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A B S T R A C T   

Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven 
by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the 
paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell pop-
ulations within neurogenic niches. However, given the immaturity of the developing central nervous system, 
innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which 
results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric 
cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and 
chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent 
symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. 
It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic 
research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this 
dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental 
disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will 
examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological 
function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models 
to produce age-specific discovery and clinically translatable research.   

1. Introduction 

Conceptions of childhood have undergone continuous and historical 
evolution, and as a result, children are no longer regarded as “small 
adults”. However, when it comes to understanding and treating diseases 
that occur in both adults and children, this sentiment is variably 
acknowledged, with approaches established in adults often extrapolated 
to paediatric cohorts. The term childhood is used relatively generically; 
the field of paediatric oncology treats patients up to the age of 17 (with 
18 years and above considered adulthood), while the area of adolescent 
and young adult oncology relates to 15–39 year-olds (Coccia et al., 2012; 
Rose, 2020). However, there is no clear consensus and formal definition 

of the term ‘childhood’ across neurodevelopment. For the purpose of this 
review, we use childhood to refer to the years between birth and 
adolescence (14-years-old) – excluding neurodevelopment changes 
during and post-adolescence. Overall, neurodevelopment is undoubt-
edly a continuum without clear cut categories and common variation 
between individuals. 

The central nervous system (CNS) undertakes various developmental 
milestones during childhood and adolescence. Neurological functions 
emerge in a “bottom-up” order with peak development of autonomic (e. 
g., heart rate and blood pressure regulation) processes occurring first 
(prenatal development), followed by integration of sensory-motor 
cognition (developing between 0 and 6 years old), language formation 
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and social behaviours such as communication (<12 years) and finally 
higher-order processes such as decision making (<20–25 years) (Leis-
man et al., 2015). In parallel to the emergence of these functions, 
macroscopic changes occur within the corresponding cortical and 
subcortical regions. MRI studies demonstrate expansion of white and 
grey matter, followed by reduction of cortical plates (Jernigan et al., 
2011; Shaw et al., 2008; Tsujimoto, 2008). Peak cortical expansion 
generally occurs by the age of 10-years, producing an augmented 
metabolism of glucose within the cortical tissue – 2-fold higher than seen 
during adulthood (Leisman et al., 2015). The subsequent reduction of 
grey matter density during adolescence is attributed to the refinement of 
neural pathways via synaptic pruning (Peter R, 1979; Webb et al., 2001). 
In regard to white matter expansion, myelination of neuronal axons has 
been proposed to occur in distinct stages: early childhood, childhood, 
adolescence, adult myelination and myelin reduction with age (de Faria 
et al., 2021). 

It is important to acknowledge that achievement of these neurolog-
ical hallmarks is heavily influenced by an individual’s experiences and 
environment, due to the human brain’s extensive capacity for ‘self- 
organisation’ (Leisman et al., 2015). In fact, environmental enrichment 
or diminution during neurological development can induce biochemical 
and neurophysiological changes, which can dictate the capacity for 
learning and memory (Greenough et al., 1978; Le Grand et al., 2001). As 
the majority of synaptic reorganisation occurs during childhood and 
adolescence (Blakemore, 2012), environmental influences (specifically 
extreme or long-lasting) have the capability to change neural systems 
and cognitive processes during this time. In the context of cancer sur-
vivorship, extensive literature indicates that the extreme and often long- 
lasting influence of cancer treatments induces significantly greater 
neurological dysfunction in the developing brain (Castellino et al., 2014; 
Jim et al., 2012; Vardy et al., 2007). Once this synaptic reorganisation is 
complete, the brain’s plasticity decreases and, with age, the suscepti-
bility to influence neurological function also declines (Leisman et al., 
2015). 

Microscopic cellular changes unique to the paediatric CNS orches-
trate development and provide a means for environmental influences to 
alter brain function. Expansive progenitor pools allow for the high rates 
of neurogenesis necessary to populate higher cortical networks and 
drives the dramatic neuroplasticity which defines early life (Lui et al., 
2011; Wang et al., 2022). CNS protective structures in the developing 
brain, such as a potentially permeable blood–brain barrier (Blondel 
et al., 2022; Coelho-Santos and Shih, 2020), may allow peripherally 
circulating signalling molecules greater access to parenchymal tissues. 
In addition, pro-inflammatory phenotypes in the infant cerebrum pro-
duce hyper-reactive responses from neuroimmune cells (increased pro-
liferation and release of inflammatory cytokines) to these invading 
signals (Christensen et al., 2014; Janeczko, 1994; Santambrogio et al., 
2001). Further, immature redox mechanisms are saturated by the high 
metabolic demands of neurodevelopment and thus can be overwhelmed 
by oxidative DNA damage resulting from augmented neurogenesis 
(Khan and Black, 2003). Cumulatively, this demonstrates a vulnerable 
period where foundational functions for brain maturation are executed. 
Further to this, systemic mediators of neurocognitive function are also 
influenced by age, and the gut microbiota – the collection of micro- 
organisms which reside in the gut – is capable of exerting influence 
over the CNS (Morais et al., 2021; Quigley, 2017). These micro- 
organisms dynamically transform from birth to death, changing in 
abundance, compositional structure, and functionality (Boehme et al., 
2021). Intriguingly, the developmental windows of the gut microbiota 
parallel critical periods of neurodevelopment with unique and specific 
microbial profiles seen in neonates, infants, early and mid-childhood, 
adolescence, and adulthood (Agans et al., 2011; Davis et al., 2020). 
These unique profiles have functional and therapeutic consequences as 
seen in age-dependent responses to microbial interventions such as 
probiotics. 

These inherent differences in children and adults highlight the need 

to appropriately consider the nuances of childhood physiology and 
biochemistry in our collective approach to understanding and modelling 
neurological diseases which affect children. As such, this review pro-
vides an overview of the key variables known to impact neurobiology 
between children and adults, as well as how systemic and metabolic 
variables which influence neurocognition, differ with age. We summa-
rise areas where these differences have been adequately acknowledged 
and incorporated into preclinical modelling of paediatric disease and 
use these approaches to inform emerging areas which require age- 
specific fundamental and translational research. This review will spe-
cifically focus on the increasingly recognised, yet poorly understood, 
neurological symptoms documented in childhood cancer survivors. 

2. Current understanding of the neurocognitive side-effects of 
cancer therapy in children 

The neurocognitive deficits which result from cancer therapy have 
become more relevant during the 21st century. Due to advances in the 
detection and treatment of cancers, we have seen profound improve-
ments in childhood cancer survival (84%, all cancers) (AIHW, 2020), 
and this can be largely attributed to the use of aggressive, multi-modal 
cancer treatments. However, these treatments come with the cost of 
increased prevalence and severity of long-term side-effects, with 94% of 
survivors of childhood cancer reporting a chronic condition by the age of 
35, compared to 40% of the general population (AIHW, 2019; Cheung 
et al., 2018). Almost half (48%) of all childhood cancer diagnosis occur 
before the age of 4-years-old, with twice the incidence rate for 0–4 than 
5–9 years of age (AIHW, 2022; Kaatsch, 2010). Similarly, peak incidence 
of acute lymphoblastic leukaemia (most prevent childhood cancer 
worldwide) is in children less than 5 years of age (Harshman et al., 2012; 
Ward et al., 2014). This indicates that the majority of paediatric anti- 
cancer treatment occurs in the first few years of postnatal development. 

Neurologically, 1 in 3 childhood cancer survivors demonstrate a 
degree of cognitive impairment which persists into adulthood, with 
deficits exacerbated with younger age-at-treatment (Cheung et al., 
2018; Vardy et al., 2007; Williams et al., 2021). This impairment in-
cludes reduced IQ, deficits in attention and processing speeds, poor 
short- and long-term memory and executive dysfunction (i.e., poor self- 
regulation) (Blakemore, 2012; Wengenroth et al., 2015). In fact, uti-
lisation of special education services occurs in 23% of survivors of 
childhood cancer in comparison to 8% of sibling controls, with this 
number increasing in subsets of children exposed to intrathecal meth-
otrexate chemotherapy or CNS irradiation (Mitby et al., 2003). Further 
to this, exacerbated attention deficits are observed in children with 
leukaemia (50% prevalence) and CNS malignancies (80%) compared 
with other malignant diseases (Zeltzer et al., 2009). This highlights that 
specific subsets of survivors present with variations in severity and 
specific cognitive faculties. These cognitive deficits impact the ability of 
childhood cancer survivors to reach some developmental milestones, as 
illustrated by reduced likelihood of completing secondary education, 
obtaining and retaining employment and earning equal to, or above 
national income averages (Amonoo et al., 2019; Zeltzer et al., 2009). In 
addition to these considerable cognitive impairments, cancer therapies 
also inflict a range of psychosocial burdens upon survivors of childhood 
cancer, with mental ill-health in common domains of depression 
(prevalence of 1 in 3), anxiety and post-traumatic stress disorder 
(Loberiza Jr et al., 2002; Prieto et al., 2005). In fact, clinically diagnosed 
psychological distress is 80% more prevalent in childhood cancer sur-
vivors than their siblings, with largest effect sizes observed following 
CNS tumour or osteosarcoma (Zeltzer et al., 2009). Survivors of paedi-
atric brain tumours are also at greater risk of developing a psychotic 
disorder, with a 25-fold increase in schizophrenia diagnosis compared to 
general population statistics (Shah et al., 2015). Dose-response associ-
ations have been identified between chemotherapy and mental ill- 
health, with increased depression reported with higher dosage and 
exposure to alkylating chemotherapeutics (Zeltzer et al., 2009). Fatigue 
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is also burdensome in survivors of childhood cancers, with 50% higher 
prevalence than survivors of adult cancer, and exacerbated burden 
following cranial irradiation (Bower et al., 2006; Cella et al., 2001; 
Christen et al., 2020; Zeltzer et al., 2009). Similarly to cognitive 
dysfunction, psychosocial burdens are associated with reduced ascer-
tainment of milestones including employment status (Amonoo et al., 
2019; Ness et al., 2008). 

