ ⋅⟩ is com-
puted identically to that in Eq. (6). [Note that ⟨Nv⟩ may be a better
choice than Nv(t + τc) in Eq. (7), as its use would reduce the fluc-
tuations in the applied force.] P± is calculated from the diagonal
components of the per-atom stress tensor summed over atoms in
the control regions using the stress/atom compute in LAMMPS.42

We note that this method is known to be inaccurate for comput-
ing the local pressure in inhomogeneous systems,43,44 for which
more accurate but more computationally expensive and less widely

implemented alternatives43–45 exist. However, by keeping the control
regions away from strong inhomogeneities in the fluid, this problem
can be mitigated. For the initial applied force on the solvent particles,
fv(t = 0) = 0 is used in this work. However, a better choice given
the initial solute force fu(t = 0) specified by Eq. (2) would be the
value that makes ΔP = ΔP0 according to the force balance in Eq. (11)
below.

Note that this algorithm can be straightforwardly extended to
electric-field-driven fluid transport. As demonstrated for a similar
recent NEMD algorithm,34 for a transmembrane voltage difference
ΔV (which is minus the voltage drop across the transition region),
an additional constant force fe,i = qiΔV/d would be applied to each
charged particle in the transition region that is proportional to the
particle’s charge qi.

C. Simulation details
Two system sizes were simulated. Unless otherwise stated, a

50 × 50 unit-cell membrane and a total of 396 000 fluid particles were
used. In addition, some non-equilibrium simulations were carried
out with a larger 80 × 80 unit-cell membrane and a total of 1 622 016
fluid particles to verify that the simulations of the smaller system did
not suffer from finite-size effects.

For each system size, fluid particles were placed on two cubic
lattices of equal size on either side of the solid surface, which ini-
tially contained no pore, with the z dimension of the box sufficiently
large that the particles did not overlap. All fluid particles were ini-
tially set to be solvent particles. The system was initially equilibrated
in the isothermal–isobaric (NPT) ensemble for 106 time steps at a
temperature of ϵ/kB and pressure of ϵ/σ3 using a Nosé–Hoover39,40

style thermostat and barostat41 with only the z dimension barostat-
ted for the fluid particles. The average box length in the z dimension
measured over the last 105 time steps, by which time the instan-
taneous box length had plateaued, was used as the box length in
all subsequent constant-volume simulations, which were at a tem-
perature of ϵ/kB. To reach this box length from the final system
configuration in the NPT simulation, the z dimension of the box was
deformed at constant velocity over 103 time steps while integrating
the equations of motion with a Nosé–Hoover style thermostat. All
solid atoms within a distance a of the origin were then deleted to
create an approximately circular pore of radius a in the membrane,
as illustrated in Fig. S1 of the supplementary material.

Equilibrium MD and NEMD simulations were carried out for
various combinations of the solute–membrane interaction para-
meters ϵuw and σuw, pore radius a, and average solute mole fraction
χ̄, with ϵuw/ϵ = 0.5, 0.8, 1.2 or 1.5, σuw/σ = 0.8, 1.2 or 1.5, a/σ = 0
(equilibrium simulations only), 3, 4, 6, or 8, and χ̄ = 0.05 or 0.2.
In addition to NEMD simulations of concentration-gradient-driven
flow, simulations of pressure-driven-flow without a concentration
gradient were also carried out for selected systems using the algo-
rithm in Ref. 46, which is similar in some respects to our con-
strained concentration- and pressure-difference algorithm but in
which a constant and equal force ( fu = fv) is applied to solute and
solvent molecules in the transition region. Most simulations with a
constrained concentration difference used a target transmembrane
solute concentration ratio of c+u0/c

−
u0 = 20, but ratios of 2, 3, and 5

were also used for selected systems to verify the linear response of
the fluid fluxes to the applied driving force. Unless otherwise stated,
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the transition region width d, control region width db, and distance
lb between the transition and control regions in the NEMD simu-
lations were all 2σ (see Fig. 1), and the target pressure difference
ΔP0 was zero. Details of the simulated systems and their properties
are given in Tables S1–S5 of the supplementary material.

Starting from the final simulation configuration from the previ-
ous NPT equilibration step, fluid particles were randomly converted
into solute particles to give the desired average solute mole frac-
tion. Additionally, for the NEMD simulations, the fluid particles
were converted to achieve the maximum target solute concentration
ratio of 20. Then, for each system geometry, a NEMD simulation
was carried out using the constrained concentration- and pressure-
difference algorithm with ϵuw = ϵ and σuw = σ, reducing the target
solute concentration ratio at intervals of ∼8 × 106 time steps to
obtain steady-state simulation configurations at each of the desired
concentration ratios. Figure 2 shows the variation of the solute con-
centration and pressure in the control regions with time from one
of these simulations, which illustrates the ability of the algorithm
to converge and maintain the concentration and pressure difference
at the target values. The final configuration at each target concen-
tration ratio was used as the starting configuration for simulations
with other values of ϵuw and σuw at that target ratio. All these sim-
ulations used α = 50 and τc = 50τ, which reliably resulted in stable

FIG. 2. (a) Solute concentration cu and (b) pressure P in the upper (+) and lower
(−) control regions vs time when applying the constrained concentration- and
pressure-difference algorithm for a target concentration ratio c+u0/c

−

u0 = 20 and
target pressure difference ΔP0 = 0, starting from a configuration in which solutes
were uniformly distributed on either side of the membrane at the target concentra-
tion ratio (a = 6σ, ϵuw = ϵ, σuw = σ, χ̄ = 0.2). The initial unequal pressures in the
two control regions are due to the initial applied force on solvent particles being
set to zero, while the initial applied force on solute particles is specified by Eq. (2),
which results in a non-zero transmembrane pressure difference for c+u0/c

−

u0 ≠ 1
[see Eq. (11) below].

convergence of the concentration ratio and pressure difference on a
reasonable time scale.

