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Gayatri Mantra

Om Bhur Bhuuah Saah

Tat Sauitur Varenyam

Bhargo Deuasya Dhimahi

Dhiyo Yo Nah Prachodayat

Meaning: Let us meditate on the glory of Ishwar (the Lord), Who has created this

universe, Who is fit to be worshipped, Who is the embodiment of knowledge and light,

Who is the remover of all sins and ignorance. May He enlighten our intellect.
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Abstract

In contrast to linear adaptive control, adaptive design techniques for nonlinear systems

have yet to be established for a general class of nonlinear structure. Most of the current

approaches to nonlinear adaptive control, such as sliding control, input-output lineari-

sation and the popular feedback linearisation, primarily deal with systems where the

uncertainty is due to unknown parameters which appear linearly with respect to the

known nonlinearities. Artificial neural networks have offered an alternative approach to

solve a more general class of nonlinear problems. In particular, it is their ability to form

an arbitrarily close approximation of any continuous nonlinear function and their inher-

ent adaptivity, that has generated much of the research into the use of neural networks

for the identification and control of nonlinear systems.

This thesis is concerned with the development of a stable neural network based adaptive

control scheme for discrete-time nonlinear systems. The scheme is based on the model

reference adaptive control design methodology with a multi-layered neural network gen-

erating the model reference control. The neural adaptive control framework is developed

for arguably the least analytically tractable nonlinear system, namely general multi-input

multi-output non-afine discrete-time dynamic systems with unknown structure. The rel-

ative degree and order of the system and the maximum lag in the plant input and plant

output terms are the only a priori knowledge assumed.

Critical to any model reference adaptive control approach is the convergence of the

tracking error and the stability of the closed-loop system. Therefore, an enhancement

is proposed to the model reference neural adaptive control scheme which enables the

derivation of sufficient conditions to guarantee the convergence of the tracking error

between the controlled output and the desired response. Lyapunov theory is used to
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guarantee the stability of the closed-loop system.

Simulation studies undertaken demonstrate the effectiveness of the proposed scheme in

controlling discrete-time nonlinear systems which may consist of non-idealities such as

nonminimum phase or marginally stable behaviour, as well as dynamic, sensor or load

disturbances. The robustness of the new neural adaptive control scheme to dynamic

variations and uncertainties is also demonstrated. The practical feasibility of the new

approach is investigated through its application to an automobile anti-skid brake system.

Despite the highly nonlinear and time-varying dynamics of the vehicle/brake system,

the simulation study results indicate that the proposed neural network based anti-skid

brake system can provide effective braking performance even under severe variations in

environmental conditions.

From the research presented in the thesis, it is concluded that the use of artificial neural

networks in the adaptive control of nonlinear systems indicates much promise for the

future. Furthermore, the results of the work provide a basis for the development of

practical neural adaptive controllers.

vrl



Declaration

This thesis contains no material which has been accepted for the award of any other

degree or diploma in any university or other tertiary institution and, to the best of my

knowledge and belief, contains no material previously published or written by another

person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying.

Signed:. . . Date: 2_4- /;/:s

vlll



Acknowledgements

I gratefully acknowledge my supervisor, Dr. C. C. Lim for his guidance, encouragement

and assistance throughout the course of this research. I would like to thank him for his

many useful suggestions and ideas, and his thorough and detailed reviews of my work.

I also wish to express my gratitude to Dr. D. Nandagopal for his many thoughtful

comments, particularly when he was acting as my supervisor during Dr. Lim's study

leave.

Many thanks must go to the staff and students of the Department of Electrical and

Electronic Engineering at the University of Adelaide for providing an enjoyable and

stimulating work environment. In particular, my appreciation goes to John McPheat

and my fellow inhabitants of room N238, Jonathan Main and Derek Rogers, for their

constant encouragement and friendship.

I would also like to take this opportunity to thank Dr. C. Coleman, Head of the Guidance

and Control Group of the Weapon Systems Division, DSTO, for allowing the time off

from work to complete the final stages of this thesis.

Finally, I am deeply indebted to my parents for all of their support and guidance during

the period of this study. I would also like to thank my father for his thorough review of

this thesis.

This work was supported by an Australian Postgraduate Research Priority Award from

the Australian Research Council, which I gratefully acknowledge.

S.K.M

IX



List of Publications

The following is a list of publications which are related to the research reported in this

thesis.

S.K. Mazumdar and C.C.Lim, "Adaptive Controller for Marginally Stable Nonlinear Sys-

tems Using Neural Networks" , TENCON '92: IEEE Region 10 International Conference,

pp 535-539, November 1992.

S.K. Mazumdar and C.C. Lim, "A Stable Neural Controller for Nonminimum Phase",

Fourth Australian Conference on Neural Netuorks, pp 138-141, February 1993.

S.K. Mazumdar and C.C. Lim, "Investigation of Stability and Convergence Issues for

an Enhanced Model Reference Neural Adaptive Control Scheme (Invited Paper)", ETD

2000 - Electronics Technology Directions to the Year 2000,1995.

S.K. Mazumdar and C.C. Lim, "Investigation of the Use Neural Networks for Anti-Skid

Brake System Design" , Submitted, February 1995.

S.K. Mazumdar and C.C. Lim, "An Enhanced Neural Adaptive Control Scheme for

Discrete-Time non-Affine Nonlinear Systems" ,, Submitted, March 1995'

S.K. Mazumdar and C.C. Lim, "A Neural Network Based Anti-Skid Brake System",

Submitted, March 1995.

X



List of Principal Symbols

N

R

R'

V+

ffi[ø, ó]

.f :Rn +R-

¡r
l.|
ilil

set of natural numbers or positive integers

set of real scalars

set of real n-dimensional vectors

set of positive integers

set of real numbers Ø : a 1 x 1 b

function / maps r € R' onto /(r) e n-

transpose of matrix A

vector norm

Euclidean norm or /2-norm

momentum rate

steepness parameter (neural network context)

stability constant for SISO system

relative degree

effective error for neural network layer

identification error tolerance

tracking error tolerance

learning rate

vector of unknown parameters

angle of incline of the road (ABS context)

controller parameter vector

eigenvalues of a matrix A

wheel slip (ABS context)

maximum eigenvalue of A

a.

p

p

6

€I

€7

q

0

0

0.

À

À

ìmax

XI



)r-"'
A

p

11

o

ó

o

au

uu

0å,t0,u,.

.( .)

d

ec

eI

eT'

/(.), g(.), å(')

r*o
e(.)

g

h

h

k

I

value of wheel slip for maximum adhesion coefficient

diagonal matrix with eigenvalues of A on main diagonal

neuron threshold

coefficient of braking friction (ABS context)

estimated plant parameters

normalisation parameter (basis width)

radial basis function

diffeomorphism function

angular speed of a free spinning wheel

wheel angular speed

3 layered neural network consisting of 2 inputs, 1 output

and 10 and 5 nodes in the hidden layers

residual

desired network response

controller error

identification error

tracking error

smooth nonlinear functions (control context)

smooth (usually linear) reference model function

activation function (neural network context)

gravitational acceleration constant

sampling period

weighted summed input to a network node

time sample index for discrete-time systems

maximum lag in output terms

maximum lag in control terms

output vector dimension

number of wheels

number of output layer weights

shift operator

TN

n

T1'u

p

q

xlr



T

T

t

u

u

,(.)

:x

:x

v

A¿

A*

Up

a,

z

zd

Z1

Z2

reference input vector

control vector dimension

time index for continuous-time systems

plant control vector

transformed input vector

desired response

neural network input vector

system state vector

neural network output

desired trajectory

reference model output vector

plant output vector

neural network output estimate vector

transformed state vector

desired trajectory vector

vector of transformed states

vector of internal dynamics state variables

stability matrix

viscous friction of a wheel

viscous friction of a vehicle

cost function

force applied to the car due to road gradient

tyre friction force

identity matrix

rotational inertia of a wheel

Lie derivative of å(.) with respect to /(.)
number of network layers

vehicle mass

neural network controller

neural network approximating function /(.)

A

B-

B,

E

Fe

Ft

I
J-

L¡h

M

M,

¡f"

N¡

xlll



Ns

Np

^t
R-

^g

Tu

Tt

v(.)

u"

W

AW

w"

LW"

wi

neural network approximating function g(.)

neural network emulating the plant dynamics

normal force at the tyre

wheel radius of free rolling tyre

matrix of eigenvectors of A

braking torque at the wheel

torque generated due to tyre-road friction

Lyapunov function

vehicle linear speed

weight matrix

change in weight matrix

controller neural network weight matrix

change in controller neural network weight matrix

weight for the connection from the jth node in

layer rn - 1 to the ith node in layer m

xlv



List of Abbreviations

ANN

ABS

BP

LQG

LQR

LTI

MIMO

MLP

MRAC

NN

NN.ABS

ODS

PID

RBF

SISO

STR

TDNN

Artificial Neural Network

Anti-skid Brake System

Backpropagation

Linear Quadratic Gaussian

Linear Quadratic Regulator

Linear Time-Invariant

Multi- Input Multi- Output

Multi Layer Perceptron

Model Reference Adaptive Control

Neural Network

Neural Network Anti-Skid Brake System

Optimal Decision Strategy

Proportional plus Integral plus Derivative

Radial Basis Function

Single-Input Single- Output

Self-Tuning Regulator

Time Delay Neural Network

xv



List of Figures

1.1 Block diagram of a generic adaptive control system

I.2 Block diagram of a model reference adaptive control system

1.3 Block diagram of the self-tuning regulator scheme

2.I A typical biological neuron

2.2 McOullogh-Pitts neuron model

2.3a Feedforward artificial neural network

2.3b Feedback artificial neural network

2.4 Rosenblatt's elementary perceptron

2.5 A multilayer perceptron

2.6 A radial basis function network

2.7 Time delay neural networks

2.8 TDNN with output feedback

2.9 Response of the plant and identification model for Example 2.3.1 with

(a) correctly parameterised (b) over-paramete¡ised and (c) under-parameterised

time delay neural network 58

2.lQaModel validity tests for a correctly parameterised identifi.cation model 60

2.l0bModel validity tests for an over-parameterised identifi.cation model . . . . 61

I

11

t2

36

37

40

4L

42

44

51

54

54

xvl



2.l0cModel validity tests for an under-parameterised identification model 62

2.11 Continuous-time recurrent neural network

2.12 Discrete-time recurrent neural network

3.1a Identification stage for the off-line approach

3.1b Controller training stage for the off-line process

3.2 Block diagram of the on-line identification and control scheme

3.3 Response of the plant (yo) and identification model (yo) for Example 3.3.1

with u(k) : 0.5(sin(2r1*) + sin1ff¡¡

3.4a Response of the plant (yo) and ,.-eference model (a^) for Example 3'3.1

with r(,1) : 0.5(sin(2i*) +.i"1ff¡¡

3.4b Response of the plant (yo) and reference model (y-) fo. Example 3.3.1

with r(k) : ft[-l,1]

3.5 Response of the plant (yo) and identification model (yo) for Example 3.3.2

with z(fr) : 'in(ffi)

64

bl)

85

86

87

94

95

95

97

3.6a Response of the plant (yo) and reference model (y,") fo, Example 3.3.2

with r(fr) : sin(ffi) for ,b ( 500 and ,(k) -- sin(ffi) + sin(ffi¡ for fr > 500 98

3.6b Response of the plant (yo) and reference model (y-) fot Example 3.3.2

with r(/c) : D[-1,1] .98

3.7 Response of the plant and identification model for Example 3.3.3 with

"t(k): ft[-l, l] k u2(k): ft[-l,1] . . 100

3.8 Response of the plant and identification model for Example 3.3.3 with

100

3.9 Response of the plant and reference model for Exampte 3.3.3 with r1(,h) :

n[-1, r] k r2(k): ftl-1, 1]

xvu

101



3.10 Response of the plant and reference model for Example 3.3.3 with 11(,b) :
sin(ffi) k r2(k): sin(ffi) 101

3.12bResponse of the plant (yo) and the reference model (a*) to the bias term (á)105

3.11 Block diagram of the bias compensated controller system

3.12aVariable load disturbance (ó) and its estimate (ó)

3.13aResponse of the noise-corrupted plant (y") and identification model (y")

for Example 3.3.5 with u(k) : 0.5sin(ffi)

3.13bResponse of the noise-corrupted plant (y") u,nd reference model (y*) fo,

Example 3.3.5 with r(k) : 0.5sin(ffi)

3.13cResponse of the noise-corrupted plant (y")

Example 3.3.5 with r(k) : 0.5sen[sin(#)]

3.l4aResponse of the noise-corrupted plant (y")

for Example 3.3.6 with u(k) : ti"(ffi)

3.l4bResponse of the noise-corrupted plant (y")

Example 3.3.6 with r(k):0.5sin(ffi)

3.14cResponse of the noise-corrupted plant (y")

Example 3.3.6 with r(k) : 0.5s9n[sin(ffi)]

3.15aResponse of the noise-corrupted plant (y")

for Exampte 3.3.7 with u(k) : ti"(#)

3.l5bResponse of the noise-corrupted plant (y")

Example 3.3.7 with r(k): sin(ffi)

104

104

108

108

and reference model (y^) Tor

and identification model (ii")

and reference model (u*) for

and reference model (u-) for

and identification model (ii")

and reference model (y*) for

108

109

109

109

rtz

T12

3.l5cResponse of the noise-corrupted plant (y") and reference model (y^) fo,

Example 3.3.7 with r(k): sgnþin(ffi)l

3.16aResponse of the noise-corrupted plant (y,) u,.td identification model (y")

for Example 3.3.8 with z(fr) :.in(#)

rt2

XVIII

714



3.l6bResponse of the noise-corrupted plant (y") .nd reference model (y^) for

Example 3.3.8 with r(fr) : 0.5sin(ffi) .

3.l6cResponse of the noise-corrupted plant (g") and reference model (y-) for

Example 3.3.8 with r(,b) : 0.5s9n[sin(#n

3.l7aResponse of the plant (yo) and reference model (y-) fo. Example 3.3.9

with r(fr) :'in(ff) for k : 0... 100

3.17bResponse of the plant (yr) and reference model (y-) fo. Example 3.3.9

with r(fr) : .i"(#) for k : 900. .. 1000

tL4

LT4

115

116

3.18aResponse of the plant (yo) and reference model (U-) for Exarnple 3'3.9

with r(ft) : 'in(ff) for fr < 920 and r(/c) :O.5sen[sin(ff)]for k> 920 ' 116

3.l8bControl input z(ft) for Example 3.3.9 with r(/c) : sin(tf) for k < 920

and r(k) : 0.5ssn[si"(2#)] for k à 920 . rt7

3.l9aResponse of the plant (yo) subjected to a load disturbance and reference

model (u-) for Example 3.3.9 with r(k): "s"[.i"(ffi)l 117

3.19bload disturbance used for Example 3.3.9 118

3.19cResponse of the plant (yo) and reference model (y-) fot Example 3.3'9

with r(k) : sgr¿lsin(ffi)] and with dynamic plant noise, sensor noise and

a load disturbance present 118

3.20 Response of the plant (A, : [yr'yorfr) and reference model (y* : ly^r,y^r]r)

for Example 3.3.10 r27

3.21 Control input (u : lu1,uz,ue)r) for Example 3'3.10 r2t

3.22aResponse of the plant (Ui) u"a reference model (U-) for the marginally

stable system (3.63a) with r(k) : s(fr - 25) for k < 600 and sin(ffi) for

ft > 600 124

3.22bcontrol input z(k) for the marginally stable system (3.63a) with r(b) :

r(k - 25) for fr < 600 and 0.5 sin(ffi) for fr ) 600 124

XTX



3.23 Response of the plant (yo) and reference model (y-) with r(k) : s(k-25),

and (a) ?" : 0.001 k ,1, : 0.05, (b) 7¡" : 0.01 k n, : 0.05, (c) 7" :

0.025 k n, :0.05 and (d) ry" : 0.05 & ?; : 0.05 t26

4.1 Model following scheme using an enhanced reference model 134

4.2 Block diagram of the neural control scheme with an enhanced reference

model 136

4.3a Response of the plant (yo), reference model (y-) u,nd enhanced reference

model (y'^) lor Example 4.4.1 with r(k) : a(klL50)ssn[sin(ffi)] 152

4.3b Control input u(k) for Example 4.4.1 with r(k): a(k1150)ssn [sin(]S)l 152

4.3c Response of the plant (yo) and reference model (y-) fot Example 4.4.1

uithout the proposed enhancement and with r(k): a(kll50)sgnþin(ffi)] 153

4.3d Control input u(k) for Example 4.4.I without the proposed enhancement

and with r(k) : a(k I tí})ssn[sin(ffi )]

4.3e Response of the plant (yr), reference model (y-) and enhanced reference

model (y') for Example 4.4.1 with r(k) : a(k1150)ssn[sin(?#)] and with

153

154a load disturbance present

4.3f Load disturbance for Example 4.4.1 lbb

4.3g Control input z(k) for Example 4.4.1 with a load disturbance present 155

4.3h

4.3i

4.4a

4.4b

Response of the plant (yo), reference model (U-) and enhanced reference

model (y'^)for Example4.4.1 with r(fr) : a(klL50)ssn[sin(?#)] and with

dynamic plant noise, sensor noise and a load disturbance present 156

Control input u(fr) for Example 4.4.1 with r(k) : a(kll50)ssn[sin(ffi)]

and with dynamic plant noise, sensor noise and a load disturbance present 157

Response of the plant (yo : lao'Aorlr), reference model (y^ : la^r,y^,lr)
and enhanced reference model (y'^: lylr,u'^r)') for Example 4.4.2 159

Control input (u : ful,uz,uslr) for Example 4'4.2 160

XX



4.5a Zero dynamics control input for a nonminimum phase nonlinear system . 163

4.5b Zero dynamics control input for a minimum phase linear system 163

4.6a Open-loop step response of the plant (Aò . 165

4.6b Step response of the plant (yo) and reference model (V-) for control without

the proposed enhancement 165

4.6c Step response of the plant (yo), reference model (a^) and enhanced refer-

ence modet (V) for the enhanced control scheme 166

4.7a Open-loop response of the plant (yo) and reference model (y-) fot uo

additive perturbation model 169

4.7b Open-loop response of the plant (yo) and reference model (U-) for a mul-

tiplicative perturbation model 169

4.8a Response of the plant (yo) and reference model (a^) fo, an additive per-

turbation model without the proposed enhancement 17T

4.8b Response of the plant (yo) and reference model (a^) for a multiplicative

perturbation model without the proposed enhancement t7r

4.9a Response of the plant (yo), reference model (y-) and enhanced reference

model (y'^) for an additive perturbation model with the proposed enhance-

ment t72

4.9b Response of the plant (gr), reference model (U-) and enhanced reference

model (y'*) for a multiplicative perturbation model with the proposed

enhancement t72

4.l0aResponse of the plant (yi) u"¿ reference model (y-) fo. Example 4.4.5

with r(fr):.s(ft -25) for fr < 600 and sin(ffi) for k > 600 176

4.lQbControl input z(ft) for Example 4.4.5 with r(k) : 
"(fr - 25) for fr < 600

and sin(ffi) for k > 600 176

5.1 Block diagram of the vehicle/wheel/road dynamics

xxr

187



5.2 Adhesion coeficient vs wheel slip for various road surfaces

5.3 Block diagram of the neural network anti-skid brake system

5.4a Angular velocity, wheel slip and braking torque responses for a dry asphalt

road surface

5.4b Angular velocity, wheel slip and braking torque responses for a wet asphalt

road surface

5.4c Angular velocity, wheel slip and braking torque responses for a loose gravel

road surface

5.4d Angular velocity, wheel slip and braking torque responses for an icy road

surface

5.5a Angular velocity, wheel slip and braking torque responses for a dry asphalt

- loose gravel transition

5.5b Angular velocity, wheel slip and braking torque responses for a wet asphalt

- wet gravel transitron

5.5c Angular velocity, wheel slip and braking torque responses for a wet asphalt

- ice transition

5.5d Angular velocity, wheel slip and braking torque responses for a ice - wet

asphalt transition

189

197

202

203

204

205

215

2t6

2r7

218

xxll



List of Tables

5.1 vehicle-brake system parameters and variables 186

5.2 Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 60 km/h 208

5.4 Comparison of the braking distances (metres) for the hnzy logic ABS

approach of Layne et al. and the proposed neural network anti-skid brake 2I0

5.5 Comparison of the braking distances (metres) for the ABS approaches of

Satoh and Shiraishi and the proposed neural network anti-skid brake for

a gravel road surface 210

5.3 Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 100 km/h

b.t) Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 60 km/h and a

road inclination of I - +15"

5.7 Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 60 km/h and a

road inclination of d : -15o

5.8 Braking distances (metres) for the neural network anti-skid brake system

',,,ersus a locked-wheel stop for transitions in the road surface with an initial

208

2t1

2t2

vehicle speed of 60 km/h . .

xxlll

2r9



Chapter 1

Introduction

1.1- Background and Motivation

1.1.1- Linear Control Theory

It is well known that linear control is an established field for which there exists both a

sound theoretical background and a substantial record of successful industrial applica-

tions. There are two main approaches for the study of linear control systems, namely

classical control and state-space (modern) control. Classical control approaches were

developed mainly between the 1930's and the 1950's and they are based on frequency

response techniques using, for example, root locus and bode plots. A typical classical

controller which is still used extensively in industry is the proportional plus integral plus

derivative (PID) controller. More sophisticated controller design methods such as linear

quadratic regulators (LQR), linear quadratic Gaussian (LQG) controllers and estimated-

state feedback controllers have emerged since the 1960's. These state-space design meth-

ods have arisen because of the ability to express the solutions to some optimal control

problems in the form of a feedback law or controller. Linear control theory is generally

restricted by the assumption that the plant and controller are linear time-invariant (LTI)

1



systems. These systems can be represented either in the state-space form

"(t) :
v(t) :

Ax(t) + Bu(t)

C r(t) + Du(t)
or

r(k+1) : Or(,t) +fz(fr)

a(k) : cx(k)+Du(k)

discrete-time

(1.1)

where ø € R" is the state vector,u € R'is the input vector, y eR^ is the output vector,

A is an n x nmatrix, B is an n x r matrix, C is ar n'Lx n matrix, D is an rn x r matrix,

Õ is an n x n matrix and I is an n x r matrix, or as input-output transfer functions

N(")
D(")

s("\
ñ;\

continuous-time

c(") H(')
(1.2)

continuous-time discrete-time

where l/(s) and D(s) are the numerator and denominator polynomials in the s-domain,

and ^9(z) and r?(z) are the corresponding polynomials in the z-domain. In the "real

world" the concept of a linear time-invariant system is, however, a mathematical abstrac-

tion. AII physical systems are nonlinear to some degree. Nonlinearities can be classified

as either inherent (natural) nonlinearities which arise from the system behaviour or the

hardware used, or intentional (artificial) nonlinearities which are artificially introduced

into the system. Some typical examples of inherent nonlinearities resulting predomi-

nantly from the hardware in the system are saturations, hysteresis and deadzones. Drag

on a vehicle, gravitational forces on satellites and the frictional effects of a road surface on

a vehicle/brake system are examples of naturally occurring nonlinear system behaviour.

Examples of intentional nonlinearities are adaptive control laws, robust control laws, and

bang-bang optimal control laws.

Regardless of the exact nature of the nonlinearities, there is one fact that is quite ap-

parent - the behaviour of nonlinear systems is far more complex than linear systems'

In particular, many of the inherent properties of linear systems, which greatly simplify

the solution for this type of system, are not valid for nonlinear systems. For example,

the principle of superposition, which is a fundamental property of linear systems and,

in fact, is also the basis of the definition of a linear system, does not apply to nonlinear

systems. Therefore, several mathematical procedures used in linear systems cannot be

used in nonlinear systems. Moreover, unlike their linear counterparts, the stability of

nonlinear systems is not just a simple function of the location of its eigenvalues. Instead,
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it depends on the initial conditions and the nature of the input signal, as well as the sys-

tem parameters. In fact, a nonlinear system that exhibits a stable response for one type

of input may not have a stable response for another type of input. The rich and complex

behaviour of nonlinear systems has given rise to a number of stability concepts such as

asymptotic stability, exponential stability and global asymptotic stability. Furthermore,

a nonlinear system excited by a periodic signal may not result in steady state outputs

of the same frequency as the input. Higher harmonics, sub-harmonics or even chaotic

behaviour (continuous spectra) can occur in the output of the nonlinear system. Also, an

unforced nonlinear system may also display limit cycle behaviour (periodic oscillations

of a frxed frequency and amplitude) which does not exist in stable linear systems 1.

The above and many other properties demonstrate that the analysis of nonlinear sys-

tems is far more complex than that of linear systems. Unlike their linear counterparts,

nonlinear equations cannot, in general, be solved analytically. Therefore a complete

understanding of the behaviour of nonlinear systems is difficult to obtain. Further-

more, mathematical tools such as the Lapiace transform method, the transfer function

approach, and the state-space formulation commonly utilised in linear control theory,

cannot be used for nonlinear systems. Consequently, there are no conventional methods

for analysing, or systematic procedures for designiîB) genero,/ nonlinear systems.

The common approach to deal with mild nonlinear systems which have sufÊciently

smooth, continuously differentiable nonlinearities is to use a linear approximation model.

This is obtained by linearising the system about a known nominal solution or operating

point. In this approach, it is assumed that a nonlinear system behaves similarl¡r to its

linearised approximation for a small range around the nominal solution, thus allowing

linear control approaches to be used. This reasoning is the principle justification for us-

ing linear control theory in practice. The above approach is often referred to as Jacobian

linearisation, small-signal theory or theory of small perturbations and can be illustrated

by the following equations:

lsimilar oscillations can be found in marginally stable linear systems. However, the amplitude of
the oscillations in a marginally stable linear system is dependent on the initial conditions, whereas the

amplitude of the limit cycle oscillations is independent of the initial conditions. Furthermore, limit
cycles are generally robust to parameter changes, whereas marginally stable linear systems can be made

stable or unstable via small changes in the system parameters'
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Consider a general continuous-time nonlinear system described by the state equation

rt : f (r,u,t) (1 .3)

where /(.) ir a continuously differentiable nonlinear function.

Suppose a nominal solution {r"(t),u"(t)} is known. The difference between the nominal

vector functions and some slightly perturbed functions r(f) and u(ú) can be defined as

6r

6u (1.4)

r^ + 6r : fþ"+ 6ï,un! 6u,t)

: f (*,,r^,t¡ ¡lU] 6. +lU] áz { higher order terms (1.b)
Lorfn"*' la"l^"

where [ . ], indicates that the derivatives are evaluated at the nominal solution {r :
rnru: u,-\.

Since the nominal solution satisfies equation (1.3), the first terms in the above Taylor

series expansion cancel. For small perturbations (ór, óz) (hence the name "theory of

small perturbations") the higher order terms can be neglected. Therefore equation (1.5)

becomes

6r:A6rtB6u (1.6)

where A: l{l,, denotes the Jacobian matrix of / with respect to ø at {, : *n,u: un}

and B : [#]. ¿"""tes the Jacobian of / with respect to u at the same point. The

above system (1.6) is the linear approximationof. the original nonlinear system (1.3) at

the nominal solution

If. r"(t) is a constant x" and if u^(t) : 6u(t) : 0, then the stability of the equilibrium

point r, is governed by

6i:A6r (1'7)

where 6r : r - r" and the Jacobian matrix A is a constant. The relationship between

the stability of the above linear system (1.7) and that of the original nonlinear system

: r(t) - r"(t)
: u(t) - u"(t)

Therefore, equation (1.3) can be written as
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(1.3) is elucidated by Lyapunov's linearisation method.

THEOREM 1.1.1 Lyapunov's Linearisation Method

o If the linearised system is strictly stable (i.e., if all the eigenaalues of A are in the

left half of the s-plane), then the equilibrium point x" is asymptotic stable (for the

actual nonlinear system),

o If the linearised system is unstable (i.e., if at least one eigenualue A is strictly in the

right-half of the s-plane), then the equilibrium point is unstable (for the nonlinear

system),

o If the linearised systern is marginully stable (i.e., atleast one eigenaalue of A is on

the ju axis and the others are in the the left-half of the s-plane), then no conclusion

about the stability of the equilibrium point can be obtained frorn the linear mod,el

(i.e., r. may be stable, asymptotically stable or unstable for the nonlinear system),

where the following definitions apply:

DEFINITION 1.1.1 A state r* is an equilibrium state (or point) of a dynamic system

if once the state uector r equals r*, it remains equal to x* for all future times, i.e., giuen

the system ù: f(n,t), then the equilibriurn state r* satisfies f@-,t):0 Vf.

DEFINITION 1.1.2 The origin (x : 0) is a stable equilibrium point if , for any R > 0,

there erists r ) 0, such that if ll"(O)ll < ", thenllr(t)ll < rf for all ¿ > 0. Otherwise, the

origin is said to be an unstable equilibriurn point.

DEFINITION 1.1.3 The origin is an asymptotically stable equilibrium point if it is

stable and if in addition there exists son'te r ) 0 such that llt(O)ll < " implies that

r(t) --+ 0 ast + oo.

Theorem 1.1.1 is veryuseful because it demonstrates that stable design by linear control

guarantees the local stability of the original physical system [218]. The above Jacobian
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linearisation approach has been successfully used in many applications such as missile

autopilots 125, zLl], ship autopilots [97] and weapon systems [17]. Furthermore, the

use of a linearisation approach for applications such as satellite attitude control, aircraft

autopilots and engine control are considered in [54].

Given the many practical successes of applying linear control theory to nonlinear systems

via linearisation approaches, the question which is often posed is "What is the motivation

behind the extensive research recently conducted into nonlinear control theory?"

A number of reasons can be provided to answer this question. Firstly, the Jacobian

linearisation approach described above relies on the assumption that the region of op-

eration is small in order that the linear model is valid. If this is not the case, then the

inherent nonlinearities in the system may result in a poorly performing or even unstable

linear controller. In contrast, a nonlinear controller would most probably be able to deal

with the nonlinearities over a large region of operation. Secondly, in the linear control

approach to nonlinear systems, it is usually assumed that the system model is indeed

linearisable, i.e., the nonlinearities are continuously differentiable. Often this is not the

case, particularly if the system includes discontinuous nonlinearities such as dead-zones,

hysteresis and saturation. As hard linearities such as these often result in instabilities or

limit cycle behaviour, nonlinear control methods must be employed to compensate for

them. Thirdly, in linear control it is generally assumed that the system parameters are

invariant and well known. However, many systems are subject to parametric or dynamic

uncertainties and/or variations. These may arise because of a slow time variation of

the parameters (e.g., parts fatiguing, corroding or otherwise deteriorating with time) or

abrupt changes in parameters or dynamics (".g., u change in road friction when a vehicle

moves from one road surface to another). A linear controller based on such a system

may perform poorly or even be unstable. Nonlinear control approaches such as robust

control, adaptive control and neural control, by their very nature, are able to tolerate

or compensate for such disturbances. Finally, as most physical systems are inherently

nonlinear by nature, it is more intuitive and even natural to design nonlinear controllers

lbr them. In addition to the above limitations of linear control approaches (and advan-

tages of nonlinear control methodologies), traditional concerns about the computational

complexity and intensiveness of nonlinear control techniques have been overcome with
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the advent of powerful and inexpensive digital signal processing (DSP) chips and micro-

processors. Hence the above factors plus the need for more accurate and reliable control

techniques have made nonlinear control an extremely dynamic area of research and de-

velopment in recent years. This is evidenced by the substantial ¡esearch work done in

this area such as in122,69,90, 108, 112, 168, 176, 218], and in recent American Control

Conference Proceedings, IFAC World Congress Proceedings or IEEE Transactions on

Automatic Control.

L.L.2 Nonlinear Control Theory

The conventional design approaches for nonlinear controllers can be categorised into a

number of classes, namely robust control 147,2L81, gain scheduling [9, 199], feedback

linearisation [90, 173] and adaptive control [167,207].

In robust control approaches such as sliding control and Hoo, the controlleris designed to

effectively account for parameter uncertainty and the presence of unmodelled dynamics.

The typical structure of a robust controller consists of a nominal part, similar to a

tèedback linearising law or an inverse control law and an additional term which aims

to deal with the model uncertainty. Robust control has been an active area of research

and has proved to be very effective in a number of practical control problems, including

aircraft control [1], power system stabilisers [121], ship tracking [149], vehicle traction

control systems [230], and robotics [114, 224,,257]. For a more detailed discussion of

robust control techniques the books by Slotine and Li [218] and Dorato et al, [47] and

the collection of papers edited by Dorato et al. 146,48] are recommended.

Gain scheduling is an attempt to apply linear control approaches to the control of non-

linear systems. The central idea is to select a family of operating points which cover the

range of operation for the nonlinear system. For each of these operating points an approx-

imate LTI model of the nonlinear plant is obtained, usually via the Jacobian linearisation

procedure. A linear controller is then designed for each of the linearised models. Based

on the measured signals, an estimate is made of the operating point closest to the current

plant state and the corresponding linear controller is scheduled. The overall nonlinear
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controller for the nonlinear plant is obtained by interpolating or "scheduling" the gains

of the local operating point designs via a selection algorithm. Gain scheduling is a con-

ceptually simple approach which has been applied to a number of applications such as

ship autopilots [98] and flight control systems 1172,L93,2491. Several other applications

of gain scheduling such as pH control, engine control, and the control of rolling mills are

briefly discussed in [9]. One advantage of gain scheduling is that it allows the incorpo-

ration of linear robust control approaches into nonlinear control design. However, gain

scheduling is computationaily intensive due to the need to compute many linear con-

trollers. It also requires the plants to be linearisable and has limited theoretical stability

guarantees. Some of the other potential hazards of gain scheduling and their possible

solutions are addressed in [210]. Further details on this nonlinear control approach can

be found in [9, 199].

Adaptive control is an extremely active area of applied and pure research, as evidenced

by the large volume of literature in this area, for example [63, 69, 111, 167, 168, 176,

2071. It is also the framework chosen for many neural network based control approaches,

including the model reference based neural adaptive control scheme proposed in this

thesis. Therefore, it is pertinent to include a brief review of adaptive control techniques,

and in particular model reference adaptive control. Similarly, significant theoretical and

practical advances have been made in the area of geometric approaches to the control

of nonlinear system, i.e., feedback linearisation, input-output linearisation and output

feedback controllers. These approaches are arguably the most popular techniques for

controlling nonlinear systems, a fact supported by the significant body of work in this

area, for example 122,,35,52,56,90, 135, 173, 218]. Furthermore, from a neural control

perspective, these techniques are also very relevant because many neural network based

control schemes are structured around a feedback linearisation framework [30,31, 186,

234,2351. Therefore, geometric approaches to the control of nonlinear systems will also

be reviewed and discussed in detail below. Furthermore, many of the defrnitions provided

in the review of these two nonlinear control disciplines will be used throughout the thesis.
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Adaptive Control Theory

A common practical problem for researchers in the area of control systems is how to

develop improved control approaches for systems which encompass constant or slowly

varying uncertain parameters or nonlinearities. Typically such systems are difficult to

model. This has resulted in the development of an inherently nonlinear desìgn approach

known as adaptive control. The basic concept of adaptive control theory is to estimate

the uncertain plant parameters and often the corresponding controller parameters on-

line based on measured values of the system output. These estimates are then used to

estimate the parameters of the control scheme to generate the appropriate control signal.

A block diagram of a generic adaptive control scheme is shown in Figure 1.1.

iDputs ouÞuts

Figure 1.1: Block diagram of a generic adaptive control system

The field has progressed significantly over the past few years, both theoretically [4, 5, 66,

112, 163,207] andfromanapplicationviewpointl22,35,37,56,69, 176]. Thegrowthof

the adaptive control discipline is highlighted by many books recently published in this

area [9, 90, 118, 167,173,218] and the growing number of adaptive control streams in

recent conferences such as the IFAC World Congress, American Control Conference and

IEEE Conference on Decision and Control.

Traditionally, adaptive control systems have been applied to linear systems in which there

is parametric uncertainty 14,7,39,60, 66, 180]. However, more recently adaptive ap-

proaches have been developed for nonlinear systems 
.12,92,106, 

137, 206,2371. Adaptive
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control approaches based on geometric concepts for nonlinear systems will be discussed in

the next section. Adaptive control methodologies for nonlinear systems based on neural

networks will be discussed in the remaining chapters of this thesis.

In the case of adaptive control methods applied to linear systems, the two most commonly

used approaches are model reference adaptive control (MRAC) and self-tuning regulators

(STR). These two approaches will be discussed in some detail as they form the basis of

some of the neural controllers considered in the following chapters.

(i) Model Reference Adaptive Control

The model reference adaptive control method was originally developed by a group of

researchers at MIT in 1958. A block diagram of such a system is shown in Figure 1.2.

The aim of the MRAC approach is to design a controller to generate the control variables

such that the output of the plant tracks the reference model output for a given bounded

reference input. This is achieved by adjusting the parameters of the controller via the

adjustment mechanism so as to minimise the error between the reference model and the

system. Briefly, the model reference model can be posed as follows:

Consider a plant P wit\,ll. tïeï:;output pair {z(fr),Ur(k)}, where z(k) is the control

vector and yo(k) is the àtate vector. Consider a stable reference model M given by the

input-output pair {"(fr), A^Ø)}, where r(k) is the bounded reference input vector and

the reference model output, y*(k) is the desired output for the plant. The aim is to

design a controller to produce a control input z(fr), such that the asymptotic tracking

error, er(k) : U*(k) - Ar(k), is finite, i.è.,

Jf* I v*&) - a,&) l< " (1'8)

where er 2 0 is a prespecified tolerance.

The reference model is chosen to reflect the ideal response of the system being controlled.

The choice of the reference model is part of the adaptive control system design. Generally,

it is chosen to refl.ect the desired closed-loop dynamics of the system, usually in terms

of performance specifications such as rise time, settling time, overshoot or frequency

clomain characteristics. However, the structure of the reference model is also constrained
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Figure 1.2: Block diagram of a model reference adaptive control system

by concepts such as its order and relative degree which are dependent on the assumed

structure of the plant. These constraints are placed to ensure that the desired response

is achievable by the plant.

There are two philosophically different approaches to model reference adaptive control:

direct and indirect control. In the direct control approach, the control parameters are

directly adjusted to meet the control requirements without the need to estimate the

plant parameters. In contrast, in the indirect control approach, the plant pärameters are

estimated on-line and the control parameters are adjusted based on these estimates'

As mentioned earlier, the adaptation mechanism is used to adjust the parameters of

the controller to ensure that the tracking error converges to zero. Therefore, the main

emphasis of adaptive control design such as MRAC is to synthesise a parameter adjust-

ment scheme which guarantees the stability of the control system and convergence of the

tracking error. Much research has been conducted into devèloping appropriate adapta-

tion schemes for MRAC approaches [66, 88, 118, 156, 180]. In the original development of

MRAC, a parameter adjustment scheme known as the MIT rule was developed. The MIT

rule can be considered to be a gradient descent scheme where the controller parameter

vector d" is adjusted as follows:

*: n eVe"e (1 9)
dt

where e denotes the model error, fr is a parameter which determines the adaptation rate

and the components of the vector Y s.e aÍe the sensitivity derivatives of the error with

respect to the controller parameters. The main problem with the MIT rule approach

is that it is not possible in general to prove closed-loop stability or convergence of the
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tracking error to zero. However, it has been shown empirically and later proven analyt-

ically by Mareels et al. [13a] that if the parameter k is small and the magnitude of the

reference input is small, then the MIT rule performs well.

The landmark paper by Parks [180] demonstrated that the system could be made more

stable by using a design procedure based on Lyapunov stability methods. This paper

eventually resulted in a shift away from gradient based schemes to adaptive control design

schemes based on stability methods [156, 165, 180]. Since then there have been several

papers on the design of MRAC schemes for linear systems [59, 116, 117, 150, 157, 164]

and, more recently, nonlinear systems lI2, L62,, L66, 2I4, 2171. Several survey papers

[4,5,66, 163] and books [9,63, 118, 167, 168,205] deal with the issues associated with

model reference adaptive control in more detail.

(ii) Self-Tuning Regulators

The self tuning approach to adaptive control was originally proposed by Kalman [100]

and later expanded upon by Åström and Wittenmark [7] and Clarke and Gawthrop

[38]. As opposed to model reference adaptive control, which evolved from deterministic

servomechanism problems, self-tuning regulators (STR) arose in the context of stochastic

regulation problems. A STR system is shown in the block diagram given in Figure 1.3.

u

pld

Figure 1.3: Block diagram of the self-tuning regulator scheme

The self-tuning regulator can be thought of as having two loops: an inner loop consist-

ing of the plant and a conventional controller with varying parameters and an outer loop

which is composed of a recursive parameter estimator and a controller design block which

adjusts the controller parameters. The underlying design problem (represented by the

coDtrolhr pbDt
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controller design block) is to determine a relationship between the plant parameters and

the controller parameters on-line. However, as the plant parameters are unknown, they

are estimated by a recursive parameter estimation algorithm represented by the param-

eter estimator block. The controller parameters are then obtained from the estimates of

the plant parameters as if they are the true parameters. Such an approach is known as

the certainty equivalence principle. As the parameters of the plant are estimated prior

to obtaining the controller parameters, the STR scheme can be classified as an indirect

control approach. Such a scheme is also often referred to as an explicit STR. Implicit

self-tuning regulators are based on an implicit estimation of the system and a direct

update of the controller parameters. Therefore, implicit STR's are closely related to a

direct model reference adaptive control scheme. The relationship between the various

schemes has been investigated thoroughly in [50, 118].

The popularity of the self-tuning regulator approach extends from its flexibility with

regards to the choice of controller design methodology and recursive parameter estimation

scheme. As a result there have been numerous papers which deal with extensions of the

original STR approach of Äström and Wittenmark [8, 23, 39, 182, 188]. In particular,

controller designs based on techniques such as pole-placement, minimum variance and

LQG and recursive identification schemes based on the well known least squares, extended

Kalman filters and maximum likelihood, have been used.

Research on self-tuning regulators in recent year has continued on many fronts. The use

of STR's in practical applications such as the ship steering problem [98, 127], industrial

and biotechnical process control 124,, 45,49, 107], po\¡/er systems 1123,2361and automo-

tive control [233], to name but a few, has been investigated in recent years. As with

most adaptive control approaches, stability of the control scheme is of major concern.

Therefore, significant research has been directed towards addressing stability issues for

STR's. It has been shown that for the ideal case the self-tuning regulator algorithm is

globally convergent [60]. More recently, Ydstie [252] has investigated the stability of a

direct STR in which unmodelled dynamics and disturbances are present. Another area

in which considerable effort has been directed is the use of self-tuning regulators for the

adaptive control of nonlinear systems 12,28,,37, 2561. Of particular interest is the work

by Chen 128, 29,30, 31] in which neural networks are used to identify the nonlinear
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system and are then used within an STR approach to regulate the system. This will be

discussed in more detail in the next chapter.

Geometric Approaches to the Control of Nonlinear Systems

(i) Feedback Linearisation

The theoretical developments in the design of feedback control schemes for nonlinear

systems can be classified as either asymptotic or geometric approaches. Geometric ap-

proaches [90, 173, 218] are restrictive but exact, whereas the asymptotic approaches

[108, 113] are less restrictive but approximate. However, as shown by Kokotovic [110],

the similarity of the approaches are such that the asymptotic approaches can be pre-

sented in a geometric framework. In this review, the emphasis will be on the geometric

approaches to the control of nonlinear systems [52, 90, 173, 218].

Research into the design of adaptive control schemes for nonlinear systems using geomet-

ric concepts has been extremely active since the early 1980's. The results obtained so far

differ in the conditions they impose on the growth of the nonlinearities and/or the depen-

dence of the system on the unknown parameters [105] and the assumptions they make

about the system. The two most common assumptions are linear parameterisation and

full-state feedback. The linear parameterisation assumption, which has been adopted by

virtually all of the researchers in the field, requires that the unknown parameters appear

linearly with respect to the known nonlinearities. In the continuous-time case the system

considered is typically of the the form

r :,fo(") + [oo("¡ + s(O,,r)]u* fQ,*)

a : h(") (1.10)

where

r (0, ")

pt
i=1

p

g(0,") : Ðfl'sn(r) (1'11)
i=1

wherer€R"isthestate,u€Risthecontrol,0:lît,...,îolisthevectorofunknown

constant parameters belonging to 0, a closed subset of Rr, ,f : R" X Rp --+ R" and

o¿f,þ)
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g i Rn X RP ---+ Rn are smooth functions, h : Ft" -+ R is the output function, forgorf¡,,g¡

are smooth vectorfields on R' with 9¡(r) + 0V t € R" and fi(0) : 0 for 0 < i < p.