While the pathogenesis of (non-surgical) cancer-treatment related 
neurocognitive side-effects have not been fully elucidated, extensive 
research in pre-clinical models and survivorship cohorts have identified 
several key pathways and pathologies. Cancer therapies (particularly 
chemotherapy) can induce neuronal apoptosis, neuroinflammation, 
mitochondrial dysfunction, oxidative stress, DNA damage and neuro- 
endocrine imbalance whilst disrupting cortical white matter, blood–-
brain barrier integrity and hippocampal neurogenesis (Janelsins et al., 
2014; Mounier et al., 2020; Ren et al., 2019a; Ren et al., 2019b). 
Intriguingly, many of these pathways are also heavily implicated in 
other paediatric neurocognitive diseases, namely neurodevelopmental 
disorders (Fiorentino et al., 2016; Kochunov and Hong, 2014; Markka-
nen et al., 2016; Panisi et al., 2021; Parenti et al., 2020; Srikantha and 
Mohajeri, 2019; Theoharides and Zhang, 2011; Valenti et al., 2014; 
Zamanpoor, 2020). However, in contrast to the rigorous and age- 
appropriate investigation of diseases such as autism spectrum disorder 
(ASD) and schizophrenia, cancer survivorship research is often trans-
lated from adult cohorts to childhood cancer survivors. Furthermore, 
cancer treatment-induced neurotoxicity is not an endogenously sourced 
disease with minimal genomic contribution, although catechol-O- 
methyltransferase (COMT) and apolipoprotein (APO)-E (Alzheimer’s 
disease risk factor allele) have been associated with greater neuro-
cognitive burden following chemotherapy (Cheng et al., 2016; 

Fernandez et al., 2020). 
As neurocognitive dysfunction due to cancer therapy is age indif-

ferent, i.e., occurring in children and adults, researchers have tended to 
extrapolate molecular and clinical findings and novel therapies from the 
adult setting to paediatric survivorship. However, childhood survivors 
are more likely to experience these side-effects and at greater severity, 
and importantly possess unique neurobiology that undoubtedly impacts 
the aetiology and presentation of these symptoms. In addition, the 
transition of acute chemobrain (during active treatment) to chronic 
cognitive impairment after treatment cessation clearly has unique 
impact during early life, with persistent symptoms likely related to 
psychosocial factors such as parental stress and time away from their 
education (Gurney et al., 2009; Harper et al., 2019; Jones and Pattwell, 
2019). Given their age and inherently different social, academic, and 
physical capabilities, it is also likely that children require specific neu-
rocognitive symptom management approaches which differ to those 
used in adults. Collectively, these factors underscore the need to 
approach neurocognitive dysfunction with an appreciation for the 
unique nuances of the paediatric setting, recognising the age-dependent 
differences in neurobiology. 

3. A child brain is not a small adult brain 

Critical periods of neuroplasticity that occur during childhood and 
adolescence, along with the concurrent weakness of innate defence 
systems, result in a developing CNS with unique nuances compared with 
the fully developed adult brain. These have an undeniable impact on 
neurocognitive function and, thus by extension, dysfunction leading to 
disease. Different CNS pathways and structures mature at different 
stages during development, and extensive work has been undertaken to 

Fig. 1. Neurodevelopmental milestones of the human brain (A) and periods of maturation of neurophysiology (B) in relation to age of humans (C) and mice (D; 
postnatal day, PND) (Gogtay et al., 2004; Semple et al., 2013). Figure created with Biorender.com. 
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match neurodevelopmental stages of animal models to human mile-
stones. Fortunately, milestones of neurodevelopment and maturation of 
somatic organs which exert significant influence upon the brain, have 
been extensively conserved between mammals (Fig. 1) (Gogtay et al., 
2004; Semple et al., 2013). In the following sections, we have selected to 
discuss the predominant mechanisms implicated in chemotherapy- 
induced cognitive impairment and highlight the key differences be-
tween the paediatric and adult brain in relation to these mechanisms. 
We focus on how these differences may result in a paediatric-specific 
aetiology of the neurocognitive dysfunction caused by cancer therapy. 

3.1. Heightened neurogenesis characterises the paediatric brain 

Neurodevelopment relies upon the differentiation and migration of 
neural stem cells to produce new neurons in a process called neuro-
genesis (Lui et al., 2011). Neurogenesis, in turn, is reliant on the avail-
ability of multipotent neural stem cells (NSCs) and their progeny, neural 
progenitor cells (NPCs), which contain diminished potency (Homem 
et al., 2015). During embryonic brain development, neurogenesis occurs 
in all regions of the neural tube but over age neurogenesis only persists 
in two regions of the postnatal CNS: the subventricular zone (SVZ) and 
the subgranular zone (SGZ) of the hippocampus (Kalamakis et al., 2019; 
Sorrells et al., 2021). While the existence of neurogenesis within the 
mature human brain has been extensively disputed in the past, the 
current consensus is that new neurons continue to be generated in these 
two loci in the human adult brain (Alonso et al., 2012; Bardy and Pal-
lotto, 2010; Gonçalves et al., 2016; Kempermann et al., 2018; Nissant 
et al., 2009). In fact, many cognitive processes, such as learning and 
memory, are now thought to be dependent upon neurogenesis, partic-
ularly based on extensive evidence implicating dysfunctional neuro-
genesis in a number of neurological diseases (Boldrini et al., 2018; Wang 
et al., 2022). Given the temporal importance of the production of new 
neurons for neurodevelopment, the rate of neurogenesis is greatest in 
early life, in both the SVZ and SGZ, with rapid decline during childhood, 
plateauing at approximately 10 years of age (Dennis et al., 2016). 

Although, neurogenesis does continue within these neurogenic 
niches in the adult brain, adult neurogenesis occurs at a reduced rate due 
to a diminution of the NSC pool within the SVZ and SGZ as the CNS 
matures (Coletti et al., 2018). A decline in the expression of a number of 
NSC markers (SRY-box 2, paired box-6, doublecortin/DCX, Bromo-
deoxyuridine/BrdU, and Ethylnyl-2′-deoxyuridine) within the postnatal 
human and primate SGZ (post-mortem) has been identified from the age 
of 4 to 10 years of age, with no further decline recorded by the age of 23 
(Boldrini et al., 2018; Sorrells et al., 2021; Wang et al., 2022). Within the 
SVZ, a similar decline in NSC markers, Ki67 + and DCX+, occur between 
0 and 10 years, with no DCX + cells observed in post-mortem tissue from 
individuals older than 4 years of age (Dennis et al., 2016). Kalamakis 
et al. (2019) applied mathematical models to suggest a rationale for this 
decline, determining a higher probability for NSCs to differentiate into a 
terminal fate, than to renew the progenitor pool, resulting in progenitor 
depletion with time. Once a differentiated neural precursor is generated, 
it migrates from the neurogenic niche along the migratory streams to 
integrate into circuitry within cortical layers and promote healthy brain 
development. Importantly, migrating DCX + cells have not been 
observed in post-mortem tissue from individuals older than 2-years, 
suggesting that neurotoxic insult during early years may have unique 
consequences for cortical connectivity (Paredes et al., 2016). This 
pathway has now been linked to the pathogenesis of schizophrenia, 
emphasising that disrupted neuronal migration results in adverse 
development and brain function (Goo et al., 2023; Greenberg et al., 
2015; Muraki and Tanigaki, 2015). 

Neural progenitor cells demonstrate a heightened vulnerability to 
neurotoxic exposure than the terminally differentiated neurons (Chan 
et al., 2013; Pierozan et al., 2020; Pierozan and Karlsson, 2021). In the 
context of chemotherapy-induced neurocognitive impairment, the 
highly proliferative and migrational nature of these neural precursors 

positions them as key targets of chemotherapeutic agents, given that 
these agents inherently target rapidly dividing and migrating cell pop-
ulations (Blagosklonny, 2006; Zhao, 2016). Importantly, this contrasts 
the relatively quiescent mature neuron populations which appear to be 
less susceptible to direct chemotoxicity (Blagosklonny, 2006; Zhao, 
2016). Of note, cultured NSCs demonstrate greater vulnerability to 
temozolomide (chemotherapy used to treat brain tumours) than mature 
neurons and even glioma cell lines (Gong et al., 2011; Lomeli et al., 
2020). A dose of 200 μM temozolomide reduced NSC viability by 50% 
but was ineffective on low and high-grade glioma-like stem cells and this 
was independent of temozolomide-resistance enzyme (O6-methyl-
guanine-DNA methyl transferase, MGMT) expression; in comparison 
mature neuron viability was only reduced by 26% after a 500 μM dose 
(Gong et al., 2011; Lomeli et al., 2020). A similar affinity for NSCs, over 
glioma cells, was observed after treatment with cisplatin, a chemo-
therapy used to treat a wide variety of cancers (Gong et al., 2011). As 
there is a greater population of NSCs within the child brain (particularly 
during early childhood), this indicates a larger pool of cells with a 
heightened susceptibility to the mechanism of action of chemotherapy. 
This period of heightened susceptibility to neurotoxic damage from 
chemotherapy parallels clinical observations of increased severity of 
side-effects with decreased age-at-treatment (Castellino et al., 2014; 
Duffner, 2010; Packer et al., 1989). Additionally, the NSCs within the 
neurogenic niches of the postnatal brain become progressively more 
quiescent with age, taking significantly longer to complete the cell cycle 
(Kalamakis et al., 2019). This implies a reduced susceptibility of mature 
and aging vs. young NSCs to the chemotherapy mechanism of action. 
Further to this, the increasingly quiescent nature of NSCs has been 
linked to an age-related pro-inflammatory microenvironment within the 
SVZ and SGZ, evidenced by a 30% increase in the proportion of inter-
leukin (IL)–23 + NSCs from 2-month to 22-month-old healthy rats 
(Kalamakis et al., 2019). Given the chronic neuroinflammation pro-
duced by chemotherapy, this finding interestingly suggests these agents 
may indirectly drive NSCs towards premature quiescence in the devel-
oping brain and hence impair neurogenesis. 

