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ABSTRACT

Naval surface ships and submarines have to meet stringent noise and vibration requirements to

minimise the risk of detection and the interference with on-board equipment. As part of an

effort to control the acoustic signatures of naval vessels, the present study examined, both

theoretically and experimentally, the transmission of vibration in a number of structures

cha¡acteristic of naval ships. The main areas ofwork are divided into four parts as presented in

Chapters 2 - 5 of this thesis. The first part consists of a detailed analytical study of the

transmission of vibratory power through structural junctions including plate elements coupled

to a thin rectangular beam, th¡ee-dimensional beam junctions and cylinderþlate junctions.

Particular attention is paid to the effect of cross sectional deformation of stiffening elements in

a junction due to vibration. The study also accountS for the effects of mode conversion at a

junction, together with the coupling between different t5,pes of waves in an element.

Calculations \ilere performed on a number of example junctions to demonstrate such efFects on

vibratory pov/er transmission.

In part 2 ofthis thesis, the transmission ofvibration through a periodic structure in the form of

a plate with periodic beam stiffeners is investigated. The Bloch theorem was used for the

analysis to relate the waïe solutions in adjacent bays of the periodic structure. It is found that

the band pass nature of the periodic structure is a function of the wave heading angle and the

frequency, in addition to the physical properties of the structure. The study then investigates

the transmission of vibration through coupled periodic structures using an example junction

which consists of a plate with periodic stiffeners, coupled to a uniform plate. The travelling

wave method of analysis as described in Chapter 2 is used to evaluate the transmission

efficiency of the junction.

Part 3 of this thesis deals with the analysis of the transmission of vibration through complex

built-up structures by using the method of Statistical Energy Analysis (SEA). Methods for the

evaluation of SEA parameters including modal density, internal loss factors and coupling loss

factors a¡e discussed. The coupling loss factors for a cylinderþlate struct¡re and a coupled
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periodic structure are derived and calculations on some numerical examples are performed to

illustrate the method.

The final part of this thesis describes an orperimental program to verify the coupling loss

factor for the cylinderþlate structure and coupled periodic structure. Results ftom the

measurements of input power and vibrational enerely are used in a numerical procedure to

determined the internal loss factors and coupling loss factors. The experimental results show

good agreement with theoretical predictions and confirm the validþ of the present

formulation of coupling loss factors.
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CEAPTER 1

INTRODUCTION

l.l General Introduction

This thesis is concerned with the transmission and distribution of vibratory power in built-up

structures, and in particular, structures characteristic of naval ships.

The study of noise and vibration in ships has received considerable attention in the past few

decades as a result of stringent shiþ noise legislation introduced by many countries (see, for

example, Conq 1976). Such legislation aims to provide a safe and comfortable working

environment for crew members by specifying a mærimum allowable sound pressure level in

various ship compa¡tments. The abilþ for the designer to predict noise level in ship

compartments at the design stage is therefore highly desirable and several empirical and

analytical studies on ship noise prediction have been reported (for example, Janssen and

Buiten, 1973; Ñlsson, 7977; Ødegaard Jensen, 1976; Plunt, 1980a, b and Hynnä et al',

lees).

Naval surface ships urd submarines require additional noisc and vibration control measures to

minimise the risk of detection and the interference with on-board equipment (for example,

sonar and weapon systems). Furthermore, the extensive use of periodically stifened plates

and shells in naval ships increases the structural complexity for noise and vibration analysis. It

has long been recognised @rillouin, 1946) that vibration waves in a periodic structure can

only propagate in certain frequency bands þass bands) and this phenomenon has a significant

effect on vibration transmission. Clearly, the control of acoustic signatures of naval ships is a

complex task that requires a thorough understanding of the mechanism of noise and vibration

transmission. The present study is directed at contributing to the knowledge needed to

successfully predict vibration transmission through naval ship structures'
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Due to the complexity of naval ship structures and the high frequency range of interest (up to

20 kÉlz for torpedo homing devices), a deterministic analysis of all the resonant modes of

vibration is usually not practical. A powerful tool for predicting the high frequency response

of complex systems is Statistical Energy Analysis (SEA) which deals with the time-avetaged

flow of vibrational energy between groups of simila¡ modes (Lyon 1975), The vibrational

energy of the mode gfoups (or SEA elements) is daermined from the power applied to the

elements, together with the SEA parameters known as modal density, internal loss factor and

coupling loss factor.