Note that such systems are affine in control, u. As the unknown parameters d are linearly

parameterized, they can be estimated using a standard recursive estimation algorithm

such as the recursive least squares algorithm 1130,221,1. The linearising feedback con-

troller is then constructed in terms of the estimated parameters.

The second major assumption made in most of the geometric approaches developed so

far is that the full state variable is available to design the appropriate control. This is

known as the full-state feedback assumption. More recently approaches based on output

fèedback only have been developed [104, 138, 139]. These will be discussed in more detail

later on.

The aim of state feedback approaches is to find a set of transformations of the form

u:

7

u(r,u): o(*) + 0@)"

o(") ( 1.12)

where r € R' is the new state vector and u € Rp is the new input, such that the nonlinear

system (1.10) is transformed into a linear system of the form

2:AzlBu (1.13)

in some region O.

Therefore, the problem is one of transforming the state space model of the nonlinear

system (1.10) by a suitable coordinate transformation and state feedback such that the

resultant system is (futly or partially) linear. This approach is known as feedback lin-

earisation [90, 173, 218]. As it is difficult to achieve this transformation over the entire

state space R', such linearisations are usually only locally valid over some neighbourhood

of the origin. If such transformations exist, the plant is called feedback linearisable and

linear control techniques can be used to control and stabilise the system.

In order for the above transformation to be valid, the functio" O(.) must be a diffeomor-

phism, defined as follows:
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DEFINIÎION 1.1.4 A function ó: Rn --+ R^ def,netl in the regi,onQ which represents

a neighbourhood, of the region of interest (usually the origin) is called, a diffeomorphisrn

if it is smooth and its inuerse exists and is smooth.

This condition ensures that one can pass between the state vectors r and z without ambi-

guity. The existence of such transformations are dependent upon a number of necessary

and sufficient conditions. However, prior to stating these conditions it is necessary to

consider the following definitions.

DEFINITION 1.1.6 Let ñ, :R'-+ R óe a smooth scalar function and f : R'---+ R'

be a srnooth uector field on R", then the Lie deriuatiue of h with respect to f is a scalar

function defined by L¡h : Yhf , indicating that the Lie deriuatiue L¡h is simply the

directional deriuatiue of h along the direction of the uector f . Furthermore, L¡oh:
h,...,L¡,h: L¡(L¡:-'h):V(L¡;-,h)f /or i e N.

DEFINITION 1.1.6 Let f and g betwo uectorfi,elds onRn. The Liebracket of f and

g is a third aector field def,ned by

V,gl:vg f -vf 9:adÍl (1.14)

where ad,¡og : g,t...,,ad¡;g : lf ,adi;tgl lo, i e N

DEFINITION 1.1.7 A linearly independent set of uector fields {rt, fr,. . . , r^} is said

to be inuolutiue, if and only if, there are scalar functions a¿¡¡:Rn --+R such that

n

lfr, f¡)("): t a¡¡¡,(r)f¡,(x) Vi, j,and n'I < n (1'15)
Ie=l

i.e., if one forms the Lie bracket of any pair of vector fields from the set {fi ,. ' ' , f^}
then the resulting vector field can be expressed as a linear combination of the original

set of vector frelds.

Therefore the system (1.10) can be linearised by state feedback and coordinate transform

if and only if the following conditions hold 1218,2271:
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1. the controllability matrix lg,ad¡g,...,ad'¡n-'g] has rank n in O, i.e., the set of

vector fields {g,ad¡g,... ,ad,¡^-rg} is linearly independent in 0.

2. the set of vector fields {g,ad¡g,...,ad,¡n-"g} is involutive in O

Hunt et al. [81] have combined the above local feedback linearisation conditions with

global inverse function theorems and partial differential equation techniques to prove

global theorems for transforming a nonlinear system of the form (1.10) to a linear sys-

tem of the form (1.13). Dayawansa et al. [42] also derive global feedback linearisation

conditions.

The feedback linearisation of discrete-time systems is addressed in the papers by Monaco

et at. ll54l, Jakubczyk [92], and Grizzle et al. [61]. In [92] local necessary and sufficient

feedback linearisation conditions for a nonlinear discrete-time system are derived. It is

shown that the conditions are analogous to the continuous-time conditions given in [227]

except that there are no involutiveness requirements. The papers [61, 154] deal with the

fèedback linearisation of sampl*{"i"}Í'¡Arrì'ò. Grirzl e et al. show by way of an exampl e '4-'"

that although a continuous-time system may be feedback linearisable, the sample-data

version may not be. A technique to overcome this using multi-rate sampling is discussed.

A good summary of feedback linearisation techniques for discrete-time systems can be

f'ound in [173].

Since the work of Su 12271, Htnt et al. [8t] and Dayawans a et aI. 1421, a number of

papers have been published which address issues relating to lhe practical implementation

of feedback linearisation techniques. One of the major drawbacks with the above theory

is that it relies on the exact cancellation of the nonlinear terms in order to get state-

space linearisation. Consequently, if there are errors or uncertainties in the model of

the nonlinear terms or unknown parameters, then the cancellation is no longer exact.

Hence the practical implementation of such schemes requires that further restrictions be

imposed either on the location of the unknown parameters or on the type of nonlinearities.

According to these additional restrictions, the adaptive scheme can be categorised as

either uncertainty constrained schemes or nonlinearity constrained schemes [112].

uncertainty constrained schemes impose restrictive conditions,As the name suggests
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known as matching conditions, on the location of the unknown parameters, but they

can handle all types of nonlinearities. Many papers which deal with uncertainty con-

strained schemes attempt to relax the restrictive feedback linearisation conditions which

exist. One method is suggested by Kokotovió in [110]. In this approach, the conditions

are only required to be satisfied for a reduced model. Such models allow dynamic, but

exclude parametric uncertainties. In the paper by Taylor et al. l23ll, an adaptive update

law is proposed to counteract parametric uncertainties in the case where the unknown

plant parameters appear linearly. The adaptive control is designed for a reduced order

model. Assumptions about parametric uncertainties, linear parameterisation and feed-

back linearisation are made for this reduced order model. Only the states appearing in

the reduced order model are available for measurement. This is in contrast to the work of

Nam and Arapostathis [162] and Sastry and Isidori [207] which also address parametric

uncertainty, but assume that full state information is present. Furthermore,Taylor et al.

derive robustness properties with respect to the unmodelled dynamics, something which

had not been established for other nonlinear adaptive schemes [206]'

The results of [231] are used by Marino eú ø/. [136] to address the adaptive tracking

problem for feedback linearisable systems with parametric uncertainty. Strict matching

conditions are assumed so that the results of [231] can be utilised.

DEFINITION 1.1.8 Strict matching conditions:

f;,g¿ e sPan{gs} (1.16)

Further restrictions are placed on the system by assuming the extended matching con-

ditions [102] defined below are also met.

DEFINITION 1.1.9 Ertended matching conditi'ons (EMC)

f¡ € sPan{gs,od¡ogo}

9; € sPan{gs} (1.17)

For full-state feedback linearisable systems, the extended matching condition is a neces-

sary and sufficient condition for the existence of a parameter independent diffeomorphism

" 
: Q(r).
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The work by Kanellakopoulos et al. ll03l can be seen to be an extension of the results of

[231]. The authors present a direct adaptive control schemewhich satisfies the extended

matching conditions of their earlier work [102] and is shown to be robust with respect to

unmodelled dynamics.

The main advantage of EMC based schemes is that their stability properties can be

established independently of the type of nonlinearities [112]. Although the extended

matching condition is quite restrictive, it is satisfied by many systems of practical impor-

tance, such as most types of electric motors [103]. Furthermore, as shown in [103], the

robustness of EMC based schemes to unmodelled dynamics can be exploited to extend

their applicability.

Nonlinearity constrained schemes do not restrict the location of unknown parameters,

but instead impose restrictions on the growth of the nonlinearities of the original system

[112]. Papers which can be classified under this approach are 1162, L87,207,232].

In the paper by Nam and Arapostathis [162], the issue of parametric uncertainties in the

system are addressed. The authors restrict their attention to a class of "well structured"

nonlinear systems called pure-feedback system. These systems were first defined by Su

and Hunt [228] and they have the desirable feature that the linearising map is straight-

f'orward to construct. They present matching conditions which allow them to transform

the system into the pure-feedback form. This allows the implementation of an adaptive

algorithm which updates the estimates of the feedback and coordinate transformation

required to linearise the system, as well as to meet their objective of constructing a model

reference controller.

More recent work by Kanellakopoulos eú ø/. [106] has resulted in an adaptive control

scheme in which the growth of the nonlinearities is not constrained. Instead they require

that the nonlinear system be transformed into a parametric pure-feedback form (different

to the pure-feedback form of [162, 22S]) in which the new system depends only on the

feedback state variables. These pure-feedback systems are shown to remove the limi-

tations of both uncertainty constrained schemes and nonlinearity constrained schemes.

Therefore, it is argued that they represent the broadest class of nonlinear systems for

which adaptive controllers can be designed without imposing constraints on the growth
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of the system nonlinearities.

In recent years full-state feedback linearisation techniques have been applied to practical

problems such as the control of stepper motors [22], induction motors [35], shunt DC

motors [36], synchronous generators [56], and robotics applications [135, 41].

(ii) Input-Output Linearisation

The aim of full-state feedback linearisation is to find a state transformation " : Q(x)

and an input transformation u : u(ï,u) : a(r) + þ("), such that the nonlinear system

dynamics are transformed into an equivalent linear system 2 : Az * Bu. Standard linear

control techniques are then applied to the transformed system to design u. In contrast,

in input-output linearisation, the aim is to solve a tracking control problem for plants of

the form

f @) + g(")"

h(") (1.18)

The primary objective is to make the output y(ú) track a desired trajectory y¿(¿) whilst

ensuring that the whole state is bounded. The difficulty with this problem is that the

output y is indirectly related to the input u through the state variable r and the nonlinear

state equation (1.18). Hence the intuitive basis of input-output linearisation is to find a

direct and simple relationship between the system output y and the control input u.

Consider the above system again. Differentiating y with respect to time yields

i¡ -- L¡h(r) + I'nn@)u (1 . 1e)

where L¡h(r): R'-+ R and Lnh(r): R'--+ R are the Lie derivatives of å with respect to

/ and g, respectively (see Defrnition (1.1.5)). If Lnh(r) is bounded away from zero for

all r (i.e., Lnh(r) l0 Vx € R"), the state feedback law

r

a

where r € R', f , g and h are smooth nonlinear functions.

(-L¡h(x) + u)
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results in the linear system

y : u (1.21)

The above control results in the previous n - | states of the system being unobservable.

If. Lnh(r): 0 Vs € R', one differentiates y to obtain

ù : L'¡h(*) + t'nt'¡n@¡u (r.22)

11 LnL¡h(r) : 0 then one differentiates again and again, until for some integer 1,, LnL]-r

is bounded away from zero, and the control law

1

": l¿¡oÇLih(r) + u) (1.23)

applied to

v1 : LJh(r) + LnL]-'hçr¡u (t.24)

yields the simple linear relat on

(1.25)u1 :u

Such a system has strong relative degree 7 and the control (1.23) renders the n-7 states

of (1.18) unobservable. Note that if 7 : n then input-output linearisation results in

lïll-state linearisation previously described. This results in the following definition.

DEFINITION 1.1.LO The SISO system (1.18) is said to haae relatiue degree 1 in R"

if Yr €R^

LnL'¡h(r) : 0

LsL]-rh(r) + o

0 < i < 1-I
(1.26)

It can be shown [90,206, 207,2I8] that there exists a local diffeomorphism z : O(")

such that the system (1.18) is transformed into the following form

ztt zt2

ztz ztz

ft("t,zz) I n(zt,zz)u

2I

zL1



ztt+t

zln

Zr7 : h(r),, 212: L¡h(x),,.

Tt("t, "t) 
: Llh(r)

9t(21, "r) 
: t'nt'J-ln@¡

zt:(2n,...12;'):(y,ù,

zz: (zn+r). . .) zrn)

22 : q(21, z2)

7: (z1rz2)T

h+t(zt, zr)

g*(zr, z2)

, zr1 : t']-r n@)

. , r(z-t))

? ft1"t, z2) + u)

where

(r.27)

(1.2e)

and the output is defined as

A: zt (1.28)

The linearising control is

The equations (1.27) are referred to as the normal form of the nonlinear equation. The

state variables 21,r.,.1 ¡ . . . ¡ z\n represent the internal dynamics of the system, as they are

unobservable from the input-output dynamics yh\ - fr(") + gt(z)u.

Due to the linear relationship of the transformed system (1.25), it is easy to design the

input u so that the output y behaves as desired. However, this does not ensure that the

internal dynamics will also behave well, i.e., remain bounded. Therefore, the stability of

the internal dynamics must also be addressed as well. This leads to the concept of zero

dynamics [90, 218].

The term zero dynamics refers to the case where the motion of the system is restricted

to the n - -,1 dime¡rsional smooth surface Mo defined by "t - 0. If the initial state of the

system u (0) is on this surface and the input z is of the form

_L h(r)
( 1 .30)UO:

LnLJ-

resulting in yr(f) : 0 then the system is operating in zero dynamics. This leads to the

following definition

h(")
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DEFINITION 1.1.1L The zero dynamics of the nonlinear system (1.18) are

22 : q(0, z2) (1 .31 )

Furthermore, the nonlinear system (1.18) is said to be minimum phase if the zero dy-

narnics o,re o,synxptotically stable.

REMARK 1.1.1 Discrete-tirne uersions of the concepts of minimum phase and zero

dynamics haue been proposed by Monaco and Nor'¡nand-Cyrot in [153].

As mentioned earlier, the aim of input-output linearisation schemes is to solve the track-

ing problem. Consider the desired trajectory zm : ly^,,'it^,. . . ,y9-'))" and define the

tracking error as

e(t) : "'(t) - z*(t) (1.32)

then the following theorem applies [90]:

THEOREM 1.1.2 Assume that the system (1.18) has relatiue degree 1, its zero dy-

namics o,re asyrnptotically stable, z^ is smooth and bounded, and that the solution Ú^ of

the equation

ú*:Q(4^,zz^) z*(0):g (1.33)

erists and is bounded and asymptotically stable. Choose constants lc; such that the poly-

nomial

K(p):f *\-tf-l +...!lelp4ko (1.34)

has all of its roots strictly in the left half plane. Then by using the control law

#@l-Llh(x)+ul 
(1'35)

where

, : v9) - kr-te1 - .. .- leoet (1.36)

the whole state remains bounded and the tracleing error conaerges to zero.

It should be noted that this scheme requires full state information, z and that the output

variables U,,...¡y('v-t) are measurable. The proof of the above theorem is given in [90]'
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The input-output linearisation of MIMO systems has been addressed by Isidori [90],

Sastry and Bodson [205] and Slotine and Li [218].

Issues dealing with the practical implementation of adaptive input-output linearisation

schemes have been addressed in [36, 69, 155, 206, 207, 216]. From these papers it is

apparent that the major drawback with the practical implementation of input-output

linearisation schemes is that if there is uncertainty in the nonlinear function, then the

cancellation of the nonlinear terms is not exact and the resulting input-output equation

is not linear. Sastry et al. 1206, 207]1 suggest the use of adaptive control to obtain

asymptotically exact cancellation.

In this approach, a SISO system of the form (1.18) is considered with

r@) ol fnD
nl

i=l
n2

(r)

g(") : lïloi@) (1.37)
j=L

where 0l i:1,...,nl and 0? j:1,..., n2are unknownparameters and l;@) andg¡(x)

are known functions.

The estimates of the functions / and g at time ú are

nl

î("):

0@) :
D

lâiçt¡s,ç"¡ (1.38)

The control law u becomes

ï¿(r)âi T(

where glþ), etrçt¡ "t" estimates of d¿1 and 0J at tirnet

êt|t n,ttLnh

i=1
n2

1j-

1^u:+(-L¡h*u)
Lnh

"rrd 
l] "nd Çh are estimates of the Lie derivative based on (1.38), i.e.,

( 1 .3e)

f,1 : lâlt ¡,n
nl

i=L
n2

(1.40)
j=l

It can be shown [205] that if the control law for tracking is given by

u:y*+o(A^-A)
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and ym is bounded and. Lnh is bounded away from zero, then the parameter update law

ö:-fu-y^)w (r.42)

yields bounded y(ú) which asymptotically converges to y^(t)., where Ó : 0 - 0 is the

parameter error with 0:lïtT,g2rl, andW eRn"r+n2 is the concatenation of

L¡rh

Wt

L Í^rh
and

Ln.rh
( -1,-h.+,\\__T)Wz (1.43)

Ln^"h

The above input-output linearisation scheme of Sastry and Isidori 12071belongs to the

class of nonlinearity constrained schemes. The main constraint employed in this scheme

is that the nonlinear functioîs f , 9 and ñ. are globally Lipschitzin r. The input-output

linearisation approach of Teel et al. 1232] similarly considers global Lipschitz conditions.

The primary difference between these approaches is that Sastry and Isidori employ pa-

rameter update laws analogous to those used in indirect adaptive linear control, whilst

Teel et ø/. combine parameter estimation elements from both direct and indirect control

approaches.

DEFINITION 1.1.L2 A function f@,t) is said to be globally Lipschitz if for an! 11

and 12 in the state space the Lipschitz condition

llr@r,t) - r@r,¿)ll s Lllr2- r2ll (1.44)

is satisfi,ed where L is a strictly positiue constant lenown as the Lipschitz constant and

t e ltuto t Tl where T is a strictly positiue constant'

Recently a number of researchers have implemented input-output linearisation techniques

similar to the above scheme using neural networks 128, 29,30, 31, 234, 2351' These

techniques will be discussed in the next chapter.

25



(iii) Output Feedback Controllers

Two of the main assumptions made in the aforementioned schemes are that full state

information is available and the unknown parameters appear linearly in the system equa-

tion. Recently a great deal of work has been undertaken to relax these assumptions.

In particular, considerable research has been addressed at designing adaptive control

schemes for nonlinear systems assuming that only the output is available [105, 104, 101,

137, 138, 139].

The earlier work of Kanellakopoulos et al. 1L04, 105] involves introducing a set of input

and output matching conditions which results in the existence of a diffeomorphism to

transform a nonlinear system of the form (1.10) into the following input-output descrip-

tion

A(D)v : n@){p0(y) + pr@)o + [qo(y) + qr(y)o]"] (1.45)

where D denotes the differentiation operator, the coefficients as, ...¡en-r of the de-

nominator polynomial A(D) : Dn I an-tD"-l + ... * ao are unknown, 0 is the /-

dimensional vector of unknown parameters, B(D) : b^D^ + ... * bo is known and

Hurwitz, p(ù: lpr@),...,p(y)1, q@): [h@),...,,q,(y)] and p¿(e), q;fu) i -- I,.'.,1
are smooth nonlinearities.

Furthermore, the nonlinearities are restricted to the following form (sector-type nonlin-

earities)

lPo(Y) I I rc*nlYl

llp(v)ll <

llq(v)ll <

where I . I i. the scalar norm, ll.ll ir the vector norm, and rc denotes a positive constant

and some a priori information about the unknown parameters is assumed.

An indirect adaptive control scheme is then presented in which the unknown parameters

are estimated using a prediction-error type estimator. These estimates are then used to

design a certainty equivalence control law.

More recent work by Kanellakopoulos et al. lL}Ll is aimed at removing conditions (1'46)'
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thus removing the need for the nonlinearities to satisfy any growth conditions, whilst

ensuring that all stability and tracking results are global.

Bxtensive work in output-feedback control has also been conducted by Marino and Tomei

[137, 138, 139]. In the paper [137], Marino and Tomei have presented conditions to

globally transform a nonlinear system of the form (1.10) into a linear minimum phase

and observable system, making use of filtered output feedback transformations. Such

transformations are shown to consist of a state space change of coordinates and a output

feedback control both driven by asymptotically stable linear filters whose inputs are

nonlinear functions of the outputs. They have shown that the system is globally output

feedback stabilisable. In the paper [138], Marino and Tomei present sufficient conditions

f'or the existence of adaptive output feedback control. The control strategy presented

is not subject to the matching condition restrictions or sector-type nonlinearities as in

[104, 105]. In their companion paper [139], Marinó and Tomei present a global output

fêedback control strategy for a nonlinear system in which the unknown quantities may be

nonlinearly parameterized, i.e., the assumption of linear parameterisation which is one

of the key assumptions of all of the above methods is removed.

1.1.3 Neural Networks in Control

The nonlinear control approaches described above generally apply to a limited class of

nonlinear systems. For example, the feedback linearisation approaches primarily deal

with systems where the uncertainty is due to unknown parameters which appear linearly

with respect to the known nonlinearities. Furthermore, such systems are generally linear

in the control (afrne). Therefore, in contrast to the adaptive control of linear systems,

adaptive design techniques for nonlinear systems have yet to be established for a general

class of nonlinear structure.

The emergence of artificial neural networks as a method of forming an arbitrarily close

approximation to any continuous nonlinear function [40, 74,55] has offered an alternative

approach to solve a more general class of nonlinear problems. As a result of their ap-

proximation abilities as well as their inherent adaptivity, artificial neural networks have
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generated a great deal of interest in the control community. Furthermore, the parallel

nature of neural networks and their fast adaptability has provided additional incentive

for the investigation of their use in the identification and control of complex nonlinear

systems. Consequently, several neural network based control architectures have been

proposed in recent years [189, 171, 169, 28,,204]. A neural network is trained to learn

the inverse plant dynamics in the scheme suggested by Psaltis et al. lI89l. This neural

network is then used as an open-loop feedforward controller. Nguyen and Widrow [171]

have proposed a scheme in which a multilayered neural network, known as the emulator,

is trained off-line to identify the system dynamics. A controller neural network is then

trained to control the emulator. The trained controller is then applied to the actual sys-

tem. The papers by Narendra and Parthasarathy [169] and Chen [28] are amongst the

first to utilise neural networks in a more traditional control framework. In the approach

presented in [169], neural networks are used in a model reference adaptive control envi-

ronment. The scheme is shown to be effective for a wide range of nonlinear systems. On

the other hand, Chen combines multilayered neural networks with self-tuning adaptive

control techniques to control single-input single-output feedback linearisable systems.

More recently, Sanner and Slotine [20a] have presented a direct adaptive tracking control

procedure in which the weights of the Gaussian radial basis function network are updated

by a stable adjustment scheme based on Lyapunov theory.

As the above issues are central to the research presented in this thesis they are discussed

in greater detail in Chapter 2.

1..2 Outline of the Thesis

This thesis is primarily concerned with the development of a neural network based model

reference adaptive control scheme for discrete-time non-affine nonlinear systems. The

aims of this study are therefore:

o to erplore the issues associated with using neural networks in the modelling and

control of nonlinear dynamic systems;
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o to establish a framework for the use of neural networks in the model reference

adaptive control of nonlinear systems;

o to deaelop the theory to ensure the convergence and stability properties of the

closed-loop system, and

o to inuestigate theeffectiveness of the proposed stable neural adaptive control scheme

through simulation studies of arbitrary and "real world" systems.

In Chapter 2, an introduction to artificial neural networks is provided. A brief discus-

sion of various neural network architectures commonly used in the neural control area

is provided and some of the implementation issues such as the network structure and

Iearning algorithms are considered. The use of artificial neural networks in the modelling

of dynamic systems is discussed. In particular, time delay neural networks (TDNN),

which are used in the proposed neural control scheme, are analysed in detail. Correla-

tion tests are used to determine the validity of a particular TDNN model for a given

nonlinear dynamic system. An overview of the major existing neural control schemes is

also provided in Chapter 2. The limitations and strengths of the approaches considered

are also discussed.

A neural network based model reference adaptive control scheme for discrete-time non-

affine nonlinear systems is presented in Chapter 3. The approach combines the forward

modelling scheme of Jordan [95] with the model reference neural adaptive control ap-

proach of Narendra and Parthasarathy [166]. In this approach the nonlinear system is

treated as a "black box" with the only ø priori knowledge assumed being the relative

degree and order of the system and the maximum lag of plant input and plant output

terms. Therefore, unlike other approaches, there is no need to assume knowledge of the

separability or otherwise of the control terms and the output variable terms, nor their

respective nonlinear functions, and the inverse of the nonlinear functions do not need to

be explicitly identified. Furthermore, the approach can also deal with nonlinear systems

which are non-affi.ne in control and where the control is heavily embedded within the

nonlinearities of the system dynamics. This is in contrast to existing geometric control

approaches for nonlinear system and many other neural adaptive control approaches. In

the approach, time delay neural networks based on the multilayer perceptron are used
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to determine the plant Jacobian and synthesise the reference model control. The neural

adaptive control approach is presented in a multi-input multi-output framework. The

implementation of the scheme in both an off-line and on-line environment is discussed.

Simulation examples are provided to highlight the effectiveness of the scheme in both an

off-line and on-line environment for single-input single output systems and multi-input

multi-output system. The ability of the proposed approach to deal with disturbances

such as dynamic plant noise, sensor noise and load disturbance is also considered. The

advantages of the on-line approach, particularly as a result of performing both identifi-

cation and control simultaneously and in a closed-loop environment, are demonstrated

via a simulation study of a marginally stable nonlinear system. Finally, the limitations

of the scheme are discussed which gives rise to the issues addressed in the next chapter.

An enhanced neural network based model reference control scheme is proposed in Chap-

ter 4. As with the scheme discussed in the previous chapter, the enhanced neural control

scheme is formulated for a general discrete-time multi-input multi-output nonlinear sys-

tem. Furthermore, the general nonlinear systems considered are non-affine in control and

the control may be heavily embedded in the nonlinearities of the system. Weak assump-

tions regarding the order, relative degree and number of delay terms in the plant output

and control variable are made. Output feedback is also assumed. The enhancements

derived allow the issues of stability of the closed-loop system and convergence of the

tracking error to be addressed. An enhanced reference model is introduced which allows

the derivation of sufficient conditions to guarantee the convergence of the tracking error.

Lyapunov theory is used to guarantee the stability of the closed-loop system. The basic

strategy of the proposed scheme is to generate a control input via the neural network

controller such that the plant output is nearest, in some norm sense, to a desired plant

output generated by the enhanced reference model. A modified controller neural network

weight update equation is proposed to achieve the desired control. Simulation studies

demonstrate the effectiveness of the new approach for both single-input single-output

systems and multi-input multi-output systems. The performance of the system in the

presence of dynamic plant noise, sensor noise, load disturbance and plant uncertainty

and/or variations are investigated. The ability of the proposed neural control scheme

to handle non-ideal plant dynamics such as nonminimum phase systems and marginally
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stable systems is also examined

The practical feasibility of the enhanced neural control scheme is investigated in Chap-

ter 5. The proposed approach is applied to the anti-skid brake system problem. This

problem represents a difficult challenge for any control scheme because of the highly

nonlinear and time-varying dynamics of the vehicle-brake system. In this chapter, a

model of the dynamics is first derived. The effects of environmental conditions such as

road surface are incorporated into the dynamics via a highly nonlinear relationship. A

study of existing approaches to this problem is also conducted to identify the practical

difficulties associated with an anti-skid brake system. A neural network based anti-skid

brake system is proposed which is demonstrated to provide effective braking performance

even under harsh environmental conditions.

From the extensive study described in this thesis, general conclusions regarding the de-

velopment of the nerv\¡ neural network based model reference adaptive control strategies

for discrete-time non-affi.ne nonlinear systems of unknown structure are drawn in Chap-

ter 6. The principal features of the neural control approach developed in this thesis are

hightighted. From these conclusions and the experience and knowledge gained through-

out this research, a number of recommendations are made for the future development of

neural adaptive control schemes.

1.3 Major Contributions of the Thesis

The principal contributions made in this thesis are as follows:

o A critical review of existing geometric approaches to the adaptive control of non-

linear systems.

o A critical review of the use of artificial neural networks for the modelling and control

of nonlinear dynamic systems.

o The development of a neural network based model reference adaptive control scheme

for general multi-input multi-output non-affine discrete-time nonlinear dynamic

systems of unknown structure.
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o The development of an enhanced model reference neural cqntrol scheme for which

proofs of the convergence of the tracking error and stability of the closed-loop

system are furnished.

o The derivation of a modified controller neural network weight update equation

o The investigation of the performance of the neural control system in the presence

of disturbances, dynamic variations and uncertainties and non-ideal dynamic be-

haviour such as marginal stability and nonminimum phase behaviour.

o The application of the proposed neural control system to a vehicle anti-skid brake

system.
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Chapter 2

Neural Networks for the Control of

Dynamical Systems

2.L Introduction and Overview

The birth of artificial neural networks is usually credited to McCullogh and Pitts [1a6]

who outlined the first model of an elementary computing neuron. Research into neural

networks continued strongly during the 1950's and 60's. However, towards the end of

the 1960's problems arose due to the relatively modest computational resources available

to undertake research on neural networks, the lack of efficient learning schemes for the

networks and doubts about the potential of layered learning networks. Neural network

research entered a stagnation phase during the 1970's and beginning of the 1980's with

only a handful of researchers continuing in the area.

However, since the early 1980's there has been a rapid growth in theoretical and applied

research related to artificial neural networks. Much of this growth can be attributed to the

advances made in the computer technology in the 1980's, which enabled neural network

researchers to simulate and test their ideas in a thorough manner. The resurgence in

interest in neural networks was also due in part to a number of seminal papers that

significantly furthered the potential of the arca172,73,I28,179,200]. In particular, the

papers of Hopfield [72,73], in which a recurrent neu¡al networkfor associative memory
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was introduced, resulted in an explosion of activity into the computational properties of

fully connected networks. Arguably a more important development occurred in the mid

1980's. The backpropagation algorithm was developed independently by Parker [179] and

Rumelhart et ¿/. [200]1. In Lippman's often cited paper [128], several different neural

network models are discussed, such as the Hopfreld network, the multilayer perceptron

and self-organising maps and these still remain the foundation of most of the current

neural network research.

Applied research related to neural networks has also continued unabated since the early

1980's. The application of neural networks to image recognition, optimisation, pattern

recognition, speech recognition and character recognition have been well studied (see for

example IEEE Transactions on Neural Networks, Proceedings of the International Neural

Networks Conference, Neural Computation etc). One application which has received

a great deal of attention in recent years is the use of neural networks in the control

of dynamic systems. The explosion of activity in this area can be attested to by the

recent special issues of the IEEE Control Systems Magazine (1988, 1989, 1990, 1992)

[84, 85, 86, 87] and the many papers on the subject in both control journal and conferences

and neural networks journals and conferences. Furthermore, a number of recent books

and collection of papers have been produced in this area [64, I1t,242].

From the control theory viewpoint, the emergence of neural networks as a method of

forming an arbitrarily close approximation to any continuous nonlinear function has

provided control researchers with an alternative approach to the traditional schemes to

deal with a general class of complex nonlinear control problems. The traditional control

methods developed for nonlinear systems, such as feedback linearisation, input-output

linearisation and output feedback control require a number of assumptions to be made

about the system to be controlled and subsequently, can only be applied to certain

classes of systems (see Chapter 1). As a result, adaptive design techniques have yet to

be established for a general class of nonlinear structure. Artificial neural network based

control schemes offer promise in this area. Apart from the approximation abilities of

neural networks, their inherent adaptivity has also generated a great deal of interest in

lThe backpropagation (BP) algorithm was first developed by Werbos in 1974 lZ++l and its first prac-

tical application was for estimating a dynamic model to predict nationalism and social communications.

However, the work of Werbos was virtually unknown in the scientific community
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the control community. Furthermore, the parallel nature of neural networks and their

fast adaptability has provided additional incentive for the investigation of their use in

the identiflcation and control of complex nonlinear structures.

In this chapter, a very brief exposition of the biological motivations and foundations of

artificial neural networks is provided. An overview of some of the major neural network

architectures, particularly the multilayer perceptron, and learning algorithms, such as

backpropagation, is also provided. Some of the major concepts in the modelling of

dynamic systems using neural networks are then discussed. Finally, an overview of the

main neural control schemes is provided.

2.2 Basic Concepts of Artificial Neural Networks

2.2.L Biological Foundations

Artificial neural networks were first derived as an attempt to model the networks of the

biological neurons in the brain. Although artificial neural networks are highly simplified

models of their human equivalent, they still provide an insight into the principles of

biological computation.

The human brain consists of approximately 1011 elementary nerve cells called neurons'

These elements form the fundamental building block of the biological neural network.

Each of these neurons is connected to approximately 104 other neurons, resulting in a

biological neural network of about 1015 connections. A diagram of a biological neuron is

given in Figure 2.1.

A typical cell has three main regions: the cell body, the axon and the dendrites. The cell

nucleus is located in a region called the cell body or soma. Around the body of the neuron

is a tree-like network of nerve fi.bres called dendrites. Dendrites receive information from

other neurons through the axon. The axon is a long fibre extending from the cell body

which branches or arborizes into a series of strands and substrands, at the end of which

are the interconnections to other neurons, known as the synapses. Thousands of such

connections are made with other neurons. These connections are generally not physical
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Figure 2.I: A, typical biological neuron

connections as the axon and dendrites do not touch. The very small gap between the

"connected" neurons is known as the synapse gap or synapse cleft.

Signals are transmitted from one cell to another at the synapse via a complex chemi-

cal process in which chemical molecules, called neurotransmitters, are released. These

transmitters diffuse across the synapse gap to the dendrites at the other side of the

synapse and modify the potential of the cell membrane. Depending upon the type of

neurotransmitter generated, the cell potential is either increased (excitatory synapse) or

decreased (inhibitory synapse). The signals received from each connecting neuron are

then aggregated over a short time interval known as the period of latent summation.

If the resultant potential exceeds a certain threshold, the neuron "fires" and a pulse of

fixed strength and duration is sent down the axon where it branches out to other neurons.

This voltage pulse is known as the action potential. After carrying a pulse, the neuron

cannot fire for a certain time called the refractory period, even if it receives a very large

excitation. Although the refractory period is not uniform over the cells, it is generally of

the order of 3-4 milliseconds. Further details on the operation of biological neuron can

be found in [3, 258].

dend¡it6
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2.2.2 Artificial Neural Network Models

As research in this area continues to develop and evolve, neÌü and extended definitions

of artificial neural networks continue to be generated, However, the formal definition of

artificial neural networks proposed by Zbikowski and Gawthrop [25a] is a succinct and

relevant definition:

DEFINITION 2.2.1 Ãn artifi,cial neural networlc or connectionist model is charac-

terised by

o parallel architecture: it is composed of many self-contained, parallel interconnected

processing elements or neurons;

o similarifu of neurons: each basic processor is described by a standard nonlinear

algebraic or differential equation;

o adjustable weights: there are multiplicatiue parameters each associated with a single

interconnection and they are adaptiae.

Alternative and equally valid definitions have been proposed by Hecht-Nielsen [70], Hertz

et al. lTLl and Zurada [258].

The basic unit in the above definition is the neuron. The first formal definition of an

artificial neuron model based on the highly simplified biological model presented above

was formulated by McCullogh and Pitts in 1943 [146]. A diagram of this model is given

in Figure 2.2.

Iti
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Figure 2.2: McCtllogh-Pitts neuron model

In this model, a neuron is represented as a binary threshold unit, i.e., the neuron can be in

only one of two possible states. In particular, the artificial neuron performs a weighted
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summation of its inputs from other units and generates a one or zero depending on

whether the sum is above a below a given threshold. This can be represented by the

following equation:

(2.1)

where y; is either 1 or 0, and represents either the neuron firing or not firing,

W¿¡ represents the synaptic strength of the connection from neuron j to neuron i

and is greater than zero for an exhitory synapse and less than zero for an

inhibitory synapse,

p; is the threshold for neuron i which must be exceeded for the neuron to fire, and

9(å) is the Heaviside function given by

W;¡n¡ - P;)(É
j=l

IU;

1

s(h) (2.2)
0 otherwise

Although the McCullogh and Pitts neuron model is very simplistic, it is still a compu-

tationally powerful device capable of performing basic logical operations such as NOT,

OR and AND, provided its weights and thresholds (bias) are selected properly. One of

the major limitations is that these values are fixed for a particular operation and are

not adaptive. A great deal of research has been conducted into developing appropri-

ate techniques to adapt the weights and thresholds, and these will be discussed in later

sections

A more commonly used neuron model utilises a sigmoid nonlinearity instead of the hard-

limiting nonlinearity described above. A sigmoid function may be loosely defined as a

continuous, real valued function whose derivative is always positive and whose range is

bounded. The most commonly used sigmoidal activation function is the logistic function,

g(h):år" (2.3)

rvhere B is the steepness parameter, usually ] or 1. Other sigmoid functions such as the

hyperbolic tangent are often used, i.e.,

^ph _ ^-phg(h): tanh(Bå.) :fu (2'4)

0h
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One advantage of these types of functions is that their de¡ivatives are easily found

I zBsln¡1 - sØ)) ror (2.3)
g,(h) : { 

rJ\ /\ ¿\,t \ / 
(2.b)

l. p0 - s'(h)) for (2'a)

This property proved to be of major benefit in deriving gradient based learning algorithms

for the multilayer perceptron. The sigmoidal nonlinearity is also popular in applications

which require continuous-valued outputs rather than the binary output produced by the

hard limiter. Control applications fall into this category.

The function g(.) is often referred to as the actiuation function as it represents the thresh-

old which exists within a biological neuron that must be exceeded in order for the neuron

to activate. Although the above logistic activation function (2.3) or tanh activation func-

tion (2.4) are most commonly used, basically any monotonic, continuously differentiable

thresholding function may be used for g(.). Recently, B. L. Kalman and Kwasny [99]

have made a strong case for the use of the hyperbolic tangent activation function. They

show that tanh is the only activation function which satisfies four properties described

as being necessary for the effective training of the neural network.

2.2.3 Network Topology

An artificial neural network consists of many interconnected neurons. The way in which

these neurons are interconnected classifies the network into two major categories, namely

feedforward neural networks, also known as static networks, and feedback neural networks

also known as recurrent or dynamic networks.

Feedforward networks are systems in which the input and intermediate signals are always

propagated forwards. Therefore, the flow of information is from the input of the network

and is directed to the output of the network with no returning paths being allowed. A

block diagram of a layered feedforward neural network is given in Figure 2.3a. In this

network there is a set of input terminals whose role is to distribute the input signal to the

rest of the network. This is followed by (possibly) several intermediate layers of neurons

and then an output layer from which the network output is obtained. A feedforward

neural network in which there are no connections from neurons in one layer to neurons
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in previous layers, the same layer or to neurons more than one layer ahead is known as

a strictly feedforward artificial neural network. A feedforward neural network is often

referred to as a static network because it implements a static mapping from its input

space to its output space.

As the name suggests, feedback (or recurrent or dynamic) artificial neural networks in-

volve either the states or the outputs being fed back. Therefore, feedback neural networks

consist of interconnections between multiple neurons (and often onto themselves). One

of the key features of recurrent neural networks is that because feedback is present, the

current values of the network are influenced by the past values. Therefore, recurrent

neural networks are dynamic systems and are generally described by nonlinear difference

or differential equations. A block diagram of a recurrent neural network is given in Fig-

ure 2.3b. A special case of a recurrent network is one in which the output of every neuron

is fed back with varying non-zero weights to the inputs of all neurons. Such a network

is called a fully connected neural network. Recurrent neural networks are inherently

dynamic and usually only consist of one layer because their complex nonlinear dynamics

provide them with powerful representation capabilities. The ability of dynamic neural

networks to model nonlinear systems will be considered in Section 2.3.

x

Figure 2.3a: Feedforward artificial neural network

2.2.4 Learning Algorithms

As defined earlier, artificial neural networks consist of adjustable weights which are adap-

tive multiplicative parameters associated with each neuron interconnection. This prop-

X

v
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Figure 2.3b: Feedback artificial neural network

erty of artificial neural networks is known as learning. The ability to learn is one of

the most attractive features of neural networks and one of the main reasons for their

popularity. Learning is achieved by iteratively adjusting the weights (W;is) of a network

so as to improve its performance, as indicated by some performance or cost function.

There are two general learning paradigms, namely superuised and, unsuperuised learning.

In supervised learning, one considers a training pair consisting of an input vector and a

desired output vector. The input vector is applied to the network and then the resultant

output vector is compared with the desired output vector. The difference is then used to

modify the weights l[¡ so that the output error is reduced via some learning algorithm.

This scheme is sometimes called learning with a teacher, where the teacher provided

the desired outputs. Supervised learning is well suited to model reference control and

self-tuning regulators as the desired response is available. A special case of supervised

learning is reinforcement learning. In this case the teacher provides information about

whether the output is right or wrong. Therefore, an explicit desired response is not

present in reinforcement learning. Reinforcement learning is sometimes called learning

with a critic.

In unsupervised learning, no target vector is present. Therefore, explicit error information

cannot be used to improve the network behaviour. Instead, the network must attempt to

classify the output according to patterns, features, correlations or regularities in the input

data. Such networks must thus self-organise so that a consistent output is produced for

a given input vector. This learning is often referred to as self-organisation. Unsupervised

4L



learning is only useful when there is a certain degree of redundancy in the input data.

Without redundancy, the input data would seem like random noise, thus making it

impossible to detect any patterns or features. Examples of self-organising networks are

the adaptive resonance theory (ART) networks [ZZ] and Kohonen's self-organising feature

maps [109].

2.2.6 Feedforward Artificial Neural Network Models

The first learning feedforward artificial neural network was developed by Rosenblatt in

1958 [196]. Rosenblatt proposed numerous variations of the perceptron, but the most

commonly referred to consists of three layers and is often called the elementary percep-

tron. A diagram of this perceptron is given in Figure 2.4.

Yr

wn

S unils Aunits R units

Figure 2.4: Rosenblatt's elementary perceptron

The first layer is an input retina, which consists of a series of sensory units or S-units.

It is connected to a second layer composed of what he called associations units (A-

units) which act as feature detectors. Finally the units in the output response layer

(R-units) produce an output that is a threshold weighted sum of their inputs. As shown

in the above figure, the original perceptron proposed by Rosenblatt used a hard-limiting

nonlinearity. This was modified in subsequent incarnations of the perceptron. Another

feature worth noting is that the weights connecting the input layer to the middle layer

are fixed. Thus, although the perceptron model has three layers, it is actually more like a

two layer network. Rosenblatt proposed a supervised learning rule to update the weights

connecting the A-units to the R-units. A special case of Rosenblatt's perceptron model is

A

R
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the single layer perceptron. Rosenblatt was able to prove the convergence of a proposed

learning algorithm to iteratively adjust the weights of a single layer perceptron [197].

This proof is known as the Perceptron Convergence Theorem [258]. Minsky and Papert

[152] have analysed the perceptron in detail in their book Perceptrons and discovered

several limitations with the perceptron learning theorem. One of the most important

limitations proved by Minsky and Papert was that the single layer perceptron can only

solve problems that are linearly separable. However, many interesting problems are

not linearly separable. The simplest example is the exclusive-or (XOR) problem. Very

similar networks called adalines were developed around the same time by Widrow and

Hotr 1246,2471.

Rosenblatt also studied structure with multiple layers of neurons and believed they could

overcome the limitations of the simple perceptron. However, at the time there was no

reliable algorithm which could be used to train the network. Minsky and Papert [152]

doubted that a suitable algorithm could be found and as a result the interest in neural

networks was diverted to other areas such as artificial intelligence until the mid 1980's.

Multilayer Perceptron

Interest in the multilayer perceptron (MLP) waned after the publication of the book

by Minsky and Papert. However, there was a resurgence of interest in the mid-1980's

thanks to the derivation of the backpropagation algorithm [179, 200]. A multilayer

perceptron is formed by cascading two or more layers of neurons together. The neurons

used in the MLP generally employ the sigmoidal nonlinearity instead of the hard-limiter

of Rosenblatt's perceptron. A diagram of a fully connected multilayer perceptron is given

in Figure 2.5.

