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ABSTRACT

Time-independent thermoelastoplastic and time-dependent creep stress and damage

analysis of thick-wailed cylinders have been investigated using incremental theory of

plasticity in conjunction with improved material elastoplastic and creep constitutive

models. The results are validated experimentally and numerically.

tr'or time-independent thermoelastoplastic analysis thick-walled cylinders of SUS 304

stainless steel have been selected. The material's loading and unloading properties

including the Bauschinger effect factor (BEF) are obtained experimentally and rep-

resented mathematically as continuous functions of effective plastic strain. The ma-

terial's model and the BEF have been incorporated in an analytical-numericalmodel

to predict the cylindefs plastic and residual stresses as well as the critical pressures

of direct and reverse yieiding. The analytical-numericai models for the prediction of

critical inner pressure, plastic stress distributions and the subsequent residual stresses

of thick-walled cylinders are vaiidated experimentaliy. Several experiments are carried

out on thick-walled cyiindrical test specimens in which internal hydraulic pressure has

been increased and the outer surface deformations are measured by the strain Sauges.
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Abstract

Subsequently the load has been released and the residual strains are again measured at

the outer surface of the cylinder. These experimental measured values are compared

with the predicted values of the analytical-numerical model and, in most cases, the

model predictions are accurate.

For time-depend.ent creep stress and creep damage analysis, thick-walled tubes of

f,Cr,lMo,|1z ferritic steel have been considered. Improved material creep and rup-

ture properties are obtained from the available literature. A numerical moclel has been

developed for the computation of creep stresses and strains and the creep damages in

a thick-walled tube which is subjected to an internal pressure and a thermal gradient.

The model predicts histories of stresses and strains as well as the damage history dur-

ing the life of the tube due to variation in stresses with time and through-thickness

variations. The creep damage accumulation is based on the Robinson's linear life frac-

tion damage rule which has been incorporated in a non-linear time-dependent stress

analysis. Following the stress histories the damages aïe calculated and cumulativeiy

summed. during ihe life of the tube. From the effective stress histories a reference time

has been identified when the effective stress distributions become uniform throughout

the tube wall. Effect of internal pressure on this reference time is investigated. The

accuracy of the results has been examined by comparing the theoretically predicted

creep curves and the numerically foilowed curves. Deviation of the followed paths from

the predicted paths is small.
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Chapter 1

INTRODUCTION

1-.1- General Introduction

The application of high-pressure technology in high temperature environment has un-

dergone a tremend.ous growth in the areas of oil, chemical, power ¡generation and in

defence industries. Atl of these industries use pressure vessels, piping systems and

thick-walled cylinders and in general, failures that arise in their systems are always

catastrophic. Therefore, there is a strong need for studies relating to non-linear de-

formations of these systems due to high pressure in the presence of high temperature

environment. Experimental modeling with careful analytical and numerical research is

necessary to investigate the non-linear response of these systems in order to develop

reliable proced.ures for the safe design against catastrophic failures. Time-independent

non-linear deformation analysis of thick-walied cylinders will provide information con-

cerning the through-thickness yielding characteristics of thick-walled vessels. This is

8



Chapter 7. Introduction I

important when intentional-yielding introduces beneficial residual stresses into the ves-

sel wail and improves the performance characteristics of the operating systems.

As a thick-wailed cylinder is pressurized, the bore material, which is the most highly

stressed portion of the cylinder, begins to yield. The yield surface begins to propagate

through the thickness of the vessel until it reaches the outer surface. When more and

more of the cylinder material is entering the plastic regime, the bore material begins to

strain harden. If the yielded. cylinder is unloaded, the compressive residual stresses will

be developed at the inner surface of the cylinder. Highly compressive residual stresses

can callse reverse yielding to take place at the inner surface of the cylinder. An impor-

tant ingredient of the non-linear and residual stress analysis is the material constitutive

model. Metals initially overstrained in tension have a signifrcantiy lower elastic limit

in compression (Bauschinger phenomenon). This phenomenon must be considered in

the material model for a more realistic prediction of residual stresses and the onset

of reverse yielding. It is also necessaïy to know the stress and strain histories during

overloading to calculate the subsequent residual stresses. There is however considerable

disagreement among solutions obtained by different investigators for the residual stress

distribution in the cylinder (for exampie, Koiter (1953), Bland (1956)' Franklin and

Morrison (1960), Parker and Andrasic (1981), Chen (1936), Rees (1987a), Stacey and

Webster (1ggg)). Ail the solutions presented by these investigators are obtained with

some simplifications in the geometry constraints, material models, yielding criteria and

the associated plastic flow rules. Determination of the residual stress distribution is
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important in the fracture analysis and the fatigue life estimation of thick-wailed cylin-

drical pressure vessels (for example, Hussain et al. (1930), Throop and Reemsnyder

(1932), Parker et al. (1983), Pu and chen (1983), Findley and Reed (1983), Koh and

Stephens (1991), Rees (1987a, 1991a, 1991b), Perl and Arone (1994a,1994b) and Se-

shadri (1gg4)). Therefore, an accurate prediction of residual stresses by using a realistic

material model including the Bauschinger phenomenon and a more realistic geometri-

cal constraint can have a significant contribution to improve the fracture analysis of

thick-walied cylinders.

In the presence of a high-temperature, non-linear deformation of cylinder becomes a

time-dependent process known as creep. Creep mechanism causes micro-structural

damages such as dislocation movement, cavity formation and spacing. The history of

creep stresses and the consequent creep damages of thick-walled tubes are extremely

important in the life assessment and for the routine inspection of high-temperature

high-pressure tubes to avoid unexpected failures. The development of reliable proce-

d.ures for design and prediction of remaining life of thick-walled tubes that operate

at creep ranges has been an activity of considerable research interest because of rele-

vance to plant safety and reliability (for example, Simonen and Jaske (1985), Seshadri

(1gSS), Cohn (1gg0), Jaske (1990), Viswanathan et al. (1994), Ibarra and Konet

(1995), Nogata and Takahashi (1995) and Jaske (1995)). Realistic tube-life predictions

are essential to economical design, inspection strategy and tube retirement evaluations.



Chapter 7. Introduction 11

A major difficulty in the design of tube life or remaining tube life is that the rate of

creep damage changes during the life of the tube due to time-dependency of stresses

and variation in stresses through the tube wall thickness. While in-service exami-

nations of these components can provide useful information about material condition,

greater und.erstanding of the component's non-linear deformation behaviour is essential

before the information obtained from the inspection procedures can be used to provide

accurate predictions of future component performance. Furthermore, if an improved

damage model can be predicted for the vessel then the component examinations and

inspections can be scheduled in a selective manner.

One of the ingredients of a time-dependent non-linear stress and damage analysis is

the material's constitutive model. A constitutive model for the prediction of long-

term creep behaviour of low alloy steels from a relatively short term data has been

introduced by Evans et al. (1934). The model known as "the Theta (O) projection"

has been adopted internationally (for example, Parker (1935), Maruyama and Oikawa

(1982), Maruyama et al. (1990) and Zamrik (1990)). The model accurately predicts

the material behaviour and the changes in the shapes of the creep curves with changing

stress and temperature. However, due to the complex mathematical representation of

the proposed material model, application of the model in practical problems is not yet

well developed.

The aim of this project is to develop, improve and validate the analytical-numerical
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models for a more realistic prediction of the time-independent and time-dependent non-

linear response of thick-walled cylinders subjected to an internal pressure and thermal

gradients by using a detail incremental deformation analysis and the improved mate-

rial properties in elastic, plastic and creep regimes. The outcome of this study will

be specially valuable to thermal power generating industries, pipe lines anrl in defence

research where efficient and safe design of pressure vessels and cylinders are crucial.

L.2 Problem Definition

A thick-wa]led cylinder of strain-hardening material has been considered in this study.

Loading of the cylinder is assumed to consist of a temperature gradient and a monoton-

icaliy increasing internal pressure . The cylinder ends are assumed to be closed for the

case of time-independent elastoplastic and subsequent residual stress analysis and are

assumed to be open for the case of time-dependent creep stress and damage analysis.

The material's strain-hardening properties and the Bauschinger phenomenon will be

considered for a more realistic prediction of plastic stresses and the consequent residual

stresses and the onset of reverse yielding. The material's time-dependent properties are

considered as full creep curves up to rupture defined by the theta projection concept.

Other assumptions used in the analysis are as follows:

1. For both time-dependent and time-independent non-linear analysis, von Mises

criterion and its associated flow rule is adopted
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2. The material is assumed to be incompressible in the plastic and creep regimes

3. A generalized plane strain case is considered in which the strain in the axial

direction is constant (e,:constant). This assumption is a more realistic constraint

than the plane strain for a closed ended cylinder because the cylinder is permitted

to expand in the axial direction while surfaces normal to the longitudinal axis

remain plane during deformation.

4. None of the plastic and creep strain increments are assumed to be zeto and all

the three-dimensional plastic and creep strain components are considered in the

analysis.

b. The temperature gradient is constant and the heat flow is assumed to be outward.

Details of the material properties used in both time-dependent and time-independent

analysis are introduced below

1-.3 Material Consideration

Material's time-independent constitutive model and the Bauschinger effect factor as

well as the time-dependent creep properties and the creep rupture criterion used in

this investigation are introduced here in this section'
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1.3.1 Material Time-Independent constitutive Model

The material for time-independent thermoelastoplastic deformation and the subse-

quent residual stress analysis is selected as SUS 304 stainless steel. This material is

commonly used in high pressure and high temperature environment. In this investiga-

tion the material non-linear properties are obtained experimentally' A large number

of test specimens have been loaded up to a specifi.c strain beyond the elastic limit and

then reverse loaded down to zero strain by using a computer controlled testing ma-

chine. The stress-strain diagram of the material during loading up to 0.75% overstrain

and unloading down Lo zero strain obtained from the experiment is shown in Figure 1'1.

oo
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OE=O.1 %

FC=0.1 2o

I
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Figure 1.1: Experimental loading-unloading stress-strain curve obtained for SUS 304
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Using the material's data file in conjunction with a curve fitting software the strain-

hardening is mathematically represented by the following constitutive equation:

o":232.68187 + 6s9.01541(er)o'2ra+znu (1.1)

where o" and €p are the effective stress and effective plastic strain respectively. The

materiai high-temperature properties and constitutive models are selected from the

experimental results of Niitsu and Ikegami (1990).

Effect of the amount of overstraining on reverse yielding is also investigated experi-

mentally in this work and represented by the Bauschinger effect factor.

L.3.2 The Bauschinger Effect Factor (BEF)

Metals initially overstrained in tension have a significantly lower elastic limit in com-

pression. This is known as the Bauschinger phenomenon. By definition, the Bauschinger

effect factor (B E F) for a specimen initially overstrained in tension is the ratio of the

compressive yield stress upon reverse yielding to the initial yield stress in tension. If

ø¿ is the initial yield stress in tension and o¿¡ is the yield stress in reversed direction

of loading as shown in Figure 1.1, then lhe BEF is

BEF : o'
OA

( 1.2)

The definition of Bauschinger effect factor has been modifled by Milligan et al. (1966)

to take into account the strain hardening as follows

BEF - 
O,
oB

(1.3)
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where a6 is the subsequent yield stress.

In this work the B E F is obtained experimentally based on the above modified defrnition

of Milligan. Determination of yield point in tension and compression is based on the

ASTM standard procedure of "offset method". In this work 0.1% offset is usecl to obtain

the material's yield strength. From the experimental data of each specific overstraining

condition the respective BEF is calculated from equation (1.3). Elastic strains have

been subtracted from the total overstrains to give the plastic strains. A functional

relationship between the BEF and the percentage amount of plastic strain has been

established by using a cuïve fitting software as follows:

BEF: 1.0170029 + 0.36592732(eo%) - 0.0025343t35(er%)u - 0.g?738304(eo%)0'5

(1 4)

where eoTois the percent plastic overstrain. The experimental BEF and its approxi-

mated function are compared in Figute 1.2.

1.3.3 Material Time-Dependent creep Properties

The material considered in this study for the time-dependent creep stress and creep

damage analysis is compose d of.lCr,TMo, |I/ ferritic steel. This composition is widely

used in electricity generating power plant for high-pressure and high-temperature com-

ponents. The materiai creep and fracture properties are obtained from the experimen-

tal results of Evans et al. (1984). The strain-time behaviour of the material has been
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Figure 1.2: Comparison of the experimentally obtained Bauschinger effect factor and

the approximated function for SUS 304

described by Evans et al. (198a) bV introducing the theta projection concept as foilows:

e : Or(1 - e-ø"') 1 O.(eonr - 1) (1.5)

where e and f are creep strain and timerespectively. Variables 01,Or'Ot and Oa are

dependent on stress and temperature and are mathematically represented as follows:

Logß@¡:ailbiT+c¡o*d¿oT i:I,2,3,4 (1'6)

where 6r and T are stress and temperature and the coefficients ai) b¿) c¿ and d,¡ are mate-

rial constants. For this particular material these constants are obtained experimentaily

by Evans et al. (1984) and written in Table 1.1.
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Table 1.1: constant coefficients of material constitutive equation

18

Parameter a, b c d

Or -0.8736*101 +0.4604*10-2 -0.4489*10-1 +0.6814*10-4

@z -0.2346*1.0-2 +0.2225*10-r +0.2195*10-1 -0.1951*10-4

Os -0.1g69*101 -0.2034*r0-2 -0.5497*10-1 +0.7990*10-4

O¿ -0.1643*102 +0.9149*10-2 -0.4723*t}-r +0.7139*10-4

Based on this tabulated data, units of time, temperatuïe and stress are seconds, oK and

MPa respectively. Evans & Wilshire (1935) showed that strain-time behaviour of the

material could be represented accurately using equation (1.5). The full creep curves

predicted, by equation (1.5) for lCr,TMo,, f V ferritic steel are shown in Figure 1.3.
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Figure 1.3: Creep curves predicted by the O projection for lCr,f,nf o,f,V letritic steel.
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A creep failure criterion which can either be the rupture strain (e¡) or rupture time

(t,) is necessaïy for the creep damage estimation and the remaining life assessment of

high-pressure high-temperature tubes and is described below'

t.3.4 Creep Failure Criterio

For any creep curve a failure criterion may be defrned by specifying either the rupture

time or rupture strain. It has been shown by Evans and Wilshire (1985) that the

material fracture strains (e¡) can be represented as a function of temperature and

stress as

eÍ:as-fbsT*cso*dsoT (1 .7)

The coefficients in this equation for T,he f,Cr,TMo, |I/ steel are shown in Table 1'2

Table 1.2: Constant coefficients of material rupture constitutive model

Parameter Ag b5 C5 d,g

eÍ -0.1 123* 101 +0.1517*10-2 +0.5473*10-3 -0.472r*10-6

On this basis, equations (1.5) and (1.6) can be used to construct a predicted creep

curve at any stress and temperature. The relevant rupture life is then defrned as the

time taken to reach the appropriate failure strain as given by equation (1.7). In this

case equation (1.5) may be rewritten in terms of fracture strain and fracture time as:

Or(1 - e-ø't') + O.("tnt' - 1) - €Í :0 (1 8)
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where f, is the rupture time and e¡ is the fracture strain. Based on the data shown

in Table L.2 lhe rupture times oT f,Cr,TMo, |V ferritic steel are calculated for a wide

range of stress levels and temperatures using equation (1.8). Results are illustrated in

Figure 1.4.

5 678
L,OGro (Rupture time, sec )

10

Figure 1.4: calculated rupture time data for lcr,lMo, |v ferritic steel

L.4 Scope of the Thesis

A review of the classical and recently published research work on the non-linear de-

formation analysis of thick-walled cylinders is discussed in Chapter 2. Effect of the

material constitutive model, boundary and end conditions, yielding criterion, tempera-

ture and time on the non-linear stress distribution of thick-walled cylinders are reviewed

in Chapter 1. Theoretical improvement and a general numerical procedure suggested
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for the calculation of the accumulated plastic and creep strains in a loaded thick-walled

cylinder are introduced in Chapter 3. Step by step numerical procedure to calculate

the non-linear plastic stresses and the consequent residual stresses as well as the time-

depenclent creep stress and creep damages are introduced in Chapter 4. Experimental

set up and specifi.cations of the cylindrical test specimens and procedures are described

in Chapter 5. In Chapter 5 the developed analytical-numerical procedure is justified by

comparing the model predicted deformations and the experimentally measured values

by the strain gauges. The results obtained in this investigation are discussed and inter-

preted in Chapter 6. A conclusion is derived and a recommendation for the future work

is described, in Chapter 7 followed by appendices and references. A list of publication

generated from this research work is cited at the end of the thesis.



Chapter 2

TITERATURE REVIEW

2.! Introduction

A considerable amount of work has been done on the problem of time-dependent and

time-independent non-linear stress analysis of thick-walled cylinders under internal

pressure, with and without the effect of temperature gradients. There are also many

closed form solutions available in the literature which are obtained by simplifying the

geometry, boundary and end conditions, material constitutive equations and the yield-

ing criterion. This review is divided into two major categories one of which deals with

the time-ind.ependent elastoplastic deformations and the subsequent residual stresses

while the other considers time-dependent creep deformations of thick-walled cylinders.

22
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2.2 Time-Independent Elastoplastic Deformation

Many solutions have been put forward from time to time for the elastoplastic and the

consequent residual stress distribution in a thick-walled cylinder subjected to an inter-

nal pressure sufficient to cause yielding at the cylinder wall. The first ciassical solution

to this problem \/as presented by Nadai (1931).

Nadai (1931) considered a thick-walled cylinder under internal pressure assuming that

the stresses are independent of deformation. He assumed a zero strain in the axial

direction and that the sum of the three total strain components in the radial, tangential

ancl axial directions. i5 r equal to zero to satisfy the material incompressibility condition.

\ /ith these assumption Nadai established expressions for the radial, tangential and

axial stresses in a fully plastic cylinder in the following form:

O't' : -'2O 
''!,/s r

23

oe
b1-ln-
r )

oz
t--m!
2r ) (2.r)

where or,, o0 and. o, are plastic stresses, øo is the yield stress, b is the outer radius

and r is the rad.ius. In the case of a partially plastic cylinder, Nadai assumed that

the cylinder is composed of a fully plastic and a perfectly elastic cylinder. Therefore,

parametric equations of stresses in a fully plastic vessel in conjunction with a fully elas-

tic solution were used to obtain the stress distribution in a partially plastic cylinder'

Parameters were obtained using boundary conditions at the inner and outer surfaces



Chapter 2. Literature Review 24

and the condition of continuity at the elastic-plastic interface. For the unloading case

of a plastically deformed cylinder under internal pressure Nadai subtracted an elastic

stress distribution with the same internal pressure from the plastic stress distributions

and obtained an estimate of residual stress distribution in the cylinder wall. Solution

presented by Nadai was approximate because the stresses were assumed to be inde-

pendent of plastic strains. The material's hardening effect and the Bauschinger effect

phenomenon were also neglected.

Another solution to the problem of elastoplastic stress distribution in a thick-walled

cylinder was obtained by Cook(1934) assuming a constant shear stress throughout the

plastic material. Based on the hypothesis of Tresca, in which a constant value of the

maximum shear stress was assumed to exist throughout a plastic material in a state of

plastic flow, Cook (1934) assumed that a constant shear stress existed over the plastic

region of a partially plastic cylinder. This shear stress was assumed to be equal to the

shear stress observed during plastic yielding in uniaxial tension which means:

(2.2)O0-Or-Og.

Cook described a theoretical and experimental study of the stress distribution across

the walls of thick cylinders of mild steel under internal pressure and overstrained con-

dition. Based on the above assumption Cook calculated the possible internal pressure

whichproduces overstrain throughout the wall thickness. However, the results of cook

are not signifrcant because the assumption of constant shear stress during plastic flow

is only correct for a perfectly plastic material (constant a¡) and neglects the hardening
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effect

The overstraining of cylinders by internal pressure was investigated by Manning (19a5).

He assumed that the axial stress is of magnitude lying between the radial and hoop

stress components, then the maximum shear stress depended on these two principal

stress components (øB and o') as follows:

o0 - or :2T^o, (2.3)

where r^o, is the maximum shear stress. Furthermore, he assumed that the area of

cross section of the cylinder does not change during elastic-plastic deformation which

is equivalent to the material's incompressibility condition in both elastic and plastic

region. With these assumptions the distributions of radial and tangential stress compo-

nents were obtained and the axial stress component was neglected. The assumption of

incompressibility in both, elastic and plastic regimes made by Manning is permissible

when the plastic strain component is large compared with elastic strain component

and the cylinder is in a fully plastic condition.

Combined effect of elastic and plastic strain components on the stress distribution in

thick-walled cylinders \Mas investigated by Hill et al. (1947). Hill et al' (1947) devel-

oped the theory of the deformation of material under combined stresses in which both

elastic and plastic components of strain were ìnvolved. The relationship between stress

and. strain \4/as represented on a plane diagram which was graphically used to evaluate

the elastic and plastic components of strain. They applied the theory to the defor-
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mation of a long thick tube under internal pressure with zero longitudinal extension'

They showed that while plastic flow is constrained by surrounding elastic material, the

correct stress distribution of the thick tube can be obtained by considering the elastic

part of the total strain in the material flowing plastically. In the particular case of a

thick tube an error of up to 60% resulted in the determination of the longitudinal stress

on the assumption of zero elastic strain in the plastic region. All the above solutions

to the elastoplastic stress distribution in thick-walled cyiinders were independent of

the cylinder end.s condition. However, effect of the ends condition on the stresses and

progress of plastic zone \Mere introduced by Hill (1950) .

Hill (1950) considered elastic and elastoplastic deformation of tubes under internal

pressuïe. He d.erived expressions for the elastic stresses in tubes. Hill considered three

possible cases: plane strain, open and closed end condition. Using the elastic stresses

Hill obtained the critical internal pressures of cylinders using both Tresca and von

Mises yielding criteria. Hill showed that all cylinders with various end conrlitions have

the same critical pïessure, according to Tresca's criterion. The critical pressure based

on Tresca's criterion was obtained as follows:

(2.4)

where P.r¿¡ is the critical pressure, ø and ó are the inner and outer radii respectively.

Hill pointed out that if von Mises criterion is adopted, the cylinders end condition

affects the critical pressure. Using the von Mises criterion, the critical pressures of

1a2
Pcrit: ,"o(, - *)
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cylinders were obtained for the three possible cases as follows:'

P.,it : j,¡O - ffl (ctosed' - end)

G+ #)
Og

(open - end)
"r/3
Og

/;Vù
(r + (r - 2ò#) (ptane - strain)

27

Pcrit

Puit

o-fitr
. a2.
(t - *)l (2.5)

It was indicated that the tube with open ends yields at the lowest pressure. The critical

pressures for the closed-end and plane-strain conditions differ by less than three per

cent. Assuming a perfectly plastic material Hill established a closed form solution for

radial and tangential stress components expressed in the following form:

; : -0.5 - m(?l. # (a 11 1r.)

t! : +o.b - m(?) - # (a 11 1r") (2.6)
og1

where r" is the elastic-plastic interface, Hill, for the first time used an incremental re-

lationship (Reuss incremental stress-strain relationship) to obtain axial stresses while

his solution for the radial and tangential stress components (equation (2.6)) were in-

dependent of plastic strains. Effect of the incremental stress-strain law and the total

plastic stress-strain law on the elastoplastic stress distribution of thick-walled cylinders

were considered by Hodge and White (1950).

Hodge and White (1950) considered an infinitely long hollow cylinder under inter-

nal pressure. Stresses were obtained for a perfectly plastic material according to the

Prandtl-Reuss incremental stress-strain law and the Hencky deformation law (total

strain theory). In both cases the von Mises yield condition was used. It was shown
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that the two theories yield substantially io close results for this particular problem.

Although Hodge and White used the von Mises criterion to obtain the solution for the

stress components but the effect of axial stress on von Mises criterion was neglected.

In fact the von Mises condition was reduced to a relationship between the radial and

tangential stress components in both cases to obtain the solution.

A review of many solutions available in the literature for the stress distribution in a

thick tube subjected to an internal pressure was presented by Ailen ei al. (1951). To-

tal strain solutions with the Hencky-Mises flow condition as well as incremental strain

solutions were reviewed. They presented a new total strain solution making fewer as-

sumption and developed into a form suitable for practical application. Their analysis

assumed that the strain at any stage depends only on the stress system and not on how

that stress system is reached. The search for simple practical solution was continued

by Steele (1952)

In a search for assumptions leading to a simplified theory for design purposes all the

previous theories for partially plastic thick-walled cylinders under internal pressure

were reviewed by Steele (1952). Steele concluded that the solutions using incremental

theory vary a small amount from those solved by total strain theory. However, the

Hencky total strain theory was preferred because of the mathematical convenience.

Based on the comparison, a theory was presented by Steele to include the Hencky

stress-strain relations and Tresca's criterion in conjunction with the Ludwik's shear
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stress-strain diagram of a linear hardening type as shown in Figure 2.1

Shear strain

Figure 2.1: Ludwik,s linear strain-hardening diagram (steele (1952))

The Hencky total strain theory was rewritten as follows:
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where ì was called plastic flow function. The Ludwik's iinear shear stress-strain hard-

ening relationship incorporated in Tresca's criterion was written as follows:

oo - or : Zf (y) (2.8)
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where 7 is the maximum shear strain which was linearly related to the shear stress as

follows:

r : ro + mG(l - fo) (2.9)

where rs and 1o are the shear stress and strain at yield, G is the shear modulus and

mG is the slope of the linear strain hardening as shown in Figure 2.1. Ma,terial was

assumed incompressible in both elastic and plastic regimes. Closed form solutions were

presented for the stresses and strains the value of which could be obtained for specific

applied pressures.

There are several review of the elastoplastic stress analysis of thick-walled cylinders in

the literature one of which is of Koiter (1953). Koiter (1953) discussed the solutions

to the problem of stress distribution in an elastoplastic thick-walled tube which had

been presented, by Hill (1950), Hodge and White (1950), Allen and Sopwith (1951)'

and by Steele (1952). These solutions differed in the yield criterion and the plastic

stress-strain relations which they assumed. Koiter adopted the Tresca yield criterion

and its associated flow rule. Koiter determined the stresses in radial, tangential and

axial directions (ø,, os and o") for a tube of non-hardening material in both elastic

and plastic regions. He showed that his solutions agreed well with the few available

solutions based on the lvi,scs yield criterion and the associated flow rule except for

the axial stress and strain. However, as the axial stress and strain were very small

compared to the radial and tangentialstressesand strains, Koiter concluded that the

differences were of minor practical importance.
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Effect of temperature on stress distribution which was neglected by prevrous lnves-

tigators was first considered by Whalley (1956). Whalley (1956) considered elastic

and plastic behaviour of thick-walled cylinders of perfectly plastic material subjected

to internal and external pressuïes and a temperature distribution across the cylinder

wail. He established equations for critical pressure in a thick-walled cylinder with

closed. ends under pressure and thermai loading using Tresca's criterion. In a vessel

subjected to both pressure and thermal stresses he assumed that the thermal stresses

are not sufficiently high relative to the pressuïe stresses and the axial stress never be-

comes a major or minor principal stress. With these assumptions Tresca's criterion

became independent of axial stress and the equilibrium equation was also independent

of axial stress. Therefore, a closed form solution for the radial and tangential stress

components was established. Whalley obtained the residual stresses by subtracting an

elastic solution from the above closed form solution. He concluded that the onset of

yielding, the plastic flow and the residual stresses are affected by thermal stresses. The

axial stress was not obtained and the effect of hardening was not considered by Whalley.

Bland (1956), using Tresca's criterion, established stress and displacement equations

for a tube of linear strain-hardening material subjected to pressure and steady state

heat flow. His analysis is the only closed form solution available in the literature for

a work-hardening material. The material hardening was given as a linear function of
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effective stress and effective plastic strain as follows:

o": oo(I * Tep)

32

(2.10)

where o" and e, the effective stress and the effective plastic strain were given based

on Tresca's criterion in the following form.

oe oo-or (2.11)

(2.r2)

The closed form solution presented by Bland was based on the linear strain-hardening

material rather than a perfectly plastic model of previous investigators. Residual

stresses in a closed end tube were given for eiastic unloading by subtracting the elas-

tic stress obtained from the imposed pressuïe and temperature from the elastoplastic

stress system. However the Bauschinger effect was not considered by Bland. There

a e a number of investigators who used the shear stress-strain data to predict the non-

linear behaviour of thick-walled cylinders (crossiand et al. (1959)).

The strength and non-linear behaviour of thick-walled steel cyiinders subjected to an

internal pressure were investigated in a number of publications by Crossland et al.

(1g5b, 1958, 1959). The complete theoretical non-linear behaviour of the cylinder was

computed from shear stress-strain data obtained from torsion tests and was shown

to be in close agreement with the experimental resuits. Using the shear stress-strain

data in non-linear analysis was not followed by other investigators because theories of

plasticity attempted to predict the non-linear behaviour of a member from the uniaxial

ap
t

t[J"t
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tension test results.

Atthough conditions for the start of the plastic yielding in thick-walled cylinders has

generally been considered by many investigators but the combined effect of tempera-

ture and pressure on the start of yielding has rarely been considered by researchers.

Derington (1962), using Tresca's criterion, described the onset of yielding in thick-

wailed cylinders subjected to pressure and thermal gradients with open and closed end

conditions. Derington showed that when combined pressure and thermal loads are ex-

erted, yielding may start everywhere according to loading conditions. He also showed

that yielding is not always due to radial and tangential stress components, and that

there are loading combinations in which the axial stress becomes a minor or major

principal stress. In this case, even with Tresca's criterion the elastoplastic analysis

becomes history dependent and the problem must be solved numerically.

Sidebottom et al. (1975) used a total-strain, incompressible, analytical solution to

predict load-strain relations for thick-walled cylinders as the loads were increased from

zero to the bursting pressuïe. Loading function represented by a finite number of

straight lines and the material was assumed to obey the von Mises yield condition

and its associated flow rule. Unloading of thick-walled cylinders that had been plas-

tically deformed were also investigated by Sidebottom et al. (i976). The predicted

residual-stress distributions and deformations of the unloaded cylinder were obtained

by superposition of the previous solution and the unloading solution, provided that the
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stress-strain diagram for unloading and reverse loading of tension specimens represents

the loading function for unloading. The Bauschinger effect was not considered in Side-

bottom work. The solution for the residual stress distribution without considering the

Bauschinger effect is not a realistic one particularly when significant amount of plastic

strains has been developed in the cylinder wall.

There are also a few closed-form solutions and simulation for residual stress distribution

in thick-walled cylinders available in the literature. Hussain et ai. (1980) showed that

an active thermal load can be used to produce thermal stresses equivalent to residual

stresses. In fact, Lhey realized that there \ /ere many similarities between resìdual stress

distributions and the thermal stress distributions (due to a steady state outward flow

of heat). For example, residual tangential and axial stresses were compressive at the

insid.e surface of the cylinder and were tensile at the outer surface which were similar to

thermal stresses. Residual radial stresses were zero at the inside and outside surfaces

and were compressive throughout the thickness which were the same as radial ther-

mal stresses. They obtained a thermal gradient which could produce thermal stresses

equivalent to residual stresses of an autofrettaged cylinder. The Bauschinger effect was

neglected in this simulation and therefore the simuiation was correct only for small

amount of overstrained condition.

Chen (1936) presented a closed form solution for the residual stress distribution in a

cylinder of high strength steel. He proposed a theoretical constitutive material model
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for high strength steel in which he used a perfectly plastic loading condition and a

linear hardening unloading function including the Bauschinger effect. The material

was assumed to obey Tresca's yield criterion and its associated flow rule for both

loading and unloading conditions. In the case of reverse yielding the Tresca's criterion

was written in the following form:

co-or:foo (2.13)

where / was the Bauschinger effect factor. Using this material model and following the

procedures in Bland's (1956) work, Chen obtained a closed form solution and calcu-

lated residual stresses and strains in the reverse yielding zone as well as in the elastic

zone. Results of Chen showed that the magnitude of the compressive residual stresses

at the inner surface of the cylinder were significantly decreased when reverse yielding

took place in the vessel. Therefore, the advantage of the compressive residual stresses

will be significantly decreased if reverse yielding occnrs in the cylìnder. Closed form

solution of Chen for residual stresses including the Bauschinger effect was significant,

however, he simplified the material model into a perfectly plastic loading condition and

therefore neglected the hardening effect on residual stresses.

Rees (1987a), using von Mises criterion, considered closed-end cylinders of hardening

and non-hardening material subjected to an internal pressure. He assumed that the

axial plastic strain is zero, and radial and tangential plastic strain increments are equal

in magnitude but opposite in sign. With this assumption the effective plastic strain
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increment was reduced to a function of tangential plastic strain increment as follows:

(2.t4)

He also assumed that the axial stress is the average of the radial and hoop stresses'

With this assumption the von Mises yield condition was reduced to a relation between

the radial and hoop stress components as follows:

L'ef,: 4o,trVù

2
oo - or: 

6,oo
(2.15)

With these assumptions the history dependent problem of elastic-plastic stress anal-

ysis was reduced to a numerical integration using uniaxial stress-strain data. Using

the above analysis Rees compared the residual stress distribution from the above men-

tioned two different material models and showed that the residual stresses were affected

by the strain hardening and that the hardening model \¡/as more realistic.

An investigation into the prediction of the deformation and the residual hoop stress

distribution in autofrettaged thick-walled tubing of high-strength low-alloy steel with a

diameter ratio of 2.07 was presented by Stacey et al. (1988). Analytical and numerical

estimates were compared with the experimental measurements. Using Tresca,'s criterion

in conjunction with a perfectly plastic material model, a closed form soiution, similar

to Hill (1950) was obtained for radial and hoop stress components. A solution was also

obtained by using the simplified von Mises yield criterion (op - o, : fr"o -- 1'1554¡)'

Stacey conciuded that the closed form solution obtained with Tresca's criterion remain

valid for the von Mises criterion, provided that øo is replaced by 1.155 ø0.
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2.2.L Conclusion (Time-Independent Analysis)

All the solutions presented for the non-linear time-independent stress analysis and the

subsequent residual stresses in thick-walled cylinders are obtained with some kind of

simplifi.cations in geometry, material model, yielding criterion and the associated plas-

tic flow rules. The plane strain case has been considered in all the solutions available

in the literature. This implies that the total strain in axial direction must be zero

(e, : 0). On the other hand, the cylinder is not permitted to expand in axial di-

rection.Deformationsr and stresses in the radial and tangential directions are affected

by imposing this constraint because of the relationship between the longitudinai and

lateral deformations defined by Poisson's ratio and its contribution in the three di-

mensional stress-strain relationship. In a more realistic approach, the cylinder can

have deformation in axial direction while planes normal to the axial direction remain

plane. A generalized plane strain case in which the total strain in axial direction is a

constant (r,: constant), is a more realistic approach for the closed ended cylinders.

Many solutions have also ignored the material strain hardening effect and instead they

have used a perfectly plastic material model or a kind of linear hardening model. Us-

ing the material's hardening effect exactly the same as obtained from the experiment

can signifrcantly improve the analyticai-numerical results. Another importa,nt material

property is that the metals initially overstrained in tension have a significantly lower

elastic limit in compression (Bauschinger phenomenon). This phenomenon must be

considered in the material model for a more realistic prediction of residual stresses and

the start of reverse yielding in thick-walled cylinders resulted {rom unloading of the
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overstrained vessel. Although it is understood that the material reverse yielding point

depends on the amount of accumulated plastic strain during overloading, but this is not

yet fully incorporated into the available materiai models. The conventional kinematic

hardening material models exhibit the Bauschinger effect phenomenon but the reverse

yielding points in these models are defined with the assumption that the total elastic

range (2o6) remains constant irrespective of the amount of prior plastic strain. Al-

though finite element methods and softwares have used the material non-linearities in

the non-linear stress analysis, but the materiai models considering the Bauschinger ef-

fect phenomenon are limited to the conventional models in the availabie softwares. The

ANSYS finite element program (version 5.0) provides seven options to characterize dif-

ferent types of material behaviours; two of which exhibit the Bauschinger phenomenon.

These are bi-linear kinematic hardening model designated by BKIN and multi-linear

kinematic hardening model designated by MKIN both of which are defined based on

the conventional assumption that the total elastic range (2ø¡) remains constant ir-

respective of the amount of prior plastic strain and the material's actual behaviour

during reverse loading. This study incorporates the material model in a manner which

considers the Bauschinger effect phenomenon as a function of the amount of irreversible

effective plastic strain rather than the conventional models. This is a more realistic

material model and wili signifrcantly improve the accuracy of the solution particularly

the residual stresses and the reverse yielding predictions.
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2.2.2 Objective 1"

Following the above conclusion the specific objectives of the non-linear time-independent

analysis are defined as follows:

o Improvement of the analytical-numerical model for the prediction of non-linear

stresses by considering a realistic geometrical constraint for the case of a closed

ended thick-walled cylinders (generalized plane strain).

o Using the material strain hardening as obtained from the experiment for the

loading function of the non-linear analysis without any simpliflcation to improve

the accuracy of the results of plastic stresses and deformations.

o Improvement of the analytical-numerical model for prediction of residual stresses

as well as the onset of reverse yielding by considering the material Bauschinger

effect factor. The material's Bauschinger effect factor is obtained experimentally

and is represented as a continuous function of the amount of irreversible plastic

strains during overstraining rather than the conventional kinematical model in

which the reverse yield point is related to the forward yield point.

o Experimental verification of the analytical-numerical model for the prediction of

critical pressures, plastic stresses and the subsequent residual stresses.
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2.3 Time-Dependent Creep Deformation of Tubes

Thick-walled tubes are often used in high-pressure high-temperature environment. The

most important influence of high-temperature is to bring in the factor of time which

must be considered in the tube's stress and deformation analysis. One of the impor-

tant ingredients of a time-dependent structural stress and deformation analysis is the

material's behaviour and its constitutive model. Therefore, some of the important

material creep constitutive models and creep-rupture properties are also considered in

this review.