For the NEMD simulations, an automated equilibration detec-
tion method47 was used to determine when each system had reached
a non-equilibrium steady state and to estimate the effective number
of uncorrelated samples in order to calculate steady-state aver-
ages and statistical uncertainties (at the 95% confidence level) of
fluctuating variables. Distribution functions such as solute concen-
tration profiles, fluid density profiles, and pressure profiles were
calculated only using data after the first 8 × 106 time steps of each
simulation, which ensured the system was at equilibrium or in a
non-equilibrium steady state.

It should be noted that changing solvent particles into solute
particles with different solute-membrane interaction parameters
resulted in deviations of the bulk pressure in the fluid reservoirs from
the target pressure of ϵ/σ3 in the NPT equilibration simulations, par-
ticularly at high concentrations, with average pressures in the equi-
librium simulations varying from 0.93 to 1.00ϵ/σ3 across the range of
systems studied (Table S3 of the supplementary material). However,
the bulk solution density remained approximately constant, vary-
ing from 0.782 to 0.787σ−3 across the range of solute–membrane
interactions. Note that the creation of the membrane pore had a
negligible effect on the bulk pressure and solution density.

III. RESULTS AND DISCUSSION
A. Application of constrained concentration-
and pressure-difference algorithm

Figure 3 depicts the solute concentration, centerline solute
concentration (calculated for solute particles within a distance
σ of the axis passing through the pore center), and total (solute
+ solvent) fluid density profiles perpendicular to the membrane for
a system to which our constrained concentration- and pressure-
difference algorithm was applied, either with or without enforcing
the pressure constraint ΔP0 = 0 using Eq. (7). (Results for the highest
concentration ratio without the pressure constraint are not shown
because the concentration ratio never converged to a steady state.)
The method without the pressure constraint is equivalent to the
original constrained concentration-difference algorithm of Khalili-
Araghi et al.31 The system in Fig. 3 had a pore radius a = 6σ, solute
mole fraction χ̄ = 0.2, and overall repulsive solute–membrane inter-
actions, as indicated by the solute depletion near the membrane
in Fig. 3(a). Qualitatively similar results were obtained for other
systems, as illustrated in the supplementary material for a system
with the same solute–membrane interactions but a lower (χ̄ = 0.05)
solute mole fraction in Fig. S2 and for a system with the same solute
mole fraction but attractive effective solute–membrane interactions
in Fig. S3.

The solute concentration profiles with and without the pres-
sure constraint in Figs. 3(a) and 3(b) are dramatically different.
At first glance, the total fluid density profiles in Fig. 3(c) are sim-
ilar. However, closer inspection, as shown in the inset, reveals a
transmembrane density difference without the pressure constraint,
which is induced by the net force exerted on the solution by the
applied force on the solute particles used to constrain the concen-
tration difference. The net force is manifested in a transmembrane
pressure difference, as shown in the pressure profiles for the same
system in Fig. 4 when the pressure difference is not constrained.
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FIG. 3. (a) Solute concentration, (b) centerline solute concentration, and (c) total
fluid density vs z coordinate in non-equilibrium simulations with ( fv ≠ 0, solid lines)
and without ( fv = 0, dashed lines) the transmembrane pressure difference con-
strained to be zero for a = 6σ, ϵuw = 0.5ϵ, σuw = 0.8σ, χ̄ = 0.2, and various target
solute concentration ratios c+u0/c

−

u0. The inset in (a) zooms in on z values near the
membrane, whereas the inset in (c) zooms in on density values around the bulk
density. The dotted black lines in (b) are the least-squares fit of the solid line to a
function of the form b0 + b1 tan−1

(z/b2) with fit parameters b0, b1, and b2.

On the other hand, constraining the pressure difference to ΔP0 = 0
results in equal pressures and total fluid densities on either side of
the membrane. Fluid flow driven by the pressure difference polar-
izes the solute concentration near the membrane, resulting in the
differing solute concentration profiles in Figs. 3(a) and 3(b) with
and without the pressure constraint. As shown by the fitted curves
in Fig. 3(b), the centerline solute concentration when both the
concentration and pressure difference are constrained is consis-
tent with theoretical predictions under conditions in which there
is a concentration difference but no pressure difference and the
solute–membrane interaction range is small compared with the pore
radius, in which the concentration profile is expected to be an inverse
tangent function of the axial coordinate.20

Fluid fluxes were determined by counting the number of solute
and solvent particles crossing the membrane as a function of time,
as illustrated in Fig. 5 for two systems to which the constrained

FIG. 4. Pressure profile in non-equilibrium simulations with ( fv ≠ 0, solid lines) and
without ( fv = 0, dashed lines) the transmembrane pressure difference constrained
to be zero for the same conditions in Fig. 3.