The evaluation of coupling loss factors is one of the most difficult aspects in appþing SEA to

the study of noise and vibration problems. Although some progress has been made in the

experimental techniques for measuring this parameter (see, for example, Bies and Hamid,

1980), the most commonly used method to determine coupling loss factors is based on wave

transmission analysis. The present study therefore consists of a detailed investigation of the

wave transmission properties of structural junctions, followed by an analysis of the rilave

propagation through plates with periodic stiffeners. The results of these investigations are

then used to develop SEA models for the prediction of vibration levels in structures

characteristic of naval ships.

A review of previous work on wave transmission through structural junctions, as well as

studies on periodic struotures and the applications of SEA is given in the following section.

1.2 Review ofPrevious Work

Naval ship structures may be considered as an assembly of bean¡ plate and shell elements.

These elements are coupled together at junctions throughout the entire ship structure. As a

first step towa¡ds understanding the transmission of vibration in a complex naval ship

structure, it is perhaps logical to review some of the earlier work conducted on the

transmission of vibration waves through individual junctions that consist of structural

elements of semi-infinite extent.
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Cremer (1948) canied out an investigation on the wave transmission of a right-angled fwo-

plate junction subjected to an oblique incident bending wave. In this approach, the evaluation

of complex wave amplitudes and hence wave porevers is based on the boundary conditions at

the junction (i.e., compatibilþ of wave motion and the equilibrium of forces and moments)'

Other authors (Swift, 1977; Craven and Gbbs, l98l and Wöhle et a1.,1981) have extended

Cremer's method to four-plate cross junctions and presented detailed analyses of the in-plane

rryaves generated at the junctions. Lyon (1986) reported on the contribution of in-plane waves

to struoture-borne noise. The wave transmission properties of a number of plate-beam

junctions h¿ve been investigated by Heckl (1961) and Cremer et al. (1983). A more general

approach to the study of wave transmission was presented by Langley and Heron (1990).

They investigated structural junctions with an arbitrary number of plate elements which were

either coupled to a beam or directly coupled along a line. The beam model studied by these

authors has taken into account the effects of shear deformation, rotary inertia and warping.

In all the studies reviewed so fa¡ involving wave transmission through plate-beam junotions,

the stiffening beam was modelled using conventional beam theory and the effect of beam

cross sectional deformation due to vibration was ignored. While this approach may be valid

for thick heavy beams, there are situations where elastio vibrations of the beam have to be

considered. For example, in plate/beam structures typical of naval ship constructions, the

beam web thickness may be of the same order as that of the plate and hence the web

vibrations have to be accounted for. Lu et al. (1992) presented an analysis of a plate/beam

junction which considered the effect of elastic vibrations of the stiffening beam. However,

their method in general does not satisfy the condition for conservation of vibratory povier

transmission thnough the junction.

The transmission of vibration through beam networks has also received considerable

attention. Sablik (1982) studied the wave transmission through a right-angled beam junction

in which the generation of torsional waves in the source and receiving beams due to an out-
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oÊplane bending rilave was analysed. A theoretical and experimental study of the vibrational

energy transmissio n at a corner junction was reported by Gibbs and Tattersall (1987). More

recently, Moore (l99oa) and Horner (1993) also conducted analyses on the transmission of

vibration in general two-dimensional beam junctions. However, neither of these studies has

accounted for the coupling between torsional and bending waves due to the offset between

the shear centre and the beam centroid. This type of coupling often exists in thin-walled open

section beams which are commonly used in naval ship structures. Moreover, the results of

these studies are not readily applicable to three-dimensional engineering structures (for

example, the framework for shipboard machine foundations)'

Wave propagation in cylindrical shells with a finite region of structural discontinuþ has been

studied by Haræi (1977) and Fuller (1981). The structural discontinuþ analysed by Harari

was in the form of a ring stiffener while Fuller treated the discontinuþ as a step change in

shell wall thickness. By comparison with the structural discontinuities found in submarine

hulls, a typical stiffener or bulkhead may have approximately the same thickness as the hull

plate. Hence the stifleners and bulkheads are subjected to bending and in-plane vibrations and

their effects on \ryave transmission have yet to be investigated.