This network is described as a three layered MLP as the input nodes do not comprise a

layer. This is because they do not perform any computation. Instead they distribute the

input vector to the internal (hidden) layers of the network. A hidden layer is defined as

a layer of neurons which is not accessible from outside the MLP. Therefore the network

shown has two hidden layers and one output layer. The output from neuron i in layer rn
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Figure 2.5: A multilayer perceptron

is given by 
n

aT : g(DwivT-',) (2.6)
j=1

where Wii is the weight from neuron j in layer m- 1 to neuron i in layer m and Al : ,¡.

The convenient notation introduced in [169] to represent a multilayered perceptron will

be adopted in this thesis. Thus a 3 layered network with 4 inputs, 1 output and 20 and

10 nodes in the respective hidden layers will be denoted Ol,ro,ro,r.

Although in equation (2.6) it is assumed the output nodes have the same sigmoidal acti-

vation function as the hidden layer nodes, this is not always the case. Many applications

use the linear output function g(r) : r as the activation function for the output layer.

The primary advantage with using linear activation functions is that the output is not

constrained to the limits of the sigmoid, e.g. [0,1]. This is particularly important in

time-series prediction and functional approximation, and therefore in control applica-

tions

As mentioned earlier, the capabilities of a simple perceptron are limited to problems

which consist of linear decision boundaries and simple logic functions. However, mul-

tilayer perceptrons are capable of nonlinear partitioning of the input space and thus it

is possible to implement complex decision boundaries and arbitrary logic functions [82]'

Furthermore, as will be discussed later, multilayer perceptrons are capable of forming arl

arbitrarily close approximation to any smooth, continuous nonlinear function.

ouþut layer
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Backpropagation Learning Algorithm

The backpropagation learning algorithm was originally proposed by Werbos in 1974 [244].

However, his work was not widely known in the scientific community. It was not until

the rediscovery of the algorithm by Parker [t79] and particularly Rumelhart et al. 12001

that interest in the MLP was rekindled. To this day, it arguably remains the most com-

rnonly used supervised learning algorithm. The backpropagation algorithm is essentially

an extension of the gradient descent algorithm to the multilayer perceptron. One of the

primary stumbling blocks with developing a learning algorithm for the original formula-

tion of the MLP [196] was that the derivative for a hard-limiting activation function is

zero almost everywhere. However, the nonlinearity needed to be present otherwise the

network would merely be implementing a linear transformation and therefore could be

reduced to a single layer network. The introduction of a sigmoidal activation function

made it possible to derive a gradient descent algorithm.

The backpropagation algorithm essentially provides a means of adapting the weights

W;¡ in a MLP to learn the training pair {*¡,d¿} in a minimum least ,qrrut", sense. A

derivation of the algorithm is provided in Appendix A.

The backpropagation algorithm can be summarised as follows :

1 Randomly initialise the weights such that, for example, Wii e ft[-0.5,0.5]

2. Apply the inputs to the network y? : r;

3. Generate the outputs for the following layers (forward pass)

yT : s(hl): g(D wivT-')
J

4. Compute the delta for the output layer

sy : g'(hY)ld,-yyl

: s'(DwlfvY)ld, - aY) i : 1,...,N
J

5. Propagate the 6's backwards to get the the á's for the inner layers

6?-' : s'(h|-\ÐWiry m: M,,...,1

(2.7a)

(2.7b)
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6. Calculate the change in weights

LWi&) : n6Tyî-' (2.7d)

7. Calculate the new weights

wiu,+1) :wi&)+LWi@) (2.7e)

8. Go back to step 2 and repeat for the next time step

where the neural network has M layers, rn, : I,. . . , M and

Uf is the output of neuron i inlayer m,

a? is the ith input : z¿,

Wff is the weight for the connection from the jth node

in layer m - L to the ith in layer m,

tl¿ is the desired response of the ith output node, and

¡/ is the number of nodes in the output layer.

The learning rate (ry) ir related to the size of the step taken along the error surface when

adjusting the weights. A small learning rate means that only small steps are taken down

the error surface, resulting in a smooth, virtually continuous path of descent. However,

with a small learning rate it is possible to become stuck in a local minima, giving a

sub-optimal solution. With a larger learning rate, bigger steps are taken and thus the

time taken to reach a minima is smaller. However, with a larger learning rate, it is also

possible to step over a narrow valley that may contain the global minima, but on the

other hand it is also possible to step out of a valley containing a local minima. Hence, a

trade-off between speed of convergence and optimality of the solution must be considered

in setting the learning rate.

As shown above, the weights are usually initialised to small random values. This gen-

erally ensures that the search is started in a relatively safe position [82]. Nguyen and

Widrow [170] have suggested an alternative method for choosing in the initial values of

the adaptive weights. Rather than randomly initialising all of the weights over a particu-

lar region say {-0.5,0.5}, Nguyen and Widrow suggest randomly initialising the weights
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of each hidden node over a distinct, but slightly overlapping smaller linear region. This

is shown to result in a large reduction in learning time.

A complaint which is often made about the backpropagation algorithm is that learning

can be very slow [77]. The reason for this is that the error surface for the MLP has

a number of flat spots. As the step size for each update is given by r¡LW, with the

learning rate 17 usually frxed, then the actual steps taken along the error surface are

determined by the gradient at that point. This means that on the commonly occurring

flat portions of the surface, the gradient is small and thus the gradient search will move

slowly along these regions. Therefore, learning is also slow. One method to speed up

the learning process is to adapt the learning rate according to the local curvature of

the surface [91, 200]. The simplest method is to add a momentum term of the form

o(Wi(k) - VViî(k - 1)) to each weight update, so that equation (2.7e) becomes

wiu, + 1) : wi&) + 
^wi&) 

+ a(wççk) - wii(k - 1)) (2.8)

where 0 < a ( 1 is the momentum constant and is typically chosen as 0.9. The mo-

mentum term makes the current search direction an exponentially weighted average of

past directions. This is essentially a low pass filter applied to the search direction, so

that rapid fluctuations are filtered out and thus the remaining trend will be towards a

more global minimum. Furthermore, the addition of a momentum term helps with the

problems associated with travelling along flat regions of the error surface after descend-

ing from steep portions. It has been shown that a momentum term helps to speed up

convergence quite signifrcantly [91, 258].

A primary reason for using a MLP in control and signal processing is its ability to imple-

ment nonlinear transformations for functional approximation problems. Training a neural

network using input-output data can be considered a nonlinear functional approximation

problem [80].

It has been shown by Cybenko [40], Hornik eú ¿/. [7a] and Funahashi [55] that multi-

layered neural networks with an arbitrarily large number of nodes in the hidden layer

can approximate any continuous function on a compact subset of the input space to a

desired degree of accuracy. In particular, a continuous function can be approximated by

a feedforward network with only a single internal hidden layer, where each node has a
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sigmoidal nonlinearity. Other forms of nonlinearities were also considered. Funahashi's

theorem on the existence of an approximation function is given below.

THEOREJM 2.2.L Funahashi's Theorern

Let $(r) be a nonconstant, bounded and monotonically increasing continuous function.

Let I( be a cornpact subset of Fln anil l(rt,. . . ,rr) be a real aalued continuous function on

I( . Then for anA e t 0, there erists an integer N and real constants c¡, or(i - 1, . . . , N)

andW;¡(i - 1,.. .,N; j - 1,.. .,p) such that

N

i@r,...,rp): Ð ",ö(DW;¡n¡ - o;) (2.e)
i=l j=l

satisfi,es ûì.âX¿6¡¡ I f @r,. ..,*r) - i@r,... ,rr) l< e where o'¿s are bias weights.

This theorem, and the equivalent theorems provided by Cybenko [a0] and Hornik eú

al. [74], are existence theorems. They provide no information about the number of

nodes required to approximate a nonlinear function. In general, the appropriate size of a

network for a given problem is difficult to establish. Furthermore, because of the unique

demands for the networks that each problem imposes, this problem is unlikely to be

solved for a general case. Baum and Haussler [16] have found that if the network is too

small it will not be able to form a good model for the problem. On the other hand, if the

network is too big, it may be able to form a number of solutions that are consistent with

the training data, but most of which provide only a poor approximation to the problem.

Generally the number of nodes in the network is chosen using heuristic rules based upon

past experience or some specific knowledge of the structure of the problem. For the case

of a two-layer network (i.e., one hidden layer and one output layer), Huang and Huang

[76] have derived a least upper bound for the functional approximation problem. They

f'ound that the number of hidden nodes should be one less than the number of training

samples. In practice, however, it is desirable that the number of hidden nodes is much

less than the number of training samples in order to prevent the network from simply

memorising the training samples [83].

On the topic of the number of hidden layers required to approximate a function, Cybenko,

Funahashi and Hornik et al. [40, 55, 74] have mathematically proved the approximation
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capabilities of multilayered neural networks with as few as one hidden layer. However,

Chester [3a] has given theoretical support to the empirical observation that networks with

two hidden layers perform better in terms of accuracy and generalisation capabilities than

a network with one hidden layer. Furthermore the overall number of processing units

is less with two hidden layers. Blum and Li [21] have shown that there is a class of

piecewise constant functions which cannot be implemented by a two-layer McCullogh-

Pitts network. They show that three-layer networks are, in general, required to perform

simple function approximation. Whilst Blum and Li, and Chester demonstrate the need

f'or 2 hidden layers in terms of numerical accuracy and total number of neurons, Sontag

ï222, 223) has shown that nonlinear control systems can be stabilised using 2 hidden

layers, but not, in general, using one. His reasoning is based upon the fact that control

laws for nonlinear systems require the use of discontinuous mappings, which cannot be

approximated well by single hidden-layer networks. In practice, the question of how

many hidden layers would be best for an approximation problem is similar to the issue

of the number of hidden layer nodes, in that the answer depends largely on the problem

being considered.

Other Learning Algorithms

Apart from the backpropagation algorithm, a number of other supervised learning ap-

proaches have been recently developed [11, 32, 131, 198, 213]. In [11], a learning process

for MLP's based on the recursive least squares algorithm is developed by Azimi. The

method iteratively minimises the global sum of the squared errors between the actual

and the desired output values. The weights in the networks are updated by recursively

solving a system of normal equations. An analog of the backpropagation algorithm is

used to determine the desired target values for the hidden layers. Simulations results

indicate a very fast convergence behaviour for the proposed algorithm.

Cher- et al. [32] have developed a recursive prediction error algorithm for the training

of a MLP. The algorithm is based on the standa¡d recursive prediction error algorithm

provided in [130] and modified so that it can be integrated into the parallel structure of

the network. The main drawback with the algorithm is that it is computationally more
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complex than the backpropagation algorithm, but it is claimed that it is likely to be

more efficient in terms of convergence.

In the paper by Loh and Fong [131], the backpropagation algorithm is re-cast as a

generalised least squares algorithm. The proposed method is an iterative procedure

developed for a nonlinear identification problem. By using the generalised least squares

algorithm, the learning rate is replaced by a general gain matrix derived from all the

previous data. Simulation results are used to show its rapid rate of convergence compared

with the backpropagation algorithm. However, as with [32], this is also achieved with an

increase in computational complexity.

Singhal and Wu [213] have suggested the use of the extended Kalman filter to train

the weights in a multilayer perceptron. A standard Kalman filter attempts to estimate

the state of a system that can be modelled as a linear system driven by additive white

Gaussian noise. The measurements available of linear combinations of the system states

corrupted by additive white Gaussian noise. In the approach presented in [213], the

weights of the MLP are the states that the Kalman filter attempts to estimate and the

output of the network is the measurement used by the Kalman filter. As the multilayer

perceptron is being considered, the extended Kalman filter is used. This algorithm uses

the Gauss-Newton search direction in which the negative gradient is multiplied by the

inverse of an approximate Hessian matrix of the given criterion . This is claimed to be a

more efficient search direction than the steepest-descent approach of backpropagation and

thus it results in a significant improvement of the convergence performance. However, it

also results in an increase in computational complexity and the weight update requires

a centralised processing and so the parallel structure of the MLP is not exploited' Ruck

et at. lL98] have performed a comparative analysis of backpropagation and the extended

Kalman filter approaches and found that (1) the backpropagation algorithm is a degen-

erate form of the extended Kalman filter, (2) the backpropagation algorithm sacrifices a

great deal of information about the weights that the extended Kalman filter uses, but (3)

the backpropagation is computationally more efficient, achieves comparable classification

performance and is a superior training algorithm in terms of accuracy as a function of

computational cost over the extended Kalman filter.
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Radial Basis Function

Another commonly used feedforward artificial neural network is the radial basis function

(RBF) network [26, 158, 185,226]. A RBF network consists of two layers in which the

hidden nodes consist of basis (or kernel) functions which produce a localised response

to the input vector, i.e., they produce a significant response when the input vector is

within a small localised (radial) region of the input space defrned by the basis function.

The output nodes perform a simple linear combination of the basis function outputs.

Due to the localised nature of the basis functions, RBF networks are often referred to as

localised receptive field networks [158]. A block diagram of an RBF network is shown in

Figure 2.6.

inputvector hiddetr layer I ouÞut layef

Figure 2.6: A, radial basis function network

Radial basis functions get their names from the fact they employ Gaussian kernels that

are radially symmetric. Therefore each node produces an identical output for inputs that

are at a fixed radial distance from the centre of the kernel. The output from each node

and the subsequent network output is given by

x

xz

V/'

a
a
a

x

ó¿(") exp i : I,. . ., Nn (2.10a)

N

a Dw'ó,,(")

where /; is the output from the ith node in the hidden layer,

r is the input vector,

i-1
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u; is the centre of the basis function of hidden unit i,

ø; is the normalisation parameter of the ith node, also called the width,

Nr is the number of hidden layer nodes,

W¿ are the weights in the output layer, and

l/ is the number of output nodes.

The radial basis function can be considered to be a hybrid network, consisting of an

unsupervised learning part (learning in the hidden layer) and a supervised learning part

(learning in the output layer). The unsupervised part of learning is the determination of

the basis centres n¡ and widths ø;. An approach for determining these values is the 1f-

means clustering algorithm. This approach involves firstly randomly choosing the initial

cluster (basis) centres r;. Usually these are set to the first I/¿ training samples. Then

all of the training patterns are grouped together with their closest cluster centre. For

each group of samples, the new cluster is calculated as the mean of the sample values.

The process is then continued until there is no change in the centre values. Once the

clustering algorithm is complete, the normalisation parameters (or basis width) o¿ are

then calculated. These are often chosen using the P-nearest neighbour heuristic [158].

The P : 2 nearest neighbour heuristic calculate the Euclidean distance between each

cluster centre and its two nearest neighbours [226]

(@, - *ò'1

'/z
where (.)o it the average over the P nearest neighbours.

A¡ )à (2.11)

Moody and Darken [158] use a global value of.o: ø;, whichis the averageof (2.11) over

all cluster centres. Once the basis centres and widths have been determined they are

usually held fixed. By doing this, the RBF network can be considered a special two-layer

network which is linear in the parameters 17¿. Thus the hidden layer performs a fixed

nonlinear transformation with no adjustable parameters and it maps the input space

into a new space with the only adjustable parameters being the weights of the linear

combination given by equation (2.10b). These parameters can be determined using the

linear least mean squares method, which is an important advantage of this approach. This

represents the supervised learning stage of this approach. The weight update equation
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is given by

W;(k + r) : Wi(k) - q@¡ - d¡)ö¡(") (2.r2)

More recently Chen et al. l33l have developed a systematic approach to the selection of

RBF centres based on the orthogonal least squares algorithm. This approach is shown to

be far superior than a random selection of RBF centres. Furthermore, in this approach,

the selection of the centres is directly linked to the reduction of the error signals of the

network.

As with the multilayer perceptron, the radial basis function network has been shown to

be able to form an arbitrarily close approximation of any continuous nonlinear function

[68, 178]. Therefore RBF networks are also used in time series prediction problems

[33,93, 158, 148] and identification and control [51,79, L86,202,203,204,234,235)'

2.3 Dynamic Systems Modelling Using Artificial Neu-

ral Networks

Many forms of neural networks are used in the modelling of nonlinear dynamic systems,

including modifred versions of static networks such as the multilayer perceptron and the

radial basis function, and dynamic networks such as the continuous-time and discrete-

time recurrent neural networks. In this section the use of the major networks in dynamic

systems modelling is discussed.

2.3.L Time Delay Neural Networks

A time delay neural network (TDNN) is a modification of a static network such as

the multilayer perceptron or the radial basis function which is used to model dynamic

systems. It is formed by feeding the input sequence into a tapped delay line of a specified

length and then feeding the taps from the delay line into the static neural network. A

diagram of a TDNN is shown in Figure 2.7'

Such a network is capable of modelling nonlinear systems in which the output has a finite

53



îortl
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u(k) aaa

Tapped Delay Line (TDL)

Figure 2.7: Time delay neural networks

temporal dependence on the input [83]:

yr(k) : f@(k),"(k - 1), . . .,u(k - m)) (2.13)

These networks can be trained using the conventional backpropagation algorithm. TDNN

have been widely applied to the problem of speech recognition [119, 129, 239, 240], time

series prediction [93,94, 120, 148] and identification and control [28, 169, 166].

Feedback can be incorporated into the above structure by simply feeding back the output

of the network through a second tapped delay line. The architecture is considered by

Narendra and Parthasarathy in [169] for use in the identification and control of nonlinear

systems. A block diagram of such a system is given in Figure 2'8.

u(k)

Figure 2.8: TDNN with output feedback

Multilayer Perceptron

u(k-2) u(k-3)u(k-l)

-t2z-t -lz z-l

-t
7.Multilayer Perceptron

* "Ï 
... uit-.{ þt-nr... llrn ,

Tapped Delay LineTapped Delay Line Iu(k)
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The architecture is very general and can be used to model nonlinear systems of the form

ao(k): f @,(k),...,Ur(k - n),u(k),...,u(1, -*)) (2.r4)

The architecture shown in Figure 2.8 is often referred to as a parallel model because

the previous outputs of the identification model (namely ûo(k - 1), . . . ,yr(k - n)) are

fèd back to generate the current model output. In practice, a series-parallel model is

generally used. In a series-parallel model, the actual output of the plant, rather than the

neural estimate of the plant output, is fed back into the neural network approximating the

plant dynamics. Reasons for choosing a series-parallel model over a parallel identification

rnodel are provided in the next chapter.

If time delay neural networks are to be used for the identification and control of nonlinear

systems (2.14), then the number of delayed values of plant input (rn) and plant output (n)

need to be known a priori. This knowledge enables the required number of taps for the

network to be determined to achieve a good approximation of the nonlinear system. Over-

parameterisation (choosing too many taps) or under-parameterisation (too few taps)

often results in the model being very sensitive to noise dynamics or grossly inaccurate.

Furthermore, as shown by Baum and Haussler [16], a neural network with excess degrees

of freedom has bad generalisation performance. The adequacy of a particular model

is also affected by such factors as insufficient hidden nodes, poor choice of learning

rate and noisy data. In the work presented in this thesis, these values are assumed

to be known. However, if the number of taps cannot be known a priori, then several

approaches can be used to determine the appropriateness of d, particular model. One may

use the magnitude of the identifi,cation error as a guide to validate the neural network

identification model. However, this is unreliable as a poorly chosen model may produce

an equally good identification error as the correct model for a particular data set. A

more quantitative method of model validation, suggested by Billings eú a/. , is that if

a model of a system is adequate then the identification error should be unpredictable

fïom all linear and nonlinear combinations of past inputs and outputs. Therefore, the

tbllowing correlation conditions should hold if a particular model is valid:

ó*(r) : Ele(k - r)e(fr)l : 6(r) (2'15a)

ó,,(r): Elu(k-r)e(fr)l :9 Vr (2.15b)
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ó;,,(')

ó;",r(')

Ó'1,,¡(r)

El(u2(k-r)- a'?(k))e(fr)l : o Vr

El(u2(k -r) -22(fr))e2(t)l :0 Vz

El(e(k - r)e(k- 1 - r) - u(k- 1 -'))l : 0 T

(2.15c)

(2.15d)

> 0 (2.15e)

(2.16)

where ,, ir th" signal u2 with the mean level u2 removed and the correlation function

between two sequences tþ1and /2 is

N-¡

D,þr(k),þz(k + r)
ó+rl,r(r) : k=1

tå
N

I
2

,þ?(k)Ð,ü9,¡
,t=1

The correlations are normalised such that -1 S Ó.pr+r(t) < 1. For a large data set -lú,

the standard deviation of the correlation estimate is ;þ and therefore the 95% confi-

dence limits are approximately ffi. These limits are use to indicate if the estimated

correlations are significant o not.

For linear systems, well-established tests are available for validating the estimated model.

In particular, the well-known covariance tests, which consist of calculating the autocor-

relation of the residuals (2.15a) and the cross-correlation between the residuals and the

input (2.15b), are commonly used. However, as shown by Billings and Voon in [19], the

covariance tests are not sufÊcient to validate a model of a nonlinear system. As a result

additional tests (2.15c - 2.15e) are derived for a particular class of analytic nonlinear

systems [19]. Neural networks can be used to model a wider range of nonlinear systems.

Therefore, it is impossible to state that the cor¡elation tests will be able to detect all of

the possible nonlinear terms that the neural network represents. However the simulation

results considered here and by Billings et aL lISj indicate that these tests are useful tools

in the analysis of neural networks for the modelling of nonlinear systems.

Model validity tests such as this are applied to detect if there are any unmodelled terms in

the residuals which will result in biased estimates when they are omitted from the model'

However, the above tests can only be applied when a noise process is also present' The

tests can be applied to systems in which the noise is additive at the output, such as sensor

or measurement noise, or where it enters the system internally and thus is coloured by

the dynamics of the system, known as dynamic noise. In the tests, it is assumed that
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worst possible combinations of signal properties exist, i.e., the input u(.) and noise u(.)

are independent zero mean processes, u(.) is white and u(.) may be white.

The following example is used to highlight the effectiveness of a correctly chosen time

delay neural network in modelling a nonlinear dynamic system and the usefulness of the

model validity tests.

EXAMPLE 2.3.1 Consider the nonlinear system defined by the difference equation

ú"(k) + o.5u(fr) + o.5u(fr - t)ú(k+r) :
yr(k + l) :

r + úr(k)
ú(k+1) +n(k+1) (2.r7)

The plant is nonlinear in output and control, and the nonlinearities are not separable.

The plant output ú(k+ 1) is corrupted by a white measurement noise n(k + 1), thus

resulting in the measured plant output of. yr(k * 1). The input-output pair {"(.), yr(.)}

is used to train the neural network.

A correctly parameterised model for this system consists of a neural network with the in-

put vector r(k) : lVo&),u(k),u(k-l)]r and thus can be represented by the identification

model

y.(k + 1) : N'[yo(fr), u(k), z(k - t)] (2.18)

An over-parameterised model is represented by the equation

a.o(k I L) : N2lyr(k),ar& - L),vo(k - 2),u(k),"(k - l),u(k - 2)l (2.19)

and an under-parameterised model by

y.e(le + 1) : N3[yo(fr), u(k)] (2.20)

The neural networks N1, N, and ÀI3, which are of the form 03,ro,ro,r, 03,r0,ro,, and f)!,2s,1s,1,

respectively, are trained with a zero mean random input signal u(k) e n[-1,1] and a

noise process n(fr) € n[-0.1,0.1] for 10,000 iterations with a learning rate of T : 0.1

and a momentum rate of o : 0.9. The resultant prediction errors â,re €1 : 0'0065,

ez : 0.0066 and es : 0.0573. The identification responses for the three models are given

in Figures 2.9a,2.9b and 2.9c.
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As can be seen from these figures, the identification results are very good for the correctly

parameterised case and the over-parameterised case, but are very poor for the under-

parameterised case. The poor performance of the under-parameterised case is primarily

due to the fact that the u(k - 1) term is neglected in the identification model, but it

has a significant effect on the plant response. These figures also highlight the defrciency

in using the identification error to try and determine the appropriate neural network

parameterisation. In this example, the over-parameterised model consists of three extra

terms (yo(k-I),yr(k-2),u(k-2)), yet it virtually has an equivalent identification error as

the correctly parameterised model. Not only does the over-parameterised model require

additional weights and thus greater computation time than the correctly parameterised

case, for an alternative data set it is likely to perform significantly worse.

The model validity tests are then carried out for each model with a zero mean uniformly

distributed white noise input u(k). The results are shown in Figures 2.10a, 2.10b and

2.1 0c.

The results for the correctly parameterised model given in Figure 2.Lla illustrate that all

of the validity tests, except ó¡, ur. satisfied. However as shown in [20], if a additive noise

process is being considered then the correlation terms Ó,,, Óu, and /.1.,¡ are of principle

importance in determining the validity of a model, whereas the remaining terms /,'r.

and þ;r," help to determine the validity of the model when dynamic or internal noise

is also present. Therefore, for the system considered, the correlation results given in

Figure 2.10a verify that the model considered is the correct model.

The results given in Figure 2.10b indicate that several of the correlation terms are outside

the 95% confidence limits for the over-parameterised case. In particular, the terms /,.
and /.1.,¡ indicate that the model is deficient in some way. Therefore, the results confirm

that the correlation tests are a better method of determining the validity of a particular

model than comparing identification errors. However, a point which must be noted for

both the correctly parameterised model and the over-parameterisation model is that

although ó,, N ó, this autocorrelation will never exactly be the delta function because

both the system inputs and outputs have been used as input nodes to the network.

The model validity test for the under-parameterised case are provided in Figure 2.10c.
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These results show that all of the correlations are well outside the residual noise correla-

tion /.. and the cross-correlation /,., confirming that the under-parameterised model is

severely deficient for the given system.

Hence, if prior knowledge of the number of delayed values of plant input and plant output

is not available, then the main conclusions which could be drawn from the above results

are that the correct model for the system considered would be the first one analysed and

that the remaining two models are deficient in some way.

In the examples considered here, uncorrelated white noise is added to the output as

sensor noise. However, if coloured noise (either coloured sensor noise or dynamic noise)

is present then the noise process would induce bias in the neural estimate. This bias

means that although the neural network provides good prediction over the data used

in training, it is valid over that data set and may not perform as well for different

sets. Therefore, the neural network performs a curve-fitting role, rather than modelling

the underlying system dynamics. This defeats the purpose of using neural networks to

model nonlinear systems. It is therefore very important to eliminate this bias. This can

be achieved if the residual becomes uncorrelated with respect to past measurements of

the system response. One way to do this is to model the noise as well. For an additive

coloured noise source, the neural network identification model can also be used to model

the noise process by incorporating extra input terms to represent the noise ptocess, e.9.,

r(k) : lar(k),u(k),u(k - 1),n(fr), ...,r(1, - p)lr, where p is the maximum lag of the

noise process. This issue is dealt with in more detail in [18].

2.3.2 Dynamic Neural Networks

Dynamic or recurrent neural networks can offer great advantages over feedforward neural

networks in certain problems. Dynamic networks are particularly appropriate for iden-

tification, control and filtering applications. However, one difficulty with these networks

is developing learning algorithms, particularly gradient search based algorithms. This

is because the output of the nodes in a recurrent network is a recursive function of the

output of the nodes from the previous time step and thus the calculation of the gradient
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is also a recursive computation. This makes the learning algorithm far more complex.

A model of a continuous-time recurrent network 17I,79,184] is given in Figure 2.11. This

network consists of a single layer of nodes which are fully interconnected. The dynamics

of the network are described by the following differential equation

N
,¡y;(t) : -v¿(t)+e(DW;¡y¡(t)*u;) i :1,2,...,N (2'2r)

i=l

where r¿ is a positive constant,

y; is the state of the ith node,

W;¡ is the weight connecting node j to node i,

u; is the input to the ith node, and

g(.) i. the nonlinear (sigmoidal) activation function

u N+ + v

+

Figure 2.11: Continuous-time recurrent neural network

The discrete-time version of the continuous-time recurrent neural network, called the

discrete-time recurrent neural network [194, 250], is shown in Figure 2.L2 and is described

by the following difference equation

N
y;(k + 1) : g(D W;¡y¡(k) + u;(fr)) (2.22)

j=l

Recurrent neural networks possessing the same structure can exhibit different dynamic

behaviour, depending on the learning algorithm used. Therefore, recurrent neural net-

works are defined not only by their structure, but also by the learning rules used. There

are two general approaches to the training of recurrent neural networks, fixed point

learning and trajectory learning. Fixed point learning is aimed at making the network

reach a desired equilibrium or fixed point. This requires that the transients die away and

N
v
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+
y(k+1)

Figure 2.12: Discrete-time recurrent neural network

that the fixed point is a stable attractor. In trajectory learning, the network is trained

to follow the desired trajectory in time. Trajectory learning can be considered to be a

generalisation of fixed point learning as when I -r oo, the trajectory will also reach a

prescribed steady state.

Fixed Point Learning

It can be seen from equation (2.21) that a fixed point for the network (i.e.., where ú : 0)

is given by 
n,

(¡ : g(D W*¡y¡(t) * ur) Q.23)
j=l

The error measure for the fixed point is defined as

E : +D ni Ql4)

where

I eo - ru if k is an output unitD_ ) "._ rN ___ ___r 
e.25)'k I o otherwise

During fixed point learning, the network does not receive any external inputs. It is

excited by the initial conditions and evolves with (¡ as a constant reference signal. This

is achieved using recurrent backpropagation [184].

Trajectory Learning

Trajectory learning is a more appropriate scheme for dynamical systems modelling as

it involves training a recurrent neural network to follow a desired trajectory (or input-

u(k)

+
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output sequence) in time. For this case the error for the recurrent network defined by

the differential equation (2.21) is given by

E :: [" l@G) - y(,))r (d(") - y(r))ld,r (2.26)
2 ./¿o 

..

where d(r) is a vector of the desired trajectories and ú1 is a constant for an off-line scheme

or a variable for an on-line scheme. The discrete-time equivalent of the system (2.22) is

given by
ltr

n : iDt(¿(') - y("))r(d(') - y('))l (2.27)
oto

In order to train a recurrent neural network to minimise the above functions, a new learn-

ing rule is required. Conventional backpropagation cannot be used as it does not allow

f'or modifiable recurrent connections. Recurrent backpropagation will not suffice either

as it assumes constant inputs and an approach to a fixed point or attractor, whereas the

interest here is in input-output sequences. The simplest method of achieving trajectory

learning is a scheme called backpropagation through time which was originally suggested

by Minsky and Papert [152], combinedwith backpropagation by Rumelhart et al. 12001

and elaborated by Werbos 1245]. The basis of the scheme is to replace a one-layer recur-

rent neural network with a feedforward one with úr layers. This is often referred to as

"unfolding the network through time". The resultant unfolded network is strictly feedfor-

ward and can be trained using standard backpropagation. Further details can be found

in [79, 80, 245]. A continuous version of backpropagation through time is introduced by

Pearlmutter in [181] and can be applied to the system described by equation (2.21) and

error function (2.26). One problem with backpropagation through time is that it is mem-

ory exhaustive as it requires the storage of several copies of the network. This memory

requirement grows as the length of the training sequence grov¡s. Another approach com-

monly used is real-time recurrent learning [194, 250]. Whereas backpropagation through

time is inherently an off-line technique, real-time recurrent learning is essentially an on-

line algorithm in which the gradient is calculated recursively. The primary advantage

with this method is that it is more memory efficient than backpropagation through time,

however it is computationally expensive because of its recursive nature. Further details

about real-time recurrent learning can be found in [80, I94,250,254).
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2.4 Neural Adaptive Control Architectures

Some of the most popular nonlinear control schemes are the geometric approaches such as

fèedback linearisation, input-output linearisation and output feedback control. However,

as shown in Chapter 1, these methods require a number of assumptions to be made

about the system. In particular, such approaches assume the following continuous-time

canonical model

,: f@)+s@)u (2.28)

which, although fairly general, is not universal. The great diversity of nonlinear systems

is the main reason that adaptive design techniques for nonlinear systems have yet to be

established for a general class of systems. This is in contrast to linear system theory

where control schemes are well established for a general class of plants [167, 205].

From the control point of view, artificial neural networks offer an alternative to the

conventional approach. In particular, it is their ability to represent nonlinear mappings

and hence to model nonlinear systems which can be utilised in the synthesis of nonlinear

controllers. As a result, a number of neural network based control approaches have been

developed in recent years. These can be broadly categorised into four major approaches:

supervised control, inverse control, adaptive critic and neural adaptive control.

The basic idea of supervised control is to train a neural network to mimic the actions of

an existing controller. The earliest example of a supervised control system is the broom

balancing system of Widrow and Smith [248]. In this system the teaching controller, on

which the neural network is trained, implements a linear switching surface. A similar

approach is adopted by Guez ad Selinsky [62]. In this paper a neural network is trained

to mimic a "teacher" which controls a cart-pole system. Three main types of "teacher"

are considered: explicit linear control law, explicit nonlinear control law or a human

operator. Hecht-Nielsen [70] also considers the issue of training a neural network to

control a cart-pole system using a human teacher.

The inverse control approach was frrst suggested by Psaltis et aI. ll89l. The basic idea

is that a neural network is trained to emulate an inverse system model, and then this

inverse model is cascaded with the plant such that the combined system results in an
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identity mapping between the desired response (reference input to the controller) and the

controlled system output. This approach has several limitations when nonlinear systems

are being considered. Firstly, the inverse of a nonlinear system may not exist, and if it

does, it may not be unique. Secondly, such an approach is limited to systems with equal

number of inputs and outputs. Finally, the approach is an open-loop feedforward control

scheme and thus the robustness of such a scheme can be poor. This lack of robustness

can be attributed primarily to the absence of feedback. However, this problem can

be overcome to a certain extent by using an on-line scheme, such as the specialised

learning architecture [189] or the forward modelling approach [96]. One problem with

such schemes is that the weight update equation for the controller network is difficult

to derive. This is because the plant is located between the controller network and the

output error. Therefore, in order to obtain the appropriate error for the controller output

it is necessary to find the Jacobian of the plant. Psaltis et al. ll89l consider afirst order

approximation of the plant Jacobian. Jordan and Jacobs [96] have shown that the plant

Jacobian can be obtained by backpropagating the output error through a neural network

which identifies the plant. As a neural network is used to model the plant, this scheme

is often referred to as forward modelling or indirect inverse control. These issues will be

discussed in more details in the next chapter.

The adaptive critic approach is an extension of the reinforcement learning method. Unlike

other neural control approaches, where the aim is to determine the control outputs from

desired plant responses, the adaptive critic scheme involves determining the control that

would lead to an increase in a measure of the plant perforrirance. This measure is not

necessarily defined in terms of the desired response. This approach generally consists of

two neural networks: a critic network and a controller network. The critic evaluates the

plant performance and then generates an evaluation signal which is used in conjunction

with a reinforcement learning algorithm to train the controller network. Such a scheme

is used by Barto et al. l5l for a cart-pole system.

The final major neural control approach is neural adaptive control. This approach is

perhaps the most popular neural control scheme, particularly amongst the control com-

munity. This is because neural adaptive control involves the incorporation of artificial

neural networks into conventional control frameworks such as model reference adaptive
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control) self-tuning regulators and feedback linearisation. In the remainder of this section,

some of the recent neural adaptive control approaches will be reviewed.

One of the seminal publications in neural adaptive control is the paper by Narendra and

Parthasarathy [169]. The paper demonstrates that the use of artificial neural networks

in the identification and control of a wide range of non-trivial nonlinear systems is feasi-

ble. Four different classes of discrete time single input-single output (SISO) systems are

considered. These can be described by the following nonlinear difference equations :

o Model I
n-l

yo(k* 1): t a;ap(k -t) + gl"(k),"(k- 1),... ,u(l'- -+ 1)l (2.29)
l=0

o Model II
m-l

yo(k*L): flyr(k),yr(k -1),...,ar(k-n* 1)l + t b;u(k-i) (2.30)
i-o

o Model III

a o(k * t) : f ly r(k), a r(k- 1 ), . . ., a r(k - n * t)l + slu(k), "(k- 1), . .', u(k - rn + 1 )l

(2.31)

o Model IV

yr(k*t): flyo@),yo(k - 1),..',Ur(k-n* 1);u(k), "(k- 1),.'. ,u(l'- rn+ 1)l

(2.32)

where /(.) and g(.) are nonlinear functions, u(k) e R is the scalar control and yo(k) e n

is the scalar output, m 1 n, oi and ó¡ are scalar constants and the plants are minimum

phase with known order and relative degree. In Model I, the plant is linear in output, but

nonlinear in control, whilst in Model II, the opposite is the case. In Model III, the plant

is nonlinear in output and control, but the respective nonlinear functions are separable,

whilst in Model IV they are not. Model IV clearly encompasses the other three models

and is thus the most general model.

In the paper, Narendra and Parthasarathy successfully implement a neural network em-

ulator for plants belonging to each of the four models. However, in models where linear
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terms exist, they assume that these are known and only identify the nonlinear parts of

the plant. In the case of Model III, where two nonlinear functions exist, they imple-

ment two neural emulators, one to identify the nonlinear function /(.) and the other to

identify the nonlinear function g(.). A multi input-multi output (MIMO) system is also

successfully identified.

The problem of designing a controller, such that the output of the plant tracked the out-

put of a stable reference model, is then considered. In designing the controller, Narendra

and Parthasarathy assume that control and output terms are separable and that the linear

terms present are known or can be separately identified. Furthermore, when controlling

plants belonging to Models I and III, they assume that the ìnverses of the operators on

the control z(fr) exist and can be approximated. A control structure for a plant belonging

to Model IV is not considered as it is regarded as being analytically intractable. In spite

of its limitations, the results provided show that the method is very effective, in terms

of good tracking and identifi,cation.

The approach proposed in [169] is best highlighted by the following example.

EXAMPLE 2.4.L Consider the plant described by the following difference equation

v,(kr\:ffi+ú&) (2'33)

The plant equation is nonlinear in output and control, and their respective nonlinear

functions are separable. It thus belongs to Model III. In [169] two neural network em-

ulators, N7 and Nn are used to emulate the separable nonlinear functions f (yo(k)) and

g("(k)).The identification model used is

ûo& + L) 
= 

N¡ly,(r)l + ¡%["(¿)] (2.34)

Both neural networks belonged to the class f)!,ro,lo,l and are trained over the interval

[-10,10] and l-2,2), respectively. The reference model used is of the form

y^(k + r) : o^y^(fr) + r(/c) (2.35)

and thus the control input is given by

u(k): 
^L-'[-¡/¡[ar@)]* 

a^y,(k) + r(fr)l (2'36)
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where I/r-' is a neural network of the class flf,ro,ro,, trained to estimate of the inverse

of the nonlinear function in control, g(.) and a^ is a prespecifred constant. lÍr-' is

trained such that ¡/"[N"-'["]] = r over the interval r € [-4,4]. Good tracking results are

achieved for r(fr) : .in(#) + sin(ff)

REMARK 2.4.I Control laws of the form of equation (2.36) will be referred to as

erplicit control laws as they are analytical equations for the control input which rely on

knowledge of the plant structure. For erample, in equation (2.36) the control law is

generated by incorporating the neural estimate of the nonlinear function in the output and

the neural estimate of the inaerse of the nonlinear function in control into a difference

equation whose form is gouerned by lcnowledge that the plant output is simply the sum of

the outputs from these nonlinear functions.

This example highlights how the approach presented in [169] relies on the assumption

that any separability of control and output data is known and can be utilised and that

the inverse of a function exists and it can be identified.

Another neural adaptive control proposed by F-C. Chen [28, 30, 31] uses neural networks

to approximate the Lie derivatives of a plant of the form (1.18) and then a feedback

linearizing control is generated to ensure the output of the plant tracks the desired

signal. More specifically, Chen and his co-authors consider a SISO 7-th order system

with a normal form2 as follows:

r1

r2

ù1 : r@)+g(r)"

Y - h(t):¡'

(2.37)

where ø € R1 and /(.) : Llh(r) and g(.) : LnLJ-'h(x) are smooth functions, where

h(") -- z1 in [31]. As shown in Chapter 1, differentiating the output y with respect to

2Refer to Chapter 1 for a detailed discussion of the normal form of a nonlinear system and input-
output linearisation techniques.

r2

I3
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time 7 times leads to the input-output form of the above normal system

y' : Llh(r)+ LnL1,-thç*¡u (2.38)

f'or which the control
1

u : lsLT tqr)(L1th(n) 
+ r) (2'3e)

results in the simple input-output linearised system

U1 : u (2.40)

The aim of the control approach presented in [31] is for the plant output y to track a

reference trajectory !J^. In [31] the the reference input is defined as

, : a9) - k.,-te1- . ..- koet Q.4l)

where the constants fr; are chosen such that the polynomial

I{(p):p1 *leytf-l +...*lr'¡.p*ko (2.42)

has all of its roots strictly in the left half plane. Thus the control input (2.39) is shown

to result in error equation

e1 lk.raer-l *...*he (2.43)

where e is the tracking error. A local convergence theorem for the above tracking error

is then provided in [30, 31] which relies on the assumptions that (1) the Lie derivative

Llh(r) vanishes at the origin, (2) LrL]-lå(r) is bounded away from zero, (3) the system

is minimum phase, and (4) that the Lie derivatives can be exactly represented by a

multi-layered neural network without bias weights.

The above two schemes are limited by the fact that an artificial neural network can

only approximate the plant over a specified finite region. Recently, Sanner and Slotine

1202,203,,2041 have proposed adding a sliding control term to the control law. The sliding

control term takes over from the neural adaptive component when the state moves outside

of the region on which the network approximation is valid. When the state of the plant

returns to the region where the neural network provides a good approximation, then the

sliding control is turned off. The control law thus has a dual character acting as either a

sliding controller or a neural controller depending on the position of the plant state. To
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avoid control chattering (high control activity) occurring along the boundary between

the two types of operation, a modulation function is incorporated to control the degree to

which each component contributes to the control law. This ensures a smooth transition

between the adaptive and sliding control strategy.

A similar scheme is adopted by Tzirkel-Hancock and Fallside in [235]. A sliding control

term is used in conjunction with a neural control approach proposed in [23a]. As with

1202,203,204], the sliding control compensates for uncertainties in the plant nonlinear-

ities outside the state region in which the network approximation is used. The neural

control method is based on neural network approximation of the Lie derivatives of the

continuous-time nonlinear system. Adaptation of the network weights is based on Lya-

punov stability results. An input-output linearisation scheme is used to make the system

output track a desired reference signal.

Polycarpou and Ioannou [186] similarly consider a stability based network adaptation

scheme. However, the neural networks are embedded in a certainty equivalence based

control scheme in which the neural networks are used to model the nonlinear functions

/(.) and g(.) of a first order continuous-time system of the form (1.18) rather than

their Lie derivatives. The weights of the neural networks are adapted by laws derived

from Lyapunov stability analysis and the use of a projection algorithm. The control

objective of this scheme is to force the plant output to follow a reference model. As with

1202, 235], a sliding controller term is used in conjunction with the certainty equivalence

control law. It can be easily shown that this approach is equivalent to the approach

described in [234,235], except that in [186], the output variable is the state variable and

the unity relative degree is considered.

The schemes presented by Chen and his co-authors, Tzirkel-Hancock and Fallside and

Polycarpou and Ioannou are essentially based on feedback/input-output linearisation

approaches, and as a result are subject to the restrictions imposed on such schemes (as

discussed in Chapter 1). In particular, they are restricted to a system which is affine in

control. Although, such systems are fairly general, they are not universal and thus these

approaches can only be used on a limited class of system. Furthermore, the approaches
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presented in [31, 186, 234, 235] deal with continuous-time nonlinear systems only3. One of

the problems with discrete-time nonlinear systems is the complexities which arise when

discretising a continuous-time nonlinear system. In particular, the discretisation of a

continuous affine-in-control nonlinear system results in a non-affine discrete-time system

which are difficult to control using geometric approaches such as feedback linearisation.

2.5 Conclusions

This chapter highlights some of the major issues and concepts associated with the use of

artificial neural networks in the control of nonlinear dynamical systems.

For the sake of completeness, several basic concepts of artificial neural networks are

presented in Section 2.2. In particular, a brief exposition of some of the biological foun-

dations and motivations of artificial neural networks is provided. A definition of an

artificial neural network is given and the main network topologies and learning schemes

are discussed. As multilayer perceptrons trained with the backpropagation learning al-

gorithm are used in the neural controller presented in subsequent chapters of this thesis,

these concepts are also discussed in detail. A major factor in the use of artificial neural

networks in control is their ability to approximate any continuous nonlinear function.

Therefore, this ability is examined in some depth. Implementation issues, such as the

number of hidden layers, the number of processing nodes and the type of nonlinear

activation function are also discussed.