Suppressed hippocampal neurogenesis is an extensively documented 
component of chemotherapy-induced neurocognitive impairment in 
adult rodent models, an observation highly conserved between different 
chemotherapeutic agents (Christie et al., 2012; Seigers et al., 2009; 
Sritawan et al., 2020; Winocur et al., 2014; Winocur et al., 2015). This 
diminution of postnatal SGZ neurogenesis can be extensive with a re-
ported 90% reduction in BrdU + cells in the (2-month-old) rodent hip-
pocampus after a combination treatment of cyclophosphamide and 
doxorubicin (Christie et al., 2012). Given the unique and essential 
importance of neurogenesis during neurodevelopmental periods in 
childhood, exposure to toxic agents (i.e., chemotherapeutics) during 
these periods is likely to have uniquely damaging consequences. For 
instance, chemotherapy can induce DNA damage to healthy cells and 
when this occurs to progenitor cells these disruptions to the genome are 
generally present in the progeny (Lomeli et al., 2020; Qing et al., 2022; 
Sánchez-Suárez et al., 2008). Unrepaired genomic corruptions during 
neurodevelopment have substantial consequences for overall function of 
the CNS, and as such, DNA damage is a common denominator in neu-
rodevelopmental and neurodegenerative disorders (Madabhushi et al., 
2014; McKinnon, 2013; Qing et al., 2022). Specifically, pathogenesis of 
both ASD and schizophrenia share a deficient DNA repair system, with 
unrepaired damage to the genome during critical periods of brain 
maturation related to cognitive and behavioural symptoms (Cabungcal 
et al., 2014; Kern and Jones, 2006; Kim et al., 2014; Markkanen et al., 
2016; Melnyk et al., 2012). DNA damage induced by doxorubicin is 
sufficiently neurotoxic to induce neuronal apoptosis, suggesting that 
chemotherapy exposure during childhood may instigate a premature 
loss of neural progenitors within the developing brain (Lee et al., 2006). 
Given the longevity of mature neurons, DNA damage accumulates and 
drives cognitive deterioration (Qing et al., 2022); the diminution of 
repair processes with normal aging has been linked with reduced 
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expression of genes coding for synaptic plasticity and hence impacting 
learning capabilities (Madabhushi et al., 2014). As such, pathological 
DNA damage has been causally related to neurodegenerative disorders 
such as amyotrophic lateral sclerosis, and Parkinson’s and Alzheimer’s 
diseases (Kok et al., 2021; Martin, 2008). With this knowledge, it is 
apparent that rigorous investigation into long-term functional and 
pathological consequences of suppressed neurogenesis (compromised 
proliferation, migration, and function) and DNA damage, caused by 
cancer therapy or other neurotoxic compounds, needs to be collected in 
paediatric cohorts and relevant animal models. 

3.2. The paediatric neuroimmune system is pro-inflammatory 

Neuroinflammation is recognised to play a role in many neurological 
diseases, in addition to direct effects upon neurogenesis, or the induction 
of neurodegeneration. Mirroring the activity of the peripheral immune 
system, the neuroimmune system exerts both important protective ef-
fects coupled with potentially damaging consequences. Physiologically, 
neuroinflammation serves to protect the brain from pathogenic insult 
and promote the repair and recovery of neuronal tissues (Linnerbauer 
and Rothhammer, 2020); however, when dysregulated or persisting 
chronically, excessive neuroinflammation damages the brain paren-
chyma, impacting learning and memory (Lyman et al., 2014). As a 
result, neuroinflammation is a commonly shared mechanism or obser-
vation in several neurodevelopmental disorders including ASD, schizo-
phrenia, cerebral palsy, and chemotherapy-induced neurotoxicity 
(Hagberg et al., 2012; Kim et al., 2022; Konsman et al., 2022; Mounier 
et al., 2020; Rummel et al., 2021). However, just like neurogenesis, the 
neuroimmune system evolves with age, and is in fact pro-inflammatory 
in early life, which is hypothesised to compensate for the developing 
peripheral immune system during critical periods of neurodevelopment 
(Fig. 2) (Christensen et al., 2014). In fact, stimulating neonatal rats with 
the endotoxin lipopolysaccharide (LPS) produced elevated levels of IL- 

1α, IL-1β, IL-2, tumour necrosis factor (TNF) and chemokine ligand 
(CCL)-2, CCL3 and CXCL9 (Christensen et al., 2014). This pro- 
inflammatory response has been theorised to contribute to the clinical 
severity of CNS infection in children compared to those experienced in 
adults, as well as their propensity to cause long-term neurological 
dysfunction (Christensen et al., 2014; Kim et al., 2022). Significantly, it 
has also been considered that this neurological damage is not solely 
driven by the invading pathogenic agent, but also by the innate immune 
reactivity and consequent pro-inflammatory response within the brain 
(Kim et al., 2022). In a similar manner, systemic LPS is elevated after 
chemotherapy and drives neuroinflammation via the innate immune 
system through toll-like receptor 4 (TLR4)-dependent mechanisms 
(Ciernikova et al., 2021; Subramaniam et al., 2020). The associated 
neuropsychological symptom of fatigue, is also driven by aberrant im-
mune signalling mediated through the TLR4 accessory protein, MYD88 
(myeloid differentiation 88) (Wolff et al., 2021), although this has not 
been studied in the paediatric setting. As such, considering the unique 
neuroimmune capacity of the paediatric brain is critical in under-
standing neurocognitive dysfunction in children with cancer. 

Immune pathways of the brain are largely mediated by glial cell 
populations, namely microglia and astrocytes (Fig. 2), that survey the 
CNS microenvironment for pathogens, toxins, and other noxious com-
pounds. Microglia are the resident immunocompetent cells of the CNS 
and are most recognised for their ability to shift phenotypically from 
surveilling, ramified cells to activated, ameboid cells which can 
phagocytose cellular waste, apoptotic cells, and invading microbes (Bar 
and Barak, 2019; Sominsky et al., 2018). This phagocytic function also 
allows microglia to play their critical role in the maturation of neuronal 
circuits, via engulfing the axonal terminals and dendritic spines which 
compose synapses, and as such pruning unnecessary neuronal connec-
tions (Bennett et al., 2021; Sominsky et al., 2018; Thion et al., 2018). 
Microglia are fundamental mediators of chronic neuroinflammation 
observed in ASD, with increased microglial and myeloid markers 

Fig. 2. The uniquely hyper-responsive neuroimmune system which characterises paediatric neurodevelopment has implications for children treated with chemo-
therapy (and other cancer therapies) during this period of heightened vulnerability (Christensen et al., 2014; Clarke et al., 2018; Edmonson et al., 2014; Kim et al., 
2022; Matta et al., 2019; Ranasinghe et al., 2009; Vargas et al., 2005). Figure created with BioRender.com. 
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(human leukocyte antigen (HLA)-DR, ionised calcium binding molecule 
(Iba)-1, chemokine receptor 3 (CX3R)-1, triggering receptor expressed 
on myeloid cells (TREM)-2, killer cell activating receptor-associated 
protein, KARAP) observed in the pre-frontal cortex in comparison to 
neurotypical controls (Edmonson et al., 2014; Matta et al., 2019; Vargas 
et al., 2005). In children with ASD, these phagocytic cells perform 
aberrant synaptic pruning which likely contributes to dysconnectivity in 
this neurodevelopmental condition (Morgan et al., 2010; Zhan et al., 
2014; Zhang et al., 2023b). 

Aligning with a pro-inflammatory state for the paediatric neuro-
immune system, microglia in neonates have greater basal expression of 
immune markers, including cluster of differentiation (CD)86, CD40, and 
major histocompatibility complex (MHC)-II (Santambrogio et al., 2001). 
Additionally, neonatal microglia also demonstrate a greater functional 
pro-inflammatory response in vitro. Treatment of primary neonatal rat 
microglia cultures with adenosine 5′-triphosphate (ATP) elicited greater 
secretion of nitric oxide and TNFα and higher glutamate uptake than 
primary adult (2–8 months) or aged (9–15 months) rat microglia (Lai 
et al., 2013). Other data indicate that primary microglia from 18 to 25 
month old rodents have a higher basal expression of immune marker 
CD11b, but that expression levels were more sensitive to transient 
ischemia in male neonates than aged (Ngwa et al., 2021). In vivo 
research also found that neonatal microglia were more proliferative 
following hypoxic-ischemia, with 2-3x greater cell number than in 4- 
week-old mice (Ferrazzano et al., 2013). There are some publications 
which suggest that microglial reactivity is not only more rapid in neo-
nates but also more prolonged following transient ischemia (Cikla et al., 
2016; Derugin et al., 2000; Liu and McCullough, 2013). 

While the temporal kinetics of this age-related microglial reactivity 
are not well understood beyond the neonate, this heightened reactivity 
is likely due to the increased requirements of synaptic pruning during 
early-life. However, this could contribute to heightened severity of 
immune-dependent neuropathology in children. Additionally, it is 
important to acknowledge that other cells of myeloid lineage can access 
the brain in the context of inflammation or disease conditions. Bone 
marrow-derived myeloid cells, in particular, invade brain tumours, 
induced by factors relating to both the tumour and treatment (i.e., 
irradiation), which can result in a neurodegenerative cascade impacting 
microglia and neuron physiology (Hohsfield et al., 2020; Pinton et al., 
2019). While the effect of invading monocytes on an immature brain 
have not been fully elucidated, evidence suggests this potentiates an 
inflammatory phenotype and may predispose to neurodevelopmental 
disorders (Onore et al., 2014; Tanabe and Yamashita, 2018). 

