Adaptive Control of Nonlinear Systems Using Neural Networks

by

Sanjay Kumar Mazumdar, B.E.(Hons)

A thesis submitted in fulfilment of the requirement for the degree of

Doctor of Philosophy

The University of Adelaide

Faculty of Engineering

Department of Electrical and Electronic Engineering

March 1995

Auxided 1995

Contents

Abstra	ct			vi
Declara	ation			viii
Acknov	wledge	ments		ix
List of	Public	cations		x
List of	Princi	ipal Symbols		хi
List of	Abbre	eviations		xv
List of	Figure	es		xvi
List of	Tables	s		xxiii
1 Intro	oductio	on		1
1.1	Backg	round and Motivation	•	. 1
	1.1.1	Linear Control Theory		. 1
	1.1.2	Nonlinear Control Theory		. 7
	1.1.3	Neural Networks in Control		. 27

	1.2	Outline of the Thesis	28		
	1.3	Major Contributions of the Thesis	31		
2	Neu	ral Networks for the Control of Dynamical Systems	33		
	2.1	1 Introduction and Overview			
	2.2	Basic Concepts of Artificial Neural Networks	35		
		2.2.1 Biological Foundations	35		
		2.2.2 Artificial Neural Network Models	37		
		2.2.3 Network Topology	39		
		2.2.4 Learning Algorithms	40		
		2.2.5 Feedforward Artificial Neural Network Models	42		
	2.3	Dynamic Systems Modelling Using Artificial Neural Networks	53		
		2.3.1 Time Delay Neural Networks	53		
		2.3.2 Dynamic Neural Networks	63		
	2.4	Neural Adaptive Control Architectures	67		
	2.5	Conclusions	74		
			76		
3	Adaptive Neural Controller				
	3.1	Introduction and Overview	76		
	3.2	Basic Structure of the Control Scheme	78		
		3.2.1 Off-line Approach	84		
		3.2.2 On-line Approach	86		
		3.2.3 Weight Update Equations	88		
	3.3	Simulation Examples	92		

		3.3.1	Off-line Learning	93
		3.3.2	On-line Learning and Control	113
	3.4	Conclu	asions	126
4	Stab	le Net	iral Adaptive Control	129
	4.1	Introd	uction and Overview	129
	4.2	Enhanced Reference Model		
	4.3	Enhan	aced Model Reference for Neural Control	135
		4.3.1	Convergence of the Tracking Error	136
		4.3.2	System Stability	142
		4.3.3	Supervised Learning Scheme	143
		4.3.4	Enhanced Neural Control Scheme - Practical Issues	148
	4.4	Simula	ation Examples	150
		4.4.1	Single-Input Single-Output System	150
		4.4.2	Multi-Input Multi-Output System	157
		4.4.3	Nonminimum Phase System	161
		4.4.4	Plant Uncertainty	164
		4.4.5	Marginally Stable Nonlinear Systems	173
	4.5	Concl	usions	177
5	App	licatio	n Example – Anti-Skid Brake System	181
	5.1	Introd	luction and Overview	181
	5.2	Deriva	ation of the System Dynamics	186
	5.3	Evisti	ng Approaches	193

	5.4	Neural	Network Based Anti-skid Brake System	196
		5.4.1	System Description	196
		5.4.2	Simulation Results	200
	5.5	Conclu	asions	220
6	Con	clusion	s and Recommendations	224
	6.1	Conclu	isions	224
	6.2	Recom	mendations for Future Work	230
A	Racl	cnrona	gation Learning Algorithm	235

Abstract

In contrast to linear adaptive control, adaptive design techniques for nonlinear systems have yet to be established for a general class of nonlinear structure. Most of the current approaches to nonlinear adaptive control, such as sliding control, input-output linearisation and the popular feedback linearisation, primarily deal with systems where the uncertainty is due to unknown parameters which appear linearly with respect to the known nonlinearities. Artificial neural networks have offered an alternative approach to solve a more general class of nonlinear problems. In particular, it is their ability to form an arbitrarily close approximation of any continuous nonlinear function and their inherent adaptivity, that has generated much of the research into the use of neural networks for the identification and control of nonlinear systems.

This thesis is concerned with the development of a stable neural network based adaptive control scheme for discrete-time nonlinear systems. The scheme is based on the model reference adaptive control design methodology with a multi-layered neural network generating the model reference control. The neural adaptive control framework is developed for arguably the least analytically tractable nonlinear system, namely general multi-input multi-output non-affine discrete-time dynamic systems with unknown structure. The relative degree and order of the system and the maximum lag in the plant input and plant output terms are the only a priori knowledge assumed.

Critical to any model reference adaptive control approach is the convergence of the tracking error and the stability of the closed-loop system. Therefore, an enhancement is proposed to the model reference neural adaptive control scheme which enables the derivation of sufficient conditions to guarantee the convergence of the tracking error between the controlled output and the desired response. Lyapunov theory is used to

guarantee the stability of the closed-loop system.

Simulation studies undertaken demonstrate the effectiveness of the proposed scheme in controlling discrete-time nonlinear systems which may consist of non-idealities such as nonminimum phase or marginally stable behaviour, as well as dynamic, sensor or load disturbances. The robustness of the new neural adaptive control scheme to dynamic variations and uncertainties is also demonstrated. The practical feasibility of the new approach is investigated through its application to an automobile anti-skid brake system. Despite the highly nonlinear and time-varying dynamics of the vehicle/brake system, the simulation study results indicate that the proposed neural network based anti-skid brake system can provide effective braking performance even under severe variations in environmental conditions.

From the research presented in the thesis, it is concluded that the use of artificial neural networks in the adaptive control of nonlinear systems indicates much promise for the future. Furthermore, the results of the work provide a basis for the development of practical neural adaptive controllers.