The first major step toward the analysis of stress and deformation of structures working

at high temperatures \/as taken by Bailey (1929) and Norton (1929). They introduced

a uniaxial relationship between creep strain rate (e) and stress (a) in the following

form:

è: Ao" (2.16)

where A and n are temperature dependent constants. This equation was suggested by

Bailey and Norton to replace Hook's law in analyzing the stresses and strains in loaded

bodies. The major problem was that the relation was a uniaxial state of creep while

in practical problems the situation was multi-axial.

The above uniaxial equation (trq. (2.t6)) was later generalized to the multi-axial state

of creep by Bailey (1935). The major objective was to offer a basis for solving the

cïeep problems under multi-axial system of stress in a form that was linked directly

40
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with the case of simple creep tension test. General relationships were suggested by

Bailey for creep in the direction of principal stresses such that for simple tension they

were reduced to uniaxial creep equation (2.16). For example, the creep strain rate in

the principal direction of X (i.e. é¡) was represented by

, " 
: 

+ff,t" t - on)' + 
r¡t", 

- o *)' +f,{", - o r)'l*l(ox - oy)n-2m - (o, - o x)n-2*)

(2.t7)

where Arm and n are temperature dependent material constants and o¡, oy and o2

are principal stresses' For simple tension (o, : 0, oy : 0) the above equation was

re¿uced to e y : Aok which is the same as equation (2.16). Experimental data were

obtained from the creep deformation of lead tubes under combined internai pressure

and axial torsion to verify the suggested model. The model was complex and approxi-

mate and the experimental data were interpreted based on the uniform tangential and

axial stresses for thin tubes.

In another attempt, to interpret the creep deformation of tubes with the uniaxial creep

deformation, an experimental study of creep in tubular pressure vessel was performed

by Norton (1g39). He carried out experiments on the tangential and longitudinal creep

under internal pressure and high temperature in steei tubes such as boiler tubes. He

compared. with the creep properties of uniaxial tensile specimens of the same type of

steel at the same temperature and under a stress equal to the tangential stress in the

tube. Norton concluded that the creep strain rate in the tangential direction is about

half of the uniaxial tensile specimens and the axial creep strain rate is negligible. No
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specific formula or model was suggested in this work to relate the uniaxial data and

multi-axial deformation.

Previous work of Bailey (1935) had indicated a theoretical basis (equalion (2.17)) that

metals under combined stresses had a lower rate of creep deformation than when under

a pure tensile stress of the same magnitude. However, some experimental work had

shown close agreement between the flow under tensile conditions and the flow under

combined stresses. It was, therefore, desired to make more careful creep tests on tubes

to investigate the relationship between the multi-axial and uniaxial creep deformation.

Norton (1941) conducted creep tests on tubular specimens and indicated that the lon-

gitudinal creep deformation of the tubes is substantially zerc and the tangential creep

deformation rate is approximately the same as the creep in the tensile specimen with

a stress equivalent to the tangential stress in the tube. There was no time-dependent

analysis of stress and strain in this work and the conclusion was based on experimental

results only.

In another attempt, to relate the creep deformation of tubes with the uniaxial creep

,deformation, Soderberg (19a1) used the theory of yielding and the concepts of "inten-

sity of strain" and. "intensity of stress" introduced by Hencky (1933). Soderberg (1941)

related the principal creep strain rates in a three-dimensional stress system with the

creep strain rate of a tensile creep specimen in the following form:
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where, er, e, and es are the rate of principal creep strains, ot, a2 and o3 are the

principal stresses, s is the intensity of stress and e is the rate of the intensity of strain'

The intensity terms were defined as follows:

s

(r, - tr)' * (r, - et)2 + (r" -,t)t

(2.re)(o, - or)' - (o, - o")' - (o" - or)'

Soderberg (1941) applied the above theory to a thin tube under internal pressure with

the assumption that the creep curves approach straight lines (constant strain rate)

with a minimum slope which depended on the stress. Soderberg concluded that the

tangential cïeep strain rate is ú12 times the creep rate of a uniaxial creep tensile

test. Finalty he stated that the analysis of creep of a thick-walled tube is a, matter of

considerable difficulty. He showed that the postulates of creep did not confl.ict with

those of stationary plastic flow. In fact, Soderberg modified the available plasticity

theory (Hencky deformation theory) in a manner which was suitable to use in a rate

dependent analysis and used this concept in an stationary analysis of thin tubes.

èz : iV"- 
rr{or+or))

J'
3

1

-Jz

Later, Norton and Soderberg (1942) modified the solution to include the thick-walled
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tube by introducing a deviation factor in the following torm:

44

(2.20)

where f is the tube thickness and l? is the mean radius. This factor \ /as multiplied by

the intensity of stress of a thin tube to give the intensity of stress at the mean radius

of a thick-walled tube. The deviation factor, ;[, was obtained with these assumptions

that the creep rate varies as the nth power of the stress intensity (è : Ao") and that

the radial displacement varies inversely with radius and the tangential creep rate varies

inversely with the square of the radius.

So far, all the above investigators have considered the case of thin tubes or they have

modified the thin tube formula to include the thick-walled tube. Furthermore, they

have all considered the steady state creep (secondary creep regime) in their stress anal-

ysis which is evident from the strain rate equation (Ë : Ao") which has been adopted

by all of them.

The frrst non-steady creep stress analysis of thick-walled cylinders was given by Coffin et

al. (19ag). They evaluated the stresses and creep strains at a particular timeresulting

from loading a thick-walled cylinder under constant internal pressure and a constant

elevated temperature throughout the thickness. It was assumed that in the creep test,

time (f), temperature (7) and strain (e.) are independent variables represented by the

following function:

6*:f(e*,t,7) (2.2I)

r :tr -,;*jr
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where ø* and €* were called effective stress and effective strain deflned in the following

form

o

o

oo-or

(2.22)€o-8,

in which os and, dr were tangential and radial stresses and eB and e " 
were tangential

and radial strains. Only primary creep characteristic of a given material was taken

into account. A family of conventional creep curves of strain versus time a,t constant

stress were re-plotted by Coffin as stress-strain curves for a given time (isochronous

curves). The procedure for plotting the isochronous cuïves is schematically shown in

Figure 2.2.

Coffin assumed. that during small time intervals these isochronous curves represent the

effective stress and effective strain relationship and solved the problem similar to a

plasticity problem. Result of stress distributions after 25hr, 100hr and 1000hr were re-

ported by Coffin. Although the distribution of stresses were reported for short periods

of time, but it was shown that the stresses were redistributed and changed with time'

It was understood that the stress and deformation of tubes working at creep ranges are

time-dependent, but the design of tubes was based on the maximum tangential creep

stress obtained from an stationary analysis.

45

Bailey (ig51a) considered several principal matters which should be taken into account
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Figure 2.2: (a) Primary creep strain; (b) Schematic fi.gure of isochronous curves

in steam piping design for high pressure and high temperature. Principles such as stress

redistribution as a result of creep and the cïeep strain allowable for design and the

design temperature were generally discussed. Creep test results for Mo - V steel for

high stress level and high temperatures from 630oC io 700C were reported by Bailey

(1g51a). He selected temperature as ordinate and logarithm of time to attain creep

strains of 0.001,0.002 and 0.003 as abscissa and showed a linear relationship between

temperature and the logarithm of time as illustrated in Figure 2.3.
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Figure 2.3: Creep test results on Mo-V steel steam pipe for stresses of 3 Ton per square

inch (45.6 MPa)

These lines were extended to a time of 100,000 hours to give the extrapolated value

of design temperatures. In order to obtain the design temperature for a tube, stress

distribution and creep of tubes under internal pressure were investigated in a separate

paper by Bailey (1951-b). He derived expressions for the principal stresses in a thick-

walled tube provided that a single stage of creep were appÌied across the tube wall and

that the creep strains were sufficient to ignore eiastic strains. He used the previously

defined formula for the creep strain rate in three principal directions (equation (2.16))

and obtained a relationship for the design temperature of the tube which was related
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to the internal pressure.

It was not feasible to run experiment for a long time duration at operating condition

(temperature and stress) of a steam tube to introduce a design life for the tube after

which the tube would be retired. Therefore, for the first time Bailey carried out exper-

iments at very high temperatures (accelerated creep test) and applied stress to attain a

certain amount of accumulated strain and linearly extrapolated a design temperature

and life.

The concept of linear relationship between temperature and the logarithm of time

to achieve a certain creep strain introduced by Bailey (1951a) was later developed by

Larson and Milier (i952). They established a time-temperature relationship for rupture

and creep stresses. They showed that the lines of logarithm of time-to-rupture versus

(1/T) converge to a constant value for different constant stresses.They introduced

the Larson-Miller parameter (Pt u which was the product of temperature (T) and

a function containing logarithm of time-to-rupture (t¿) as follows:

Pru(o):T(C llogntn) (2.23)

Larson and Miller selected C : 20 for most materials in the above equation. They

showed that the parameter depends only on stress and introduced the Larson-Miller

parameter curves. Larson-Miller parameter is used extensively in structural creep rup-

ture analysis. Many investigators questioned the use of C : 20 for all materials and

therefore other parameters were proposed. Manson and Haferd (1953) plotted loga-

rithm of time-to-rupture as a function of temperature and showed that for different
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stress levels all the lines converge to a point which is material dependent. They intro-

duced a parameter which was somewhat more general than Larson-Miller parameter

for each material. Finally Manson (1963) introduced a generalized parameter from

which Larson-Miller and Manson-Haferd parameters could be obtained.

The concept of design life and rupture life were already introduced by Bailey (1951-b)

and Larson and Miller (1952). The expenditure of life when temperature or stress

varies with time was first considered by Robinson et al. (1952). Robinson calculated

the factor of safety of a structural member with reference to a stated iife for the system

operating under stress and at high temperature and the stress or temperature varies

moderately according to some definite pattern. The formula presented is ba,sed on the

assumption that the expenditure of each particular fraction of the life span at elevated

temperature is independent of and without influence upon the expenditure of all other

fraction of life to rupture and thus can be accumulated to give the total expenditure of

life. To facilitate the calculation of this quantity, the expenditure of life (E)was defined

as follows:

(2.24)

in which ú¿ and L¿ ate time and the time-to-rupture at any particular condition of stress

and temperature. The concept of damage \/as not introduced at that time but later

this rule became famous as the Robinson's life fraction damage ruie.

p : s ¿.' :t,Z-¿[ T
i-t ui tJl

t3

L,+
t2

h+ +

The concept of expenditure of life did not draw attention until the life assessment of
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fossil fueled power stations became an active area of research in mid 1980's. However,

the analysis of thick-walled tube was continued by approximate analytical techniques

the most important of which was the reference stress method

Schulte (1960) observed that in a creep solution of beams there were points in the cross

section at which the stress did not change as the solution progressed from initial elastic

to stationary solution at constant bending moment. This constant stress was called

reference stress. By running a creep test at this constant stress Schulte was able to

predict the beam deflections. Basically, the idea of the method was that a given struc-

ture could be analyzed with data obtained from a single creep test at its reference stress.

Marriott and Leckie (1964) observed that there are points in components undergoing

transient creep at which the stress does not change with time. In a pressurized thick

cylinder this point was called "skeletal point" which is shown in Figure 2.4 (point A).

However they did not use this skeletal point in any particular analysis.

A method for establishing the reference stress was suggested by Mackenzie (1968)

provided that the material obey a power creep law of the following form:

e: Bo" (2.25)

The steady state solution for the stresses using the above creep law in particular struc-

tures such as beams and thick walled cylinders were known, the reference stresses were

obtained by comparing the stationary solution with the elastic solution. Using the
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L.2 1 8

Figure 2.4: Effective stress redistribution from the initial elastic to stationary creep

reference stress (o,.¡) and the corresponding strain rate (e,"¡), the power law equation

was rewritten by Mackenzie in terms of o,"¡ and és as follows:

è, _ ( or \n (2.26)

'* - \ 

"'"r)

Mackenzie applied the above equation and the stress-strain rate equations (trqs. (2'18))

to a number of structures including the thick-walled cylinder and obtained an estimate

of their deformation rate in terms of reference parameters. The tangential creep strain

rate at the outer (eB,) and inner (riB¿) surfaces of the cylinder were given in terms of
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è,"¡ as follows

52

çUz

çÍJo 1.5
Àer.Í

(P' - r)
(2.27)

where B is the radii ratio (R"l R) and I is a parameter which depends oî 0. Variations

of À versus p were given on a graph which could be used to obtain the tangential creep

strain rates of different cvlinders.

The creep problems of pressurized cylinders and spheres with a negative temperature

gradient in the radial direction were analyzedlry Sim (1973). A reference temperature

was defined for the vessel. Knowing the reference stress and also the reference tem-

perature, it was shown that the stationary state radial displacement of the vessel wall

was approximately proportional to the creep strain which occurs in a tensile specimen

loaded by a stress equal to the reference stress and at a temperature equal to the

reference temperature of the vessel. Consequently the creep displacement of cylinders

and spheres under internal pressuïe with a negative temperature gradient in the radiai

direction may be predicted if the creep strain-time behaviour of a material specimen

loaded at the reference stress and reference temperature is known.

Kraus (19S0) presented the stationary creep stress distribution in a thick-walled cylin-

der. It was assumed that the creep strain rate in axial direction is zero and that the

radial and tangential creep strain rates are equal in magnitudes and opposite in signs'

For the stationary state the effective creep strain rate and the effective creep stress
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were related by the Bailey-Norton uniaxial relation for steady creep as; e: Aon. In

a comparison of the stationary solution with the elastic solution Kraus showed that

when 7¿ was set to unity the elastic solution was resulted. He concluded that this was

consistent with the elastic analogy introduced by Hoff (1956). He also concluded that

redistribution has occurred for the stresses from their initial elastic to their final sta-

tionary distribution. To see how the initial elastic stress state redistributed into the

stationary state, Kraus showed that the non-stationary stress analysis is a statically

indeterminate problem and cannot be done in closed form. The non-stationary stress

analysis gives the history of stresses and strains which are important and necessary in

the damage analysis and the life assessment of thick-walled tubes.

A computational method for predicting the life of tubes used in petrochemical heater

service has been introduced by Simonen et al. (1985). The model uses conventional

numerical approaches to solve finite element models of two dimensional creep prob-

lems. The Larson-Miller parameter is used to represent stress rupture data for tube

material. This paper also addresses the practical difficulties of applying such models

to real service conditions and real commercial alloys. The result given in this paper

shows that the maximum damage occurs near the mid-wali of the tube (heater tube

with an inward flow of heat) while there is no damage in the outer surface of the tube

even when the tube approaching the end of its service

In view of practical diffi.culties in using the above model, Seshadri (1988) introduced
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an analytical method in which upper-bound estimates of creep deformations and creep

damages of fired heater tubes are obtained using a linear elastic analysis. The method

is based on the concept of the elastic-core developed by Bree (1967) and O'Donnell et

al. (1974), and evaluations of time-dependent inelastic effects can be carried out by

using linear elastic calculations. However the effect of stress redistribution is ignored

by using an average value of the upper limit hoop stresses at the inside and outside

tube wall as a conservative value of the effective hoop stress for the whole thickness'

Traditional life prediction methods involve the calculation of stress using the mean

diameter equation based upon the design pressure. The computed stress is then used

to calculate the life of the tube (API recommended practice (1978)). This approach

is simple but the results are not reliable due to ignoring the stress redistributions'

Although it is well understood that the stresses in general and the hoop stress in par-

ticular are changed with time in a thick-walled tube operating at high temperature,

but the mean diameter formula for calculating hoop stress is still used in estimating the

remaining life of high-energy piping system (Seshadri (19SS) and Ripley et al. (1995))'

A better estimate of the remaining life was introduced by Cohn (1990) using the equiv-

alent stress formulas rather than the mean diameter formula.

Cohn (1990) used several equivalent stress formulas for the life assessment of high-

energy piping system. These systems are subjected to multi-axial state of stress, but

creep rate and stress rupture data are based on uniaxial load tests. Several cor hined
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stress equations or equivalent stresses have been postulated by Hayhurst (1972), Brown

et al. (1982) and Huddlestone (1985). These equivalent stresses together with the avail-

able time-dependent design stress values for Cr-Mo steels were used to predict time to

rupture of these components. In fact, design or applicable stresses were converted in

time in hours. In this method, total life was computed and the past operating life was

subtracted from the computed totai life to obtain an estimate of the remaining life.

Cohn concluded that the prediction of rupture life is complicated in a multi-axial state

of stress due to stress redistributions and variation of stresses with time. He suggested

that a more accurate prediction can be obtained using an incremental life exhaustion

procedure.

Current remaining life assessment of the creep exposed components is based on the ac-

celerated post-exposure creep rupture tests of the service exposed material, Tolksdorf

(1995). Accelerated creep tests are carried out at service stress (iso-stress tests) but at

higher temperatures so that extrapolation to the service temperature gives an estimate

of the remaining useful creep life of the component as shown in Figure 2.5.

Accelerated tests at higher stress and the service temperature (isothermal tests) or

tests at both higher stress and higher temperature have also been commonly used for

the remaining life evaluations (Tolksdorf (1995)). In these methods sufficient material

for the manufacture of several miniature test specimens has to be removed from the

component which means that these methods are destructive and more importantly the
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Figure 2.5: Accelerated post-exposure stress-rupture test data et higher temperatures

and the service stress are extrapolated to the service temperature to obtain an estimate

of the remaining life.

test specimens a e not necessary representative of the bulk of material or the mostly

damaged material.

Recent creep damage evaluations are based on the in-service inspection methods, visual

and non-destructive examinations, surface hardening, surface metallography and repli-

cation to assess the micro-structural changes, Nogata and Takahashi (1995). However,

the information obtained from the in-service inspection may not necessary be repre-

sentative of the bulk of material. Furthermore, current surface assessment methods

neither provide a quantitative estimate of the damage nor give any information about

the damage gradients.
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While in-service testing and non-destructive examinations of thick-walled tubes can

provide useful information about material condition, greater understanding of the com-

ponent non-linear time-dependent stress and damage behaviour is essential before the

information obtained from the inspection procedures can be used to provide predic-

tions of future component performance. In fact, the flrst step in all these methodologies

must be a detailed creep stress and damage analysis of the component. If an improved

damage model can be predicted for the vessel then the component examinations and

inspections can be scheduled in a selective manner. A complete creep deformation

and creep damage analysis must consider the incremental deformation and life exhaus-

tion. As the stress relaxes from the initial elastic state to the present condition, the

calculated damage and life exhaustion are cumulated in incremental periods at the

applicable stress.

An important ingredient of the non-stationary stress and damage analysis is the ma-

terial constitutive model and rupture properties. The accuracy of life predictions is

currently limited by the wide variation in short-term available materials data. The use

of parametric techniques such as larson-Miller procedure allows data extrapolation of

only three times as the longest rupture life according to ASTM standards.

A potential soiution to the problem of data description and long-term extrapolation

was obtained by Evans et al. (1982) introducing the "Theta (O) projection" concept.
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The theta projection concept considers the creep strain to be the sum of a primary or

decaying and a tertiary or accelerating creep strain rate components as follows:

e : or(1 - e-@'t) * oa(eoo¿ - 1) (2.28)

The theta projection concept has been successfully applied to f,Cr,TMo,|V ferritic

steel which is the selected material in this investigation. However, due to the complex

mathematical representation of the proposed material model, application of the model

in practical problems is not yet well developed.

2.3.L Conclusion (Time-dependent Analysis)

Creep is an important damage mechanisms to be considered for the life assessment

of power plants hìgh-pressure high-temperature piping systems. Creep damage and

the life exhaustion analysis of thick-walled tubes is not yet well developed due to the

combined effect of loading, time and temperature. A major difficulty in the damage

analysis of thick-walled tubes and the consequent life exhaustion of these components

is that the stresses are changed with time and redistributed across the wall thickness

of the tubes. For an accurate analysis of damage and life exhaustion, the history of

stresses is r necessary and therefore a non-stationary creep stress analysis is inevitable.

As the stresses change with time from their initial elastic state to the present condi-

tion, the increments of damage and life exhaustion must be calculated and cumulated

in incremental periods of time at the applied stresses.
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2.3.2 ObjectiYe 2

According to the above conclusion the main objective of the time-dependent stress

analysis is itemized as follows:

o Introducing a non-stationary cïeep stress analysis of thick-walled tubes by using

an improved long-term material creep constitutive model defined by the theta

projection concept which can significantly improve the long-term prediction of

stress and deformation histories.

o Incorporating the Robinson's linear life fraction damage rule, which has been

adopted by the ASME Code (Case N47), into the above non-stationary analysis to

predict the creep damages across the thickness of the tube as well as its va,riation

with time (damage histories).

o Using the damage histories and the material's rupture properties to evaluate the

remaining life of the component'

o Verification of the analytical-numerical procedure.
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THEORETICAL ANATYSIS

3.1 Introduction

In the elastic range strains are linearly related to the stresses by Hooke's law. In the

piastic and creep regimes the stress-strain relationship is generally non-linear. An im-

portant distinction between the elastic and plastic stress-strain relations is that in the

elastic range the strains are uniquely determined by the stresses using Hooke's law,

but in the plastic and creep regimes the strains are not uniquely determined by the

stresses and depend on the complete loading history (path dependent) or on how the

state of stress is reached.

Because of this history dependence of the plastic and creep strains, it is necessary to

compute either the differentials or the increments of plastic and creep strains through-

out the loading history and then obtain the total plastic or creep strains by integration

60
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or summation. To determine the actual magnitude of the plastic or creep strain incre-

ments in a multi-axial state of stress and strain, the non-linear incremental stress-strain

relationships are employed. In these relationships, increments of plastic or creep strains

are related to the multi-axial state of stress and the loading history. It is difficult to

follow the loading path in the stress space of a multi-axial state of stress condition.

Therefore an effective stress and an effective plastic or creep strain increment are de-

fined in order to facilitate the use of material's uniaxial property in a multi-axial

state of stress and strain. In this Chapter non-linear piastic and creep deformation of

thick-walled cylinders are being formulated and general procedures for the solution are

suggested. However, details of the proposed analytical-numerical procedures and their

experimental verification will be discussed in the next two Chapters.

3.2 Formulation of Thermoelastoplastic Problem

in Thick-Walled Cylinders

A thick-walled cylinder which is loaded with an internal pressure and a thermal gra-

dient is considered. For each element of the cylinder the equilibrium of forces and

compatibility of displacements must be satisfied regardless of the 
"1.t¡is.plastic 

or

creep situation. However, stresses and strains are influenced by plasticity or creep

through the stress-strain relationship in which plastic or creep strains are considered.

In a thick-walled cylinder containing high internal pressure the middle section of the

vessel is the most susceptible to failure area as it has been shown by many investigators
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(Crossland et al. (1953), Roach and Priddy (1994)). Therefore a cylindrical element

at the middle section of the cylinder is shown in Figure 3.1 and has been considered

for the analysis.

Figure 3.1: Location of a cylindrical element at the mid-center of the cylinder

The equation of equilibrium and compatibility for such an element are written in the

following form

Equilibrium

tcz
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Compatibility:
-1 -

* +"-;-:o (3'2)

where o, and o0 are radial and tangential stresses and e, and €e ate radial and tangential

strains.

The stress-strain relations depend on plasticity and creep. In the general case it is

adopted in solid mechanics that the total strain is the sum of elastic, plastic, creep and

thermal strain components as follows:

e¿j : €7j + ee;¡ + ei, + aT6rj (3.3)

where the superscripts'"'r'p'and'c'refer to the elastic, plastic and creep strain

respectively. The coefficient of linear thermal expansion is represented by a, T is

the temperature change and ô¿¡ is the Kronecker delta. In cylindrical coordinate this

equation is rewritten as follows:

Ir", - r(oe + o")l + e! + ei * aT

€e |Vt - ,(o, +o")l + eg + ei, i aT

lr", - r(o, + o,)l t e! + ei t aT (3 4)

where €r, €g and e, are total strains, epr, €l antd ep, are total plastic strains, €"r, efr and ei

are time-dependent creep strains, or¡ oe and o" are normal sttesses, E is the material's

modulus of elasticity and z is the Poisson's ratio. In this section the thermoelasto-

plastic deformation of thick-walled cylinders will be considered and therefore the creep

strains will be ignored. Therefore the stress-strain relation in this case is rewritten

from the equation (3.a) as follows:

aT
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lr",-r(oe+o")l+e!*aT
1

E los-u(o" *",)] *e$+aT

lr",-r(o,+or)ltef,+aT (3.5)

Effect of the creep strains will be considered in the next section which is devoted to

time-dependent creep stress and damage analysis of thick-walled tubes.

A major difficulty in the above stress-strain relationship is the history dependency of

the total plastic strains, e!,efr and e!. If the cylinder develops some piastic region as

a result of high internal pressure or any other loading condition, then the total plastic

strains must be calculated in the plastic region of the vessel. Therefore, it is necessary

to introduce the incremental stress-strain relationship or plastic flow rule which facilitates

the computation of plastic strain increments. These increments can be integrated

along the loading path to give the total accumulated plastic strains.

3.2.L Plastic Flow Rule

The total plastic strains in equation (3.5) depend on the loading history, therefore

they can be calculated by integration or by summation of the plastic strain increments

throughout the loading history. If the load is applied during a large number of loading

steps, then the total plastic strains el,e$ and e! can be obtained by summation of the

plastic strain increments in the following form:

çT

e6
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uT

^pa0

çp"z

D^rl,o
n

i=l
n

i=7
rL

DLr",o

ÐLtï,n (3 6)

where Lel,, L,ee, and L,ep, are radial, tangential and axial plastic strain increments

and the subscript i represents the loading step. To determine the plastic strain incre-

ments in equation (3.6) the incremental plastic stress-strain relationship is necessary.

From the theory of plasticity, the incremental stress-strain relationship depends on the

yield criterion. On the other hand a yield criterion is associated with an incremental

stress-strain relationship which is usualiy called its associated flow ru1e. The material

yield criterion and its associated flow rule will be employed for calculation of plastic

strain increments. The material selected in this time-independent non-linear analysis

is stainless steel SUS 304. The material strength can be best described by the von

Mises yield criterion. Therefore, the von Mises yield criterion and its associa,ted flow

rule are selected and introduced here. The yield criterion determines the stress level

at which yielding will take place. In multi-axial state of stress, a function containing

the individual stresses which can be interpreted as the effective stress is a measure of

plastic yielding. The von Mises efiective stress in a multi-axial stress state of a cylinder

is written as follows:

t=l

oe: #U", - 
oe)' t (o, - o")' * (o" - o,)'li (3.7)
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where a" is the von Mises effective stress. According to the von Mises criterion yielding

starts when the effective stress is equal to the material's yield stres. (oo) as follows:

oe: oo

Then the von Mises yield criterion may be written in the following form:

(o, - oe)2 + (ot - o")2 + (o" - o,)' :2o2o (3.9)

The associated flow rule of the von Mises criterion is known as Prandtl-Reuss equations'

The Prandtl-Reuss equations relate the increments of plastic strain to the loading

history and the state of stress. In this case, the Prandtl-Reuss equations are written

in terms of radial and tangential plastic strain increments, Aefl and Aef as follows:

A.p Ac- - Iac; ï1", - ¡1", + t,)l 'l

Lrl : ";V' -Tr""* o,)l (3.10)

where Aeo is the effective plastic strain increment and will be defined later in this sec-

tion. The fraction L.erf o" in equation (3.10) is the history dependent part of non-linear

stress-strain relationship. The axial plastic strain increment can be written in terms of

radial and tangential plastic strain increments by using the material incompressibility

condition in plastic regime. Although in elastic regime the material's incompressibility

is not an acceptable assumption, but in the plastic regime metals are more or less

incompressible. Therefore, the plastic strain increment in the axial direction may be

obtained from the incompressibility condition as follows:

L,ef,: -(Ari + Aefi) (3.11)

(3.8)
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The effective plastic strain increment in equation (3.10) is defined in the following form:

Lrr: {Xorf - Lrl)' + (aefi - Lr',)' + (Le! - Le!)'zli. (3.12)

The effective stress and the effective plastic strain increment in a multi-axial state of

stress and strain witl facilitate to reduce the history dependent part of the non-linear

stress-strain relationship (Aeo/ o") to the history of a uniaxial loading. A functional

relationship between the effective stress and the effective plastic strain increment can

be written in the following form:

oe H(rr)

I dep (3.13)

where 1/ is the material's hardening function. This functional relationship given by

equations (3.13) can be obtained from the uniaxial tensile stress-strain data plotted

in Figure 3.2. The uniaxial stress-strain data obtained from experiment is based on

the stress and total strain. In order to flnd the functional relationship represented by

equation (3.13), it is necessary to convert the stress-strain data into a new format based

on the stress and plastic strain. Therefore, in this investigation a computer program

is written which transforms the material's data file obtained from the experiments,

into a new data file based on the effective stress and effective plastic strain. In fact

the computer program subtracts the elastic strain from the total strain to obtain the

effective plastic strain. The new formatted data file is then used as an input of a curve

fitting software to find the best continuous function representing the new data flle. The

best function representing the effective stress and effective plastic strain relationship is
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0.010
Straín (e = o"lE + €p)

F igure 3.2: The material stress-strain curve obtained by experiment

obtained as follows

o. : 232.68187 + 639.01541( eo)o'2\aaznu 1a.t+;

A plot of the new data flle represented by the above equation is shown in Figure 3.3.

So far the equations of equilibrium, compatibility and stress-strain as well as incremen-

tal stress-strain relations and their relationship to the loading history are introduced.

To obtain a solution for the non-linear plastic stresses and strains the above mentioned

equations plus the boundary and end conditions must be satisfied.
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0.010
Eff. plastic Etrain (eo)

Figure 3.3: Relation between effective stress and effective plastic strain.

3.2.2 Boundary and End Conditions

It is assumed that the cylinder ends are closed which is also consistent with the exper-

imental model incorporated in this study. It is also assumed that the internal pressure

of the cylinder is P, and there is no external pressure present on the cylinder outer

surfaces. However, for the generality of the analytical-numerical model an outer pres-

sure, P6 is supposed to exist at the outer surface of the cylinder. It will be set to zero

whenever there is no outer pressure acting on the surface. The radial stress at the inner
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and outer surfaces of the cylinder must be equal to the compressive stress of internal

and external pressures. Therefore the boundary conditions at the internal and externai

surfaces of the cylinder are written in the following form:

or. : -Po at f :(1,

or : -P6 at r:b (3.15)

where a and ó are the inner and outer radii of the cylinder and the negative sign is for

the compressive stresses.

For a closed end cylinder the integration of axial stress oz over the cross-sectional

area must be equal to the longitudinal force caused by the internal pressure. The

longitudinal force generated by an internal pressure Po in a cylinder with the inner

radius of ¿ is F - Potra2. Therefore the end condition is mathematically expressed as

follows:

(3.16)

Before presenting a solution to the non-linear stresses and strains in the cylinder it

is convenient to summ arize the above governing equations and the boundary and end

conditions and then set off for a solution.

I,o 
o"dA - Potra2
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3.2.3 Surnmary of the Governing Equations

Al1 the above governing equations which must be satisfied for the plastic stresses and

strains in a thick-walled cylinder are summarized here as follows

trquilibrium

do, or-oo
0 (3.17)+ r

Compatibility:

dr

Stress-strain:

Yieid criterion

Incremental stress-strain relations:

9*eo-E':odrr

f,V,-r(oe+o"))+el+aT
LrVt-u(o"+o,)l+e$+aT

lr",-r(o,+ou)l*ef,+aT

oT

€e

ÐLrl,o

(3.18)

(3.1e)

(3.20)

(3.21)

Total plastic strains

ër

þ
€'g

^þçz

'¡L

i=7
n

i=l
n

Ð n"l,o

Ð^rl,o

i=L

(o, - oe)' + (ot - o")' I (o" - o,)2 :2o2o

Lrl L,e^ - L-f1",- r("t+o")l
Ae-- I.-fl"'-iþ"*o,)lLrl (3.22)
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Incompressibility:

L,ef,: -(Lrl + A'efl) (3.23)

Effective stress and effective Plastic strain increment

1

\/2 l@, - o )' + (o, - o,)' + (o, - o,)"li

t/2
Lro [(Arí - Lrl)' + (Lefl - Lr',)' + (Lel - L,el)21i. (3'25)

3

Material hardening function:

o" :232.68187 + 639.01541(e o)o'2ßa27ze (3.26)

Boundary condition

o (3.24)

or -Po

or -P6

I,O

at r: a,

at r:b

end condition

(3.27)

(3.28)o"dA - Pora2

There is no closed form solution for the set of equations of equilibrium, compatibility

and stress-strain (Eqs. (3.17), (3.13) and (3.19)) with the above boundary (Eq. (e.27))

and end conditions (Eq. 3.28)) to obtain stresses and strains. Stresses are functions of

total plastic strains in equation (3.19). The total plastic strains are the sum of plastic

strain increments, equation (3.20). The plastic strain increments are again depended

on the stresses and history of loading defined by equation (3.22) which is the incremen-

tal stress-strain relationship and the associated flow rule of von Mises yield criterion
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(equation (3.21)). Loading history is obtained from the material's uniaxial stress-strain

data and mathematically represented by equation (3.26). To obtain a solution for the

stresses and plastic strains, a successive eiastic approximation method has been devel-

oped. The method will be simplifled as the functional relationships between stresses

and total plastic strains are derived'

3.2.4 Successive Elastic Approximation Method

A successive elastic approximation method for this particular problem has been devel-

oped as follows. The load is applied in a large number of increments. For the first

increment of load, a distribution is assumed for the plastic strain increments in radial

and tangential directions, Aef and Lr" . At this initial loading step the total plastic

strains el, el and ef, are zeto. The set of equations of equilibrium (3.17), compatibility

(3.18) and stress-strain (3.19) can now be solved like an ordinary elasticity probiem,

and a first approximation can be obtained for the stresses and total strains. At the

same time, using the assumed values of plastic strain increments, an effective plastic

strain increment Aeo is computed from equation (3.25). From the material's hard-

ening function (equation (3.26)) the corresponding value of effective stress ø" can be

determined. This is shown graphically in Figure 3.4. At initial loading step the total

effective plastic strain, eo is equal to the effective plastic strain increment. Now a new

approximation can be obtained for the individual plastic strain increments using equa-

fion (3.22). Using these new plastic strain increments, equations (3.i7), (3.18) and



Chapter 3. Theoretical Analysis 74

0. . 010
Effective plaEtic strain

Figure 3.4: Determination of effective stress from the effective plastic strain.

',/'l':'i
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(3.19) are solved again as a new updated elastic problem. A second, and presumably

better, approximation is obtained for the stresses and total strains. At the same time,

using these last values of the plastic strain increments, a new approximation can be

computed for the effective plastic strain increment Aeo from equation (3.25). Using

this value of Aeo, a new value is obtained for o" from the materials hardening function

shown in Figure 3.4. New approximations are now obtained for the plastic strain incre-

ments Aefl and Aefi using the Prandtl-Reuss equations (3.22). The process is continued

until convergence is obtained. The flow diagram for the calculation of plastic strain

increments is illustrated in Figure 3.5.
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LrI,oj, Lel,¿¡

Leo,;¡(Bq.3.25) Equilibrium (Eq. 3.17)

Compatibility (trq. 3.18

Stress-Strain (Eq. 3.19)\- Â.çp,xJ - L) ÀvprxJ

or,¿¡ro6,¿¡1dz,ij4",¿¡ (Fig. 3.4)

tr1!ü"-) ,tell"-) çEq. J.22)

Figure 3.5: Flow diagram for the computation of plastic strain increments

In the above flow diagram the subscript i denotes the ith loading step and j denotes the

jth layer across the thickness of the cylinder. In this manner the solution is obtained

for the first increment of loading. For the next increment of load an exactly similar

calculation is performed except that ef,, el and ef, are no longer zero but are equal

to the known values of Aefl, Aefi and Ae! obtained for the first increment of loading.