One area of interest with artificial neural networks is their ability to model nonlinear

dynamical systems. This issue is of particular importance from a control context as such

systems are usually considered. Therefore, a number of artificial neural network architec-

tures for dynamic systems modelling are considered in Section 2.3. In particular, the use

of time delay neural networks for the modelling of nonlinear dynamic systems is investi-

gated thoroughly. The problems associated with incorrectly choosing the number of taps

in the tapped delay line used in these networks are discussed. The use of correlation tests

3An input-output linearisation approach for discrete-time affine-in-control nonlinear systems is pro-

vided in [28, 30]
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to dete¡mine the validity of a given neural network model is investigated. These tests a¡e

shown to be able to distinguish between a correctly parameterised neural network model

for a discrete-time nonlinear system and an incorrectly parameterised model, such as an

over-parameterised or under-parameterised model.

Finally, a detailed discussion of existing neural control schemes is provided. In particular,

the four major classes of schemes, namely supervised control, inverse control, adaptive

critics and neural adaptive control are considered. A critical review of the major neural

adaptive control papers is presented. In particular, some of the limitations and strengths

of these schemes are discussed. This will facilitate the comparison of the neural control

scheme presented in this thesis with the existing approaches.

The neural adaptive control approaches reviewed in this chapter are, in general, limited

by the type of system that they can handle. In particular, the approaches proposed by

Chen et aL, Tzirkel-Hancock and Fallside and Polycarpou and Ioannou are essentially

feedback/input-output linearisation approaches which require that the system is affine

(linear) in control. Furthermore, the approach presented by Narendra and Parthasarathy

utilises knowledge of the separability of the control and output terms to design the explicit

control law. Plants in which such knowledge cannot be utilised are considered difficult

to control. In the next chapter, a neural adaptive control procedure will be presented

which provides a unified approach to the control of a general class of nonlinear system.

More specifically, the approach will be shown to be able to deal with nonlinear systems

which are non-aff.ne in control and where the control is heavily embedded within the

nonlinearities of the system, including systems where the control and output terms are

not separable.
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Chapter 3

Adaptive Neural Controller

3.1 Introduction and Overview

A great deal of research has recently been conducted into the development of neural

network based control schemes. As shown in the previous chapter, these schemes can be

broadly categorised into four major approaches. In the control community, arguably the

rnost commonly used approach is neural adaptive control. This is primarily because in

this approach neural networks are used within traditional and well understood control

frameworks such as model reference control. The analysis of the major neural adaptive

control schemes provided in Chapter 2 shows that most of the approaches developed so

far are limited to certain classes of systems or are subject to a number of assumptions

about the system.

The primary motivation for the neural controller design presented in this chapter is to

relax the assumptions made in the paper by Narendra and Parthasarathy [169], namely

that (i) control and output terms are separable, (ii) the separate nonlinear functions /(.)

and g(.) can be independently identified, and (iii) the inverse of the nonlinear functions

/(.) and g(.) can be erplicitly identified. However, to ensure the existence of a control,

it is assumed that the plants are completely controllablel and observable2. The end

1In this context the notion of controllability means that a control input u exists which can transfer

the systems from one state to another in a finite number of states.
2Observability is concerned with the problem of determining the state of a dynamic system from
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result is that a unified method of the control of nonlinear systems has been developed, in

which plants belonging to Models I-IV3 are treated exactly the same. This is achieved

because the plant is treated as a "black box"a with little a priori knowledge of the

system required. In fact, in terms of the plant structure and dynamics, the only ø priori

knowledge required is the number of delayed values of plant input and plant output, and I

the oicler and relative degree of the system. This knowledge is necessary to determine

the number of taps required for the time delay neural networks used in the approach.

Hence because of the limited amount of system information required in this approach,

a wide range of nonlinear systems can be handled, including those in which the output

and control terms are not necessarily separable.

Time delay neural networks are employed in the approach to emulate the plant dynamics

and to synthesise the reference model control. The neural controller is designed to ensure

the output from a nonlinear plant is made to track the output of a stable reference model

which represents the desired closed-loop dynamics of the system.

Model reference adaptive control is chosen as the control framework into which neural

networks are incorporated because of its suitability for use in a supervised learning neural

network scheme. The reference model provides the desired output which is used by the

supervised learning scheme to generate an output error to modify the neural network

weights. Furthermore, MRAC allows the system designer to incorporate the desired

closed-loop dynamics of the system into a structured form, i.e., the reference model.

This provides an additional degree of freedom to the system designer as the structure of

the reference model can be altered to meet different performance specifications.

The basic structure of the scheme presented here is described in detail in the next section'

The problem to be addressed is formulated for a general multi-input multi-output system.

The implementation of the scheme in an off-line and on-line environment is also discussed.

Simulation examples are then provided to highlight the effectiveness of the scheme. The

limitations of the scheme are then discussed which gives rise to the solutions presented

observations of the output and control vectors in a finite number of sampling periods.
sRefer to Chapter 2 for a definition of the nonlinear systems belonging to Model I - Model IV.
aln the same way that transfer functions provide a generic input-output representation for linear

black box models, neural networks potentially provide a generic representation for nonlinear black box

models.
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in the next chapter

3.2 Basic Structure of the Control Scheme

The neural adaptive control method presented in this chapter is a combination of the

model reference neural adaptive control approach of Narendra and Parthasarathy [169]

and the forward modelling approach of Jordan [95].

In the approach presented in Narendra's paper, multilayer neural networks are used to

identify the unknown nonlinearities of the system and then the neural estimates are used

in an explicit control law to ensure that the output of the plant tracks the output of the

lef'erence model. As shown in the example given in Chapter 2, this approach utilises any

partial linearity or separability in the system to design the control.

In the forward modelling approach of Jordan, and similarly the specialised learning ap-

proach of Psaltis et al. ll89l, a neural network is used as the controller and it is trained

to ensure that the output of the plant tracks a desired response which is the input to

the controller. Therefore, this approach is an inverse control scheme. As discussed in the

previous chapter, a problem with forward modelling schemes is that the plant is located

between the output of the controller network and the output error. This provides a dif-

ficulty in obtaining the controller error and thus deriving a weight update equation for

the controller neural network. It is shown in [189] that in order to obtain the appropriate

error for the controller output, it is necessary to find the Jacobian of the plant. In the

f'orward modelling approach of Jordan [95], it is shown that the plant Jacobian can be

obtained from a neural network which identifies the plant.

Hence, the aim of the approach considered here is to design a control such that the

output of the nonlinear system tracks the output of the reference model as suggested by

Narendra and Parthasarathy [169]. However, unlike [169], a neural controller is trained

to achieve the desired control rather than using an explicit control law. As in Jordan's

scheme [95], the weights of the controller neural network are modified by a weight update

equation which utilises the plant Jacobian obtained from a neural network model of the

plant. However, unlike [95, 171, 189], the neural controller does not learn an inverse
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rnodel of the the system. Instead it can be thought of as learning a "detuned" inverse of

the system with the amount of "detuning" dependent upon the reference model chosen.

The approach further differs from the scheme presented by Narendra and Parthasarathy

[169] in that the neural network emulator models the entire input-output dynamics of

the system, rather than just the nonlinearities in the output or control terms.

As the neural adaptive control scheme considered here is based on the well established

rnodel reference adaptive control methodology, it is subject to the design requirements of

this scheme. Firstly, the choice of the reference model is extremely important to achieve

good control. The reference model is chosen to reflect the desired closed-loop dynamics of

the system, usually in terms of performance specifications such as rise time, settling time,

overshoot or frequency domain characteristics. However, the structure of the reference

model is also constrained by its order and relative degree, given a priori knowledge of the

order of the plant. These constraints are placed to ensure that the desired response is

achievable by the plant. Generally, the reference model is chosen to be linear and stable

and its order is chosen to be equal or greater than the order of the plant to be controlled.

In an MRAC scheme, the controller is designed to generate control variables such that

the output of the plant tracks the reference model output for a given bounded reference

input. This is achieved by adjusting the parameters of the controller via an adjustment

mechanism so as to minimise the error between the reference model and the system.

In the neural network MRAC scheme considered here, the parameters of the controller

can be considered to be the weights of the controller neural network and the adjustment

mechanism is the weight update equation. For this neural network based model reference

control problem, the above scheme can be mathematically expressed for a general multi-

input multi-output system as follows:

Consider a plant governed by the following nonlinear difference equation

yo@ +l) : f @o&),"',Uo(k -l + 1);u(ft), "',u(k - rn + 1)) (3.1)

yo(O) : Upo Vk e N (3 2)

where Up e FP is the output vector, u € R" is the control vector, f ; R"'t x Rrxm -r R'

is a smooth nonlinear function, Apo is the initial output vector, k is the time index, N is

the set of natural numbers and rn and / are the number of delayed values of plant input
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and plant output, respectively.

The control strategy is to find a feasible control input

u(k): s(yp(k),...,yr(k -I +r);u(k - 1),. ..,u(k -m*I);r(k);W.) (3.3)

where g ;Rn't x Rrxm --; R', is a neural network parameterised by the weights lll", such

that for a stable reference model governed by

s^(k+I) : f^@^(k),y*(k- 1),... ,a^(lc- d+ t);r(fr)) (3.4)

y^(0) : !J^o (3'5)

where U^ €. R' is the reference model output vector, r € R' is the reference input,

f^:Rnxd x Rr + R" is usually a linear function, d>l andy*o is a given initial output

vector for the reference model. In this case, the absolute tracking error satisfies the

i'ollowing relationship

ll"r(k + 1)ll : lly^(k + 1) - yo(k * 1)ll < rt (3.6)

"r(0) 
: eTo : a^o - upo (3'7)

where er 2 0 is a predefined tracking error tolerancel eTo is the initial tracking error

vector and ll.ll is the vector norm.

REMARK 3.2.1 The aboue scheme is formulated for discrete-tirne nonlinear systems

represented by difference equations of the form (3.1). This equation represents the dy-

namical relationship between the input and output of the plant and is often referred to as

the input-output equation or obseraer's'equation. Howeaer, rnany nonlinear systems are

erpressed in the state space form

r(k+L) : Í'(*(k),"(k))
y(k + I) : h(r(k)) (3.8)

where x € RP are the states of the system which may be be obseraable and fo , Ro x R' + R'

and h : Rp + Rn are unlcnown smooth functions. Constructing adaptiue controllers

for this form of general nonlinear system is a more difficult task. Therefore, systems

uhich can be erpressed in the obseruer's equation form are desirable. Form,al methods of
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constructing the obsert)er's equation forrn of the nonlinear system from the state space

representation haae been proposed by Goh and Noalces [57]. Hence, the obseraer's equation

will be used in this thesis to describe the nonlinear systems, bearing in mind that this form

can be obtained from the state space representation.

Whilst the inverses of operators do not need to be explicitly modelled in this approach, the

existence of inverse operators still needs to be assumed in order to ensure the existence of

a control vector u(ft) to achieve the desired objective. However, rather than the function

g(.) representing the the true inverse of equation (3.1), i."., -f-t(.), u. is the case in

the inverse control approach [95, 189], in this MRAC scheme it represents a "detuned"

inverse of the plant. Furthermore, it is assumed that for any set of values z(k) in a

compact region of R', a solution to the problem does indeed exist.

Apart from the assumptions about the controllability and observability of the systems

under study, the following definitions and assumptions are also central to the neural

adaptive control scheme presented in this chapter.

DEFINITION 3.2.t A plant of the form (3.1) has a relatiae deqree {lt,,^lz,' . ' ,%},

uhere ?; € N, i:1r...,r if

- ôqr,(k*1),. :o vrc¡¡ 11;
7u¡(k-Ærj+1)

(3.e)

uherei:lr...rh, j:Lr...rr andthereerists atleast one j suchthat

7yo,(k + L)
#o (3.1 o)

ôu¡ k-r*r)
Jorallpointsintheneighbourhoodofthereferencepointro:(Ao,yo..',Uo,uo,uo,'..,uo)

ASSUMPTION 3.2.L For the sake of sirnplicity, aII of the plants considered in this

thesisareassurnedtobeof relatiuedegreeunity, 1t:'lz:...:1r:t,i.e.,thei'nputat
k affects the output at lc+1. Howeaer, after suitable rnodifi,cati,ons in the control strategy,

u, sirnilar procedure can be adopted when the relatiue degree is greater than unity.

DEFINITION 3.2.2 The system is minimum phase if the zero dynamics

0 :,f(0,0,..., 0;u(k),"(k - 1),.'.,u(k -rn + 1))
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where 0 € R" and u € R", is asymptotically stable to the reference point uo when the

plant output is lcept at 0, i.e., no unbounded inputs lie in the null space of the operator

representing the plant. The zero dynamics represent the internal dynarnics of the system

when the system output is kept at zero by the input.

ASSUMPTION 3.2.2 (Jnless otherwise specified, all of the plants are assu,rned to be

minimum phase.

As the nonlinear function /(.) i. unknown, the plant needs to be identified. This is

achieved by training a neural network parameterised by the weightsW¡ to emulate the

plant dynamics such that the predicted plant output is given by

ûe(k + r) :
ir(0) :

i@o&),... ,uo(k - I + 1);u(,b), ... ,u(1, - rn I t);Wù (3.12)

0 (3.13)

and the absolute identifrcation error yo(k * 1) - iie(fr + 1) is finite, i.e.,

where e¡ ) 0 is a predefined error tolerance and e¡o is the initial identification error

ll"¡(fr + 1)ll

er(0)

llao(k+ 1) - û,(k + l)ll < rt

€Io : Upo

(3.14)

(3.15)

vector

REMARK 3.2.2 It has been shown by Cybenko ft|J, Funahashi [55J and Hornile et

al. ft/l that multi-layered neural networks with an arbitrarily large number of nodes in

the hidden layers can ûpprorimate any real ualued, continuous function f O o" a compact

subset of Ar - pnxl¡R'x^ to a desireddegree of accuracy, i.e., equation (3.11 is satisf'ed.

The identification model used here is known as a series-parallel identification model as

the output of the plant (yo) rather than the neural estimate of the plant output (1ir)

is fed back into the neural network approximating the plant dynamics. Therefore the

identification model has the form given in equation (3.12). The alternative identification

model often used is a parallel model. In the parallel model the previous outputs of the
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identification model are fed back to generate the current model output. A parallel model

is governed by the following difference equation

fir(k + t) : ifur(k),ûo& - r), . . . ,ûr(k - / + 1); u(k),u(k - 1), . . . ,u(k - m * 1)) (3.16)

The series-parallel model has several advantages over the parallel model. Firstly, if the

plant is bounded-input bounded-output (BIBO) stables, then all of the inputs to the

neural network emulator are bounded. The same cannot be said for a parallel model as

the stability of the neural network identification model cannot be guaranteed. Hence if

a parallel model is used, it cannot be guaranteed that the model parameters (weights)

will converge or that the identification error will decrease to zero. Furthermore, static

backpropagation can be used to adjust the weights of the network as no feedback loop

exists in the model.

The control procedure presented here is often referred to as an indirect control approach

[166, 169] because an identification model (NN emulator) is used to identify the input-

output behaviour of the plant. Using this identification model, the controller parameters

are then adjusted. However, unlike the traditional definition of an indirect control scheme

given in Chapter 1, it is difficult to derive an expression for the controller parameters in

terms of the parameters of the identification model. This is because a neural network

is a nonparametric identifier for which it is not possible to derive a simple relationship

between the learned weights of the network and the parameters of the plant. Hence the

definition of an indirect control procedure in the context of a neural network control

scheme is slightly different to the traditional case. Due to the nonlinear nature of both

the plant and controller, it has not been until very recently that methods for directly

controlling the parameters of the controller have been derived [186, 204,235]. These

schemes do not employ neural networks in an identification role.

Theorem 2.2.1 (Funahashi [55]) and the equivalent theorems provided by Cybenko [40]

and Hornik et aI. [74] are, in fact, existence theorems and thus provide no information

about the number of nodes required to approximate a nonlinear function, the required

values of the weights nor how to choose the weights. Therefore a number of factors are

sMost of the simulation examples considered are BIBO stable. However, this is not the case for the

marginally stable systems considered in this thesis.
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taken into account in deciding the structure and type of neural networks used in this

approach.

Firstly, because of the dynamic nature of the systems under study, the neural networks

used in this approach are time delay neural networks with output feedback of the form

shown in Figure 2.8. The number of taps in the tapped delay line is determined by the

number of delayed values of plant input (rn) and plant output (/). The number of inputs

to the multi-layer perceptron is also dependent upon the output vector dimension (n)

and control vector dimension (r). Therefore the total number of inputs to the MLP is

(n x k I m x r). This information represents the only necessary ¿ priori knowledge about

the structure of the system.

Furthermore, as multi-layered perceptrons are used in this approach, the backpropa-

gation algorithm is used to train networks and their structure is chosen based on the

considerations presented in the previous chapter. In particular, in accordance with the

cliscussion presented by Sontag 12231,2 hidden layers are utilised. The number of hidden

Iayer nodes is chosen using heuristic rules based upon past experience.

The problem formulated above can be addressed using either an off-line approach, in

which the controller and emulator neural networks are trained separately and off-line,

and an on-line approach, in which the neural networks are trained simultaneously whilst

the system is running.

3.2.L Off-line Approach

The off-line approach to the neural network based model reference control problem is

essentially a two step procedure. The first is the identification phase and it involves

training a neural network using the backpropagation learning algorithm to approximate

the input-output dynamics of the plant to a sufÊcient degree of accuracy. This utilises

tlre functional approximation results discussed in Remark 3.2.2. A block diagram of the

identification process is shown in Figure 3.la.

The emulator is typically trained with a random input signal u(k) uniformly distributed

in the input space R' until the mean square identification error is less than a predefined
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DEFINITION 3.2.3 A uectorU is persistently erciting if there erist positiue constants

to,To, a such that 
¡trTo

J, U(r)Ur (r)dr ) aI Vr > úo (3.17)

yP

+
u(k)

Figure 3.la: Identification stage for the off-line approach

error tolerance. Such an input signal ensures that the training set is representative of

the entire class of possible inputs for the system. This enables the system to respond

in the desired fashion even when it is subject to an input not in the training set. This

input signal is often referred to as persistently exciting.

Once the plant has been learned sufficiently well, the neural controller is then trained

so that the plant output tracks the desired output from the reference model. A block

diagram of the controller learning stage is given in Figure 3.1b. As with the identification

stage, the controller is trained with a random reference input signal r(k) uniformly dis-

tributed in the input space R' (i.e., a persistently exciting signal) until the mean square

tracking error is less than a predefined tolerance. The weight vector of the controller

neural network is modified by a weight update equation which utilises the plant Jaco-

bian. To achieve this, the tracking error is backpropagated through the emulator neural

network as is shown in Figure 3.1b. A detailed account of the controller weights up-

date procedure is given in Section 3.2.3. As with the identification stage, this process is

undertaken off-line.

Once the controller has been trained sufficiently well off-line, the training process is

cliscontinued and the system is re-connected. The system is then subjected to the oper-
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Figure 3.1b: Controller training stage for the off-line process

ational reference input, which is assumed to be part of the the training sequence of the

controller neural network. If this is not the case then, provided the reference input is

still assumed to be part of the input space of the network, an input-output relationship

is extrapolated from the training examples to achieve the desired control. This is often

leferred to as the generalisation capability of a neural network. The training process is

disconnected during the control stage to ensure that the network weights continue to map

the input-output relationship over the entire input space, rather than only a localised

subset of the input space represented by the actual operating conditions.

3.2.2 On-line Approach

In the on-line approach to the model reference control of a nonlinear system using neural

networks shown in Figure 3.2, the plant identification and control synthesis are done

simultaneously and in a closed-loop environment. This removes the need to separately

identify the system off-line, which can often be a very time consuming, costly and im-

practical task particularly if it involves taking a complex system off-line for a long period

of time. One of the main disadvantages with this approach is that because the controller

and emulator neural networks are trained whilst the system is operating under actual

working conditions, the training is very localised. This is because the actual input signals

represent a small subset of the input space of the system and thus networks are trained

over this smaller, localised input space. However, the on-line approach relies on the in-
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herent adaptivity of the neural networks and thus any changes in the operational input

space results in a modification of the network weights. It is therefore a truly adaptive

system.

v-

+(k) cT

Figure 3.2: Block diagram of the on-line identification and control scheme

Such an approach is particularly important for systems which cannot be identified using

open-loop techniques, such as marginally stable systemsG. These systems often arise in

practice. Examples are ship steering ll27l, missile guidance [78] and the position control

of a servo system [10].

As with the off-line approach, the backpropagation learning algorithm is used to modify

the weights of the controller and emulator networks. Furthermore, the method proposed

by Jordan is also used to determine the plant Jacobian. However, as both the controller

and emulator neural networks are trained on-line, the plant Jacobian approximate will

initially be poor. As a result, the tracking performance for the initial few samples will also

be poor. In the situation that the tracking error becomes so large that the plant leaves the

usual region of operation, Tzirkel-Hancock and Fallside1234,235] and Sanner and Slotine

1202,203,204] have suggested the use of a sliding control to force the plant back into this

region. An alternative solution would be to employ a short period of off-line identification

prior to the on-line operation. This would provide the neural network emulator with some

initial knowledge about the system and thus the Jacobian approximate would initially be

more accurate. For the systems considered in the simulation studies undertaken in this

research, the above limitation with the scheme did not prove to be a problem. However,

currently there are no theoretical results to always guarantee this.

6A discussion of the definition of a marginal stable nonlinear system is provided in Example 3.3.11
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3.2.3 Weight Update Equations

For both the off-line approach and the on-line approach the emulator neural network is

trained using the standard backpropagation learning algorithm. The measurable identi

fication error, e¡(k *I) : yo(k + 1) - Vo(k + 1), is backpropagated to modify the weight

of the network, where Aprûpre¡ € Rn.

However, in order to train the controller using a supervised learning scheme such as

backpropagation, the error ud(k) - "(k) in the controller output is required. The term

ud(k) is the desired control which would produce V^(k + 1) if applied to the plant.

However, as u¿(fr) € R' is not known, an approximation of the controller error denoted

by 
"., 

must be generated. A method for generating such an error is derived for a general

multi-input multi-output system below.

The cost function that is to be minimised is given by

E ::l(r-(¿ + t) - y,(k i r))'(y^(*+ 1) - y,(k + L)) (3.18)
L k=o

where N is the number of samples ,t U^ : ly^rr. . . ,A^,)T and yo: lUprr. .' ,Uo^lT'

,E is minimised by performing a gradient descent in E(W.(k)), where W.(k) are the

controller weights:

AE
aw"(k) l(#ä)'(m)'l'

au@) aE
aw.(k) ôu(k)

where u : lurruzr.,, rur]T

By performing a gradient descent in E(u(k)), the telrn ffi can be computed:

(3.1e)

(3.20)

AE
ñ6

T

ïyr(k + r) AE
au(k) ôyo(k + r)

Therefore, the gradient descent in E(W"(k)) is given by

aE _ au(k) )y,(k + t) AE

aW.&) aw"(k) ôu(k)
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where ,*--r(Ð is ap x l vector', ffi is a r x l vector,:#ìJ is apx r matrix,gtffi
is a r x n matrix, und 4fu is a n x I vector.

Equation (3.2\ iinvolves the Jacobian of the plant q#P, which is unknown. By back-

propagation through the neural network which identifies the plant, an approximate of

the Jacobian ffi, can be obtained.

The term ffi t"pr"sents the change in the cost function as a result of a change in the

controller neural network output. As shown in [95], it can be obtained by backpropagat-

ing the tracking error through to the inputs of the emulator neural network corresponding

to the control u. As these inputs are the outputs of the controller neural network, the

term ffi is related to the error in the output of the controller neural network. Since

the backpropagation algorithm performs a search along the negative gradient of the error

surface, the controller error is therefore defined as e"(k) : -ffi. Hence, the weight

update equation is given by

W"(k + t) w.(k) - n
AE

aw"(k)
au(k) AE

W"(k) - rt

w"(k + r) : w"(k) + nffi""Uù Q.22)

where the controller error is an r-dimensional vector e.:le"tte"z¡..,re.,f given by

""(k) 
: -aûe-@'!L) :-?,8-7u(k) aûe(k + L)

aw.(k) au(k)

992L Ðûon
7ut ðut -(a^, - apr)

-(u^. - Up^)

(a^, - vòryT t (a*, - và* + "'+ (v-^ - vr.)*
(a^, - aòryT * (a*, - aàryff + "'+ (a^^ - vJW

(3.23)

(v^, - vò31 * (v^, - vàlf+''' + (v^^ - ao)%ff

TThe dimension p is the number of output layer weights - the number of output nodes x the number
of nodes in the last hidden layer.
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Therefore for the g-th controller output, the network output error is

(3.24)

where the time index k is neglected for the sake of simplicity.

The above controller error can be derived by backpropagating the tracking error through

the neural network which identifies the plant. In the following derivation, the results are

expressed in terms of the neural network system equations for a multi-input multi-output

system and can therefore be regarded as an extension of the work of Jordan [95].

The derivation of the controller error is as follows

Consider a two layered neu¡al networks with ø inputs, ó hidden units and n outputs.

The state vector Up : lUprrApz,. . . ,Ur^fT is of dimension n and the control vector u :

lur,ur,. ..,u,lT is of dimension r, where r I a. The neural network output vector is

denoted Ar: [ûrr,ûpr,. . . .,yr^f'. The individual neural network outputs are given by

""n(k) 
: (a^, - or)æ * (y^, - y*)æ+ ... + (y^, - vo^)

ður^
oun

ve,(k + l) g(Dwl¡g(Dwtkrk))
j=l

a

k=l

b

ö

a,,& + t) - g(Dwl¡s(Dwlu"o))

ye^& + r) : g(Dwi¡g(Dwin.o))
j=L /c=1

Let the gth control input 
"n(k) 

be the /th network input, r¡. Thus

b a

j=l k=l

j=1 À=1

a

j=L

(3.25)

(3.26)

Aye,(k + l)
oun k)

Aûe"(k + t)
ðun(k)

%# : n rnwî¡ g (D w|*, t )) frr:, n rD w|¡r ¡)w|¿)

s' (D wi 
¡ 
g (D w |* " n)) DWï ¡ g (D wìo* o)w h)

o

À=1

Now consider the effective output error ó2

o

6? : s'(Dwi¡s(DwÌ*xù)(a^, (k + L) - uo,(lc + t))
j=l k=l

EA two layered neural network is considered in the above proof for space re¿ìsons. However, it is a
straightforward task to extend the proof to an arbitrary number of layers'
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ö a

6'z" : s'(Ðwi¡g(Dw|¡"ò)@^"(fr + r) - yr^(k+ 1)) (3.27)
j=l k=l

where Am : lA^rrU^"r. . . rU^^)T is the n dimensional desired output vector.

Backpropagating the above output errors to the hidden layer gives

o, fL

s=1

6j: s'(ÐW|¡xn)Dw"',t3 (3.28)
å=1

Backpropagating to the input layer gives

b d n 6 a

ál : t wlns'(Dw|¡xx)Dw:jl(Dw?¡g(Dwltrx))(v*" - a,") (3'2e)
j=l È=1 s=1 j--t /c=1

where the time index fr is neglected for simplicity sake.

As zr(k) is the /th network input,

n

s=l
b

j--L

b a

DW!r*n)(y*" - yr")
fr=1

6l {D w?¡ g' (Ð w 
"" 

g (D w}¡ * x))} 2 wio (

+

s' (Ð w i ¡ s (D w Ì r" ù) DW i ¡ g (D w| ¡, r ¡)w |¡) (v ^, - a,,)

j=l lc=1

a

/c=l j=l
b

j=l

j=l
a

À-1

,b=1

b o

s' (D w t ¡ g (D w | * " n)) D W î ¡ g (D w| ¡ r ¡)w ]¡) (v ^, - a o,)
/c=1j=l

babo
+ s' (Ð w3¡ s (D wj¡" *)) Dçwl¡ s(D wlor *)wi,)(a-^ - u p^)

j=L /c=l j=l k=L

: (a*, - r,,1ffi * (v^, - r,,t\ff+... + (a*. - u,^)
Aye"(k + r)

ðun(k)
(3.30)

The controller error e.(k): l".r(k),...,".0(k),...,"u(k)11 is a vector of dimension r.

Hence, the output error for the g-th output node of the controller neural network is given

by

".0(k) 
: (u^, - r,¡%#+ ... + (a^^ - r,.)ffi (3.81)

where the output vector of the controller neural network is the r-dimensional control

vector u:lurr.,.¡Usr...rurlT, 
I I r
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The weight update equation (3.22) is then used in conjunction with the backpropagation

algorithm to train and synthesise the controller. As is apparent from the above derivation,

the identification of the plant is only necessary to provide a means of generating the plant

Jacobian and thus allows adjustment of the control parameters W".

A number of alternative schemes have been suggested for obtaining an approximate of

the plant Jacobian. Saerens and Soquet [201] have suggested the use of the sign of the

Jacobian rather than its actual value to train the neural controller. However, in order

for the sign of the Jacobian to be known, a priori information about the orientation in

which the control parameters influence the output of the plant is required.

Numerical differentiation methods can also be used to obtain an approximation of the

Jacobian. For example a first order approximation is given by

7vr(k + r) _ ar(k + l) - yr(k)
ou(q'=ffi (3'32)

However, such a scheme would suffer from the large errors associated with most numer-

ical differentiation approaches. Furthermore, problems arise when the control input is

lelatively constant. Such a method is suggested by Psaltis et al. [189]. A perturbation

scheme in which the approximate Jacobian can be determined by changing each input

to the plant slightly at the operating point and measuring the change in output is also

suggested in [189].

3.3 Simulation Examples

Currently most of the studies done in the area of neural adaptive control have been

empirical based on computer simulations [28, 79, 169, 171]. This is because of the dif-

ficulty in deriving theoretical results for neural network based control schemes. It has

only been recently that work has been done in determining theoretical properties like

controllability, observability and, most importantly, stability of neural control schemes

[126, 186, 204,235]. However, a great deal of information and insight can still be gained

fiom empirical studies. Furthermore, such studies will undoubtedly generate more prob-

lems and theoretical issues which will need to be addressed.
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Therefore, in this section several examples will be considered to highlight the effectiveness

of the proposed method for both the off-line approach and the on-line approach. In

particular, single-input single-output and multiinput multi-output systems belonging to

Models III and IV will be considered. Plants from these classes of nonlinear systems

are considered primarily because they are the most general class of models and are

the most difÊcult to control because of the nonlinearities in the control variable. The

examples belonging to Model IV, a class of systems considered difficult to control [169],

will highlight the fact that the method considered here provides a unified approach to

the control of nonlinear systems. A marginally stable system will also be considered for

the on-line case to highlight one of the main advantages with this approach.

3.3.L Off-line Learning

EXAMPLE 3.3.1 The example from Model III considered here is taken directly from

[169], and thus also allows direct comparison with the method proposed by Narendra

and Parthasarathy. The plant equation is given by

a,(k*r):#%+,3(k) (8.33)

Narendra and Parthasarathy [169] use two neural network , N¡ and Ät, to emulate the

functions f (yr(k)) and g(u(k)). The explicit control law used is given by

u(k) : g-'l- Îly,(k)l + a^y,(fr) + r(fr)l (3.34)

where g-t ir the estimate of the inverse of the nonlinear function in control and a- is a

prespecified constant. In [169] the function þ-L is emulated by a neural network of the

class f,)f,ro,ro,,.. Io the method presented in this chapter, the plant is treated as a "black

box" and thus a single neural network is used to emulate the plant. A neural network

belonging to the class f)!,r0,r0,,, it used, i.e.,

ûo& + r) : Nrlvr(fr)' u(,b)l (3'35)

This neural network is trained with a random input signal u(k): W[-1' 1].

Identification is carried out for 100,000 iterations with a learning rate of 0.1, resulting in

a mear square error of 0.0049. The output from the plant and the identification model
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for an input u(k) :O.5(sin(ff) +.i"113)) is shown in Figure 3.3. As can be seen there

is virtually no discernible difference between the plant and emulator responses for this

input.
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Figure 3.3: Response of the plant (yo) and identification model (yr) for Example 3.3.1

with u(k) : 0.5('in(#) + 'i"113¡¡

The controller is then implemented. A neural network of the class 0!,ro,ro,, it used to

implement the model reference control and it can be represented as follows

u(k) : N"lyr(k),r(k)l (3.36)

The following first order reference model is used

y^(k + I) :0'2a^(k) + r(k) (3.3 7)

To train the network, a random input r(k) : n[-1,1] is used. Training is carried out

f'or 100,000 iterations, with a learning rate of 0.1. The resultant tracking mean square
l

I "rro, 
is 0.0045. The reference model and plant outputs are shown for reference signals

r(fr) :O.5(sin(ff)+ri"1g;) and r(k) : m[-1,1] in Figures 3.4a and 3.4b, respectively'

The plant response in these figures is virtually indistinguishable from the reference model

response. The excellent tracking results highlight the effectiveness of the controller for

plants belonging to Model III, even with an uncorrelated, random input. The control
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scheme is designed with the system treated as a "black box", in which the neural network

emulator models the input-output mapping of the plant. As a result, knowledge about

the separability or otherwise of the nonlinearities in the output and control terms is not

required. Therefore, unlike [169] there is no need to explicitly model the function g-1(.),

which is the inverse of the noniinear function in control, or the function /(.), which is

the nonlinear function in the output terms. However, this means that an explicit control

law as in [169] cannot be stated, but as shown by the results provided, the scheme is

equally effective in this example.

REMARK 3.3.1 Although the traclcing error conaerges to a neighbourhood of zero, this

does not in general guarantee that the networlc weights will conaerge. Linear theory results

imply that conuergence will not be obtained unless the signals used are persistently exciting

[167, 204J. Howeuer, currently there are no methods of characterising persistently exciting

inputs which will guarantee thc conuergence of the network weights'

EXAMPLE 3.3.2 In this example a SISO plant belonging to Model IV'is considered.

Such plants are difficult to control as the control term u is heavily embedded in the non-

linearities of the system. Therefore it is difficult to find an inverse operator in the control

and consequently an explicit control law is very difÊcult to obtain. It is because of these

reasons these systems are considered the least tractable analytically and consequently,

not discussed in many approaches. The plant equation considered in this example is

given by

ve(k + r) : k k-r fr) +u3(fr) *0.5yr(k-1) (3.38)r+vl&)+al(k-t

The reference model considered is given by (3.37).

The plant equation is nonlinear in output and control, and their nonlinear terms are not

separable. Thus, this plant belongs to Model IV. A neural network belonging to the class

Q!,ro,ro,,. is used to identify the plant. The identification model used is

ûr(k + r) : N,[voØ),,vr(k - 1)' u(k)] (3'3e)

The network is trained with an input signal u(k) : n[-1,1], with a learning rate of 0.1'

Training is carried out for 100,000 iterations, resulting in a mean square identification
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error of 0.0041. The outputs for the plant and the identification model for an input

u(k): sin(ffi) are shown in Figure 3.5.
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Figure 3.5: Response of the plant (yo) and identiflcation model (iio) for Example 3.3.2

with z(k) : sin(ffi)

A neural network of the class O!,ro,ro,, ir used to implement the controller. The control

law to be approximated is given by

u(k) : N.lvr(k),ao(k - 1)' r(ß)l (3.40)

The controller is trained with a reference signal r(,b) : n[-1, 1] for 100,000 iterations

with a learning rate of 0.1. The resultant mean square tracking error is 0.0084. The

outputs from the reference model and the plant are given for reference inputs

r(k): sin(ffi) fr < 5oo

sin(ffi) +sin(ffi) k>5oo
(3.41)

and r(k) : ftl-1,1] in Figures 3.6a and 3.6b, respectively,

In [169] the control of a plant belonging to Model IV is regarded as analytically the least

tractable and thus not attempted. This example indicates that the method presented

here can be used to control plants of the form of Model IV as effectively as plants from

other models. However, Figure 3.6a also indicates one of the main problems with an
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off-line neural control scheme. The controller neural network is trained over the region

r(k) : n[-1,1] and when the operational reference input is within this region, as is

the case for r(k) : ri"(#) fr < 500, the performance of the controller is very good.

However, when the reference input is outside of the region on which the controller is

trained, as is the case for r(ft) : sin(ffi) + sin(ffi) for ,t > 500, then the controller

performance deteriorates. This can be overcome if weight adaptation is switched on

whilst the system is operational and thus the system will learn to control the plant for

inputs outside the off-line training region. This is effectively an on-line training scheme.

However, this results in localised learning as the neural control learns to control the plant

t'or the system acting under the operating reference input rather than the general training

reference input r(fr) : n[-1,1]. This results in the neural controller "forgetting" about

the training responses. Whilst such an approach is useful particularly when operating in

a highly adaptive environment, it does make the computationally intensive and relatively

time consuming training process slightly redundant. A better solution would be to train

the system off-line for a short period of time to provide the controller neural network

and emulator neural network some initial idea about the system and then implement an

on-line approach.

EXAMPLE 3.3.3 In this example a two-input two-output system belonging to Model

IV is considered. The plant equation is given by

yo,(k + r)
0.\yo,(ß) + O.¿ur * 0.6u2 kk

yo,(k + r)

L + u|,(k)
o.\up,(¿) + 0.6u1 (,t) t 0.4u2(k)

(3.42)
L + a|,(k)

The plant equation is nonlinear in output and control, and their corresponding terms are

not separable. Apart from the complex nonlinearity of the system, such a plant is difrcult

to control because of the cross-coupling of the control inputs, i.e., the plant outputs yo,

and yo, are functions of both control inputs uy and u2. This form of cross-coupling

occurs commonly in practical systems. A classic example is in the dynamic equations

for a guided missile or an aircraft in which significant cross-coupling exists between the

pitch dynamics, the yaw dynamics and the roll dynamics.
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Figure 3.8: Response of the plant and identification model for Example 3.3.3 with z1(/c) :
sin(ffi) k u2(k): sin(ffi)

A single neural network belonging to the class O!,ro,ro,, it used to identify the plant. The

identification model is

yo& + I) : lyr,(k + 1), yr,(k * 1)lt : Nolao,(k),yr,(ft), u1(,t), "r(k)l (3.43)

The network is trained with input signals "t(k): ft[-l,1] and "r(k): ft[-l,1] with a

learning rate of 0.1 and a momentum rate of 0.9. Training is carried out for approximately

50,000 iterations, resulting in a mean square identification error of 0.001. The plant and

identification model outputs are shown for input signals "r(k) 
: ft[-l,1] k u2(k) :

m[-1,1] and "t(k): sin(ffi) k u2(k):.i"(#) in Figures 3.7 and 3.8, respectively'

These figures highlight the ability of neural networks to approximate the dynamics of a

complex multi-input multi-output nonlinear system to an excellent degree of accuracy.
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Figure 3.10: Response of the plant and reference model for Example 3.3.3 with 11(fr) :
sin(ffi) k r2(k): sin(ffi)

A single neural network of the class 0!,ro,ro,, ir used to implement the neural controller.

The inputs to the controller neural network arefyor(k),vrr(k), 11(,t), ,r(k)|. The controller

is trained with reference signals 11(k) : n[- 1, 1] and r2(k) : n[- 1, 1] to track the output

of a reference model given by

v*,(k+l) : 0'5Y^,(fr) +0'511(k)

v^"(k + l) : 0'5v^"(k) + 0.5r2(k) (3.44)

Training is carried out for 100,000 iterations resulting in a mean square tracking error

of 0.0026. The outputs for the reference model and the plant are given for reference

inputs r1(k) : n[-1, l] k rr(k): ft[-l,1] and r1(k) : sin(ffi) k r2(k) : sin(ffi) in

Figures 3.9 and 3.10, respectively.

The theoretical results provided in Section 3.2.3 are derived for a general multi-input
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multi-output. This simulation example confirms that the neural network control scheme

presented in this chapter can be used to control a MIMO system. This is an important

result because most practical systems consist of multiple inputs and multiple outputs.

Furthermore, the approach presented here does not require any additional information

to control MIMO systems as opposed to SISO systems. Also, a single neural network is

used to model the entire plant dynamics and an additional single neural network is used

to implement the controller as opposed to an individual neural network for each system

output term and each control term. Whilst from a control perspective having individual

neural networks for each control and output variable may be equally effective, from an

implementation perspective it is very memory and computation intensive.

The Effect of Disturbances on Off-Line Learning

The effect of three types of disturbances on the neural control system presented in this

chapter will now be considered, namely load changes, sensor noise and dynamic plant

noise. These f'orms of disturbances commonly arise in practical systems and thus the

performance of the controller in their presence is an important issue.

(i) Load Disturbance Compensation

The first type of disturbance considered is load disturbances. They can represent distur-

bance forces in a mechanical system, such as waves acting on the hull of a ship or load

changes on a motor or, as in process control, they may represent variations in feed flow

[10]. One technique for compensating for such disturbances is feedforward control. The

basic principle of this technique is to measure or estimate the disturbances as they occur

and make adjustments in the manipulated variable so as to prevent them from upsetting

the controlled variable [a3]. The bias compensation technique employed here is based on

this approach and the load disturbances are assumed unknown and not measurable.

Load disturbances are operational disturbances in that they occur whilst the system is

under normal operating conditions. Therefore, they do not occur during the training

process in which the system is taken off-line and subjected to a persistently exciting

training input. Thus, as the controller is trained in a disturbance free environment,

L02



there is a need to compensate for the bias to ensure that the the disturbance-corrupted

plant output, yo(k*l), tracks the output of the reference model, a^(k+ 1). The unknown

bias is estimated by subtracting output of the neural network emulator, û(k + 1), which

is trained to approximate the plant in a disturbance free environment, from the bias

corrupted plant output, yr(k + I). Low pass filtering is undertaken to eliminate the

initial transients. The estimated bias term is given by

t1* + L) : pb(k)+ (1 - p)ly,@+ 1) - ûe& + L)l (3.45)

where ûr(k + 1) is the output from the NN emulator and 0 < p < 1.

The controller has been trained such that the plant output tracks the output of a linear

reference model with gain G. However if the uncompensated reference input is applied

to the controller the resultant output from the plant is given by

yr(k*r):Gr(k)+b (8 46) Il

whereas the output from the reference model is given by

y^(kt1):Gr(k) (3.47)

Thus it is necessary to scale the reference input by the term $ to ensure that correct

model following occurs. A diagram of the method employed is shown in Figure 3.11.

EXAMPLE 3.3.4 The plant considered to highlight the bias compensation technique

is given by

yo(k * r) :0-2vo(k) + 0.2vr(fr - 1) + 0'5u3(k) (3.48)

This plant belongs to the Model II class of systems which are linear in output, but

nonlinear in control. The reference model used is given by

y^(k + t) :0.2a^(fr) + r(fr) (3.4e)

The bias term used is shown with its estimate in Figure 3.I2a. A variable bias is used

to demonstrate the effectiveness of the bias compensation technique under different load

(bias) conditions. As can be seen from the plant and reference model responses given in
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( ¿,)

Figure 3.12b, the proposed technique successfully compensated for the load disturbances

considered.

An alternative to this scheme would be to retrain the emulator and controller neural

networks in real time to offset the bias. However, the problem with this approach is

that it will result in localised training around a particular operating point. The off-line

training which is undertaken over the entire input space therefore becomes redundant. As

the off-line training stage is computationally expensive, this would be a waste of resources.

If very little or no training is performed prior to operation, thert this approach is feasible.

As will be shown in the next section, on-line training is capable of compensating for DC

load disturbances.

(ii) Measurement and Sensor Noise

Sensor noise enters the system because of the imperfect measurement of the output of the

plant. In practice it can be caused by random transducer and sensor errors' transmission

noise and high frequency load disturbance. The noise is generally considered to consist of

high frequency components and is thus commonly represented by a white noise process.

vp-
ym ----'
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In examining the effect of sensor noise on the controller, it is necessary to train the

emulator and controller in a noisy environment. This is because sensor noise represents

the noise inherent to the measuring device and thus each measurement of the output,

'yo(k t 1), results in the introduction of a noise term u(k). Therefore, sensor noise is

present even during training and so it cannot be assumed that training occurs in a

noiseless environment.

The method used to train the emulator and controller is the same as before, except that

the output of the plant is corrupted by noise.

The output from the noise-corrupted plant is given by

y"(k+I) : ao(k*1)+u(k)
: flyr@),...,yr(k-n* 1);z(É), ".,u(k-m* 1)l +u(k) (3.50)

where u(fr) is the zero mean, random sensor noise.