The literature review up to this point indicates that some important studies have been

conducted on structural junctions that consist of beam, plate and shell elements. In particular,

the early work of Cremer (1948) formed the basis of many subsequent studies. However, as

disct¡ssed in the preceding paragraphs, there still appears to be a lack of research effort

concerning the analysis of structural junotions typical of naval ship constructions. Section I '3

outlines the objectives of the present study to address these shortcomings. It includes a

detailed investigation of the wave transmission through typical naval ship structural junctions.

The results of this investigation are used later in Chapter 4 for the evaluation of coupling loss

factors for SEA studies.

Another area of concern in this thesis is the wave transmission through periodically stiffened

plate and shell elements which are commonly used in naval ships (for example, bulkheads,
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decks and hulls). A periodic structure freely transmits vibration waves in certain frequenry

bands (pass bands) and attenuates \Äraves in other frequenoy bands (stop bands). An extensive

study on the wave motion of a number of periodic systems such as crystals, atoms and

transmission lines was given by Brillouin (1946).

Heckl (1964) studied the wave transmission properties of two intersecting beams and applied

the results to investigate the vibration of a beam grillage which is in effect a two-dimensional

periodic structure that consists of beams intersecting one another at right angles. He

accounted for the propagation of different wave types in the grillage but neglected the effect

of near-field bending lvaves on the assumption that the beam spacing was larger than a

bending wavelength.

More recently, Mead (1973) presented a general theory of wave propagation in one-

dimensional periodic systems with multiple couplings between elements. The relationship

between the bounding frequencies of the pass bands and the natural modes of a single

element in the periodic system was further investigated and reported by Mead (1975a" b).

Me¿d and Bardell (1986, 1987) used a variational approach to study the wave propagation in

cylindrical shells with periodic ocial and circumferential stiffeners respectively. However, the

cylindrical shells investigated by these authors v/ere more typical of aircraft fuselage

structures than ship structures and the cross sectional deformation of the stiflener due to

vibration was not included in the analysis.

Hodges et al. (1985a, b) also used a variational approach to study wave propagation in a

periodic ring stiffened cylinder. They allowed for the cross sectional deformation of the

stiffeners and obtained good agreement with experimental results. However, it should be

noted that the ring stiffener model used in this study was only applicable at low frequencies in

that the mode shape of the stiffeners was approximated by a cubic expression and the effect

of in-plane vibration was not considered. The validity of this model at high frequencies (i.é.,

above three times the ring frequency) has yet to be verified.
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Progress in this area was accelerated recently by Langley (1991) who presented an elastic

wave technique for the analysis of free vibrations of periodic plate assemblies. This technique

is based on the wave transmission properties of structural junctions. Neither the effect of

near-field bending waves nor the effect of in-plane waves was considered in the analysis'

So far, the literature review has been cor¡fined to the study of wave transmission through

idealised structures (for example, individual junctions that consist of elements of semi-infinite

extent and periodic structures that are not coupled to other elements). lVhile these studies

provide the basic tools for the analysis of simple structures and a¡e fundamental to the

understanding of this subject, much effort is required to tackle complex built-up structures,

such as naval ships.

Due to the complexity of ship structures, it is clear that a rigorous analysis based on the

'classical' approaoh (for example, wave theory; transfer matrix) would be difficult. Ñlsson

(1977,1978) presented a simplified anal¡ical method based on a grillage model which was

made up of two parallel hull frames and the associated plate elements. He considered that the

frames would act as wave guides for the transmission of vibration from the hull to the

superstructure. The plate elements used in Mlsson's analysis were assumed to be uniform and

this approach may not"be suitable for the analysis of structures with horizontal stringers

between the frames that are typical of naval ship structures. A further restriction of this

method is that it is essentially a two-dimensional model and is not readily applicable to the

general analysis of vibration transmission in ships.