The complete stress and strain history can thus be obtained when the complete load

is applied.
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This successive approximation method can be simplified by deriving the functional rela-

tionship between the stresses and the plastic strains as will be shown in the next section

3.2.5 Derivation of Thermoelastoplastic Stresses

The set of equations of equilibrium (equation (3.17)), compatibility (equation(3'18))

and stress-strain (equation(3.19)) are solved simultaneously for the stresses to obtain

the functional relationship between the stresses and the total plastic strains. From

the third equation of the stress-strain relationship (equation (3.19)), the axiai stress

a, is substituted into the fi.rst two relations of equation (3.19). Then e, and ee ate

substituted into the compatibility equation (3.1S). The result is a differential relation

between radial and tangential stress components which can be solved in conjunction

with the equilibrium equation (3.17). The procedure is indicated below. The third

equation of stress-strain relationship equation (3.i9) is rewritten in the following form:

E€," : fo" - u(o, + "t)] 
-f Eel -f EaT (3.29)

Then the axial stress o" horri- the above equation may be derived in terms of the other

two stress components, o, and og as follows:

oz: E€z I u(o, * oe) + E(el + efl) - EaT (3.30)

Substituting o, which is in terms of o, and ap into the frrst and second relations of

equation (3.19) gives the following relations for the radial and tangential total strains,

tr)
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6d and 6r as

ur

€g

t(

'#Ut - r)o, - ro,7+ (1 + u)aT - u€"+ [(1 - u)ef - uefi]

t !'10 - u)oo - vo,)+ (1 + u)aT - u€"+ [(1 - u)efl - uef] (3.31)
EL\

Now, four variables of o,¡ o¡t e," and €,e cal be obtained in terms of the total plas-

tic strains usìng four equations of equilibrium (3.17), compatibility (3.18) and equa-

tions (3.31). In this way, the following two equations are obtained by differentiating

the second relation of equations (3.31) with respect to r and subtractions of both

equations (3.31),

#:,#ut-4#-,ffi+(r+ ,)"#+[(i - ,)#-,ffi (382)

and

to-or ^P -þa0 ur
(3.33)

E )+
€e-C, llu

r T r

The above two equations are obtained in terms of the radial and tangential stresses (o'

and øp) and the total plastic strains. Substituting equations (3.32) and (3.33) into the

compatibility equation (3.13) results in a differential equation which is a relationship

between the o, and o6 and the total plastic strains written as follows:

*@, + o,)
a,T

EadT E
7-u dr l-u2

The above equation and the equation of equilibrium may be solved simultaneously for

the radial and tangential stresses, o, and os. Inthis way, by integrating equation (3.34),

the sum of the radial and tangential stress components is obtained as follows:

EaT E
wH -T wr l-u 1-u2

rrcP-cP

f(r - u)efr - ueP, * J" Tdrl + C1 (3.35)
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where Cr is an integration constant. The functional relationship between stresses

and plastic strains may be obtained by using equation (3.34) and the equation of

equilibrium (3.17). The equilibrium equation is rewritten in the following form.

oo : or + r# (3.86)

Substitutirg oo from equation (3.36) into equation (3.35) results in the following dif-

ferential equation which must be solved for the radial stress (ø").

* *2o, : K(r) (B.sT)cl,r r \/

in which,

["] - 'l ¿rl + 91
Ja T T

efi e!,1
-u--t-TTT

(3.38)

The above differential equation (3.37) can be solved for the radial stress (ø,) using

the following procedure. WritiLB o, as the product of two homogeneous (À) and non-

homogeneous (() components, then o, : À.(, and differentiating both sides with re-

spect to r gives

do,
(3.3e)

d,r

Equation (3.37) can noïrr' be written in the following form

d^
d,

( +
de

dr
ì

.r{ +
dr

((* *?^l : I((r)
CIT T

(3.40)

Setting the coefficient of ( equal to zero, the above differential equation may be written

in terms of À and ( in the following form as:



! +?x: o (8.41)
a.r T

^#: *?) (r.42)

Since À : Atlr2 satisfies the equation (3.a1) a solution for ( may be obtained by

integration of equation (3.42) as

rrd,r - ]7Xt -,1
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At

or

o"r

1
refldr - u reldr

79

(3.43)* I"' , l"' 'l -r'l drdrl-r?r* - a2)j + Az

substituting for À and ( into a, : À.( and introducing cz : AtAz the radial stress

can be expressed as follows:

E
Trdr - [(t - ") refidr - u reldr

),'

* l"' , I,' 'l -r'l drd,rl-r f;o - fin * 2

l"' , l"' 
ú--'l-¿,¿, :+ l"' 'l =,', d, -,l,'lri - ee,)rd,r (8.45)

re$dr I reldr)

u21(

(3.44)

The double integral in the above equation is simplifled by using integration by parts:

Inserting the simplified integral from equation (3.45) into equation (3.44) the result for

ø, and then o6 are as follows:

¿fu l,'r,d, - N:r4te-zu)(
ff "P - cP 

-Cr r., - 
o',-, -gz+r'(J"ffarl , 2\. ,r,,, 12

å, l"' r,d, - 3. ñ+w(t - 2u)

-" l" t;go'l - frrt - u)efi - ue"l * ?r

l,' ,Gl * ef)d,r

t*41¡ -+ (3.46)
T'

t0
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Constants Cr and Cz in the above relations are obtained using the boundary condition

equations (3.27), the results are as follows

80

Ct:

Cz (3.47)

Substituting C1 and C2fuom equations (3.47) into equations (3.46) the radial and tan-

gential components of stress are expressed as follows:

-Ea E

¿# -ø l"ur,a,+ 6-ffi -,u,tl-zò I"
rb c? - cP 2Poa2 2Pab2*u,J"ffa,l+ffi-ffi

(efi + e!)rdr

f(t - zu)( refldr j reerdr)

b

(efr + e!)rdr

-Poa2

õr Trdr -(l - u)r2

Ea

2(L - u2)rz

E
+,' l"'t;40'l* 2(I-r')(b'-o') l(r - 2ò l"

*u' l:úif,o¿o -5t +ftift -a l"o 
r'a'1çt' -$t

P,a2 b2 , Ptbz a2,
+*_711 -,")- br_arl'- *) (3.48)

o0 (l - u)r2

EaT
Trdr - l-u

.rr+\a(t -2u) r(ee6l ef)dr - r2

-frp - ,)el - uel.) + ¡e - Åø -øl(t - 
zu) l"'l,;-t e!)rd'r

*u' l:ú;Ë0,t0 +5) +ftift -a l"o 
r'a'1çr *#¡

P,ct2 b2 , Ptb2 ,a d2,+*Ïp(1 +\)-ffi(r+ r,) (3.4e)

The axial stress (a,) must satisfy the equation (3.30) derived from the stress-strain

relationship as well as the end condition equation (3.28). These equations are rewritten
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here as follows:

2EaEe" :

o": E€" I u(o, * ot) + E(el * efi) - EaT

l. o"dA - Potraz

81

(3.50)

(3.51)

(3.52)

It is necessary to point out that the axial strain in equation (3.50) is not zero but it has

been assumed zero by all the previous investigators. Since all the surfaces normal to the

cylinder longitudinal axis remain plane, the most accurate and reasonable assumption is

to consider a constant axial strain rather than zero (plane strain). It is also validated by

the experiment performed in this investigation; and that the assumption of zero axial

strain (plane-strain) is not accurate. Therefore a constant axial strain (generalized

plane-strain) is assumed in this investigation. Substituting o" frorn equation (3.50)

into the end condition equation (3.51) and integrating across the wall from the inner

to the outer surface of the cylinder and considering the generalized plane strain case,

(6, :constant), the following relation is obtained for the constant value of 6, as,

b2-a2
2E

l"or,a,-;+1"
l,'G', * ef)rd,r -r

b

(ot + o,)rdr

Poa2

b2-a2b2-a2

Substituting this constant value, which also depends on the internal pressure, from

equation (3.52) into equation (3.30) the expression for the axial stress is obtained as:

- EaT 2Ea ¡boz: _ + @1 J,rro,

fTtft -,),1- uel + l,' 
ú-Êa'l

G #ølQ - 2u) l"' {'i -t ef)rdr * u' l" ú;40¿

;+ l"u lu',-t ef)rd,r + E(efi + ee,) + # (3.53)
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Equations (3.43), (3.49) and (3.53) describe the general stress distribution for any inter-

nal and external pressures and any arbitrary axi-symmetric temperature distribution.

Assuming a steady state outward flow of heat through the cylindrical wall, the differ-

ential equation for temperature distribution is given by

d2T 7 dr
*+;*:o (3.54)

If temperature at the inner and outer surfaces of the cylinder are designated by 4 and

?6 respectively, then the thermal boundary conditions can be written as follows:

T : To at r:a

T : T6 at r:b (3.55)

Solving the differential equation (3.54) with the above thermal boundary conditions

the temperature distribution is obtained as follows:

r : hl(T-tr! - rtmg¡ (3.b6)

Substituting the above temperature distribution into the expressions obta,ined for the

stresses, equations (3.43), (3.49) and (3.53), the following soiution for the radial, tan-

gential and axial stresses is obtained'

or. , "o!T:--'ù.. ,€!,,! + b2rn: - o,t,Ll
2(l - ,)(b' - qz)lnL' r2 a, b o,'

E
l(I - 2ò(1"' ,e'6d,, -t l,' reId.r) + r'(" \ËO¿2(1 - u2)r2

E
2(r-r')(b'-o') l(t - 2u) 

l"o {r'r-t 
el)rd,r * u' l:+ K'-5)

(3.57)+#('-5¡-ffir'-5t
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O0 2(I-r)(b'-a2)ln ¡#^I+b'zh;- a2h\-t þ2 - az)l
Ea(T" - fo)

d

oz

.rëWlQ -2u) I"' 'Gl-t e!)dr - 
" l"'l =,'l o' -

zr2((r - ,)el - ,el)l + ñ _Å@ -øl(r - 
2u) 

l"' Gi-t ef)rd,r

¡b çP- - çP a2 . P^a2 b2 P¡b2 a2,
*u'J"T¿,1(1 + ì+ffi(t+7)- *ÏA(t+Þ)

""!Ti.-'ù,= ,l2b2h: - 2a:h\ -t þ2 - a2)l2(r-r)(b'-a2)lni' b a,

-fiXt - r)el - ue1 * I"''l 
-r" drl * U-:fu=øt

(r -zu) l"o t i-t et)rdr * u' l:ú;go¿ - ;+ I"'G; r et)rd,r

-f7r, l,o lri t ee,)rdr - (b' - o')(eï + ,',)l - ffi (3.5e)

83

(3.58)

The functional relationship between stresses and total plastic strains are established

in equations. (3.57), (3.5S) and (3.59). Then the suggested numerical procedure for

calcuiating plastic strain increments can be simplified as shown in the following flow

diagram.
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Lrl,o¡, Lel,¿¡

Aeo,¿r(Eq. 3.25)

or,ij ¡ o0,ij¡ o,,¿¡ (Eqs. 3.57, 3.58, 3.59)\- Acçp,zJ 
- /J JçprxJ

ø",¿¡ (Fig. 3.5)

L,el(?"-) , Lrlfr"*) (Eq. 3'22)

Figure 3.6: Simplified flow diagram for the computation of plastic strain increments'

The above solution for the stresses depends on the dimensions of the cylinder. It is

useful to introduce a dimensionless solution for the stress functions which can be used

for any cylinder. The dimensionless solution is derived in the next section.

3.2.6 Dimensionless solution

For a general solution it is convenient to introduce the following sets of dimensionless

quantities S, Se, 5",, @, Pi, Po, P,, er,¡ €g¡ e" and 60, such that

84
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l,o
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(3.60)

Sr :or loo

P¿ :Poloo

€.r :€r leo

Se:oeloo

P" :Puloo

€o :ee leo

S, :o"f oo O :(Eo,LT)lG - u)os

p :rla P :bla

€z :€rl€o €g :ool E

where S, Se and ^9, are dimensionless stresses, O is the dimensionless temperature

gradient, P¿ and Po are dimensionless internal and external pressures, p is the dimen-

sionless radius, €r, €.6 ã,îd ez are dimensionless strains, a¡ is the material's yield stress

and es is the yield strain.

If both sides of equations (3.57), (3.5S) and (3.59) are divided by øs and the above

defined dimensionless quantities are incorporated into the resuited equations, then the

following dimensionless results for the radial, tangential and axial stresses are obtained.

S, #t Frffmp 
+ p'hfr - hpt+ ;1o - fft

-ffir'-þt-
+p'l,oTo^*

1

2(l - u2) p2

1

2(r-r')(p'-I)

f(r - 2u) 
I,'Gr, + el)pd,p

l(t - 2u) (efl + ef)pdp

Se

+þ, IP 
,l - rl ¿p](, - 1lrt p p'

Tø:t røl-ffmB + P'hfr - hP + þ' - rl + ;=0 + #)
-ffitt + l) + rr=;w=le - zu) 

I,o t ; +,t)pdp

*p'l,o

* o' l,o

ffo^o + þ) - ñ:,wte -2u)
.P 

-.p-t 
" dp - zp'(Q -,)rl - ueÐ]

p

l,' (efi + e?,)pdp

(3.61)
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o
s"

2(p' - I)tnB
u

+ (r-u'z)(P2-r

l+2y'mfi-2tnp+ P'-l+;-
f(r - 2u) 

I,o çtr + ef)pdp * p' 
l,o To^
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(3.62)

,l-rl
p

dp + (I - ,)rl - uell -l

(efl + e) pdp - (P" - t)(ri + rY,)l

It is obvious from the above equations that the stresses are functions of total plastic

strains which are non-linear and history dependent. It is convenient to define the his-

tory dependent part of the stresses in separate functions of UQ, þ,el,epe),V(p, þ,el',el)

and, W(p, þ,rT.,roù which are the history dependent part of radial (^9,), tangential (^98)

and axial (,9,) stresses respectively. Then, equations (3.60) to (3.62) can be represented

in terms of the following history dependent and non-history dependent functions.

History dependent functions:

U(p, þ,rI,el)

v(p, þ,el,el)

w(p, þ',tl,tl)

1

2(l - u2) p2

1

2(r-r')(p'-I) l(t -zu) l, (efl + e!)pdp

*t"l,offo^l-1,

F -;@=TlQ - 
2u) 

l,u t'i + e!) pd'p +

þ' l,o To^0 + l) - {:4Fp, -zu) l,'l,i + e!)pd,p

ro¿P-zP
+p' J, Too - 2p'((t - ,),1- u,l")l

f -q@-l(t -2u) I,o çtr * ef)PdP

*þ' l,o To^ + r +ll,o'l =o't oo

+(r - ,),1 - uell-r ifl Lo çtr + ,l)pdp - (P' - r)({, + ,i)l

l(t - 2u) lr'lri + ,t)pdp * o' lr' To^
13

+
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Non-history dependent functions

F(p, þ,o, P,)
o

rffmp+p'hf -hpt+ffio-þt

87

2(P'-1)
I

P'-:Q
o

l"þ

G(p, þ)

H(p,, þ,o' P")
2(p' - t)tnp rffmp + p'hfr - hp + p' - tr + #+ç, * þt

R(p,0)

M(p,0,@) l+zÞ'mfr-2tnp+ P'-112(p' - t)tnþ
1

N(p)
13',-t

The non-history dependent functions are a combination of mechanical stresses due to

internal pressure and thermal stresses due to thermal gradient. Therefore, the general

solution for the non-linear radial, tangential and axial stresses may be rewritten in

terms of the above defined functions as follows

si

si

tl(p, þ,r',,,t'ù * F(p,0,@, P") + G(p, B)P¿

(3.63)

V(p, þ,eI,e'e) t H(p,, þ,@, P.) * R(p, B)P¿

W (p, li, rl, rl) + M (p, P,@) + N (B)P;

where superscript p denotes the plastic solution. The above non-dimensional results

for the stresses are used in the previous developed numerical model for the stresses

which will be discussed in the next Chapter, devoted to the numerical analysis.

If a cylinder, which has developed plastic strains, is unloaded from the loads which

þ'
p2

+ )

si:
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have caused plastic fl.ow over part of the cylinder, residual stresses will result

3.2.7 Residual Stress

To increase the maximum pressure that a cylinder can contain, it is a common practice

to produce a compïessive residual tangential stress near the bore by autofrettage treat-

ment of the cylinder prior to use. As a thick-walled cylinder is pressurized, the bore

material, which is the most hìghly stressed portion of the cylinder, begins to yield. The

yield surface begins to propagate through the thickness of the vessel until it reaches the

outer surface. If at any stage of elastic-plastic deformation of the cylinder the internal

pressure is released, then there will be a residual stress distributions throughout the

thickness of the vessel. This is known as the autofrettage process.

The reason for such a residuai stress distribution is that the plastic region of the cylin-

der has developed irreversible plastic strains and can not return back to its originai

configuration, while the elastic portion of the cylinder is trying to return back to its

original condition. The action of the elastic region is counteracted by the plastic re-

gion. On the other hand, the plastic region will be compressed by the elastic region

until a self-equilibrium condition is reached throughout the thickness of the cylinder.

Developing a compressive region at the inside wall of a cylinder is useful to protect

the vessel against the fatigue crack growth at the highly stressed inside region of the

cylinder. The other important point is that the material located at the plastic portion
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of the cylinder has a much higher elastic limit than the material located at the elastic

region because of the material's hardening effect. Therefore, it is not only the com-

pressive region at the inside wail of the cylinder which is beneficial, but also the higher

elastic limit of the inside material which has taken advantage of the material's strain-

hardening effect is another important privilege of the overstraining process. Therefore,

this kind of residual stresses can significantly improve the performance characteristics

of thick-walled cylinders.

The advantage of the compressive residual stresses will be decreased if reverse yielding

occurs in the cylinder (Chen (1986)). For metals, the stress-strain cttrve in a simple

compression test is usually identical with that in a simple tension test. But, if the

material is first loaded in tension and develop plastic strain and then unloaded and

ïeverse loaded in compression, the stress-strain curve of the material in compression

has a signifrcantly lower yield point than the curve that would be obtained directly

from a simple compression test without prior tension loading. This is known as the

Bauschinger effect phenomenon. An actual unloading behaviour of the material in-

cluding the Bauschinger effect factor must be considered for an accurate precliction of

reverse yielding and the residual stresses in the cylinder. In this investigation the mate-

rial's Bauschinger effect factor incorporated in the analysis is obtained experimentally

and this has already been discussed in previous Chapter.

The determination of residual stresses is important in the analysis of fracture, and in
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fatigue life estimation of thick-walled cylinders. Consider a cylinder which has devel-

oped plastic strains as a result of an internal pressure of P" and a thermal gradient of

A? and the residual stresses are to be determined upon the release of load. It is obvi-

ous that, if the unloaded cylinder is loaded again with the same internal pressure and

thermal gradient, it witt return back to its configuration right before unloading because

this loading-unloading is within the yield surface and is reversible and path indepen-

dent. On the other hand, if the residual stresses are added to an elastic stress system

due to P, and LT, it will result in the plastic stress distribution before unloading.

This can be mathematically represented in the following non-dimensional form:

Sä+Sã

se, : si+s',

si:
S: : S:+S: (3.64)

where ]tr,, Sl and S! are initial plastic stresses, Si, Sä and Si are residual stresses and

Si, Sã and Sj are elastic stresses. Residual stresses can be written in terms of the

elastic and plastic stresses as follows:

si

(3.65)

This formulation is correct as long as yielding in the reverse direction does not occur.

Since reveïse yieiding has a negative effect on the cylinder performances, it is impor-

tant to obtain the condition in which reverse yielding may occur. Therefore in this

Si : Si-Si

Sã

QP QEùz - uz

Sä

si
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investigation the condition for reverse yielding is investigated. The reverse yielding is

predicted using the von Mises yielding criterion including the Bauschinger effect factor.

In dimensionless form the condition is written as follows:

(ff - sÐ' + (si - sî)" + (s: - si)' :2(BEÐ2 (3.66)

where BEF is the Bauschinger effect factor. There are significant differences between

the results of residual stress distribution with considering the Bauschinger effect and

ignoring it. Therefore, neglecting the actual loading and unioading behaviour of the

material results in an inaccurate distribution for the residual stresses. The significance

of the results are discussed in Chapter 6'

The actual material's loading and unloading properties and the Bauschinger effect fac-

tor of the material are obtained experimentally in this investigation. The experimental

results are represented by the foilowing function using a curve fitting software and

selecting the best possible curve as it has already been discussed in Chapter 1.

BEF: 1.0170029 + 0.36592732(%er) - 0.0025343735(%e)3 - 0.97798304(%er)o'5

(3.67)

where Toeo is percent overstrain.

Equations (3.65), (3.66) and (3.67) are incorporated in the analytical-numerical model

introduced by the flow diagram of Figure 3.6 in order to obtain an accurate prediction

of resid.ual stresses and the onset of reverse yielding in thick-walled cylinders. Step-by-

step procedure for computation of plastic ancl residual stresses and the onset of reverse
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yielding and their experimental verification are discussed in Chapter 4 and 5. However,

before introducing the details of the procedure it is necessary to establish the loading

condition which will cause plastic flow to occur in the cylinder wall. This critical

loading condition may be established by using expressions for the elastic stresses and

theyieldingcriterion. If thehistorydependentfunctions of U(p,þ,el.,el),V(p,0,eo,,el)

andW(p,þ,el,rl) are ignored in the general equation (3.63) , then elastic stresses can

be written as follows:

F(p, þ,O, P,) * G(p, B)P¿

H(p, þ, O, P,) * R(p, B)P¿

M(p,0,o) + ¡/(B)P' (3.68)

where superscript e stands for the elastic solution. It is obvious that the elastic stresses

are functions of dimensionless variables p, þ,Ø,P, and 4. Effects of these variables on

the critical condition are investigated.

3.2.8 Critical Condition

When pressure and thermal loads are both present in the cylinder, any combination of

these loads may cause yielcling to take place in the cylinder wall. The loading condition

in which yielding starts in the cylinder thickness is called the critical condition. When

yielding starts at a point the von Mises condition must be satisfied at that point. The

S;

Sã

S:
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dimensionless form of the von Mises criterion is written as follows:

(s; - Sã)' + (S"t - S:)' + (S: - Sí)' :2 (3.6e)

Substituting expressions for the elastic stresses from equation (3.6S) into equation (3.69)

the following equation for the critical condition is obtained.

A(p,ØP? * B(p,8,@,P.)P¿-lC(p,8,Ø,P"):0 (3.70)

The functions A,B and C in equation (3.70) can be represented in terms of previously

defi.ned functions F , G, etc. as follows:

A(p,Ð : 2(G2 + R' + N' - G * R- R*I/-l'r* G)

B(p,,þ,O,P,) : a(F *G + H *-R* M * N) -2(F*r?tF*l/*

H*GlHxN+M x,R* M*G)

C(p,p,O,P,) : 2(F2 + H2 + M2 - F* H - H +M - M * F - ofi)

Variables p, þ,,@,4 and Po are related in equation (3.70). Any combination of these

variables which satisfy equation (3.70) can produce the critical condition for plastic

yielding. Numerical results of the critical pressures using this equation as well as the

experimental results obtained for the critical pressures are discussed later in Chapter 6.

Ifinternal pïessure is increased beyond the critical value calculated from equation (3.70),

then plastic flow will progress in the cylinder wall. If the load is released, then the

cylinder will develop residual stresses across the thickness.

So far in the analysis of time-independent plastic and residual stress distributions

of thick-walled cylinders the effect of time-dependent material deformation has been
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ignored. As long as the temperature is below 0.37i* (where T^ is the absolute melt-

ing temperature) the time-dependent deformations are negligible (Fessler and Hyde

(1978)). However, at temperatures above the creep threshold, deformation of the

cylinder is dominated by the time-dependent process of creep.

3.3 Creep Stress and Damage Analysis

3.3.1- Introduction

With a full understanding of the non-linear plastic (iime-independent) deformation of

thick-walled cylinders and because of the strong need and demand of the power gen-

erating industries to an accurate prediction of the creep stress and damage histories

of high energy piping components, which is necessary for their safety and reliability, it

was attempted in this investigation to complete the analysis of thick-walled cylinders

in both time-dependent and time-independent aspects.

The pressure containing high-temperature components of power plants, are mainly

deteriorated by creep mechanism. Creep is due to time-dependent deterioration of

material under constant service condition. According to the current understanding

of damage to high-pressure and high-temperature components, creep is the most fre-

quently observed damage mechanism which should be carefully investigated (Tolksdorf

(1995)). In analysis of creep stress and damage histories the creep strains which are
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time, temperature and stress dependent must be considered. Considering the creep

strains in the stress-strain relationships makes the non-linear analysis of thick-walled

tubes much more difficult. Because, it is not only non-linear but also the deformation

is a time-dependent process as well. The rate of deformation in creep regime depends

on the stress level and temperature. In a thick-walled tube, loaded with an internal

pïessure and a thermal gradient, a variable stress and a distributed temperature field

are encountered throughout the tube wall which must be considered in the non-linear

time-dependent analysis.

3.3.2 Formulation of the Creep Deformation of Thick--Walled

Tubes

Thick-walled tubes are the main elements of all high-pressure and high-iemperature

apparatus and pipeworks employed in power generating industries. Therefore, in this

section the time-dependent creep deformation of thick-walled tubes is formulated.

A long thick-walled tube loaded with an internal pressure and a thermal gradient

similar to the practical situation during the normal operation of a power plant has

been considered. The equilibrium of forces and compatibility of deformations must

always be satisfied for all the tube elements at all the times. So the equilibrium and

compatibility equations which are the same as previous time-independent analysis are
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rewritten here for the time-dependent creep analysis as follows:

Oo, * o, - oo :0 (3.71)drr
-1 -oru_+€,l-€, _0 (g.72)drr

In this case, the stress strain relationships contain the time-dependent creep strains as

follows:

lr",-r(oe+o")l+ei+aT

lo6 - u(o" * ",)] -l efi + aT

lr"" - ,(o, +or)l * ei * aT (3.73 )

where ei, 68 and ei are total creep strains. These total creep strains are time, tem-

perature and stress dependent (path dependent) and are accumulated incrementally

during the life of the tube.

The boundary conditions for a thick-walled tube loaded with an internal pressure Po

and no external pressure are written as

UT

€g

çZ

1

E

or -Po at r:a

where ø and ó are the inner and outer radii of the tube and the minus sign stands for

or 0 at r:b

the compressive stress due to the pressure Po on the internal surface of the trrbe.

The condition of an open end tube can be mathematically expressed as follows:

l"o

(3.74)

o"rdr :0 (3.75)
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In which the integration of the axial stress across the thickness of the tube is set to

zero to satisfy the open end condition.

The temperature distribution for the steady state outward flow of heat in a tube with

an internal temperatrre To and an external temperature of. Tt is rewritten as follows:

97

(3.76)

Stresses and strains must satisfy the equations of equilibrium, compatibility and stress-

strain relationships as well as the boundary and end conditions. The stress-strain

relationship contains the total accumulated creep strains which are path dependent.

A numerical procedure for the computation of total accumuiated creep strains in a

variable stress and a distributed temperature field of a thick-walled tube has been de-

veloped by using an improved long-term material creep constitutive model known as

theta projection. However derivation of functional relationships between stresses and

the totai accumulated creep strains will facilitate computation of the creep stress and

damage histories as well as the remaining life estimation of the tube.

3.3.3 Derivation of Creep Stresses

In a similar manner to that of the time-independent stress analysis, the set of equa-

tions of equilibrium, compatibility and stress-strain are solved simultaneously for the

stresses. Using the above boundary and end condition and the temperature distribu-

tion the following functional relationships are obtained for the creep stresses.

r:hî(T"Lr!-T6tn9¡
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Ea(T" - T6

2(L-r)(b'-a2)tn r-#,"I+u'zmf,- a2hL + @2 - a2))

oi , t"lTt -'ù, 
= ,É!,,! + b2h: - o,t,L)

2Q - ,)(b' - az)ln!' r2 a, b a'

E-ñ+FIG -z,)(l""efid''-t l"' reid'r) + 
"(l" 

ú;Ëo¿

+n - Åø - øl(t - 
2u) 

I,u u, * ei)rd,r * ,' I: ÚrËono - 5l
P^a2 b2.+;;-: "(1 -;)b"-a'

(efi + e)rdr

98

(3.77)

(3.78)

(3.7e)

o"t
o,

+ v
E

2(l - u2)r2 l(I - 2u) I"' r(r", 
-l ei)d,r - r' I" 'ã -r'î O, -

2r2((7-,)ei-uei)l+ l(t-2u) I"

*u, l"u 
ú;üo,lrt + S) + #(, * ftl

-- 
tggt - "bl ^pb2h: - za2hL -t e2 - a2)l

2(1 - ,)(b' - a2)lni' b 0' '

b

c_o

uE
I-u2

(L - 2u)

E
12 (efi + e)rd, - (b' - "')(ei+ ti)lb2-a2

where oi, o"e and oi are creep stresses and ef , e'6 and ei are total creep strains.

Creep stresses may be represented in terms of mechanical, thermal and history depen-

dent stresses in the following form:

U' (r, ei, eÐ + F' (r, LT) I G' (r, P,)

l(t - u)e"s - uei * |"ffiod * 
O _# _ "ll

l,o {ri * ei)rd,r * u' l:'5Éon - . 
--'?!-, 

l"u {,i,-t ei)rdr

I,O

T
co

o"6

c,oz

V'(r, ei, efi) + H'(r, AT) * R'(r, P")

W' (r, ei, r"t) j M' (r, LT) (3.80)
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where functions U' , V' , W' , F' , H' , M' , G' and R' are defrned below.

1- History-dependent functions

99

U'(r,ei,efi)

V'(r, ei, efi)

F'(r, LT)

H'(r, LT)

l-u2
(I - 2u)

E

-fr::r4ll - 2u)(1"' 
'e'ud''-t l,' reîdr) + 

"(1" 
úrËon *

N=Å@ -øl(t - 
2u) 

l"o {'i * ei)rdr * u' I, ú;Ëo'lf'- #l

N:rWlQ - 2u) I.' 'Gi * ei)d'r - 
" l^ 'i 

-,'i o' -
zr2((t - ,)ei - ,ei.)l + n -Åø -øl(t - 

2u) 
l"u {r",-t 

ei)rd,r

^c ^c -2"t-"'dr)(r+i)
T T''

l(L - u)efi - uei+ l""i-Édrl-r O-*fu _øt
(ei, + ei)rdr r b2 

l,u " =," d,) - ;+ l"o {r -t ei)rd,r

l"o G, * ei)rd,r - (b' - o')(ri+ ri)l

(TW, eirr ti)

t.

b2-a2
l)
lL

2- Thermal stress functions:

b

Ea(T" - ft)
2(r-r)(b'-a2)ln!

Ea(T" - fa)
2(1-r)(b'-a2)ln

t#,"I+b'zIn;- o'tnLl

¡#,"I+b'zh;- a2hL-t Q2 - a2)l

lzb'zhl - za2lnL i Q2 - a2)l

a

M'(r, LT)

3- Mechanical stress functions

Ea(T" - fu)
2(I-")(b'-a2)tn!

G'(r, P")
Poa2

b2-a2
Poa2

(1

h2
(1 +-)

b2

,, )

b2-a2R'(r, P,)
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Functions U',, V' and W' are containing the creep strains. These total accumulated

creep strains can be calculated by integration or summation of creep strain increments

throughout the loading history during the life of the tube. To determine the creep

strain increments, the non-linear time-independent incremental stress-strain relation-

ship must be modified to include the material's time-dependency. Thus non-linear

time-dependent stress-strain relationship or the creep flow rule is introduced here.

3.3.4 Creep Flow Rule

Creep stresses are functions of total creep strains defined by equations (3.80). Creep

strains are time, temperature and stress dependent. In an incremental approach the

total accumulated. creep strains can be calculated by integration or summation of the

creep strain increments over the loading path during the life of the tube. Tf variation

of radial, tangential and axial creep strains during a short increment of time (Af) are

defined as Aef , Aefi and Ae!, then the incremental stress-strain relationship may be

written as follows:

Lri

Ae c

L,el - L: -;1", - )("t + o")l

Le2. l,: ^fl"t - i@" * o,)l (3.81)
0

where ø" and Ae! are the effective stress and the effective creep strain increment.

Dividing both sides of the above equation by Aú will result in the non-linear stress-
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strain relationship in the rate form as follows

aT tlo, - !@, -r o")l
oe¿

tlo, - !@"+ d,)l
oez

:c
cA (3.s2)

where ei and efi are radial and tangential creep strain rates and e! and oe are effective

creep strain rate and effective stress. The fraction term (r|l".) in the above equation is

the path-dependent (history dependent) part of the non-linear time-dependent stress-

strain relationship. The creep strain rate in axial direction can be obtained by using

the incompressibility condition in creep regime. Therefore it can be written in the rate

form as follows:

çz -(€", + €i) (3.83)

The effective stress (ø") and the effective creep strain rate (e!) in equation (3'82) are

defined as foliows

o": L^l(o, - oe)2 t (o, - o")' I (o, - o,)'li (3.84)
v¿

;. -Õtr;" -;2), +Gi - è',)'+(e""- È',)'z1i. (8.85)c":-'L\ër-ëe

The materiai uniaxial creep curves represent the effective stress and the effective creep

strain reiationship. Mathematical representation of this relationship is the material

creep constitutive equation. In this case, the material creep constitutive equations are

rewritten from Chapter 1 as follows:

e : or(1 - e-@"')1 or(eon¿ - 1) (3.86)
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L- @1@2¿-ø't * OsO¿eon¿ (3.87)

where

Logß@¿ : a¿ l biT + c¿o l d,;oT i :1,2,3,4 (3.S8)

coefficient s a,¡, b¿, c; ar;.d d,¿ are material constants which have been introduced in Chap-

ter 1 (Table 1.1).

Creep stresses are obtained as functions of total creep strains, the creep strain rates are

related to the stresses and the loading history by the incremental stress-strain relation-

ship and the materiai creep properties. It is necessary to introduce a damage model

and the material's creep rupture properties in order to obtain the damage history and

the remaining life of the tube.

3.3.5 Creep Damage Model

The life time of components operating at elevated temperature is limited by creep

mechanism. Creep damage which is a time-dependent process depends on the history of

stresses and temperature applied to the component. Many damage models using either

mechanical or micro-structural constitutive relations have been proposed in the past.

The mechanical models are based on sttess, strain, strain rate, time and temperature

whereas the micro-structural models are based on surface energy, grain size, dislocation

movement, cavity formation and spacing, crack initiation and growth. In this study

the Robinson's creep damage model known as the Robinson's life fraction rttle has been

adopted for creep damage accumulation and this has also been adopted in the ASME
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Code Case N47. In a variable stress and temperature field, similar to the case of a tube

subjected to an internal pressure and a thermal gradient, validity of the Robinson's life

fraction rule is justified experimentally by Viswanathan et al. (1994). The Robinson's

life fraction rule states that

(3.8e)

where D is the creep damage, Aú¿ is the time spent at any given stress and temperature

and. t,¿ is the rupture time under those conditions. When the damage fractions under

different sets of stress-temperature conditions add up to unity failure will occur' Based

on the above definition the remaining life is then given by the following equation

RL: (r - D)t,r (3.90)

where RL is the remaining iife and t,¡ is the creep-rupture life at expected future op-

erating temperature and stress.

The rupture life is the time taken to reach the failure strain and can be obtained by

the numerical solution of the following equation:

Or(1 - e-o't') + Or(r"nt' - 1) - €Í :0 (3.91)

where ú, is the rupture time and e¡ is the fracture strain. The fracture strain is a

function of stress and temperature as follows:

EÍ : ai * b¿T I c¿o I d,¿oT i :5 (3'92)

The coefficients in this equation are already introduced in Chapter 1 (Table 1.2). The

above damage model in conjunction with the material's creep rupture properties has

Lt¿

triD
i:t

D
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been incorporated in a non-linear time-dependent stress analysis to predict the creep

stress and damage histories as well as the remaining life of thick-walled tubes. Before

introducing the procedure a summary of the governing equations involved in the pro-

cedure are introduced below.

3.3.6 Summary of the creep Governing Equations

Stresses

oi

oi

[J' (r ,, ei, eã) + F' (r , LT) * G' (r , P")

(3.e3)

ofi V' (r, ei, €Ð + H' (r, LT) * R' (r, P")

W' (r, ei, e"ù i M' (r,, LT)

Non-linear stress-strain relationship in the rate form:

:c
çT

:c
eg

ülo, -t^(", + o")l
oe¿
åcçe I
-loe -oe

1

2
(o" -f o,)l (3.e4)

Incompressibility

:cçz -(ei + ei)

Effective stress and the effective creep strain rate:

(3.e5)

(3.e6)ot: 
lÞ,

l@, - oe)' + (o, - o,)' * (o" - o,)'li1

ëe 
-

J'
3

lG; - éÐ" + (ei - Ð' + (ei - èi)'li (3.e7)
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Material constitutive model

105

(3.e8)

(3.ee)

e : or(1 - e-o't)+ or(eon¿ - 1)

Ø1@2¿-o't * OgO¿eonr

Damage model:

(3.100)

Remaining life:

RL:(t-D)t,r (3.101)

Material creep rupture properties

@r(1 - e-@"t,) + or(""nt' - 1) - eÍ :0 (3.102)

cÍ : ai t b¿T * c¿o * cl¿oT i :5 (3'103)

Based on the above governing equations a numerical procedure has been developed

which gives the stress and damage histories and the remaining life of the tube.

In this method a time increment Aú is selected and a distribution is assumed for the

creep strain increments Aei and Aefi at the end of this time increment. Total creep

strains at this stage are equal to the initial estimated values of creep strain increments'

Integrals of total creep strains in equation (3.93) are evaluated and a first estimate

of stresses o, a0 and. o, are obtained. The effective stresses are then obtained using

equation (3.96). These values of effective stresses and the temperature distribution in

conjunction with the material creep constitutive model (equation (3.99)) are used to

D
Lt¿

triË
i=!
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obtain the effective creep strain rates. Creep strain rates are then calculated using

equation (3.94). New values are obtained for the creep strain increments using the

creep strain rates and the time increment. Using these new values of creep strain in-

crements a second and presumably better approximation is obtained for the stresses

and total creep strains. The process is continued until the differences between two

successive sets of strain increments are less than the convergence criterion. Having the

converged stresses at the end of this time increment and the temperature distribution,

creep rupture strains and the time to ruptures are calculated using equations (3.102)

and (3.103). Using the Robinson's life fraction rule the damages are calculated from

equation (3.100) for this time increment. The remaining life can then be calculated

using equation (3.101). Therefore, the solution is obta,ìned for the first time incre-

ment. Time is increased incrementally and in a similar manner the complete stress,

strain and damage histories as well as the remaining life are caiculated during the life of

the tube. A block diagram of the proposed numerical procedure is shown in Figure 3.7.

