## QUERIES

## George W. Snedecor, Editor

QUERY: Fisher (Design of Experiments, Section 50) shows how 91 to assess the effects of quality and the quality and quantity interaction on the hypothesis of proportional response in the case of 4 qualities of nitrogen at 3 equally spaced intervals, the lowest of which is zero. How would this be done if the lowest level were not zero?

Suppose for any fertilizer we have
ANSWER:

Quantity, | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- |

Yield
a b c
with totals $A, B, C$ for all four fertilizers together. Then I imagine it will be agreed that the 2 d.f. denominated QUANTITY will have the sum of squares
$\frac{1}{4} A^{2}+\frac{1}{4} B^{2}+\frac{1}{4} C^{2}-\frac{1}{12}(A+B+C)^{2}$

$$
=\frac{1}{8}(C-A)^{2}+\frac{1}{24}(A-2 B+C)^{2}
$$

The remainder for QUALITY and INTERACTION will then have

$$
S\left(a^{2}\right)-\frac{1}{4} A^{2}+S\left(b^{2}\right)-\frac{1}{4} B^{2}+S\left(c^{2}\right)-\frac{1}{4} C^{2}
$$

which may, of course, be subdivided, as for example,

$$
\begin{aligned}
& \frac{1}{2} S(c-a)^{2}-\frac{1}{8}(C-A)^{2} \\
& \frac{1}{6} S(a-2 b+c)^{2}-\frac{1}{24}(A-2 B+C)^{2} \\
& \frac{1}{3} S(a+b+c)^{2}-\frac{1}{12}(A+B+C)^{2}
\end{aligned}
$$

The question is what apportionment of this total is most proper for the separation of QUALITY and INTERACTION. I think opinions may legitimately differ. Evidently, the 3 d.f. having

$$
\frac{1}{14} S(a+2 b+3 c)^{2}-\frac{1}{56}(A+2 B+3 C)^{2}
$$

represent differences in quality as measured by linear response. A second orthogonal set having

$$
\frac{1}{6} S(a-2 b+c)^{2}-\frac{1}{24}(A-2 B+\dot{C})^{2}
$$

represent differences in quadratic response, which may or may not be thought to be properly included in pure QUALITY. In any case, there remain three more d.f. having

$$
\frac{1}{21} S(4 a+b-2 c)^{2}-\frac{1}{84}(4 A+B-2 C)^{2}
$$

which seem to me to be properly described as INTERACTION or RESIDUE.

All the algebra needed is that for the identity

$$
\frac{1}{2}(c-a)^{2}+\frac{1}{3}(a+b+c)^{2}
$$

$$
\equiv \frac{1}{14}(a+2 b+3 c)^{2}+\frac{1}{21}(4 a+b-2 c)^{2}
$$

but the whole process will look more convincing with numerical data.
R. A. Fisher