The, Finite Element Method (FEM) may be used to model the response of complex

structures. However, in the frequency range of interest for structure-borne noise studies (i.e.,

up to the several kIIz range), the number of elements required would probably be too large

for the practical analysis of a substantial part of a ship's structure, even with the help of

modern computer technology and software packages. Furthermore, at high frequencies where

the wavelength is much smaller than the overall dimensions of the structure, FEM would

become very sensitive to the system parameters and may lead to incorrect prediction of the
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structural response. Hence FEM is normally restricted to the vibration analysis of ship

structures at low frequencies.

A number of empirical studies (Janssen and Buiten,1973 Buiten, 1976 and Plunt, 1980a)

have been reported for ship noise predictions. These studies were mainly based on

measurements and data taken on board merchant ships. In general, empirical methods are

valuable tools in the analysis of a generic type of ship, especially at the design stage where

limited information is available. These methods become less attractive in situations where a

detailed analysis is required on different types of ships (for example, naval surface ships and

submarines).

Statistical Energy Analysis (SEA) is a framework of study for the forced fesponse of systems,

and is based on the power balance bøtween individual elements of a system (Lyoq 1975). It

provides a basis for the prediction of average vibration and noise levels in complex structures,

particularly in the high frequency regions.

Sawley (1969) demonstrated that SEA can be used successfully to investigate the noise

transmission paths of a motor vessel. Ødegnrd Jensen (1976) studied the distribution of

vibratory power in a l:5 scale ship section and also investigated the effects of damping on

vibration transmission. Good agfeement between calculated and measured results was

obtained for the lightly damped case but the agreement was poor for the heavily damped case

and Jensen attributed the discrepancy to the effect of in-plane waves acting as flanking

transmission paths for the vibratory power.

Othdr authors (Irie and Takagi, 1978; Fukuzawa and Yasudq 1979 and Hynnä et al',1995)

also reported on the application of SEA to the study of vibration transmission in ships' A

more detailed treatment of this subject was given by Plunt (l9s0b) where he investigated the

rear section of a cargo ship and found reasonable agreement with experimental results.



8

A common feature of the SEA studies reviewed so far is that the ship structures were

modelled as an assembly of plate elements subjected to bending waves except for Plunt

(1980b) where longitudinal waves were also considered.

Tratch (1985) investigated the transmission of vibration in a l:2.5 scale model of the

machinery foundation of a ship bottom structure using SEA. He also modelled the structure

as plate elements but considered atl the possible wave types generated at the junction (i.e.,

bending, longitudinal and shear). Good agreement between calculated and experimental

results was reported.

Naval ship structures often make use of shell elements coupled to various types of plate

element (for example, submarine hulûbulkhead coupled structure). The transmission of

vibration through coupled cylinderþlate structures has been investigated by a number of

researchers. Hwang and pi (1973) conducted an experimental investigation on a cylindrical

shell welded onto a base plate and concluded that the SEA method was not capable of

reaching any intelligent prediction of the coupling loss factor due to the strong interaction at

the cylinder/plate interface. Blakemore et al. (1992) studied a number of flange-connected

cylindrical shells and found considerable discrepancy between measurement and SEA

predictions. They attributed the discrepancy to internal acoustic coupling, non-equipartition

of energy between modes in a cylindrical shell element and low modal overlap. Pollard (1992)

also investigated experimentally the coupling loss factors of two cylinderþlate structures

(one with a long thin cylinder and the other with a short squat cylinder) and found conflicting

results although the short cylinder showed good agreement between the theoretical and

experimental results. Recently, Schlesinger (1995) presented a theoretical analysis of the

transmission of vibration through a cylinderlplate ooupled structure based on an arbitrary

distribution of the wave energies in the radial, circumferential and longitudinal directions. The

theory is supported by a limited amount of experimental data but further work is needed to

show that this method satisfies the reciprocity requirement of SEA. Thus the study of
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cylinder/plate coupled structures using SEA has been less successful compared with

plate/plate strucfures and further research effort is required to address this shortcoming.

fuiother type of structure often used in naval engineering constructions is a plate or shell

element reinforced with periodic stiffeners. The application of conventional SEA through

successive elements of this type of structure can significantly overestimate the transmission

loss (see, for example, Blackmore et a1.,1992). This is a matter of concern and has been the

subject of criticism (Fatry, lgg4). Clearly, the band pass nature of a periodic structure has to

be considered in SEA modelling since it has a strong influence on the transmission of

vibratory pov/pr.