concentration- and pressure-difference algorithm was applied with
zero pressure difference. [In practice, we measured fluxes at the
boundary of the simulation box, which was in the center of the
transition region (see Fig. 1), which gives the same result as any
plane parallel to the membrane in a steady state due to parti-
cle conservation.] The effective solute–membrane interactions in
Figs. 5(a) and 5(b) are repulsive and attractive, respectively, i.e., the
solute is depleted and enhanced near the membrane relative to the
bulk, respectively. The linearity of the curves vs time shows both
systems are in a steady state with constant fluid fluxes for most
of the simulation. (Similar behavior was observed for all systems

FIG. 5. Cumulative number of fluid (total, solute, or solvent) particles cross-
ing the membrane vs time in simulations with c+u0/c

−

u0 = 20 and ΔP0 = 0 for
a = 6σ, χ̄ = 0.2, and (a) repulsive (ϵuw = 0.5ϵ, σuw = 0.8σ) or (b) attractive
(ϵuw = 1.5ϵ, σuw = 1.5σ) effective solute–membrane interactions. (Each point is
an average over a time interval of τc.)
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studied.) Consistent with expectations for systems with a trans-
membrane concentration difference but no pressure difference and
for which solute diffusion dominates advection (Péclet number
Pe < 1), the solute flux is in the direction of decreasing concentra-
tion, while the total solution flux due to concentration-gradient-
driven diffusiosmosis is opposite in direction for membranes that
repel and attract the solute, with flow towards increasing and
decreasing concentration, respectively.10

The flux of particles of type i was calculated as a numerical
derivative, Ṅ i = ΔNi/Δt, of the cumulative particle number N i cross-
ing the membrane vs time t in the steady state. The simulation
trajectory was divided into intervals of 2 × 105 timesteps = 103τ for
which the flux was calculated, from which the average flux with sta-
tistical uncertainties was obtained using the method described in
Sec. II C. (We verified that the calculated uncertainties were insensi-
tive to halving or doubling this time interval.) Figure 6 shows the
total (Ṅ = Ṅu + Ṅv) and solute (Ṅu) fluxes vs the target concen-
tration ratio for a system with repulsive effective solute–membrane
interactions for low (χ̄ = 0.05) and high (χ̄ = 0.2) solute mole frac-
tions with or without the ΔP0 = 0 pressure constraint. Consistent
with expectations for this system, when no transmembrane pressure
difference is applied, the total flux is towards increasing concentra-
tion, whereas the solute flux is towards decreasing concentration
when the pressure constraint is enforced. On the other hand, both
the total and solute flux are toward decreasing concentration without
the pressure constraint due to pressure-driven flow as a result of the
non-zero transmembrane pressure difference. The relative discrep-
ancy between the total solution fluxes with and without the pressure
constraint is similar for both solute mole fractions and different

FIG. 6. Total (Ṅ, filled symbols) and solute (Ṅu, empty symbols) flux vs target
concentration ratio c+u0/c

−

u0 for systems with a = 6σ, ϵuw = 0.5ϵ, σuw = 0.8σ, and
χ̄ = 0.2 (circles) or 0.05 (squares) in simulations with (a) ΔP0 = 0 pressure
constraint and (b) no pressure constraint.

concentration ratios, highlighting the general importance of apply-
ing the pressure constraint to obtain accurate fluxes in constrained
concentration-difference simulations. The solute flux is significantly
different with and without the pressure constraint, but the relative
discrepancy is much smaller at the lower solute mole fraction due
to the greater importance of solute diffusion over advection (lower
Péclet number) at the lower mole fraction, suggesting that there may
be circumstances in which the pressure constraint may not greatly
affect the solute flux.

The pressure difference was not constrained in the origi-
nal constrained concentration-difference algorithm in Ref. 31. The
study for which the algorithm was developed focused on measur-
ing the ionic current through biological membrane channels due
to a concentration difference for a relatively dilute aqueous KCl
electrolyte. A concentration ratio of 0.1:1 mol l−1, pore radius
a ≈ 0.55 nm, and pore length L ≈ 6 nm were considered for the
OmpF porin that was studied. To maintain the concentration ratio
across the pore, an external force f = 0.557 kcal mol−1 Å−1 was
applied to the ions within a d = 2.5 Å transition region. As explained
in Sec. III B, this force would create a pressure difference of magni-
tude ∣ΔP∣ = Nu f /A across the membrane, where Nu is the number of
ions in the transition region and A is its cross-sectional area. Using
A = 123.5 × 123.5 Å2 and the average ion concentration of
c̄u = 1.1 mol l−1 in these simulations gives Nu ≈ 25, and thus
∣ΔP∣ ≈ 6.3 × 103 kPa. Ignoring the hydraulic resistance of the pore
ends for simplicity, which would reduce the flux further, the total
solution flux due to this pressure difference can be estimated from
the Hagen–Poiseuille equation,48 Q = πa4ΔP/(8ηL), where η is the
solution shear viscosity, which we have taken to be that of pure
water, η = 8.94 × 10−4 Pa s.49 Using the parameters above gives
an estimate of the convective ion flux of c̄uQ ≈ 3 × 107 s−1. The
lowest total ionic current that was measured in Ref. 31 was ≈10
pA, which gives a lower bound (corresponding to a perfectly ion-
selective channel) on the total ion flux of ≈6 × 107 s−1. Therefore,
the convective ion flux due to the induced pressure difference may
have been non-negligible compared with that due to the applied
concentration difference in this study.