In line with microglia dynamics throughout neurodevelopment, as-
trocytes are equally dynamic showing transient increases in reactivity 
during early development. Upregulation of inflammatory astrocytic 
gene serpina3n and signalling protein matrix metalloproteinase 2 
(MMP-2) have been identified during infancy and early development 
(Clarke et al., 2018; Ranasinghe et al., 2009). Additionally, neonatal 
rodents (postnatal day, PND 6–14) exposed to mechanical brain injury 
exhibit elevated astrocyte proliferation than at PND 30 (Janeczko, 
1994). Astrocytes are also intimately involved in neuroinflammation, 
with secretion of IL-1α and TNF by reactive microglia which instigate a 
pro-inflammatory astrocyte phenotype. Like microglia, astrocytes hold a 
dual role in facilitating neurotransmission and secreting neurotoxic cy-
tokines when reactive. Resting-state astrocytes express presynaptic 
proteins (e.g., thrombospondins, hevin, ephrin-A3) which regulate 
excitatory synapse formation and dendritic spine longevity (Christo-
pherson et al., 2005; Kim et al., 2022; Kim et al., 2021; Kucukdereli 
et al., 2011; Murai et al., 2003). The astrocyte phenotype shift results in 
downregulation of these trophic factors in exchange for pro- 
inflammatory mediators: TNF, IL-1β, IL-6 and MMPs (Bianco et al., 
2005; Choi et al., 2014; Hart and Karimi-Abdolrezaee, 2021; Nagy et al., 
2006). MMPs as proteolytic enzymes are particularly neurotoxic, by 
breaking down the extracellular matrix which form the protective per-
ineuronal nets around neurons and resultingly are strong instigators of 

neuronal apoptosis. Unsurprisingly, increasing MMP activity is related 
to the neurotoxicity underlying both ASD and schizophrenia (Abdallah 
and Michel, 2013; Chopra et al., 2015; Lepeta and Kaczmarek, 2015). 

Astrocyte reactivity has also been linked to both neuro-
developmental disorders and chemotherapy-induced neurological 
impairment with elevated glial fibrillary acidic protein (GFAP) in the 
prefrontal cortex of people with ASD and cancer survivors (Laurence and 
Fatemi, 2005; Shi et al., 2019). A further concern of prolonged astrocyte 
reactivity during development is the consequent deficiency of astrocyte- 
derived neurotrophic factors required for appropriate neuro-
development. Postnatal (PND 7–21) astrocyte ablation models in ro-
dents lead to a reduction in the number of synaptic connections between 
neurons and overall network instability, indicating the role astrocytes 
play to synchronise neuronal and synaptic survival (Schober et al., 
2022). The wingless/integrated (Wnt) and β-catenin pathway, orches-
trated via astrocyte signalling, exerts paracrine effects to activate 
downstream neurotrophic factors such as brain-derived neurotrophic 
factor (BDNF) which is essential for learning and memory (Zhou et al., 
2020). Predictably, decreased Wnt/β-catenin signalling is implicated in 
abnormal neurodevelopment, most readily in ASD, with concurrent 
changes in astrocyte morphology (reduced branching number and 
length) indicative of a pro-inflammatory phenotype (Sloan and Barres, 
2014). Given this dual role of astrocytes, it is important to consider the 
effects of chronic pro-inflammatory signalling upon neurodevelopment 
but also the consequences of chronic deficiencies in astrocyte-derived 
trophic factors. 

Collectively, these data underscore that not only is the developing 
brain of a child more vulnerable to the direct cytotoxic properties of 
anti-cancer therapies, but also that the relative hypersensitivity of the 
paediatric neuroimmune system is more likely to perpetuate secondary 
neuroinflammation and its effects on long-term cognition. Contrast-
ingly, critical periods of neuronal maturation are concluded by adult-
hood and as such, the results of glial reactivity and cytokine 
dysregulation are less detrimental and long-lived in older patients. 
These underscore the knowledge that the childhood brain is inherently 
different to that of an adult, and as such, both discovery and trans-
lational research must acknowledge these differences in experimental 
design and methodology. 

3.3. The paediatric blood–brain barrier is leaky 

When considering neuropathological changes in response to exoge-
nous triggers – including infection, or, in the context of childhood can-
cer, chemotherapy – the ability of peripherally circulating factors to 
access the CNS is critical. CNS access is largely mediated by the 
blood–brain barrier, a monolayer of brain microvascular endothelial 
cells (BMECs) (Abbott et al., 2010; Obermeier et al., 2013). BMECs are 
highly specialised for this role with upregulation of tight and adherence 
junction proteins to restrict paracellular permeability as well as low 
expression of receptors and transporters for active transport, meaning 
most molecules must be transcellularly trafficked across BMECs through 
caveolae (Sweeney et al., 2018; Zhao et al., 2015). BMECs also highly 
express efflux transporters to further limit access of toxins to the CNS 
(Kadry et al., 2020). 

‘Barrier-genesis’ commences during embryonic development, 
concurrently with angiogenesis, and continues to mature postnatally 
(Coelho-Santos and Shih, 2020). The development of the blood–brain 
barrier is a sequential process, and the ongoing angiogenic processes and 
microvasculature modification which occur during childhood are par-
alleled by changes in expression of structural barrier components which 
are vastly different to the stable vascular networks seen during adult-
hood (Fig. 3) (Blondel et al., 2022; Coelho-Santos and Shih, 2020). The 
perinatal capillary system is sporadic and immature, and concurrent 
angiogenesis and integration of neurovascular support cells (astrocytes, 
pericytes, neurons and microglia) with endothelial cells gradually leads 
to a functional blood–brain barrier. This process has been reported to 
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occur up to two weeks postnatally in mice, which equates to an esti-
mated 12-months of age in humans (Coelho-Santos and Shih, 2020; 
Dutta and Sengupta, 2016; Lam et al., 2015). While published evidence 
of Trypan blue testing in rodent and pig embryos found no penetration 
of dye into the prenatal, newborn, nor adult CNS (Goldman, 1913; 
Grazer and Clemente, 1957), indicating no functional difference, the age 
of these findings does raise concerns regarding its validity. In fact, 
analysis of human tissues from the first year of life shows immature 
levels of key BMEC proteins (Coelho-Santos and Shih, 2020; Dutta and 
Sengupta, 2016; Lam et al., 2015). 

Furthermore, investigation of temporal dynamics of expression 
levels of these proteins in rodents indicates mature levels are still not 
reached by postnatal week two (Omori et al., 2020). Efflux transporter 
P-glycoprotein (Pgp, ATP-binding cassette transporter ABCB1) expres-
sion is 80% less than adult levels (PND 24–84) at PND 7 and still 60% 
less at PND 14 (Omori et al., 2020). 

Pgp was first identified as multi-drug resistant protein 1 (Mrp1) due 
to its role in anticancer drug resistance by expelling chemotherapeutics 
from tumour loci (Amawi et al., 2019). However, in this context, 
depleted Pgp during childhood suggests the blood–brain barrier defence 
systems are insufficient to prevent small molecule chemotherapies from 
entering the brain parenchyma. In effect, Pgp substrates have shown 
increased blood–brain barrier penetration in juvenile vs adult rats, 
concurrent with 10-fold upregulation of the efflux transporter with 
maturation (Kupferberg and Way, 1963; Matsuoka et al., 1999; Mor-
imoto et al., 2012). Similarly, another efflux transporter, breast-cancer 
resistant protein (Bcrp, ABCG2) demonstrates continuously increased 
expression during development from PND 1 to 2 and 3 weeks old in rats 
and from birth to adulthood in rhesus monkeys (Ito et al., 2011; Omori 
et al., 2020). Bcrp substrates include commonly administered 

chemotherapies methotrexate, topotecan and irinotecan (Robertson 
et al., 2012; Suzuki et al., 2003) and as such, the early life deficit in 
blood–brain barrier expression of this transporter leaves the CNS more 
vulnerable to drug permeability and consequent neurotoxicity than 
during adulthood (Fig. 3). While Daneman et al. (2010) found no 
upregulation of pathways relating to cellular transport from PND 2–8 
animals to PND 60–70 animals, more recently several transporters have 
shown increased expression through postnatal neurodevelopment. 
These include GLUT1 (glucose transporter), MCT1 (monocarboxylate 
transport) and Cav1 (transcellular transport via caveolae) from PND 1 to 
14, 21 and 56 (Omori et al., 2020). Cumulatively, this may suggest an 
immature signature of the developing blood–brain barrier with conse-
quences for CNS protection and energy transport. 

Paracellular permeability is the alternate route by which solutes may 
penetrate the blood–brain barrier; however, this too is highly regulated 
via the localised expression of tight and adherens junction proteins. In 
fact, intraperitoneal injection of (3 kDa) biotinylated dextran amines to 
embryonic and adult rodents did not result in paracellular leakage at 
either age (Liddelow et al., 2013). This may suggest that any early-life 
increase in molecular penetration of the CNS is via transcellular path-
ways to meet increased metabolic demands. Conversely, tight junction 
proteins, enriched within BMECs (Daneman et al., 2010), claudin-5 and 
claudin-3 demonstrate an age-dependent increase in blood–brain barrier 
expression at PND 1, 14, 21 and 56 and from PND 15–70, respectively, in 
rodents (Omori et al., 2020; Solarz et al., 2021). An adherens junction 
protein, VE-cadherin (CD144), displays a similar progressive increase in 
the rhesus monkey (Ito et al., 2011). 