The output from the emulator is given by

û"(k+1) : //"[y, (k),a"(k- 1),. . . ,a^(le -n11);u(k), "(k- 1),''' ,u(k-rn+ 1)] (3.51)

where ly'" represents the emulator neural network.

As the emulator is modelling the noise-corrupted plant, viz the plant output plus sensor

noise, the mean square error is given by

r N-l
€r^": + Dla"&+r)-û"(k + 1)l' (3.52)

lY fr=o

As u(ft) is uncorrelated white noise, intuitively one can expect that in order to achieve

the same mean square error as for the noiseless case, far more training iterations will be

required.

Once again the same procedure as the noiseless case is used to train the controller, except

that the plant output is corrupted by the white sensor noise'

The control signal is given by

u(k): N.la^(k),a,(k- 1),... ,a^(k-n* 1);u(k- 1),"',u(k-m* 1);r(fr)l (3.53)
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where .|y'" represents the controller neural network, with the noise corrupted output as a

fèedback variable

Two examples are considered to highlight the effectiveness of the control scheme when

sensor noise is present.

EXAMPLE 3.3.5 The same plant and reference model as Example 3.3.1 are used.

The emulator is trained with a random signal u(k) : n[-0.5,0.5], with a random sensot

noise signal u(k) : n[-0.06,0.06] present. This results in an output signal-to-noise

ratio of 20d8. Training is carried out for 100,000 iterations with a learning rate of 0'1,

resulting in a mean square error of 0.034. The outputs for the noise-corrupted plant and

identification model for an input signal u(k):0.5sin(ffi) are shown in Figure 3.13a.

The controller is trained with a reference signal r(k) : [-0.5,0.5] for 100,000 iterations

with a learning rate of 0.1, resulting in a mean square tracking error of 0.0152. The

plant and reference model outputs for reference inputs r(k) : 0.5 sin(ffi) and r(k) :

0.5s9n[sin(#)] are shown in Figures 3.13b and 3.13c, respectively'

EXAMPLE 3.3.6 In this example, the same plant and reference model as Exam-

ple 3.3.2 are used. The emulator is trained with a random signal u(k) : n[-1,1],

with a random sensor noise signal u(,1) : n[-0.08,0.08] present. This once again results

in an output signal-to-noise ratio of 20d8. Training is carried out for 100,000 iterations

with a learning rate of 0.1, resulting in a mean square error of 0.0079. The outputs for

the noise-corrupted plant and identification model for an input signal u(k) : sin(ffi)

are shown in Figure 3.14a. As can be seen from this figure, the NN emulator output

resembles a filtered version of the actual noisy plant output.

The controller is trained with a reference signal r(k) - [-0.5,0.5] for 100,000 iterations

with a learning rate of 0.1, resulting in a mean square tracking error of 0.0197. The

plant and reference model outputs for reference inputs r(fr) : O.5sin(ffi) and r(k) :

0.5sgn[sin(#)] are shown in Figures 3.14b and 3.14c, respectively.

The above results highlight that for the cases considered measurement noise of the order

of. l0To (20d8) does not seem to present a practical problem. In both cases tracking
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Figure 3.14a: Response of the noise-corrupted plant (y") and identification model (y")
f'or Example 3.3.6 with u(fr) : sin(#)
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errors of similar order to the noiseless case are obtained. Once control is initiated, the

mean of the output of the noise-corrupted plant tracked the output of the reference model

and the noise component is attenuated effectively. An observation that is made is that

the output of the emulator trained to approximate the noise-corrupted nonlinear plant

tracked the mean of the noisy plant output.

(iii) Dynamic Plant Noise

The ability to deal with external stochastic disturbances is of major concern in all con-

trol systems. If the unwanted disturbance is of sufficient magnitude, it behaves as an

equivalent input signal to the plant and thus adversely affects the performance of the

system. Common examples of such disturbances are a gust of wind on an airplane, \Ã/aves

on a ship and internal noise from the control system components. The effect of these

disturbances acting on the plant is to a large extent subject to the inherent dynamics

and characteristics of the plant. In the study considered, the dynamic effect of the plant

noise is simulated by adding a white noise sequence to the input of the plant. Therefore,

the noise component of the output of the plant, A"(k + l), has been coloured by the plant

ilynamics and is thus no longer separable from the actual plant output, as is the case for

the sensor noise. Hence, the disturbance appears at the output of the plant as a coloured

norse process.

As with the sensor noise case, training of the emulator and controller is undertaken in a

noisy environment. This is because dynamic plant noise is often due to noise from internal

components in the control system and thus will be present even when the system is taken

off-line. For the case of dynamic noise produced solely by operational disturbances such

as wind or waves, a noise-free environment may be assumed during training' However,

this is rarely the case.

The procedures adopted for training the emulator and controller are the same as for the

noiseless case, except that the input to the plant, u'(k), is a noise-corrupted input.

The output from the noise-corrupted plant is given by

y^(k + \ : f ly o(k), y o(k- I ), . . ., a o(k - n *1 ) ; u' (fr ), u' (l' - 1 ),''', u' (k - rn + L))

where u'(k) : u(k) + u(k) and u(fr) is Gaussian white noise sequence'
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The output from the emulator is given by

û"(k+ 1) : l/"[v"(k),a^(k- 1),. .-,u,(k-n* 1);u(k)' "(k- 1),'" ,u(k-rn+1)] (3'55)

where /y'" represents the emulator neural network

The control signal is given by

u(k): N"ly^(k),y,(k- 1),'.. ,v*(le -n*r);u(k - 1),"',u(k-rnl t);r(k)] (3.56)

where .ðy'" represents the controller neural network.

The same two examples used in the sensor noise case are considered to highlight the

effectiveness of the control scheme when dynamic plant noise is present.

EXAMPLE 3.3.7 The same values used for the corresponding Model III sensor noise

example are used except that a input signal u(k) : æ[-1,1] and noise signal u(k) :

m[-0.1,0.1] is used, resulting in an input signal-to-noise ratio of 20d8. Once again,

training is carried out for 100,000 iterations with a learning rate of 0.1, resulting in a

mean square error of 0.0328. The outputs for the noise-corrupted plant and identification

model for an input signal u(k): sin(ffi) are shown in Figure 3.15a.

The controller is trained with a reference signal r(ß) : n[-1,1] for 100,000 iterations

with a learning rate of 0.1, resulting in a mean square tracking error of 0.0541. The plant

and reference model outputs for reference inputs r(k) : sin(ffi) and r(k) : "g"[ti"(#)]
are shown in Figures 3.15b and 3.15c, respectively.

EXAMPLE 3.3.8 In this example, the same plant and reference model as Example

3.3.2 are used. The emulator is trained with a random signal u(k) : n[-1' 1], and

with a random noise signal u(fr) : ft[-0.1,0.1] present. This once again results in an

input signal-to-noise ratio of 20d8. Training is carried out for 100,000 iterations with

a learning rate of 0.1, resulting in a mean square error of 0.0129. The outputs for the

noise-corrupted plant and identification model for an input signal u(k) : sin(ffi) are

shown in Figure 3.16a.
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The controller is trained with a reference signal r(k) : n[-1,1] for 100,000 iterations

with a learning rate of 0.1, resulting in a mean square tracking error of 0.0238. The

plant and reference model outputs for reference inputs r(k):0.5sin(ffi) and r(fr) :

0.5s9n[sin(#)] are given in Figures 3.16b and 3.16c, respectively.

The above results once again indicate that the controller performance is still very good

even when trained in a noisy environment. As with the sensor noise case, the emulator

response resembled a filtered version of the noise corrupted output. The level of the noise

at the output of the plant is dependent upon the structure of the plant. In the examples

considered, the output signal-to-noise ratio for the Model III plant which contained a

.,.(k)termisworsethantheModelIVplantwhichcontainedthetermffi4
However in both cases the output noise is attenuated during the control stage. Apart

from the presence of noise, the control performance is satisfactory, which is a promising

result considering the plant noise considered is probably the worst case scenario, as the

noise is coloured by the plant dynamics, and is thus not separable from the plant output.

3.3.2 On-line Learning and Control

EXAMPLE 3.3.9 The plant considered here is used in [169] and also is considered in

the off-line approach in Example 3.3.1. The plant equation is given by

Yr(k) (3.57)ve(k + L) : + u3(t)
I + afi(k

As is the case for Example 3.3.1, the reference model used is given by

a^(k t r) :0.2y^(fr) + r(t) (3.58)

Three types of reference inputs are considered. These are

,(k) .,2rk.
stn( 

25 )
(3.5ea)

(3.5eb)
sin(ff)
0.5ssn[sin(TÐ)

k <920
"(fr) k

,9r¡ri"1ffi¡1
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The disturbance-free plant and reference model responses for these inputs are given in

Figures 3.17a-3.18b. Neural networks consisting of 2 inputs, 2 hidden layers with 20 and

l0 nodes, respectively, and 1 output are used for the controller and emulator. A learning

rate of ? : 0.1 is used for both networks. On average, these parameters provided the

best results.
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Figure 3.L7a: Response of the plant (yo) and reference model (y*) fo, Example 3.3.9

with r(k) : .i"(2#) for k : 0. ..100

Figure 3.L7a shows that for the reference input given by equation (3.59a) the initial

tracking performance is not very good, as the emulator knows little about the plant'

However as Figure 3.17b shows, the performance improves with time.

Figure 3.18a shows that the effect on the tracking performance of a change in reference

input al k :920. At the instant the signal changes, the tracking performance deteriorates

greatly, but as the neural network adapts to the new input, the performance improves

rapidly. Figure 3.18b shows the control input required to produce the plant response

shown in Figure 3.18a. As can be seen, significant control effort is required at the instant

the input changes and also at the transition in states of the plant output.

Figure 3.19a shows the effect the variable load disturbances shown in Figure 3.19b on

the on-line neural control scheme. In the off-line approach, training is undertaken in an

115



1.5

0.5

-0.5

1

1.5

1

Figure 3.17b: Response of the plant (yo) and reference model (y,") f.or Example 3.3.9

with r(fr) :'in(ff) for k : 900... 1000

0o
J
.¡
o
å

0d

o
å

900 920 980

980

1000

1000

940 960
Time samples,

940 960
Time samples

3

2

1.5

0.5

-0.5

1

1.5
900

Figure 3.18a: Response of the plant (yo) and reference model (U-) fo. Example 3'3.9

wittr "(f) 
: 

'in(T*) for ,t < 920 and r(k) :0.5sen [sin(ZÐl for k ) 920

vp
lm

vp
ym

116



0.5

-a

1.5

0.5

-0.5

920 980 100 0

400

7

0

0ú
'i
À
ä

00
5
9

Figure 3.18b: Control input u(,t) for Example 3.3.9 with r(k) : sin(ff) for k < 920 and

r(k) : o.5ssn[sin (ry*\ ror Ic > 920

940 960
Time saru)les.

150 200
Time Samples

250 300

2

T

0

0€
a

Åo
ä

-1

0 50 100 350

Figure 3.19a: Response of the plant (yo) subjected to a load disturbance and reference

model (u-) for Example 3.3.9 with r(fr) : sgnþin(ffi)]

yp
ym

tt7



oú)
'À
o

0o
a

o

Figure 3.19b: Load disturbance used for Example 3.3.9

0.6

0.4

o.2

-0.2

-0.4

-0.6

1.5

50

50

100

t-0 0

350

350

400

400

150 200
Time samples

150 200
Time sary)les

250 300

250 300

1

0.5

-0.5

-a

-1.5

2

-, q

0

Figure 3.19c: Response of the plant (yo) and reference model (U-) for Example 3'3.9 with
r(k) : s.qn[sin(ffi)] and with dynamic plant noise, sensor noise and a load disturbance

present.

bias 
-

118



environment not subject to operational load disturbances, and thus a bias compensation

needs to be employed. Whereas in the on-line scheme, training is performed on-line with

the load disturbance present. Therefore, the controller is trained to compensate for the

DC bias and so there is no need to implement a bias compensation scheme. As can be

seen, the on-line scheme is capable of dealing with such disturbances very well with only

small changes to the tracking performance occurring at the instant at which the load

disturbance is changed.

Figure 3.19c shows the effect of dynamic plant noise of the order of 20dB signal-to-

noise ratio applied to the control input, sensor noise also of the order of 20dB signal-

to-noise ratio and the load disturbance shown in Figure 3.19b. The combination of

these disturbances represents a typical practical situation in which noise inherent to

the measuring device (sensor noise), noise due to internal components or environmental

factors (dynamic noise) and changes in load conditions are present. The results provided

in Figure 3.19c show that other than the presence of noise, which can generally be

minimised through filtering, the control performance appears satisfactory.

As shown in the above figures, the tracking errors are quite large in the initial phase

of operation, but reduce to the order of 5 to l0% after only a few iterations. Thus the

performance of the control scheme is quite good despite the fact that a seemingly non-

persistent excitation is used in most cases, except perhaps where dynamic (white) noise is

added to the input. However, the concept of persistent excitation is not well understood

for nonlinear systems. In fact it is stated by Narendra and Annaswamy [167] that the

conventional definitions of persistent excitation may be neither necessary nor sufficient

to assure asymptotic stability of nonlinear systems. Therefore, unlike linear systems, the

success of the adaptive control process does not always rely on a persistently excited

input u(k).

Simulation results also indicate that the on-line controller performance can be improved,

particularly in the initial phase, by preceding the on-line control stage by a short identifi-

cation phase in which some persistently excited input is injected into the plant. However,

this assumes that the system can be taken off-line. In addition, the initial tracking error

can be reduced by introducing a sliding control term [202, 203,204,, 234,235] which can
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come into operation when the system leaves a certain prespecified region.

EXAMPLE 3.3.10 A two-input two-output plant belonging to class IV is considered

in this example. The system is nonlinear in output and control and the nonlinearities

are not separable. The plant consists of cross-coupling in the output parameters.

vr,(k +l) : (k) + 0.5u1(k) * 0.5u3(k) * o.Lyr,(k)
r+a3, k)

Yr"(k + r) : (fr) + 0.5u2(fr) * 0.5u3(k) * 0.1yo,(k)
(3.60)

L+y3, k

A stable linear reference model given by the following difference equation is used

y^,(k + t)

Y,.r(k + I)

: o.îy^,(k) + 0.5u1(,t) * 0.5u3(k)

: o.ty*,(fr) + 0.5u2(k) * 0.5u3(fr) (3.61)

A neural network consisting of 5 inputs lUprrUp"¡ltt,tltrztuel,2 hidden layers with 10 nodes

each, and 3 outputs is used to implement the controller, i."., O3,ro,ro,r. The emulator

network belonged to the class f)!,ro,r.o,r. A learning rate of n -- 0.2 and momentum rate

of o : 0.1 is used for both networks.

The ability of the controller to adapt to a changing input is investigated by considering

the following reference input

r{k) :

,r(k) :

"(fr) 
:

a(k1200)ssr¡ri"1ffi¡1

a(k 1200)ss,¡,i"1ffi¡1

0.za(k I 2001 sen ¡sin 1 ffi ¡1
(3.62)

where a(k1200) is a random variable in ft[O,1] whose value is changed after every 200

samples. The various responses for this input are given in Figures 3.20 and 3'21.

As can be seen, the tracking performance of the on-line control approach is very good

for this example, despite the variable nature of the input amplitudes and the complex

nonlinearities of the system. Due to the cross-coupling in output, the tracking resPonse

lor yr, reflects the changes in the more frequently changing response ypr. These are

observed as small overshoots in the plant response at every 100 samples. However, the
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control scheme quickly accounts for this cross-coupling effect by a change in amplitude

of control signals u2 and us. As mentioned earlier, cross-coupling of output and/or

control variables occurs commonly in practice and thus the ability to compensate for

such complexities is an important property of this control approach. Furthermore, these

results highlight the general nature of the control approach and demonstrate its ability

to handle difÊcult MIMO systems without any additional information.

EXAMPLE 3.3.11 In this example a marginally stable nonlinear system is considered'

Mathematically speaking marginal stability is generally a property of a linear system in

the sense that by definition it implies a pole on the imaginary axis of the s-plane or

on the unit circle of the z-plane. Howe'rer, it is known that nonlinear system which

are inherently open-loop marginally stable commonly occur in practice. Well known

examples are the ship steering problem [127] and the homing missiles guidance problem

[78]. Lyapunov theory is often employed to study the stability of nonlinear systems.

In particular, Lyapunov's direct method is commonly used. This method involves the

construction of a Lyapunov function V(r) for which a number of properties are verified,

particularly concerning the rate of change of the function, i.e., AV(r). Essentially, if

J/(z) is positive definite and aV(r) is negative definite (semidefinite), then the system is

asymptotically stable (stable). The closest analogy to marginal stability is the condition

for a stable system. For a linear system the stable case above corresponds to a system

whose discrete-time eigenvalues are all ( 1, whereas the asymptotic stability case above

corresponds to a system with all eigenvalues strictly within the unit circle. However, the

problem is that the choice of Lyapunov function can affect the result, i.e., the system may

be stable according to Lyapunov's direct method when it is actually asymptotically stable

[108, 125]. Therefore, a formal definition of a marginally stable nonlinear system is still

rather elusive. For the purpose of this simulation study, such systems can be considered

to be a stable system cascaded by an integrator. This is expressed as follows:

a;&+t): (J-) vol'+L)

: a'r?e) + yr(k + L) (3.63a)

where Ui is the output of the augmented plant which is nonlinear and marginally stable,
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yo is the output of the stable system and q is the shift operator. The stable plant is

defined by the following diference equation

ae(k + r) : k) (fr - 1)z(k) + "'1r¡ * o.5yo(å - 1)

L + a|(k +a|@-r)

The on-line neural control procedure presented in this chapter has several advantages

over off-line neural network control procedures for controlling marginally stable systems.

Firstly, it does not employ a separate, open-loop identification stage, which requires

that the system is strictly stable. Secondly, identification of the plant and the control

are done simultaneously and in a closed-loop environment. Therefore, the closed-loop

control system can compensate for any tendency towards instability exhibited by the

plant. These facts suggest that an on-line neural control system is capable of controlling

marginally stable systems.

The reference model considered is chosen as

a^(k + L) :0.2a, (t) + 0.2v^(k - 1) + r(k) (3.65)

The performance of the controller is investigated by observing the step responses of the

plant and reference model. The ability of the controller to adapt to a changing operating

environment is also investigated by changing the reference input. Therefore the following

reference input is used to demonstrate the effectiveness of the controller.

(3.64)

r(,t) : s(k-25) k<600

sin(ffi) å > 600
(3.66)

where s(k) is a step at fr : 0.

The plant and reference model responses for this input are given in Figure 3.22a. Neural

networks consisting of 3 inputs, 2 hidden layers with 20 and 10 nodes, respectively, and

1 output are used to implement the controller and emulator.

Figure 3.22a shows the transient response for the neural controller with a learning rate

of T - 0.025. The transient is initially quite oscillatory, but as the plant is a marginally

stable one, this is not unexpected. The rise time and settling time of the response are

comparable with the specified reference model dynamics. Figure 3.22a also highlights
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the fact that the system can quickly adapt to a change in its environment, represented

here by a change in reference input occurring at k :600. In fact after an initial period

in which the tracking performance deteriorates, the system quickly adapts to the new

input by adjusting its weights, resulting in an improved tracking performance.

Figure 3.22b shows the control effort required to obtain the responses given in Fig-

ure 3.22a. It is worth noting that when the reference input is changed, a great deal of

control effort is required .

Whilst investigating the performance of the controller, it is observed that the learning rate

used in the backpropagation algorithm had a significant influence on the performance of

the system. In particular, it is found that the system performance is relatively insensitive

to the choice of learning rate of the emulator (r7i), whilst the controller learning rate (r¡")

affects the performance significantly. Several simulations are carried out to investigate

the effect of the learning rates. The system considered is the plant given in equation

(3.63a). The reference model given in equation (3.65) is used. The step tesponses of the

system for various learning rates are given in Figures 3.23a,3.23b, 3.23c and 3.23d.

These results highlight the fact that the controller learning rate affects the level of damp-

ing of the system. In particular, the results show that as the learning rate is increased,

the level of damping decreases and consequently the transient response becomes more

oscillatory, but the rise time and settling time are reduced. A learning rate of 4" - 0.001

represents a system which is overdamped, while a learning rate of ?" : 0.05 represents an

underdamped system. It is found that the system became unstable when the controller

learning rate is increased to 0.06.

To explain, consider the physical significance of the learning rate. The learning rate (ry)

is related to the size of the step taken along the error surface when adjusting the weights.

A small learning rate means only small steps are taken down the error surface, resulting

in a smooth, virtually continuous path of descent. Therefore, with small learning rates

the change in the values of the weights and output from the network are smooth and non-

oscillatory. This is reflected in Figure 3.23(a). With larger learning rates, bigger steps

are taken and thus the time to reach a minima is smaller. However, with a large learning

rate, the corrections to the weights are more severe, resulting in a greater oscillations in
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the values of the weights, and subsequently in the network output. This is reflected in

Figure 3.23(d).

3.4 Conclusions

A neural network based approach to the model reference adaptive control of nonlinear

systems is presented in this chapter. The approach combines the model reference neural

adaptive control scheme proposed by Narendra and Parthasarathy [169] with the forward

modelling approach of Jordan [95]. A time delay multi-layered neural network is used to

generate the appropriate control so that the plant output tracks the output of a reference

model. The reference model is chosen to reflect the desired dynamics. A second neural

network is used to generate an approximate of the plant Jacobian. It is shown that the

Jacobian is necessary for updating the controller weights.

The advantages of this method are

126



o Apart from the number of delayed values of plant input and plant output in the

nonlinear plant equation, and the relative degree and order of the system, no other

a priori knowledge of the plant is required, viz the plant can be treated as a "black

box". Thus the requirements of [169], namely (i) control and output terms are

separable, (if) the separate nonlinear functions /(.) and 9(.) can be independently

identified, and (iii) the inverse of operators on control can be erplicitly approxi-

mated, have been relaxed.

o It provides a unified approach to the control of stable nonlinear plants, in which

plants belonging to Model IV are treated exactly the same as plants belonging to

Models I-III.

An off-line approach and an on-line approach are discussed and the relative merits of

both approaches are presented. The controller weight update equation is derived for a

general multi-input multi-output system and it is demonstrated that the controller error

required to modify the controller network weights can be obtained by backpropagating

the tracking error through the neural network which emulates the plant.

The effectiveness of the control approach is demonstrated through a number of simulation

examples. For the off-line case, single-input single-output systems belonging to Model

III and Model IV are considered. The identification and control of the Model III system

is shown to be possible without the need to separately model the nonlinear function in

control or its inverse. This is shown to be an advantage over the approach presented in

[169]. The Model IV system is also successfully controlled. This represented a significant

achievement as in such systems the control is heavily embedded in the nonlinearities of

the system. A multi-input multi-output system belonging to Model IV is also considered

to highlight the generality of the approach. The effects of three types of disturbances

are considered, namely load disturbances represented by a DC bias on the output of the

plant, sensor noise represented by an additive white noise process on the output of the

plant and dynamic plant noise represented by a white noise process on the input of the

plant. A bias compensation scheme is developed to account for the DC bias and this is

shown to be effective for varying load conditions. The control scheme is also shown to

be effective in the presence of dynamic and sensor noise.
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In the on-line case, the same SISO system belonging to Model III is considered. Whilst

an equivalently small tracking error is not achieved, the scheme is still able to produce

an effective control. The scheme is also shown to be effective in dealing with systems

subject to load disturbances, dynamic plant noise and sensor noise without the need for

any additional compensation schemes. A MIMO system belonging to Model IV is also

considered to demonstrate the effectiveness of the approach. One of the major advantages

with the on-line approach is shown to be its ability to effectively control marginally stable

systems. This is a significant result, as many of the existing neural control approaches

are unable to deal with such systems because they employ open-loop identification.

The two major shortcomings of the approach presented in this chapter are that (1)

there is no guarantee that the tracking error converges to zero, and (2) the control

scheme is not shown to be stable. These are perhaps two of the most important issues

associated with any control scheme and must be addressed in order that the scheme be

practically viable. Whilst the simulation results show that the tracking error tends to

zero rapidly, this is, to some extent, due to a fortuitous choice of reference model, plant

and reference inputs, rather than any theoretical guarantees. Therefore results which

guarantee the convergence of the tracking error are desired. The problem of stability is

particularly difficult when artificial neural networks are used for identification or control

and the system is nonlinear. Unlike linear systems, it is difficult to derive simple algebraic

conditions to ensure stability of the overall system. In the next chapter an enhancement of

the neural adaptive control scheme is proposed which enables the derivation of conditions

under which these issues are addressed.
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Chapter 4

Stable Neural Adaptive Control

4.L Introduction and Overview

The most important property of any control system is its stability. An unstable control

system is typically useless and potentially dangerous. Qualitatively, the concept of sta-

bility cleals with the effect of unknown disturbing forces on a dynamical system. If the

effect of the disturbing force is insignificant, such that a system starting near its desired

operating point stays at that point forever after, then the system is considered stable.

Since these disturbing forces are present in most physical systems, the study of stability

properties is of major theoretical and practical importance. The concept of stability

has been researched extensively over the past century and so as a result, a great deal

of literature dealing with this issue is available 1L67,, 205, 218, 2371. In particular, the

most commonly used approach for studying the stability of control systems is Lyapunov

theory [174,218].

A¡other important concept in the design of control systems is the convergence property

of the output error. As discussed in detail in earlier chapters, the neural adaptive control

scheme presented in this thesis is based on the model reference adaptive control method-

ology. The funclamental principle in MRAC schemes is to design a control such that the

tracking error (the difference between the plant output and the desired reference model

output) converges to zero, or at least an arbitrarily small value.
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In the neural control scheme presented in the previous chapter, the tracking error seems

to converge to zero for the simulation examples. However, this is, to some extent, due

to fortuitous choices of reference model, reference inputs and plant structure rather than

any theoretical guarantees. Therefore, theoretical results are required to ensure the

convergence of the tracking error. To further ensure the practical and theoretical viability

of the proposed neural control scheme, theoretical results are also required to guarantee

the stability of the overall system.

However, in a control system with neural networks it is difficult to prove properties

such as stability. The main reason is the mathematical difficulties associated with the

use of highly nonlinear neural network controllers in complex nonlinear systems. Some

progress has been made in this area and some important theoretical results are beginning

to ernerge, but the overall knowledge and development of stability techniques for neural

control systems is still quite immature.

Arnongst the prominent research done in this area is the work by Chen and Khalil [30]

and Chen and Liu [31]. In both of these works, local convergence theorems are given

f'or the tracking error. These are provided for discrete-time systems and continuous-time

systems, respectively using a linearizing feedback neural network control scheme. The

issue of designing a stable neural control scheme and the convergence of the tracking error

to a neighbourhood of.zero has been recently addressed by Polycarpou and Ioannou [186]'

Sanner and Slotine1202,203,204l, and Tzirkel-Hancock and Fallside[234,235]. In all

of these approaches, results of Lyapunov stability theory are used to adjust the neural

network weights. Furthermore, a sliding control is also employed to help provide global

stability. However, in these papers certain restrictive assumptions about the plant are

made.

In this chapter, an enhanced neural network based model reference control scheme is

proposecl. As with the scheme discussed in the previous chapter, this enhanced neural

control scheme is formulated for a general discrete-time multi-input multi-output non-

linear system. Furthermore, the general nonlinear systems considered are non-affi.ne in

control and the control may be heavily embedded in the nonlinearities of the system.

Weak assumptions regarding the order, relative degree and number of delay terms in
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the plant output and control variable are made. Output feedback is also assumed. The

concepts of stability and convergence of the tracking error for the neural adaptive control

scheme are addressed through the introduction of an enhanced reference model. A subse-

cprent enhancement to the model reference scheme is made which enables the derivation

of sufÊcient conditions to guarantee the convergence of the tracking error. Furthermore,

Lyapunov's direct method is used to demonstrate that the overall system is stable. The

basic strategy of the proposed scheme is to generate a control input via the neural net-

work controller such that the plant output is nearest, in some norm sense, to a desired

plant output generated by the enhanced reference model. Therefore, a modified controller

neural network weight update ecluation is proposed to achieve the desired control.

This chapter is structured as follows. A detailed discussion of the concept of an enhanced

rel'erence model is provided in Section 4.2. The origins of this approach are discussed,

particularly in relation to the optimal decision control strategy of Spong eú a/' 12251

and the linear programming approach of Rehbock eú ¿/. [190, 192]. The resultant en-

hancement of the neural network basecl model reference control scheme presented in the

previous chapter is provided in Section 4.3. Two alternative sufficient conditions are

clerived to ensure the convergence of the tracking error. The corresponding proofs are

also furnished to demonstrate the convergence results. Lyapunov's direct method is used

to guarantee the stability of the closed-loop system. A modification to the weight update

equation is provided to achieve the desired control. Several simulation studies are then

considered in Section 4.4 to clemonstrate the effectiveness of the proposed scheme. In

particular the performance of the scheme for systems subject to a range of disturbances

and other non-idealities is investigated.

4.2 Enhanced Reference Model

The concept of introducing a desired velocity function in a reference model was first

introduced by Spong et o,l. 1225). In this paper, the problem of tracking a desired

trajectory in the state space of an n-link robotic manipulator subject to bounds on

the allowable input torques is considered. The controller is designed using an optimal
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decision strategy (ODS) which belongs to a class of pointwise optimal control strategies.

The aim of the ODS approach shown in [225] is to minimise the Euclidean norm of the

difference between the actual vector of instantaneous joint accelerations and a desired

joint acceleration vector. As shown in [f+], the ODS technique is a special case of the

optimal aim strategy originally proposed by Barnard [13]. The ODS technique is claimed

to liave several advantages over classic optimal control techniques which are based on

calculus of variations and yield a pair of control and state time histories that are optimal

lvith respect to a performance index evaluated over a specified time interval. The solution

to the classical optimal control problem requires a two-point boundary value problem to

be solved. This computational complexity means that it is infeasible to implement on-line

schemes based on classical optimal control for nonlinear dynamical systems. The ODS

scheme is a pointwise optimisation approach which optimises the present state of the

systems without regard to future events. This technique has the advantage of allowing

input and/or state variable constraints and it does not require the solution of a two-point

boundary problem. Therefore, clue to its simplicity, on-line implementation of the ODS

scheme is feasible.

The approach presented by Spong eú ø/. [225] considers a nonlinear dynamic system of

the form

tj,U) : f (y,(t)) + G(yo(t))u(t); yo(o) : ao (4.1)

subject to the constraints uT'n 1 u; 1 uT"', i : I,...rffi where Ar(t) e R" is the

output vector, u € R- denotes the control vector, ulin and ufo' are given scalars, and

,/ : R' + R' and G : R- -r tl'x- are given smooth nonlinear functions. In addition, for

any ï € R', G(x)rG(r) is positive definite. Lef y^(t) be the desired trajectory wtrichli

the output of the dynamical system must track. Since the control vector is bounded, the

clomain of the actual trajectory yo(ú) is restrained by the set C(y) of velocity vectors

rvllere 
i

C(yr) : {z e R" l, : f @ò +ä@ò",u e O}

O: {z€R'"IuT'"1u¿1uT"'ri:L,...,rn} (4.2)

It is then assumecl that the function u(t) e R" is specified ¿ priori as a function of

yo(ú) and y^(t).The function u(t) is referred to as the "desired velocity in state space"
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or "desired velocity" for short. However, as pointed out in Í225\, u does not represent

the actual joint velocities for a given manipulator. The ODS method is used to obtain

an optimal control law u.(ú) such that the corresponding instantaneous velocity !ip* :

Í'(yr(t)) + g(ar(t))u.(ú) is nearest to u(ú), hence the name "desired velocity". More

precisely, z.(ú) is chosen to minimise the performance index

J(aoþ),u(t)) : ï¿'Ä'{ty,(ú) - "(t)l'81ú,U) -,(¿)l} (4.3)

rvlrere Q is an n x n symmetric positive definite matrix. The validity of the scheme and

the properties of the resultant closed-loop system depend on the choice of the desired

velocity function u(f), which is selecteà a priori by the designer. Several choices of the

desired velocity function are examined in [225]. It is stated that if u is chosen to be linear

in some coordinate system ( : T(y), then a feedback linearisation approach, as discussed

irr Chapter 1, results. By choosing u(y) : -A, the optimal aim approach of Barnard [13]

is obtained. If u is chosen to point to a sliding hyperplane in R' then the so-called

equivalent control approach is implemented. The aim of the approach present ed in 12251

is to align the closed-loop system with u as closely as possible in a least square sense.

Thus, the desirable properties of the velocity function such as stability are translated

into the overall closed-loop performance of the system. The form of the desired velocity

fïnction considered for controlling a robot manipulator is

u(t) : ù^(t¡ + A(yr(t) - a^(t)) (4.4)

wh.ere !^ and ym ate generated from the reference model

ù^(t):Ay^(t)+Br(t) (4.5)

in which A is an n x n Hurwitz matrix. With this form of velocity function, a general

control scheme can be realised by the block diagram of Figure 4.1. An enhanced reference

model is introduced to represent the reference model and the desired velocity function'

For an ODS scheme, the control block in this figure represents the selection of a control

input u*(f) such that the performance index (a.3) is minimised. The approach realised

in this block diagram highlights the model following character of this choice of velocity

frurction. This approach is also adopted by Lee et al. ll23l for an aircraft terrain following

system.
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(r) y,(t)

u (r) v(t)

Figure 4.1: Model following scheme using an enhanced reference model

An alternative ODS method is proposed for discrete-time systems by Rehbock et al'

[190] and for continuous-time systems by Rehbock et aI. [192]. In the approach for

a discrete-time system, the performance index lVo(k + 1) - u(k)1, is used instead of

þjr(t) - "(t)l'Qlur(t) - r(¿)], where l.l, represents the /1 norm. Thus, this approach

avoids having to choose the appropriate matrix Q. Furthermore, this change allows

the pointwise optimisation problem to be converted into a linear programming problem

which is then solved using the well known simplex method [191]. For this case, the

desired velocity function is given by

È'

yP(r)

u(k) : t),*(lc ¡ I) + A(yr(k) - y^(k)) (4.6)

and the reference model is given by

y^(k + 1) : s(y-(fr)) + r(fr) (4.7)

where s : R' --+ R' is an appropriate function. This choice of desired velocity is shown

to result in a stable model following system with or without control constraints. The

approach proposed in [190] is applied to the ship steering problem and the aircraft terrain

tracking problem. It is found to be very effective in controlling these systems which are

nonlinear and affine in control. Note that in the discrete-time representation, it is less

obvious that y^(k* 1) of (4.7) represents the instantaneous velocity of the model output.

Consequently, it may cause confusion when u(fr) is termed the desired velocity. To avoid

reference
model

ü =Av +Br

y.

+

A
I +

cont¡oller

plant

i= (r, ) + c(v, )u
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this confusion, u(fr) will henceforth be denoted y'^(k+ 1) and will be referred to as the

enhanced model output.

4.9 Enhanced Model Reference for Neural Control

In order to ensure stability and the convergence of the tracking error, an enhancement

is made to the neural network based model reference adaptive control scheme which is

presented in Chapter 3. The enhancement involves introducing an enhanced reference

model of the form discussed above for model reference adaptive control schemes. This

enhancement can be mathematically expressed as follows:

Consider a plant governed by the following nonlinear difference equation

yr(k +I) : f @o(k),"',yr(k -l + 1);z(fr)' "',u(l' - rn + 1))

AoQ) : lJpo Vk e N (4 8)

where y, e R" is the output vector, u € R' is the control vector, f , R"'t x Rrxm -+ R'

is a smooth nonlinear function, Upo € R" is the initial output vector, È is the time index,

N is the set of natural numbers, and rn and / are the number of delayed values of plant

input and plant output, respectively.

Consider a stable reference model governed by

y*(k + I) : f^fu^(k),"',U*(le - d +1);r(k))

(4.e)y-(o) : !J^o

where !J^ €. Fl" is the reference model output vector, r € R' is the piecewise continuous

ancl bounded reference input, f^ : R"xd x R' -+ R' is usually a linear function, d is the

number of delayed values of reference model output with d I I and U^o € R" is a given

initial output vector for the reference model.

The control strategy is to find a feasible control input

"(k) : s(yp(k),"',yo(k - I + L);u(k- 1), "',u(l' - m * L);r(k);W") (4'10)

where g : R"l x Rrxn¿ + R' is a neural network parameterised by the set of weights I'll",

such that the corresponcling plant output is nearest, in some norm sense' to a desired
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output y^(k + t). This output variable is to be specified a priori as a function of the

plant output and the reference model output. An appropriate way to generat e y'^(k + I)

is

y;(k + I) : y^(k + 1) - A(a^(k) - y,(k)) (4.11)

where A is an n x n Hurwitz (stable) matrix. The combination of the reference model (4.9)

and the enhanced output (4.11) is called the enhanced, reference rnodel in Figure 4.2'

1) Enhanced Refe¡ence Model

r(k)

Figure 4.2: Block diagram of the neural control scheme with an enhanced reference model

4.3.L Convergence of the Tracking Error

The aim of the proposed neural control scheme is to generate a suitable control u(fr) such

that the cost function given by

".- 
t t-t

o: *D@^Q,+ 1) - uo(k*t))'(y'^(t + 1) - yr(k+t)) (4.r2)
L k=o

is minimised, where N is the number of samples.

The motivation for using A'*& + 1) in the cost function is that sufficient conditions to

ensure the convergence of the tracking error can be established. To demonstrate this,

firstly define the tracking error as

+l

1
I

I
t

e7(k + L)

eT(0)

: y^(k + t) - yr(k + r)

: u^(0) - ao(0) : eo

Reference
Model

Enhsnced+ +

I

I

L

e (k+
T

Dynarnlc
Systemu(k)
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A residual c(fr+1) which represents the difference between the plant output and enhanced

rnodel response, is then introduced, i.e.,

c(k -r r) : a;(k + 1) - yr(k + I) (4.r4)

It f'ollows that

e7(k +1) 
: iY,ï; "äT'1,. 

c(fr + 1)

(4.15)

The principal aim of a model reference adaptive control scheme is to ensure the conver-

gence of the tracking error. It can be shown that with the proposed enhancement, the

neural network based MRAC scheme presented here will satisfy this aim under certain

conditions. This issue is addressed in the following theorems.

THEOREM 4.3.1 The tracking error "r(k) defined i" (4.13) conuerges to zero if the

resitlual c(k -l I) defi,ned, i" (4.1/¡) satisfi,es the following inequality

llc(k + 1)ll < (L - I(^*",)11""(k)ll VKeN (4.16)

uhere ll.ll ¿t the l2-norm, I( : ll.9ll llS-tll, \^o, is the largest eigenualue of A, and S is

the matrir of eigenuectors of A.

Proof: Consider the matrix A. As it is stable, its eigenvalues are within the unit

circle on the z-plane. Also assume that A is chosen such that it has real and distinct

eigenvalues. Therefore

A: ,SÄ,9-l (4'17)

where À is a diagonal matrix with the eigenvalues of A on the main diagonal and ^9 is

the corresponding matrix of eigenvectors of A.

Taking the Euclidean 2-norm, one gets

llAll : lls^s-1ll

s llsll ll/\ll lls-'ll

: I( 
^^o,
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where 1(: llsll ll^g-tll, and À-o, is the largest eigenvalueof A

Taking the Euclidean 2-norm of the tracking error (4.15) one gets

ll"r(k+ 1)ll : llAer(k) * c(k + 1)ll

(4.1e)

For the tracking error e7(fr) to converge to zero as ft --+ oo, it is sufficient that

ll"r(k+ 1)ll - ller(fr)ll < o. (4.20)

This is achievable when the residual llc(k + 1)ll satisfies the following

llc(/c + 1)ll < (L - I{ 
^^,")ll"t(k)ll

(4.2t)

An alternative sufficient condition on c(k t 1) to ensure the convergence of the tracking

error is presented in the following theorem.

THEOREI|I,{ 4.9.2 The tracleing error "r(k) conaerges to zero if the residual c(k + 1)

satisfies the following inequality

llc(fr+r)ll s+ll"'(*)ll vkeN (4.22)

where ll.ll i" the l2-norm, I( : llsll lls-tll,À^o, is the largest eigenaalue of A, and s is

th,e rnatrir of eigenuectors of A.

Proof: Consider the tracking error defined by equation (4.15), i.e',

Ae7(k)+c(k+1)e7(k +7) :

"r(o) 
: €g (4.23)

k

"r(k) 
: Akeo +l Ak-ic(i)

Its solution takes the form
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Taking /2-norms of both sides of equation (4.24) yields

k

ll"rØ)ll < llÁ*ll ll"oll + D llÁ*-'ll ll"(¿)ll Ø.25)
i=1

Assume that ,4. is chosen such that it has real and distinct eigenvalues. Therefore

AÀ - ^g^Ës-r (4.26)

where Â is a diagonal matrix with the eigenvalues of A on the main diagonal and ^9 is

the corresponding matrix of eigenvectors of A. It follows that

llA*ll <

where 1f : ll^9ll llS-tll and À-o, is the largest eigenvalueof A. From (4.25) and (4.27),

one gets 
k

ll"r(¿)ll < It^L", ll"oll + | xtl-;,11"(¿)ll (4.28)
i=1

Consider that inequality (4.22) holds. Therefore (4.28) becomes

k

ll"r(r)ll < I(^h,,ll"oll + D*¡l;;j' ll"rQ - 1)ll (4.2e)
r=1

where * < Æ. Multiplying (a.29) by À-*2, and defining 7(fr) : À-,,!,"ll"r(fr)ll, yields

7(fr) < K llesll +f ry(; - t) (4.30)
i=1

Expanding (4.30), one gets

7(k) <

* mll{ ll"oll + *1Q)+*t0) +'" + m1(k-2)l (4.31)

Recursively substituting (a.30) into (4.31) yields

"y&) S K llesll B(*) + m7(0) B(*) (4.32)

where

B(*) : *k-, +(k-r)mk-, *(k-t)!*-z)*k-"+ * (* tr)^o--,*
-Wrn2+(fr-l)rn+1
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Using tÌ e binon ial theorem, (4.32) can writte as

7(k) < [1r llesll +m1@)](m I t¡r-t

\,Vith 7(0) : lle ll

7(k) < (I{ t m) ll"oll (- * t¡t-t

Multiplying (a.35) by À[o,, on gets

ll"'(k)ll < (K rn) lleoll (m+r)k-tÀ1,,

(4.34)

OI

(4.35)

(4.36)

I( *m
mIlll"'(r)ll < ll"oll [(- * 1)À-,,]Ê

As rn . #; - 1, then (m f 1)À-o" l L Thus as k --+ oo, ll"r(k)ll - 0

REMARK 4.9.L Theorems 1.3.1 and /¡.3.2 and their corresponding proofs prouide the

theoretical guarantees for the conaergence of the tracking error of the proposed neural

ndayttiue control scheme. Details on how the resultant sufficient conditions (1.16) and

U.22) are used in practice will be presented in Section /r.3.4'

REMARK 4.3.2 In th,eory tl¿e traclçing error conuerges to zero when either condition

U.16) or (/¡.22) is satisfied. Howeuer, in practice, perfect traclcing is unlilcely due of

the practicat difficulty in achieuing a perfect neural networle approrimation of the plant

tl'ynamics and the unlenown control function. Therefore it will be sufficient for the tracleing

error to conuerge to e7, a small finite aalue.

REMARK 4.3.3 It may appear from Theorems 1.3.1 and, 4.3.2 that the conuergence of

tlt,e tracking error is independent of the neural networles. Howeuer, a number of implicit

assumptions ure mad,e which rnust be met in ortler that the sfficient conditions (4.16)

anrl (1.22) are ualid, namely (i) a solution to the control problem etists, i.e., the system

is controllable and therefore a function g(.) erists, (ii) the neural networlc controller is

capable of approrimating this function, and (iii) the parameters of the neural networles

are chosen such that they perforrn the approximation role satisfactorily' If these assump'

tions t\o not hokl, then the suffi,cient conditions (/r.16) and (/.22) wiII not be met and

conaergence n'¿ay not be achieued.

(4.37)
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In many of the simulation examples considered multi-input multi-output systems are

used. For multiple-output systems, a diagonal matrix A is considered for the sake of

simplicity. The following theorem provides some guidelines on how to choose the diagonal

elements of A.