Numerical models of the calculation of plastic and creep straìns which were introduced

here will be completely expanded in next Chapter which is devoted to numerical pro-

cedures.
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Geometry,material property,initial valuesLt¿

Lrl,¿i, Leã,¿j

or,¿¡, o0,ij t oz,ii

Temperature distribution4",¿¡ Eq(3.96)

T¡ : tni(T"I"t - T6ln 
rL)é!,¿1 Eq(3.99)

e",,¿¡,eã,¿¡ trq(3.9a)

LeiQ'-) : eï¿j * Lt¿, Lriá:i;-) : efi,¿¡ * Lt¿

oconverge

€J,ij : a5 ! b;T¡ I cso",i¡ I d"to.,¿¡T¡

€J,¿j - Or,¿¡(1 - e-Øz'¿it''ti)- Or,¿r(e@+'¡jt''¿i - 1) : O

D¿j:lLt¿ft,,¿¡

RL¿j:(l-D¿¡)t,,¿¡

Yes

Figure 3.7: Flow diagram for the computation of creep stress and damage histories



Chapter 4

NUMERICAT PROCEDURE

In previous chapter numerical procedures for computation of thermoelastoplastic and

residual stresses as well as the creep stress and damage histories were introduced briefly.

Details of the procedures are discussed in this Chapter.

4.L Numerical Procedure for the Computation of

Thermoelastoplastic and Residual stresses

In this section step-by-step procedure for the computation of plastic stresses resulted

from an internal pressure and a thermal gradient and the subsequent residual stresses

as well as the progress of elastic-plastic boundary is discussed as follows:

1. For a fixed temperature gradient the critical pressure (P*¿t) and the radius at

which plastic yielding begins are calculated from the equation of critical condition

108
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rewritten here as follows:

A(p, ÐP? -l B(p, B,@, P")P¡ -f C(p, B,@, P") :0 (4'1)

If the applied pressure is less than the critical pressure the cyiinder remains

elastic. However, for pressures more than the critical pressure plastic flow will

take place in the cylinder wall.

2. A final pressure of P¡ which is more than the critical inner pressure of the cylin-

,der has been considered. The pressure beyond the critical pressure is applied

incrementally such that the pressure increment Ap is

P - P"rit
L,p

¡t/

where P",¿¡is the critical pressure and l/ is the number of loading steps. There-

fore, the internal pressure at the ith loading step is given by

(4.2)

(4 3)P¿¿ : P.,itIi*A'p

3. Initial values are assumed for radial and tangential plastic strain increments LrT,¿¡

and, L,el,o, and are added to the accumulated plastic strains obtained from the

previous loading steps at all divisions of radius in the plastic zone. In the ini-

tial loading step, the accumulated plastic strains are zelo. The piastic strain

distribution at the ith loading step can be written in dimensionless form as:

i-r
D

er,¿ j Ð Lrl,r¡ + Lrl,¿¡
lc=l
i-l

I Lel,¡¡ *
le=I

D
€'g L.l

Lt,n, (4.4)
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where the subscripts i and j refer to the loading step and the iayer along the

radius respectively.

The plastic strain increment in the axial direction is obtained from the incom-

pressibility condition in plastic regime which can be written as follows:

Leq,,ij : -(A,el,¿¡ + LrT,¡¡) (4.5)

In this study, the initial values of -0.00003 and *0.00004 are assumed for the

radial and tangential plastic strain increments, respectively.

4. The effective plastic strain increments for all divisions of radius in the plastic

zorre are then computed as follows:

L,er,r¡ : fl{ori,o, - Lrl,o)' -l (L,el,o, - L,2,,¡)' * (a'el",o, - L'e?,,,,)2lt

(4.6)

b. The effective stresses are obtained for all divisions of radius in the plastic zone

using the material's constitutive model. The procedure is shown in Figure 4.1.

The material's constitutive model in a dimensionless form is mathematically rep-

resented as follows:

S",ij:l¡ H(er,;¡)1 (4'7)

where fI and ? aïe temperature dependent constants. The constitutive model at

room temperature which is obtained experimentally is written in the following

form.

S.,i,.i:r-12.g2(er)o'21842t86 (4.8)



Chapter 4. Numerical Procedure 111

.005 0.0 0

Effective plaEtic strain

Figure 4.1: Determination of effective stress from the effective plastic strain'

in which €p,¿j : I Ler,t¡ . High-temperature material constants are selected

from the experimental results of Niitsu and Ikegami (1990).

6. The radius of the elastic-plasticboundary at the ith loading step, pci is found by

setting the boundary conditions at this radius. At the plastic zone boundary the

von Mises condition must be satisfied. If yielding starts from the inside radius,

then the radial stress at eiastic-plastic boundary is equal to the critical pressure

of the outer elastic cylinder. In this case equation (a.1) can be written in the
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following form:

Alp.o,, þls?(p"o) ¡ Blp"t, P,ø, P.]5,(p.o) + Clp.n, 0,@, P"] : 0 (4'9)

For the case in which yielding starts from the outer surface, equation (4.1) takes

the form:

A(p.;, Ðpi + Blp"o, 0,Ø, s,(p"¿)]P, + clp"o, þ,Ø, S,(p"¿)] : 0 (4'10)

Solving equations (4.9) or (4.i0) will give the radius of elastic-plastic boundary

at the ith loading step (P"¿).

T. With p.i known, the integrals of plastic strains in equations (3.60), (3.61) and (3.62)

can now be evaluated numerically and plastic stresses So,, Sl and S! can be cal-

culated.

8. Having calculated the stresses from step 7, and the effective plastic strain and

effective stress from steps 4 and 5, a new and better approximation is obtained

for the latest increment of the plastic strains by employing the incremental stress-

strain reiationship (Prandtl-Reuss equations) as follows:

Lel?'"*)

Lefi?:-)
L,er,t¡

oi; 
rrtr,¿¡ - sl,¿¡ - sl,o¡)

(2soe,¿¡ - sl,¿¡ - sl,o¡) (4.11)

(4.t2)

g. New values of axial plastic strain increments are obtained using incompressibility

S",ij

condition in plastic regime as follows:

Lelî"-) -(L,e\Q"-) ¡ *7fi"-))
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10. The solution is iterated from step 4 until it converges for the ith loading step.

11. If the internal pressure and the thermal gradient are removed at the ith loading

step, then residual stresses will be distributed throughout the cylinder wall which

can be calculated as follows:

Si,¡¡ : Sl,¿¡-Si,o¡

Sl,¿¡ : Sl,o¡-Sã,0¡

Si,¿¡ : Sf,,o¡ - Si,n¡ (4'13)

where Sî,¿j, Sl,¿j and. Si,¿¡ are residual stresses, ST,o¡, S'r,ni and 9f,,¿¡ represent the

current plastic stresses and Sf,¿¡, }fi,¿¡ and 5"",¿¡ ate an elastic stress system due

to pressur" (¿) and temperature gradient (AT) which can be written as

Sí,¡¡ : F(Po¡, þ,Ø,P") -f G(P¿¡,þ) * P¿

S'0,¿¡ : H(Po¡',0',Ø, P") t R(P¿¡, þ) * P¿

Sï,¿¡ : M(po¡,P, O) + N(P) * P¿ (4.L4)

12. Reverse yielding is predicted by ihe von Mises yield condition including the

Bauschinger effect factor as follows:

(Sî,0¡ - Sä,0)' * (Si,¿¡ - Sl,n)' I (Sî,¿¡ - Si,o)' :2(BEF¿¡)2 (4'15)

in which the Bauschinger efiect factor BEF¿¡ is obtained experimentally and

represented mathematically as follows :

BEF¿¡ : 1.0170029 + 0.36592732(%er,;¡) - 0.0025343r35(Toe'p,';i)t -

0.97738304 (Toer,t¡)o'u (4.16)
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where Toeo,t¡ is the percent overstrain.

13. The loading step is advanced one increment (to i*1) and the numerical procedure

for calculation of plastic stresses and the residual stresses is repeated until the

full load is apPlied (P¿,¿: P¡).

The above numerical method is validated experimentally the procedure of which is

discussed in the next Chapter. A block diagram of the above developed procedure is

shown in Figure 4.2.

In the next section, details of the procedure developed for the computation of creep

stress and damage histories as well as the remaining life of the thick-walled tubes are

discussed.
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Geometry,material properties,initial valuesLp: (P¡ - P*¡r)lN.

DO i : 1,1ú

Pi:P.,it¡i*A'P

DOi:I,i+l

LrI,n.¡, Lel,¿¡

,1,¿j : Ði---]' Lrl,r¡ * Le!,,n'

eT,¿¡ : >i-_l Lri,r¡ * Lel,o,

Le|,¿.¡ : -(Lee,,¿¡ -f Lel,r,)
Alp.n, þls?(p.o) r Blp.¿, þ ,0, Po

lS,(p.n) ¡ Clp.;, B,Ø, P.] : 0A.er,;¡ (Eq. a.6)

€p,ij : Ð Le,
ff '-tt#dp,, [f Gl,o¡ i ,?,,¿¡)

ff t+-dp,, ï{Gl,o¡ 1- et,,¿¡)pd,po",¿¡ (Fíg.4.1)

Se,,ii', Sl,¿i, S:,ijnri[7|(Eq. 4.11)

NoYes j:i+tLrlr",ojn,eu
T ,02 ¡xJ

Tolerance

Sîe",¿¡ : Slo",¿j - Sía",¿¡ (fu' a'13)
Lrlr",o¡: ttif"'#)

STOP i:N ?

Figure 4.2: Block diagram for calculation of plastic and residual stresses
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4.2 Numerical Procedure for Cornputation of Creep

Stresses and Creep Damages

A numerical procedure for the computation of creep stress and damage histories as well

as the remaining life evaluation of thick-walled tubes was briefly introduced in previous

Chapter. A full description of the procedure has been considered for this section. Step

by step procedure is explained as follows:

1. For a fixed temperature gradient o17"C which is selected according to the oper-

ating condition of a boiler header tube of a fossil fueled power plants, the critical

pressure (P*¿r) is calculated from equation (4.1)

2. Initial elastic stress distribution throughout the wall of the tube is calculated

using the operating pressure and operating temperature of the tube. Operating

pressure is usually lower than the above calculated critical pressure. In this study

the internal pressure of the header is 20 MPa and the inner temperature of the

header is 557"C in the presence of a7'C thermal gradient. This initial elastic

stress distribution varies with time.

3. An appropriate time increment is selected. The total time is the sum of time

increments as the creep process is progressing.

¿-7

t¿ D n¿* * at¿ (4.t7)
k=l

where'i is the timing step.

The time increment selection depends on the creep strain rate. Considering the
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2 40 20 140 150 200

Time (years) Ti¡ne (¡nonthE)

(u) (b)

Figure 4.3: (a) Creep curves predicted by the O projection for the lCr,lMo, f V ferritic

steel; (b) Time incrementation pattern at later stages of creep plocess.

strain-time behaviour of the material in Figure 4.3(a), at early stages of the

creep in which the creep strain rate is small the numerical proceclure converges

with large steps of time increment for example 10,000 sec (2.77 hours) , because

large steps of time are followed by small changes in the creep strain (curve is

flat). But later in the tube life when there is a sharp rise in the creep strain

rate near the rupture time (where small steps of time are followed by significant

rise of creep strain) the time increment should be very small for convergence of

the procedure (even less than 20 sec). A pattern of time incrementation which

is variable during the life of the tube due to variations in creep strain rate is

illustrated in Figure 4.3(b)
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4. Initial values of -0.00001 and 0.00001 are assumed for radial and tangential creep

strain increments Leî,¿j and Ae$,¿, and are added to the accumulated creep

strains obtained from the previous timing step at all division points through-

out the tube wall. In the initial timing step the accumulated creep strains are

zero. The radial and tangential creep strains at the ith timing step are

i-r
Ð Lri,*, + Lei,¿¡e

T ¡xJ

co,¿j D Arä,*o + Le"ø,¿¡

le=l
i-r

À=1

(4.18)

The subscripts i and j refer to the timing step and the division point across the

thickness respectivety. The creep strain increment in axial direction is obtained

from the incompressibility condition in creep regime which is

Le,,¿j: -(Lei,¿¡ + Aeä,¿¡) (4.19)

5. With the assumed creep strain distribution the integrals in equations (3.80) are

evaluated. Therefore initial ,esimates of creep stresses are caiculated.

6. Effective stresses at all division points along the radius is then calculated as

follows:

o",ij : Ll.r.,¡, - o@,ii)2 * (oo,¿i - o",¿i)2 * (o,,¿i - o,¡)2lt @'20)
v¿

T. Temperature distributions at all division points along the tube radius are calcu-

lated as follows:

,"iT¡ e"trL - TttnLl'rjrj (4.2r)
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8. with the above temperature and effective stress distributions the effective creep

strain rates at all the division points are obtained using the material's creep

constitutive equation as follows:

èZ,n¡ : @1,¿¡@2,¿¡e-@z';jt¿ * os,¿jO¿,¿ ¡eø+';it; (4'22)

where @r, Oz, Os and 04, are written as follows:

Logn@t ,¿¡ : a¡ ! b¡rT¡ + ckoe,ir ! d,¡ro.,¿¡T¡ lc : !,,2r3r4 (4'23)

9. Radial and tangential creep strain rates are obtained using the incremental stress-

strain relationship (Prandtl-Reuss) in the rate form as follows:

e],, : fulo,,o, -t"(o",r, + o",¿¡)]"rrtJ oe,i.i L

"ø,ij
'erxJ

oe,ij lo.,oj -t {o",0, + o,,¿¡)l (4.24)

10. Axial creep strain rates are calculated by using the incompressibility condition

as follows:

è2,¿i : -Gi,o¡ -f r'ø,¿¡) (4.25)

11. Having the strain rates, new and better approximations are obtained for the lat-

est creep strain increments at all division points along the tube radius.

Ae c(neta)
ei,¿¡ * Lt¿

T ¡xJ

netu)
¡xJ

A'ã è$,n, * Lt¿

(4.26)Aec(neu)
2 ¡xJ

etr,o, * Lt¿
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12. The method is iterated from step 4 until it converges for ith timing step.

13. Creep-fracture strains at all divisions throughout the tube wall are calculated

using the material's creep rupture properties, temperature distribution and the

effective stress histories as follows:

€f ,¿j : as ! bsT¡ I cso",¡j I d'5o.,¡¡T¡ (4'27)

14. Creep-fracture times t,,¿¡ atê then calculated numerically using the material creep

constitutive model in the following form

€Í,¿i -Or,¿r(1 - e-@z'¿st''¿') - Or,or("o+';it'';i _ 1¡ : 0 (4'28)

lb. Having the creep rupture times for all the division points along the radius the

damages are calculated and summed throughout the life of the tube using the

Robinson's life fraction damage rule as follows:

D¿j: t* Ø.2s)
urflJ

16. The remaining life is then computed for all divisions across the tube thickness

using equation (3.101) as foilows:

RLij : (l - D¿¡)t,,¿¡ (4'30)

Material creep rupture properties:

17. The time is advanced one increment (to i+ 1) and the numerical procedure is

repeated and the stress and damage and the remaining life are recorded.

A block diagram of the numerical procedure is shown in Figure 4.4.

720
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Yes

t2r

Geometry,material properties,initial valuesLt¿

DO i : 1,1/

t¿ : ÐT) Ltx I Lt¿

DOi:l,M

Pi:r+j*(#)
e'e,¿j : Ð'*--t- Lr|,r¡ * Lei,o,

el,¡.i : li-J Lei,¡,¡ -f

Lr"r,oj, Lei,¿j

ff "rydp, lÍG?,,¿¡ -l €î,¡¡)Le|,¿j -- -(Lri,o¡ + Le"e,¿¡)

ol,¿j, o8,¿r', 02,¿jT¡:tnþ(T"t"il-rúnfi)

o",¿¡ (F,q.4.20)è2,0¡ Eq. (4.22)

è"r,¿j, e"o,¿¡ Eq. (a.za)

tr;lf*), tr"Áij-) Eq. (a.26) j:M ? No

Yes

Tolerance
Leí

1,102,

t,,¿j, D ¿j, r?,ú¿¡ (trqs . 4.28,4'29,4.30)

Lele",¿j: tri,""#)
STOP i:N ?

Figure 4.4: Block diagram for calculation of creep stress and damage histones



Chapter 5

EXPERIMENTAT

INVESTIGATION

5.1- Introduction

The analytical-numerical models developed in previous Chapters for the critical inner

pressure and the spread of plastic yielding as well as the subsequent residual stress

distributions in thick-walled cyiinders are validated experimentally. A high pressure

Q8a MPa,2800 óør) hand pump designed for laboratory high pïessure tests is used

to produce high pressures required in this investigation. A digital pressure transducer

(model trPXH-M10JIW-1400G) with sensitivity of 0.0854 mVf bar is used to provide

the internal pressure measurements. The maximum permissible pressure is limited to

172.37 MPa (1700 bar) which is the maximumrange of the pressure transducer' Rosette

strain gauges are mounted at the axial center of the test specimens and a,re oriented

t22
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such that the two legs measure strains in axial and tangential directions.Specifications

of test specimens and experimental setup and procedures are described in this Chapter.

However, since the material's model is one of the important ingredientsof the proposed

analytical-numerical model, experimental investigations for the material constitutive

model and the Bauschinger effect factor are also described here in this Chapter.

5.2 Material?s Constitutive Model Tests

In the proposed analytical-numerical model the material loading and unloading func-

tions are used. as the relationship between the effective stress and the effective plastic

strain in a multi-axial stress-strain situation. Moreover, the model also considers the

effect of Bauschinger phenomenon on the residual stress distributions and the reverse

yielding predictions of thick-walled cylinders. Therefore the material's model plays a

significant role in this non-linear stress analysis. Test specimens for loading-unloading

tests are produced from the as received stainless steel SUS 304 with the following com-

position and mechanical properties specified by the manufacturer.

Table 5.1: Chemical composition of testing material % basis

C Mn Ni Cr

0.06 t.7 9.5 18



Chapter 5. Expeñmental Investigation

Table 5.2: Mechanical properties of testing material

os (MPa) U.r.S. (MPa) %EL Hardness (HB)

230 590 50 170

5.2.L Specifications of Test Specimens

The test specimens for loading-unloading tests are designed with a smaller gauge length

than the standard tension test specimens. Based on the manufacturer specified me-

chanical properties the critical buckling load for an ASTM E-SM-89b (1989) standard

round (d:12.5 mm) test specimen of this material, with 10 centimeter length of the

reduced section, is about 750 kN. This critical load is computed by using Euler's buck-

ling equation which is recommended by the ASTM (1939) standard compression test

method as foilows

L24

(5.1)

where P", is the critical buckling load, E is Young's modulus, 1 is the moment of inertia

of the cross section about centroidal axis, -L is the column length and n is the end-fixity

coefficient which is 4 for both ends fixed condition. The critical buckling load for a

similar test specimen with 8 centimeter iength of the reduced section designed for this

experiment is about 1171 kN which is 36% more than the critical buckiing load of the

standard test specimen. The critical buckling stress for the standard and the designed

test specimens are 6107 MPa and 9543 MPa respectively. Since the buckling stress

12 EIP.r:" L,
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is greater than the proportional limit of the material (230 MPa) the critical inelastic

buckling load must be calculated using the modified Euler equation. According to the

ASTM (1939) suggestion the modifled Euler equation is represented as follows:

P",: "ry Ø.2)

where 'E¿ is tangent modulus at buckling stress (5", : P* f Area). The tangent modulus

of the material at compressive yield point is approximately 63.3 GPa. The critical

inelastic buckling load is then calculated as 468 kN for the designed test specimens and

800 kN for the standard test specimen. These are obtained by using equation (5.2).

Taking into account that the machine load has never exceeded 60 kN during all the tests

it is concluded that the experimental magnitudes of the Bauschinger effect factor are

not influenced by the buckling. Buckling was not observed during all tests. A schematic

of the designed test specimen is shown in Figure 5. 1 . These test specimens are designed

80 mm 80 mm 80 mm

Figure 5.1: Loading-Unloading Round test specimen for material property

Elelol
NI

d=12.C mm

for material's loading-unloading property and the Bauschinger effect factor.
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5.2.2 Material Loading-Unloading Tests

A series of 10 test specimens with the above speciflcation are tested using a computer

controlled uniaxial testing machine. The machine configuration menu is set up such

that the test specimens were overstrained to prescribed values of 0.1%, 0.25%,0.50%,

0.75%,1.0T0, L5T0,,2.0T0,3.0To, 4.0% ar'd 5.0% and then reverse loaded until the zero

strain is reached. The straining speed is 0.1 mm/sec during each second of which 20

series of data are recorded in the data file. Each series of data are composed of time

(sec), length (--), ioad (kN) and strain (mm/mm). A sample of data recorded during

half a second of a test is rewritten from the data file into table 5.5 located at the end

of this Chapter. The experimental stress-strain curve of 0.75% overstrained condition

obtained from the corresponding data file is shown in Figure 5.2. The material's

constitutive model and the Bauschinger effect tu"t"îåfiôUtained from these experiments.

A summary of the material's experimental properties obtained from these tests are

written in tabie 5.3.

In this table, as is the yield stress and oA ar'd oD are the rlirect and reverse yield point

based on 0.1% offset method as are shown in Figure 5.2. The Bauschinger effect factor

(BEF) written in table 5.3 is calculated based on the modifiedformulaintroduced in

Chapter 1 and rewritten here as follows:

BEF - 
O,
oB

(5.3)

Elastic strains have been subtracted from the total overstrains to give the plastic

strains. To find the best mathematical function representing the variation of BEF
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Figure 5.2: Experimental loading-unloading stress-strain curve obtained for SUS 304

with respect to the percentage amount of plastic overstrain, a curve fitting software

has been employed (The Jandel Scientific Table Curve version 3.03 (1991)). The varia-

tion of BEF can be best represented as a continuous function of the amount of plastic

overstrain by the following function:

B E F : 1.0 1 70029 + 0.3659 27 32(e o%) - 0.002534 3r35(e o%)' - 0.977s8304(eo %)o'5

(5 4)

In a similar manner the material's data files are modified by subtracting the elastic

strains from the total strains to give the plastic strains. By using the same software the

o
ú¡

fitp.
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o
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Table 5.3: Material constants calculated from the materials data file

Test case E (MPa) øs (MPa) o¿ (MPa) a¡ (MPa) BEF

0.r%

0.25%

0.50%

0.75%

t.0%

t.50%

2%

3%

4%

5%

r57824.77

156147.09

159390.63

164100.45

t52r62.06

759162.67

159557.59

160341.32

158879.63

159692.13

236

235

237

234

236

240

237

233

235

236

358

350

366

363

370

369

366

365

368

364

286

210

775

159

148

136

131

r29

t28

t27

0.798

0.600

0.478

0.438

0.400

0.370

0.358

0.353

0.347

0.349

Average 158725.8r 236 363.8

strain-hardening is mathematically represented by the following constitutive equation:

o 
" 
: 2J2.6s187 + 6s9.01541 ( eo)o'2ßa2lze (5.5)

The above actual material model and the Bauschinger effect factor have been incorpo-

rated in the analytical-numerical procedure for an accurate prediction of the non-linear

response of thick-walled cylinders. Experimental verification of the procedure is dis-

cussed beiow.
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5.3 Thick-'Walled Cylinder Tests

5.3.1 Introduct ion

In order to verify the results of the analytical-numerical method developed in this study

for the prediction of critical pressures as well as the elastic-plastic stress distributions

and the subsequent residual stresses, several experiments are carried out on thick-

walled cylindrical test specimens. These experiments are critical pressure tests and

the pressure expansion tests as well as the residual stress distribution tests. All the

manufactured test specimens have the same totai length of 140 mm, gauge length of

60 mm, identical end geometry and bore diameter of 6 mm (Figure 5.3).

140 mm

30 mm 80 mm 30 mm

ó0 mm

L)= 12 mm

Figure 5.3: Thick-walled cylindrical test specimen

However, they have different outer diameters which cover a wide range of radii ratios'

Roark (1975) suggests that the hollow cylinders with radii ratio greater than 1.105

must be considered as a thick-walled component. Therefore the outer diameter of the

E
E

Os

E
E
q
o.

r3.

t-
1 5mm -J

=ó mm



Chapter 5. Experimental Investigation 130

,designed cylindricai test specimens starts frorn 7.2 mm and ended with 12 mm which

gives a scatter of radii ratios from 1.2 (7.216) up to 2 (I216). Specifications of the test

specimens are introduced here before discussing procedures of each individual experi-

ment.

5.3.2 Specifications of sPecimens

Cylindrical test specimens of the same material, stainless steel SUS 304, with different

wall thicknesses are produced in order to investigate the effect of radii ratio on the

critical pressure and progress of plastic zone and the consequent residual stresses. In

order to produce an accurate and constant wall thickness, the cylinder bore is ma-

chined into the 40 mm bar first. Then the cylinder is machined down to its final outer

dimension using the two ends of the bore as the turning axis. The test specimens are

designed such that the gauge length are at least equal to 5 times as their diameters.

This is because early studies (Crossland et at. (1958)) have shown that the end effect

is negligible in thick-walled cylinders having a length-to-diameter ratio of 4- In order

to prevent leakage of fluid from the specimen under the high applied internal pressure'

female cone and thread fittings are machined into the end of the cyiinder. High pres-

sure hydraulic systems, above 71.4 MPa (700 bar), require special flttings and tubing.

These flttings and accessories are designed by the hydraulic pump manufacturer to be

used with the high pressure hand pump. These high pressure fittings seal on a cone

surface and do not require pipe sealer. Female cones and threads of the machined test
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specimens are consistent with the manufacturer supplied fittings. Figure 5.3 shows a

drawing of the thick-walled test specimens which are designed for this experimental

investigation. These test specimens are used in critical pressure, pressure expansion

and the residual stress tests which are discussed here.

5.3.3 Critical Pressure Tests

When internal hydraulic pressure of a cylinder is increased, then the cylinder will re-

spond it by deformation. If the internal pressure is less than the critical pressure, then

the cylinder deformation is elastic and it will return back to its original configuration

upon the release of internal pressure. However, if the internal pressure is greater than

the vessel critical pressure, then plastic strains will be developed in the cylinder wall

which are irreversible. It means, the cylinder will not return back to its original config-

uration after releasing such an internal pressure. This physical phenomenon has been

considered for the critical pressure investigations. It is difficult to obtain the critical

pressures by measurements of the inside surface deformations of the cylinrler because

of the sealing problem under such a high internal pressures. Therefore, the critical

pressure of the cylinder i isr investigated by loading-unloading tests of the cylinder,

while the outer surface deformations are carefully measured by the strain gauges.
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Exp erimental Pro cedure

A series of nine thick-walled cylindrical test specimens within the range of the most

commonly used radii ratios of 1.2, I.3, 7.+, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0 ate tested

in this experiment. Specification of each test specimen is shown in table 5.4. Other

Table 5.4: Speciflcation of test specimen used in critical pressure tests

Specimen 1 2 3 4 5 f) 7 8 I

gange length mm 60 60 60 60 60 60 60 60 60

Inner diameter mm 6 6 6 6 6 6 6 6 6

Outer diameter mm 7.2 7.8 8.4 9 9.6 10.2 10.8 rt.4 t2

Radii ratio 1.2 1.3 t.4 1.5 1.6 t.7 1.8 1.9 2

specifications a e exactly the same as shown in Figure 5.3. These specimens are con-

nected to the hydraulic pump supply tube such that the both ends of the specimens

are supported on the levelled bearings as shown in Figure 5.4. After the specimens

a e connected to the supply tube, the air is evacuated from the piping system and the

specimen using full strokes several times as necessary to purge air from the system and

cylind.er while the end of test specimen is not yet closed tightly. Care was taken to

evacuate the air completely from the system because the air is compressive and the

failure can be followed by throwing the fragments of the failed specimen'

To prevent any possible residual stress development during the air evacuation and

tightening of the specimen's end cap, the cylinder is clamped to the bearings and base
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plate during this period of time. However, after the air evacuation, the cylinder is free

to expand in axial direction similar to the generalized plane strain assumption which

has been made in the theoretical analysis of this investigation. A schematic diagram

of the experimental setup is shown in Figure 5.4

Seì

Pn e s s u n e

Tn on s d u c e r

ector-

5t,TO1n

Cou ge
Specimen
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Figure 5.4: Schematic diagram of the experimental setup for criticai pressrtre tests

After the air evacuation from the system, it is ready for the test. Taking into account

that the pressure transducer sensitivity is 0.0854 mVf bar (0.5422 mVlMPa) and the

maximum permissible range of pressure transducer is 1700 bar (172.37 MPa), then the
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maximum permissible output voltage is 145.18 mV or 0.14518 V which should never

be exceeded.

Internal pressure is increased step-by-step and released when the pressure transducer's

output voltage is stabilized. The outer surface tangential strain is recorded after the

pressure is released and the stabilized value of strain is monitored by the digital volt-

meter connected to the strain gauge amplifrer. A sample of experimental data obtained

for the third test specimen þla-J.\ is written in table 5.6 located at the end of this

Chapter.

As long as the internal pressure is not high enough to yield the cylinder, then the outer

surface tangential strain will be zero after the pressure is released. The tabulated data

shows that the tangential strain is zero for the frrst seven steps of loading-unloading

tests. Variation of internal pressuïe versus residual tangential strain is shown in Fig-

ure 5.5.

The procedure for critical pressure evaluation is illustrated in this figure. In this man-

ner, critical pressures of all nine test specimens are obtained. The results are compared

with the numerical model predictions to be discussed in the next Chapter. After the

criticai pressures are obtained the progress of plastic zone is investigated by pressure-

expansion tests.
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5.8-5 1.0E-4
ReEidual hoop strain

Figure 5.5: Internal pressure and its subsequent residual tangential strain at the outer

surface of the cylinder.

5.3.4 Pressure Expansion Tests

In ord.er to verify the numerical procedure for the prediction of non-linear deformation

of the cylinder, a series of three test specimens with radii ratios of 1.2, 1.3 and 1'4

are selected. These are exactly the same as the first three test specimens described

in table 5.4. The lower radii ratios are selected for this experiment because the max-

imum permissible pressure of the pressuïe transducer is 172.37 MPa (1700 bar, 0.73

as). With this maximum pressure limit, it is impossible to create significant amount

of plastic strains at the cyiinders with higher radii ratios.
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deformation in Figure 5.7. The numerical procedure accurately predicts the non-linear

0.002 0.
Tangential strain

Figure 5.7: Internal pressure versus outer surface total tangential strains

deformation of the cylinder. Therefore the results of the numerical procedure can be

used with confidence. The numerical procedure has also been developed to predict the

subsequent residual stresses generated in the cylinder wall upon the release of internal

pressure. Experimental veriflcation of which is considered below.

5.3.5 Residual Stress Tests

If at any stages of plastic flow in the cylinder, the internal pressure is released, then

there will be a distribution of residual stresses throughout the thickness of the vessei.

In fact, the action of the elastic region to return back to its original confi.guration is
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counteracted by the plastic region which has developed irreversible plastic strains. On

the other hand, the plastic region will be compressed by the elastic region until a seif-

equiiibrium condition is obtained throughout the cylinder thickness. For any particular

internal pressure, beyond the critical pressure of the cylinder, a corresponding distri-

bution is predicted for the residual stress-strain throughout the cylinder wall by the

proposed analytical-numerical model. The numerical predicted values of the residual

axial and tangential strains at the outer surface of the cylinder will be compared with

the experimentaliy measured values of these two components in order to validate the

proposed analytical-numerical model for the prediction of residual stress and strain.

Similar to the previous pressure-expansion test, a series of 3 test specimens with radii

ratios o1I.2,1.3 and L.4 are selected. Again, the lower radii ratios are selected due to

the limited maximum permissible pressure of the pressure transducer which is 1700 bar

(172.37 MPa, 0.73 a6). However, with this pressure limit, it will be possible to create

significant amount of plastic deformation at these three low radii ratio test specimens'

Therefore, the subsequent residual strains can be easily measured by the strain gauges

located at the outer surface of the test specimens. The specimens are connected to the

hydraulic pump, in the same way as the previous tests, and their internal hydraulic

pressure are increased. In these experiments, the internai pressure is released several

times and the residual strains are measured by strain gauges. The unloading path and

the subsequent residual strains at a particular loading condition for the second and

third test specimens are shown in Figure 5.8.
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Figure 5.8: Residual tangential strains resulted from unloading of two different test

speclmens

It is necessary to point out that the residual strains are not recorded immediately after

releasing the internal pressure as it takes at least 5 minutes for the strain gauges to

monitor a stabilized value of axial and tangential strains. Only stabilized values are

consid.ered for the analysis. Experimental values of the residual tangential and axial

strains are recorded in table 5.8 located at the end of this Chapter. These results are

compared with the predicted values of the axial and tangential strains by ihe proposed

numerical procedure in Figure 5.9 (a) anct (b). which shows good agreement between

b/a = 1.3



Presgure limít line

b/a = 1.4
Experimental data
tluinerical model

A

Chapter 5. Experimental Investigation 140

.E-4 0.0010 5.E-
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(u) (b)

Figure 5.9: (a) Variation of the internal pressuïe versus residual tangential strain; (b)

Variation of the internal pressure versus residual axial strain

the experimental and numerical results. The proposed numerical procedure which is

justifled experimentally has been used to predict the thermoelastoplastic and residual

stress distribution of thick walled cylinders the result of which is fully discussed in the

next Chapter.
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Table 5.5: Sample data obtained during half a second of loading-unloading test

Time (sec) Length (*-) Load (kN) Strain (mm/mm)

0.52259994

0.57259995

0.62259996

0.67259997

0.72239995

0.77259994

0.82259995

0.87259996

0.92259997

0.97259992

1.02259994

0.000446614

0.005617315

0.005617315

0.008202666

0.015958721

0.023774775

0.023714775

0.028885478

0.034056179

0.039226882

0.044397585

0.353802145

0.74584943r

1.000033975

1.538560390

2.003847L22

2.555298090

3.063667059

3.610810041

4.110562801

4.623239994

5.101451397

0.0000034522

0.0000241369

0.0000327555

0.0000568876

0.0000724011

0.0000965333

0.0001206654

0.0001361789

0.0001672060

0.0001827195

0.0002016805

t4l
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Table 5.6: Data obtained for the critical pressure investigation

t42

ei v) mm mm)€i(P (MPa) P looP (v)

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000000000

0.000001661

0.000005457

0.000011295

0.000019051

0.000028614

0.000039884

0.000052768

0.000067187

0.0563

0.1046

0.1599

0.2027

0.2319

0.2601

0.2882

0.3154

0.3425

0.3697

0.3968

0.4239

0.4511

0.4782

0.5054

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0027

0.0088

0.0183

0.0310

0.0465

0.0649

0.0858

0.1093

0.0112

0.0208

0.0318

0.0403

0.0461

0.0517

0.0573

0.0627

0.0681

0.0735

0.0789

0.0843

0.0897

0.0951

0.1005

13.298

24.697

37.758

47.850

54.737

61.386

68.0183

74.4251

80.8318

87.2386

93.6453

100.0521

106.4588

112.8656

rr9.2723
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Table 5.7: Data obtained for pressure-expansion test of the third specimen

t43

e" (v) e, (mm/mm)e0 (v) ep (mm/mm)P (MPa) P looP (v)

0.0000

0.0101

0.0202

0.0303

0.0381

0.0448

0.0517

0.0596

0.0647

0.0719

0.0796

0.0823

0.0880

0.0909

0.000000

0.000053

0.000105

0.000158

0.000198

0.000233

0.000269

0.000310

0.000336

0.000374

0.000414

0.000428

0.000458

0.000473

0.0000

0.0364

0.0728

1.0927

1.3725

r.6147

1.8615

2.t438

2.5t82

2.9948

3.8382

4.2775

5.4108

6.1262

0.000000

0.000224

0.000448

0.000671

0.000843

0.000992

0.001144

0.001317

0.001547

0.001840

0.002358

0.002628

0.003324

0.003764

0.0000

0.0848

0.1697

0.2545

0.3194

0.3742

0.4291.