The blood–brain barrier is further reinforced by astrocyte paracrine 
communication with astrocytic end-feet in direct contact with BMECs. 
These end-feet were identified in fluorescent imaging via positive 

Fig. 3. Comparison of the mature signature of the adult to the developing blood–brain barrier, with consideration of the consequences for chemotherapy entry to the 
vulnerable brain parenchyma (Amawi et al., 2019; Coelho-Santos and Shih, 2020; Ito et al., 2011; Omori et al., 2020). Figure created with BioRender.com. 
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staining for aquaporin-4 (AQP4, water transporter). Of note, AQP4 is 
lowly expressed at PND 7 and shows further age-dependent increases in 
expression from PND 15–70, suggesting deficient microenvironmental 
support for adequate barrier function in early life (Coelho-Santos and 
Shih, 2020). In line with age-dependent upregulation of critical 
blood–brain barrier components, there is an inverse correlation between 
postnatal age and plasma S100-β levels (Solarz et al., 2021) – an astro-
cytic product too large to exit the CNS via an intact barrier. Hence, 
decreased S100-β levels from PND 15–70 indicates increased blood–-
brain barrier leakiness (Solarz et al., 2021). Collectively, this suggests 
the paediatric brain has a less robust blood–brain barrier, and thus is 
more vulnerable to insult from noxious substances in circulation (Solarz 
et al., 2021). This may also contribute to the pro-inflammatory profile of 
the paediatric neuroimmune system, as the first line of defence is 
weakened. Ultimately, this impaired physical defence in combination 
with heightened drug transport, makes the paediatric brain more readily 
accessible by intravenously administered anti-cancer agents. 

3.4. Impaired redox capacity imparts a heightened sensitivity to oxidative 
stress in the paediatric brain 

The CNS is exposed to high levels of oxidative stress under basal 
physiological conditions as the brain consumes more oxygen than any 
other organ – 20% of the body’s total oxygen intake (Franco et al., 2019; 
Omori et al., 2020). While the brain has innate antioxidant defences to 
offset this high oxygen usage, physiological nuances of neural tissue 
further increase the susceptibility of the CNS to oxidative damage. These 
include, enrichment of unsaturated lipids, glutamate pathway enrich-
ment (thus risk of mitochondrial calcium overload), redox active tran-
sition metals, high mitochondrial demand, and auto-oxidation of 
neurotransmitters (Cobley et al., 2018; Franco et al., 2019). In fact, the 
metabolic demand of the CNS is so high that a single cortical neuron can 
use 4.7 billion ATP molecules per second, which results in high pro-
duction of reactive oxygen species (ROS) (Zhu et al., 2012). The sub-
sequently dysfunctional or apoptotic neurons can lead to a variety of 
neurodevelopmental and neurodegenerative diseases (Annunziato et al., 
2003; Méndez-Armenta et al., 2014). 

The developing environment of the paediatric brain is recognised to 
have immature antioxidant enzymes, resulting in a lower redox capac-
ity. For example, glutathione (GSH) levels – inversely associated with 
Alzheimer’s disease (Liguori et al., 2018; Saharan and Mandal, 2014) 
and schizophrenia symptoms (Matsuzawa and Hashimoto, 2010) – are 
significantly lower in PND 14 rat brain sections than the levels reached 
at PND 21 (Khan and Black, 2003). Similarly, glutathione peroxidase, 
responsible for the redox of lipids and hydrogen peroxides, increases in 
activity in the brain from PND 1–45 in rodents (Khan and Black, 2003). 
In line with these findings, superoxide dismutase and catalase (respon-
sible for ROS mitigation) are lowly expressed in the brain up to and 
including PND 14 in rodents, representing underdeveloped mechanisms 
to defend against hydrogen peroxide toxicity and consequently DNA 
damage within the CNS (Khan and Black, 2003). These findings have 
direct implications for neurotoxicity and neurocognitive impairment 
caused by anti-cancer (cytotoxic) drugs, especially chemotherapy. 
Notably, nearly 50% of approved chemotherapy agents of different drug 
classes/types (e.g., cyclophosphamide, doxorubicin, methotrexate, car-
mustine, carboplatin) are known to produce extensive oxidative stress in 
the brain as well as depleting innate antioxidant activities (Joshi et al., 
2010; Rummel et al., 2021). 

NPCs are inherently more sensitive to oxidative stress, a sensitivity 
shared by the myelinating cells of the CNS – oligodendrocytes. Oligo-
dendrocytes are responsible for myelinating neuronal axons and thus, 
maintaining white matter connectivity within the brain. Interestingly, 
oligodendrocytes are especially vulnerable to damage induced by 
oxidation as these cells promote high ROS production through elevated 
metabolic activity and iron content (Roth and Núñez, 2016; Thorburne 
and Juurlink, 1996). Additionally, oligodendrocytes are innately 

deficient in GSH compared to other glia, indicating poor redox defences 
(Roth and Núñez, 2016). Further depletion of antioxidant mechanisms, 
such as following chemotherapy, is associated with loss of white matter 
integrity, such as, within the cingulum which connects the frontal, 
temporal and parietal lobes (Monin et al., 2015). As the brain matures 
throughout childhood, oligodendrocytes become less vulnerable as GSH 
levels increase and these myelinating cells exchange oxidative for 
glycolytic metabolism (Back et al., 1998; Roth and Núñez, 2016). In 
schizophrenia, oxidative damage to oligodendrocytes is a leading 
pathogenic hypothesis, indicating the relevance of white matter integ-
rity to appropriate neurodevelopment (Cuenod et al., 2022; Maas et al., 
2017). 

The vulnerability of oligodendrocytes is heightened further at the 
progenitor stage (OPC), displaying differentiation dependent survival 
when exposed to free radicals (Back et al., 1998). Total brain OPC 
number is greatest during the first prenatal years with gradual declines 
until 5 years old, at which age stability is reached. Similarly, the total 
number of oligodendrocytes is established within the first decade of life 
(turnover rate of 1/300 oligodendrocytes per year) with 86% of final 
white matter volume established within the first 5 years (Yeung et al., 
2014). OPC proliferation and differentiation is inhibited, and apoptosis 
induced by depleting GSH, and consequently inducing redox imbalance 
(Back et al., 1998). This indicates an opportunity for mechanisms of 
chemotherapy-induced neurotoxicity to deplete progenitor niches and 
subsequently disrupt the precise pathways of brain connectivity during 
critical periods of neurodevelopment occurring uniquely during child-
hood, with the potential for long-lasting consequences for cognition. 

4. Systemic influences of neurocognitive function 

It is increasingly recognised that despite its relative isolation from 
the periphery, the CNS is influenced by systemic events, particularly 
those involving the immune system. Events occurring in the periphery, 
e.g., immune activation or inflammation, have the capacity to impact 
CNS physiology and induce neuropathology. This is well documented in 
the case of vaccines or infection, whereby peripheral immune activation 
is associated with hallmark traits of cognitive impairment, brainfog and 
fatigue (Thomson et al., 2014). For instance, people with the autoim-
mune disorder rheumatoid arthritis are often diagnosed with co-morbid 
neurocognitive symptoms (e.g., depression and cognitive impairment) 
with associated increases in pro-inflammatory cytokines within the ce-
rebrospinal fluid (Covic et al., 2012; Fuggle et al., 2014; Shin et al., 
2012; Won et al., 2022). More recently, brainfog as a result of COVID- 
19-mediated astrocyte, microglia and brain lymphocyte activation, has 
emerged with deficits in memory, executive functioning and attention 
and concurrent functional changes in neuroimaging studies of the hip-
pocampus and prefrontal cortex (Becker et al., 2021; Bertuccelli et al., 
2022; Najt et al., 2021). 

Systemic inflammation including that associated with inflammatory 
bowel disease, is now known to be associated with characteristic neu-
roinflammatory changes in the brain (Sun et al., 2022), prompting 
extensive investigation of how the gut, the largest immunological sys-
tem in the body, influences CNS physiology and behaviour. Numerous 
CNS diseases are now recognised to incorporate concurrent changes in 
the gastrointestinal environment, including intestinal leakiness, altered 
mucous production and changes in the resident micro-organisms (the 
gut microbiota). The vagus nerve, responsible for communicating 
metabolic signals from the gastro-intestinal tract to the CNS, influences 
higher-order cognitive functions, such as memory and motivation, and 
plays a role in neurocognitive disease (Décarie-Spain et al., 2023; 
Makdissi et al., 2023). In fact, deposition of α-synuclein has been 
observed in the vagal nerve before the clinical presentation of Parkin-
son’s disease (Makdissi et al., 2023). This is only one example of the 
many neurodegenerative diseases which are now thought to originate in 
the gut with gastrointestinal symptoms observed (sometimes years) 
prior to the onset of neurological symptoms (Haikal et al., 2019; 
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Makdissi et al., 2023; Sampson et al., 2016). 
Alterations in the gastrointestinal microenvironment, in particular 

intestinal barrier dysfunction, permit unrestricted communication be-
tween luminal microbes and the mucosal immune system; a mechanism 
in which the pattern recognition receptor, TLR4, plays a mediatory role. 
When activated, TLR4 initiates a rapid and profound systemic inflam-
matory response, weakening the blood–brain barrier to drive neuro-
inflammation and associated pathology (Gao et al., 2015; Kuzmich et al., 
2017; Zhang et al., 2015). Similarly, a disrupted gut microbiota, which is 
metabolically deficient, will result in poor production of fibre fermen-
tation by-products – short chain fatty acids (SCFAs). Under healthy 
circumstances, SCFAs are readily absorbed and can transverse the 
blood–brain barrier where they exert numerous neuroprotective effects. 
The most commonly referenced SCFAs in relation to neurocognition are 
acetate, propionate and butyrate, which are known to promote neuronal 
function via inhibiting histone deacetylases (HDACs) and eliciting 
changes to chromatin and gene transcription (Dalile et al., 2019). 
HDACs are implicated in cognitive impairment as evidenced by their 
role in schizophrenia and Alzheimer’s disease, and opposingly, HDAC 
inhibitors have been shown to promote cognition in preclinical studies 
(Dalile et al., 2019; Volmar and Wahlestedt, 2015). For example, 4-week 
regimen of butyrate administration can alleviate depressive phenotypes, 
increase BDNF production and promote restoration of learning and 
memory in mice with neuronal atrophy (Fischer et al., 2007; Schroeder 
et al., 2007). Emerging evidence suggests that the microbiota-gut-brain 
axis is implicated in a number of neurological diseases, and that age 
plays an important role. This was exhibited with the ability of a trans-
plant of the faecal microbiota from 3 to 4 month old mice to ameliorate 
the effects of aging on both systemic and CNS immune activity and the 
hippocampal transcriptome (Boehme et al., 2021). This clearly points to 
the dynamic changes in both the gut microbiota, intestinal barrier and 
immune system that occur throughout development. 