THEOREM 4.3.3 For an n x n diagonal matrir A, the condition .for the eristence of

ú?L upper bound on the magnitude of the elements of A in order for Theorem /.3.1 to

hold is
1a;;1-
n

Proof: Recall from the proof to Theorem 4.3.1 that the stability matrix A can be

represented as follows

A: ^gAS-t (a.39)

rvhere A is a diagonal matrix with the eigenvalues of .4. on its main diagonal and .9 is

the corresponding matrix of eigenvectors. For a diagonal matrix, ^9 is the n-dimensional

identity matrix and .4. : A. The sufÊcient condition given in Theorem 4.3-1 is

llc(fr + 1)ll < (L - I{^^"")ll"'(fr)ll (4'40)

With the Euclidean 2-norm defined as

i:I,...)n (4.38)

1
2n n

llBll : DDN?'
i=1 r-1

(4.4r)

one obtainr llsll : \fr and 1l: n. Condition (4.40) therefore becomes

llc(k + 1)ll < (L - nÀ^o,)ll"r(r)ll (4.42)

As (1 - ,\*o,) ) 0, the maximum eigenvalue of ,4. is \^o, 1*. Ar mentioned earlier,

the eigenvalues of a diagonal matrix A, denoted À;, are the diagonal elements ¿ii. Hence

1
a;; 11 (4.43)

TL¡TT

REMARK 4.3.4 The suffi.cient conditio, (4.16) places greater restrictions on the choice

of tlte elements of the diagonul matrh A th,an condition (4.22), for which the only require'

ments are that a;¿ 11. Therefore, if the rnatrir A is chosen to satisfy Theorem 4'3'3,

then the restrictions on A i,mposed by condition (/.22) will also be met.
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The above approach is derived for a general multivariable system. However, for a single-

input single-output system (n: 1,": 1), thestabilitymatrixis 1x1. FoTSISO systems,

a stability constant (d) ir defined such that A: (0) € Rr"r, where 0 < P ( 1. Therefore

the tracking error becomes

e7(k * r) : Be7(k) + c(fr + t) (4.44)

and the stability conditions on the residual become

Ilc(k + 1)ll < G - þ)ll"'(r)ll (4.45)

OI

llc(k + 1)ll <
(r-p)

p ll"(fr)ll, (4.46)

respectively.

4.3.2 System Stability

Stability of the overall system is an important property which needs to be guaranteed

in order that the control scheme fulfills its original aims. Lyapunov stability theory

may be used to guarantee stability. This involves firstly choosing a Lyapunov function

candidate, and then selecting the control strategy to ensure that the hypotheses of a

particular stability theorem are satisfied. More precisely, consider the tracking error

e7(k * I) : Ae7(k) + "(r + t;; e7(0) : ¿o (4.47)

Let a possible Lyapunov function candidate be

V(er(k)) : "r(k)r 
P"r(k)

where P , *n'" is a positive definite real symmetric matrix. Then

Av(ea(k)) :V(er(k + 1)) - V(er(k))

: e7(k * L)r Pe7(k + 1) - e7(k)r Pe7(k)

: lAer(k) + c(k + Ðf PlA"r(k) t c(k + 1)l - e7(k)r Pe7(k)

(4.48)
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: er-(k)r Ar PAeT(k) + e7(k)r Ar ncQe + t)

+c(k + t)r P Ae7(k) + "(t + \r ec$ + 1) - ey(k)r Pe7(k)

: e7(tc)rf,tr PA - Pler(k) * 2c(k + r)r PAet(k) + c(k * \r rcQe + t)

: -"r(k)'Q"r&) * 2c(k + r)r P Aer(k) + c(k * t)rPc(fr + t) (4.49)

If

2c(k * t)r PAeT(k) + "(¿ 
)- r)r Pc(k + 1) < e7(k)rQe7(k)

where -Q : ArPA - P, then

(4.50)

LV(e7(k) < 0 (a negative definite) (4.51)

Thus if c(k-l1) satisfies the inequality (a.50), then the neighbourhood eT :0 of (4.47)

is stable.

The result is stated as follows:

THEORED.4 4.3.4 There erists a Lyapunou function candidateV(er(k)):"r(k)r P"r(k)

which results in the neighbourhood e7 : 0 of (4.47) being stable, where P is a solution

of the Lyapunou equation ArPA- P - -Q;Q € R'"', if the residual c(k II) satisfies

the inequality

2c(k -r r)r PAeT(k) + c(¿ + \r ecQe + 1) < e7(k)rQe7(k). (4.52)

REMARK 4.3.5 The inequality (1.52) is also an alternatiae sfficient condition on the

residual c(fr + 1).

4.3.3 Supervised Learning Scheme

A block diagram of the neural network controller proposed in this chapter is shown in

Figure 4.2. In order to train the neural network controller using a supervised learning

scheme such as backpropagation, the error 
"o(k) - "(k) 

in the controller output is re-

quired. The term 
"o(k) 

is the desired control which would produce y^(k+ 1) if applied

to the plant. However, as u¿(k) € R' is not known, an approximation of the controller
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error denoted by e", must be generated. A method for generating such an error is derived

f'or a general multi-input multi-output system below.

Firstly, consider the cost function that is to be minimised. This is given by

E ::Ïtr;to + 1) - yoØ * t))'(y'^(k+ 1) - yor" + L)) (4.53)
L k=o

where.f{isthenumberofsamples,y'^:la'^r,...ra'^^lT,,ap:ÍUprr.,'rao^]Try^(k+t)

is defined by equation (a.11) and the termyl(k + 1) - yr(k* 1) is the residual c(fr+1).

,B is minimised by performing a gradient descent in E(W.(k)), where W"(k) are the

controller weights

AE
aw"(k) fu^(* + 1) - yo(Ë + t)) (4.54)

wlrere #lõ is a p x 1 vector , W is a p x n matrix , W is a p x n matrix, and

p is the order of the output layer weight vector : number output nodes x the number

of nodes in the last hidden layer.

Calculating the partial derivative of y'^(k * 1) with respect to the weight vector W.(k)

results in
Ay^(k + 1) _ oY^ k+L

aw" k aw"(k)
wÌrere A is an n x n Hurwitz matrix which first appeared in (4.11)'

In the above equation W:0 and ,-tÑ*l:0, so that

Ay*& + 1) _

ôv,(k) - 7yo(k + L)

aw"(k)
fr+t)

(4.55)ôv^(k) ^ ïyr(k) 
^awçk)^ - aw"&)n

aw" k
(4.56)

Now the partial derivative of yr(k) with respect to W.(k) can be expressed as

our(k) ôu(k) ïao(k) (4.57)
AW.(k) aw"(k) )u(k)

wlrere ffi is apx r matrix,W is a r x n matrix, n is the order of the output vectot,

and r is the order of the control vector.

However, from equation (4.8) it is apparent that yr(k) is a function of.u(k - 1) not z(k).

S" ffi is redefined as follows

ôvr(
aw.(k)

L44

oyr(k)

-1
(4.58)



It can be approximated that ffi# = 1, where ,I is the n-dimensional identity matrix.

This is a reasonable approximation because if the sampling period l¿ is chosen sensibly,

then the change in yo over this sample should be small. Thus (4.56) becomes

Ay^(k + L)

aw"(k)

Substituting (4.59) into (4.54) results in

aE l7yo(k + L)w: \i¡ño-

(4.5e)

(a^@+1) -yo(k+r))

i@o&),...,uo(k - l +1); u(&), "',u(1, - m * L);Wr)

0

7u(k) 7yo(k + I) (t- t)(a^(k + 1) - y,(k +L)) (4.60)
AW"(k) )u(k)

Now tïom the backpropagation algorithm, the update equation for the output layer

weights of the controller neural network with learning rate 7 is given by

w"(k+ 1) : w.(k) - r#@ (4.61)

Substituting (4.60) into the above equation results in

W.(k+|):W.(k)_,mWØ_Dfu^(k+r)_y,(k+l))(4.62)

Equation (4.62) involves the Jacobian of the plant gtffp..,u,, which is unknown. Assuming

that an approximate of the Jacobian, 9!W, is available, the following weight update

equation results

w.(k+ 1) : w"(k) + rtm".(k) ' (4'63)

where the controller error vector e": l€"r,e.2,,. . ,".,fT is given by

e.(k) : We - t)(y^(k + 1) - y,(k + t)) (4.64)

and the termfir(le f 1) represents the n-dimensional estimate of the plant output vector

obtained from the neural network emulator, i.e',

vo$ + t)

i,(0)

(4.65)

(4.66)
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In Section 3.2.3, it is demonstrated that the controller error, ec, carL be obtained by

backpropagating the tracking error

e7(k * L) : y^(k+ 1) - yr(k + t)

llnl L-ann y'^^-ae^

(4.67)

through the neural network that identifres the plant. For the enhanced scheme proposed

in this chapter, it can be shown in the following derivation that the controller error

governed by equation (a.6a) can be obtained by backpropagating the modified error

(I - A)c(k+L) : (I - A)(y^(tr+I)-yr(k+1)) through the neural network approximating

the plant dynamics, where "(k+ 1) is the residual defined in (a.la).

Firstly, consider the desired controller error

Aire(k + t)
0'u(k)

e"(k) : (I - A)(yi"(k + 1) -yo(k + t))

9þL
ôut L-ott -dln y;, Apt

ôûpn
ôut

9lz-
ðu,

0ûon
out

9þ-
ôt,

AûrL
ãu.,

9b.
ãut

%L
ðu,

0 - " rt) (y'^, - !! nt) - o tr(v'^, - u p) -' " - a n(y | 
^ - a n ^)

- au(y'*, - tl p,) * (r - a22) (y'^, - v o) -' " - azn(Y k. - a p 
^)

, - !/ nr) - o,r(a'*, - a pr)-''' + (l - o 
"") 

(yl 
^ - v, ^)-o"t(y'^

BrH * ar* +...+ B"W
B,H ¡ n,W + "'+ B"W

(4.68)

Br9# + Br9# +...+ B"lff
where

Bn : -o^r(y'^r-l1pr)-o.r(a'^r-Up)-. . . + (I-o^^)(yl^-ar^) (4.69)

For the sake of simplicity, assume that A is a diagonal matrix. Therefore, the elements

aij 0 i:1,...,n j:1,...,n i + j and the diagonal elementsa;; i - 1,...)n a.e
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the eigenvalues of A and thus 0 1a;;11. Therefore the controller error e"(fr) becomes

(L - " rr) (y'^, - u n r¡ 
{r- + (l - " rr) (y'^, - a o) ?f *'

(L - "r)@'*, - !! or)?i + 0 - "rr)(v'*, - ao)Tff *'
*(1-ø,,)@k^-yr)Tff
*(L-a^^)(y'*^-yr)Tff

( kec )

(r - o rr) (y'^, - !) nr) 
9# + 0 - "rr) (v'^, - u r) T#+''' + (r - o 

^^) @'^ 
^ - a, )lf

(4.70)

For this modified neural adaptive control scheme, the network output error for the g-th

controller output is

"", 
(k) : (1-411) (y'^,-yr,) 0u^

ôun
* (l-a22)(a'^,-Ao,)

0y*
oun

+ . .'+ (I-o^^)(a;^-ar^)ffi
(4.71)

wlrere the time index lc on yl, y, and u is neglected for brevity. Now recall from the

clerivation provided in the previous chapter that for a two layered neural network with

n inputs, ó hidden units ancl n outputs, the effective output error ó2 : 16?,. . . , ól]1 is

given by
ba

6? : s' (Dwi¡g(ÐW|¡r x))e.,(k + 1)
j=l lc=l

ba

6'z" : s'(Dwi¡g(DW|¡rt))e.^(k + 1) (4'72)
j=l &=1

rvhere eo:leorr...,"on)T is the error to be backpropagated. For the original neural

control scheme provided in Chapter 3, eo(k + 1) : A*(k + t) - yo(/c + 1). For the

enhanced schemeproposed in this chapter, e.(kI1) : (/ - l)(y^(t + 1) - yr(k+I))'

Backpropagating the above output errors to the input layer yields for the /-th network

input

ói D {w: j d (2 w ! p (Ð w} o" n)) 2 wio (D w} ¡," *) (L - o,,) (u'^ 
" - u o )}

bfI

s=l

b ù
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a

j=7 lc=l
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,t=1j=l
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j=l
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Substituting (3.26) into (4.73) yields

áf : ( I -ø 1 r) (v'*,-v r,)æ * Q- a22) (v 
^,-a *)ffi*'''*( 1 -ø ^ ) (u'^ 

^-v r.)W Ø.7 4)

where the time index fr is neglected in some of the terms for the sake of brevity and ,4.

is assumed to be a diagonal matrix. The above equation is equivalent to the controller

error given in equation (a.71). The above results can be summarised by the following

two theorems

1
N-r

THEOREM 4.3.5 Minitnising the rnean squol'e residual error E D@^U, + 1) -2 ß=o

'yn(kIt))'(y^(k+ 1)- Uo(k*I)) can be achieued by utilising the following approrimation

of th.e cor¿troller error

e"(k):r##Q - A)(v^(rú + 1) - vo(k+ 1)) (4.75)

to modify the weights of the neural networlc controller

THEOREM 4.3.6 The controller error gouerned by

e"(k):*##Q - Ð(a^(k + 1) - ao(k+ 1)) (4.76)

can be obtained by backpropagating the modified error (I - A)c(k ¡ L) through the neural

networle approximating the plant dynamics, where c(k *L) : y'^(k + 1) - yr(k II) is the

resi,d'uaL

4.3.4 Enhanced Neural Control Scheme - Practical Issues

The above theorems allow the weight update equation (4.63) to be used, in conjunction

lvith the backpropagation algorithm, to train and synthesise the controller. As with

the method presented in the previous chapter, the identification of the plant is only

necessary to obtain an approximate of the plant Jacobian which is then used to update

the controller weights.

In orcler that the residual c(k * 1) satisfies either sufficient condition (4.16)' (4'22) or

(4.52), an iterative search is conducted on the control. The search is initialised with
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the controller input vector at time Ë and the controller network weights are modified

according to the weight update equation (4.61) until one of the the termination criteria

are met: (i) the residual c(k* 1) satisfies (4.16), (fi) the residual satisfies (4.22), (iii) the

resicltral satisfies (4.52), or (fu) the number of iterations reaches a maximum ("computa-

tional limit"), The new value of control z(k) is then the value of control at the end of the

iterative search. This approach is similar in spirit to the procedure presented by Hoskins

et al. [75], except that in [75] the iteration is terminated when the predicted cost or

the magnitude of the cost with respect to the control is less than a threshold. The cost

fïnction in this case is related to a Lyapunov-like function associated with a convergence

model. This convergence model is similar in some respects to the enhanced reference

model considered here, however the convergence and stability results provided in [75]

are significantly different to the results provided in this thesis. Furthermore, the general

philosophy of the approach proposed in this thesis is inspired by the ODS approaches

of Spong eú ø/. [225] and Rehbock eú øi. [190, 192]. The iterative approach described

above is also similar in spirit to commonly used on-line optimisation schemes for control

applications.

Tlre iterative search is dependent on the plant output yo(k * 1) and the plant Jacobian

However, during the search routine, the iterative values of control are not applied

to the plant as this would alter the state of the plant. Instead the neural network emulator

is used to provide the necessary "plant output" and Jacobian. As the neural network

emulator is initially not an accurate model of the plant dynamics the iterative search is

generally conducted for the maximum number of iterations during the first few samples

of operation. However, this problem can be easily overcome by improving the accuracy

of the neural network emulator via a short period of off-line identification prior to the

on-line control procedure.

In a typical practical environment, the neural controller would be implemented on a

current generation floating-point DSP chip or microprocessor such as the TMS320C40'

which has an instruction cycle time of 40 ns. Given a typical sampling interval of 0.1s and

assuming a conservative figure of 2 cycles per instructionl, this allows 1.25 x 106 opera-

lThe TMS320C40 DSP chip undertakes most floating-point operations such as multiplication, addi-

tion, subtraction, etc., in 1 instruction cycle.
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tions per sample. The neural network MRAC approach using a typical neural network

architecture of fl!,ro,ro,z reeuires approximately 5000 operations. This means that the

computational limit for the iterative control search is approximately 250 iterations per

sample. For most of the systems considered an average of 1 to 5 iterations is required,

meaning that from a practical perspective more than sufficient computational time is

available between samples for the iterative search. Furthermore, the above analysis does

not take into account the potential to speed up computations by exploiting the parallel

n¿ture of neural networks.

4.4 Simulation Examples

In this section, five simulation examples are considered to demonstrate the effectiveness

of the enhanced neural adaptive control scheme. The first two highlight the improved

performance of the proposed scheme over the on-line scheme presented in Chapter 3 for

both a single-input single-output system and a multi-input multi-output system. The

remaining three simulation examples demonstrate the ability of the scheme to deal with

commonly occurring practical non-idealities. In particular, the effectiveness of the scheme

in dealing with nonminimum phase behaviour, its robustness to dynamic uncertainties

and variations, and its ability to effectively control a marginally stable nonlinear system

are highlighted.

4.4.L Single-Input Single-Output System

The first example considered is the Model III single-input single-output system studied

in Chapter 3 and by Narendra and Parthasarathy [169]. This system is nonlinear in

output and control with the respective nonlinearities being separable. The difficulty in

controlling such systems arises because of the complex nonlinearity in control.

EXAMPLE 4.4.t The system dynamics are described by the following difference equa-

tion

y.p(k + r) : + "t(fr)
(4,77)



The reference model used is a stable first order discrete-time system given by

a^(k + L) :0.2y^(k) + r(k) (4.78)

Narendra and Parthasarathy utilised the separabìlity of the control and output vari-

able terms to design an explicit control law which incorporated the neural estimates of

these separable nonlinear terms. The results provided in Chapter 3 demonstrated that

plants such as the one described in equation @.77) can be effectively controlled with-

out knowledge of the separability (or otherwise) of the control and output variables.

In this simulation study, the enhanced model reference neural adaptive control scheme

will be shown to result in an improved tracking performance compared with the scheme

presented in Chapter 3.

The enhanced reference model consists of (4.78) and

a^(k + t) : y^(k + 1) - 0.1(y-(fr) - ao(k)) (4.7e)

The ability of the controller to adapt to a changing input is investigated by considering

the following reference input

2trlc

150
r (k) : a(k I L1})ssn[sin( )l (4.80)

where a(klL50) is a random variable in ft[O,1] which changes value every 150 time sam-

ples.

The various responses for this input are given in Figures 4.3a-4.3i. As the plant is first

order in output and control, neural networks consisting of 2 inputs, 2 hidden layers with

20 and 10 nodes, respectively, and 1 output are used for the controller and emulator.

A learning rate of ? : 0.1 is used for both networks. As shown in (4.79), a stability

constant of B:0.1 is used. These parameters provided the best results.

Figure 4.3a shows the response of the plant and enhanced reference model output for the

ref'erence input given by (a.80). As can be seen, excellent tracking results are obtained.

In particular, apart from the first few samples, the plant response is indistinguishable

fïom the the reference model response and the desired response. Also the variable natu¡e

of the reference input does not prove to be a problem and the tracking error effectively

remains at zero even after the various step changes.
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Figure 4.3d: Control input u(k) for Example 4.4.L without the proposed enhancement

and with r(k) : a(klt50)ssnþin(ffi)l
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The results of the approach considered in Chapter 3, subject to the same reference input,

are provided in Figures 4.3c and 4.3d. The plant and reference model responses indicate

that the tracking performance is not as good as for the enhanced scheme. In particular,

the significant overshoots which occur for the original scheme are not present in the

plant response for the proposed control method. Also, the high frequency oscillations

at k : 150 and k : 225 in the responses for the original scheme are not present in the

responses for the enhanced scheme. Comparison of the control response obtained for

the enhanced neural control approach (Figure 4.3b) with the response obtained for the

original neural control approach (Figure 4.3d) shows that the new approach results in a

less active control signal with no large overshoots. This is of practical benefit because

a control signal which consists of large, rapid changes in magnitude results in greater

clemands on the various actuators, and therefore reduced life of the control mechanism

and increased energy (fuel) consumption.
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Figure 4.3e: Response of the plant (yo), reference model (

rnodel (y'^) for Example 4.4.1 with r(k) : a(kllí})sgn[sin(
ìrance present
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and enhanced reference

] and with a load distur-

Figure 4.3e demonstrates the ability of the enhanced neural controller to deal with a

variable DC bias on the output of the plant. The form of the DC bias disturbance

considered in this example is shown in Figure 4.3f. As explained in the previous chapter,

yp-
ym

ym

L54



0.6

0.4

0Í
a

o
ã

o
d

.i

À
å

0.2

-o.4

-0.6

0

0 s0 100 150 200 250 300 350 400 450 500

Figure 4.3f: Load disturbance for Example 4.4.1

50 100 150

Time samples

200 250 300
Time samples.

350 400 450 500

1

0.8

0-6

o.4

0.2

0

-o .2

-0.4

-0-6

-0.8

0

Figure 4.3g: Control input u(k) for Example 4.4.1 with a load disturbance present

bLas 
-

155



such disturbances arise because of load changes on the system and are therefore often

called load disturbances. In the corresponding example in Chapter 3 (Figure 3.19a), the

control scheme is capable of compensating for load disturbances very well. Apart from

small perturbations in the plant response whenever the load is changed (Figure 3.19b),

the tracking elror is virtually zero. The plant and reference model responses for the

scheme proposed in this chapter demonstrates that even these perturbations are reduced

to the extent that perfect tracking occurs. The control necessary to achieve these excellent

results is shown in Figure 4.3g. As can be seen from this figure, the magnitude of control

input changes more frequently in order to compensate for the load disturbance. However,

the control activity is still at a level which should not pose any problem for the control

mechanism.
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Figure 4.3h: Response of the plant (yo), reference model (U-) and enhanced reference

moclel (y'^) for Example 4.4.1 with r(k) : a(klL50)sgn[sin(ffi)] and with dynamic plant
noise, sensor noise and a load disturbance present

The final two figures for this simulation study reflect the effect of dynamic plant noise,

sensor noise and load disturbances on the performance of the system. This can be

considered a worst case scenario as not only is there a variable mean white noise process

(load disturbance * sensor noise) on the output of the plant, but the plant response is

corrupted by a coloured noise process (dynamic noise). A 20 dB signal-to-noise ratio
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Figure 4.3i: Control input u(k) for Example 4.4.1 with r(k) : a(klL50)sgn[sin(ffi)] and

with dynamic plant noise, sensor noise and a load disturbance present

is used for both noise processes. The plant, reference model and enhanced reference

rnodel responses provided in Figure 4.3h indicate that apart from the presence of noise

on the plant output, the control system performs very well. Furthermore, the noise at

the output is attenuated by the control system such that the output signal-to-noise ratio

is significantly increased. The negative aspect of the presence of noise in the system is

that a far more active control response results as shown in Figure 4.3i. However, the

rnagnitude of the control chattering is small compared with the overall magnitude of the

control.

4.4.2 Multi-Input Multi-Output System

The theory for the enhanced model reference neural adaptive control scheme furnished in

Section 4.3 is derived for a general multi-input multi-output case. Therefore to demon-

strate the effectiveness of the proposed scheme, a multivariable simulation study is pre-

sented. The Model IV MIMO plant used in Chapter 3 is once again considered in this

example. The system is nonlinear in output variable and control and the nonlinearities
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are not separable. The plant consists of cross-coupling in the output variables.

EXAMPLE 4.4.2 The plant dynamics are described by the following difference equa-

tion

Yr,(k + l) : (k) + 0.521(fr) * 0.5u3(È) * o.Iyo,(k)
r+y3, k)

Yr,(k + l) : (k) + 0.5u2(k) * 0.523(fr) * 0.1yo, (fr)
(4.81)

r+v3,

A stable linear reference model given by the following difference equation is used

v^,(k+r) : 0.\v^,(k) +0'5u1(k) *0.523(fr)

s^,(k + r) : 0.5v^"(k) + 0.5u2(k)* 0.523(k)

The enhanced reference model used consisted of (4.82) and

k

I a*,(r,+ 1) I - Al v*,(k) - ,,&) l
I v^,Q, + 1) J I u^"&) - a,&) j

l',:',',ïll]-lî';,]l',ï:.',;',-',',',rr',]

y'^r(k + l)
y'*r(k + l)

(4.82)

(4.83)

The elements of the 2 x 2 diagonal matrix A are chosen in accordance with Theorem 4.3.3

such that arr : a22 = 0.2 < ], wh"t" n :2.

A neural network consisting of 5 inputs lUp,Upr¡rtr¡'ttz¡u"fr2 hidden layers with 10 nodes

each, and 3 outputs is used to implement the controller, i."., f)Ê,ro,ro,r' The emulator

network belonged to the class f,lf,ro,ro,r. A learning rate of T : 0.2 and momentum rate

of a : 0.1 is used for both networks.

As with the simulation study considered in Chapter 3, the ability of the controller to

adapt to a changing input is investigated by considering the following reference input

"'(È) 
: a(k1200)ss"¡ri"1ffi¡1

,r(k) : a(k1200)ss"¡ri"1ffi¡1

,.(k) : 0.za(k1200¡ssn[sin(ffi)]
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Figure 4.4a: Response of the plant (Ar: lyo,UrrlT), reference model (y^ : ly^r,y*"lT)
and enhanced reference model (a'^:la'^rry'*rlr) for Example 4.4.2

where a(k1200) is a random variable in ft[O,1] whose value is changed every 200 samples

Tlre various responses for this input are given in Figures 4.4a and 4'4b.

The plant, reference model and enhanced reference model responses shown in Figure 4.4a

indicate that the tracking performance of the the enhanced neural control scheme is

very good despite the variable nature of the reference input and the complex cross-

coupling of variables which exists in the the system. These results compare more than

favourably with the performance of the on-line control scheme for the corresponding

system in Chapter 3. In particular, the tracking errors have been significantly reduced,

such that, after the first few samples, there is no discernible difference between the plant

and reference model responses. Furthermore, the small overshoots which occurred in the

F1 
-F1 --Fl' '-'_

w2-
fr2 ----.

fi2' .-."

159



å

e

d

I

2

1.5

1

0.5

0

-0.5

-1.5

-2

-2,5

2

1.5

0.5

0

-0,5

-1

-1.5

-2.5

0.8

0.6

0. ¡¡

o.2

0

-o.2

-0.{

-0.6

-0. s

0 100 200 300

0 100 200 300

0 100 200 300

400 500 600
Tlaô sæDl.s

{00 500 600
Tlr. selcr

1AO 800 900 1000

t00 800 900 1.000

?00 800 900 1000aoo 500 600
TlDe 6ùDI9E

Figure 4.4b: Control input (u : lul,uz,uslr) for Example 4.4.2

ul 
-

- u2-

t-

u3-

160



plant response yo, due to the more frequently changing cross-coupled response yp1 are

eliminated in this approach.

The improvements obtained because of the enhancements made to the control system are

lïrther emphasised by the control responses provided in Figure 4.4b. As can be seen in

this figure, the control required to achieve the improved tracking performance is far less

active than the control response of corresponding example in the previous chapter. This

is particularly significant from a practical viewpoint as reduced control activity translates

to reduced "wear and tear" on the control mechanism and less energy usage, which in

turn means a more economical system.

The excellent performance of the enhanced neural control scheme for this simulation

study suggests that the proposed scheme is capable of effectively controlling complex

nonlinear multi-input multi-output systems. This augers well for the practical viability

of the scheme, as a host of commonly occurring practical systems are multivariable

structures.

4.4.3 Nonminimum Phase System

In linear systems theory, a nonminimum phase system is one which has a zero in the right

half of the s-plane in a continuous-time environment or outside the unit circle on the

z-plane in discrete-time environment. Such systems often pose problems for traditional

control schemes as many of these schemes employ an inversion of the plant. For nonmin-

imum phase systems this results in an unstable controller. In nonlinear systems theory,

one can no longer represent nonminimum phase systems simply by an appropriate zelo.

In Chapter 3 a definition is provided for a minimum phase nonlinear system. Based on

this definition (Definition 3.2.2), a nonminimum phase nonlinear system can be defined

as a system for which the zero dynamic defined by

0:.f(0,0,...,0;u(fr), "(k- 1),... ,u(1, - rn + 1)) (4.85)

where 0 € R" and z € R", is unstable, i.e., unbounded inputs lie in the null space of the

operator representing the plant.

Nonminimum phase nonlinear systems commonly arise in practice. Examples include
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the tactical missile and many discretised industrial processes. In fact such systems often

arise when a continuous system is discretised [6]. As stated by Slotine and Li [218], if

the zero-dynamics is unstable then alternative control strategies to feedback linearisation

should be employed. As with traditional control schemes such as feedback linearisation,

rnany neural network based control techniques are unable to cope with nonminimum

phase systems. This is primarily because they involve the inversion of the plant being

controlled. In the scheme presented here, however, an explicit inversion of the plant is

not performed and thus it is capable of dealing with such systems.

EXAMPLE 4.4.3 A second order nonminimum phase system is considered to highlight

the effectiveness of the proposed method. The plant equation is given by

vo(k* 1) : ranh(0.7859yr(k) - 0.3679yo(k-r)-0.7267u(k)+ 1.30872(k - 1)) (4.86)

The nonlinear nature of the system is introduced by the tanh(.) term, which models a

saturation effect on the output. Plants such as this one are generally difficult to control

because of the nonlinearity in control and the nonminimum phase behaviour.

The nonminimum phase property of this system can be examined by observing the control

input u(k) required to keep the output of the system at zero. For the above system, the

necessary control input is given by

u(k) : ffifr.r85eyo(k) - 0.367ey0(fr - l) * 1.3087u(k - 1)) (4'87)

with u(0) : 0.25. As shown in Figure 4.5a, the control input required to keep the state

at zero is unbounded. Therefore, the system satisfies the definition of a nonminimum

phase system given above.

As a counter-example, a linear minimum phase system of the form given below is con-

sidered

yr(k* 1) :0.78rsyr(k)-0.367eyo(k- 1) -0.7267u(fr) +0.36335u(,b - 1) (4.88)

This system has poles at z : 0.3930 +.0.462Ij and zeros at z : 0, 0.5. As the system has

poles and zeros within the unit circle, it is stable and minimum phase. For this system
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the control required to achieve zero dynamics is

u(k) : #(0.785ey0(fr) - 0.367 syp(k- 1) + 0.36335u(,t - 1)) (4.8e)

with z(0) :0.25. This control input is shown in Figure 4.5b. As can be seen, this system

is asymptotically stable to the reference point u : 0 when the output is kept at zero.

This confirms the minimum phase nature of the second system.

The open-loop response of the nonminimum phase nonlinear system as shown in Fig-

ure 4.6a undertakes a negative excursion before becoming positive and settling to its

steady state value. This is undesirable because it may result in catastrophic failure in a

tight control environment, such as navigating a ship through a narrow channel.

The reference model used is a stable second order discrete-time system given by

a^(k + r) :0.2a^(k) + 0.2y^(k - 1) + 0.8r(fr) (4.90)

The enhanced reference model used consisted of (4.90) and

y^(k + r) : y*(k + 1) - 0.2(y^(k) - yo(k)) (4.e1)

Neural networks consisting of 4 inputs, 2 hidden layers with 20 and 10 nodes and 1

output are used for the controller and emulator. A learning rate of T : 0.2 is used

tbr both networks. As shown above, a stability constant of. B : 0.2 is used. These

parameters provided the best results.

Figure 4.6b shows the controlled response of the plant without the enhancements to the

model reference scheme being made. The plant output tracks the reference model output,

however it still undergoes the negative excursion during its transient period. Figure 4.6c

shows the controlled response for the enhanced scheme. As can be seen, excellent tracking

is once again achieved, andthe negative excursion is removed. Furthermore, the response

is far quicker and the steady state error is significantly reduced. Hence this represents a

significant improvement on many conventional control procedures.

4.4.4 Plant lJncertainty

In this example the robustness of the proposed control scheme to plant uncertainty

is investigated. As no mathematical system can exactly model a physical system, it
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rnodel (y') for the enhanced control scheme

is necessary to be aware of how modelling errors due to the plant uncertainties af-

fèct the performance of the control system. Typical sources of uncertainty include un-

modelled (high-frequency) dynamics, neglected nonlinearities, over-parameterisation or

under-parameterisation, and plant parameter (dynamic) perturbations. In Chapter 2,

a technique applicable to nonlinear systems to validate a plant model and help detect

over-parameterisation or under-parameterisation in the model is presented. The effects

of high frequency dynamics such as additive sensor noise or coloured plant noise are con-

sidered in a previous section and in Chapter 3. The latter form of uncertaint¡ namely

plant parameter (dynamic) perturbation is considered in this section.

Dynamic perturbations (or variations in the dynamics of the system) are often due to

environmental factors such as temperature, air speed, age or a changing environment. For

example in the case of a vehicle, significant dynamic changes result when the car makes

the transition from one road surface to another ll22l. Another example of a dynamic

perturbation is the effect of changing sea-conditions on a ship. As the coefficients of the

dynamic ship model are functions of speed ll27l, this change in environmental conditions

results in a variation in the dynamics of the ship system. If the control system performs
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well for substantial variations in the system dynamics from the design scheme and the

stability of the closed-loop system is maintained, then the scheme is said to be robust.

Plant uncertainties of the types described above can be represented in the form of an

additive or multiplicative perturbation. For a linear system, this is represented as follows

G(") : Go(',0) + LG"(z) (a.92a)

G(") : Go(",,P)[l + L'G^(z)] (4'92b)

where AG" is an additive perturbation, AG- is a multiplicative perturbation, G6 is

the nominal plant model and G is the true model of the plant. The perturbations

AG" and L,G* are known as unstructured uncertainties as they cannot be traced to

specific elements of the plant and typically represent unmodelled, neglected or changing

dynamics of the system. Structured (or parametric) uncertainty, 0, relates to variations

or inaccuracies in the terms actually included in the model of the system, Gs. For

example, it may be known that particular parameters in a state-space model vary over

a certain range. This represents a structured uncertainty as the variations in the system

are known to be due to a particular element in the system. Unstructured uncertainty,

AGo or L,G*, is usually regarded as more important as disturbances due to unmodelled

or variable dynamics in the system arise naturally in practice.

Further details on the relative merits of the additive and multiplicative models and robust

control techniques for dealing with them can be found in the collection of papers edited

by Dorato [46].

EXAMPLE 4.4.4 Both additive and multiplicative perturbation models are considered

to verify the robustness of the neural network based model reference control scheme in

the presence of structural variations in the plant. Therefore the two systems considered

are given by the following difference equations

y\(k)u(k) + u3(k)

t'+afiØ)+yr(k-L)
(t)u(k) * z3(fr)

t+a|&)+yo(k-L)

yr(k + r) + A/,(fr) (a.e3a)

yo(k + r)
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where the perturbation models used are given by

0 fr<400
A,t(k) Lr^(k): (4.e4)

yo(k)u(k)
1*yp(É) 400k

The reference model considered also consisted of a variable structure. It is given by the

following difference equation

0.2y^(k) * 0.2y^(k - t) + r(fr)

0.zy^(k) + 0.5r(k)

k<800
a^(k + r) (4.e5)

800k

In practice a change in the reference model may often occur when the closed-loop re-

sponse of the system needs to be altered in order to meet the performance requirements,

For example, it may be that for the given operating conditions, the response of the closed-

loop system needs to be swifter or that the gain of the overall system is insufficient and

therefore, the reference model needs to be changed in order to overcome these problems.

An example of this situation occurs in the ship steering problem. If the ship is in the

open sea, then a slowly responding reference model (say fourth order) m'ay be chosen

so that the control activity necessary to achieve the desired response is kept to a mini-

mum, thus reducing the wear-and-tear on the various actuators and rudder mechanism.

However, when the ship enters a narrow channel, it often becomes necessary to change

the reference model to a faster responding system (say second order) to ensure that the

ship is capable of undertaking the relatively quick course changes that may be required

in more constricted waters. Therefore, the ability of a control system to handle changes

in the desired response is also of major importance.

To demonstrate the variability in the systems, the open-loop step responses for both the

additive and multiplicative perturbation cases are provided in Figures 4.7a and 4.7b.

The changes in the plant response for both the additive and multiplicative models are

clearly visible at Ic :400 in Figures 4.7a and 4.7b, respectively. For the additive per-

turbation model, the mean of the perturbed system is non-zero, whereas the mean of

the multiplicative system remains at zero. Therefore, the additive system has a DC bias

which may pose a problem for the control system. A further point worth noting about the

additive perturbation system is the presence of the large spikes at k - 500,700,900,. . ..
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These spikes are due to the fact that at the instant the control input changes from a

positive value to a negative value, the terms Lf"&) : Lf^&) u,rrd ,*4frffiffi ur"

negative as yr(k) > 0 and "(k) < 0 for these values of k. Therefore, the plant response

l'or the additive perturbation system is a larger negative value than the response without

tlre perturbation. However, at the next time sample, the term Lf"(k) becomes positive

as yo(k) ( 0 and "(k) < 0 and thus the plant response is still negative but of a smaller

rnagnitude. This results in the spikes seen in Figure 4.7a. The spikes are not visible

f'or the multiplicative perturbation case because I A/-(k) l< 1 and therefore the term

I + Ll^(k) is always positive. Therefore, the response of the multiplicative perturbed

system is simply a scaled version of the unperturbed system. The change in the reference

model is evident at le :800. Although with the time scale chosen, it is difficult to detect

the change in response time of the reference model, the change in gain of the system is

clearly visible.

The enhanced reference model chosen consisted of (4.95) and

y^(k + r) : y^(k+ 1) - 0.1(y*(k) - yr(k)) (4.e6)

Neural networks belonging to the class O!,r0,10,1 are used for both the controller and

emulator networks. A learning rate of \ : 0'2 and a momentum rate of a : 0'1 are

also used. The plant and reference model responses are provided for both the additive

perturbation model and multiplicative perturbation model in Figures 4.8a and 4.8b,

lespectively. These responses are for the neural control scheme without the enhancements

proposed in this chapter. The corresponding responses for the enhanced neural control

scheme with the enhanced reference model are provided in Figures 4.9a and 4.9b.

As the perturbations do not enter the system until ft : 400, the performance of the

neural cont¡oller without the proposed enhancement for both cases is identical over this

period. The plant response initially has a significant overshoot. At the instant when

the perturbations enter the system, there is a large overshoot for both the additive and

multiplicative case, as shown in Figures 4.8a and 4.8b, respectively. In the case of the

multiplicative perturbation, the tracking error is reduced significantly. The performance

of the additive perturbation system is not as good, with relatively large tracking errors

present at the instant when the reference input is changed.
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The performance of the control scheme for the multiplicative perturbation case is also

very good when the reference model is changed at k : 800, Whilst the steady state

response of the original neural control system for the additive model (Figure 4.8a) is

very good once the reference model is changed (k > 800), it still displays significant

overshoots at the instant of the step changes. The relatively inferior performance of the

control system when additive perturbation is present can most likely be attributed to

the presence of a DC bias in the plant response.

Figure 4.9a shows the responses for the enhanced neural control scheme with an additive

perturbation present. The corresponding responses for the multiplicative perturbation

case are provided in Figure 4.9b. Both of these figures highlight the improvement the

enhancement makes to the performance of the controller. In particular, the simulation

results indicate that the outputs of the unknown plant perfectly track the outputs of the

reference model (and enhanced reference model) despite the fact that the structure of the

plant is varied during the control process. Furthermore, the control scheme is capable

of effectively dealing with the change in reference model. In particular, the relatively

large tracking errors present in the original control scheme responses, particularly for

the additive perturbation case, are reduced significantly. Finally, the very poor tracking

performance in the initial stages of operation (/c : 0, . . . ,200) is also significantly im-

proved. Hence, not only does this simulation example demonstrate the effectiveness of

the enhanced neural control scheme in controlling an unperturbed nonlinear system, it

also demonstrates that the control system has good robustness for time-varying unknown

plants and variable reference models.

4.4.6 Marginally Stable Nonlinear Systems

In this section the issue of controlling a nonlinear system which is inherently open-

loop marginally stable is considered. As mentioned in Chapter 3, such systems are not

uncommon in practice. Classic examples are the ship steering problem lL27l, the homing

missiles guidance problem [78] and the position control of a DC motor problem [10]. In

the ship steering problem the open-loop dynamics are such that a small change in rudder

angle will result in the ship being locked into a circular path. When the homing missile is
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in flight, any force at angle to its trajectory will cause it to topple out of balance. For the

case of the position control problem, if a fixed input voltage is applied to the DC motor

in an open-loop environment, the position of any point on the rotor will continuously

change. These three examples highlight the fact that this issue has important practical

ramifications.

Many of the neural network based control procedures developed so far are off-line pro-

cedures [169, 171]. In these procedures, it is necessary to perform an open-loop iden-

tification of the plant. However, this can only be achieved if the system is strictly

stable. Therefore, a large class of systems cannot be controlled via these methods. In

the method proposed in this chapter, the identification of the plant and the control are

clone simultaneously and in a closed-loop environment. Therefore, the closed-loop con-

trol system can compensate for any tendency towards instability exhibited by the plant.

Hence the restriction of open-loop stability on the plant, as in previous work, is removed.

Furthermore, it will be shown that the enhancements proposed to the neural adaptive

control procedure results in a greatly improved response for the marginally stable system

successfully controlled in the previous chapter.

As explained earlier, for the purpose of this simulation study, a marginally stable non-

linear system can be considered to be a stable system cascaded by an integrator. This is

expressed as follows

y;(k + r) yr(k + r) (a.e7a)

(4.e7b)a'r1r)+yo(k+L)

where Ui is the output of the augmc-ted plant which is nonlinear and marginally stable,

yo is the output of the stable system and q is the shift operator.

The plant considered belongs to a class of systems which are nonlinear in output and

control and their respective nonlinearities are noú separable. Systems belonging to this

class are usually the most difficult to control as the control input, z(fr), is usually heavily

embedded in the nonlinear function.

EXAMPLE 4.4.6 The marginally stable plant expressed in the form of equation (4.97b)

(+)
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is given by

vr(k)vr(k - | k * u3(k) + o.5ye(/c - 1)u
aL$ + L) : v'o(k) + t+v|@)+a,,(k-r (4.e8)

The reference model considered is a stable second order discrete-time system given by

y^(k + r) : 0.2y^(fr) + 0.2y^(k - t) + r(fr) (4.99)

The enhanced reference model used is formed from (4.99) and (4.11) with the stability

constant þ : 0.I.

The performance of the controller is investigated by observing the step responses of the

plant and reference model. The adaptive nature of the controller is also investigated

by changing the reference input. Therefore the following reference input is used to

demonstrate the effectiveness of the controller.

r(fr) : s(fr-25) k<600

sin(ffi) fr > 600
(4.100)

where 
"(É - 25) is a step at Ie :25.

The plant and reference model responses for this input are given in Figure 4.10a. The

control input for the plant response is given in Figure 4.10b. As the plant is second order

in output and first order in control, neural networks consisting of 3 inputs, 2 hidden

Iayers with 20 and 10 nodes, respectively, and 1 output are used for the controller and

emulator. A learning rate of r¡ : 0.05 is employed.

Figure 4.10a shows the transient response for the neural controller. This figure highlights

the excellent performance of the controller. In fact apart from the first few samples, there

is very little difference between the desired reference model output and the plant output.

The enhanced reference model output also rapidly converges to the reference model

output. The performance of the system does not deteriorate when the reference input is

changed, thus demonstrating the ability of the controller to adapt to a change in input.

Comparing these results with the responses obtained in Chapter 3 (Figure 3.22a) shows

that significant improvement is obtained by employing the enhancement proposed in this

chapter. Not only is the tracking error reduced, but the oscillations and overshoot present

in the transient response of Chapter 3 are also removed. The trade-off in achieving these
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tracking results is that the control effort is very active and more so than the control

response of the corresponding example in Chapter 3 (Figure 3.22b). As explained earlier

high control activity often poses problems for the control mechanism. However, this

result is not unexpected as the output of a marginally stable system is being made to

track the output of a linear stable system. Therefore, the increased activity is most

likety due to the fact that the plant response tracks the linear reference model response

far more closely, which for this type of system, requires a great deal more control effort.

4.5 Concluslons

This chapter represents the main theoretical part of this thesis. Two of the the most

important concepts of any control system are addressed, namely stability of the neural

adaptive controller and convergence of the output error.