0.4839

0.5388

0.5937

0.6485

0.6668

0.7034

0.7217

0.0000

0.0168

0.0337

0.0506

0.0635

0.0744

0.0853

0.0962

0.1072

0.1181

0.1290

0.1326

0.1399

0.1435

20.02t

40.0+2

60.063

75.368

88.315

1.0r.262

r14.209

t27.156

140.103

153.050

157.366

165.997

170.313

0.000
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Table 5.8: Data obtained for the residual tangential and axial strains

144

P (v) P (MPa) P loo eo (v) ep (mm/mm) ,, (v) e, (mm/mm)

0.0599

0.0927

0.0999

0.1 145

0.1218

0.1254

0.1290

0.1327

0.1363

0.1400

0.1436

71.053

109.894

118.525

135.787

t44.4r9

r48.734

153.050

157.366

161.681

165.997

170.313

0.3011 0.0004 0.000000

0.4657 0.0400 0.000025

0.5022 0.0992 0.000061

0.5754 0.3486 0.000214

0.6119 0.5815 0.000357

0.6302 0.7786 0.000478

0.6485 t.0544 0.000648

0.6668 1.4159 0.000870

0.6851 1.8612 0.001144

0.7034 2.3955 0.001472

0.7217 3.0355 0.001865

0.0001

0.0005

0.00i1

0.0089

0.0308

0.0392

0.0477

0.0822

0.t244

0.1724

0.2241

0.000000

0.000000

0.000000

0.000004

0.000014

0.000019

0.000025

0.000043

0.000065

0.000090

0.000117



Chapter 6

RESUTTS AND DISCUSSIONS

6.1- Introduction

Results of the proposed analytical-numerical methods developed for the prediction of

critical condition and the non-linear time-dependent and time-independent deforma-

tion of thick-walled cyiinders are discussed in this chapter.

Effect of variables such as radii ratio and temperature gradients on the critical pres-

sure are investigated and the results are discussed. Progress of piastic zone with and

without the effect of temperature gradient is investigated and the results of stress

redistributions during plastic flow are discussed and interpreted in terms of physical

nature of the problem. Results of residual stress distributions with and without the

Bauschinger effect factor are compared and the effect of Bauschinger phenomenon on

the predictions of revelse yielding is investigated and discussed.

Results obtained for the time-dependent creep stress and damage as well as the remain-

745
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ing life evaluations of thick-walled tubes are also discussed in this Chapter. However,

for a better understanding of the critical condition and the effect of plastic flow on the

stress distributions of thick-walled cylinders, a brief discussion of the results obtained

for the elastic stress distributions is considered here'

6.2 Elastic Stress Distribution

Elastic stress distributions of thick-walled cylinders are investigated using equations of

elastic stresses (derived in Chapter 3) rewritten here as follows

Sí

,9"'-z

F(p,0,@) + G(p, B)P¿

H(p, þ,@) + R(p, P)e¿S"o

M(p, p,o) + N(þ)Po (6. 1)

where Si, Sã and Sj are radial, tangential and axìa1 stresses respectively. Taking into

account that 4 is the dimensionless internal pressure and O is the non-dimensional

temperature gradient, then the elastic stresses are the sum of a mechanical and a

thermal stress component. If functions containing O are ignored in the above equation

then the results are only mechanical stresses due to P¿ written in the following form:

G(p, þ)P¿

R(p,0)Po

,q"'-T

Sã

S: N(þ)Po (6.2)
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If the terms containing P¿ are neglected in equation (6.1) then the remaining is only

thermal stresses represented by the following equation:

s;: F(P,þ,@)

Sã : H(p,0,Ø)

S: : M(p,p,@) (6.3)

In this study mechanical stresses resulted from the critical inner pressure and thermal

stresses resulted from a thermal gradient of AT : 600C as well as the combined effect

of internal pressure and thermal gradient on the elastic stress distributions of thick-

walled cylinders are considered. Criticai pressure determines the maximum possible

elastic stresses in the cylinder which will be compared with plastic stresses. A temper-

ature gradient of 600C can produce significant amount of thermal stresses and it will

be shown that this can cause plastic yielding to start from the outside surface of the

cylinder.

6.2.L Mechanical Elastic Stress Distribution

Purely mechanical elastic stress distribution across the thickness of two different thick-

walled cylinders due to their critical inner pressures are calculated from equation (6.2)

and shown in Figures 6.1 (a) and (b). Radii ratio of these two cylinders are þ :1.2

(bla:1.2) and, p -- 2 (bla:2) which are the minimum and maximumradii ratio of

test specimens used. in experimental investigations. The critical inner pressure of these

two cylinders are 0.176 ds and 0.433 ds respectively. It is evident from Figures 6.1
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Figure 6.1: (a) Etastic stress distribution in thick-walled cylinders of radii ratio of

13 :1.2 and; (b) þ :2

(a) and (b) that the maximum tensile tangential stresses (øB) and the maximum com-

pressive radial stresses (ø") are located at the inside surface of the cylinders (r/a:1).

The maximum compressive radial stresses at the inside surface of both cylinders are

equal to their respective internal pressure which is expected from the boundary con-

dition. Taking into account that the radial, tangential and axial stresses in a cylinder

are the three principal stress components, then the maximum shear stress, which is
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(ou - o,) l2,is also located at the inside wall of the cylinder (r/a:1). Therefore, in the

absence of thermal gradient, it is expected that plastic yielding will start at the inside

surface of the cylinder if internal pressure goes beyond the critical pressure. It is also

evident from the Figures 6.1 (a) and (b) that the axial stress (4") is the average of the

radial and tangential stress components. If the stress distribution across the thickness

of both cylinders are compared, a significant variation in radial and tangential stresses

are observed for the cylinder of p: 2 while the other cylinder (P : I'2) does not

exhibitanysignificantvariation'Infact,thecylinderofp:1'2isclosetothemargin

of thin cylinders (B : 1.105, Roark (1975)) in which a uniform stress distribution have

been recommended by Roark (1975) for design purposes.

6.2.2 Thermal Elastic Stress Distribution

Thermal elastic stresses resulted from a 600C thermal gradient due to an outward flow

of heat in the same thick-wailed cylinders are illustrated in Figures 6.2 (a) and (b)'

In the case of a pure thermal load, there is no tension or compression on the inside

and outside surfaces of the cylinders. Therefore, the radial stresses (ø.) are zelo orr

the boundary surfaces which satisfy this condition. It is evident that the thermal tan-

gential (øB) and axial (ø,) stresses are equal and compressive at the inside surface of

the cylinders and are equal and tensile at the outer surface of the vessels. To describe

this distribution, the cylinder can be considered as combination of a large number of

thin cylindrical shells. The interior layers of the cyiinder which are located at higher



ÀT=60oC

P=bla=!.2

ctt

Os

Chapter 6. Results and Discussions 150

rô
o

rtl
o

r.lt

o

o
b

b
o
b
k

Þ
U¡
o
t,l
a
o
t{
Ð
U¡

r{
Íl
É
¡{
ot
+)
(,

.d
+)
l,l
rrt

r{
f¡l

o
b

Þ
o
b
F

Þ
U¡
o
So
o
t{
+¡
(r¡

Fl
fll
É
t{
oE
+)
(,

.F|

+¡

H":
:1o
lql

o

.10 1.15 0

rla
1.5
rla

01.00 1.

(u) (b)

Figure 6.2: (a) Elastic thermal stress distribution in thick-walled cylinders of B : 1'2

and; (b) p -- 2

temperatures than the outer layers would have more expansion due to their higher

temperature if there was no constraint. However, the geometrical constraints imply

that the surfaces normal to the axial and tangential directions must remain plane. It

means, the higher expansion of the inside layers in axial and tangential directions are

counteracted by the less expansion of the outer layers located at lower temperatures

forcing the inner layers in compression while leaving the outer layers in tension until

a self-equilibrium condition is reached. The boundary at both inside and outside sur-

Af=6()oC

þ=bla=2

Os
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faces is free of any external tension or compression and therefore, the expansion will be

equal in both axial and tangentiai directions which will produce equal tangential and

axial thermal stresses on both inside and outside surfaces. Finally, expansion in radial

clirection is dominated by the contractions induced by the Poisson's ratio due to the

net expansions in axial and tangential directions, thereby leaving a small compressive

radial stress throughout the cylinder wall.

6.2.3 Combined Mechanical and Thermal Elastic stresses

Combined effect of mechanical stresses due to the critical inner pressure and thermal

stresses due to a 60oC temperature gradient in the same thick-walled cylinders are

shown in Figures 6.3 (a) and (b).

To understand these stress distributions one can superpose the pure mechanical stresses

shown in Figures 6.1 on the pure thermal stresses shown in Figures 6.2 to obtain the

combined effect of mechanical and thermal stresses. Highly compressive axial and tan-

gential thermal stresses at the inside surface of the cylinders have decreased the effect of

high tensile tangential mechanical stresses at these surfaces. Effects of thermal stresses

at the outside surface of the cylinders are to increase the magnitudes of the tensile axial

and tangential stress components. It is clear from Figures 6.3 (a) that, in this loading

combination, the maximum shear stress (("t - ",)12) 
is located at the outside surface

of the thinner cylinder (13 : I.2) which means plastic flow is more likely to start at the
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Figure 6.3: (a) Elastic thermal stress distributio", (b) Elastic stress distribution in the

presence of a thermal gradient

outside surface of this cylinder. This is not the case for the thicker cylinder (p :2) as

Figures 6.3 (b) indicates that the maximum shear stress is located at the inside surface

of this cylinder.

The elastic stress distribution of thick-walled cylinders with and without the effect of

thermal stresses is helpful in understanding the critical conditions. Critical conditions

of thick-walled cylinders are investigated for a wide range of thermal gradients and
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radii ratios which are important for practical applications and are discussed below.

6.3 Results from Critical Condition

The critical condition for many practical loading combinations and radii ratios is inves-

tigated using the critical condition equation rewritten here (discussed earlier in chapter

3) as follows:

A(p,lÐP? + B(p, B,@,, P")P¿ * C(p, p,@,P") : 0 (6.4)

Many variables such as p (dimensionless radius), B (radii ratio), O (dimensionless

temperature gradienl),, P" (dimensionless outer pressure) and P¿ (dimensionless inner

pressure) are involved in this equation. In general, anY combination of these vari-

ables which satisfies the above equation can cause the critical condition for plastic

yielding to occur anywhere in the cylinder wall thickness. In practice, most of the

thick-walled cylinders are used as a pressure vessel component containing high internal

pressure without any external pressure. For this reason, the effect of external pressure

on the critical condition is not considered in this investigation. Therefore, there are

four variables: P¿,, p, p and O invoived in the equation (6.4). Since the values of O,

dimensionless temperature gradient does not indicate the magnitudes of temperature

gradients, it was decided to use the specifrc values of temperature gradients in oC ot-

all graphs and discussions rather than its non-dimensional representation O.

In a thick-walled cylinder with a uniform outward flow of heat O and B are constant

and, P¿ and. p are variables in equation (6 4). Then the minimum value of the inter-
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nal pressure (4) satisfying the equation (6.a) is called the critical pressure and the

value of p in which this minimum condition occurs is the starting surface of plastic

yielding. For a better understanding of the criticai pressure, the variable internal pres-

sur" (P¿), which satisfles equation (6.4), is plotted against p (dimensionless radius) at

various constant temperature gradients from 00C to 1000C and a constant radii ratio

of p : 1.2 (Figure 6.a (a)). This figure shows that at lower temperature gradients

.05 1. t.20 . 00 1.05 L.20
DimenEíonless ratlius p Dinensionless radius p
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at p - 1 which means yielding starts at the inner surface of this cylinder in these load-

ing conditions. It can be interpreted that, in these loading conditions the combined

effect of thermai and mechanical stresses is such that the Mises effective stress at the

inside surface of the cylinder is greater than or equal to the material uniaxial yield

stress and therefore, yielding starts at the inside surface of the cylinder' However, at

higher temperature gradients, the minimum values of the internai pressure are located

aL p - 1.2 and therefore yielding starts at the outer surface of the cylinder for higher

thermal gradients. In fact, the resultant effect of thermal and mechanical stresses is

an effective stress which is greater than or equal to the yield stress at the outer surface

of the cylinder in these loading conditions and therefore yielding starts at the outer

surface of the vessel. These results are also consistent with the results of the elastic

stress distribution already shown in Figure 6.1 (a) and 6.3 (a). It is also concluded

from Figu rc 6.4 (a) that there is a loading condition in which the whole thickness of the

cylinder will yield simultaneously. This loading condition is shown in Figure 6.4 (b)

in which an internal pressure of 0.21054s and a temperature gradient of 36.5 'C wiil

cause the whole thickness to yield simultaneously. In this case' the combined effect of

thermal and mechanical stresses is such that the effective Mises stress is uniform across

the thickness an{ its magnitude is greater than or equal to the yield stress. A reference

pressure(0.210bøs), independent of temperatute, has been identified in Figure 6'a (a)

and (b) which represents the critical pressure for the condition in which the whole

thickness will yield simultaneously.
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A similar plot of the internal pressure satisfying equation (6.a) for a cylinder of B :2

is shown in Figure 6.5. The temperature gradients are the same as those selected for

1.5 0

Dimensionless radíus p

Figure 6.5: Internal pressure satisfying von Mises condition at the same temperature

gradients in thick-walied cylinder of 13 :2

Figure 6.a(a). The reference pressure can also be identified as the pressure of point

,,4,' which indicates the critical pressure at which the whole thickness of the cylinder

will yield simultaneously. Furthermore, the figure shows that, for the case of B :2,

yielding starts at the inner surface of the cylinder for all selected temperature gradi-

ents, because all minimum values of the internal pressure are located at p : 1 for the

selected temperature gradients. This is also consistent with the results of the elastic

stress distribution already shown in Figure 6.1 (b) and Figure 6.3 (b).
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A computer program has been developed in this investigation to calculate the critical

pressures for a wide range of practical temperature gradients and radii ratios (Appendix

A). In order to show the effect of radii ratio on the critical pressure, the critical inner

pressures at various temperature gradients, obtained from the computer program' are

plotted against radii ratios in Figure 6.6. This frgure shows that, except for a small
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Figure 6.6: Critical pressures versus radii ratio for various temperature gradients

range of low radii ratios, higher temperature gradients tend to increase the critical pres-

sure. An important and identical characteristic among all the above curves is that the

changing rate of the critical pressure with respect to radii ratio substantially decreases

with increasing radii ratio and finally approaches to zero where the curves approach to
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a constant value. In the case of zero temperature gradient this constant value is shown

in Figure 6.6 and is about 56To of the yield stress. It means that, if inner pressure is

56% of the yieid stress, yielding is definitely to take place in the cylinder, no matter

what the wall thickness of the cylinder is. In cylinders of lower radii ratios (ranging

from 1.2 to 2.4), in which the changing rate of critical pressure is high, increasing the

radii ratios of the cylinders significantly increases their critical pressures and improves

their performances. While in cylinders of high radii ratios increasing the ra,dii ratios of

the cylinders do not substantially improve their performances.

As an example, let us consider a cylinder with an inner radius of 10 cm and an outer

radius of 12 crn, the radii ratio of which becomes 1.2. The critical pressure of this cylin-

der in the absence of a thermal gradient is 0.1764oo (calculated from equation (6.4)).

To improve the critical pressure of the vessel if we consider a cylinder with the same

inner radius of 10 cm and an outer radius oL 24 cm, the radii ratio of which is 2'4,

twice of the previous vessel, then the critical pressure of the new improved vessel in the

absence of thermal gradient is 0.4771o". Therefore, the critical pressure is improved to

2.7 times of the previous vessel which means a t70% increase in the critical pressure.

However, if a cylinder with the same inner radius of 10 cm and the outer radius of 48

cm, twice of the second cylinder, is considered, then the critical pressure of the third

cylinder is 0.5523as which is just 15% more than the critical pressure of the second

vessel. Therefore, increasing the radii ratio of the cylinder in this case does not sub-

stantially improves the critical pressure.
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trffect of temperature gradient on the critical condition is also investigated and iilus-

trated in Figure 6.7. In this figure critical pressures are plotted against temperature

50 1s0
Temperature gradien! ÂT oC

Figure 6.7: Critical pressures versus temperature gradient for a wide range of radii

ratios.

gradients for a commonly used range of radii ratios. All the curves exhibit a maximum

critical pressure which is, in fact, the previously identified reference pressllre and be-

longs to the condition in which the whole thicknesses yield simultaneously. The locus

of these maximum critical pressures is a straight line (AB) which divides the graph

into two distinct regions. All points to the left of this straight line, AB (left region)

represent conditions in which yielding starts at the inner surface of the cylinder' In
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these loading conditions the combined effect of compressive thermal stresses and the

mechanical stresses at the inside surface of the cylinder is such that the resultant Mises

effective stress is greater than the yield stress in this region. Therefore, yielding starts

at the inner surface. All points to the right of the dividing line (i.e, right region) belong

to conditions in which yielding starts at the outer surface of the cylinder. It means, in

these loading conditions the combined effect of thermal and mechanical stresses at the

outer surface of the cylinder is such that the resultant Mises effective stress is greater

than yield stress and therefore yielding starts at the outer surface of the cylinder. Along

this border line between the regions the whole thickness yields simultaneously' This

means, the resultant of thermal and mechanical stresses is a uniform effective stress

across the thickness which is greater than or equal to yield stress and therefore the

whole thickness yield simultaneously. Furthermore, it is evident from Figure 6'7 that

the normal distances (A/z) between the lines of critical pressures for various radii ratios

are decreasing with increasing radii ratio, while in general, critical pressure is increas-

ing with increasing radii ratio. It has aiready been shown (in the example discussed

earlier) that increasing the radii ratio at lower levels substantially increases the critical

pressure of the cylinder, while this rate is 1ow at higher radii ratios. Therefore, the

higher normal distance Aå between the lines of critical pressures at lower radii ratios

can be best described by the changing rate of critical pressure with respect to radii

ratio (Figure 6.6). Critical pressures for a wide range of radii ratios ftorn B : l'2io

þ :2 are investigated experimentally and the method of experimentation has already

been discussed in previous Chapter 5. The results are compared with the theoretical
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values obtained from equation (6.a) as shown below in Figure 6.8. Experimental results

are in good agreement with the theoretical values predicted by equation (6.a).

1.5
Radius ratio P

Figure 6.8: Comparison of the experimental critical pressures and numerical values

However, as the figure shows, for the cylinders of lower radii ratios the accuracy of the

results is higher than the vessels with higher radii ratios. To describe this, a plot of

the axial and tangential total strains (e, and es) of the minimum and maximum exper-

imented radii ratios of B:1.2 and, B :2 are shown in Figure 6.9. If the outer surface

strains at points A and B in Figures 6.9 (a) and (b) are compared , the va,lue of axial

and tangential strains of the thinner cylinder (þ : t,2) are three times greater than

the thicker one (þ :2), both of which are at the onset of yielding from their inside
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Figure 6.9: (a) Axial and tangential elastic strain distribution across the thickness of

the cylinders with 0 :1.2 and; (b) þ :2

surfaces. Therefore, the measurements of strains at the outer surface of the thinner

cylinder¿¡smuch more accurate than the thicker one. So we must expect less accurate

results for the critical pressure of thicker cylinders, because the prediction of critical

pressure is based on the outer surface strain measurements.

If internal pressure greater than the critical pressuïe is applied to the cylinder, then

plastic fl.ow will occur in the cylinder wall. Numerical procedure for the computation
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of plastic stresses and the subsequent residual stresses have lready been verified exper-

imentally and the results obtained from this procedure are discussed in the next two

sections. The result of plastic flow and the residual stresses can be obtained for any

radii ratio, temperature gradient and internal pressure. However, the results reported

in the next section is mainly discussed for a special radii ratio of þ : 2 which is similar

to a gun barrel. Then the results can particularly be used for the autofrettage of gun

barrels since the real material properties including the Bauschinger effect phenomenon

have been used to predict the elastoplastic and residual stress distributions as well as

the onset of reverse yielding in this particular cylinder'

6.4 Plastic Stress Distribution

Results of the analytical-numerical method developed for the prediction of plastic stress

and strains as well as the residuai stress distribution are discussed in this section. It is

d.ifficult to verify the plastic stress and strain distribution throughout the wali thickness

of the cylinder by direct measurements. Measurements of the internal surface de{orma-

tion of the cyiinder are also difficult because of the high applied internal pressure and

the problems of cylinder sealing. The only way to verify the results of the proposed

procedure is by measurements of the outer surface deformation of the cylinder while

internal pressure is increasing monotonically. In this way experimental values of axial

and tangential strains at the outer surface of the cylinder are measured by the strain

ganges while the internal pressure is measured by a digital pressure transducer. Experi-
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mental results of the pressure-expansion tests are compared with those values predicted

by the numerical model. There is a good agreement between the experimental results

and the numerical results predicted by the proposed procedure as it has already been

shown in Figure 5.S (a) and (b) in the previous Chapter. It is also justified to assume

that the axiai plastic strain is not zero as it has been assumed by all the previous in-

vestigators. It is true that the axial strain is small while comparing with the tangential

plastic strain component; however, the experimental results show that it is not zero

(Figure 5.8 (b)). Therefore the numerical model based on the generalized plane strain

case, d.eveloped in this investigation, can be best satisfied by the experimental results'

Elastopiastic stress distribution across the thickness of the cylinder is shown in Fig-

ure 6.10 (a). In order to compare the results of elastic-plastic and elastic cylinder, the

elastic stress distribution of the same cylinder at the onset of plastic yielding is re-

plotted with the same scale in Figure 6.10 (b). Let's first consider the effect of plastic

flow on the stress distribution of the plastic region of the elastic-plastic cylinder. To

justify this distribution, suppose the cylinder is made up of a large number of thin

co-axial cylinders and the internal hydraulic pressure is increasing step by step using

a high-pressure hydraulic pump (similar to the way we carried out the experiments).

As a result of high internal pressure, which is more than critical pressure, a number

of inside layers of the cylind.er are in plastic regime, while the bulk of the cylinder

material is still in elastic regime. Therefore, there is an elastic and a plastic region at

the same time in the cylinder both of which have a different rate of deformation. Apart

from the irreversibility of plastic strains in plastic regime, another important distinc-
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Figure 6.10: (a) Elasioplastic stress distribution across the thickness of a 45To over

strained cyiinder; (b) trlastic stress distribution of the same cyiinder

tion between plasticity and elasticity is that the rate of deformation is much higher

in the plastic regime than the elastic regime because the tangent modulus (slope of

the stress-strain curve beyond the elastic limit) is less than the modulus of elasticity.

It means, the inside layers of the cylinder must experience more deformation, in the

tangential and axial direction, than if they would be in the elastic situation. This

is not consistent with the elastic part of the cylinder.Deformations in the plastic and

elastic region are not consistent, while the geometrical constraint imply that the planes

tfì

o

o
þ

b
o
b

H
b
t¡
o
o
U¡
o
H
+¡a
(,

.r{
+¡
t¡
rü

Fl
ft
o
+)
U¡Íl

!{
Êt

lfl

rl

o
Fl

uì
o

I

o
Fl

o
Þ

b
o
b

E
b
o
o
UI
o
o
¡{
+,
l,¡

(,
.Fl
¡)
o
rlt
r{
o
o
ül
o
r{
É
o

-Ft
Ut
FI
o
É.r{
a

ct

ut
Fl

o
Fl

út
c,

r'l
o

I

o
r{

I

o

1.0

Ps=Pg¡¡¡=0.4330o0

oz

Os

T=0oC

o



Chapter 6. Results and Discussions 166

normal to the axial and tangential directions must remain plane. Therefore the plastic

region, with higher rate of deformation will be pressed down by the dominant elastic

region, decreasing its tensile stresses, while the elastic region itself will be stretched

by the reaction force until a balance is reached and the geometrical constraint is satis-

fiecl. This can be clearly seen by comparing Figures 6.i0 (a) and (b). At early stages

of the plastic flow, when the bulk of the cylinder material is in elastic regime, then

the elastic region will significantly hamper the higher deformation rate of the small

plastic region at the inside layers , thus decreasing the axial and tangential stresses

significantty. That is why the tangential and axial stresses are decreasing a,t the inside

layers. However, when the plastic region progresses more and more then the higher

plastic deformation will dominate the lower elastic deformation. So stretching up the

elastic layers and progressing toward the outer surface of the cylinder can be seen

Let's now consider the contribution of radial stresses in the elastic-plastic deformation

of the cylinder. Obviously the radial compressive stress at the inside surface of the

cylinder must always be equal to the internal hydraulic pressure and at the outer sur-

face must be zero because there is no external pressure acting on the outer surface of

the cylinder and is distributed throughout the wali between these two extremes. There-

fore increasing internal hydraulic pressure beyond the critical values will increase the

magnitude of the compressive radial stress at the inside surface of the cylinder' More

compression in radial direction from the inside surface will give more lateral extension

in the other two principal directions, axial and tangential, and giving more potential
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for plastic flow to progress through the cylinder wall. Another important point here

is that the lateral extension resulted from the radial compression is 72.470 higher in

the plastic region than the elastic region. This may be more clear by comparing the

non-linear incrementai stress-strain reiationship used to obtain the above solution and

the elastic stress-strain relationship in the following form:

(a) non-linear incremental stress-strain relationship:

drl

drI

drl

de^- 7.: î1", - ,("u 
-l o")l

d€n, I ,: 
ffl"u - i@" * o")l

: 4gz¡o" - !@, + oe)l
oez

(b) elastic stress-strain relationship:

1.
-loE'

(6.5)

, - u(oo -f ",)l

|Vt-u(o,!o,)l

lr""-u(o,toe)l (6.6)

In equation (6.6), the Poisson's ratio z defines the contribution of deformation in one

principal direction to the deformation of the other two principai directions- The Pois-

son's ratio of the cylinder material is u :0.29. Comparing with the above non-linear

incremental stress-strain relationship (equation (6.5)), one can tealtze that, in plas-

tic regime, the contribution of deformation in one direction to the lateral directions

is given by the fraction I or 0.5 instead of z, which is 72.4% (q#æ) higher than

çT

€g

az
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elastic situation. Now it is clear that increasing the internal pressure of the cylinder

wiil increase the compressive radial stress. More compression in radiai direction will

give more lateral extension to the axiai and tangential directions thus giving further

potential to plastic region to overrun the elastic region.

Elastic-plastic boundary can be easily identified in Figure 6.10 (a) as shown with a

vertical dashed line. On the elastic-plastic boundary, the material is at the verge of

yielding, the condition which has been used to locate the elastic-plastic interface. Elas-

tic stress distribution in the elastic region of the elastic-plastic cylinder (Figure 6.10 (a))

is similar to the elastic stresses of an elastic cylinder (Figure 6.10 (b)). An important

conclusion can be made here from the stress distribution pattern in the plastic region

of the cylinder. Taking into account that the radial, tangential and axial stresses (o,,

06 aîd. o,) are three principal stress components, then it can be concluded from the

Figure 6.10 (a) that the maximum shear stress (("u - ",)12) 
is uniformly distributed

throughout the plastic region of the cylinder.

For the case of a fully plastic cylinder (the stress distribution of which is shown in Fig-

ure 6.11) this uniform shear stress is distributed throughout the wall thickness of the

cylinder. The initiai elastic stress distributions shown in Figure 6.10 (b) are compared

with the fully plastic stress distributions shown in Figure 6.11. As a result of plastic

flow, the maximum tensile tangentiai and axial stresses are shifted from the inside sur-

face of the cylinder to the outer surface of the vessel. The maximum compressive radial
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Figure 6.11: Fully plastic stress distribution across the thickness of the cylinder.

stress is always located at the inner surface of the cylinder and is equal to the internal

pressure of the cylinder regardiess of elastic or plastic condition. The axial stress is

nearly the average of radial and tangential stress components in both elastoplastic and

fullv plastic condition of the cylinder.

To show the effect of plastic flow on each individual stress component, the tangential

stress d.istributions at four subsequent loading steps from the initial elastic to fully

plastic condition are plotted across the thickness of the cylinder (Figure 6.12). As

a result of plastic flow in the cylinder, the tangential stress component at the inside
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Figure 6.12: Elastoplastic tangential stress distributions across the thickness of the

cylinder at four subsequent loading steps

surface of the cylinder is decreased comparing with its initial elastic situa,tion. This

has already been interpreted as the effect of geometrical constraint which imposes a

balance between the higher plastic deformation rate of the internal layers and the

lower elastic deformation rate of the outer layers . andi pushing down the plastic lay-

ers, while stretching up the eiastic layers. It is also interesting to compare the elastic

tangential stresses in the elastic region of the elastic-plastic cylinder with their initial

elastic distribution (Figure 6.12). Because of the higher deformation rate in plastic

region and the effect of geometrical constraint, the elastic layers of the elastic-plastic
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cylinder are stretched up and therefore the elastic tangential stresses in elastic-plastic

vessel are higher than the initial elastic situation and ready to yield. The maximum

tangential stress is located at the inside surface of the initial elastic cylinder (point A

in Figure 6.12) while in the fully piastic condition it is located at the outer surface

of the cylinder (point B in Figure 6.12). The maximum tangential stress a,t the outer

surface of the fully plastic cylinder is very high in magnitude. It is almost forrr times of

its initial elastic value and nearly twice of the initial maximum elastic tangential stress

and 1.2 times of its material yield stress. Therefore, it is clear that any longitudinal

crack at the outer surface of a fully plastic cylinder, normal to the tangential direction,

can be quickly propagated throughout the thickness of the cylinder because of very

high tensile tangential stress at the outer surface of the cylinder as well as its high

tensile magnitude throughout the whole thickness'

Variations of radial stresses across the thickness of the cylinder during the process of

plastic flow are shown in Figure 6.13. Radial stress must satisfy the boundary condi-

tion at the inner and outer surfaces, therefore it must be zero at the outer surface of

the cylinder and must be equal to the internal pressure at the inner surface. It is dis-

tributed in compression between these two extremes. This distribution can be justified

in two ways. trirst of all, there is a significant rise in magnitude of the radial stress

componenL (L,o, in Figure 6.13) as the plastic flow progresses from the initial elastic

situation to a 45To overstrained condition. While this rise in radial stress is muchless

when plastic flow progresses from lhe 45% overstrained condition to the fully plastic
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Figure 6.13: Elastoplastic radial stress distributions across the thickness of the cylinder

during plastic flow

situation (Figure 6.13). It is because, at early stages of plasticflow in the cylinder, de-

formation is controlled by the dominated elastic region which is larger than the plastic

region and therefore strongly hampers the progress of plasti c zorre. On the other hand,

at early stages of plastic flow, the rate of pressure rise must be higher to overcome the

elastic domination. Therefore, the radial stresses at the inner surface of tube shows a

higher increase at early stages of plastic deformation. However, at later stages of plas-

tic flow when deformation is controiled by the dominated plastic region, small increase

of the internal pressure can have a significant progress of plastic zoîe. Furthermore
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Figure 6.13 shows that a 32% increase in internal pressure from 0.42oo at point B to

0.74oo at point C (0.74-042:0.32), will cause 45% of the cylinder to deform plastically.

But the remaining 55% elastic region will collapse to plastic regime just by a 16% rise

ininternalpressure ftorn0.74os at point c to 0.9o0 at point D (0.9-0.74:0.16), which

is half of the previous growth in internal pressure. This can also be interpreted by the

decreasing rate of internal pressure with progress of elastic-plastic boundary shown in

Figure 6.14. The progress of plastic zorre can be justified by considering point A in

1.5 0

Plastic zone radíus p"

Figure 6.14: Variation of internal pressure versus elastic-piastic boundary

Figure 6.13 representing the elastic-plastic boundary o1 45% overstrained cylinder. If

45% of the cylinder is yielded, the remaining 55To is in elastic condition. If we con-

sider the remaining elastic cylinder as a new elastic cylinder with a radii ratio of 1.38

o
rl

r.fì

Þ

êl

o
Ht
U¡
t¡
o
f{q
r-l
rl
É
H
o
+)
É
H

ÀT=o oc



Chapter 6. Results and Discussions 174

(Zll.45-:.38), then the critical inner pressure of this new cylinder is calculated from

equation (6.1) and is equal to 0.28ø0. The radial stress at the elastic-plastic boundary

(the value of radial stress at point A) must be equal to the critical pressure of this new

elastic cylinder. And this is the case, because the radial stress at point A is also equal

to 0.2goo. Therefore, the radial stress distribution and the progress of plastic zone are

justifred.

Variation of elastic and fully plastic axial stresses across the cylinder thickness are

compared in Figure 6.15. As a result of plastic flow, the axial stress component has

1.5
rla

2.0

Figure 6.1b: Elastic and fully plastic axial stress distributions acloss the thickness
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been increased. at the outer surface while its magnitude has been decreased at the inner
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surface of the cylinder. The reason has already been discussed and will not be repeated

here again.

Efiects of temperature gradient on the plastic flow of thick-walled cylinders are dis-

cussed in the next section.

6.4.L Effect of Temperature Gradient on Plastic Stresses

Effect of temperature gradient on the elastic stress distribution of thick-walled cylinders

has already been discussed by superposing a pure thermal stress on the mechanical

stress distribution resulted {rom an internal pressure. For understanding the result of

plastic flow in the cylinders subjected to an internal pressure and a thermal gradient,

one should consider the combined effect of thermal stresses and the mechanical stresses.

Thermal stresses are resulted from an outward flow of heat with a 600C temperature

gradient. It is clear that the inner iayers of the cylinder which are located at higher

temperatures should have a higher deformation than the outer layers of the cylinder,

thus helping the inside plastic layers to progress much quicker. To show this, variation

of internal pressure with progress of plastic zone across the thickness of the cylinder

with and without the effect of a thermal gradient are compared in Figure 6.16. In the

presence of a temperature gradient smaller pressure differential is needed for an equal

progïess of plastic zone. On the other hand, with an equal increase of internal pressure

the cylinder with temperature gradient witl develop a larger plastic zone than the

cylinder without thermal gradients. Thermal stresses increase the critical pressure of
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.0 1.5 2.0
Plastic zone radius p"

Figure 6.16: Progress of plastic zone across the thickness of the cylinder with and

without the presence of a thermal gradient

the cylinder, as Figure 6.16 shows the critical pressure of the above cylinder is 0.578øo

(point A) with the effect of thermal stresses and is 0.43340 (point B) without the effect

of it. However, thermal stresses will facilitate the progress of plastic zone. To show

the effect of thermal stresses on the plastic stress distribution of thick-walied cylinders,

elastoplastic and fully plastic stress distributions of the same cylinder in the presence

of a thermal gradient are shown in Figure 6.17 (a) and (b).
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Figure 6.17: (a) Thermoelastoplastic stress distribution across the thickness of a 45%

overstrained cylinder; (b) Fully thermoplastic stress distribution across the thickness.

For a physical interpretation of the elastic-plastic stress distribution of this case, it

is assumed that the cylinder is made up of a large number of thin cylinders free of

constraint. Then the inner layers of the cyiinder which are subjected to higher tem-

peratures should have more expansion than the outer surface layers located at lower

temperatures. Furthermore, yieiding also starts at the inner layer of the cylinder in

this loading condition as it has already been discussed. So the inside layers would have

again more deformation than the outside elastic layers due to the higher deformation of
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the plastic region. However, the geometrical constraintimpliesthat the surface normal

to the axial and tangential directions must remain plane. Thus the elastic region will

be more stretched up while the plastic region will be more compressed down until a

balance is obtained and the geometrical constraint is satisfied. Comparing this case,

with the similar case in which there is no thermal stresses, Figure 6.10 (a)' one can

find that the axial and tangential plastic stresses with the effect of a thermal gradient

are lower at the inside surface of the cylinder due to more constrainted compression

on this region. It is pointed out that the combined effect of higher thermal expansion

and higher plastic deformation at the inside layers of the cylinder will give a higher

potential for plastic flow to progress toward the outer surface of the cylinder as it has

already been discussed and shown in Figure 6.16. However, the plastic flow has the

same effect of uniform maximum shear stress distribution throughout the piastic region

of the cylinder. In the case of a fully plastic vessel the maximum shear stress is uni-

form throughout the thickness of the cylinder (Figure 6.17 (b)). Stress distribution in

the elastic region of the elastoplastic cylinder is similar to an elastic cylinder with the

combined effect of thermal and mechanical stresses which has already been discussed

and shown in Figure 6.3 (b).

To show the effect of plastic flow on each individual stress component in the presence

of a thermal gradient, radial and tangential stress distributions of four loading steps

(from the initial elastic to fully plastic condition) are plotted across the thickness of the

cylinder in Figure 6.13 (a) and (b). As the result of plastic flow, maximum tangential
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Figure 6.18: (a) Thermoelastoplastic tangential stress distributions across the thick-

ness; (b) Thermoelastoplastic radial stress distributions across the thickness.

stress at the outside surface of the fuily plastic cylinder (point A)is almost twice of its

initial elastic value (point B). Although there is a signifi.cant increase in the tangential

stress component at the outer surface of the cylinder, but a small reduction of this

component has occurred at the inside surface of the cylinder (Figure 6.18 (a)). How-

ever, the designers of pressure vessel must consider the existence of such a high tensile

tangential stress which is distributed throughout the wall thickness of the cylinder' and

the maximum of which is located at the outer surface.
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Radial stress is equal to the internal pïessure at the inside surface of the cylinder and is

equal to zero at the outer surface of the cylinder which satisfies the boundary condition.

In this case also, there is a substantial rise in magnitude of the radial stress component

as the plastic flow progresses from the elastic situation to a 45To overstra,ined condi-

tion. While this is much less when plastic flow progresses from the 45% overstrained

to the fully plastic condition. This can also be interpreted as the domination of elas-

iicity at early stages of plastic flow and the plastic domination at later stages of plastic

flow. However, in this case the growth in magnitude of the radial stresses between

the subsequent loading steps is less than the case of zero thermal gradient shown in

trigure 6.13. This is because, progress of plastic zone with the presence of thermal

gradients is higher, as it has already been discussed and shown in Figure 6.16.