It is well documented that in early-life innate immunity is suppressed 
(Clapp, 2006), a concept which has been comprehensively documented 
in neonates, with monocytes from cord-blood exhibiting blunted TNFα 
production (up to 1000-fold less than adult monocytes) following LPS 
activation (Clapp, 2006). This reduced inflammatory response report-
edly extends to IL-12p70 from LPS and interferon (IFN)-α and IFNγ 
following stimulation with TLR9 agonist CpG oligonucleotide (Nguyen 
et al., 2010). However, other cytokines in cord-blood show an assumed 
transient upregulation vs adult samples including IL-1β, IL-6, IL-23 and 
IL-10, levels which are reported to be depleted by 2-months of age 
(Yerkovich et al., 2007). While the kinetics of innate immune develop-
ment outside the neonate period are poorly defined, the available data 
suggests that there is a slow increase in cytokine expression and 
monocyte number from the infant through to adulthood. At 4-years, 
TLR4 activation by LPS still induces significantly lower levels of IL-6, 
IL-10 and TNFα and this result was maintained up to 13-years for IL- 
18 and IFN-γ (Yerkovich et al., 2007). Interestingly, comparison of 
monocyte TLR4 expression identified no variation in basal levels in 1- 
year-olds and adults (Levy et al., 2006; Yerkovich et al., 2007); how-
ever, translocation to the cytoplasm was far more rapid in infants 
potentially explaining the suppressed cytokine response in this cohort 
(Yerkovich et al., 2007). While young rhesus macaques <4 years of age 
are TLR4 and TLR5 deficient in comparison to adult animals, they also 
lowly express the negative regulator of TLRs (sterile alpha and TIF-motif 
containing protein, SARM1) (Asquith et al., 2012). The absence of this 
reduced negative regulator may allow for sufficient innate immunity 
despite lower pattern recognition receptor expression. 

Certainly, the deficiencies in the paediatric immune system are 
linked with their relatively immature gut microbiota. During the first 
few years of life, the immature gut microbiota develops in complexity; 
however, this is still vastly different than the abundance and richness 
which characterises the adult gut microbiota (Ringel-Kulka et al., 2013). 
Studies of 7–12 year-olds shows that the paediatric gut microbiota is 
enriched in Bifidobacterium spp., Faecalibacterium spp., and 

Lachnospiraceae in comparison to the adult microbiome which is more 
abundant in Bacteroides spp (Hollister et al., 2015; Ihekweazu and Ver-
salovic, 2018). Use of metagenomics to understand the functional con-
sequences of this difference indicates prioritisation of genes pertaining 
to developmental processes (e.g., vitamin and folate synthesis, meta-
bolism of amino acids) in comparison to aging processes (e.g., inflam-
mation, adiposity) in adults (Hollister et al., 2015). Even during 
adolescence (11–18 years) variation in relative abundance can be 
observed with distinctive characteristics of the adult microbiota, such as 
increased stability, only appearing once pubescent transitions are 
complete (Agans et al., 2011). Maturation of the gut microbiota is also 
demonstrated in changes in levels of gut-derived metabolites. In neo-
nates, acetate is the sole SCFA present (in faecal matter) with enrich-
ment of acetate producing Bifidobacteriaceae, levels of which increase 
steadily throughout the first 6-months of life before stabilising (Tsukuda 
et al., 2021). As such, acetate levels in toddlers (approximately 2-years 
old) are significantly greater than in adults and in exchange, production 
of propionate and butyrate are lower (Fournier et al., 2022). The pro-
duction of SCFAs with the progressive addition of carbon atoms is 
related not just to increased diversity with addition of Lachnospiraceae 
and Clostridiaceae to the gut microbiota, but also dietary changes with 
the exchange of breast milk for solid foods (Davis et al., 2020; Fournier 
et al., 2022; Sandin et al., 2009). This is evidenced by a more adult-like 
microbiota and higher SCFA concentrations present in formula-fed 
compared to breast-fed infants, with the absence of human milk oligo-
saccharides in formula pre-emptively maturing the microbiota (Bridg-
man et al., 2017). Further to this, dietary fibre is the predominant 
substrate for SCFA production and an estimated 1.5x increase in daily 
fibre intake is seen from ages of 2–3 years to 14–16 years, and hence a 
greater ability to produce SCFAs is seen from childhood to adolescence 
(Edwards et al., 2015). 

These critical windows of active microbial development have sig-
nificant implications for neurodevelopment, influencing the formation 
of synapses and myelination of neurons in brain regions responsible for 
cognitive function. As such, perturbations to the microbiota during these 
windows can have long-term consequences for neurological functioning. 
Experimentation using germ-free (GF) mice demonstrate that the 
absence of commensal colonisation produces aberrant neuroanatomy 
with abnormal neuronal morphology and dendritic spine structure in the 
hippocampus and amygdala (Luczynski et al., 2016). Similarly, GF mice 
demonstrate reduced synaptic functionality with downregulation of 
synaptic proteins, namely synaptophysin and postsynaptic density 
(PSD)-95, as well as increased blood–brain barrier permeability (with an 
associated reduction in expression of tight junction proteins) (Braniste 
et al., 2014; Diaz Heijtz et al., 2011). A lack of microbial regulation also 
impacts glial cells with a lack of maturation in microglia of GF mice, as 
seen by the absence of requisite cell surface molecules and appropriate 
morphology (Abdel-Haq et al., 2019; Erny et al., 2015). This effect was 
temporally replicated via microbial depletion through administration of 
broad-spectrum antibiotics and was alleviated through the provision of 
SCFAs (Erny et al., 2015). Further to this, GF oligodendrocytes 
demonstrate over-expression of myelinating genes and hyper-
myelination in the pre-frontal cortex, and significantly, commensal 
colonisation successfully downregulated aberrant transcription activity 
but not the hypermyelination (Hoban et al., 2016). These molecular and 
anatomical changes correspond with neurocognitive disease states, with 
an increased risk of developing depression (Lima-Ojeda et al., 2017), 
schizophrenia (Hoffman et al., 2020; Klein-Petersen et al., 2021; Köhler- 
Forsberg et al., 2019), and neurodevelopmental disorders ADHD and 
ASD (Aversa et al., 2021; Neufeld et al., 2011; Slykerman et al., 2019) 
seen with early life microbial disruption (such as antibiotic treatment). 
Given the pervasive gastrointestinal dysfunction observed in ASD 
(23–70%) with high correlation to neurological symptoms, in addition 
to altered microbiota composition, taxonomic richness, and metabolite 
levels, an aetiological role of the microbiota-gut-brain axis is highly 
implicated in this neurodevelopmental disease (Hoban et al., 2016; Kang 
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et al., 2018). Likewise, chemotherapy-induced neurocognitive compli-
cations are linked to a disrupted gut microbiota characterised by pro-
duction of immunomodulatory metabolites (Bilenduke et al., 2022; 
Ciernikova et al., 2021; Song and Bai, 2021; Subramaniam et al., 2020). 
In fact, gut microbiota disruption and anti-cancer treatment-induced gut 
toxicity allows these metabolites to translocate into the bloodstream 
(Subramaniam et al., 2020). The consequent invasion of these gut- 
derived immunomodulators into the CNS may explain the manner by 
which systemically administered chemotherapies can induce neurotox-
icities (Subramaniam et al., 2020). 

Consequently, we must consider the impact of these differences in 
the microbiota-gut-brain axis in children compared to adults when 
developing microbial-based therapies for neuropathology, as they are 
known to impact therapeutic response. In fact, neurological benefits of 
probiotic interventions are numerous in adult populations, but children 
<3-years are predominately non-responsive (Chou et al., 2010). Inter-
estingly, while children with ASD between 7 and 12 years are reported 
to respond well to probiotics, adolescences (13–15 years) have less 
therapeutic benefit (Liu et al., 2019). This highlights the complexity of 
the microbiota-gut-brain axis and the dynamic changes that occur 
throughout development. Importantly, these may also be influenced by 
dietary habits, which are also known to change with age, and as such, 
ensuring evidence is generated in appropriately designed models to 
reflect the paediatric setting, rather than repurposing approaches 
developed in adults, is critical for therapeutic success. 

It is not only important to consider the age-dependent changes in 
treatment response but also to develop treatments to ensure microbial 
disturbances do not impede the critical windows of neurodevelopment. 
An example of this which is relevant to the context of cancer-treatment 
induced neurotoxicities is malnourishment induced cognitive deficits. 
Prevalence of malnourishment in children living with and beyond can-
cer ranges between 5 and 48% (Brinksma et al., 2012; Murphy et al., 
2015; Tripodi et al., 2022). Further to this, as a result of chemotherapy- 
induced gut toxicity in children, renourishment is necessary after >70% 
of chemotherapy courses indicating the frequency of malnourishment 
during active treatment (Kuiken et l., 2017). Notably, malnourishment is 
associated with pervasive neurodevelopmental delays and cognitive 
impairment in a microbial dependent manner (Blanton et al., 2016). As 
the gut microbiota is reliant upon the host’s food intake, malnourish-
ment depletes these gut micro-organisms and pre-clinical stabilisation of 
appropriate neurodevelopment is only seen with microbial-targeted 
refeeding and not with standard renourishment diet (Gehrig et al., 
2019). As such, the necessity of promoting microbial function during 
cancer treatments has an urgency in childhood which is not present in 
adulthood with the associated closure of critical windows. 