The chapter introduces the concept of an enhanced reference model. The origin of this

concept lies in the the field of optimal control and in particular an apptoach known as the

optimal decision strategy (ODS). This strategy has been applied to a number of practical

problems including robotics, terrain tracking and ship steering. An integral part of this

approach is the enhanced reference model, which combines the reference model with an

enhanced output function, also known as the desired velocity function. This function is

chosen a prioriby the control system designer. It is shown that the form of the enhanced

reference model is intimately related to the control approach adopted. A form previously

suggested for a model reference adaptive control scheme is adopted in this thesis.

An enhancement to the neural network based model reference adaptive control scheme

presented in Chapter 3 is then suggested. This primarily involves the incorporation of

the enhanced reference model into the neural adaptive control scheme, The enhancement

gives rise to a number of theorems for which proofs are also furnished. The three main

theorems are summarised below.

o Theorems 4.3.1 and 4.3.2 state that in order for the tracking error for the model
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reference system to converge to zero, certain sufficient limit conditions must be

satisfied.

¡ Theorem 4.3.4 states that there exists a Lyapunov function such that the closed-

loop system is stable on a neighbourhood of. zero. This theorem also gives rise to

a further suffi,cient limit condition.

These theorems and their associated proofs address the principle theoretical aims of this

chapter and represent two of the major findings of this work. The remainder of the

chapter deals with the practical implementation of the enhanced neural control scheme

and demonstrating the effectiveness of the scheme via simulation studies.

The neural adaptive control scheme proposed in this chapter is derived for a general

rnultivariable system, such that the only restriction on the form of the enhanced reference

model is that the matrix A is stable. However, for the sake of simplicity, in all of the

multi-input multi-output systems considered, a further restriction is placed on the matrix

A, namely that it is diagonal. This restriction results in Theorem 4.3.3 which states a

condition for the existence of an upper bound on the elements of the diagonal matrix A

in order for Theorem 4.3.1 to hold.

As with the approach of Chapter 3, the neural adaptive control scheme proposed in this

chapter uses an approximation of the controller error to adjust the weights of the con-

troller neural network. Theorem 4.3.5 defines a form for the approximate controller error.

Theorem 4.3.6 then states how this error can be obtained. This result is a modification

of the controller error result provided in Chapter 3 and originally proposed by Jordan

[e5].

The effectiveness of the enhanced neural adaptive scheme is then demonstrated through

a number of simulation examples. Firstly, the performance of the scheme on the single-

input single-output system and multi-input multi-output system considered in the on-line

scheme of Chapter 3 is investigated. Comparison with the results provided in Chapter 3

showed that significant improvement is achieved, not only in the accuracy of the tracking

responses, but also in terms of reduced control activity.

A practical treatment of the robustness of the scheme to various disturbances is also
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undertaken. In particular, the scheme is found to be robust to (i) variable load distur-

bances, which arise because of a change in the load conditions on the system, (fi) sensor

noise, which arises because of errors or noise induced by the measuring devises and (iii)

dynamic plant noise, which can be produced by a host of sources, including noise due

to internal components, unmodelled high frequency dynamics or environmental factors

such as wind or waves.

Several commonly occurring non-ideal systems are also considered to highlight the practi-

cal viability of the scheme. Firstly, a nonminimum phase nonlinear system is considered.

Such a system can be defined as having an unstable zeÍo dynamics. It is shown that

the proposed scheme is capabie of dealing with such systems mainly because it does not

involve the explicit inversion of the plant dynamics. It is also shown that this approach

removes the problematic negative excursion present in the (positive) step response of

nonminimum phase systems.

The robustness of the scheme to variations in the dynamics of the system is also investi-

gatecl. Such variations are common in practical systems and can represent changes in the

environmental or operating conditions of the system. It is shown that these variations

can be represented by two types of perturbation models, namely additive perturbations

or multiplicative perturbations. The scheme is shown to be extremely effective in deal-

ing with both forms of perturbations. The effect of a change in the reference model and

therefore a change in the desired closed-loop response of the system is also investigated.

The scheme is also found to be robust to these changes.

Finally, the ability of the proposed scheme to control a marginally stable nonlinear system

is investigated. This system is simulated by cascading an integrator on to the output

of a stable nonlinear system. The performance of the scheme is found to be very good

particularly in comparison with the results for the corresponding example in Chapter 3.

In summary, this chapter provides the theoretical and practical justifications for the neu-

ral adaptive control scheme proposed in this thesis. Results for the stability of the control

scheme and convergence of the tracking error are provided to establish the practical via-

bility of the approach. However, the results are based on suffi,cienú limit conditions. The

clerivation of a necessary and sfficient condition, which represents the natural extension
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of this work, remains a very difficult task. Despite the increasing volume of work being

conducted into stability and convergence results for neural adaptive control schemes,

general results have proven extremely elusive.
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Chapter 5

Application Example Anti-Skid

Brake System

5.1 Introduction and Overview

Demonstrating the effectiveness of a new control strategy, such as the neural adaptive

control scheme proposed in this thesis, via a simulation study is a rewarding exercise. Not

only does it help to clarify and reinforce the theoretical concepts raised by the proposed

scheme, it also provides an indication of its practical feasibility and limitations. From an

engineering viewpoint, a great deal of knowledge can be gained from simulation studies.

Further knowledge about the practical feasibility of a proposed control scheme can be

gained from its application to "real world" problems. This has provided the motivation

for a great deal of research in the application of neural control methodologies to a wide

range of practical areas such as robotics, power systems, biomedical and biotechnical

engineering, process control, engine control and so-on. A good collection of some recent

application based neural control papers can be found in [6a]. However, because of the

restrictive costs of practical test equipment and the lack of availability or accessibility of

the "real world" system, most of the existing works on neural control applications have

been based on computer simulations of the actual system. It is perhaps for this reason

that so many neural control methodologies are tested on the inverted pendulum or ball
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and beam apparatus. The relatively low cost and availability of such systems make them

a good test-bed for a new approach. However, the primary limitation with the inverted

pendulum and similar apparatus is that they are essentially laboratory test-beds and

they do not really represent the significantly more complex and interesting "real world"

systems. A similar problem was encountered in the adaptive controi area during its

formative years. However, since then, many theoretical developments have been made

and tested on industrial control problems such as aircraft control, ship autopilots, process

control, robotics and power systems [64]. Whilst the ideal situation would be to test a

proposed control scheme on an actual physical system, a realistic and relatively detailed

simulation of the system can often prove to be equally beneficial. Certainly, it provides

an additional knowledge on the "real world" potential of the control approach compared

with simulation studies based on arbitrary systems.

In this chapter, the application of the model reference neural adaptive control scheme

proposed in this thesis to an anti-skid brake system (ABS) is presented. The objective

of an ABS is to maximise tyre traction by preventing the wheels from locking during

braking whilst maintaining adequate vehicle stability and steerability. Basically an anti-

skid brake system comprises sensors to detect imminent wheel-locking together with a

system to modulate the applied brake pressure so that the braked wheel maintains a

tangential speed slightly less than the linear speed of the vehicle. This enables the tyres

to retain most of their lateral force capability which in turn helps to keep the vehicle

steerable and the overall system stable. Furthermore, the stopping distance of a vehicle

equipped with ABS is, in most cases, reduced in comparison with a stop achieved by

wheel-locking. Wheel lock is particularly undesirable for a number of reasons. Under

normal driving conditions, a driver judiciously applies the brake to ensure wheel lock

does not occur. However, under an ernergency situation, the natural instinct is to apply

maximum brake effort, thus resulting in either (i) the front wheels locking up or (ii) the

rear wheels locking up or (iii) all four wheels locking up. If situation (i) occurs then the

driver will be unable to steer the vehiclel. If the rear wheels lock, but the front wheels are

not locked then the vehicle generally loses directional stability. Situation (iii) will cause

the car to skid in a straight line ll77l. To prevent the above situation from occurring,

lThis assumes a front wheel steering vehicle.
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an anti-skid brake system is employed.

A great deal of research and development effort has been conducted into anti-skid brake

systems because it is a recognised fact that they can produce significant improvements

in the safety performance of commercial and passenger vehicles. In a recent study of

accidents involving heavy goods vehicles and cars in Great Britain [195], it is concluded

that the use of ABS is likely to have affected (prevented or reduced in severity) 10% of

accidents involving heavy good vehicles alone and gTo of accidents involving heavy good

vehicle and cars. This translates to about 120 lives that could have been saved through

the use of ABS. Studies conducted in the then West Germany have verified a reduction in

the number and seriousness of accidents involving ABS-equipped vehicles compared with

conventional vehicles [58]. Research is still being undertaken to develop even more safe

and reliable anti-skid brake systems and in conjunction with the recent developments

in traction control (also known as anti-wheel spin regulation (ASR)), the ultimate aim

is to further improve the active safety of vehicles and thus the general safety on roads

[58, 183, 212].

In the last few years, there has been a recognition of the suitability of applying neural

networks to the modelling and control of vehicle systems. In particular, the ability of

neural networks to adapt to highly nonlinear and time-varying dynamical systems has

provided the motivation for much of the work in this area. Recently, Ohnq et al. ll75l

have developed an automatic braking system for automobiles using neural networks. The

aim of the proposed system is to make the vehicle decelerate smoothly and come to a

stop at a specified position behind the preceding stopped vehicle. To achieve this, the

vehicle speed is controlled via the neural network controller by varying the brake solenoid

current according to the distance between the two vehicles. The controller is shown to be

able to adapt to changes in the weight of the vehicle and the gradient of the road. Majors

et al. ll33l have developed a neural network methodology to control the air-to-fuel ratio

of automotive fuel injection systems using the cerebellar model articulation controller

(CMAC) architecture. The resultant fuel-injection controller regulates the A/F ratio to

a value chosen to result in driveability and good emission performance. It is also shown to

be very effective in learning the nonlinearities of the engine system and in dealing with the

time-delays inherent in the engine sensors. A neural network based engine control system
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is also considered by Morita [159]. In this approach, a backpropagation neural network is

used to control combustion parameters of an automobile gasoline engine. In particular,

the neural controller is shown to be effective in controlling the spark ignition rate and fuel

injection volume as well as being able to compensate for conditions such as the warming-

up of the engine and variations due to environmental factors. The application of neural

networks to active suspension systems has been addressed by Hampo and Marko [65]

and Smith eú ø/. [219]. In [65], a number of neural control approaches are applied to

an active suspension system to maintain a car at a level attitude. The fault tolerance

of the approaches to actuator failures and sensor failures is also investigated. In [219],

an artificial intelligence approach to the control of a semi-active suspension system is

presented. The approach uses a heuristic search strategy to derive an optimal control for

the suspension system, which is then learnt by an artificial neural network to provide an

on-line nonlinear optimal control law. Neural networks are applied to the lateral control of

autonomous vehicles by Kornhauser [115]. A machine vision system is proposed in which

the driver's view of the oncoming highway environment is captured. Backpropagation

and adaptive resonance neural networks are investigated for processing the resulting

images and generating acceptable steering commands for the vehicle. However, despite

the recent interest in applying neural network methodologies to vehicle systems, there

does not seem to be any reported work on the application of neural control to the ABS

problem.

The anti-skid brake system is a challenging control problem because the vehicle-brake

dynamics are highly nonlinear with uncertain time-varying parameters. These parame-

ter variations are due to factors such as changes in the brake pad coefficient of friction,

changes in the gradient of a road, and variations in the friction characteristics of the

tyre/road contact. The latter variations are perhaps the most significant and are pro-

duced by differences in the methods of road surface construction, contaminants on the

road, changes in tyre parameters such as tread wear and variations in the speed of the

vehicle 167,122,230]. Furthermore, detailed models of the vehicle-brake system or accu-

rate predictions of the tyre/road surface conditions are currently difficult and expensive

to obtain for practical anti-skid brake systems [230]. Therefore, not only does an ABS

have to be able to adapt to changing environmental conditions (e.g. varying road condi-
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tions), it must also be robust to dynamic uncertainties and variations. Currently most

commercial anti-skid brake systems are based on a look-up table approach. These look-

up tables are calibrated through iterative laboratory experiments and engineering field

tests. Therefore, these systems are not adaptive and issues such as robustness are not

addressed. More recently some theoretical studies of anti-skid brake systems have begun

to appear in the literature 153, L77,229,230,253]. In particular, conventional control

approaches such as sliding control, describing function methods and optimal control have

been used. In many of these approaches, the effects of the above parameter variations

have been considered. Even more recently, an adaptive anti-skid brake system based on

hnzy logic control is presented by Layne et al. ll22l. It is shown in the previous chapter

that the proposed neural control scheme possesses the properties described above. In

particular, the adaptive nature of the approach will help to ensure that the performance

of the proposed neural network based ABS is still satisfactory even when adverse road

conditions are encountered.

The chapter is organised as follows. A mathematical model based on the single-wheel

rotational dynamics and the linear vehicle dynamics is presented in Section 5.2. The

interaction between these dynamics and the effect of different road surfaces on the model

is also considered. A discretised version of the vehicle-brake system dynamics based on an

Euler discretisation process is also presented. An overview of existing ABS approaches is

presented in Section 5.3. This will provide a good background for some of the difficulties

associated with this problem. The motivation for the work presented in this chapter is

the belief that neural networks are extremely suitable for the anti-skid brake system and

the lack of any previously reported work on this application. Therefore, in Section 5.4,

the unique approach of applying the neural control scheme proposed in this thesis to the

ABS problem is considered. The effectiveness of the approach, particularly to changing

road conditions is then demonstrated via simulation results. Section 5.5 then provides

some concluding remarks.
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5.2 Derivation of the System Dynamics

The simplified model of the vehicle-brake dynamics presented by Layne et aL in ll22l
is employed in this study. The mathematical model consists of single wheel rotational

dynamics, linearised vehicle dynamics and the interactions between them. The actuator

dynamics, wind resistance effects and all the dynamics associated with the suspension

system and steering mechanism are not considered. A list of the relevant variables and

parameters and, where applicable, their typical values is provided in Table 5.1.

parameter physical meaning typical value"

B*
B,
J*
Mu
R-
g
T1'u

0

¡{"
u"
ur
uu
Ta

Tt

Fs

Ft
p
I

viscous friction of the wheel
viscous friction of the vehicle
rotational inertia of the wheel
vehicle mass
wheel radius of free rolling tyre
gravitational acceleration constant
number of wheels
angle of incline of the road
normal force at the tyre
vehicle linear speed

angular speed of a free spinning wheel
wheel angular speed

braking torque at the wheel
torque generated due to the slip
between the wheel and the road
force applied to the car due to
the gradient of the road
tyre friction force
coefficient of braking force
wheel slip

4Ns
6Ns

1.13 N m s2

4x342 kg
0.33 m

9.81 m s-2
4

rad
N

-tms ^

r -lTAclS.
t -1racls'

Nm
Nm

N

N

oThese values are obtained from Fling and Fenton [53] and are for a 1969 Plymouth sedan

Table 5.1: vehicle-brake system parameters and variables

The differential equation describing the vehicle dynamics is obtained from Newton's law

by summing the total forces which are applied to the vehicle during braking, i.e.,

.'l
h(t) : -¡;1"-r,þ) + B"v(¿) + rá(¿)l (5 1)

where Fl(t) : Mug sing(t) is the force applied to the car as a result of a vertical gradient

iri the road and n(t): p())^/,(0(f)) is the tyre friction force which is a function of the
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tyre normal force N,(d(¿)) : *gcosd(ú). The equation for the normal force assumes

that the weight of the car is distributed evenly amongst all the wheels.

The dynamics of the wheel can be determined from Newton's law, i.e., the angular

acceleration of the wheel (ó-) is the sum of the rotational torques which are applied to

the wheel divided by the moment of inertia of the wheel. This results in the following

differential equation

ù-(t) : !?ro(t) - B-u-(¿) + 
"f 
(ú)l (5.2)

Ju

where Tt(t) : R*n(t) is the torque generated due to the slip between the wheel and the

road surface. A block diagram of this system is shown in Figure 5.1.

wbËcl dyDui6

Tb

(ù

v"

IL

p

tyr.âoad iDterfaæ

Figure 5.1: Block diagram of the vehicle/wheel/road dynamics

The most significant variable in the vehicle-brake system is the wheel slip, À. For a

braking operation, its value is the difference between the vehicle speed, or more accu-

rately, the angular speed of thefree spinning wheel, u,: t, and the wheel speed, ø-,

normalised by the vehicle speed, i.e.,

v, - u_(t)

r

B*

I
J*

1

S

B,

N, I
-M"

_t
S

i.

Ft v€hlclc dytruiq

I
r_-D

l. 5
R.

À(¿)
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u"(t) - u-(t):W (5'3)

Wheel slip arises because of the fact that when a braking force is applied to a tyre, a

frictional force is developed at the contact spot between the tyre and the ground. At

the same time, the tyre tread within and just in front of the contact area is subject to

tension. As a result, the tread elements are stretched before entering the contact region,

and thus the distance travelled by the tyre per revolution when subject to this braking

torque is greater than the free rolling case [238, 251].

Wheel slip is usually chosen as the controlled variable in anti-skid braking systems be-

cause of its influence on the tyre friction force F¿, and its corresponding torque, ?¿. This

influence arises due to the relationship between the wheel slip and the adhesion coeffi-

cient (or braking friction coeficient), ¡.r. The adhesion coefficient is the ratio between

the frictional force 4 and the normal force N,, and for a given level of wheel slip, it has

a unique value for each road surface. The nonlinear relationship between the adhesion

coefficient and the wheel slip is represented by a p. - \ characteristic. These characteris-

tics are strongly influenced by both the material and method of construction of the road

as well as tyre parameters such as the tread ïr/ear. Factors such as the vehicle speed and

vertical load also have an influence on this characteristic. It is the p, - À relationship

which is the major source of nonlinearity in the system. The adhesion coefficient-wheel

slip characteristics for four common road surfaces are given in Figure 5.2'

Analytical expressions which accurately describe the relationship between the adhesion

coefficient and wheel slip are not readily available. Therefore, most ABS engineers in the

automobile industry obtain these characteristics from field experiments using specialised

test equipment. For the study presented here, the above characteristics are therefore

based on experimentally measured ¡t, - À data provided by Harned et al. in 1671.

From equation (5.3) and Figure 5.2,it is apparent that À : 0 corresponds to a free rolling

wheel (r-: uu and p(À) :0) while À: I represents a wheel that is locked (r-:0).
It is the latter case that an ABS is designed to prevent from occurring. At the same

time, an anti-skid brake system attempts to maximise the tyre traction by maximising

the coefficient of braking friction, ¡r. As is expected, the braking friction coefficient is

largest for dry asphalt, slightly reduced for wet asphalt, greatly reduced for loose gravel
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Figure 5.2: Adhesion coefficient vs wheel slip for various road surfaces

and most significantly reduced for ice. Apart from the loose gravel surface, each of the

p - À characteristics consists of a positive slope region and a negative slope region. When

the system is operating in the negative slope region, the vehicle is unstable and sensitive

to disturbances, and the cornering properties of the tyres may easily result in a loss

of directional control or laterat stability [230]. The positive slope region of the p' - ),

characteristic is the stable region of operation for the vehicle-brake system. Therefore,

it is desirable to operate in this region of the curve. For the unique case of loose gravel,

maximum braking friction occurs when the wheels are lockêd, i.e., À : 1 and Q- : 0.

This is because when a car is skidding on loose gravel, the gravel bunches up in front

of the wheel, resulting in an increase in the frictional effect. However, when the wheels

are rolling, the gravel gets pushed aside and thus the adhesion effect is less. As a result,

the p - À curve for loose gravel consists only of positive slope regions and therefore the

adhesion coefficient increases with slip to its maximum value at À : 1.

Based on the p, - À characteristics, the objective of an anti-skid brake system would be

to regulate the wheel slip so as to maximise the adhesion coefÊcient for a given road

surface. However to ensure that the system does not move into the unstable region

of operation, a slightly more conservative value of desired slip is chosen by many ABS

dry asphalt 
-weE aspl¡a1c ----'

loose gravel ""'
ice 

-
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engineers. Typically the vehicle-brake system is made to operate within its positive slope

¡t - À region and it is regulated to the slip (Àr-"*) which produces maximum braking

friction only when a maximum braking force is required. For the four surfaces considered

in this study, a conservative value of slip of À:0.15 is used.

As the particular road surface has a significant and unique effect on the braking char-

acteristic, a controller which can operate under all road conditions and is robust to

transitions in road surfaces is desired. A neural network based controller offers much

promise in this area. Furthermore, detailed models of the vehicle-brake system or accu-

rate estimation of the tyre/road surface conditions are currently difficult and expensive

to obtain. Therefore, the ability of the neural network control scheme proposed in this

thesis to deal with model inaccuracies and uncertainty is advantageous for an anti-skid

braking system.

A difficulty in implementing an anti-brake system is that the slip is difficult to measure

directly. As shown above, the slip is related to the angular speed of the wheel and the

linear speed of the vehicle. Many of the commercial anti-skid brake systems utilise wheel-

based sensors to measure the angular speed and/or angular acceleration of the wheel.

Typically such a sensor consists of a wheel driven toothed disc and an inductive pick up

which produces a continuous electrical signal proportional to the angular speed of the

wheel ÍL771. However, the difficulty in determining a value of slip arises because measur-

ing the linear speed and/or acceleration of the vehicle during braking is a problematic

task. In particular, during a braking operation, the presence of wheel slip means that

the linear speed of the vehicle is no longer directly related to the angular wheel speed

via the equation V : R-u-. Unlike an anti-spin device, where the vehicle speed can

be obtained from sensors measuring the angular speed of the nondriven wheels, wheel

sensors cannot be used to accurately obtain the vehicle speed in ABS mode as braking is

carried out on all four wheels. In many commercial anti-skid brake systems the vehicle

speed is extrapolated from an initial speed and the integration of an acceleration signal

l24ll or the relationship V : R-u- is used and the resultant errors are accounted for in

some way 12431.

As far as test systems are concerned, an extra free rolling wheel can be used to mea-

190



sure the vehicle speed [67]. However, this is of course not practical for a commercial

system. In the approaches proposed by Tan et aL 1230, 2291it is assumed that vehi-

cle speed measurements are available. However, it is also pointed out that sensors to

provide accurate vehicle speed measurements are generally expensive and so the ABS

schemes proposed in [230, 229] arc not readily implementable. Recently Doppler radar

ground speed sensors have been developed and implemented in experimental ABS and

4WD/Otr-Road ASR systems2 [132, 16l,24L]. These sensors measure the vehicle speed

according to the Doppler radar principle. Typically such sensors consist of a transmit-

ter/receiver which sends an extremely-high-frequency (EHF) signal in the direction of

the road surface. The road acts as a refl.ector, and as a result of the Doppler effect, a

frequency shift of the reflected signal occurs. The vehicle speed can then be found from

the Doppler frequency shift. These sensors have already been fitted to some agricultural

vehicles such as tractors and are relatively inexpensive [132].

ln lI22l, Layte et al. assume that vehicle acceleration measurements are available via

an accelerometer3. However, it is also stated that the use of an accelerometer introduces

problems such as noise and integration error and that their effects on the ABS need to be

investigated thoroughly. Recently, a scheme which addresses the noise issue in accelerom-

eter measurements is proposed by Watanabe eú al. l2a3). A Kalman filtering approach

for accurately estimating the vehicle speed is presented. Accelerometer measurements

are used to complement the measurements obtained from the wheel based sensors to

provide a more accurate vehicle speed. An extended Kalman filter is used to reduce the

high frequency noise associated with the accelerometer measurements. An accelerometer

located near the centre of mass is also utilised to measure the vehicle deceleration by

Fling and Fenton in [53]. However it is shown that an accelerometer alone is not suitable

for estimating the vehicle deceleration because of its internal offset error. It is also ex-

plained that wheel tachometers should not be used during emergency braking operations

as they have the tendency to develop limit-cycle behaviour. An estimation circuit is de-

vised which combines the accelerometer and wheel tachometer measurements to cancel

2Four wheel drive (4WD) systems suffer from the same problem as anti-skid brake systems in that
in both cases there are no free-rolling wheels from which the vehicle speed can be obtained.

3Accelerometers typically consist of a pendulum or resonant fork arranged such that any deflection

in the position of the pendulum or changes in the resonant frequency of the fork is proportional to the

acceleration of the vehicle. Further details on accelerometers can be found in [208] and [220].
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out the effect of the DC offset in the accelerometer and the limit-cycle oscillations in the

wheel tachometer output to produce acceleration and velocity estimates. An estimation

scheme to determine the vehicle speed is also adopted by Satoh and Shiraishi [209]. In

the scheme presented, the estimation is performed by using a memory which stores the

peak value of wheel speed. This value is reduced by a specified rate whenever the actual

wheel speed decreases sharply. The output of the memory is assumed to approximate

the vehicle speed.

Hence, in this study, it is assumed that some form of estimation scheme could be im-

plemented such that a measurement of the vehicle speed is available. This assumption

allows a dynamic system equation for the wheel slip with the vehicle and wheel speed as

state variables to be derived as follows:

From (5.3) the wheel slip can be written as

À(t) :1- a-(t)
,"(t)

u * (t) u, (t) - ù - (t) a 
" 
(t)

""(t)*W -,;-(t)
,"(t)

(1 -À(ú))ó"(¿)-,;*(t)
,"(t)

(5.4)

Therefore,

À(¿)

i(¿)

For the sake of simplicity the vehicle system equation (5.1) is rewritten as follows

ó,(t\: u"(t):]' tt) : T : 
n_l- U,@"W(t) * n*F¿(t)+ Fd(ú))l

: -m"a)-"-#g:))p(r) - #k
: -a2u,(t) - aili,(\) - as

(5.5)

(5.6)

where a2 : fu, o, : W : W¡ (tro : ffi : #0, and the wheel

dynamics, (5.2), can be rewritten as:

B,;.(t) : -*r-rr, - irU, * *r,f,
: -b2u-(t) - bLTb(t) { bsp(À(t)) (5.7)
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where bz : t, h : i, Uo : fo*P - M'g\t:esetl 
.

As the neural controller and subsequent theory proposed in this thesis are based on

discrete-time systems, the above differential equations are discretised using an Euler

discretisation process. This results in the following difference equations:

À((fr+l)å) :Q-Ñ+p)À(frrz) .+#-1 (5.8)

where

,"((k + 1)å)

,*((k + 1)å)

: G - hh)a,(kh) - ffi,oFt(kh) - #kh
: (I - a2h)u"(kh) - aftp,(À(kh)) - ash

: O - 
Båh)u-(kh) - fnr'tnn) + *nr,(t n)

: (I - b2h)u-(kh) - hhTb(kh) + botz¡t(1(kh))

(5.e)

(5.10)

where å, is the sampling period, the control is the braking torque, ?6, the measurable

states of the system are ar,((,t + 1)å) and cu-((fr + 1)l¿), and the overall system response

is the slip, l((fr + 1)å). It is this quantity which will be controlled by the ,r",r.ul network

based anti-skid brake system.

5.3 Existing Approaches

In recent years a number of manufacturers such as Bosch, Honda, Toyota, Borg-Warner,

etc., have developed and produced anti-skid brake systems for commercial vehicles. For

reasons of commercial sensitivity, intricate details of such systems are not readily available

in the published literature, although the papers by Leiber and Czinczelll24l,, and more

recentl¡ Sigl and Czinczel [212] provide a good general overview of the development of

ABS and ASR systems at Robert Bosch GmbH. From these and other publications, it

is known that anti-skid brake systems generally consist of sensors, a control unit and

brake pressure modulators (usually solenoid valves). Typically the sensors monitor the

angular speed of the wheel and then produce a continuous electrical signal proportional

to this value. The sensor signal is then transmitted to the control unit. Based on the

signal it receives from the sensor, the control unit calculates an estimate of the value of
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the slip. Using an experimentally derived look-up table, it then determines the necessary

action to be implemented for the current value of slip. Usually the control action would

be either to apply brake pressure, hold the current brake pressure or release the existing

brake pressure. The brake pressure modulator receives the command signal from the

control unit through an electronic switch and it then adjusts the wheel cylinder brake

pressure accordingly. The design, tuning and calibration of commercial anti-skid brake

systems are based on experimental trials rather than using analytical results. Therefore

commercial anti-skid brake systems are not adaptive and issues such as robustness are

not addressed. As a result, the performance of such systems may degrade if harsh or

changing road conditions are encountered.

A number of analytical approaches to the design of anti-skid brake systems have recently

been reported. In [53], Fling and Fenton employ a describing function approach. This

involves using a feedback compensator to provide anti-skid behaviour and determining

the design parameters for the nonlinear compensator scheme by a describing function

analysis. The aim of the compensation is to ensure that when the slip exceeds the value

for which the adhesion is at its maximum, wheel lock-up is prevented and the operation

is directed towards a steady state condition. In this condition a stable small amplitude

limit cycle is established around the peak of the p, - À curve. The scheme is successfully

tested on a 1969 Plymouth test vehicle.

In the paper by Zellner [255], a frequency response approach to the design of a feedback

control for an ABS is adopted. Firstly, this entails deriving a mathematical model for

the vehicle-brake system. A mathematical model of the brake pressure modulator is

then derived. The frequency response of the overall system is then analysed from which

an appropriate feedback control structure is derived. The frequency response criteria

f'or the controller/modulator/vehicle dynamics are that it should resemble an integrator

in the 2-6 Hz region and have sufficient open-loop phase margin to allow a cross over

frequency in this range. These requirements are chosen so that a stable limit cycle

with a frequency of at least 2 Hz could be achieved. The desired frequency range also

represents the required bandwidth for the closed-loop system. As practical anti-lock

modulators are found to look like integrators in the 2-6 Hz region, it is concluded that

the desired controller should be a pure gain system with constant phase lag over this
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frequency range. Several feedback controllers, each with a different feedback variable

(wheel speed, slip, wheel angular acceleration, and wheel angular jerk), are simulated

and tested. The ¡esults show that a wheel angular acceleration feedback controller meets

the desired requirements most successfully.

According to Yeh et al. [253], the inherent nonlinearity of the ABS dynamtcs means

that only part of the picture can be seen via the frequency domain approaches of Fling

and Fenton [53] and Zellner [255]. Additionally, the feedback control approach presented

in [255] is very much dependent on the the operating conditions and is therefore not

adaptive to changes in road surface or other parameter variations. In the approach

presented in [253], a piecewise linear model of the tyre force is implemented to simplify

the nonlinearity of the ABS dynamics. A number of assumptions about the system

dynamics are made to obtain a simplified second order dynamic system with the braking

torque and slip as state variables. The dynamics of the ABS are then depicted as state

trajectories in the Tt-\ phase plane. The conjugate boundary method is used to produce

boundaries for the state trajectories known as the conjugate prediction boundary and the

reselection boundary. These are used to determine the stability of a particular limit cycle

and the global tendency of the slip dynamics. This analysis is then used to determine

the appropriate prediction condition and reselection conditiona for the ABS control law.

A discrete-time vehicle traction control is presented in the paper by Tan and Tomizuka

[230]. Vehicle traction control is composed of both anti-skid braking and anti-spin accel-

eration. Its aim is to maximise tyre traction by preventing wheel lock-up during braking

and wheel spin during acceleration. The basic idea behind the approach presented in

[230] is to group the time-varying uncertainties of the vehicle-brake system together,

discretise the continuous-time system, locally linearise the resultant discrete-time system

and then derive a linear feedback scheme based on the principles of sliding mode control.

The scheme is successfully tested for the ABS operation on a test cell and an actual

vehicle. In the paper by Tan and Chen an optimal control approach to traction control

is provided for the continuous-time vehicle-brake system. The optimal solution results

in a "bang-bang" control to achieve regulation of the wheel slip at its corresponding

aThe prediction condition determines when the brake pressure should be released to prevent lock-up
while the reselection condition determines when the brake pressure should be applied again once the

chance of lock-up is averted.
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peak adhesion coefficient value in the p, - ), curve (Àu-", ) . The optimal control solution

is shown to be equivalent to the zeroth order sliding mode control. Using this result,

sufficient conditions are then developed via Lyapunov stability theory to design variable

structure control laws for the vehicle traction control system.

5.4 Neural Network Based Anti-skid Brake System

5.4.1 System Description

The primary objective of the neural network based anti-skid brake system (NN-ABS)

presented in this chapter is to regulate the wheel slip to the prespecified value of 0.i5.

From the adhesion coefficient versus wheel slip characteristic presented in Figure 5.2, it

can be seen that this value corresponds to a level of wheel slip slightly less than the value

for which the adhesion coefficient is maximum on most surfaces. Generally a slightly

conservative value of slip, such as the one chosen, helps to ensure stable operation. In

the proposed NN-ABS it is assumed that knowledge of the particular type of road surface

is not available. Therefore, the target value of slip of 0.15 is used regardless of the road

surface. As explained earlier, this will not produce the optimum braking performance

on loose gravel where a minimum stopping distance is achieved when the wheels lock up

(À : 1). For the desired slip to be chosen based upon the road surface encountered, an

estimation scheme which identifies the road surface conditions would be needed. In [230],

it is suggested that this can be achieved by using a weighted least-squares estimation

scheme in conjunction with a wheel slip traction control algorithm. However, for the

purpose of this study a constant desired slip is used.

A biock diagram of the neural network based anti-skid brake system is shown in Fig-

ure 5.3.

The inputs to the neural network adaptive controller are the wheel slip (À), vehicle speed

(a,',), wheel speed (ø-) and reference input (À,). The output from the NN-ABS controller

is the braking torque ("b). It is assumed that if the system is implemented on an actual

vehicle, wheel sensors would be available to provide measurement of the angular wheel
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x,(k)

Figure 5.3: Block diagram of the neural network anti-skid brake system

speed (c.r-) and either an estimation scheme or a sensor such as the Doppler ground radar

would provide a value of linear vehicle speed (%) from which the equivalent angular speed

(ru : ff) couta be obtained. Therefore, in the NN-ABS scheme, it is assumed that the

measurable system parameters are the equivalent angular vehicle speed and the angular

wheel speed. The value of slip is estimated via equation (5.8). The value of braking

friction coefficient (p) used in the vehicle-brake model, equations (5.9) and (5.10), is

calculated from the wheel slip using the ¡; - À characteristic provided in Figure 5.2. The

wheel slip is assumed to be the overall output response. Therefore the neural network

emulator models the entire system dynamics, i.e., the vehicle-brake dynamics and the

wheel slip dynamics. However, as described in earlier chapters, this is only necessary so

that an estimate of the plant Jacobian ffi cal be obtained: Therefore, neural network

based anti-skid brake system can be described by the following equations:

The overall system output (wheel slip) is governed by the nonlinear difference equation

À((fr+1)å) : f(u"(kh),w-(kh),rb(kh),À(ftÀ)) (5.11)

where /(.) i. an arbitrary nonlinear function representing the relationships defined by

equations (5.8), (5.9) and (5.10).

The control strategy is to find a suitable braking torque

Tb(kh): s(u"(leh),u.(kh),À(kå), ).,(kh);W.) (5'12)
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where g is a neural network parameterised by the set of weights ltrl", such that for a stable

enhanced reference model governed by

À-((fr + 1)å) : f^(^^(kl¿), À"(k/z)) (5.13)

and

^;((k 
+ 1)å) : r-((k + 1)/¿) - P(^^(kh) - .\(kå)) (5.14)

the tracking error satisfies the following relationship

l"r((k + 1)å)1, : lÀ-((k + 1)å) - À((fr + 1)l¿)1,. 1 er (5.15)

where er ) 0 is a predefined tolerance, /-(.) ir a stable linear function, B < 1 is a

stability constant, g is a neural networkparameterised by the weightsW", k is the time

index, À- is the desired level of slip, À/- is the enhanced slip and I.l, it the vector norm.

As shown in the previous chapter, this can be achieved by minimising the cost function

given by
l N-l

n:;t(r;((fr+1)å) -À((e+l)r¿))'z (5.16)
L k=o

which gives rise to the following controller weight update equation

W"((k + l)å) : W"((k + 1)å) * r,e.(kh) (5.17)

where the controller error is given by

e"(kh): (1 - p)(^'*((k+ 1)r¿) - À((k *\oDry# (5.18)

u"¿ q#Í# is an approximate of the plant Jacobian obtained by backpropagating

through the neural network emulator which is defined by the following equation

i11r + 1)h) : içr"çt t¡,u.(kh),Tb(kh),À(kh);Wù (5.1e)

where f ir u neural network parameterised by the weightsWt.

From a practical viewpoint, the control unit for the above scheme would implement the

neural network controller, neural network emulator, enhanced reference model and slip

estimation scheme. It would receive the speed measurements from the sensors (u*, u,)

and calculate the corresponding value of slip and desired value of slip using equations
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(5.8) and (5.13) and (5.14), respectively. The control unit would then adjust the weights

of the adaptive controller based on the values of the inputs, tracking error and the

approximate Jacobian using equations (5.17) and (5.18) to produce the required braking

torque 7¿. From an implementation perspective, the NN-ABS control unit would also

need to account for the brake actuator dynamics. Typically a brake actuator can be

modelled as a nonlinear relationship between the braking torque and the solenoid current

used to drive the brake actuator. The nonlinear relationship is a hysteresis characteristic

between the solenoid current and the brake pressure. The brake pressure is proportional

to the braking torque. The following relationship can be derived from Ohno et al. ll75l

Ta : I{ parP(1") (5.20)

where 1" is the solenoid current, P is the brake cylinder pressure which is a nonlinear

(hysteresis) function of the solenoid current, Fap is the brake pad friction coefficient and

1( is a constant. Tan and Tomizuka [230] approximate the brake actuator by a slow first

order system with a gain whose value depends on the states of the solenoid valves and

the brake cylinder pressure. Therefore, the control unit in a practical NN-ABS would

either transform the braking torque output to an appropriate value of solenoid cur¡ent

using a brake actuator model such as those described above or the NN controller would be

trained such that its output is the appropriate level of solenoid current. This value would

then be sent to the brake actuator to achieve the desired braking action. The primary

difference between these two approaches is that in the latter case, the backpropagated

error from the neural network emulator can be used to modify the controller weights

directly, whereas in the fi.rst case, the error would need to be transformed by the actuator

model as the output of the controller, for this case, is actually the braking torque. In the

simulation study performed here, the above actuator models are not employed because

of the unavailability of information on the typical values of the constants in the actuator

rnodels, in particular brake pad friction coefficient þh and the constant 11. However,

the results published in [89] and [175] demonstrate that neural network control schemes

are capable of effectively dealing with systems consisting of hysteresis nonlinearities.

Therefore, incorporating the actuator dynamics into the system should not pose any

problems for the NN-ABS scheme.
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6.4.2 Simulation Results

In the simulation study, neural networks consisting of 4 inputs, 2 hidden layers with 25

and 20 nodes, respectively, and 1 output are used. A learning rate of \ : 0.02 is used

f'or both neural networks. On average, these values provided the best results for all of

the scenarios considered. Learning is done completely on-line, so that once the ABS is

activated, the neural networks adapts to the system requirements. The reference model

used is given by the following difference equation

À-((È + 1)å) : (1 - 20h)^^(kh) +20h^,(kh) (5.21)

As can be seen, the reference model is a linear system with unity gain, so that the desired

Ievel of wheel slip is represented by the reference input l' : 0'15' The reference model is

chosen to have a quick response time, thus ensuring that the reference slip value rapidly

reached the desired slip. The enhanced reference output is chosen to be

^'*((k+ 
1)å) : À-((k + 1)å) - 0.1(l-(kå) - À(frå)) (5.22)

Fast sampling with ä : lms is chosen here because generally in an ABS the changes

in the system take place very rapidly, i.e., in the order of one second. Assuming that

the NN-ABS on a current generation floating-point DSP chip such as the TMS320C40'

this sampling period is realistic. This can be verified by an approximate operation

count for the neural network based anti-skid brake system described above. By far

the most computationally intensive part of the system is the modification of the network

weights. This is achieved by the backpropagation algorithm which consists of three parts:

a feedforward stage, an error feedback stage and a weight modification stage. For the

neural network structure described above, the NN-ABS would require approximately 9200

operations (addition, multiplication, division and assignment). Assuming a conservative

figure of 2 cycles per instruction, where the instruction cycle time for the TMS320C40

is 40 ns, the proposed NN-ABS would result in a computation time of approximately

0.74 ms. Furthermore, this analysis does not take into account an improvement in the

efrciency of the algorithm which could be obtained by exploiting the parallel nature of

the neural networks.
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Effects of Different Road Surfaces

The first simulation scenario considered is the performance of the neural network based

anti-skid brake system for dry asphalt, wet asphalt, loose gravel and icy road surfaces.

The vehicle is travelling on a level surface (P : 0) and transitions between the road

surfaces are not considered. The ABS is initiated when the vehicle speed is 60 km/h

and the wheel slip is 0.5. This is a typical value of wheel slip at which ABS is initiated,

because the wheels are tending towards locking-up and, on most surfaces, this value

corresponds to the unstable (negative slope) region on the ¡t - ), characteristic. The

resultant wheel and vehicle speed, wheel slip and braking torque responses are provided

f'or the above four surfaces in Figures 5.4a, 5.4b, 5.4c and 5.4d, respectively.

The dry asphalt, wet asphalt and loose gravel cases all display similar results. For these

three road surfaces, there is virtually no discernible difference between the actual value

of slip and the desired slip response. Furthermore, the braking torque is initially quite

small, thus allowing the angular wheel speed to increase to the level required to produce

a slip of 0.15. This corresponds to the 0-0.2 second portion of the response. It can

also be observed that during this period, the responses for the loose gravel case are

far "smoother" than the dry asphalt and wet asphalt cases. This can be attributed

to the fact that in the I : 0.15 - 0.5 region of the p. - À curves (Figure 5.2), the

asphalt characteristics consist of a number of piecewise linear regions of different slopes,

whereas the loose gravel characteristic consists of only one value of slope. Therefore, the

progression of the slip from its initial value of 0.5 to the desired level of 0.15 is "smoother"

for loose gravel than for the other surfaces. As a result, the speed responses and torque

response are also "smoother" for loose gravel. Therefore this phenomenon is a result of

the approximation of the p, - À characteristic used rather than the NN-ABS scheme.

Once the wheel speed reaches the value for which the wheel slip is 0.15, the braking

torque increases linearly which results in a linear deceleration of the vehicle. The reason

f'or the linearly increasing braking torque can be explained by considering equations (5.9)

and (5.10). For a constant value of slip and a level road (d : 0), the frictional force F¿

and its corresponding torque T¡ are constant and the force F6 which is applied to the

car as a result of an incline in the road is zero. By taking this into account and after
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introducing the values for the system parameters, the wheel and vehicle speed dynamic

equations can be written as:

,,((k+ r)á) : 0 - #Ð,,(kh) - #*ol{kh) - h,^
: 1r - å.oo+ ah)u,(kh) - ze.7Bh¡"t(À)

ar"(10-3(k + 1)) È ar,(10-3fr) - 0.2973p(À) (5.23)

and

,-((k + 1)å)

c.,-(tO-3(k + 1))

: 0 - 
Båh)u-(kh) 

- Inrrt*n¡ + fnr,g,n¡
: (r -3.54h)u-(kh) - 0.885årö(fr/¿) + s79.785hp,(À)

È u-(10-3k) - 8.85 x 10-3?b(10-3k) + 0.980p(À) (5.24)

It can be seen from the equation (5.23) that most of the vehicle deceleration is due

to the term related to the tyre friction force (29.7Såp(À)). Furthermore, the vehicle

speed term related to the viscous friction of the vehicle, namely (1 - 0.0044h)a"(kh),is

approximately a"(kh). Therefore, if the slip is regulated to a fixed value, for example

À :0.15, the vehicle will decelerate linearly. However, to ensure that the slip remains

at this fixed level, the wheel must also decelerate linearly by an appropriate amount. It

can be seen from the wheel speed equation (5.24) that the term related to the torque

produced by wheel slip (979.7S5åp())) is a constant which works against the other terms.

Furthermore, the wheel speed term related to the viscous friction of the wheel, namely

(1 - 3.541¿)u*(kh), is approximately u-(ká) for typical values of l¿. Therefore, the wheel

speed is effectively changed by an amount solely related to the braking torque and the

constant wheel slip torque term. Hence, the braking torque must increase linearly by

a rate which not only counteracts the constant effect of the frictional torque, but also

results in a linear wheel speed deceleration which maintains the desired slip.