B. Transport coefficients: Verification of linear
response and Onsager reciprocity

From now on, we focus on NEMD simulations using our con-
strained concentration- and pressure-difference algorithm in which
the pressure difference has been constrained to be zero. To quantify
the concentration-gradient-driven fluid fluxes for all of the systems
studied, we define two transport coefficients—the diffusioosmotic
mobility

κDO ≡ −
Q

ΔΠ/(kBT)
, (8)

and the solute permeance

Ps ≡ −
Ju

ΔΠ/(kBT)
, (9)

which characterize the total volumetric solution flux Q and solute
flux Ju = Ṅu, respectively, for a given transmembrane osmotic pres-
sure difference ΔΠ at temperature T. These definitions follow the
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notation in our previous work,20 in which we derived a theory
of concentration-gradient-driven flow through 2D membranes for
dilute solutions, but the equations above generalize them to arbi-
trary solute concentrations.33,50 Equations (8) and (9) reduce to the
corresponding equations [Eqs. (33) and (34)] in Ref. 20 in the dilute
solution limit, where ΔΠ = kBTΔcu.50 The solution flux can be deter-
mined from the simulations as Q = Ṅ

ρ̄ , where ρ̄ is the bulk total fluid
density, which we calculated as the average of the total fluid density
in the upper and lower control regions, i.e., ρ̄ = (ρ+ + ρ−)/2.

As described recently for a similar NEMD simulation algo-
rithm,34 the transmembrane osmotic pressure difference ΔΠ and
hydrostatic pressure difference ΔP can be calculated by considering
the balance of applied forces of the fluid particles in the transition
region. Decomposing the applied force on each solute particle and
each solvent particle as fu = f + δf u and fv = f + δf v, respectively,
such that Nuδf u +Nvδf v = 0, the force due to the osmotic pressure
difference is −AΔΠ = Nuδf u = −Nvδf v (i.e., the net force on the fluid
in the transition region due to ΔΠ is zero), while the force due to the
hydrostatic pressure difference is −AΔP = (Nu +Nv) f = Nf , where
Nu and Nv are the number of solute and solvent particles, respec-
tively, in the transition region, N is the total number of fluid particles
in the transition region, and A is its cross-sectional area.34 (Note
that, following the convention in Sec. II B, we have defined ΔΠ and
ΔP as differences across the membrane rather than across the transi-
tion region, as was performed in Ref. 34, so the sign in the previous
equations is opposite that in the equivalent equations in Ref. 34.)
From these equations, ΔΠ and ΔP can be calculated in terms of the
number of particles and the applied force on particles of each type in
the transition region as

ΔΠ = −
1
A
(

NuNv

Nu +Nv
)( fu − fv), (10)

and

ΔP = −
1
A
(Nu fu +Nv fv). (11)

Alternatively, ΔΠ and ΔP can be calculated from the solute con-
centration and pressure, respectively, in the control regions. In this
case, ΔP = P+ − P−, i.e., the pressure difference evaluated in the con-
strained concentration- and pressure-difference algorithm. On the
other hand, ΔΠ can be estimated using the osmotic pressure of an
incompressible ideal binary mixture, which can be derived from the
entropy of mixing at any solute concentration (assuming the same
solute and solvent molecular volume v) to be33,51,52

Π = −
kBT
v

ln (1 − χ) = −ρkBT ln (1 − χ), (12)

where χ is the solute mole fraction and ρ = 1/v is the total fluid
density (which is assumed to be independent of χ). This equation
reduces to the standard van’t Hoff equation, Π = cukBT, for χ ≪ 1.
We have evaluated ΔΠ = Π+ −Π− from Eq. (12) using the solute
mole fraction, χ+ and χ−, and bulk fluid density, ρ+ and ρ−, in
the upper and lower control regions, respectively. We have com-
pared ΔΠ and ΔP calculated from the applied force balance in
the transition region and from the concentration/density or pres-
sure in the control regions in Figs. S6 and S7, respectively, in the

supplementary material for all our non-equilibrium simulations.
This includes simulations in which the osmotic pressure difference
was non-zero and the pressure difference was constrained to be zero,
simulations in which the osmotic pressure difference was non-zero
and the pressure difference was unconstrained and thus non-zero,
and simulations in which the osmotic pressure difference was
zero and the pressure difference was non-zero. This compari-
son shows perfect agreement between ΔP calculated using either
method, but ΔΠ calculated from the control regions using Eq. (12)
overestimates (by up to ≈15%) the value obtained from the transi-
tion region force balance using Eq. (10) for larger ΔΠ. The origin of
this discrepancy is likely the absence of a well-defined “bulk” solute
concentration in the upper or lower fluid reservoirs to unambigu-
ously define the osmotic pressure in Eq. (12) in simulations with
a non-zero concentration difference since the concentration varies
throughout the system (see, e.g., Fig. 3). By contrast, even with a
transmembrane pressure difference, the pressure profile is essen-
tially flat in either reservoir except in the immediate vicinity of the
transition region or membrane (see, e.g., Fig. 4), so the ΔP between
the control regions is representative of the transmembrane pressure
difference.