Keane and Price (1989) applied the theory of periodic structures to enhance a one-

dimensional SEA model. They investigated a point spring coupled, multi-modal system and

compared the results obtained from'exact'modal analysis with the normal and enhanced SEA

model. A significant improvement in results was obtained by using the enhanced SEA model

rather than the normal model. However, the model studied by these authors was made up of

higþly idealised one-dimensional elements and therefore the analysis may not be readily

applicable to ship structures such as hull plates and bulkheads. Langley (1994b) also studied

the modal characteristicb of periodic structures and derived modal density expressions for

one- and two-dimensional structures. He further studied the forced response of a damped

one-dimensional periodic structure based on vibratory energy flow and compared the effect

of material damping with the effect of damping caused by structural irregularity on vibration

attenuation (Langley, 1994c). On the subject of 'near' periodic structures, Langley (1995)

investigated the wave transmission through a randomly disordered one-dimensional periodic

structure and discussed the occurrence of frequencies of perfect transmission.

From the preceding discussior¡ it oan be concluded that SEA is a useful tool for the

prediction of vibration transmission through complex built-up structures, especially in

situations where the structure can be modetled as an assembly of plate elements. However, a

number of areas have to be addressed before this method can be applied successfully to naval
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ship structures. Notably, the evaluation of coupling loss factors for junctions characteristic of

naval ship structures and the modelling of periodic structures as SEA elements. The above-

mentioned studies on periodic structures, together with the work on lvave transmission

through junctions, provide the basis for further development of SEA models for predicting

noise and vibration transmission in naval ships.

1.3 Objectives

An initial objective of this thesis is to investigate the wave transmission properties of

junctions typical of naval ship structures. In particular, the effects of structural details on

wave transmission such as the cross sectional deformation of stiffeners due to vibration, and

the coupling berween different wave types in an elastic element, are to be fully investigated'

A seconrl objective is to identify pass and stop bands of periodic structures typical of naval

ship constructions, and to investigate the effects of these bands on vibratory power

transmission through coupling with other structural elements.

A third objective is to develop SEA models for naval ship structures, based on the results of

analyses of junctions and periodic structures, and to conduct experiments to verifr the

models.

In view of the objectives outlined in the preceding paragraphs, the present study may be

regarded as a step forward in the development and refinement of the necessary tools for the

identification and quantification of vibration transmission paths in built-up structures, such as

naval ships. It is hoped that the results of this study will contribute to the understanding of

vibration transmission and lead to an improvement in the prediction of noise and vibration

levels in such structures.
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CHAPTER 2

WAVE PROPAGATION THROUGH STRUCTTTRAL JUNCTIONS

2.1 Introduction

A complex built-up structure may be considered as an assembly of structural elements such as

plates, beams and shells. These elements are ooupled together at junctions which may be

regarded as a series of structural discontinuities. If an incident wave impinges on a structural

junction or discontinuity, it will be partially transmitted and partially reflected at the junction

according to the boundary conditions and this phenomenon has a strong influence on the

propagation of waves. A commonly used method to characterise the wave transmission

properties of a structural junction involves evaluating the wave powers of the structural

elements. This leads to the determination of transmission efficiency which is defined as the

ratio between the transmitted wave power and the incident wave power. The transmission

efficiency is an important parameter in the study of structure-borne noise since it provides the

basis for the identification and quantification of vibration transmission paths through a

junction. This information is useful for the application of appropriate vibration control

techniques. As well as being a parameter of intrinsic importance, the transmission efficiency

may also be used to evaluate the coupling loss factors for the purpose of predicting the

vibration of oomplex structures using SEA whioh is discussed in Chapter 4 of this thesis.