The responses for an icy surface are provided in Figure 5.4d. The NN-ABS behaviour

f'or an icy road surface is significantly different from its behaviour for the other road

surfaces. Although the slip response eventually reaches the value 0.15, and the system

output exhibits excellent tracking from then on, its behaviour for ú ( 0.15 s is unique to

an icy road surface. During this period no control action is undertaken as the system is

already acting in an unstable region and even a small braking torque is likely to cause
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the wheels to lock-up. Once the slip drops below the desired level and thus the system

is operating in a stable region, the controller generates the necessary braking torque so

that the system slip response tracks the desired slip response. As the frictional effects

are much smaller on ice than on other surfaces, the braking torque that can be applied

to maintain the slip at 0.15 is smaller. Therefore, the vehicle takes much longer to slow

down.

An observation which can be made about all of the responses is that the system does

not exhibit the limit cycle behaviour for which many other anti-skid brake systems are

designed. As indicated in [122], the likely effects of using a system which is not designed

to exhibit this behaviour is unknown and would require further investigation.

The slight deviation of the slip responses away from the desired response in the latter

stages of the ABS operation can be attributed to the fact that at low speeds the estimated

value of slip becomes less accurate and very sensitive [122]. As a consequence, the

slip becomes difficult to control and therefore the simulations are stopped when the

vehicle had slowed to 10 km/h. As explained in [53], anti-skid brake systems are often

clisabled below a threshold speed because of the chance of unwanted braking action being

initiated when the noise (and limit cycle) amplitude is large relative to the vehicle speed.

Therefore, disabling the ABS at low speeds is a common practice in commercial systems.

The above responses show that performance of the neural network based anti-skid brake

system is very good for the surfaces considered. An additional indication of the effective-

ness of the approach can be obtained by comparing the stopping distance for the NN-ABS

with the stopping distance obtained from a locked-wheel stop. The stopping distance of

a vehicle is defined as the reaction distance plus the braking distance, where the reaction

distance is the distance travelled by a vehicle while a driver recognises the need to use

the brakes and actually starts to physically apply the brakes, and the braking distance is

the distance travelled by the vehicle once the brakes have been applied until the vehicle

stops. For an alert driver, the reaction distance is on average 12.5 rnQla second) at 60

km/h and it increases to 21 m at 100 km/h. The reaction distance is independent of the

tvpe of braking action employed and therefore in the following analysis only the braking

distances are considered.
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The braking distances for the NN-ABS and wheel-lock stop for a vehicle initially travelling

at 60 km/h and 100 km/h are provided in Tables 5.2 and 5.3, respectively. These two

initial speeds are chosen as they correspond to the two most common speed limits in

Australia.

road surface ABS lock-up Lt.."v To

dry asphalt
wet asphalt
loose gravel

ice

14.24

15.94
34.20
91.83

17.60
18.33

30.06
t34.67

-19.1
-13.0

+II.2
-31.8

Table 5.2: Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 60 km/h

road surface ABS lock-up Ll..k To

dry asphalt
wet asphalt
loose gravel

ice

39.44
44.20

94.49
226.60

48.74

50.76
83.06
357.53

-19.1
-13.0

+13.8
-36.6

Table 5.3: Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 100 km/h

As can be seen from these results the braking distances are reduced appreciably when

the anti-skid brake system is employed in all of the cases except for the loose gravel road

surface. This is reflected in the values for the percentage decrease in stopping distance

1'or the NN-ABS in comparison with the results for a locked-wheel stop (41o"¡). Both the

loose gravel road surface and the icy road surface are somewhat unique and these results

are analysed in detail below. Notice, however, that the percentage decrease for the wet

asphalt surface is significantly smaller than the dry asphalt. This can be attributed to

the fact that for a slip of À : 0.15, the adhesion coefficient for a wet asphalt road surface

(¡r : 0.882) is similar to its adhesion coefficient for a slip of À : 1.0 (p : 0.768). The

corresponding values for a dry asphalt road surface are F : 0.99 and p : 0'8. Therefore,

the magnitude of the frictional force ?'¿ does not change as significantly on a wet asphalt

surface as it does on a dry asphalt road surface when the slip is changed from I : 0.15

to À: 1.0. Consequently, the corresponding stopping distances also reflect this result.

As explained earlier, a minimum stopping distance is achieved for a loose gravel surface
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when a locked-wheel stop is employed. Therefore the results obtained for this case are as

expected. However, in the simplified model considered in this study, it is assumed that

the frictional effects of the road surface are the same on all of the wheels. The situation

on loose gravel is more complex than this. If the braking system is such that front wheel

braking occurs, then the above assumption is valid. The alternative scenario is that the

braking system results in rear wheel braking when the front wheels are locked. This

occurs with rear wheel ABS. In this situation, the gravel bunches up in front of the front

wheels and thus the rear wheels, which track the path of the front wheels, operate on a

vastly different road surface [67]. Therefore the design of a commercial anti-skid brake

system for gravel surfaces would need to account for these two situations.

Another expected result is that the braking distance for an icy surface is significantly

greater than the other road surfaces. However, even for this worst case scenario, the

braking distance for the NN-ABS is reduced appreciably in comparison with the results

I'or a locked-wheel stop. In fact the magnitude of A1o"¡ is greatest for an icy road surface'

This can be attributed to the small frictional force and torque components of the system

clynamics for icy road surfaces. Therefore the relative effect of the increase in braking

fïiction coefficient achieved by the ABS (¡r(À : 1.0) --t /r(À : 0.15)) is more significant.

An observation which can be made by comparing the results for the initial vehicle speed

of V,(0) : 60 km/h and the initial vehicle speed of V"(0) : 100 km/h is that the braking

clistance approximately varies with V,2(0). A. explained earlier, the deceleration of the

vehicle is virtually constant and therefore the equation of motion V:(t) : V:(0) * Zas

can be approximately applied.

As a means of comparison, the braking distance results of the hvzy model reference

learning control (FMRLC) ABS approach presented by Layne et aI. ll22l for dry asphalt,

wet asphalt and icy road surfaces and the loose gravel braking distance results of Satoh

and Shiraishi [209] are considered. Due to the differences in the p - À characteristics

and/or the system parameters of the approaches, the absolute values of braking distances

cannot be directly compared. However, they are still provided to give an indication of

the order of the braking distances involved. Instead, the percentage change in braking

distance of the the ABS approaches with respect to a locked-wheel stop (41o"¡) for the
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particular system dynamics is used to compare the approaches. For comparison with the

results of. lL22l,a desired slip of À : 0.2 is chosen and an initial vehicle speed of 56 mph

is considered. The braking distance results are provided in Table 5.4.

FMRLC NN
road surface ABS lock-up Al.,"k % ABS lock-up L,1n¿n To

dry asphalt
wet asphalt

ice

32.72

35.30
151.07

38.42
39.86

247.26

-14.8
-11.5
-38.9

31.32
34.84
167.44

39.1 1

40.78

290.37

-19.7
-14.6
-42.3

Table 5.4: Comparison of the braking distances (metres) for the fitzzy logic ABS approach

of Layne et al. ari the proposed neural network anti-skid brake

The results demonstrate that the NN-ABS approach produces a larger decrease in braking

distances than the fuzzy logic approach presented in lI22l f.or the three road surfaces

considered. The differences in the braking distances between the two approaches for a

locked-wheel stop can be attributed to differences in the ¡.r - À characteristics. This efect

is more pronounced for an icy road surface because the relative influence braking friction

h.as on the system is greater for icy surfaces.

The results provided in [209] are for a vehicle equipped with an anti-skid brake system

operating on a gravel road with a desired slip of À : 0.1 and an initial speed of 75 km/h.

The braking distance results for the two ABS schemes considered in [209](H-ALB and

I-ALB) and the NN-ABS approach are provided in Table 5.5.

ABS lock-up Lt^"v %

I-ALB
H.ALB

NN-ABS

50.3
43.6

53.3

37.3
37.3

46.9

+34.9
+16.9
+13.8

Table 5.5: Comparison of the braking distances (metres) for the ABS approaches of Satoh

and Shiraishi and the proposed neural network anti-skid brake for a gravel road surface

Whilst the absolute braking distances for a wheel-lock stop and an ABS stop are greater

using the neural network approach than corresponding values obtained using the ap-

proaches presented in [209], the values for the percentage change in braking distance

indicate that the NN-ABS produces favourable results in comparison to the other ap-

proaches. As mentioned earlier, a locked-wheel stop produces the optimum braking

performance on a gravel road surface. Therefore an ABS approach which regulates the
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slip to a value other than À : 1.0 will produce a greater braking distance than the

locked-wheel stop. This is the case for the approaches considered in the above analysis.

The results of [209] are obtained from tests conducted on an actual vehicle travelling on

a gravel road. However, the simulation results for the NN-ABS approach are obtained

fi'om a simplified model of the vehicle system dynamics and an approximation of the

adhesion characteristic of the gravel road surface. Therefore the differences in absolute

values in stopping distances between the approaches presented in [209] and the NN-ABS

approach proposed here can most likely be attributed to differences in the adhesion coef-

ficient levels and the approximations made in the system model. However, the simulation

results still indicate that the NN-ABS approach offers much promise for the braking of

vehicles on gravel surfaces.

Effects of a Road Gradient

The next simulation test investigates the effects of an inclination in the road surface on

the performance of the NN-ABS. Road gradients o10 :15o and 0 : -l5o are considered.

These values correspond to very steep roads. The braking distance for these two gradients

on the four road surfaces previously considered are given in Tables 5.6 and 5.7. An initial

vehicle speed of 60 km/h is considered.

road surface ABS lock-up L4.,¿, To Aa=oo

dry asphalt
wet asphalt
loose gravel

ice

11.61

t2.67
2r.47
34.64

13.66
14.09
19.83
39.33

-15.0
-10.0

+8.3
-11.9

-18.5
-20.5
-37.2
-62.3

Table 5.6: Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for an initial vehicle speed of 60 km/h and a road inclination
of á : t15o

Firstly considering the case of a positive road gradient, the results show that the braking

distance has been reduced considerably in comparison with the corresponding results for

a level road (Tabte 5.2). Intuitively, this result is as expected. This is because when

a positive gradient is present, the force Fe(kh) : Mogsin(0(kh)) acts in the opposite

direction to the motion of the car, thus helping to slow the vehicle down. This is despite
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road surface ABS lock-up L¡.'¿n Yo Ad=oo

dry asphalt
wet asphalt
loose gravel

ice

20.19
23.66
100.62

+4L.7
+48.4
+r94.2

Table 5.7: Braking distances (metres) for the neural network anti-skid brake system
versus a locked-wheel stop for an initial vehicle speed of 60 km/h and a road inclination
of d : -15o

the fact that the tyre friction force n&ù : r,(^(kh))N"(d(fr/¿)) is reduced slightly for

a gradient of. 0 : 15" (for 0 : 0": ¡y', : 3355 N, Fe - 0 N whereas for 0 : l1ol.

N, :3241 N, ,Fa :3473 N).

By examining the equations of motion provided earlier, it can be seen that the force due

to the gradient f'B is constant for a given road incline and is independent of the adhesion

properties of the road surface. For an adhesive road surface such as asphalt, the frictional

forces are of a similar magnitude to the lorce F6, whereas for less adhesive surfaces such

as gravel and, in particular, ice, the frictional forces are comparatively much smaller.

Therefore the force produced by the gradient in the road has a more significant effect on

vehicle braking for gravel and icy road surfaces. This is reflected in the results provided

in Table 5.6, where the percentage decrease in braking distance of the NN-ABS for a road

with a gradient of 0 : 15o compared with the corresponding results for a level surface

(A¿¿,¿o=0.) increases as the frictional effects of the road surface decreases.

For the case of 0 : -Lío, the values of Ap-s. indicate that the braking distances are

increased significantly compared with the corresponding results for a level surface. The

reason for the increased braking distances is that for a negative incline the force Fe acts

in the direction of the motion of the'vehicle. Therefore, the force partially counteracts

the frictional forces working to slow the vehicle down, thus resulting in a longer stopping

distance. For the case of an icy road surface, the lorce Fe is sufficiently large compared

with the frictional forces, so that the ABS is unable to stop the vehicle. This can be

confirmed by considering the equation of motion for the vehicle:

a"((k+ 1)å) : (1 - ftn¡,,ç*h) - ffihFt(kh) - #k_h (5.25)
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For á - -15o, the tyre friction force is F¿: nbgcos(0)¡z(À) :3240.7p()) N and the

force due to the incline is f'6 : M"gsi.n(O) :3473.4 N. Therefore the vehicle equation of

motion becomes

a,,(10-3(k + 1)) = u,(10-3k) - 0.0287 p,(À) + 0.007694 (5.26)

where the sampling period is å : 1 ms. For an initial slip of À : 0.5, the adhesion

coefficient for an icy surface ir p - 0.172, which results in the following equation of

rnotion

ø,(10-3(k + 1)) = ø,(10-3¿) + 0.00277 (5.27)

Therefore the vehicle speed increases linearly. In fact, it can be shown that if the road

gradient is steeper than d ) arctan(¡r) then the vehicle is unable to be stopped. Therefore

fbr an icy surface and an initial adhesion coefficient of p - 0.172 (À : 0.5), the critical

road incline is 0 : -9.75o.

Variation in Road Surface

It was earlier stated that one of the principle benefits for using neural networks in an

anti-skid brake system is their ability to adapt to changes in the environmental conditions

without a significant degradation in performance. Therefore in the final set of simulations

the ability of the neural network based anti-skid brake system to deal with transitions

in the road conditions is investigated. In particular, four road surface transitions which

commonly occur under Australian conditions are investigated.

The first simulation study involves the situation where the brakes are applied on a dry

asphalt road and during the braking the vehicle moves on to a gravel road surface. The

second case involves the situation where the vehicle is initially on wet asphalt and it then

rnoves onto a wet gravel road surface. To take into account the effects of water on the

braking friction coefficient of a dry loose gravel road surface, the following equation is

used:

p*.t 6..""r(À) : Í*"' "on't'Íìì ¡,u,, ,.,,",(À) (5.28)
Pdrv asph¿l¡ \ ^,1

This equation assumes that the frictional effects of water over all road surfaces is constant

f'or a given level of wheel slip. Harned et al. [67] provide a p - ì characteristic for river
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bottom gravel. This sort of gravel appears to consist of smooth stones which are well

set in the road (river bottom) surface. Therefore, this road surface exhibits significantly

different adhesion behaviour from the expected behaviour of a water-covered loose gravel

road surface. In particular, the frictional effects of river bottom gravel do not increase

with wheel slip as is the case for dry loose gravel. Intuitively, one would not expect that

a film of water on a gravel surface would prevent the gravel from bunching up in front

of the tyre. Hence, river bottom gravel is not considered in the simulation study and

instead the approximation described above is assumed to be more appropriate'

The third simulation scenario involves the transition from wet asphalt to an icy road

surface and the final scenario is the reverse of this situation. The responses for the vehicle

and wheel speed, wheel slip and braking torque for these four scenarios are provided in

Figures 5.5a, 5.5b, 5.5c and 5.5d, respectively. In all of the results, the initial vehicle

speed is 60 km/h, the initial level of slip is À : 0.5 and level road surfaces are considered'

The results for the first three road transition simulations demonstrate that the NN-ABS

approach is capable of dealing with the relatively drastic changes in road conditions en-

countered in these scenarios with minimal effect on its ability to produce the desired slip

response. In fact apart from a short oscillation (< 0.1 s) which occurs when the transi-

tion takes place, the slip closely tracks the desired response. In particular, the NN-ABS

performs very well for the most drastic road transition (wet asphalt-ice) as well as the

most common of these transitions in Australia (dry asphalt - loose gravel). The braking

torque results for the first three simulations are comprised of two distinct regions' The

first region consists of a braking torque of a relatively large magnitude, while after the

transition occurs, the braking torque is much smaller. This can be explained by the fact

that in these road transition scenarios, the vehicle moves from a surface with a relatively

large coefficient of braking friction to a surface which does not offer much frictional re-

sistance. Therefore, initially a large braking torque is allowed without lock-up occurring,

but once the transition takes place, the braking torque must fall in order to maintain the

clesired level of slip on the reduced friction surfaces. This is further emphasised by the

fact that both the vehicle and wheel deceleration reduces once the transition occurs, i.e.,

i/, and ?¿ reduce in magnitude once the transition occurs. Therefore, the the torque ?6

required to maintain the same slip is smaller and consequently the vehicle deceleration
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decreases in magnitude. A point worth noting about the results for the wet asphalt-ice

transition is that, unlike the situation where only an icy road surface is present (Fig-

ure 5.4d), the braking torque is not set to zero for a substantial period of time once an

icy surface is encountered. This is because when the transition to an icy surface occurs,

the slip is already at a sufficiently low level so that a braking torque can be applied with-

out fea,r of the wheels locking-up immediately. However as explained above, the braking

torque is of a lesser magnitude than its value for the wet asphalt surface.

In the final scenario considered, the brakes are initially applied on an icy road surface,

which provides little frictional resistance to the vehicle, before it moves onto the more

a,dhesive wet asphalt road. The results provided in Figure 5.5d demonstrate that, as

with the case of an icy surface alone, the NN-ABS initially does not provide any braking

tolque. Once the slip drops to a level which would not result in an immediate wheel-lock,

braking torque of a small magnitude is applied to achieve and maintain a wheel slip of

À:0.15. After the road surface transition occurs, the braking torque increases greatly,

as do the frictional force 4 and torque ?¿ which results in a sharp increase in magnitude

of the vehicle and wheel deceleration. Consequently the vehicle is rapidly brought to a

stop.

As with the results for single road surfaces, the NN-ABS approach does not display the

limit cycle behaviour for which other ABS are designed. However, the slip response still

deviates slightly from the desired response in the latter stages of braking. As indicated

earlier, this is as a result of the slip estimation scheme.

road transitions ABS lock-up Al.,"k %

dry asphalt - loose gravel
wet asphalt - wet gravel

wet asphalt - ice
ice - wet asphalt

19.90
23.49
4I.92
46.28

22.39
23.57
66.35

5L.42

- 11.1

-3.4
-36.8
-10.0

Table 5.8: Braking distances (metres) for the neural network anti-skid brake system

versus a locked-wheel stop for transitions in the road surface with an initial vehicle speed

of 60 km/h

Finally, the braking distances for the NN-ABS scheme and a locked-wheel stop for the

road surlãce transitions considered above are provided in Table 5.8. For all of the road
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surface transitions considered, the neural network anti-skid brake system produces a

significant reduction in braking distance compared with a wheel-lock stop. Hence, these

results further emphasise the effectiveness of the proposed approach in dealing with

clrastic, but commonly occurring, environmental changes whilst still achieving the desired

slip performance.

5.5 Conclusrons

In this cha,pter, the proposed neural network adaptive control scheme is applied to the

plactical problem of an automotive anti-skid brake system. The principle objective of

the proposed NN-ABS is to maximise the tyre traction during a braking operation by

legulating the vehicle-brake dynamics to a suitable level of slip for any given road surface.

The anti-skid brake system is chosen to demonstrate the practical feasibility of the neural

aclaptive control scheme as it is a challenging control problem due to the highly nonlin-

ear vehicle-brake dynamics. Furthermore, the dynamics vary significantly with changes

in the environmental conditions, in particular the type of road surface. Therefore an

anti-skid brake system must be robust to dynamic uncertainties and variations. In the

previous chapter, the ability of the proposed neural adaptive control scheme to deal with

such disturbances is demonstrated for arbitrary nonlinear systems. Hence, the anti-skid

brake system considered in this chapter provides an opportunity to verify the effectiveness

of the neural control scheme for a practical problem.

The simulation study undertaken involves firstly deriving a mathematical model for the

vehicle-brake system. The dynamic model is derived from Newton's laws by considering

the rotational torques applied to the wheel and the total forces applied to the vehicle

during braking. The dynamics are shown to be strongly influenced by the frictional

effects of the road surface present. These effects are incorporated into the model by way

of a nonlinear relationship known as the p, - À characteristic which relates the braking

friction coefÊcient (ir) to the wheel stip (,\) for any given surface. The ¡r-) characteristics

are shown to be unique for a particular road surface. The NN-ABS regulates the vehicle-

brake system to a level of wheel slip which produces approximately maximum braking
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friction for most road surfaces. The vehicle dynamics are then discretised so that they

could be incorporated into the neural network adaptive control framework provided in

the previous chapter.

Several existing anti-skid brake system approaches are studied in detail. One of the

rnain results from this analysis is that many of the current ABS schemes are based on

itera,tive laboratory/field tests and are therefore not adaptive to dynamic variations.

Several of the problems associated with the commercial implementation of such schemes

are also highlighted and discussed. In particular, the problems associated with obtaining

a,rì a,ccurate vehicle speed measurement during braking are explained. Several of the

rnethocls used to overcome this problem are also presented.

The neural network based anti-skid brake system is then presented. In this approach,

the controller neural network is designed to produce the braking torque required to

ensure that the vehicle-brake system produced a wheel slip which tracked the desired

slip response characterised by a reference model. A second neural network is used to

produce the system Jacobian which is in turn used to modify the controller weights

appropriately. The scheme is shown to be effective in regulating the system to the

desired slip f'or four different road surfaces. It is also shown to result in a significant

reduction in the stopping distance of the vehicle compared with a locked-wheel stop for

all of the road surfaces except loose gravel. However, it is demonstrated that for any

brake system, the minimum stopping distance on Ioose gravel is achieved by locking the

wheels. Comparison with other ABS approaches further demonstrates the promising

performance of the NN-ABS scheme. The scheme is also demonstrated to be capable of

effectively dealing with gradients in the road, except for the case of a very steep negative

gradient on an icy road surface. However, this scenario is shown to be impossible to

control for any anti-skid brake system. Finally, the ability of the NN-ABS approach to

cleal with transitions in road surfaces is also demonstrated. Such transitions result in

a change of the frictional forces applied to the vehicle and thus produce variations in

the dynamics of the vehicle-brake system. The adaptive nature of the NN-ABS means

that such changes are able to be effectively dealt with. Hence the the simulation study

undertaken shows that the neural network based anti-skid brake system is able to produce

effective braking responses for the vehicle even when it is subject to severe environmental
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conditions

The obvious extension of the research reported in this chapter would be to test the

NN-ABS approach on either a specifically equipped brake test cell or a test vehicle.

This would involve issues such as the modelling of actuator dynamics, as well as the

dynamics associated with the suspension and steering mechanisms, implementation of

the algorithm on a microprocessor, the effects of sensor noise and other disturbances,

the choice of sampling rates, etc., being considered. Furthermore, a means of accurately

estirnating the vehicle speed would also need to be implemented. Several suggestions on

liow to achieve this are provided in the chapter.

A rnodiflcation to the NN-ABS scheme would be required to deal with the common

practical situation of a split-¡-r surface. This is because in the simulation study conducted

in this chapter, it is assumed that the frictional effects of the road surface are the same

I'or all four wheels. However, this is not the case when the vehicle is travelling on a

split-p surface. In this situation some of the wheels are on a road surface with a low

aclhesion coefficient, while the remaining wheels are on a road surface with a higher

aclhesion coefficient. Such surfaces result in a yawing moment which makes the vehicle

nrore difficult to control. Furthermore, with a split-¡.1 surface, the wheels on the less

aclhesive surface would lock-up before the other wheels. This would require the anti-skid

br¿ke system to either independently control each wheel or control a set of wheels (e.g.

a separate ABS for the left wheels and right wheels). However, as the NN-ABS system

considered in this chapter provides an equal braking response to all four wheels, some

modification of the scheme would be required.

Finally, it is shown by the results for a loose gravel road surface that a wheel slip which

produces a minimum stopping distance for one surface does not necessarily produce the

best results for another surface. Therefore, another practical issue which would need to be

considered would be the development of a scheme which could determine the type of road

surface present and then evaluate a value of slip to produce maximum braking friction

tbr that surface. This would help to produce an optimum ABS response for all road

surfãces. However, the results provided in this chapter indicate that the neural network

basecl anti-skid brake system offers much promise and also demonstrates the practical
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l'easibility of the neural network adaptive control scheme proposed in this thesis
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Chapter 6

Conclusions and Recommendattons

6. L Conclusions

The motivation for the research described in this thesis is the potential for neural net-

r,vork based adaptive control schemes to provide a unified approach to the control of

a general class of nonlinear system. As explained in the review of existing linear and

nonlinear control methodologies provided in Chapter 1, most of the conventional control

approaches are restricted by the type of system that they can handle. Neural networks

have clemonstrated an ability to approximate continuous nonlinear functions to any de-

gree of accuracy. Furthermore, neural networks are inherently adaptive and have an

ability to learn. These factors make them ideal for the control of general nonlinear

systems in which there are uncertainties regarding the system dynamics and its environ-

ment. However, as explained in this thesis and in other literature, the analytical study of

neural adaptive control schemes is still a difficult problem and important control system

concepts such as stability and convergence remain difficult to prove for all situations.

Despite the significant progress made towards these issues in this thesis, the develop-

ment of theoretical results for neural network control architectures remains an open and

vibrant area of research.

In most of the neural network based control procedures presented in the literature, the

neural network is generally used to model some part or all of the system dynamics.
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This application exploits the principle advantage of neural networks, i.e., their ability to

perform functional approximation roles. Several neural network architectures have been

proposed for modelling dynamic systems, including modified versions of static networks

such as the multilayer perceptron, and dynamic networks such as recurrent neural net-

works. The neural adaptive control approach proposed in this thesis also uses neural

networks to emulate the nonlinear system dynamics as well as to synthesise the control'

Therelbre, in Chapter 2 a review of some of the most commonly used neural networks for

rnodelling dynamic systems is provided. In particular, attention is paid to the time delay

neural network. This network is used in the proposed control scheme, mainly because of

its simplicity and its success in applications such as speech processing and the related

tirne-series prediction, as well as in identification and control.

A commonly occurring problem in control systems is the incorrect parameterisation of the

systern moclel. In the context of time delay neural networks, this relates to an incorrect

choice of the number of delayed values of control and output terms. Whilst in the

proposecl neural adaptive control scheme it is assumed that correct a priori knowledge of

the recluired model parameterisation is available, it is shown in Chapter 2 that techniques

exist which can provide information on the validity of a particular model. Therefore, even

this knowledge is not crucial to the success of the scheme.

As has been mentioned repeatedly in this thesis, the area of neural control (or neuro-

control or connectionist-control) has been extremely active over recent years. As with

the fielcl of adaptive control during its formative years, the advances in neural control

schemes have been in many directions. By far the most popular approach amongst the

control community is neural adaptive control, where neural networks are combined with a

traditional cont¡ol framework. Several neural adaptive control approaches are examined

in Chapter 2, not only to provide a survey of this area, but also to highlight some of the

aclvantages and limitations of the existing approaches. Furthermore, this provides the

opportunity to compare and contrast the proposed approach with some existing schemes.

A basic neural network based model reference adaptive control scheme is considered in

C[apter 3. Moclel reference adaptive control is chosen as a framework for the approach

1'or a nlmber of reasons. Firstly, it is a control scheme which is very amenable to being
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implemented in a neural network based scheme. This is because it generates the desired

closed-loop response for the system which can then be used by a supervised learning

scheme. Secondly, it enables the desired closed-loop dynamics of the system to be in-

corporated into a structured and easily analysable form. This, in turn, provides the

system clesigner with a means of easily changing the desired dynamics to meet different

performance specifications. The approach presented in Chapter 3 combines two existing

neural control approaches, namely forward modeliing and model reference neural adap-

tive control. The approach is demonstrated to require very little information about the

system in order to provide effective control. It is shown to provide a unified approach to

controlling a general class of discrete-time nonlinear system, including those previously

l'ouncl by others to be the least analytically tractable and thus difficult to control. In par-

ticular, the approach can deal with nonlinear systems which are non-afine in control and

where the controi is heavily embedded within the nonlinearities of the system dynamics.

This is in contrast to existing geometric control schemes for nonlinear system and many

other neural adaptive control schemes. The approach utilises two neural networks; one

to emulate the plant dynamics and the other to synthesise the control. It is further

shown that the neural network which emulates the plant is only required to provide an

approximation of the plant Jacobian, which is then used to update the weights of the

controller neural network. Several alternative methods of obtaining an approximation of

the Jacobian are discussed, but each one is shown to be deficient in some way.

The scheme is shown to be able to be implemented in both an off-line form and an on-

line (truly adaptive) form. The issues associated with these two forms of the scheme are

discussed. Simulation examples are used to highlight the effectiveness of the approach

1'or a wide range of nonlinear systems, including a multi-input multi-output plant and a

rnarginally stable plant. The effective performance of the approach in the presence of load

clisturbances, sensor noise and dynamic plant noise is also demonstrated. However, as

stated in Chapter 3, the approach has two major shortcomings. Firstly, the scheme does

not inclucle any theoretical guarantees for the'convergence of the tracking error' This

represents a fundamental deficiency with the basic approach, because for model reference

a,claptive control schemes the principle aim is to ensure that the tracking error converges

to a neighbou¡hood of zero. A second critical property of model reference control schemes,
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and for that fact, any control scheme, is the stability of the overall system. This issue is

also not addressed in the scheme presented in Chapter 3. Therefore, despite the success

of the scheme in simulation studies, it is concluded that these issues would need to

be acldressed in order for the proposed neural network based model reference adaptive

control scheme to be practically feasible.

The main theoretical results of this thesis are provided in Chapter 4. Most importantly,

theorems which address the convergence of the tracking error and the stability of the

closed-loop system are provided. The proofs for these theorems are also presented in this

cha,pter. In order to derive these theorems, it is first necessary to make an enhancement

of the existing model reference neural adaptive control scheme. This enhancement pri-

nrarily involves the introduction of an enhanced reference model which provides a desired

lesponse for the controlled plant. The enhanced reference model has a form which allows

sufficient limit conditions to be derived which guarantees the convergence of the tracking

error between the output of the original reference model and the output of the controlled

plant. An iterative search routine is also incorporated into the scheme to generate a con-

trol which meets the limit condition. The proposed enhancement has its origins in the

fielcls of optimal control, in particular an approach known as the optimal decision strat-

egy, and on-line optimisation schemes. The enhancement also gives rise to results which

guarantee the stability of the closed-loop system. A modified weight update equation is

also derived so that the controller neural network weights are updated appropriately.

The effectiveness of the new neural adaptive control scheme is demonstrated through

simulation studies. Comparison of the results with the scherne presented in Chapter 3

tlemonstrates that significant improvements in the tracking performance are achieved

with the new scheme for stable, minimum phase nonlinear systems in a noise-free envi-

ronment. However, in practice such an ideal environment is rarely encountered. Firstly,

all practical systems are subject to disturbances of some form. Typically these can in-

clude noise induced in the measuring devices, noise resulting from internal components,

noise due to unmodelled high frequency dynamics, changes in the load conditions on

the system, or environmental disturbances such as turbulence, waves, gusts of wind,

etc. Furthermore, many practical systems are also subject to time-varying parameters

or dynamics which may arise because of factors such as aging components, component
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failure or changing environmental conditions. The robustness of a control scheme to such

clisturbances and variations is an important factor in determining its practical feasibility.

Therefore, simulation studies are conducted to demonstrate the ability of the proposed

scheme to effectively deal with disturbances of various forms (DC load disturbance, white

sensor noise and coloured plant noise) as well as variations in the plant dynamics. Sec-

ondly, marginally stable systems and nonminimum phase systems commonly occur in

practice. Both of these types of systems cause problems for many existing control ap-

proaches. Some classic examples of marginally stable nonlinear systems are ships and

homing missiles. These systems are unable to be controlled via approaches which re-

quire the open-loop identification of the system dynamics. Some common examples of

nonminimum phase nonlinear systems are the tactical missile and many discretised in-

rlustrial processes. These systems are unable to be controlled via methods which employ

an inversion of the plant dynamics, such as feedback linearisation. Thus the ability of

any control scheme to effectively deal with these types of non-ideal, but common, sys-

tems augers well for its practical feasibility. Therefore, simulation studies are presented

in Chapter 4 to demonstrate the effectiveness of the proposed neural adaptive control

scheme in controlling a marginally stable nonlinear system and a nonminimum phase

nonlinear system.

Finally in Chapter 5 a simulation study based on the "real world" problem of an au-

tomobile anti-skid brake system is undertaken to further demonstrate the practical fea-

sibility of the proposed approach. The anti-skid brake system is a challenging control

problem because of the highly nonlinear vehicle-brake dynamics which vary significantly

with changes in the environmental conditions, particularly the road surface conditions.

Therefore an anti-skid brake system must be able to adapt to dynamic variations. Most

of the existing anti-skid brake systems are based on experimentally derived look-up table

approaches and are therefore not adaptive to the variations which commonly occur in

vehicle systems. The results presented in the previous chapters of this thesis suggest that

proposed neural network control is ideal for this problem. The aim of the neural network

l-¡ased anti-skid brake system proposed in Chapter 5 is to regulate the wheel slip to a

level which provides near-maximum tyre traction on most road surfaces. However, as

the rneasurable system parameters in most anti-skid brake systems are the wheel speed
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and vehicle speed (or acceleration) an estirnation scheme is typically employed to obtain

a value of slip. Therefore, in the proposed scheme the neural network emulator models

both the vehicle-brake dynamics and the slip estimation scheme. This is necessary so

that the Jacobian of the controlled variable (slip) with respect to the control variable

(braking torque) can be obtained. The Jacobian is then used to modify the weights of

the neural network controller so that the braking torque necessary to achieve the desired

slip is provicled. The neural network based anti-skid brake system is demonstrated to

provide effective braking performance on four different road surfaces and for the case

where a transition in the road surface occurs. Although the system is not implemented

in practice, a number issues related to the practical implementation of the scheme are

a,lso cliscussed. These include moclelling of actuator dynamics, schemes to accurately

rneasure the vehicle speed and tlie computational requirements of the proposed scheme.

In summary, this thesis describes the clevelopment of a neural network based model

ref'erence adaptive control scheme for discrete-time non-affi.ne nonlinear systems. The

original contribution of the research is outlined in the body of the thesis. However, the

broader aims of the work that have been achieved are:

o A cletailed and objective review of nonlinear control systems with a view to under-

standing the merits and limitations of the existing approaches.

o A thorough review of the issues associated with the use of artificial neural networks

for the modelling and control of nonlinear systems.

o The development of a neural network based model reference adaptive control scheme

for which several conventional control system properties and concepts, such as sta-

bitity of the closed-loop system, convergence of the tracking error, and robustness

to clisturbances, and dynamic variations are addressed.

o The investigation, via extensive simulation studies, of the effectiveness of the

proposed approach on systems subject to common practical problems such as

marginally stable or nonminimum phase behaviour and disturbances of various

t'ornrs.
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o The application of the approach to a practical problem such as the anti-skid brake

system.

The work pertaining to the application of the proposed approach to marginally stable

systems is published in reference [140]. The application of the approach to nonminimum

phase nonlinear systems is published in reference [141]. The research pertaining to the

convergence and stability results and the practical treatment of the robustness of the

system to clisturbances and plant variations is reported in reference [1a3]. The work

on the application of the method to an anti-skid brake system is reported in references

11,42, 1451. Finally, research related to stability and convergence issues of the proposed

¡eural aclaptive control scheme and its application to defence systems is reported in [1aa]'

6.2 Recommendations for Future Work

The research presented in this thesis and in the above publications has demonstrated

that neural network based model reference adaptive control is potentially an extremely

viable and effective practical approach to the control of nonlinear systems. However,

this conclusion is based on theoretical analyses and simulation studies only. In view of

the clevelopment of a practical neural aclaptive controller, there are some theoretical and

practical areas in which further- research is suggested.

1. The results for the stability of the overall system and convergence of the track-

ing error which are provicled in Chapter 4 are based on sufficienú limit conditions.

Therefore, a natural extension of this work is the derivation of necessary and suf-

fi,cient conclitions for the convelgence of the tracking error. However, because of

the nonlinear nature of the neural networks used, this is an extremely challeng-

ing task. A possible line of investigation would be to incorporate global stability

ancl convergence considerations into the development of a learning algorithm for the

neural network structure chosen. Research along these lines has been undertaken in

[186, 234, 235] for feedback/input-output linearisation approaches for continuous-

time affine (in control) nonlinear systems.
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2. It is well known that for nonlinear control systems certain conditions must be sat-

isfied by the system in order to ensure the existence of a solution to the control

problem [90, 173, 218]. These conditions are often quite involved and hard to verify.

Therefore, several assumptions are made without full justification to ensure that a

solution to the problem exists without the need to verify the existence conditions

and to assist in the development of the new theoretical results. The most critical of

these assumptions are those regarcling the controllability and observability of the

system. As pointed out in [166], there is no simple way of checking the validity

of these assumptions in the nonlinear control context given the present state of

nonlinear control theory. Theoretical justifications for assumptions regarding the

controllability and stabilisation of neural network control systems are addressed in

[126] for state-space moclels. Horvever, as stated in [126], this problem becomes

far more complex when only input-output data is available and the state of the

system is not accessible, as is the case in the work presented in this thesis. There-

fore, further research can be conclucted into the extremely challenging problem of

developing theoretical results to justify the assumptions made in thé scheme and

then gradually relaxing these assumptions. The results achieved in linear adaptive

control theory and for feeclback linearisable systems may provide some guidance

for this issue.

3. In the work presented in this thesis only discrete-time systems are considered. This

is primarily because the backpropagation algorithm has traditionally been provided

in a discrete format. Recently, there has been some work on the application of

neural network techniques to the adaptive control of continuous-time nonlinear

systems [31, 186, 204]. There are a number of motivations for this work. Firstly,

the discretisation of physical continuous-time nonlinear systems often results in

highly complex discrete-time moclels [173] and may even introduce nonminimum

phase behaviour [6]. Secondly, tlie full potential of neural control schemes will

only lie realised if they are irnplemented in hardware. Currently, the dominant

trencl is towards analog harclware realisations of neural network architectures [147],

although recently a hybrid analog-digital approach has been tested [44]. Finally,

continuous-time learning rules have recently been developed. Therefore, a further
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area of research can be the continuous-time realisation of the proposed neural

network based model rel'erence adaptive control. This would primarily entail a

re-working of the theoretical results in a continuous-time framework'

4. The neural control scheme ploposed in this thesis is shown, via simulation studies,

to be robust to variations in the dynamics of the system. However, theoretical

results to guarantee the robustness of neural adaptive control schemes still remain

elusive. As with stability and convergence results, much insight into robust ap-

proaches to neural adaptive control systems can be gained from existing results in

t[e "conventional" control literature. One approach which has shown promise is

the use of a sliding control scheme in conjunction with a neural control scheme

1204). In this paper, a sliding rnode controller takes over from the neural controller

whenever the state of the system moves outside the region on which the neural

network approximation is valicl. The work presented in [20a] is for continuous-time

systems. However, the design of sliding controllers for discrete-time systems is a

more difficult task than for the continuous-timecase [215]. Therefore, the develop-

ment of discrete-time slicling control strategies for the proposed scheme would be

a fruitful and challenging are¿ of research. The scheme proposed in this thesis is

also shown to provide effective control in the presence of various forms of distur-

bances. However, apart fr-om the bias compensation scheme, explicit techniques to

minimise the effect of the disturbances on the system are not considered. The topic

of disturbance rejection in neural network based identification and control of non-

linear systems is discussecl in [160]. In the approach, the identifier and controller

structures are modified to compensate for the effect of disturbances on the plant

output. The disturbances are assnmed to be additive and are generated by an un-

forced dynamical system. Specific structures of nonlinear systems are considered'

Some simplifying (local linearisation) assumptions are provided to deal with Model

IV type nonlinear systems. As with the neural adaptive control scheme presented

in [169], an explicit control law is used. This control law is based on the structure

of the nonlinear system under consideration about which some partial knowledge

is assumed. Therefore, further work can be conducted on extending the work pro-

vicled in [160] to more general nonlinear systems and disturbance models (including
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multiplicative noise) and applying the results to the proposed neural adaptive con-

trol scheme. Because of the generalised nature of the proposed scheme, this would

be a challenging task.

5. In order for any new and novel control scheme to gain acceptance amongst indus-

trial engineers, it must be tested and proven on actual "real world" systems. In

this thesis, a simulation study of the application of the neural adaptive control

scheme to anti-skid brahe system is performed. Further work on the application

of the proposed scheme to an actual anti-skid brake system or any other practical

system is recommendecl. This would require a number of issues to be investigated.

In particular, the principle bottleneck in any neural control system is the speed

of learning in the neural networks. Slow learning can limit the usefulness of the

neural networks in control problems under a real-time environment. This problem

is further exacerbatecl by the iterative search routine conducted in the proposed

scheme. Therefore, methods of improving the speed of learning would need to be

investigated. A brief analysis of the computational requirements of the proposed

neural network based anti-skid brake system indicates the approach is feasible if

the system is implemented on a specialised DSP chip. More extensive analysis

would be required to determine the feasibility of implementing the scheme on ex-

isting hardware systems without suffering from the memory bandwidth bottle-neck

problem. In terms of the practical realisation of the scheme, hardware based neural

network systems which ta,lie advantage of the inherent parallelism found in neu-

ral network architectures offer the most promise for the future. Another potential

problem with the hardware implementation of the scheme is the need for large

amounts of memory to store the weights of the (generally) large networks required

for most control applications. Therefore, the memory requirements of the scheme

would also neecl to be consiclered carefully. These factors point towards the need for

customised VLSI harclware implementation of neural control schemes. This would

be an extremely challenging and potentially fruitful area of research [44].

In summary, the application of neural networks to the adaptive control of nonlinear (and

linear) systems is still a very open area of research, in both the theoretical and application
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domains. There are still a number theoretical issues which need to be addressed or

developed further. Significant insight into methods for addressing these issues can be

gained from the many theo¡etical results established in adaptive control theory in the

past two decades. The full potential of neural control schemes will only be realised

through hardware implementation. In particular, customised VLSI implementations offer

the most promise. This is also a burgeoning and potentially fruitful area of endeavour. It

is the author's belief (and hope) that the area of neural adaptive control will continue to

be a profitable and stimulating area of research and eventually the widespread industrial

irnplementation of neural control schemes will come to fruition.
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Appendix A

Backpropagation Learning

Algorithm

The backpropagation learning algorithm was originally proposed by Werbos in I974

12441 and then rediscovered by Parker (1985) [179] and Rumelhart et al. (1986) [200]

It arguably remains the most comrnonly used supervised learning algorithm' The back-

propagation algorithm is essentially an extension of the gradient descent algorithm to

the multilayer perceptron.

The backpropagation algorithm essentially provides a means of adapting the weights W;¡

in a MLP to learn the training pair {*¡,dt} in a minimum least squares sense.

Consider a network with M layers, m : L,..., M

yi is the output of neuron i in layer rn,

y;o is the ith input : r¿,

Wff is the weight for the connection from the jth node in layer m-L to the ith in layer

'ft7)

r/¡ is the desired response of the ith output node and

l/ is the number of nodes in the output layer.

The cost function that is minimised is given by

Nt
i=7

E:1
2

d;( uy)'
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å D(¿n - g(D wi{ s(ÐwY-t. . .g(D w}n"ò)))',
Li=r j k q

The net input to node i in iayer rn is given by

hT:ÐwiaT-'

(A.1)

(A.2)

(A.3)

(A.6)

l

This results in an output

,!tl" : s(hi\ : s(ÐWiyî-')
J

rvhere g(.) it a sigmoidal activation function'

The gradient descent algorithm for adjusting the weights results in the following weight

update equation.

wiQ' + 1) : wi&) + LWi&) (4.4)

where

^wi&):-r#@ (45)

The change in error criterion with respect to the weights is given by

AE ôE dy! }hi
OWtr ð'yi dhi AWi

ffio'forlrT-'
where the iteration index k is neglected for simplicity sake and g' denotes the derivative

of g. For the output layer, ffi : IJ; - d; Therefore the effective error for the output layer

is clefined as

6y : s'(h{)ld;-yy)
-'(t wlf aï-)la' - vY) (4.7)u,

For the M -I layer connections Wy-r, the chain rule must be employed to obtain the

term i9- i.e.
oVa

AE aYY-'
aFaW
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D(4 - yY)s,(h!)w!f o'(nY-,)yY-,

\uy*lf s'(hy-')aY-'

6f -rr¡'t-z (A.8)

where 6Y-' : g'(hY-\D6ywif . Therefore the effective error from layer M is propa-

gatecl backwards lo layer' M - 1 to obtain its effective error which is used to update the

weights in that layer.
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