Using ΔΠ from the force balance in the transition region, we
have verified that the transport coefficients in Eqs. (8) and (9) were
independent of the system size and transition region width for
selected systems in Fig. S8. We have also verified that the trans-
port coefficients were independent of ΔΠ, i.e., the systems were
in the regime of linear response of the fluid fluxes to the applied
osmotic driving force for selected systems, as shown in Fig. 7 for
κDO and in Fig. S9 of the supplementary material for Ps. The three
selected systems encompassed those most likely to deviate from the
linear response, namely those with the three highest solution flux
magnitudes (which include those with the two highest solute flux
magnitudes) at the highest target concentration ratio c+u0/c

−
u0 = 20

FIG. 7. L12 = κDO/(kBT) (filled symbols) and L21 (empty symbols) transport coeffi-
cients vs transmembrane osmotic pressure difference ΔΠ and pressure difference
ΔP, respectively, for flow driven exclusively by a concentration or a pressure differ-
ence for systems with χ̄ = 0.2, a = 6σ, and various solute–membrane interaction
parameters: ϵuw = 1.5ϵ, σuw = 1.5σ (circles); ϵuw = 0.5ϵ, σuw = 0.8σ (squares);
ϵuw = 0.5ϵ, σuw = 1.5σ (triangles). The dark and light translucent bands are 95%
confidence intervals for L12 and L21, respectively, for the lowest value of ΔΠ and
ΔP, respectively, for each set of solute–membrane interaction parameters. At least
for the smaller values of ΔΠ or ΔP, L12 and L21 are approximately constant and
equal, verifying linear response and Onsager reciprocity.
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for the pore radius a = 6σ that was used in most of the simu-
lations. As indicated by solid symbols in these figures, κDO and
Ps are independent of ΔΠ up to the highest ΔΠ, except for the sys-
tem with the largest fluxes (ϵuw = 1.5ϵ, σuw = 1.5σ, χ = 0.2), for which
linear response appears to hold up to ΔΠ ≈ 0.15ϵ/σ3

(c+u0/c
−
u0 = 3).

Although a few simulations were carried out for systems with a
larger pore radius of a = 8σ, for which the fluid fluxes were greater
than those with a = 6σ for the same solution and membrane proper-
ties, the fluxes were well within the range in which the system with
the largest fluxes was still in the linear-response regime. Therefore,
we can be confident that all systems besides that one were in the
linear-response regime for the conditions simulated.

In the linear response regime, the fluid fluxes due to trans-
membrane differences in the hydrostatic pressure ΔP and osmotic
pressure ΔΠ (or, equivalently, chemical potential, Δμ) are given by53

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Q

Ju − c̄uQv

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=
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, (13)

or using ΔΠ = c̄uΔμ,34 with L11 = Λ11, L12 = Λ12/c̄u, L21 = Λ21/c̄u,
and L22 = Λ22/c̄2

u,
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, (14)

where Λ12 = Λ21 and L12 = L21 by the Onsager reciprocal
relations,53,54 Qv = Jv/c̄v = Ṅv/c̄v is the volumetric solvent flux,
and c̄u and c̄v are the average bulk solute and solvent concentrations,
respectively, which we have calculated as the average of the concen-
trations in the upper and lower control regions, i.e., c̄i = (c+i + c−i )/2.
Note that a number of previous studies on concentration-gradient-
driven transport33,34,50,55–58 have not distinguished between the total
volumetric solution flux Q and the volumetric solvent flux Qv in
Eqs. (13) or (14), although this distinction is clear in the derivation
by de Groot and Mazur53 and in equations used in other studies.59,60

For the dilute solutions investigated in most of these studies, this
distinction is not important since Q ≈ Qv in this regime, but Q and
Qv can differ significantly at high solute concentrations such as
those studied here, especially when the solute and solvent fluxes are
in opposite directions.

From the definitions of the transport coefficients in Eqs. (8)
and (14), L12 = κDO/(kBT), and given that T = ϵ/kB in all our sim-
ulations, this means that L12 and κDO have the same numerical
value in reduced LJ units in this study. For two of the systems for
which L12 was measured in Fig. 7, we also measured L21 using the
definition in Eq. (14) in simulations of pressure-driven flow in the
absence of a transmembrane concentration difference for several
pressure differences using the NEMD algorithm in Ref. 46. These
results are presented in Fig. 7 and show that the L12 = L21 recip-
rocal relation is verified, at least for the lowest applied pressures,
with the consistency between our algorithm and the previously
established and widely applied method in Ref. 46 demonstrat-
ing the validity of our method for quantifying non-equilibrium
concentration-gradient-driven transport.

Figure 7 also shows that the pressure-driven flow simulations
deviate from linear response at much lower values of ΔP than the

ΔΠ values at which deviations occur in the concentration-gradient-
driven flow simulations. This occurs because the solution flux for
the pressure-driven flow is up to an order-of-magnitude higher than
that for the concentration-gradient-driven flow in Fig. 7 for equiv-
alent magnitudes of ΔP and ΔΠ, respectively, even if the excess
solute volumetric flux, Ju/c̄u −Qv, from which L21 is calculated
is similar to the total solution flux Q from which L12 is calcu-
lated. As a result of the higher solution flux, the polarization of
the solute concentration distribution around the pore and, there-
fore, deviations from the linear response, occur at lower ΔP for
the pressure-driven flow than ΔΠ for the concentration-gradient-
driven flow. This means that much longer simulations were required
to obtain roughly comparable statistical uncertainties in the linear-
response regime for the pressure-driven flow simulations compared
with the concentration-gradient-driven flow simulations, highlight-
ing the computational benefits of directly measuring the diffusioos-
motic mobility in NEMD simulations with an applied concentration
gradient, at least for 2D membrane systems.