The residual stresses resulted from the subsequent unloading of the elastoplastic cylin-

ders are considered in the next section'

6.4.2 Residual Stresses and the Bauschinger Phenomenon

If at any stages of piastic flow in a cylinder, the internal pressure is released, then

there will be a distribution of residual stresses throughout the thickness of the vessel.

In fact, the action of the elastic region to return back to its original conflguration

is counteracted by the plastic region which has developed irreversible plastic strains.

On the other hand, the plastic region will be compressed by the elastic region until a
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self-equilibrium condition is obtained throughout the cylìnder thickness. Introducing a

compressive region at the inside wall of a cylinder which is the location of a high tensile

tangential stress resulted from an internal pressure (Figure 6.1 (b)) is beneficial to the

life extension and durability of the cylinder. It is not only the compressive region at

the inside wall of the cylinder which is beneflcial, but also the higher elastic limit of

the inside material which has taken advantage of the material's strain-hardening effect

is another important privilege of the residual stresses. This can be more clear by com-

paring the initial yield stress at poìnt A and the subsequent yield stress atpoints B and

C of the material behaviour shown in Figure 6.19. The advantage of the compressive

.005 0

Strain 1¿ = 6"lE + ee)

Figure 6.19: Initial and subsequent yietd stress of the material
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residuai stresses will be decreased if reverse yielding occurs in the cylinder, as it has



Chapter 6. Results and Discussions I82

been shown by Chen (1986). An important parameter which should be considered in

reverse yielding predictions is the Bauschinger effect factor (BEF). The material's

BEF is obtained experimentally as it has already been discussed in previous Chapter'

To show the significant effect of the Bauschinger phenomenon on the residual stress

distribution, residual stresses with and without the effect of Bauschinger phenomenon

are compared in several figures in this section'

Residual stress distributions resuited from unloading of a 45To overstrained cylinder

as well as the fully piastic vessel are shown in Figure 6.20 (a) and (b). Let's first

consider the residual stress distribution shown in Figure 6.20 (a). Distribution of

residual stresses can be clearly distinguished in the plastic and elastic regions of the

elastic-plastic cylinder by the vertical dotted iine shown on this figure. The residual

tangential and axial stresses are highly compressive at the inner surface of the cylinder.

This can be interpreted by the irreversibility of plastic strains in the plastic region of

the cylinder. Suppose the cylind,er is made up of a large number of thin cylinders

free of constraint. When the load (internal pressure) is released in an elastic-plastic

situation, the outer layers of the cylinder which are still in an elastic condition would

return back to their original configuration while the inner layers of the cylinder which

have developed plastic strains would not be able to return back to their original con-

figuration. However, this incompatibitity of deformation can not be tolerated by the

geometrical constraint. The constraint impiy that the planes normal to the axial and

tangential directions must remain plane. on the other hand, the plastic region with

larger deformation will be compressed down by the elastic region, while the elastic
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Figure 6.20: (a) Residual stress distribution at the onset of reverse yielding with the

consideration of the Bauschinger effect factor; (b) Residual stress distribution by ig-

noring the Bauschinger effect factor.

region will be stretched up by the reaction force untii a self-equilibrium condition is

reached. For this reason, the inner layers of the cyiinder which have developed more

plastic strains during elastic-plastic deformation, wili be highly compressive as shown

in Figure 6.20 (a). Residual stress distributions in the eiastic region of the cylinder is

similar to the distribution of elastic stresses in an elastic cyiinder.
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The resid.ual radial stress must satisfy the boundary condition of an unloaded vessel.

There is no internal and external pressure on the inner and outer surfaces of an unloaded

cyiinder and therefore the radial stress will be zeîo ort both surfaces. It is compres-

sive throughout the thickness the reason of which will be discussed later in this section.

In the light of such a residual stress distribution, it is clear that the inner surface of the

cylinder is more likely to yield because the maximum value of shear stress (("' - o0) l2)

is located at this surface. If the effective Mises stress at the inner surface of the cylinder

becomes equal to the reverse yielding stress of the material then the inner surface of

the cylinder is at the onset of reverse yielding. The reverse yielding stress depends on

lhe BEF. The BEF depends on the amount of effective plastic strain in the plastic

region of the cylinder as it has already been formuiated in Chapter 1 and represented

by the following continuous function'

BEF: 1.0170029 + 0.36592732(er%) - 0.0025343135(eo%)" - 0.g7738304(er%)o'5

(6.7)

The BEF is variable during loading history of the cylinder, because the amount of

effective plastic strain is variable for the plastic region of the cylinder during loading'

Variation of BEF at the inner surface of the cylinder during progress of plastic zone

is shown in Figure 6.21. For the particular case of 45% overstrained condition the

magnitude of BEF at the inner surface of the cylinder is represented by its value at

point E in this figure. Variation of the B E F at the inner surface of the cylinder has been

calculated during the loading history and the reverse yielding has been investigated
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Figure 6.21: Variation of the Bauschinger effect factor at the inside layer of the cylinder

versus the location of elastic-plastic boundary

using the von Mises criterion as follows:

(s; - sÐ' + (si - s:)' + (s: - si)' :2(BE\2 (6.8)

This equation has been satisfied for the residual stresses obtained fuorn 45To overstrained

condition. Therefore, it is concluded that the residual stress distribution obtained from

45To oversirained condition (Figure 6.20 (a)) is at the onset of reverse yielding at the

inside surface of the cylinder.
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If the Bauschinger effect factor is ignored, even residual stresses obtained from the fully
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plastic cylinder (Figure 6.20 (b)) are not at the onset of reverse yielding with all the

same that their magnitudes are nearly twice of the 45Yo overstrained condition.

Variations of residual tangential stresses obtained from three different overstrained con-

ditions are shown in Figure 6.22 (a) and (b). Figure 6.22 (a) representing progress of
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Figure 6.22: (a) Residual tangential stress distribution at the onset of reverse yielding

with the consideration of the Bauschinger effect factor; (b) Residual tangential stress

distribution by ignoring the Bauschinger effect factor'

residuai tangential stresses with considering the Bauschinger effect factor. In this case

the maximum permissible tangential component of residual stresses at the onset of re-
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verse yielding, which belongs to a 45To overstrained condition, is shown with a dashed

line in this figure. As it is expected, when the plastic region progresses more and more

d.uring loading, then the subsequent residual stresses will also be more compressive at

the inside layers of the cylinder and will be more tensile at the outer layers" This is

because, there wiil be more incompatibility of deformation between the inner plastic

region and the outer elastic region which implies more constraint compression on the

inside layers and thus more stretching of the outer layers of the cylinder. However,

if the normal distances between the two subsequent residual stress distribution shown

in Figure 6.22 (a) are consiclered, then it can be concluded that the growing rate of

compressive tangential stresses at the inside layers of the cylinder is decreasing, while

it is increasing in the elastic region with progress of plastic zone. This can be inter-

preted as the domination of plastic deformation at later stages of plastic flow in the

cylinder and thus a decreasing rate of deformation incompatibility between the inside

and outside iayers. The elastoplastic interface is clearly distinguishabie in these figures

where the slope of the curves change signiflcantly. Residual stress distribution in the

elastic region is similar to an elastic cylinder stress distribution. If the Bauschinger ef-

fect factor is ignored then the elastic residual tangential stresses at higher overstrained

conditions are shown in Figure 6.22 (b). In this case the subsequent resirlual stresses

of a fully plastic cylinder are not at the onset of reverse yielding as it has alreadv been

d.iscussed. Therefore, there wili be a great mistake in the residual stress distributions

if the Bauschinger effect factor is ignored'
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Residual radial stresses of the same overstrained conditions are compared in Figure 6'23

(a) and (b). Residual radial stresses are zero at the inside and outside surfaces of the

ltl

1 5

tla tla

(") (b)

Figure 6.23: (a) Residual radial stress distribution at the onset of reverse yielding with

the consideration of the Bauschinger effect factor; (b) Residual radial stress distribution

bv ignoring the Bauschinger effect factor'

cylinder because there is no internal or external plessure on the cylinder surfaces, after

the load is released. These residual radial stresses are all compressive throughout the

cyiind.er thickness. These compressive stresses can be described in the following way'

when an elastic-plastic cylinder is unloaded, it will never return back to its original

configuration because of the irreversible plastic strains. Therefore, the net deforma-
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tion is extension in axial and tangential directions. Extension in these two directions

will cause contraction on the iateral radial direction proportional to the Poisson's ra-

tio. Therefore the resultant residual radial stresses will be compressive throughout the

whole thickness of the cylinder for all unloading stages'

The maximum permissible elastic residual radial stress with the Bauschinger effect is

shown in Figure 6.23 (a) with a dashed,line. This relatively small magnitude of residual

radiai stress belongs to a condition which is at the onset of reverse yielding because

of the Bauschinger effect factor. Whiie, higher magnitudes of residual radial stresses

(Figure 6.23 (b)) are not even at the verge of reverse yielding because of ignoring the

Bauschinger effect factor. Therefore, Bauschinger effect factor has a significant effect

on the prediction of reverse yielding in thick-walled cylinders. A plot of critical pres-

sures for direct and reverse yielding with the effect of Bauschinger phenomenon for

prediction of reverse yielding in the most commonly used radii ratios is shown in Fig-

ure 6.24. The normal distance between these two extreme lines of direct and reverse

critical pressures (LP*o, in Figure 6.24) is the maximum permissible range of pressure

growth beyond which Ïeverse yielding will take place in the cylinder wall'

In the next section the results obtained for the time-dependent creep sttesses and the

subsequent creep damages as well as the remaining life evaluations are discussed'
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.6 1.8 2.2 2.4
Raclíi ratio P

Figure 6.24: cútical pressures for direct and reverse yielding

6.5 Results of creep stress and Damage Analysis

6.5.1 Introduction

Thick-walled tubes are often used to withstand the high operating pressures and high

temperatures of power stations. In such an environment deformation of the tube is

dominated by the time-dependent process of creep. During normal operation of the

plant the temperature between the inner and outer surfaces of the tube reach a steady

state condition similar to the assumption which has been made in the formulation of

the creep problem in this investigation. Results of the proposed analytical-numerical

o
Fl

b
'i rn

lo
o
H
Jo
U¡
o
r{a

l{
Ít(,

.t{

+)
-Ft
¡{(,

ÀPro

-- Reverge y
eltling
ieltlíns

AT=0 oc

Direct yi



Chapter 6. Results and Discussions 191

model which has been developed in this investigation for the computation of creep

stress and damage histories are discussed in this section. The history of creep stresses

and creep damages of thick-walled tubes are important in the life assessment and for

the routine inspection of high-temperature high-pressure tubes to avoid unexpected

failures.

6.5.2 Creep Stress Redistributions

Results of the creep stress redistributions are presented for a boiier header tube with

a radii ratio of þ : I.65 (inside diameter is 508 mm and outside diameter is 304'8mm,

þ :50g1J04:1.6b). Internal pressure is 20 MPa which is the design pressure of this

component (operating plessure is 17.24 Mpa (Ripley (1995)). Internal and external

temperatures are 5570C and 5b0oC respectively. Through-thickness variation of initial

elastic and. distribution of stresses after 317 months (26.4 years) are shown in Fig-

ure 6.2b (a). It is evident that the variation of radial and axial stresses with time

are not signiflcant, while the major stress redistribution occurs for the tangential stress

component. It is clear from the Figure 6.25 (a) that the creep process is directed toward

the generation of a uniform maximum shear stress distribution across the thickness of

the tube. Redistributions of tangential creep stress across the thickness of the tube at

two progressive steps of creep process are shown in Figure 6.25 (b). The tangential

stress component at the inner surface of the tube has decreased while its magnitude

at the outer surface of the tube has increased substantially during the process of time-
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layers wili be pressed down while outer layers will be stretched up resuiting the above

stress redistribution. The maximum tangential stress at the outer surface of tube is

nearly twice of its minimum value located at the inside surface of the tube. Through-

thickness variation of rad,ial and axial stresses at some stages of creep progress are

shown in Figure 6.26 (a) and (b). Radial stress at the inner and outer surfaces remains
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Figure 6.26: (a) Radial stress redistributions; (b) Axial stress redistributions

unchanged due to the constancy of the pressure on the boundary surfaces while its cur-

vature throughout the thickness decreases and approaches to a linear distribution due

to the multi-axial creep deformation of the tube. The axial stress redistribution is not

also signiflcant and its redistribution can be interpreted with the higher deformation

Initial elastic
Tíne=77 nonths
Time= 317 rr

-Initial 

elastic' Tine=77 ¡nonths
-----Time= 317 rr
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rate of the inside layers of the tube and the geometrical constraint

6.5.3 Effective Stress Histories

One of the major problems in the tube life assessment is that the stresses are changing

with time throughout the thickness of the tube. If the thick-walled tube is subdivided

into a large number of thin cylindrical iayers, then any layer of the tube continuously

experiences a variable stress freld with time' On the other hand, each layer of the tube

is at a different stage of creep which depends on its temperature and stress level' A

variable multi-axial state of stress exists at each layer of the tube, while the material's

creep dataareobtained, from the uniaxial creep tests. Therefore it is necessary to select

an effèctive stress in this multi-axial stress state to identify the creep situatìon of each

layer of the tube. In this study, the Mises effective stress is selected which is also

adopted bv the ASMtr Cocle case N47. Variations of effective stresses throughthe r

trrió["ár, 
"f 

the cyúndã during progressive steps of redistributions are shown \nFisure 6'27

at some progressive steps of redistributions is shown in Figure 6.27.

Effective stress histories for ali layers of the tube are computed using the history of

stresses as the creep process is progressing with time. Effective stress histories of the

inner, middle and. outer layers of the tube are shown in Figure 6'28' At initial stage

of the creep process, maximum effective stress is iocated at inner surface of the tube

while its minimum value is located at the outer surface of the tube. As a result of stress

redistribution, maximum effective stress at the inner surface of the tube is decreasing

and the minimum effective stress at the outer surface of tube is increasing with time'

Consequently a reference time has been identifred in which the effectivestressesat the

L9+
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1 4L I
tla

F.igure 6.27: Effective stress redistribution from the initial elastic to stationary creep

inner, middle and outer layers of the tube are identical (point "4" in Figure 6.28

(a) and (b)). On the other hand, at this reference time the effective stress is uniform

throughout the tube wall as it has already been shown in Figure 6.27. 
^r 

this reference

time the radial, axial and hoop stress distributions become paraliel throughout the tube

wall thickness. It means that the maximum shear stress distribution also becomes

uniform throughout the thickness. After this reference time the maximum effective

stress will be located at the outer surface of the tube. Therefore, this reference time

is a turning point in creep stress redistributions. The reference time depends on the

internal pressure and temperature gradient. It has been found in this investigation
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Figure 6.28: Inner, middle and outer surface effective stress histories for two different

tubes and loading conditions.

that this reference time existed for ail different loading conditions and radii ratios (two

difierent cases of which are shown in Figure 6.23). Effect of internal plessure on the

reference time is investigated and the results are shown in Figure 6'29' The reference

time signifi.cantly decreases with increasing internal pressure' When the tube is loaded

with the critical inner pressure, the reference time is less than four months (116 days),

while its magnitude is about 132 months (11 years) when internal plessure is reduced

to 40% of the critical pressure (Figure 6'29)'
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50 1

Reference tine (nonths)

Figure 6.29: Internal pressure versus reference time

6.5.4 Damage Histories and Remaining Life Evaluation

Since the effêctive stress histories are established, then the damage histories and dam-

age distribution across the tube wall can be calculated. It is assumed that the effective

stress distribution across the thickness of the tube remains unchanged during a short

increment of time, af¿. Then the rupture times, t,,¿¡,, cãIr be calculated for all cylindri-

cal layers using the efiective stress and temperature distributions in conjunction with

the material,s creep-rupture properties as it has already been shown in numerical anal-

ysis. Having the rupture times of all cylindrical layers at those effective stress levels

and temperatures and the short increment of time as a duration time for all the layers,
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then the increments of d,amage, L,D¿¡ : Lt¿f t,,¿¡, are calculated and the remaining life

of the layers are evaluated. These increments of damage aïe accumulated to give the

total accumulated damage of each cylindrical shell during the life of the tube as the life

is exhausting. When the total accumulated damage at a cylindrical layer approaches

to one, then all the life of that layer is exhausted. Results of this investigation for

the damage histories as well as the remaining life variation with damage are shown in

Figure. 6.30 (a) and (b).

10 00 3 400

Tirne (nronths) Damage

(u) (b)

Figure 6.30: (a) variation of damage at inner, middle and outer surfaces of the tube

with time; (b) Remaining life of inner, middle and outer layers of the tube'
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The results show that the inner layer of the tube is the mostly damaged layer and

the outer cylindrical layer is carrying the minimum damages at this loading condition

(Figure. 6.30 (a)). The life exhaustion rate at the outer surface of the tube is much

higher than the insid.e surface of the tube because its effective stress is increasing with

time. However, later in the tube life, when the effective stress becomes uniform actoss

the thickness the rate of life exhaustion becomes constant and the remaining life curves

linearly approach to one as shown in Figure' 6'30 (b)'

Through-thickness variation of damages with time are shown in Figure' 6'31 This

L.2 1.6 I
rla

Figure 6.31: Through-thickness variation of damage at different times
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figure also shows that the maximum damaged layer is located at the inner surface of
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the tube for this loading condition. It is because the temperature at the inner surface

is higher than outer surface and. the maximum effective stress is also located at the

inner surface of the tube during a long period of the tube life (Figure 6.2s (a)). Due to

changes in the creep strain rate (slope of the creep curves) a variable time incremen-

tation has been employed for rapid convergence of the numerical procedure' The time

increment history is shown in Figure 6'32 (a)'

1 200 04 0 100 00

f ime (month) Time (month)

(") (b)

Figure 6.32: (a) The time increment history; (b) The o predicted path and the nu-

merically followed curves.
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At early stages of the creep progress, the numerical procedure converged with a af :
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10,000 second.s. While later in the tube life, when the creep strain rates are high,

the procedure converged. with a 20 seconds time increment. However, after such a low

time increment it was decided to stop the solution although the procedure couid go

ahead. with lower time increments. The numerical procedure converged for all situations

regardless of the size of the tube, loading condition and material's creep stages. The

creep strain rates (slope of the creep curves) have a major effect on the convergence

of the numerical solution. The creep strain rates are variable along the creep culves'

Therefore, an appropriate time increment should be selected for any stress levei and

timing step. The accuracy of the numerical solution has been examined bv plotting

the O predicted path and the numerically followed path at the inner and outer surfaces

trig. 6.32 (b). Temperatures or 557'c and 550'c belong to the inner and otrter surfaces

respectively. In fact a family of curves between these two extremes have been followed

for each individual point along the tube wall thickness' A good consistency exists

between the o predicted path and the numerically followed path which means that the

results of this numerical solution are reliable'



Chapter 7

SUMMARY, CONCLUSIONS

AND FUTURE \MORK

7.L Summary and Conclusions

Time-independent thermoelastoplastic and residual stress analysis of thick-walled cylin-

ders as well as the time-dependent creep stress and damage analysis of thick-walied

tubes have been investigated using incremental theory of plasticity in conjunction with

the improved material elastoplastic and creep constitutive models. The results are

validated experimentally and numerically'

A cylindrical element at the mid,dle section of the cylinder has been considered' The

equations of equilibrium, compatibility and stress-strain are written in cylindrical coor-

dinates for this element. The stress-strain relationships are containing the irreversible

202
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total plastic and creep strains. These irreversible total strains are assumed to be the

accumulation of plastic and creep strain increments during the loading history and

the life of the cylinder. To calculate these total irreversible strains, the incremental

stress-strain relationships are empioyed. Increments of plastic and creep strains are

related. to the stresses and the loading history in these non-linear incremental stress-

strain relationships. Numerical procedures have been proposed in which the material

loading-unloading and time-dependent constitutive models represent the history de-

pendent parts of the incremental stress-strain relationships in the plastic and creep

regimes. The numerical models are simplifred by derivation of functional relationships

between stresses and the total plastic and creep strains. In fact, a direct relationship

between stresses and the total irreversible plastic and creep strains have been estab-

lished by simultaneously solution of the equilibrium, compatibility and stress-strain

equations for the stresses. Expressions for the elastic stresses are obtained by neglect-

ing the functions containing the plastic and creep strains. Critical conrlition of the

cylinder has been investigated using this elastic solution in conjunction with the von

Mises yield criterion.

For time-independent thermoelastoplastic and residual stress analysis, thick-walled

cylinders of stainless steel sus 304 have been selected. The material's loading and

unioad.ing properties including the Bauschinger effect factor (B E F) are obtained exper-

imentally. A large number of loading-unloading test specimens have been specifically

designed and manufactured in order to reduce the effect of buckiing on material prop-



Chapter 7. Summa'ry, Conclusions and Futute Work 204

erties during reverse loading. These test specimens have been loaded up to a specific

strain beyond the elastic limit and then reverse loaded down to zero strain by using a

computer controlled testing machine. The machine configuration menu was set up such

that 20 series of data were recorded at each second of the test into the material data

file. Using these data flles in a scientific table-curve software (The Jandei Scientific

Table curve version 3.03 (1991)) the materiai strain-hardening and the Bauschinger

effect factor are mathematically represented. by continuous functions of effective piastic

strain. This realistic material's model including the BEF have been incorporated in

the anaiyticai-numerical model to predict the cylinders non-linear and residual stresses

and the critical pressuïes of direct and reverse yielding. The material high-temperature

properties and constitutive models are selected from the experimental results of Niitsu

and Ikegami (1990).

The analytical-numerical mod.els for the prediction of critical inner pressure' plastic

stress distributions and the subsequent residual stresses of thick-walled cylinders are

validated experimentally. A high pressure hydraulic hand pump has been employed to

produce high pressures required. in this investigation' A digital pressure transducer is

used to provid.e the internal plessure measurements' Rosette strain gauges are mounted

at the axial center of the specifically designed test specimens and are oriented to mea-

sure strains in axial and tangential directions. Several experiments are carried out

on thick-walled cylindrical test specimens in which the internal hydraulic pressure has

been increased and the outer surface deformations are measured by the strain ganges'
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Subsequently the load has been released and the residual strains are again rneasured

at the outer surface of the cylinder. These experimentaliy measured values are com-

pared with the predicted values of the analytical-numerical model and in most cases

the model predictions are accurate as it has been shown in chapter 5.

For time-dependent creep stress and damage analysis, thick-walled tubes of ferritic

steel f,Cr,TMo,f,V haue been considered as this composition is often used in high

temperature components of fossil fueled power stations. Improved material creep and

creep rupture properties are obtained from the literature. The material long-term creep

properties up to rupture and the creep rupture data are defined by the O projection

concept. For time-dependent creep stress and damage analysis, a numerical model has

been developed. for the computation of creep stresses and strains and the creep damages

in a thick-walled tube subjected to an internal pressure and a thermal gradient. The

mod,el predicts the history of stresses and strains and the changes in the creep damage

rates during the life of the tube due to variation in stresses with time and through-

thickness variations. The creep damage accumulation is based on the Robinson's linear

life fraction damage rule which has also been adopted by the ASME code (case N47)

which governs the design of high-temperature nuclear components' The Robinson's

rule has been incorporated in this non-linear time-dependent stress analysis. Following

the stress histories, the damages are calculated and cumulatively summed during the

life of the tube. Furthermore, from the effective stress histories a reference time has

been identifred when the effective stress distributions become uniform throughout the
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tube wall. Effect of internal pressure on this reference time is investigated. The accu-

racy of the results has been examined by comparing the theoretically predicted creep

curves and the numerically followed curves. Deviation of the followed paths from the

predicted paths is small.

Important conclusions of this investigation ale itemized as follows:

o It is concluded from the experimental results of Chapter 5 that the analytical-

numerical model developed in this investigation considering the generalized plane

strain and the improved material model can accurately predict the non-linear

response of thick-walled cylinders to loading and unloading.

o Graphs of critical condition are provided such that the critical pressure of the

cylinders can be obtained for the most practical radii ratios and ioading combi-

nations. It is concluded from these graphs that the higher temperature gradients

tend to increase the critical pressure of the cylinders except for a small range of

low radii ratios.

o It is also concluded that the critical pressure of thick-walled cylinders of low radii

ratios can be signifi.cantly improved by increasing their radii ratio. However, this

is not significant for high radii ratio cylinders.

o A loading combination has been identified in which the whole thickness of the

cylinder yields simultaneouslY.

o Effect of plastic fl.ow on thick-walled cylinders is such that the maximum shear
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stress distribution becomes uniform across the wall of the fully plastic vessei

oProgressesof plastic zoneswith and without the effect of temperature gradient

are compared and it is concluded that the temperature gradient faciiitates the

progress of plastic zone. On the other hand, in the presence of a temperature

gradient smaller pressure differential is needed for an equal progress of plastic

zone

o Residual stresses with and without the effect of Bauschinger phenomenon are

obtained and compared. In the case study of a specific cylinder, it has been

concluded. that the residual stresses subsequent to a 45To overctrained condition

are at the onset of reverse yielding when BEF is considered. However, residual

stresses resulted from unloading of the same cylinder at a fully plastic overstrained

condition are not at the onset of reverse yielding when BEF is neglected.

o The nature of creep deformation in thick-walled tubes is such that the maximum

shear stress distribution becomes uniform throughout the tube thickness and is

similar to the plastic deformation of the tube in this respect.

o A reference time has been identified in which the effective stress distribution

becomes uniform across the tube wall. This reference time depends on the internal

pressure and the temperature gradient.

o The maximum tensile tangential stress is located at the inside surface of the tube

at early stage of the tube life. However, it will be located at the outer surface of

the tube later in the tube life as a result of stress redistribution.
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o In the damage analysis of a tube subjected to an internal pressure and a thermal

gradient, it has been concluded that the maximum damage is located at the

inner surface of the tube while the outer surface of the tube is carrying minimum

damages.

7.2 Recommendations for Future Work

The work presented in this thesis has succeeded in incorporating a realistic material

model including the Bauschinger effect factor in the non-linear time-independent stress

distribution analysis of thick-walled cylinders. The experimental results proved that

the analytical-numerical model developed in this investigation can accurately predict

the non-linear response of thick-walied cylinders to loading and unloading.

Furthermore, a long-term creep constitutive model known as the " Theta (O) projec-

tion " has been successfully employed in a non-linear time-dependent analysis for the

prediction of creep damages of a thick-walled tube. The creep damages have been

used to evaluate the remaining life of the tube. A significant body of work exists in

this research work on the effective stress and damage histories and the remaining life

evaluation of thick-walled tubes which needs to be extended.

Results of the remaining life evaluations using the long-term cïeep constitutive model

defined by the Theta projection concept can be validated as follows. Usìng the current

methodology, the accelerated post-exposure creep rupture tests are to be carried out
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at the service stress (iso-stress accelerated tests) but at higher temperatures so that

extrapolation to the service temperature gives an estimate of the remaining useful creep

life as shown in Figure 7.1

34
toG (Iime)

Figure 7.1: Accelerated post-exposure stress-rupture test datas at higher temperatures

and the service stress are extrapolated to the service temperature to obtain an estimate

of the remaining life.

Meanwhile, the above post-exposure test datas in conjunction with the "Thet" (O)

projection" concept can also be used to obtain an estimate of the remaining life of the

tube as shown in Figure 7.2 (Evans et al.(1992)) and explained below.

Since the material's constitutive model defined by the "Theta (O) projection" is

known, then the full creep curves up to rupture for the service condition (curve OC in

Figure 7.2) arld, for the accelerated test condition (curve OB) can be constructed. The

creep data recorded in a post-exposure test for a sample taken from the tube (cure
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o
10 40 500

Figure 7.2: Iso-stress creep curves of f,Cr,TMo,\V lerritic steel at service temperature

of 557 0C and accelerated test temperature of 600 oC

AB) corresponds to the final portion of the full creep curve expected for non-exposed

material at the accelerated test condition. The post-exposure test therefore identifies

the creep strain (e* at position A) accumulated under the service conditions which can

be used to obtain the remaining life of the tube as shown in Figure 7.2. The remanent

life estimates obtained using O analysis can then be compared with those derived from

the above method to validate the remaining life estimations.

The reference time which has been identified in this investigation (from the effective

stress histories) needs to be investigated for a wide range of operating temperatures'

Effect of internal pressure on this reference time has already been investigated in this

research work. Then a family of curves similar to Figure 6.29 can be generated for a
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wide range of internal pressures and operating temperatures. These family of curves

can be used by the designers to obtain an estimate of the time during which the major

stress redistribution occurs for the tube. It is necessary to point out that the effective

stress at the reference time is uniformly distributed across the thickness of the tube

and in fact is the stationary effective stress'



Appendix A

The computer programs which have been developed in this investigation for the compu-

tation of critical pressures and the spread of plastic yielding as well as the subsequent

residual stress distributions of thick-walled cylinders are introduced in this appendix.

2r2
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c
c
c
c
c
c

************)t*******,(**********************************************

This program has been developed for the computation of critical *

inner pressures for a wide range of radii ratios. The method is *

based. on the compuEation of the minimum val-ue of internal pressure*
satisfying equation (4.1) *

*******************************************************************
PROGRAM pcrit
DIMENSION PCR ( 51 ), RC ( 51 ), FF ( 5l- ), FH ( 51- ), FG ( 51 ), FR ( 5l- )' FM ( 51 )'

$FN(51)*******************************************************************
rNPUr DA'A' :*:::i"i:"Ë:ï::"I1:':-iliî=i-u;î"::ii::":;:"1:i:i: :

grãaient, number of divisions along radius, outer *

pressure *

************,r******************************************************

DATA E,SO,ALPHA,PR,BE,DT,N, PO / 67L'3, 1' 0, 0' 0000117',0'29',L'0',
$o.o,50,o.o/
**********************)k********************************************

In the following loop the temperature will be changed in 20 *

step from 0 to 1-00 degree centigrade *

**************************************************'(****************
DO 30 J=L,20
THETA= (E*ALPHA*DT) / ( (1-PR) *SO)

WRITE(20,L)DT,THETA
FORMAT (F6 .2, 5X, FB - 4 ,5X,3 0 ( lH- ) )

*******************************************************************
In the followinq loop Radii ratio wiII be increased in 20 step *

and then critical inner pressure will be computed for each radii *

ratio for the specified temperature gradient' *

**********************,<********************************************

DO 37 T=L,20
BE=BE+0 .2
oR= (eE-L ) /N
NP=N+l-

*******************************************************************
The cylinder thickness is divided into N number of division and *

ttrefunctionsF,G,H,R,MandNareevaluatedatalldivision*
points 1w+1-) across the thickness 'Jr¿rrùr¡ 

*

*******************************************************************
DO 40 K=1,NP
RC (K)=1+ (K-1) *DR

FG(K) = ( (L/ (BE**2-L) ) * (1- (BE**2 /FtC(K) **2) ) )

FR(K) =((L/ (BE**2-1) )* (1+(BE**2/Rc (K) **2)))
FN (K) -1l (BE* *2-r)
FF(K)-( (E*ALPHA*DT) /(2* (1-PR) * 1BE**2-L) *ALOG(BE) ) )* (( (

$Bs**2*ALOG (BE) ) /RC (K) **2) + (BE**2*ALOG (RC (K) /en) ) -ALÐG (

$RC (K) ) ) - (PO**2*BE* *2/ (BE.*',\2-L) ¡* (1-1lRC (K) **2)

FH(K) = ( (E*ALPHA*DT) / (2* (]--PR) * 1BE**2-L)*ALOG(en¡ ¡ ) * ( ( (-

$BE**2*Ar,OG (BE) ) /RC (K) **2) + (BFI**2*ALOG (RC (K) /ee¡ ¡ -ALOG (

$RC(K))+(BE**2=L))'(Po'**2*BE**2/(F'E**2_I)¡*(1+1/RC(K)*J.2)
FM(K)-((E*ALPHA*DT) /(2* (1-PR) * (BE**2-L) *ALOG(BE) ) )* (2*BE**2

$*ALOG (RC (K) /E.E.) -2*ALOG(RC (K) ) + (BE**2-L) )

c
C

c
c
c
c

c
c
C

c

l_

c
c
c
c
c

c
c
c
c
c
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*******************************************
A, B and C are the coefficienEs of the critical condit,ion in *

equation (4.1) which are function of the history-independent *

functions of F, G, H, R, M and N and therefore can be evaluated *

for all division points across the thickness of the tube *
*******************************rt*****************************,r*****

A=2* (FG(K) **2+FR(K) **2+FN(K) **2-FG(K) *FR(K) -FR(K) *FN(K) -FN(K) *FG(K

$) )

B=4 * (FF (K) *FG (K) +FH (K) *FR (K) +FM (K) *FN (K) ) -2* (FF (K) *FR (K) +FH (K) *FG (

$K) +FH (K) *FN (K) +FM (K) *FR (K) +FM (K) *FG (K) +FF (K) *FN (K) )

C=2* (FF(K) **2+FH(K) **2+FM(K) **2-FF(K) *FH(K) -FH(K) *FM(K) -FM(K) *FF(K

$)-s9**2¡
*********************************************************7kìk********

The pressure satisfying equation (4.1) is calculaled for all *

diviËion points across the thickness the minimum of which is the *

critical pressure and its location is the place in which yielding*
will first s¡art to progress. Therefore the critical pressure for*
the specified rad.ii ratio and temperature gradient is calculated *

**************r(*********************************************)k******
rF (B**2-4*A*C) 44,60 ,60
Pl= ( -B+SQRT (B* ir2-4 *A*C) )

P2- (-B-SQRT (B**2-4*A*C) )

rF (Pl-.LT. 0. .AND. P2 .LT. 0 .

rF (Pl- . LT . 0 . . AND. P2 . GT . 0 .

rF (P2 .LT. 0. .AND. P]-.GT. 0,

/ (2*A)

rF (Pl--P2 ) 1-40, 140,150
PCR (K) =P1-
co ro 40
PCR (K) =P2
GO TO 40
wRrrE (30 ,82 ) RC (K)
FOF}.{AT (L2X,F6 . 4, 5X,'NEGATIVE OR IMAGINARY' )

STOP
CONTINUE
PCMIN=PCR ( 1 )
RCC=RC ( 1 )

PCRA,=PCR ( 1)
PCRB=PCR (NP)
DO 51- IK=2,NP
rF (PCMTN-PCR ( rK) ) 5L, 5t' L7
PCMIN=PCn ( IK)
RCC=RC ( IK)
CONTINUE
WRITE (20 ,T82 )BE, PCMIN
FORMAT (F8 .4 , 5X, F8 . 4 )

CONTINUE
BE=1
DT=DT+5
CONTINUE
STOP
END

c
c
c

c
c
c

60

1_4 0

1_50

44
óz

40

r'7

51

44
150
r_4 0

/ (2*A)
)GO TO

)GO TO

)co ro

1,82
37

30
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: 
.;;i 

:. "il::":. ;il,";.;::.;ä. å";:i ;"å" :::. :;:. ffi:;". i;. : ;. :
* thermoelastoplastic and residuaf stress distribution of thick- *
* wall-ed cylinders based on the block diagram of Figure 4.2
* It conEains five subprograms which will be introduced afEer the *
* main program i
* Definition of arraYs: *
* 1- FF(51),FH(51-),FG(51-),FR(51-),FM(51-),FN(51) : In these arrays *
* magnitudes of non-history dependent functions of F, H, G, R, *
* M and N defined in Equation (3.62) at all 51 division points *
* across the thickness are stored. *
* 2- pCR(51-): This array representing the magnitudes of internal *
* pressure satísfying Equation (3.69) at all division points *
* 3- R(51-): Representing magnitudes of radius at aII divisions *
* 4- SRE(5L),STE(51),SZE.(51-):Radia1, tangential and axial elastic *
* sEresses *
* 5- SR(50,51),ST(50,51),SZ(50,51-):Radial, tangential and axial *
* elastic stresses in the elastic region of efastic-pJ-astic *
* cylind.er *
* 6- SRP(50 ,5I) , STP(50,51) ,SZP(50,51-) : Radial, tangential and *
* axial plastic stresses. *
* 7- EpR(50,51),EPT(50,51-),EPZ(50,51-): Radial, tangential and *
* axial plastic strains. *
* 8-. DEPR(50,5:-),DEPT(50,51-),DEPZ(50,51) : Radial, tangential and *
* axíal plastic strain increments. *
* 9- DEPRN(50,51),DEPTN(50,51-),DEPZN(50,51) : New obtained val-ues *
* Rad.ial , tangential and axial- plasLic strain increments. *
* 10- RSR(50, 5l-),RST(50, 5l-),RSZ(50, 51-) : Radial, tangential and *
* axial residual stresses in the plastic region of the vessel- *
* l_l-- sRR(50,5L),STR(50,51),SZR(50,51-) :Radial, tangential and *
* axial residual stresses in the elastic region of the vessel *
* L2- ER(50,51),ET(50,5L),EZ(50,51-): Radial, tangential and axial *
* total strains *
* l_3- DEp(50,5L),EP(50,51): Effective plastic strain increment *

î ,n-:ffi":?:ãl'î;:Ë#iË;:i'ilT:::";:l3l';'"'s,rain and rhe i* Bauschinger effect factor
* 15- SEF(50,51) : Effective stress *
* l-6- YF (50, 51) : Yield function *
* L7_ TTC]-(50,51-),TTC2 (50,51-),TRC1(50,51),TRC2 (50,51-) : Integrals *

î * * * .::.îi?.'î1.iï?. :î??:i:iîl. :::î1.TlÎ: :i:.::i?iÏ: * * * * * * * * * * * * * * I
***************************)k***************************tr***********