One of the early attempts to evaluate the transmission efficiency was canied out by Cremer

(1943). His work included right-angled plate junotions subjected to oblique incident bending

waves. In Cremer's analysis, expressions for the plate displacements were developed from the

lry&ve equations in terms of complex wave amplitudes. The wave amplitudes and hence wave

polvers were then evaluated by considering the boundary conditions at the junction (i.e.,

compatibilþ of wave motion and equilibrium of forces and moments). This method of

analysis formed the basis of many subsequent investigations (see, for example, Craven and
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Gibbs, l98l; Wöhle et al.,l98l; Fuller, 1981 and Langley and Heron, 1990) where junctions

with plate, beam and shell elements were analysed. Although the subject of wave propagation

through junctions has received considerable attention in the past, there seems to be a lack of

research effort regarding structural junctions that are characteristic of naval ship

constructions. For example, the plate and shell elements of naval ships are often reinforced by

thin-walled stiffeners with a thickness approximately the same as that of the plate or shell

elements. The vibrations of stiffeners would therefore have a significant effect on structure-

borne noise transmission and this problem has not been adequately addressed.

The work described in this chapter was designed to complement existing studies on wave

propagation through junctions and in particular, the modelling of structures characteristic of

naval ships. Although the approach is similar to that of Creme/s analysis, the present study

considers the modelling of struotural details such as the cross-sectional deformation of

stiûèners due to vibration and the coupling between different types of waves in structural

elements.

The structural junctions covered in this chapter include:

Uniform semi-infinitç thin plates coupled to a thin rectangular section beam.O

o

Three-dimensional beam junctions that consist of semi-infinite beam elements with

bending and torsional wave coupling due to the offset between the shear centre and beam

centroid.

Semi-infinite thin cylindrical shells coupled to various types of plate element including

annular, circular and infinite plates.

Figure 2.1 shows these structural junctions schematically. In the following sections, equations

of motion for the structural elements of these junotions are given. The solutions to these

equations are represented by complex wave amplitudes and by using the appropriate

boundary conditions at the junctions (i.e., the compatibility of displacements and the
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(a) Plate / beam junction

(b) Beam junction

(c) Cylinder / plate junction

Figure 2.1 Examples of structu¡al junctions.
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equilibrium of forces and moments), the \ rave unplitudes and hence the transmission

efñciørcy can be determined (detailed derivations are given in Appendices I - 4)'

2.2 Platelbeam Junction

Figure 2.2a shows a schematic diagfam of a junction which consists of a number of semi-

infinite plates. The source plate (plate 1) is subjected to an oblique incident wave at angle a

to the 11 - axis. The incident wave may be a bending, longitudinal or shear lryave and when it

impinges on the line junctior¡ it is partially transmitted and partially reflected as bending,

longitudinal and shea¡ waves as shown. To study the wave transmission mechanism of the

junction, one may fi¡st consider the displacements due to the transmitted or reflected waves

in an arbitrary plate as shown in Figure 2.2b. The equations of motion for bending and in-

plane displacements of the plate may be written in the following form (see, for example.

Love, 1927):

Y fu + [t2p(t -¡t2)l Eh27*w t a? = o, (2.1a)

tulôxz + t(l-p)/21 &u/$P + l(I+¡t)t2ltilAx¡y - Ip1-þ\lE1&vlôt2 : O, (2.lt)

û"tú + t(l-p)/21 ûvt# + [(1+p)/2]túaxay - þ(t-tt2)/27ûu/ôP : 0, (2.rc)

where V2 is the Laplacian operator in Cartesian co-ordinates; u, v a¡rd w are the plate

displacements in the 4.y and z directions respectively', E, h, p and p are the elastic modulus,

thickness, density and Poisson's ratio of plate respectively.

Solutions of equation (2.1) lead to four unlcnown complex tvave amplitudes for one direction

of wave propagation. These wave amplitudes represent the longitudinal and shear waves, as

well as the travelling and decaying bending waves. Dctails of the mathematical solutions a¡e

given in Appendix l.
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For junctions that consist of a number of semi-infinite plates coupled along a line or coupled

to a thick beam, the source plate carries the incident and reflected waves and the receiving

plates carry the transmitted \rraves. The displacements of the source plate therefore consist of

the incident and reflected wave components. For the purpose of calculating the transmission

and reflection efEciencies, the incident component may be regarded as a wave of unit

amplitude. The unknown reflected and transmitted wave amplitudes may be determined by

consideration of the boundary conditions at the junction. Detailed studies on these junctions

have been reported by and Langley and Heron (1990) and will not be considered here.