C. Comparison of simulation vs theory
We have previously derived a theory of fluid transport through

a circular pore in an infinitesimally thin planar membrane due to
a transmembrane concentration difference20 by solving the contin-
uum hydrodynamic (Stokes, advection–diffusion, and continuity)
equations for low-Reynolds-number steady-state flow of a dilute
solution of an incompressible Newtonian fluid under the assump-
tions that solute diffusion dominates solute advection (Péclet num-
ber Pe≪ 1) and that the effective solute–membrane interaction
potential U is small compared with the thermal energy kBT. This
theory is straightforwardly generalized to arbitrary solute concen-
trations by analogy with a related theory derived for concentration-
gradient-driven fluid transport parallel to a planar surface at high
solute concentration:33,50 the equations derived in Ref. 20 for the
transport coefficients quantifying the fluid fluxes at low concentra-
tion apply at high concentration, while the distinction between low
and high solute concentrations is manifested in the concentration
dependence of the osmotic pressure driving force in Eqs. (8) and (9).
Therefore, the diffusioosmotic mobility κDO quantifying the total
solution flux is20

κDO =
2kBTa3

πη ∫

1

0
dζ ζ2
∫

∞

0
dν(

e−U/(kBT)
− 1

1 + ν2 ), (15)

and the solute permeance Ps quantifying the solute flux (evaluated
at the pore mouth at z = 0) is20

Ps = 2D∫
a

0
dr

re−U/(kBT)
√

a2
− r2

, (16)

where a is the pore radius, η is the solution shear viscosity,
D is the solute diffusivity, and the oblate–spheroidal coordinates
ζ and ν are defined in terms of the radial and axial coordinates
by r = a

√

(1 + ν2
)(1 − ζ2

) and z = aνζ, respectively. The effective
solute–membrane interaction potential U, which includes contribu-
tions both from direct solute–membrane interactions and indirect
solvent-mediated interactions, is defined by20

c(ζ, ν) ≡ cu∞(ζ, ν)e−U(ζ,ν)/(kBT), (17)
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where c(ζ, ν) is the solute concentration distribution and cu∞(ζ, ν)
is a hypothetical solute concentration distribution for the same
boundary conditions but with U = 0.

The theory yields simple scaling relationships for the transport
coefficients as a function of the pore radius a and strength ϵ and
range λ of U in the limits of weak interactions (ϵ≪ kBT) and a
small (λ≪ a) or large (λ≫ a) interaction range relative to the pore
size.20 Although none of our simulations correspond strictly to the
λ≪ a or λ≫ a limits, λ is significantly smaller than a for all, but
the smallest pore studied. Our simulation results are consistent with
the predicted scaling in the λ≪ a limit, in which κDO and Ps are
both expected to be proportional to the pore radius a,20 as shown
in Fig. 8. Figure 8 also shows that κDO is approximately indepen-
dent of the average solute mole fraction for the simulated conditions,
whereas Ps depends significantly on the average solute mole frac-
tion. The behavior of Ps appears to be due to a subtle interplay of
the opposing diffusive and advective solute fluxes for the systems in
Fig. 8, which is not captured by the theory as it assumes that solute
advection is negligible.

The dependence of κDO and Ps on the solute–membrane inter-
action strength and range parameters, ϵuw and σuw, are given in
the supplementary material in Figs. S10 and S11, respectively. It
should be noted that the strength and range of U are not simply
proportional to these parameters due to the complex many-body
contributions to the effective interactions. Interestingly, Fig. S10
shows a linear dependence of κDO and Ps on ϵuw for fixed σuw,
which is consistent with the predicted scaling with the effective
solute–membrane interaction strength ϵ for ϵ≪ kBT, even though
the direct solute–membrane interactions are certainly not weak in

FIG. 8. (a) Diffusioosmotic mobility and (b) solute permeance vs pore radius
for simulations with c+u0/c

−

u0 = 20 and ΔP0 = 0 for systems with ϵuw = 0.5ϵ,
σuw = 0.8σ, a = 6σ, and χ̄ = 0.2 (circles) or 0.5 (squares). The solid lines are
linear fits to the data for χ̄ = 0.2.

all cases. The dependence of κDO and Ps on σuw for fixed ϵuw shown
in Fig. S11 is more complex, in part because σuw controls not only
the range but also the strength of the direct solute–membrane inter-
actions since a given solute particle interacts with more membrane
particles as σuw increases; thus, Ps varies non-monotonically while
κDO even changes sign with increasing σuw.

We have used Eqs. (15)–(17) to predict κDO and Ps for all the
simulated systems without using any information from the NEMD
simulations. We used analytical equations fitted to equilibrium MD
simulation data for the diffusivity and shear viscosity of the LJ fluid
over a wide range of density and temperature for the same interac-
tion cutoff distance in our simulations61 to obtain D = 0.0697σ2

/τ
and η = 1.84ϵτ/σ3 for the temperature T = ϵ/kB and total bulk den-
sity ρ∞ ≈ 0.787σ−3 in all the simulations. To obtain U from Eq. (17),
we used the solute concentration profile from an equilibrium MD
simulation with the same solute–membrane interaction parameters,
pore radius, and average solute mole fraction as the NEMD simu-
lation for which the transport coefficients were being predicted. In
this case, cu∞(ζ, ν) in Eq. (17) is a constant and equal to the bulk
solute concentration in the equilibrium simulation. Distributions of
the solute concentration and total fluid density in all the equilibrium
simulations, in one dimension (1D) as a function of the axial (z)
or radial (r) coordinate and in two dimensions (2D) as a function
of both r and z, are given in Figs. S29–S38 of the supplementary
material. The integrals in Eqs. (15) and (16) were computed using
the quad and nquad functions, respectively, in the SciPy Python
package, and 2D solute concentration distributions were interpo-
lated using a bivariate spline with the RectBivariateSpline SciPy
function.