PROGRÀM plastic
DTMENSTON FF(51-),FH(51-),FG(51-),FR(51-),FM(51-),FN(51),PCR(51),R(51),

$sne ( 51 ), sTE ( 5l- ),SZE( 5l-), sR ( 50, 5t),sT ( 50, 51 ), SZ ( 50, 5I),RE ( 50, 5t),
$EpR(50,51),DEPRN(50,51),EPT(50,51-),DEPTN(50,51-),P(51-),sRP(50,51),
$srp ( 50, 5l- ),SZP( 50, 51 ), SEF ( 50, 51 ), RC ( 51 ), TTC1 ( 50, 5L ), YF ( 50, 51 ),
$TTC2 ( 50, 5l- ), TRCI- ( 50, 5l- ), TRC2 ( 50, 5l- ), DEP ( 50, 5l), EP ( 50, 51 ),
$DEPZN ( 50, 51 ), DEPR ( 50, 51 ), DEPT ( 50, 5l- ), DEPZ ( 50, 5L ),EPZ( 50, 51- )

$ , RSR ( 5 0 , 51 ) , RST ( 5 0 , 51- ) , RSZ ( 5 0 , 51 ) , SRR ( 5 0 , 51 ) , STR ( 5 0 , 5l- ) , SZR ( 5 0 , 51 )

$ , ER ( 5 0 , 51 ) , ET ( 5 O , 51 ) , EZ (5 0 , 51 ) , PEREP ( 5 0 , 51 ) , BEF ( 5 0 , 51 )
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*******************************************************************
INPUT DATA:Elastic modulus, yield stress, coefficient of Iinear *

expansion, Poisson's ratio, inner radius, outer radius*
nunber of load step, number of divisions along rad.ius,*
initial value of radial and tangential plastic strain *
increment, convergence criteria, Inner and outer *

- temperature *
****************tr**************************************************

DATA E, SO,ALPHA, PR, RA, RB,M].,N1, EPRI, EPTI, Q, TA, TB/ 671 . 3, 1. O,

$ 0. 00001-17, 0. 3, L.0,2. 0, 50, 50, -0. 000035, 0. 000045, 0. l-E-5, 60. 0, 0 .0 /
*************************************************************'k*****

* THE RESULTS WILL BE WRITTEN INTO THE FOLLOWING OUTPUT FILES
* elsErs.dat: Elastic stress distribution 'r* prc.rLat: Pressure versus elasEoplastic boundary *
* befr.dat: Bauschinger effect factor in the plastic region *
* plstra.dat: Plastic strain distribution *
* plstrs.dat: Plastic stress distribution *
* rpstrs.dat: Residual stress distribution in the plastic region *
* el-estrs.dat:Elastic stress distribution in the elastic region *
* restrs.dat: Residual- stress distribution in the elastic region *
*******************************************************************

OPEN (UNIT=10, FILE=', efstrs . dat 
" 

STATUS=' old', )

OPEN (UNIT=l-l- , FILE= 'prc . dat ' , STATUS= ' OLD' )

OPEN (UNIT=12 , FILE='befr. dat' , STATUS='old' )

OPEN (UNIT=13 , FILE= ',plstra . dat ' , STATUS= ', old', )

OPEN (UNIT=14 , FILE= 'plst.rs . dat' , STATUS=' old' )

OPEN (UNIT=15 , FILE= ' rpstrs . dat ' , STATUS=' ol-d' )

OPEN (UN]T=16, FfLE='elestrs . dat' , STATUS='old.' )

OPEN (UNIT=17, FILE=' restrs . dat', STATUS=' old' )

************************************************rr******************
* ELASTTC SOLOUTION *
*************************rr*****************************************
DT=TA-TB

***********************************r(tr******************************

The critical pressure will be computed in PCRIT subprogram and *

the maximrrm elastic stress distribution will be computed. *
************************************************Jr******************

CALL PCRIT ( FF, FG, FH, FR, FM, FN, R, PCMIN, RCMIN, PCMAX, RMAX, PCR, DT, E,
$So, ALPHA, PR, RÀ, RB, N)
NP=N+l-
DO 10 I=1,NP
SRE (I) =FF (I) +FG (r) *PCMIN

STE ( I) =FH ( I) +FR (I) *PCMIN

SzE (I ) =FM (I ) +FN (r ) 'kPCMIN
WRTTE(10, l-5)R(r), sRE(r),srE(r), szE(r)
FORMAT (L2X, F8.6, 5X, F14 .1-2,3X,FLA.L2,3X,F1,4.1,21
CONTINUE
***********************************************rr******************
* ELASTOPLASTIC SOLOUTION *
**************************:k****************************:klr*******r(*

Define the final pressure (PF) and Ehe pressure increment (PD) *

and apply the l-oad in a l-arge nurnber of loading step (M1 ) rr

******************************:k*****************************tr*****

C

C

c
c
c
c

c

C

C

C

C

C
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PF=PCMAX
PD= (PCMAX-PCMIN) /Ml-
fF ( RCMIN.EQ . RA) THEN

RC(1)=Re
ELSE

RC(1)=RB
ENDIF

******************************************************tr************

The load wil-I be applied in Ml- number of loading step and the *
outer pressure is zero according to the boundary condition *

*********************************tr********************rr**rk*r(*******

DO 100 I=1,M1
P (I ) =Pq¡4IN+f *PD
PI=P(I)
PO=0.0
TM=I+1

,r*********************rr******************rr**********rr*******Jr******

Initial values are assumed for the plastic strain increment *
*rr*****tr**********************************************rr************
DO 1-43 K=1,I
IF(T .EQ. 1 .OR. K .EQ. I) THEN

DEPR ( I, K) =EPRI
DEPT ( T, K) =EPT]
DEPZ(I, K) =- (DEPR (I, K) +DEPT (I, K) )

ELSE
DEPR( I, K) =DEPR ( I-1, K)
DEPT (I, K) =DEPT (I-l-, K)
DEPZ ( I , K) -- (DEPR ( I , K) +DEPT ( f, K) )

ENDIF
CONT]NUE
DEPR ( I, IM) =0
DEPT ( I, IM) =0
DEPZ (I, TM) =- (DEPR (I, IM) +DEPT (I, IM) )
************rr************************)k****************************

The plastic strain increments \^¡i11 be added to the previously )k

converged vafue of plastic strains in EPSPL subprogram and the *

the integral- of total- plastic strains will be computed in AREA *
subprogram. The elastioplastic interface wiII be obtaind in the *
BISECI- or BISEC2 subprogram. Then an estímate of stresses within *
the plastic region of the vessel will be obtained and a new *
value for plastic straín increments wiII be compouted by using *
the incremental stress-strain relatioship. The new value witl *

be compared with its previous val-ue for the convergence
*******tr*****)k*******************tr********************************

DO l,0l- J=1,IM
CALL EPSPL ( f , EPR, EPT , EPZ , DEPR, DEPT )

CALL AREA(I, TRB]-, TRB2, TTB1,TTB2, TTC1,TTC2, TRC1, TRC2, EPR, EPT, RC)
rF (RCMrN.EQ.RB)GO TO L9l-
CALL BTSEC1 ( T, RÀ, RB, RCC, SO, E, ALPHA, DT, PR, RCMIN, Pf , PO, TA, TB, RC ( T )

$, EPR ( I, I ), EPT ( I, I ), TRCI. ( I, I ), TRC2 ( I, I ), TTC1 ( I, I ),TTC2 ( I, I ),
$TTB]- ,TTB2, TRB1, TRB2 )

co ro 193

c
c
c
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c

U

c
c
c
c
c
c

9
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CALL BISECl. ( I, R.A,, RB, RCC, SO, E, ALPHA, DT, PR, RCMIN, PI, PO, TA, TB, RC ( I )

$,EPR(I,I) ,EPT(I,I) ,TRCI- (I, ]) ,TRC2 (I,I),TTC1(I,I) ,TTC2 (I,I) ,

$TTB]-, TTB2 , TRB]., TRB2 )

co ro 193
CALL BISEC2 ( I, RA, RB, RCC, SO, E, ALPHA, DT, PR, RCMIN, PI, PO, TA, TB, RC ( I ) )

RC ( IM) =RCC
TRC1 ( r, rU) =TRCI- ( r, r ) +0 . 5* (EPR ( r, r ) *RC ( r ) ) *ABS (RC ( rM) -RC ( r ) )

TTCI- (I,IM)=TTC]- (I,I)+0.5* (EPT(I,I)*RC(I) )*ABS (RC (IM) -RC(T) )

TRC2 ( I, IM) =TRC2 ( I, T ) +O . 5* (EPR ( I, T ) /RC ( I ) ) *ABS (RC ( IM) -RC ( I ) )

TTc2 (r, rM) =TTC2 (r, r) +0.5* (EPT(r, r)/Rc (T) )*ABS (RC (rM)-Rc (r) )

TRBI-=TRCI- (I, IM)
TRB2=TRC2 ( I, IM)
TTBI-=TTCI- ( I, IM)
TTB2=TTC2 ( I, IM)
TF ( RCMIN. EQ . RB ) THEN

TRCI- ( I, J) =TRB1-TRCl- ( I,.f )

TRC2 (I, J) =TRB2-TRC2 (I,,f )

TTCl ( I, J) =TTB1-TTC1 ( I, J)
TTC2 ( I, J) =TTB2-TTC2 ( I, J)

ENDIF
*****)k******************)k*********tkrr*******************************

Plastic stresses within the plastic region are cafculated *
******)k******rrJ<r(*************************tk**)k**********************

sRp (r,J)= ( (E*ALPHA*DTl / (2* (l--pR¡* (RB**2-RÄ**2)*ALOG(RB/RÄ) ) )* ( ( (

$R¡* *2 *RB* *2 *ALOG (RB/RA) ) /RC (J) * *2) + (RB* *2 *ALOG (RC (J) /ne ¡ ¡ - (RA* *2 *

$ALOG (RC (J) /R¿,) ) )+ (Pr*RA**2-PO*RB**2 ) / (RB**2-RÀ,**2 )+RA**2*RB**2* (

$PO-PI)/ ( (RB*'k2-RA**2)*RC (J)**2 ) +(E/ (2* (1-PR**2)* (RB**2-RÄ'**2) ) ) *

$ ( ( 1-2 *PR) *TTB].+ (1,-2*PR) *TRBI+RB* *2*TTB2-RB* *2 *TRB2 ¡ * 1 1-RA* *2 /RC (J
$)*"2 ) - (E/ (2* (1-pR**2)*RC (J)**2) )* (+(1-2*PR) *TTC1 (r,J)+(L-2*PR) *

$TRC1 (r, J) +RC (J) **2* (TTC2 (r,,J) -TRc2 (r, J) ) )

STP (I,.ï)= ( (E*ALPHA*DT) / (2* (1-PR¡ 't (RB**2-RA**2)*ALOG(RB/RA) )) * ( ( (-
$Rj\* *2 *RB* *2 *ALOG (RB/RA) ) /RC (J) * *2 ) + (RB* *2 *ALOG (RC (J) /ne¡ ¡ - (RA* *2 *

$ALOG (RC (J) /Rj\) )+ (RB**2-RA**2 ) )+ (PI*RÀ**2-PO*RB**2) / (RB**2-RA**2 )

$-ne"*2*RB**2* (pO-pI)/ ( (RB**2-R-4,**2)*RC (J)**2\+(E/ (2* (1-PR**2)* (

gRB**2-RA**2)))*((1-2*pR)*TTBI-+(1--2*PR) *TRBI+RB**2*T¡TB2-RB**2*TRB2
g)* (1+RA**2/RC (J)**2)+ (E/ (2* (1-PR**2)*RC (J)**2))* (+ (1-2*PR) *TTC1(I

$,,1)+(1--2*pR)*TRC1 (I,,J)-RC(J)**2*(TTC2(f ,J) -TRC2(I,.T) )-2*RC(.T)**2*
$ ( ( 1--pR) *EPT (r,.1) -PR*EPR(r,,1) ) )

szp (I, J)= ( (E*ALPIIA*DT) / (2* (1-PR) * (RB**2-Rj\**2 ) *ALOG (RB/B.A) ) ) * (2*
$RB* * 2 *ALOG ( RC ( J ) / F'B) -2*RA* * 2 *ALOG ( RC ( J ) /RA) + ( RB* * 2 -R.A'* *2 ) ) +Pr *RA

ç* * 2 / (RB* *2 -Bj\* *2 ) + (E*pR/ ( (RB* *2 -RA* *2 ) * ( 1-PR* *2 ) ) ) * 1 Q-2*PR) *TTBI-

$+(1--2*PR)*TRB1+RB**2*TTB2-RB**2*TRB2)-(E/(1-pR**2))*PR*((TTC2(I,,J
$)-TRC2 (I,J) )+ (1--PR)*EPT(f ,J)-PR*EPR(I,J) )- (E/ (RB**2-RA**2l,)* (2*
$rnet+z*TTBI-- (RB**2-RA**2 ) * (EPR (r,,J) +EPT (r, J) ) )

DEP (I, J) = (2**O -5 /3\ * (SQRT ( (DEPR (I, J) -DEPT (I,.T) ) **2+ (DEPT (I, J) -
$DEPZ (I,J) ) **2+(DEPZ (I,.T) -DEPR(I,J) ) **2) 

)

****************************************************************rr**
Effective plastic strain increments are accumulated to give the 

:
:l:":?:?1.:Í::::lY:"ilî::i:,,.::i?i?.,,.. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IF (I . EQ. ]- ) THEN
EP ( f, J) =DEP ( I, J)

ELSE
EP ( I, J) =EP ( I-1, J) +DEP ( I, J)

ENDTF

c

c



c
c
c

c

C
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**********rrìk**rk*********rr***********************rr******************

Material,s constitutive model and the Bauschinger effect factor *

are incorporated in analYsis
*******************************************************************

BET=O.78
H=36 .5/93.3
SEF (I, J) =1+H* (EP (I,.J) * *BET)

SEF (I, J) =!+2 -96t2* (EP (I, J) **0 .21'8421'86)
PEREP ( I, J) =100*EP (I, J)
BEF (I,J) =1 .Ot7OO29+0.3 6592732* (PEREP (I,J) ) -0.00253431-35* (

$pEREp (r, J) ) **3-O .97738304* (PEREP (r,,J) ) **0. 5
*************t(********************,k**********************ir***)k*****

New values are estimated for the plastic strain increments *

*******************************************************************
DEpRN(I,J) = (DEP(I,J) / (2*SEF (I,J) ))" (2*SRP(I,J)-STP(I,J)-SZP(I',1) )

DEpTN ( I, J) = (DEP ( I, J) / ( 2 *SEF ( I, J) ) ) * ( 2 *STP ( I,.f ) -SRP ( I, .T) -SZP ( I' J) )

DEPZN (I,,J) =- (DEPRN (I, J) +DEPTN (I, J) )

DELR=ABS (DEPRN ( I, J) -DEPR ( I, J) )

DELT=ABS (DEPTN ( I, J) -DEPT ( I, J) )

*ir*****************************************************************

Corrvergence of the procedure is controlled
******************rr****Jr**rt?k**ìk****************tk*******************

TF (DELR.LT. Q.AND.DELT.LT.Q) GO TO 209
DEPR(I,J)=DEPRN(I,J)
DEPT ( I, J) =DEPTN ( I, J)
DEPZ ( I, J) =DEPZN ( I, J)
GOTO9

*******************************************************************
Residual stresses are computed for each converged loading Step *

*******************************************************************
RSR(I, J)=SRP (I,J)- ( (P (I)*RÀ**2 ¡/ (RB**2-RÀ**2) )* (l--RB**2/RC (J)**2)

$+((E*ALPHA* (-DT) ) / (2*(l--PR) * 1RB**2-RA**2)*ALOG(RB/RA) ))* (((
$RA**2*RB**2*ALOG(RB/RA) )/RC (J) **2)+ (RB**2*ALOG(RC (J)/ne¡ )- (RA**2*

$ALOG (RC (J) /RÀ) ) )

RST ( r , J ) = STP ( r , J ) - ( ( P ( r ) * RA* * 2 ¡ / ( RB * * 2 -Rj\* * 2 ) ) * ( l- +RB * x 2 / RC ( J ) * * 2 )

$+ ( (E*ALPHA* (-DT) ) / (2* (l--PR) * 1RB**2-RA**2 ) *ALOG(RB/RA) ) ) * ( ( (-
gFA* *2 *RB* *2 *ALOG (RB/RA) ) /RC (.T) * *2) + (RB* *2 *ALOG (RC (J) /RB ) ) - (RÀ* *2 *

$ALOG (RC (J) /RA) ) + (RB**2-RJ\**2 ) )

RSZ (I,J)=SZP(I,'f )- ( (P(I)*RÄ'**2)/ (RB**2-RA**2))+
$ ( ( E*ALP"6* 1 -DT ) \ / (2* ( 1-PR) ìk (RB* *2 -R.A* *2 ) *ALOG (RB/RA) ) ) * ( 2',k

$RB* *2*ALOG (RC (J) /Ft|^) -2*Rj\**2*ALOG (RC (J) /na¡ + (RB**2-zu\**2 ) )

*******************************************************************
Effective Mises stress is computed for the residuaL stresses *

across the thickness for the prediction of reverse yielding *

****************************************************************:k**

YF (I,J)=0.5* ( (RSR(I,J)-RST (I,.T) ) **2+ (RST (I,J) -RSZ (I, J) )**2+
$ (RSZ ( r, J) -RSR ( r, J) ) **2)

CONTINUE
***********************************t(*******************************

Results are written into the appropriate fil-es after the *

convergtence is reached, for eactr loading increment *

**********rk********************************************************

wRtrE (L1-, 9101) RC ( rM), P ( r)
wRrrE (1,2,208)RC (rM),BEF(r, 1),YF (r, 1), PEREP(r, 1)

c

U

U
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FORMAT (2 (FL4.1-2,2X) )

wRrrE (L3,2031-)r
FORMAT (' PLASTIC STRAINS" ]-OX,' STEP OF LOAD INCREMENA="13 /

$'Rc/RA' ,8x, 'EPR' ,5X, 'EPT' , 4x,'EPz' /60 (1H-) )

DO 207 JJ=1,IM
WRITE (L3,20B)RC (JJ), EPR(I, JJ),EPT (I,'JJ), EPZ (I, JJ)
FORMÀT (F8 .6, 5X, Fl-4 -!2,5X,F]-4.L2,5X,FLA.L2)
wRrrE (L4 ,201- ) RC (JJ) , SRP (r, JJ) , STP (r , JJ) , SZP (r , JJ)
FORMAT (F8.6,3X, F7.4, 3X ,F7 .4,3X,F'l .4)
wRrrE (L5, 205) RC (,JJ),RSR(1, JJ),RST(T,JJ),RSZ (r,.TJ)
FORMAT (F8. 6, 3X, F7 . 4,3X,FJ .4,3X, F7 - 4)
CONTTNUE
rF(YF(r,1) .GE. BEF(r,L)**2) STOP

ENDIF
rF (ABS (RC ( rM) -RB ) . LT. 0 . 0001- ) sroP
IT=Ml-I
IF(I.EQ.M1)STOP

*************rk**************************************r(********rr*****
Elastic and residual stresses in the remaíning el-astic regrion )k

are computed and written into the appropriate files *

************************************)k**********************Jr**Jr****

IF (RCMIN. EQ. RA) THEN
PP= (RB-RC ( IM) ) /IT

ELSE
PP= (RC (IM) -RÀ) /IT

ENDIF
DO 73 KK=1, IT
T- (TA*ALOG (RB) -TB*ALOG (RÂ) ) /er,oc (RB/RA) + ( (TB-TA) *ALOG (RC (IM) )

$ ) /aloc (RB/RA)
IF (RCMIN. EQ . RA) THEN

RE (I.KK¡ =Pç (IM) +KK*DR
TD=T-TB
PTI=ABS (SRP (I, TM) )

POO=O.0
411=gç ( IM)
BR=RB

ELSE
RE (I, KK) -RC (IM) -KK*DR
TD=TA-T
POO=ABS (SRP (I, IM) )

PII=P ( I )

BR=RC ( IM)
AR=RÄ'

ENDTF
********************************************t<**********************

Residual stresses wiChin the elastic region are computed
*******************************************************************

SRR ( I, KK) =- ( ( P ( I ) *RA* *2 ¡ / (RB* *2-RA* * 2) ) * ( 1-RB* *2 /F.E'( I, KK) * *2 
)

$ +((E*ALPHA* (-DT) ) / (2* (l--PR) * (RB*'(2-Ri\**2)*ALOG(RB/RA) ))* (((
g RA**2*RB**2*ALOG(RB/RÀ) ) /RE(I,KK) **2)+(RB**2*ALOG(RE(I,KK) /RB

$ ))- (Re**2*ALOG(RE(r,KK) /RA) ))

c
c

c
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srR ( r, KK) -- ( ( P ( r ) *RÀ* *2 ¡ / (RB**2-RA* *2) ) * ( l+RB* *2 /F-E( r, KK) * *2 
)

$ +( (E*ALPHA*1-DT) ) / (2*(l--PR)*(RB**2-RA**2)*ALOG(RB/RA) ) )*( ( (-
g RA**2*RB**2*ALOG (RB/RA) ) /nn 1I, KK) **2) + (RB**2*ALOG (RE (I, KK) /RB

$ ) ) - (RA**2*ALOG(RE(I,KK) /RA) )+ (RB*'r2-Rl\**2) )

szR(r,KK) -- ( (P (r) *RA**2¡ / (RB**2-RA**2) ) +

$ ((E*ALPHA* 1-DT)) / (2* 11-PR) ìk (RB**2-RA**2) *ALOG(RB/RA) ¡ ¡* 12*RB*
$' *2*ALoc(RE(r,KK) /RB) -2*RA**2*ALoc(RE(r,KK) /RÀ)+(RB**2-ru\**2) )

*************r.********************rr*********tr**********************

Elastic stresses in Èhe elastic region are computed *

*************r(********************************Jr*************r(:k***lr*

sR (r, KK) - ( (E*ALPHA*TD) / (2* (1--PR) * (BR**2-AIì**2 ) *ALOG (BR/AR) ) ) * ( ( (

$Ap* *2 *BR* *2 *ALOG ( BR/AR) ) /RE ( I, KK) * * 2) + ( BR* *2 *ALOG (RE ( I, KK) /BR) ) -
$ (AR**2*ALOG(RE(I,KK)/AR) ))+(PII*Nì**2-POO*BR'k*2)/ (BR'k*2-I\Iì**2)+(
$Aq**2*BR**2'k (poo-pIf) ) / ( (BR**2-AIì*rr2 ) *RE (r, KK) **2 )

ST(I,KK)=((E*ALPHA"TD) / (2* (l--PR¡ * 1BR**2-AR**2) *ALOG(BR/AR) ) )* (((-
$AR* *2 *BR* *2 *ALOG (BR/AR) ) /nn ( I, KK) * * 2) + (BR* *2 *ALOG (RE ( I, KK) /BR) ) -
$ (AR**2'.ALOG(RE(r,KK) /AR) )+(BR**2-z\Iì**2))+ (Prr*AR**2-POO*BF'**2) / (

$Bp**2-AR**2) - (eR**2*BR**2* (POO-PII) )/ ( (BR**2-AIl**2)*RE(I,KK) **2)
sz(I,KK)= ( (E*ALPHA*TD) / (2* (1-PR¡ t (BR**2-AIl**2)*ALOG(BR/AR) ) )* (

$2*BR**2*ALOG(RE(I,KK) /BR) -2*AR**2*ALOG(RE(I,KK)/AR)+ (BR**2-AIl**2) )

$+ (PII*AR* *2-POO*BR* *2) / (BR**2-AR**2 )

SRR ( I, KK) =$gg (I, KK) +SR ( I, KK)
STR ( I, KK) =$'¡'P ( I, KK) +ST ( I, KK)
SZR ( I, KK) =$7¡ ( I, KK) +SZ (I, KK)

******************ìk**.************************)k*******rr*************

Elastic and residual stresses in the elastic region of the *

. :yl iîÎ:i.îi:.Yîî :::î" lï:?,- :î:. îiTî:Î:î?::. I I 1Î: * * * * * * * * * * * * * * * * * * I
WRITE (1-6,77 )RE (I, KK) , SR(I,KK) , ST(I,KK) , SZ (I, KK)
FORMAT(F8.6 ,3X,FJ .4,3X,F7 -4,3X,F7 .4)
wRrrE (i.7,77:-)RE (r,KK), SRR(r,KK), STR(r,KK), SZR(r,KK)
FORMAT(F8.6 ,3X,F7 .4,3X,F'7 .4,3y',F'7 .4)
CONTINUE
CONTINUE
STOP
END

22I

c
c
c
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äi =. il;'";'ï.;"".;:";. å:;.i.å"å....."i":i:;:. .n". ::i : 1."' inner*
pressure of the cylinder beyond which the plastic flow will take *
place in the cylinder waII. The method is based on finding Ehe *

TiîîTH,-y?1ï:. ? |. lî:::i?l .i::: :ii:.ili:1. :i: ï : f i::. :iî: l:1. Í i ; I I . i
SUBRbUTTNE PCRIT ( FF, FG, FH, FR, FM, FN, RC, PCMIN, RCC, PCMAX, RMAX, PCR, DT,

$E, So, ALPHA, PR, RA, RB, N1 )

.?iTiT: ï?T.TT i ? i I rTî I ? i I rTTi ? i I rÏii ? i I riÏi ? i I rTTI ? i I ; TîTI ? i I ;iî f ? i Ì
The cylinder thickness is divided into N1 ntunber of division and *

the functions F, G, H, R, M and N are eval-uated at all division *

.i:li::.?:::::. :Îî. :ll:iî::: * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * I
NP=N+L
on= (RB-RA) /N
DO 40 K=1,NP
RC (K) =RA+ (K-1) *DR

IF (K.EQ.NP)Rc (x) =Re
Fc(K) -( (RA**2/ (RB* *2-RA*t2))* (l--(RB**2/RC (K) **2)))
FR(K)=((RA*x2/ (F'B* *2-R\**2))" (1+(RB*x2/RC (K)**2) ))
FN (K) =R A* *2 / (RB* *2 -Ri\* *2 )

FF (K) - ( (E*ALPHA*DT ) / (2* ( 1-PR) " (RB* *2-RA* *2 ) *ALOG (RB/R.A) ) ) * ( ( (RA**2
$ *RB* *2 *ALOG (RB/R¡\) ) /RC (K) * * 2 ) + ( RB* *2 *ALOG (RC (K) /ne ) ) - (nA'* *2 *ALOG (

$RC (K) /RA) ) )

FH (K) - ( (E*ALPHA*DT ) / (2" (1-PR) * (RB* *2 -Ri\**2 ) *ALOG (RB/R.A') ) ) * ( ( ( -RÀ* *

$2 *RB* *2 *ALoc (RB/RA,) ) /RC (K) * * 2) + (RB* *2 *ALOG (RC (K) /RB ) ) - ( nA* *2 *ALOG (

$RC(K) /RA) )+(RB**2-R¡\**2) )

FM (K) = ( ( E*ALPHA*DT ) / (2" ( 1--PR) * (RB* *2 -Rê'* *2 ) *ALOG ( RB/RA) ) ) * ( 2 *RB* *2

: ii:?îIi: lil lTT I ;? :äl i? :i:?îli: Iil í*Ii IiT: :? ;Hi :? I I. .. * * * * * * * * * *

A, B and C are the coefficients of the critical condition *

equation (4.1) which are function of the history-independent *

functions of F, G, H, R, M and N and therefore can be evaluated *

. f ?i.î1 1 "?l:l : I :i.ïii::,. ?:i:: :. :?:. :ll:i?:: :.::. :Î:. :T*. * * * * * * * * I
A=2* (FG(K) **2+FR(K) **2+FN(r¡ **2-FG(K) *FR(K) -FR(K) *FN(K) -FN(K) *FG(K

$))
B=4 * (FF (K) *FG (K) +FH (K) *FR (K) +rM (K) *FN (K) ) -2* (FF (K) *FR (K) +FH (K) *FG (

$K) +FH (K) *FN(K) +FM (K) *FR (K) +FM (K) *FG (K) +FF (K) *FN (K) )

C=2* (FF (K) * *2+FH (K) * *2+FM (K) * *2-FF (K) *FH (K) -FH (K) *FM (K) -FM (K) *FF (K

I l;i?l i? I.. * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * tr * * * * * * * 'k 
* *

The pressure satisfying equation (4.1) is calcul-ated for all *

division points across the thickness the minimum of which is the *

critical pressure and its l-ocat.ion is the place in which yielding*

.îÌ11.1ìî:1.::?::.::.Îi:?iî?i;.*************************,r*********T
rF (B* *2-4*A*C) 44,60 ,60
P1= ( -B+SQRT (B* *2-4*A*C) ) / (2*A)
p2= ( -B-SQRT (B* *2-4*A*Cl ) / (2*A\
IF(P]-.LT. O. .AND.P2.LT. O. )GO TO 44

c

c
c

c

c

u
c

c
c

c
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rF (pL . LT . 0 . ..AITD .P2 .GT. 0 . ) GO TO
rF (P2.LT. 0. .AND.P1.GT. 0. )GO TO

rF (P1 -P2) L40, 140 , l-50
PCR (K) =P1
GO TO 40
PCR (K) =P2
co rb 40
PCR(K)=0.0
CONTTNUE
DO 6l- KK=I,NP
TF (PCR(KK) . EQ. O . ) RETURN
CONTINUE
PCMIN=PCR ( 1 )
RCC=RC ( I )

DO 51- IK=2,NP
rF (PCMTN-PCR ( rK) ) 5t, 5L, 1-7

PCMIN=PCR ( IK)
RCC=RC ( IK)
CONTINUE
PCMAX=PCR ( 1 )

RMAX=RC ( 1- )

DO 50 IT=2,NP
rF (PCI4AX-PCR ( rr¡ ¡ 1, 50, 50
PCMAX=PCR ( IT )

RMAX=RC ( IT)
CONTINUE
RETURN
END

1-50
1_4 0

L40

1_50

44
40

6L

L7

51

50

L
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ili=.il;.oå:i.""i.:i".::.;".;i"=.i".=.'"t" distribution *

within the plastic region of the elastoplast.ic vessel by *

adding the converged value of plastic strain incremenEs to *

the previously accumulated plastic strains. )k

******** ****************************************************
SUBROUTINE EPSPL (I, EPR, EPT, EPZ, DEPR, DEPT)
REAL EpR ( 50, 5!),EPT ( 50, 51 ), EPZ (50, 51 ), DEPR ( 50, 51 ), DEPT (50, 5l-)
IM=I+1
DO 3 J=I,IM
rF ( r. EQ. 1)GO TO 1-

IF (¡. EQ. IM) GO TO 2
EPR ( I , .T) =EPR (I-1 , J) +DEPR (I , J)
EPT (I; J) =EPT (I-1,,J) +DEPT (I,,J)
EPZ (I, J)=- (EPT (I, J)+EPR (I,,J) )

CONTINUE
EPR(I,J)=DEPR(I,.T)
EPT(I,J)=DEPT(I,,1)
EPZ (I, J) =- (EPT (I, J) +EPR(I,,J) )

EPT (I, IM) =Q .

EPR (I, IM) =Q .

EPZ (I, IM) =Q .

RETI.TRN
END

224

c
c
c
c
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c
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äi".il;=";:ï.;"=.;"ï.åÏ"i;:å.;"'":il..o*n,,tation or the *

integrals of total plastic strains. PLasEic strain distributions *

calculated. in EPSPL subproqram are used to evaluate the integral *

of plastic strains. The procedure is based on trapezoid method. *
******************************************************************

SUBRòUTINE AREA (I , TRB]- , TRB2 , TTB]. ,1T82, TTC]. ,TTC2, TRC1 , TRC2 , EPR, EPT,

$RC )

REAL EpR(50,5L',) ,EPT(50,51),RC(51-),TTC1(50,51-) ,TTC2 (50,51),TRCI-(50
$,51),TRC2(50,51-)

DO 20 J=l-,I
IF(J.EQ.1) THEN

TRCI- (I,,J) =0 .

TRC2 ( I, J¡ =g .

TTCI- (r,,J) -0 .

TTC2 ( f, J) =0 .