5. Considerations for modelling paediatric neuropathology 

Here, we have provided clear evidence of how the childhood brain 
differs to that of an adult, and how these differences are uniquely 
positioned to influence the development of paediatric neuropathology. 
Indeed, in some recent work, these nuances have been appreciated and 
applied to investigating chemobrain in a paediatric setting. Gibson et al. 
(2019) treated PND 21 mice with methotrexate and identified oligo-
dendrocyte precursor cell depletion and white matter loss with localised 
microglial activation and impairment on cognitive behavioural tests 
(lasting up to 6 months). Intriguingly, this demyelination and impaired 
cognition was effectively alleviated through small molecule inhibition of 
colony-stimulating factor receptor 1, an essential factor for microglial 
survival, without any reported adverse effects (Gibson et al., 2019). 
Further investigation into the effects of methotrexate upon myelination 
in the developing brain (PND 21 mice) indicated a role for microglial- 
dependent reduction in BDNF and OPCs (Geraghty et al., 2019). 
Application of a TrkB (BDNF receptor) agonist prevented this depletion 
and restored adaptive myelination and cognitive function in the 
chemotherapy-treated mice (Geraghty et al., 2019). Both studies 

identified a novel role of OPCs in the sequalae of CNS side-effects of 
methotrexate, and established efficacy of pharmacological interventions 
to reverse neuropathologies and cognitive side-effects. Given that these 
treatments were performed in juvenile, age-matched animals, the results 
suggest these interventions do not have adverse effects upon neuro-
development and therefore have greater clinical relevance than data 
obtained in adult populations. What remains unclear is their effect on 
chemotherapy efficacy and if they can be used in combination with 
standard treatment to prevent chemobrain. 

More recent studies have further improved the approach to pre- 
clinical modelling of paediatric chemobrain with the addition of 
tumour bearing models (Konsman et al., 2022; Laaker et al., 2023). A 
dosing regimen of methotrexate, vincristine and leucovorin to PND 21 
mice, in addition to injection with leukaemia tumour cells (PND 19), 
identified upregulation of pro-inflammatory (and microglial associated) 
genes within the prefrontal cortex with concurrent cognitive impair-
ment behavioural phenotypes (Laaker et al., 2023). Further to this, 
downregulation of claudin-1 (blood–brain barrier tight junction protein) 
and myosin-light chain kinase (role in endothelial junction integrity) 
genes were identified following chemotherapy in female and both fe-
male and male mice, respectively (Laaker et al., 2023). Not only does 
this data suggest the first evidence of reduced blood–brain barrier 
function in a paediatric pre-clinical model of chemobrain, but also in-
dicates a sex-dependent effect. It is likely that sex is a significant factor 
determining the impact of cancer therapies upon the brain (and surely 
the developing one); however, this topic is beyond the scope of this 
article and has been discussed previously by other authors (Armstrong 
et al., 2007; de Guzman et al., 2015; Haller et al., 2023; Ossorio-Salazar 
and D’Hooge, 2023; Panwala et al., 2019; Philpot et al., 2016; Sekeres 
et al., 2021; Shabani et al., 2012a; Shabani et al., 2012b; Tonning Olsson 
et al., 2014). 

This same chemotherapy regimen (methotrexate, vincristine and 
leucovorin) in combination with leukemic cells was also used to identify 
the first age-matched preclinical evidence for a role of the gut-brain-axis 
in consequent neuropathologies (Konsman et al., 2022). Specifically, 
chemotherapy acutely increased expression of pro-inflammatory TNFα 
within the small intestine, which correlated with expression of CCL2 in 
the pre-frontal cortex and deficits in executive function (Konsman et al., 
2022). This fundamental research suggests that gut-targeted manage-
ment strategies for chemotherapy CNS toxicities previously considered 
for adults (Ciernikova et al., 2021; Deleemans et al., 2019; Subramaniam 
et al., 2020), may also be effective for lessening cognitive symptom 
burden in a paediatric setting. Alexander et al. (2018) developed the first 
pre-clinical model of intrathecal methotrexate and cytarabine treatment 
to young mice (PND 21), as this method of drug administration is 
prevalent in the treatment for acute lymphoblastic leukaemia (26.8% of 
global childhood cancer diagnoses) (Ward et al., 2014). This model 
allowed the authors to characterise the effects of direct exposure of the 
developing CNS to chemotherapy upon dendrite formation. Identified 
impacts were upon the density of mushroom (mature) dendritic spines in 
the CA1 and CA3 of the hippocampus and also the dorsal ganglion, with 
functional consequences for performance in cognitive tests (Alexander 
et al., 2018). As such, this novel and age-appropriate model indicates 
that intrathecal chemotherapy for acute lymphoblastic leukaemia im-
pacts synaptogenesis by reduced formation of mature dendrites in the 
paediatric brain. 

These recent examples demonstrate successful utilisation of age- 
appropriate animal models for temporally relevant findings. Moving 
forward it is important to consider not only the unique attributes of the 
developing childhood brain, but also its interaction with other organ 
systems and networks (outside of the brain), especially the gut micro-
biota and unique confounding factors (e.g., diet). As such, it is critical to 
consider how to accurately replicate these attributes and interactions to 
improve discovery and translational research in paediatric disease. In 
the context of animal studies, ensuring preclinical models are developed 
and executed in appropriately aged animals is critical. In this section we 
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describe important considerations and inherent strengths and limita-
tions of current approaches to modelling paediatric neurophysiology 
(Fig. 4). 

5.1. Considerations for developing in vivo paediatric models 

When considering developing models of paediatric disease, their 
unique metabolic capacity cannot be ignored, especially in the context 
of drug-induced neuropathology. There is a stark lack of research 
regarding the pharmacokinetics of drugs, including chemotherapies, in 
young children. What is known is that paediatric body composition in 
regard to total body water, adipose tissue and concentrations of plasma 
proteins alters body-wide drug distribution (Filler et al., 2008). For 
example, the high lipid content within the brain, compared to other 
body tissues in children, makes the developing CNS a highly attractive 
location for hydrophobic drug deposition (Filler et al., 2008). Variation 
in plasma proteins has consequences for drug exposure, as evidenced by 
investigation of prednisolone (chemotherapeutic for acute lymphatic 
leukaemia) availability. Sassen et al. (2021) found that prednisolone 
binding to plasma proteins decreased with age and hence, exposure to 
the active unbound drug was correlated with age. As such, children often 
require higher body size adjusted doses than adults (Sassen et al., 2021). 
Additionally, the expression of metabolic enzymes (Phase 1: cytochrome 
P450, Phase 2: UDP glycosyltransferases) which are unique to the stage 
of maturation, varies the rate of drug clearance from the bloodstream 
(Job et al., 2019). Pharmacokinetic studies have found that when chil-
dren receive the equivalent dose of chemotherapy to adults, there can be 
a 20-fold difference in drug exposure (Norris and Adamson, 2012). 
Moreover, administration of efavirenz to treat HIV/AIDS results in 
markedly lower bio-availability in children less than 12-years compared 
to adults which is related to 1.5x greater efavirenz plasma clearance in 

paediatrics (Fletcher et al., 2008; ter Heine et al., 2008). Similar findings 
were observed with the anti-coagulant warfarin (Takahashi et al., 2000). 
These findings suggest that paediatric pharmacokinetic interactions 
require more rigorous investigation as children are exposed to variable 
and inconsistent doses in contrast to adults, and as such, is an important 
variable to consider when studying paediatric disease in a laboratory 
setting. 

When developing an animal model of a paediatric neurological dis-
ease we recommend considering the many age-dependent and inter-
species variabilities which may impact the relevance of subsequent 
findings. Cognitive and behavioural testing is widely used to define 
functional consequences of neuropathologies. However, these tests have 
been developed in adult mice and as such, they do not necessarily ac-
count for the functional immaturity and developmental stages of young 
mice. The Morris Water Maze is a robust and reliable cognitive test 
developed to examine the spatial memory and learning capacity of adult 
mice; however, healthy paediatric mice lack the capacity to recall the 
location of the submerged platform before PND 35 (Schenk, 1985). As 
such, this could produce a type II error, and confound potential neuro-
cognitive deficits in paediatric models. In fact, in animal models of ASD, 
young, adolescent, and adult rodents demonstrated diverse responses in 
several tests investigating standard behavioural parameters (social 
interaction, repetitive behaviours, spatial memory and learning, and 
anxiety) (Paudel and Singh, 2021). As social behaviours are a learned 
trait which take time to develop, social behavioural tests developed in 
adults likely require age-appropriate adjustments for younger rodents 
(such as pre-weanling) (Semple et al., 2016). 