The pore radius a in Eqs. (15) and (16) corresponds to where
the hydrodynamic boundary conditions are applied in the contin-
uum theory and does not necessarily correspond to the definition
of the pore radius used up to this point, which was the distance
from the pore center within which the centers of solid atoms were
absent. The Gibbs dividing surface from equilibrium MD simu-
lations has previously been shown to describe the hydrodynamic
boundary position in NEMD simulations of fluid flow accurately,62

and so we have used this prescription to define an effective pore
radius ah to replace the actual pore radius a in Eqs. (15) and (16),
given by

∫

ah

0
r[ρ∞ − ρ(r, z = 0)] dr = ∫

∞

ah

rρ(r, z = 0) dr, (18)

where the total fluid density ρ(r, z = 0) in the plane of the membrane
pore at z = 0 was obtained from the 2D equilibrium distribution
ρ(r, z) by the same bivariate spline interpolation described earlier
for the solute concentration distribution. [In practice, the second
integral was calculated up to a finite value of r beyond which the
total fluid density ρ(r, z = 0) was zero.] As shown in Fig. S39 of the
supplementary material, ah is within a few percent of a, so either
a or ah could be used in Eqs. (15) and (16) with little difference.
(The dependence of ah on the solute–membrane interaction strength
and range parameters, ϵuw and σuw, for fixed a are also given in the
supplementary material in Figs. S40 and S41.)

Figure 9 compares the diffusioosmotic mobility κDO from
the simulations with that calculated from the theory for all
the simulated systems (which includes variations in pore radii,
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FIG. 9. Diffusioosmotic mobility from simulations vs theory for all systems except
for those with the strongest attractive solute–membrane interactions (ϵuw = 1.5ϵ,
σuw = 1.5σ) for c+u0/c

−

u0 = 20. Symbols are colored by the surface solute excess
Γ (units: σ), and different symbol shapes distinguish high (χ̄ = 0.2, circles) and
low (χ̄ = 0.05, squares) average solute mole fractions. The simulation and theory
values are equal along the solid line.

average solute mole fraction, and the strength and range of
solute–membrane interactions) except for those with the strongest
attractive solute–membrane interactions (ϵuw = 1.5ϵ, σuw = 1.5σ).
The latter data are not included because they occur on a very dif-
ferent scale from the rest of the data, making visualization on the
same figure difficult, and because the assumption in the theory of
weak solute–membrane interactions certainly breaks down for these
systems. A comparison of all the simulated systems in the linear-
response regime is given in Fig. S12 of the supplementary material.
The simulations and theory are also compared in Fig. S13 of the
supplementary material for calculations using the actual pore radius
a instead of the effective pore radius ah in the theory, showing that
this choice makes little quantitative difference.

There is good quantitative agreement between the theory and
simulations for most of the data in Fig. 9, although deviations are
evident for larger magnitudes of κDO, especially for positive κDO.
Discrepancies between the theory and simulations are not entirely
surprising, given the number of approximations made in the theory,
namely weak effective solute–membrane interactions, a small Péclet
number, and an infinitesimally thin planar membrane. The discrep-
ancies appear to be largely due to the breakdown of the assumption
of weak effective solute–membrane interactions, as indicated by the
correlation between the deviation of the theory from the simulation
results and the surface solute excess Γ used to color the data points
in Fig. 9, which quantifies the degree of adsorption (Γ > 0) or deple-
tion (Γ < 0) of the solute at the membrane surface relative to the
bulk. Γ in Fig. 9 was calculated from the solute concentration profile
cu(z) perpendicular to a membrane containing no pore in an equi-
librium MD simulation of a system with otherwise identical fluid
and membrane properties to the NEMD simulation using

Γ = ∫
∞

0
(

cu(z)
cu∞

− 1) dz, (19)

where, in practice, the upper integration limit in Eq. (19) was taken
to be the maximum value of z in the simulation box [this choice was
not crucial as cu(z)→ cu∞ within the simulation box].

On the other hand, there does not appear to be a clear corre-
lation between the discrepancies between the theory and simulation
for κDO and other potentially relevant parameters such as the Péclet
number Pe, pore radius a, or solute–membrane interaction strength
and range parameters, ϵuw and σuw, as shown in Figs. S14–S17 of the
supplementary material, in which the data points have been colored
by the value of these parameters. We estimated Pe, which measures
the relative magnitude of solute advection to solute diffusion, by

Pe = ∣
c̄uQv

Ju − c̄uQv
∣, (20)

where we have used the solvent volumetric flux Qv instead of the
total volumetric flux Q to quantify the advective solute flux because
the total flux Q includes the diffusive component.

Figure 10 shows a similar comparison between theory and sim-
ulation to Fig. 9 but for solute permeance Ps. Since solute advection
is assumed to be negligible (Pe≪ 1) in the theory but is clearly sig-
nificant in many of the simulations, for which 0.02 ≲ Pe ≲ 0.5, in
Fig. 11, we have also compared Ps from the theory with the solute
permeance from the simulations calculated from the diffusive flux
only, which we define as

Ps,diff ≡ −
(Ju − c̄uQv)

ΔΠ/(kBT)
. (21)

As with Fig. 9, we have excluded data for the strongest attractive
solute–membrane interactions (ϵuw = 1.5ϵ, σuw = 1.5σ) simulated
from Figs. 10 and 11, but the corresponding plots containing all the
simulation data can be found in Figs. S18 and S19, respectively, in the
supplementary material. As for κDO, the use of the actual pore radius
a or effective pore radius ah in the theory makes little difference, as
shown in Fig. S20 in the supplementary material.