ELSE
TRCI- (I , ,l ) =TRCI- ( f

$ ABS (RC (J) -RC (,f-1-
TTCI- (I , ,J) =TTCI- ( I

$ ABS (Rc (.T) -RC (J-l
TRC2 (I,,J) =TRC2 (I

$ ABS (RC (J) -RC (J-1
TTC2(I,J)=TTC2(I

$ ABS (RC (,J) -RC (J-1
ENDIF
CONTINUE
TRBI-=TRCl-(I,I)
TRB2=TRC2 (T , Í)
TTBL=TTC1(I,I)
TTB2=TTC2 (T,I)
RETURN
END

J
)

,l
)

,J

)

-1- )+0.5* (EPR (I,,J-1) *Rc (,J-1)+EPR ( I, J) *Rc (J) ) *

- L ) + 0 . 5 * ( EPT ( I , J - 1 ¡ * 36 ( J - 1 ) +EPT ( I , J ) * RC ( ,f ) ) 'k

-1) +0. 5* (EPR(I, J-l-) /RC (J-1) +EPR(I, J) /RC (J) )'k

,J-1) +0. 5* (EPT(T,J-1) /RC (J-1) +EPT(I,J) /RC (J) ) *

))

20
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c
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ili =. il;,.n,"*.;"=.;":;"å:;:i .""å. ;::. ;:..ffi .".':;. : ;. :;:" 
. . 

i
elasEoplastic interface by using: the boundary condition at this 'k

surface. At this boundary the von Mises yield condition must be *
satisfied. The procedure is based on the bisection method to *

find the radius which satisfies the Mises equation
* * * * * * * * * * * * * * * * * * * * * * * * rk * * * ** * * * * * * ** * * * ** * * * * * * * * * * * * ** * * * * * * **

SUBROUTINE BISEC1 ( I, RA, RB, RCC, SO, E, ALPITA, DT, PR, RCMIN, PT, PO, TA

$, TB, RC, EPR, EPT, TRC]-, TRC2, TTC]. ,TTC2, TTB1 ,TTB2, TRB1 , TRB2 )

FG(R) =( (R"*2/ (RB**2-R**2))* (1- (Re**2/R* "2)))
FR(R)=( (R**2/ (RB**2-R**2) ) * (1+(RB**2/R* *2) ) )

FN (R) -R**2 / (RB* *2-F'* *2)
FH (R) = ( (E*ALP¡1A* 1 (TA*ALOG (RB) -TB*ALOG (RA) ) /ALOG (RB/RA) - ( (TA-TB) /

$ALOG(RB/RA) )*ALOG(R)-TB)) / (2* (1-PR) * (RB**2-R**2)*ALOG(RB/R) ) )*
g ( -2 *Re* *2 *ALoc (RB/R) +RB* *2 -R* *2 

)

FM (R) = ( (E*ALp"A* 1 (TA*ALOG (RB) -TB*ALOG (RA) ) /er,OC (RB/RA) - ( (TA-TB) /
$ALOG (RB/Rj\) ) *ALOG (R) -TB) ) / (2* ( l--PR) * (RB* *2 -R* *2 ) *ALOG (RB/R) ) ) *
g ( -2 *ne"*2*ALoc (RB/R) +RB**2-R**2 )

SR (R) = ( (E*ALPHA*DT ) / (2* ( l--PR) * 1RB* *2 -RÀ'* *2 ) *ALOG (RB/RA) ) ) * ( ( (

$RA**2 *RB**2*ALOG (RB/RÀ) ) /R* *2) + (RB**2 *ALOG (R/RB) ) - (ne* *2 *

$ALOG (R/RA,) ) ) + ( Pr*FÄ**2-PO*RB* *2 ) / (RB* *2 -RA* *2 ) +RÄ* *2 *RB* *2 * (

gpO-pI ) / ( (RB* *2-Ri\* *2 ) *R* *2) + (E/ (2* ( 1-pR* *2 ¡ * (RB* *2-Rê'* *2 ) ) ) *

$((1-2*pR)*(TTB]-+0.5*(EPT*Rg¡*(R-RC))+(1--2*PR) *(TRBI+0.5r'(EPR*RC)*

$ (n-nC) )+RB**2* (TTB2+0.5* (EPT/RC¡ * (R-RC) ) -Rs**2* (TRB2+0.5* (EPR/RC)

$* (R-RC)))* (1-RA**2/R**2)-(E/ (2* (1-PR**2) *R*x2))* ((L-2*PR) *

g (TTC]-+0.5* (EpT*Rg¡ * (n-RC) ) + (1,-2*PR) * (TRCI-+0.5* (EPR*RC) * (R-RC) )+
gR**2* (TTC2+0 .5* (EPT/RC¡ * (R-RC)-TRc2-0.5* (EPR/RC) * (R-Rc) ) )

IF (RC . GE. RB) STOP
R2=RC+0.1
R1=RC
DO l-08 K=l,50
R3- (R]_+R2) /2.
rF(ABS (Rl--R2) .LT. 0.0001)Go ro L09
AL=2* (Fc (R]-) **2+FR (R1) **2+FN(R1) **2-FG (Rl- ) *FR(Rl-)

$-FR (Rl) *FN (Rl- ) -FN (R1) *FG (R1) )

A2=2* (FG (R2 ) **2+FR (R2 ) **2+FN(R2 ) **2-FG(R2 ) *FR (R2 )

$-FR(R2) *FN(R2) -FN(R2) *FG(R2) 
)

A3=2* (FG (R3 ) **2+FR(R3 ) **2+FN(R3 ) **2-EG(R3 ) *FR(R3 )

$-FR (R3 ) *FN (R3 ) -FN (R3 ) *FG (R3 ) )

Bl-=4* (FH (R]-) *FR (RL) +FM(R]-)'kFN(R1) ) -2* 1FH (R]-) *FG (R1)

$+FH (R]- ) *FN (R]- ) +FM (R1) *FR (R1) +FM (R1) *FG (R1) )

B2=4* (FH(R2) *FR(R2) +FM(R2) *FN(R2 ) ) -2* (FH(R2) *FG (R2)

$+FH(R2 ) *FN(R2) +FM(R2) *FR(R2 ) +FM(R2) *FG (R2) )

B3=4* (FH(R3 ) *FR(R3 ) +FM(R3) *FN(R3 ) ) -2* (FH(R3 ) *FG(R3 
)

$+FH (R3 ) 'kFN(R3 ) +FM(R3 ) *FR (R3 ) +FM(R3 ) *FG (R3 ) )

CL=2* (FH (Rl ) **2+FM(R1 ) * *2-FH(Rl-) *FM(R1) -SO**2 )

C2=2* (FH(R2) **2+FM(R2) **2-FH (R2 ) *FM(R2 ) -gg**2 ¡

C3=2* (FH (R3 ) **2+FM(R3 ) * *2-FH (R3 ) *FM(R3 ) -SO**2 )

Y1=Al,*SR (Rl-) **2+81*ABS (SR (Rl-) ) +C1

Y2=A2*SR (R2 ) * * 2+82*ABS ( SR (R2 ) ) +C2

rF ( (Y1- *y2) . GT. 0 . )GO TO l-1-
y3=A3 *SR (R3 ) **2+83 *ABS ( SR (R3 ) ) +C3
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rF ( (YL*Y3 ) .GT.0 . ) GO TO 104
R2 =R3
GO TO l-08
Rl-=R3
CONTÏNUE
RCC=R3
rF(Ècc .cE. RB)RCC=RB
RETURN
wRrrE (30 ,12\
FORI4AT (2X, ' INITIAL VALUE ARE NOT TRUE' )

STOP
END
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* * * * * * * * * * * * * * * * * * * * * * * * * * * tr* * * * * ** )k * * ** * * * * * * * * * ** * * * * * * * * * ** ** *

This subprogram has been developed for the computation of the *

elastoplastic interface for the case in which yielding starts *

from the outside surface of the cylind.er by using the boundary *

condition at the elastic-plastic boundary *

At this boundary the von Mises yield condition must be *

satÌsfied. The procedure is based on the bisection method to *

find the radius which satisfies the Mises equation. *
*******************)k*************************:k****)k***rr**********

SUBROUTINE BISEC2 ( f , RA, RB, RCC, SO, E, ALPTÍA, DT, PR, RCMIN, PT, PO, TA

$,TB,RC)
FR (R) = (RA* *2 / (R" *2 -RA* *2) ) *2
FN (R) -RA* *2 / (R* *2-Rl\* *2 )

FF (R) =- ( (R**2 / (F.x*2-RA**2) ) * (1-ne**2/R*'k2) ) *ABS ( (

$ ( (E*ALPHA*DT) / (2* (1-PR)* 1RB**2-Ri\**2)*ALOG(RB/RA) ) )* ( ( (

$R¡**2*RB**2*ALOG (RB/RA) ) /R* *2) + (RB**2*ALOG (R/RB) ) - (ne**2*
$ALOG (R/RA) ) ) + ( PI *RA* *2 -PO*RB* *2 ) / (RB* "2 -RA* *2 ) +RA* *2 *RB* *2 * (

$po-pr) / ( (RB**2-Rê'**2 )*R't*2) ) )

FH (R) = ( (E*ALp"q* (TA- (TA*ALoc (RB) -TB*ALoc (RA) ) /eloc (RB/RÄ) + ( (TA-TB)

$/aloc(RB/RA) ) *ALOG(R) )) / (2* (l--PR) * (R**2-RA**2)*ALOG(R/RA) )) *
g(-2*na**2*ALOG(R/RA,)+R**2-RA**2)-((R*"2/(R**2-RA**2))* (1+Rê'**2/R**
$2))*ABS(( ((E*ALPHA*DT) / (2* (1-PR) * (RB**2-RA,**2) *ALOG(RB/R-A') ))* (((
$RA"*2*RB**2*ALOG (RB/Bå') ) /R* *2) + (RB**2*ALOG (R/RB) ) - (RA*"2"
$ALOG ( R/RA) ) ) + ( Pr *RA* *2 -PO*RB* * 2) / ( RB* * 2 -RA* *2 ) +F{A* *2 *RB* *2 * (

$po-pr) / ( (RB**2-R-A**2 ) *R**2) ) )

FM(R) - ( (E*ALe"a* (TA- (TA*ALoG(RB) -TB*ALoG(RA) ) /aloe (RB/RA) + ( (TA-TB)

$/er,oc(RB/R¿') )*ALOG(R) )) / 12*l1--PR) *(R**2-RA**2)*ALOG(R/RA) ))* (-2*
$RÀ* *2 *ALOG ( Ri RA) +R* *2 -RA* *2 

)

R1=RC-0.03
R2=RB
DO 1-08 K=1, 50
R3- (R1+R2\ /2.
rF(ABS (R]--R2) .LT. 0. 0001-)Go ro l-09
Aj.=2* (FR (Rl_ ) **2+FN (Rl ) **2-FR (Rl_ ) *FN (Rl- ) )

A2=2* 1FR (R2 ) **2+FN (R2 ) **2-FR(R2 ) *FN(R2 ) )

A3=2* (FR(R3 ) **2+FN(R3 ) **2-FR(R3 ) *FN(R3 ) )

81=4* (FH(R1) *FR(R]-) +FM(Rl-) *FN(R1) ) -2* (FF (Rl-) *FR(R1)

$+¡'H (R1) *FN(R1 ) +FM(R1) *FR(R]-) +FF (Rl) *FN(R1) 
)

B2=4* (FH (R2 ) *FR (R2 ) +FM (R2 ) *FN (R2 ) ) -2* (FF (R2 ) *FR (R2 )

$+FH (R2 ) *FN (R2 ) +FM (R2 ) *FR (R2 ) +FF (R2 ) *FN (R2 ) )

B3=4* (FH (R3 ) *FR(R3 ) +FM(R3 ) *FN(R3) I -2* (FF (R3 ) *FR(R3)

$+FH (R3 ) *FN(R3 ) +FM(R3 ) *FR(R3 ) +FF (R3 ) *FN(R3 ) )

C!--2* ( FF ( RL ) * * 2 +FH ( Rl ) * *2 +FM ( Rl ) * * 2 -FF ( Rl- ) *FH (Rl- ) -FH ( R1 ) *FM ( R1 )

$-FM (R]- ) *FF (R]- ) -SO* *2 
)

C2=2* (FF (R2 ) * *2+FH (R2 ) * *2+FM (R2 ) * * 2-FF (R2 ) *FH (R2 ) -FH (R2 ) *FM (R2 )

$-FM(R2 ) *FF (R2 ) -SO**2 )

C3=2* ( FF ( R3 ) * *2 +FH (R3 ) * * 2+FNI( R3 ) * * 2 -FF ( R3 ) *FH (R3 ) -FH (R3 ) "FM (R3 )

$-FM (R3 ) *FF (R3 ) -SO* *2 
)

Y1=41 * PI * * 2 +81 i'PI+C1
Y2=A2*PI**2+82*PT+C2
rF ( (Y1*Y2) . GT. 0 . )GO TO 1-1

Y3=43*PI**2+83*PI+C3
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rF( (Yl-*Y3) .Gr.0. )GO TO 104
R2 =R3
co ro 1_08

R1=R3
CONTINUE
RCC=R3
rF (ÂBs (RCC-RA) . LT. 0 . 001- ) RCC=RA
RETURN
WRITE (30,L2)
FORMAT(2X,' INITIAL VALUE ARE NOT SUITABLE')
STOP
END
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Appendix B

The computer program which has been developed for the computation of creep stress

and damage histories as well as the remaining life evaluation of thick-walled tubes

subjected to an internal pressure and a thermal gradient is introduced in this appendix.

230



c
c

c
c
c
c
c
c

c
c

c
c
c
c
c
c

c
c

U

c
c
c
c
c
c
c
c
c

c

Appendix B: Computer Program of Time-Dependent Creep Analysis 23r

: 
.;;i 

:. "il;.":. ;';=-;.;"".;:;.ä"i.;.å. ;::. ä". ffi";"; i:;" : ;. :
* creep stress and damage histories as well as Ehe remaining life *
* eval-uations of thick-wa]led tubes subjected to an inEernal *
* pressure and a thermal gradient. *
* The program is written based on the block diagram of Figure 4.4. *
* It 'contains four subprograms which will be introduced afEer the *
* main program' 

u + + * + +* + + * * * * * + * +* * * ir* * * * ** ** * * * * ** * **l*********************************************************
* Definition of arraYs: *
* l_- FF(51-), FH(51-), FG(51),FR(51-),FM(51-) :These arrays representing *
* magnitudes of non-history dependent functions of F', H', G' , *
* R' and M' def ined. in Equation (3.80) at all 5l- division *
* points across the thickness of Ehe tube
* 2- pCR(51-): This array representing the magnitudes of inEernal *
* pressure satisfying EquaEion (3.70) at all division poínts *
* 3- R(51-): Representing magnitudes of radius at all divisions *
* 4- SRE(5i-),STE(51),SZE(51):Radial, tangential and axial elastic *
* stresses *
* 5- T(51-) : Temperature distribution *
* 6- SRC(20001, 51),STC(20001, 5L),SZC(20001, 51-) :Radial, tangential *

* and axial creep stresses
* 7- ECR(20001- ,5L) ,ECT(20001-,5L) ,ECZ (20001,51) : Radial, tangential*
* and. axial total creep strains
* g- DECR(20001,51),DECT(20001 ,5L),DECZ(20001-,51): Radial , *
* tangential and axial creep strain increments. *
* 9- DECRN(20001-,51) ,DECTN(20001,51-) ,DECZN(20001-,51) :New obtained *
* vafues of Radial,tangential and axial creep strain increments*
* i-0- ECDR(20001-,51) ,ECDT(20001-,51-) : Radial and tangentiaf creep *
* strain rate *
* 1-1-- TET1(20001-,51),TET2(20001 ,5L),TET3(20001 ,5]-),TET4(20001-,51):*
* representing functions defined by the theta projection. *
* 1-2- ITME (2 0 0 O 1 ) : increment of Eime *
* l-3- TMON(20001-): Time (month) r'

* 1-4- DEC(20001,51-),EC(20001-,51): Effective creep strain *
* increment and the total accumulated effective creep strain. *
* 15- SEF(20001,51): Effective stress *
* 16- EPF(20001-,51): Creep rupture strain *
* L7_ TTC1 (20001-,51) ,TTC2 (20001,51) ,TRC1 (20001- ,5L) , TRC2 (20001,51-) : *
* Integrals of radial and tangential total creep strains *
* 18- DM(20001-,5L) ,RL(20001,51) : Creep damage and remaining life *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * *
*******************************************************************

PROGRAM creep
DTMENSTON FF ( 51 ), FH ( 51" ), FG ( 5l- ), FR ( 51 ), FM ( 51- ), PCR ( 51 ), R ( 51 )

$, sRs ( 51 ), STE ( 51 ), SZE( 51 ), T ( 51- ), RC ( 51 ), ITME ( 20001 ), ECE (20001, 5t),
$ECR ( 2 O0 0l_, 5I),DECRN ( 2 0001-, 51 ), ECT ( 2 0 0 0 1, 5 l- ), DECTN ( 2 0 00 l-, 5l- ),
ssRC (20001-,51) , sTC (20001,51.) ,SZC (20001- ,51) , SEF(20001,51-) ,TTCI- (20001-

$, 51 ),TTC2(20001, 5l- ), TRC1 (20001-, 5I),TRC2 ( 20001, 51 ), DEC (20001, 5l- )

$, DECZN ( 20001, 51 ), DECR ( 20001, 51 ), DECT (20001-, 51 ),DECZ (20001-, 51 )

$,TETI- (20001,51-) ,TFT2 (20001,51) ,TET3 (20001,,51) ,TET4 (20001',51)
$, ECDT (20001, 51), ECDR (20001, 51),EC (20001, 5L\,ECZ(20001-, 51)
$ , EpF ( 2 O 0 01 , 51 ) , SF ( 51 ) , DM ( 2 0 0 01- , 51 ) , RL ( 2 0 0 01 , 5l- ) , TMON ( 2 0 0 01 )
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********************************************************tr******ìk***

INPUT DATA: DimensionLess elastic mod.ulus, dimensionless yield *

stress, coefficient of linear thermal expansion, *

Poisson's ratio, inner radius, outer radius, numl>er *

of timingr step, number of divisions along radius, *

initial value of radial and tangential creep strain *
' increments, convergence criteria, Inner and outer *

temperature, time increment, constant coefficient of *

material- creep properties as; A1 ,42, A3 ,44, A5 ,BL,B2 , *

83 ,84,85, C1 ,C2,C3 ,C4,C5,DL,D2, D3, D4, D5. *

*******************************************************************

DATA E, SO,ALPHA, PR,RA, RB,M1,N1, ECRI, ECTI, Q,

$TA, TB, rDTrME, A1-, A2, 43, 44, 45, Bl-,82,F.3, 84, 85, cL, c2, c3, c4, c5,D1-,D2

$, D3, D4, D5 /'702,l-.0, 0 .00001L7, 0.3,l-. o, 1. 65,50,20001-, -0 .00001- '
$0. oooo1, o.l-E-l-o ,557 ,550,10000,
$-8 . 73 6, -0 . OO23 46, -! . 869, -:-6 . 43, -L .1,23, 0 . 004604, 0 . 02225, -0 . 002034'
$0 . oo gLlg,o . 0015 17, -0. 04489, O . 02L95, -0 . 05497, -0 . 04723, 0 . 0 005413,

$0 .0000681-4, -O .00001-951-, 0 . 00007990, 0.000071-3 9 , -0 .00000 0472L/
****************************ir*******************************'(******

* OUTPUT DATA WILL BE WRITTEN ]NTO THE FOLLOW]NG OUTPUT FILES
* elsE.rs.dat: Elastic stress d'istribution *

* cstrs.dat: Creep stress distribution *

* esd.dat: Effective stress distribution *

* csd.d.at: Creep strain distribution *

* esh.d.at: Ef fective stress historíes *

* ecsh.d.at: Effective Creep strain histories *

* d.h. dat : Damage histories *

* dd.dat: Damage distributíon *

* fdd..dat: Final- damage distribution *

* rlh.d.at: Remaining life histories *

* fcsd.dat: Final creep strain d'istribution *

***********************************************)k*******************

OPEN (UNIT=l-0, FILE=' elstrs - dat', STATUS=' OLD' )

OPEN (UNIT=2 0 , FILE=' cstrs . dat ' , STATUS= ' OLD' )

OPEN (UNIT=2 5 , FILE= ' esd'. dat ' , STATUS=' OLD' )

OPEN (UNIT=30, FILE='csd. dat' , STATUS='OLD' )

OPEN (UNIT=  0 , FILE= ' esh. dat ' , STATUS= ' OLD' )

OPEN (UNIT=5 0 , FILE= ' ecsh. dat ' , STATUS=' OLD' )

OPEN (UNIT=60 , FILE='dh. dat' , STATUS='OLD' )

OPEN (UNIT=65, FILE=' dd. dat', STATUS=' OLD' )

OPEN (UNIT=70, FILE='fdd. dat' , STATUS='OLD' )

OPEN(UNIT=75, FILE=' rltr. dat', STATUS=' OLD' )

OPEN (UNIT=80, FILE=' fcsd- dat' , STATUS='OLD' )

*************************************,r*****************************

* ELASTIC SOLUTION *

******'k************************************************************

Critical- pressure of the tube witl be calculated in subprogran *

PCRIT and the elastic stress distribution will be calculaEed *

**************************************************'/r***************

DT=TA-TB
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CALL PCRIT ( FF, FG, FH, FR, FM, RC, PCMTN, RCMTN, PCMAX, RMAX, PCR, DT, E,
$So, ALPHA, PR, RA, RB, M1 )

NP=Ml-+l-
DO 1-1- I=1,NP

PI=PCMIN
PI=0.5*PCMIN
SRE (.I ) =FF ( I) +FG ( I ) *PI
STE(I) =FH(I) +FR(I) *PI
SZE (I) =FM( I) +FN(I) *PI
SF(I) = ( (1 / (2**0.5) ) * (SQRT( (SRE(I) -STE(I) ) **2+ (STE(I) -

$szE (r) ) * *2+ (szE.(r) -sRE(r) ) **2) ) )

WRITE(1-0, 15)RC (I), SRE(]), STE(I),SZE(T),SF (I), PI
FORMAT (F8. 6,3X,FJ . 4,3X,F7 . 4,3X, F7 . 4,3X,F7 -4,X,87 .4)
CONTINUE
* * * * * * * * * * * * * * )k * * * * * * * * * * * * * * * * * * * * * * * * * rk * rr :rr i( * * * * * * * * * * )k * * * * * * * )k * *

CREEP SOLUTION JT

**Jr**rrJr**************************rk***r(******************'1.*********

The above elastic stress distribution has been considered as the *

stress distribution which wilt be changed with time. A short *

time increment (TDT[ME) will be selected and a variation of *

stresses and strains wíIl be computed for this time increment *
***********************Jr************************************)k*****

DO 100 I=1,N1
ITER=0
IF(I .EQ. 1) THEN

ITME(I)=TDTIME
ELSE

ITME ( I ) =ITME ( I-1 ) +TDTIME
ENDIF
rMoN ( I ) =ITME (r) / 2592000 . 0

TIME=ITME ( I )

DR= (RB_RÀ) /Ml
IM=M1+1
*******************************************)k**********************

Initial vafues are estimated for the creep strain increments *
********************************************************'k*****r(***
IF (I . EQ. ]- ) THEN

DO 420 K=I,IM
DECT ( I, K) =EPTI
DECR ( I, K) =EPRI
DE,CZ( I, K) =- (DECR ( I, K) +DECT (I, K) )

CONTINUE
ELSE

DO 402 K=1, IM
DECR (I, K) =DECR (I-l-, K)
DECT ( I, K) =DECT ( I-1, K)
DECZ (r,K) -- (DECR(r,K) +DECT(r,K) )

CONTINUE
ENDÏF

c

420

402
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * )k * * ** * * * * ** * * * * * * * * * * *

The creep strain increments will be added to the previously *

converged values of creep strains in ECSPL subprogram and the *

integral of total creep strains will be computed in the AREACR *

subprogram. Then an estimate of stresses will be obtained *
* * * * * * * * * * * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * )k * * * * * * * * *

Do l-ò1 J=1, rM
R(J)=Re+ (J-1-) *DR

CALL ECSPL (I,M1, ECR, ECT, ECZ, DECR, DECT)
CALL AREACR (I, M]., TRB1, TRB2 , TTBl ,TTB2, TTC1, TTC2 , TRC]-, TRC2, ECR, ECT,

$R, DR, RA)
IF(ITER .GT. 20) STOP

SRC (I, J)=SRE (,J)+ (E/ (2* (1-PR**2) * (RB**2-RA**2 ) ) ) *

$ t ( r-z*pR) * (TTBL+TRBI- ) +RB* *2* (TTB2-TRB2 ¡ ¡ * ( 1-RA**2 /R (J
$ ) **2 I - @/ (2 * (1--pR**2 ) *R (J) "*2 ) ) * (+ ( 1--2*PR) * (TTC1 (r, J) +TRC1 (r,,f ) )

-::?Yîí?î?îî;*************ìk**rr*****rr******************************
ECDR ( r, J) = ( (TETI- ( r, J) *TET2 ( r, J) *EXP ( -TET2 ( r, J) * (TfME+IDTLME / 2) ) ) + (

gTET3 ( T, J ) *TET4 ( I, J) *ExP (TET4 ( I, J) * (TIME+IDTIME/ 2) ) ) ) * ( 2 *SRC ( I, J) -
$src (r, J) -szc (r,J) ) / (2*SEF (r,J) )

ECDT ( r, J) = ( (TETI_ ( r, J) *TET2 ( r, J) *EXP ( -TET2 ( r, J) * (TIME+rDTIMF- / 2) ) ) + (

$TET3 (r,J) *TET4 (r,J) *EXp(TET4 (r,J) * (TrME+rDTLME/2) ) ) ) * (2*STC (r,J) -
$sRC (r, J) -szc (r,J) ) / (2*sEF (r,J) )

c
c
c
c
c

9

$ tr
)+

$ *( 1)+RB**2*
$ )* )*R(J) **2 )* (TTCI- (r
$ -R TRC2(r,,J)
$r)

)+ 2)*(1-PR* PR) *(TTB]-

$ TT **2 ) ) *PR*

$ l-- R(r,J) )-( *2r,)*(2*
g B* )+ECT(I,J

2* I,J) -STC ( c (I,J) -
$ sz 2)l)

** ********* **********tl

st ffective I be *

s the effec train *

at al consti )k

** ********* ***'('r******

T (J) = (TA*LOGI-0 (RB) -TB ) ) /LOG10 (RB/R.A)+ ( ( (TB-TA) *

$Locl-o (R (J) ) ) /Loclo (RB . 15
SE=SEF(I,J)*200
TETI- (I, J) =l-0.0** 141+8 *SE+DI-*SE*T (J) )

TET2(I,J)=1Q.0**(42+B *SE+D2*SE*T(J) 
)

TET3 ( I, J) =1Q.0** (43+B *SE+D3*SE*T (J) )

TET4(I,J)=1Q.0**(44+B *SE+DA*SE*T(J) 
)

EPF (I, J) =45+85*T (J) +C E*T ('J)
ECE(I,J)=TET1 (I,J)* (1 2(T,J\ * (TIME) ))+

$TET3 (r,J) * (-I+EXP(TET rME) ) )
* * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** * * * * * * 

'r* 
* * * * * * * * * * * * *

c
c
c
C

Creep strain rate in radial and tangentia1 directions will be *

"o^pl-,t"d 
and new values will be calculaEed for the previously *

estimated creep strain increments and wiII inspected for the *
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DECRN ( I,.T) =ECDR ( I, J) *IDTIME
DECTN ( I, J) =ECDT ( I, J) *IDTIME
DECZN ( I, J) =- (DECRN (I, J) +DECTN (I, J) )

DEC (I,,J) = ( (2**O .5) /3) * (SQRT ( (DECRN(I,,J) -DECTN(I, J) ) **2+

$ (DECTN(r,,f )-DECZN(r,J) l**2+ (DECZN(r,J)-DECRN(r,J) ) **2))
IF(I .GT. 1)THEN' Ec (r,,f )=EC (I-1,J) +DEC (r,.1)
ENDIF
DELR=ABS (DECRN ( I, J) -DECR ( I, J) )

DELT=ABS (DECTN (I,,J) -DECT (I, J) )

TF (DELR. LT. Q.AND. DELT. LT. Q) THEN

ITER=0
GO TO l-01-

ELSE
DECR ( I, J) =DECRN ( I,'J)
DECT(I,J)=DECTN(I,J)
DECZ( I,,J) =DECZN ( f , J)
ITER=ITER+1
GOTO 9

ENDIF
coÀiÍ.'INUE
************Jr*)k**Jr******tk*******************************,.*********

After the convergence the effective stress histories will be used*
in DAIvIAGE subprogrram and the damage history and the remaining *

life of the tube will be obtained and the results will be written*
into the outPut files
********rr**rk***********************************************rr******

CALL DAMAGE ( I, DM, EPF, TET]- ,TFT2, TET3 , TET4, TIME, SEF, IDTIME, RL)

CONTINUE
DO l-89 K=1,Nl ,2000
WRITE ( 40, l-58 ) TMON (K), SEF (K, 1 ), SEF (K, 26),SEF (K, 5t),STC (K, 1 ), STC (K,

$s1)
FORMAT (F1-2 .6 ,2X, 5 (810 .4 ,2X) I

WRITE (50, 1-58 ) TMON (K) , ECE (K, 1) , ECE (K, 26\ ,ECE (K, 51) , EC (K, 1) ,

$EC (K,51)
WRITE ( 60, 1-58 ) TMON (K), EPF (K, 1 ), EPF (K, 51 ), DM (K, 1 ), DM (K, 26), DM (K, 5l- )

wRrrE ( 65, 58 ) DM (K, l- ), RL (K, 1), DM(K, 26),RL (K, 26),DM(K, 51 ), RL (K, 51 )

wRrrE (75,L58)TMON(K) ,EPF(K,1) ,EPF(K,51) ,RL(K,1) ,RL (K,26) ,RL(K,51-)
FORMAT (3 (E]-0 . 4,2X, Fl-o . 4,2X) )

CONTINUE
DO 139 I=N1,N1
DO 20'7 JJ=l, IM
IF(I .EQ. N1)THEN

WRITE (80, 31-1-) ECR(I, JJ), ECT (I, JJ), EC (T, JJ), ITME (T)

FORMAT (3 (2X, E15.8) ,2X ,TL2)
IF(JJ .EQ. IM) THEN

DO 2020 JK=l-, IM, 5

wRrrE (10,L04)R(JK) ,DM(r,JK) , rrME(r)
FORMAT (81'2 . 5, 2X, 820 . 1-4, 2y', fL2l

ENDIF
END]F
WRITE (30,208)R(JJ), ECR(], JJ), ECT'(I,JJ), ECZ (I,JJ,),EC (I, JJ)

1_00
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FORMAT (5 (E1-3 .6, X) )

DO 202 ,f,J=1, IM
wRrrE (25, 204 ) R (,JJ), SEF ( r,,JJ), TMON(r)
FORMAT (F.L2 .5,2X, E12 .5 ,2X,FL2.6)
WRITE (20,20L)R(J.l) , SRC (I,J'J) , STC (I,'TJ) , SZC (I'JJ) 'TMON(I)
FORMAT (ELz .5,2X,F.Lz .5, 2X,EL2 -5,2X,81-2 . 5, 2X,FL2 - 6)
CONTINUE
STOP
END
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* * * * * * * * * * * * * * * * * * )k * * * * * * * *'( * * * * * * * * * * * * * * *

This subprogram has been developed to calculate the critical inner*
pressure of the tube and is simifar to subroutine PCRIT already *

ài=",r."="d in Append.ix A and therefore no further comment will be *
written on this subProgram. *

*******************************************************************
suBRo'tJTINE PCRIT (FF, FG, FH, FR, FM, RC, PCMIN, RCC, PCMAX, RMAX, PCR, DT,

$E, SO, ALPHA, PR, RA, RB, M]- )

DTMENSTON FF ( 51 ), FG ( 51 ), FH ( 5l- ), FR ( 51 ), FM ( 5l- ), PCR ( 51 ), RC ( 51 )

NP=Ml+1
DR= (RB-RA) /Ml-
DO 40 K=1,NP
RC (K) =RÀ+ (K-l- ) *DR

IF (K. EQ.NP) RC (K) =Re
FG(K)= ( (RA,**2/ (RB**2-RA**2) )* (l-- (RB**2/RC (K) **2) ) )

FR(K)=((RÀ**2/(FtB**2-RA**2ìr)* (1+(RB**2/RC (K) **2) ) )

FF (K) - ( ( E*ALPHA*DT ) / (2* ( l--PR) * 1RB* *2 -RA* *2 ) *ALOG (RB/RÀ) ) ) " ( ( (R¡* *2

$ *RB* *2 *ALOG (RB/RA) ) /RC (K) * *2) + (RB**2*ALOG (RC (K) /RB) ) - (RÀ* *2 *ALOG (

$RC (K) /RA) ) )

FH (K) = ( ( E*ALPHA*DT) / (2* (1--PR) * (RB* *2 -RA* *2 ) *ALOG (RB/RÄ) ) ) * ( ( ( -BA* *

g2 *pg* *2 *ALoc (RB/RA) ) /RC (K) * * 2) + (RB* *2 *ALOG (RC (K) /RB) ) - (na* *2 *ALOG (

$RC (K) /FÀ) ) + (RB**2-Rl\**2 ) )

FM(K)= ( (B*ALPHA*DT) / (2* (1--PR) * 1RB**2-RA**2)*ALOG(RB/RA) ) )* (2*RB**2

$*ALoc (RC (K) /RB) -2*IìA**2*ALOG (RC (K) /R.A)+ (RB**2-RA**2 ) )

A=2* (FG (K) **2+FR (K) **2-FG (K) *FR(K) )

B=4 * (FF (K) *FG (K) +FH (K) *FR (K) ) -2* (FF (K) *FR (K) +FH (K) *FG (

$K)+rM(K) *FR(K)+FM(K) *FG(K) )

C=2* ( FF (K) * * 2+FH(K) * *2+rU (K) * *2 -FF (K) *FH (K) -FH (K) *FM (K) -FM (K) *FF (K

$ ) -so**2 )

rF (B* *2-4*A*C) 44,60 ,60
Pl= ( -B+SQRT (B* *2-4*A*C) ) / (2*A)
p2= ( -B-SQRT (B* *2-4*A*C) ) / (2*A)
rF(P]-.LT.O. .AND.P2.LT.0. )GO TO 44

rF(P1.LT. 0. .AND.P2.GT.0. )GO TO 1-50

rF (P2.LT. 0. .AND.P]-.GT. 0 - )GO TO l-40
rF (Pl--P2 ) l-40,140,1-50
PCR (K) =Pl-
GO TO 40
PCR (K) =P2
GO TO 40
PcR (K) =0 . 0
CONTINUE
DO 61- KK=I,NP
IF (PCR (KK) . EQ.O . ) RETURN
CONTINUE
PCMIN=PCR ( 1 )

RCC=RC ( 1 )

DO 51- IK=2,NP
rF (PCMTN-PCR ( rK) ) 5L ,51, ,1,7
PCMrN=PCp ( rK)
pçç=ftÇ ( rK)
CONTINUE
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PCMå,X=PCR (1)
p¡v¡¡çç=ge (1)
DO 50 IT=2,NP
rF (PCMAX-PCR ( rr) ) 1, 50, 50
PCMAX=PCR ( IT)
ruru<=RC (IT)
CONTÌNUE
RETURN
END
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*************************************************)k**********

This subprogram cal-culates the creep strain distribution *

across the thickness of the tube by adding the converged *

value of creep strain increment to the previously *

accumulated. creeP strains. rr

* * * * * * * * * * * * r( * * * -/r * * * * * tr * * * * * * * * * * * * * * * * * * * * * * * * r( tk * * * * * * * * * *,r

SUBRòUTINE ECSPL(I,Ml,ECR,ECT,ECZ,DECR,DECT)
DTMENSTON ECR(2OO0l-, 51), ECT (20001, 51),ECZ (20001-, 51),

$DECR (20001-, 5L),DECT (20001-, 5l- )

IM=Ml-+l-
DO 3 ,f=1, IM
IF(I .EQ. ]-) THEN

E;CZ (f,,J) =- (ECT ( I, J) +ECR ( I,'f ) )

ELSE
ECR ( I , J) =ECR ( I-1 , 'J) +DECR (I ,'Ï)
ECT (I, J) =ECT ( I-1,'J) +DECT ( I, J)
ECZ (I, J) =- (ECT (I,,J) +ECR(I, J) )

ENDIF
CONTINUE
RETURN
END
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il =. J;,;,ï";"=.;:"*. åÏ"i"n";. ;::. :;:. Jil.".1.'. 
" 
;. :;:. 

. . . 
:

integrals of total creep strains. Creep strain distributions *

calculated in ECSPL subprogram are used to eval-uate the integral *

of creep strains. The procedure is based on the trapeZoid method.*
******************************************************************

SUBRÒUTINE AREACR (I , M]-, TRB1 , TRB2 , TTB1 ,TTB2, TTCl ,TTC2, TRCl , TRC2 ,

$ECR, ECT, R, DR, R.A)

DTMENSTON ECR(20001, 51-), ECT(20001, 51),TTC]- (2000L,5!1,
$TTC2 (20001- ,5L) , TRCL (20001-,51) ,TRc2 (20001- ,5L) , R(51-)

IM=Ml-+l-
DO 20 J=1,IM
IF (,:.EQ. 1) THEN

TRCI- ( I, J¡ =6 .

TRC2(r,,f)-0.
TTCI- ( r,,J) -0 .

TTC2(I,J)=0.
ELSE

R (.T) -RA+ (J-1) *DR

TRCI-(I,,J)=TRCI(I,J-1)+0.5*(EcR(I,,J-1)*R(,Ï-L)+ECR(I,,J)*R(J) )*DR)
TTC1(I,,J)=TTCI-(f ,,J-1)+0.5*(ECT(I,,f-1)*R(J-1-)+ECT(I,J)*R(J) )*DR)
TRc2 ( r, J) =rftç2 (r, J -l) +0 - 5* (EcR ( r,,J-1 ) /R (J-1- ) +EcR ( r, J) /n (¡) ) *DR)

TTC2 ( I, J) =TTC2 ( I, J-1 ) +0 . 5* (ECT ( I, J-l- ) /R (J-1 ) +ECT ( I, J) /R (J) ) *DR)

ENDIF
CONTINUE
TRBI=TRCI- (I, IM)
TRB2=TRC2 ( I, IM)
TTBI=TTCI (I, IM)
TTB2=TTC2 (I,IM)
RETURN
END

20
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c * * * * * * * * * *,k * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * * * **

c This subprogram has been developed for the computation of creep *

c d.amages and the remaining life eval-uations thick-walled tubes *

c by using the effective stress histories and the materials creep *

c constitutive model and rupture properties. *

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * * * ** * * )k * * * * * * * * * * * ** * * * * * * * * * * *

SUBRbUTINE DAMAGE (I , DM, EPF, TET]- ,TET2, TET3 , TET4 , TTME, SEF, ÏDTIME

$,RL)
DTMENSTON TET1 ( 2 O 0 0l-, 51 ), TET2 ( 2 0 0 0l-, 51 ), TET3 ( 2 0 0 01-, 51 ), RL ( 2 000L,

$51) ,TET4 (20001-,51) ,EPF(20001,51-) ,Y0 (20001-,51) ,DM(20001,51) ,

$y1- ( 2 0O0l-, 51,),Y2 ( 2 0001-, 51),sEF ( 2 0001, 5l- ), DDM (2 0001, 5l- )
ITER= 6 0

DO 35 K=1, 51, 5
* ** * * ** * * * * * * * * ** ** * * * * ** * ** * * * * * * * * rr * * * * * * * * * * * ** * * * * * * * * * * * * * * * *

Time to rupture has been computed. by numerical solution of *

equation (4.28) and the increments of damage are calculaEed using *

the tíme increment and. the rupture time in conjunction with the *

Robinson,s damage rule. The damage increments are then rk

accumulated. to give the total damages. Furthermore, remaining *

life of the tube are calculated using the damage and the rupture *

times
**********************)k*******************************************

TES1 and TES2 are initial values for a bisectíon method to find *

the rupture times across the thickness
*******************************tr**********************************

TES1=0 . 1E+06
TES2=0 .LE+L2
DO 102 M=1,ITER
Y0 (I,K) =-EPF (I,K) +TETL (I,K) * (1-EXP(-TET2 (I,K) * (TES1) ) ) +

$TET3 (r,K)* 1-1+EXP(TET4 (r,K) * (TESI-)))
YL (I,K) =-EPF (I,K) +TETI- (I,K) * (1-EXP(-TET2 (I,K) * (TES2) ) ) +

$TET3 (r,K) * 1-1+EXP(TET4 (r,K) * (TES2) ) )

rF((Y0(r,K)*Y1-(r,K) ) .GT. 0.0) THEN

WRITE (LO,32L)
FORMAT (5X,' START]NG VALUE UNSUITABLE' )

STOP
ELSE

TNEW= ( TESI-+TES2) / 2 . 0
Y2 (f,K) =-EPF (I,K) +TETI- (f ,K) * (1-EXP (-TET2 (I,K) * (TNEW) ) ) +

$ TET3 ( r, K) * (-1+EXP (TET4 (r, K) 't (TNEW) ) )

ENDIF
* * * * * * * * tk * * * * * * * * * ** * ** * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * )k * * * * * *

Convergence of the method for the rupture time is controlfed
* * * * ìk * * * * * * * * * * * * * * * * * * * * * * * * * * * * * rr * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

DEF=ABS (TES2-TES]- )

rF (DEF . LT. l-50 )THEN
DDM ( I, K) =IDTIME/TNEW

IF(I .EQ. 1)THEN
DM ( I, K) =DM ( 1, K) +DDM( I, K)
RL (I, K) = (1-DM( f, K) ) * (TNEW/2592000 ' 0 )

ELSE
DM ( I, K) =DM ( I-1, K) +DDM ( I, K)
RL(I,K) = (l--DM(I,K) ) * (TNEW/2592000' 0)

ENDIF

321,
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GO TO 35
ENDIF
rF((Y0(r,K)*Y2(r,K) )

TESI-=TNEW
ELSE

TES2=TNEW
ENDI.F
CONTINUE
CONTINUE
RETURN
END

cr. 0.0)THEN
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