Weaning occurs on PND 21 in rodents, exhibiting an accelerated 
transition from milk to solid foods than the time-course followed by 
human infants (Moser et al., 2005). In order to study drug toxicity in 
early development, pre-weanling animal models are required; however, 

Fig. 4. Summary of the current and predominant approaches to modelling the paediatric brain and neurological disorders.  
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this introduces unique methodological considerations relating to drug 
delivery. Oral gavage is a common route for direct administration (vs. 
indirect where dam is dosed, and pup exposed through milk) in pre- 
weanling rodents. It is important to consider when designing these ex-
periments that the oral dose must be significantly less than the pup’s 
daily milk intake (1 – 2.5 g/day) (Maeda et al., 2000) to avoid over- 
loading the pup with liquids and hence, lessening the pup’s motiva-
tion to engage in nursing behaviour (Moser et al., 2005). Nursing is 
essential to foster maternal-offspring interactions, which is critical fac-
tor in the pups ability for healthy neurodevelopment (Moser et al., 
2005). In relation to anatomical development, for intravenous drug 
delivery via the tail vein (standard route for adult mice), success is 
dependent on the researchers’ ability to observe the vein, and this is 
challenging in young rodents (<PND 21) (Moser et al., 2005; Prabhakar 
et al., 2021). For PND 1–3 the facial vein is easily observed, providing 
more consistent results; however, as the skin pigments and thickens with 
age, visualisation declines (Gombash Lampe et al., 2014; Prabhakar 
et al., 2021). An alternative is retro-orbital injection which is available 
for rodents of all ages and initial results display reduced stress to the 
animal with retro-orbital vs. tail vein injections (Nanni et al., 2007; 
Prabhakar et al., 2021; Steel et al., 2008). However, as with any pro-
cedure or handling of pre-weanling rodents, if the dam observes unfa-
miliar scents or injuries, it can cause maternal rejection (Moser et al., 
2005; Prabhakar et al., 2021). With the significant consequence of a 
failure to thrive, care must be taken to avoid any distinguishing char-
acteristics on treated pups. 

5.2. Considerations for developing in vitro paediatric models 

Perhaps the most fundamental interspecies difference is the disparity 
in developmental time course. Prenatal development for a human foetus 
encompasses 40 gestational weeks for a full-term infant, in comparison 
the gestational period for a mouse (predominant model organism) which 
is only 20 days (Mariani et al., 2015). This is related to the cortical 
expansion characteristic of the human CNS in comparison to other 
mammals and allows for the higher-order cognitive functioning 
observed in humans (Sidhaye and Knoblich, 2021). Postnatal develop-
ment is also protracted in humans, with mice achieving CNS maturation 
within 4–5 weeks. This creates some logistical challenges when 
attempting to model the consequences of chronic environmental expo-
sures or chronic disease due to the accelerated lifespan (and thus 
experimental opportunities) in rodents. 

An emerging solution to interspecies developmental timeline dis-
parities are brain organoids. Derived from human pluripotent stem cells, 
these multi-cellular self-assembling 3D systems recapitulate human 
foetal timelines in addition to structure and cellular populations. To 
date, brain organoids have been developed for neurodevelopmental 
disorders (ASD, Down’s syndrome), neuropsychiatric disorders 
(schizophrenia), neurodegenerative disorders (Alzheimer’s disease, 
Parkinson’s disease) and epilepsy, predominantly through reprogram-
ming patient-derived fibroblasts (Sidhaye and Knoblich, 2021). Prom-
isingly, these in vitro models successfully developed the pathological 
hallmarks of these diseases. By mimicking the temporal dynamics of 
human brain development, the ASD model, as an example, was able to 
distinguish variation in cell cycle dynamics with ASD progenitors 
completing the cycle more rapidly, and this resulted in over-production 
of neurons (Mariani et al., 2015). As these models align with foetal 
neurodevelopment they also provide an opportunity to characterise 
disruption of neurogenic niches, a highly conserved pathway between 
paediatric disease states (pre- and postnatal). However, further work is 
required to develop brain organoids during the later (postnatal) stages of 
neurodevelopment; use of single-cell RNA-seq to compare the organoid 
transcriptome at 9- and 12-months identifies that only 15% of neurons 
and astrocytes match profiles of post-mortem infant brain tissues (Her-
ring et al., 2022). 

The goal of age-matching in vitro is a challenging one, particularly so 

in the past, with immortalised cell lines innately ‘ageless’ due to 
immortalisation negating the use of telomere length and epigenetics to 
estimate biological age (Xu et al., 2012). Further to this, immortalised 
cells from paediatric sources are unable to mature and this phenotypical 
stagnation presents them as poor tools to study neurodevelopment (Xu 
et al., 2012; Xu et al., 2015). Unfortunately, the reprogramming of 
induced pluripotent stem cells (iPSCs), the predominant foundation of 
brain organoid research, removes evidence of age with the return to 
pluripotency (Mertens et al., 2018). Additionally, embryonic stem cells, 
the other pluripotent cell source for brain organoids, are clearly pre-
natally derived and as such have limited potential for postnatal age- 
matching. A potential workaround to iPSC reprogramming is the use 
of direct conversion or transdifferentiation protocols, involving tran-
scription factors or micro (mi)RNAs to direct terminally differentiated 
somatic cells towards another phenotype (i.e., neuronal) (Mertens et al., 
2018). For example, induced neurons which are derived from mature 
astrocytes and maintain age-associated epigenetic markers. These 
methods were developed in the field of aging diseases (such as Alz-
heimer’s, amyotrophic lateral sclerosis) by converting aged fibroblasts 
to neurons; however, cells from any stage of life could be used. 

A further challenge of studying human (protracted) neuro-
development in a dish, are the technical risks and financial costs of long- 
term culture. This is particularly relevant to the use of brain organoids, 
which are prone to developing a necrotic core. This necrosis is attributed 
to the lack of vascularisation of the organoid (endothelial cells resulting 
from mesoderm, not ectoderm like neuronal tissues) and as such, 
insufficient nutrients and oxygen delivered to cells located centrally. 
Again, various methods are being investigated to address this limitation. 
Some take the approach of transplanting human brain organoids 
(around 50 days in culture) into the mouse parenchyma. This has shown 
preliminary success with extended lifetime of organoids (233 days) as 
well as neurons more comparable to postnatal functionality as deter-
mined by calcium imaging (Mansour et al., 2018). Similar results were 
produced when in vitro vascularisation was achieved through co- 
differentiation of neural and endothelial cell types, with not only 
increased lifespan of the organoids but also a more rapid maturation of 
the neurons (Cakir et al., 2019; Ham et al., 2020; Karzbrun and Reiner, 
2019). Additionally, whilst brain organoids do not innately develop 
microglia (derived from myeloid progenitors within the embryonic yolk- 
sac), integration of these CNS myeloid cells has recently been achieved 
to increase the physiological recapitulation achieved by 3D cultures 
(Adams et al., 2019; Zhang et al., 2023a). While these are significant 
leaps in the field of tissue culture methods for studying neuro-
development, further work is required to establish reproducible brain 
organoids of postnatal stages of neurodevelopment. It is also important 
to note, that monolayer 2D models of the CNS, i.e., monoculture of iPSC- 
derived/induced neurons or co-culture of iPSC-derived neurons and 
astrocytes, do not have the same limitations relating to nutrient delivery 
(Bardy et al., 2015). The relative simplicity of these models allows 
greater reproducibility and ease for analysing cell physiology and, as a 
result, 2D cultures are an ideal option for drug screening experiments 
(Logan et al., 2019; Zabolocki et al., 2020). New methods which allow 
long-term functional aging of human neurons in vitro will facilitate 
studies of human specific drug mechanisms at various stages of neuronal 
maturation (Milky et al., 2022). Additionally, a monolayer of iPSC- 
derived NPCs can provide insight into the effects of compounds upon 
neurogenic pools within the brain, which as we have described 
throughout this review, has consequences for appropriate neuro-
development. The simplicity of 2D cultures is also clearly a constraint, 
with an inherent limit upon number of cell types involved, structural 
recapitulation, and growth and development which are provided by 
more complex in vitro models (Mertens et al., 2016). As such, comple-
mentary two- and three-dimensional in vitro and in vivo preclinical 
models are necessary to account for the limitations of each approach. 
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6. Conclusion 

Given the numerous unique characteristics of the developing CNS 
outlined in this review, it is remarkable that research regarding cancer 
treatment-related neurocognitive disease is consistently extrapolated 
from adult to paediatric cohorts. Given the expansive neurogenic niches 
with inherent sensitivity to neurotoxicity which define the developing 
brain, there is potential for toxic insult during critical windows to drive 
long-term neurological deficits. This is exacerbated by an immature 
blood–brain barrier and naïve redox mechanisms which lead to greater 
CNS infiltration and DNA damage. Furthermore, the hyper-reactive 
neuroimmune responses in early life permit pathologies of greater 
severity to exogenous insult than what is seen in the mature brain. This 
pro-inflammatory CNS is likely linked to the deficiency of the innate 
peripheral immune system during early post-natal development. In turn, 
this immune naivety is related to an immature gut microbiota, a system 
which exerts profound influence over the brain. Further to this, we 
certainly have not discussed every aspect in which the paediatric brain is 
unique, such as synaptic refinement or the influence of thyroid hor-
mones on brain development, as there is currently only limited evidence 
implicating these processes in the pathogenesis of chemobrain. How-
ever, development of paediatric models may provide the tools to inter-
rogate the roles of these functions in the symptom sequalae, and even 
identify novel targets for intervention. 

This importance of developing age-specific pre-clinical models is 
evident in studies which successfully incorporate paediatric neurobi-
ology. These research findings highlight that chemotherapy promotes an 
inflammatory microenvironment within the developing brain with 
consequences for myelination and lasting cognitive function. The ten-
dency to translate research from adult cohorts to children is likely 
related to the challenges of developing in vivo or in vitro models of early 
human (postnatal) development. Fortunately, greater attention is being 
placed upon improving our approaches to these models which means 
that researchers now have the responsibility to ensure that experimental 
design reflects the developmental stage relevant to the research’s target 
population. This will ensure that children are no longer considered 
biological ‘small adults’, an inaccuracy which can have consequences for 
healthy development and their quality of life. 
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Erny, D., Hrabě de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., 
Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., Schwierzeck, V., 
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Méndez-Armenta, M., Nava-Ruíz, C., Juárez-Rebollar, D., Rodríguez-Martínez, E., Yescas 
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