FIG. 10. Solute permeance from simulations vs theory for all systems for
c+u0/c

−

u0 = 20 except for those with the strongest attractive solute–membrane
interactions (ϵuw = 1.5ϵ, σuw = 1.5σ). Symbols are colored by the surface solute
excess Γ (units: σ), and different symbol shapes distinguish high (χ̄ = 0.2, circles)
and low (χ̄ = 0.05, squares) average solute mole fractions. The simulation and
theory values are equal along the solid line.
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FIG. 11. Solute permeance from simulations (calculated from diffusive flux only) vs
theory for all systems for c+u0/c

−

u0 = 20 except for those with the strongest attractive
solute–membrane interactions (ϵuw = 1.5ϵ, σuw = 1.5σ). Symbols are colored by
the surface solute excess Γ (units: σ), and different symbol shapes distinguish high
(χ̄ = 0.2, circles) and low (χ̄ = 0.05, squares) average solute mole fractions. The
simulation and theory values are equal along the solid line.

The agreement between the theory and simulations is not as
good for the solute permeance as for κDO, but the agreement appears
to improve by excluding the advective flux from the simulation
definition of the solute permeance. As for κDO, the discrepancies
between the theory and simulation appear to be most strongly corre-
lated with the strength of the effective solute–membrane interactions
as quantified by the surface solute excess used to color the symbols
in Figs. 10 and 11 (similar plots for all the simulated systems colored
by the Péclet number Pe, pore radius a, or solute–membrane inter-
action strength and range parameters, ϵuw and σuw, are given in Figs.
S21–S28 in the supplementary material). The stronger deviation of
the theory from the simulations for the solute permeance than for
the diffusioosmotic mobility as the solute–membrane interaction
strength is increased, even when the advective solute flux is excluded,
is consistent with our previous comparison of the theoretical pre-
dictions of these transport coefficients with the numerical solution
of the full unapproximated continuum hydrodynamic model from
which the theory was derived.20 This comparison showed the solute
permeance to be more sensitive than the diffusioosmotic mobility to
the breakdown of the assumption of weak solute–membrane inter-
actions in the theory, even at low Péclet numbers for which the
advective solute flux was negligible.

IV. CONCLUSION
We have developed a constrained concentration- and pressure-

difference algorithm for non-equilibrium molecular dynamics sim-
ulations of steady-state fluid transport driven by concentration
and/or pressure differences across a porous membrane in a sys-
tem with periodic boundary conditions. Our algorithm adapts a
previous algorithm by Khalili-Araghi et al.,31 which controls the
transmembrane concentration difference by applying an external
force to solute particles in a transition region far from the mem-
brane, by also applying an external force to solvent particles in

the transition region to control the transmembrane pressure dif-
ference. Applying this algorithm to a model system comprising a
binary Lennard-Jones liquid mixture and a 2D Lennard-Jones mem-
brane containing a circular pore, we have simulated steady-state
concentration-gradient-driven fluid transport across a 2D mem-
brane with molecular resolution for the first time, enabling accurate
quantification of the solution and solute fluxes due to a given applied
concentration difference. We have shown that the application of the
pressure-difference constraint has a significant effect on the solute
concentration distribution across the membrane and the steady-
state solution flux due to a transmembrane concentration difference
for both low and high average solute concentrations, although the
solute flux is less affected by the pressure-difference constraint at
low solute concentrations. We have also shown that the solution flux
due to an applied concentration difference generated by our algo-
rithm is consistent with Onsager reciprocity in the linear-response
regime by comparison with fluid fluxes due to an applied pressure
difference. Furthermore, we have shown that directly simulating
a transmembrane concentration difference is far more efficient
for quantifying the concentration-gradient-driven solution flux in
the 2D membrane systems studied than the indirect approach of
applying the Onsager reciprocal relations to pressure-driven flow
simulations. This is because only very small pressure differences
can be applied before the pressure-driven fluid fluxes deviate from
linear behavior. Finally, we have shown that our recently devel-
oped theory of concentration-gradient-driven flow across a 2D
membrane,20 although derived for a continuum fluid model, gives
reasonably good quantitative agreement with the molecular simula-
tions, especially for the total fluid flux, demonstrating its utility for
quantifying fluid transport driven by a solute concentration gradient
even in molecular systems. Nevertheless, deviations from the simu-
lation results are evident, particularly for strong solute–membrane
interactions, for which the assumptions of the theory breakdown.

SUPPLEMENTARY MATERIAL

The supplementary material contains details of the para-
meters and properties of all the simulated systems, additional non-
equilibrium simulation results (concentration, density, and pressure
distributions; comparison of transmembrane osmotic pressure and
hydrostatic pressure differences calculated by different methods;
verification of linear response for the solute permeance; verifica-
tion of the independence of measured transport coefficients of
system size and transition region width; additional plots of transport
coefficients vs system parameters; additional comparisons of trans-
port coefficients obtained from simulation and theory), and solute
concentration and total density distributions from equilibrium
simulations.
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