For a structural junction with a number of semi-infinite plates coupled to a thin rectangular

bearn, the beam is zubjected to bending and in-plane waves and the analysis may be ca¡ried

out by assuming that the thin beam behaves as a finite plate with lvaves travelling in both the

positive and negative r - direotions as shown in Figure 2.3. The solutions to wave motion of a

finite plate therefore consist of eight unknown complex wave amplitudes (four amplitudes for

the positive ¡ - direction of wave propagation and four amplitudes for the negative x -

direction) and the solutions for plate deformations are described in Appendix l. Four

additional boundary conditions are required in this case. These boundary conditions may be

obtained by equating tlie forces and moment to zero at the free edge of the finite plate.

Combined with the boundary conditions at the junction, they provide sufñcient information

for the solution of all complex wave amplitudes.

2.3 Ttree - dimensional Beam Junction

An arbitrary beam section is shown in Figure 2.4. The shear centre, centroid and attachment

point of the beam a¡e denoted bV S, C and P respectively. Two fixed co-ordinate systems are

attached to the beam element. The axes xy, lr and z, a¡e defined as the reference ores of the

beam with the oris r, passing through the attachment point in the longitudinal direction. The

principal axes of the beam are denoted by xp, þ and zrwith axis rO parallel to r, and passing
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through the beam centroid. The beam displacements % rv and 0¡ are related to the shear

centre, while u,0y and 9, ue related to the centroid.

The equations of motion of the bean¡ taking into account the effects of shea¡ deformation

and rotary inertia" may be derived by considering an element of unit length and the associated

forces, moments and inertias (see, for example, Timoshenko et aI., 1972),

GAKz(æ/tup* t*nxo2): pA(g te¡atz + ûwta?'¡, (2.2a)

øt, terÞxp2 - Gl.xrlor+ ôwlôxp) = Iyp teya4, (2.2b)

GAKy(æu/axpz - ffi ltup) : pA(*vl atz - t te¡aP¡, (2.2c)

a4 tï¿ôxoz - clxr{avttup - Qr) = Irp tïr¡ôP, (2.2d)

GJ ffirlùxo= 4 ûe¡aP - pAb ûvlaí2 + pAg ûøatz, (2.2e)

EA ûulôxO2: pA ûu/ôt2, (2.2Ð

where Iy, I, are the second moment of area of beam about ,¡e lp and zO Ð(es respectively;

K), Krare the shea¡ factors in theyO and zpdirections respectively,./is the torsional constant

of beam, ^I" is the second moment of inertia per unit length of beam about the shear centre, A

is the cross-sectional area of beam, G is the shear modulus and ó, g represent the offset

between the shear centre and beam centroid as shown in Figure 2.4.

Due to the offset between the shear centre and the centroid, the bending and torsional

motions of the beam are coupled as can be seen in equations (2.2a) - (2.2e). Equation (2.2Ð

represents the longitudinal mode and is independent of the bending and torsional modes.

Solutions of equations (2.2a) - (2.2e) may be obtained by evaluating the roots of the
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dispersion equation and this leads to five wavc numbers for one direction of wave

propagation. There are altogether six unknown complex wave a¡nplitudes in the beam

element. Detailed derivations of the solutions to equation Q.2), as well as the consideration

of boundary conditions at a three-dimensional beam junctioq are shown in Appendix 2.

2. 4 Cylinde r I plate Junc{ion

The dynamics of thin oylindrical shells have been studied extensively (see, for example,

Leissa, lg73). Of prime importance to the present study is the nature of the waves in a thin

cylinder and this will be reviewed briefly in this section. Figure 2.5 shows the co-ordinate

system and displacements in the a,rial, oircumferential and radial directions (2, v and w) of a

thin cylinder. The shell motion may be described by the Donnell-Mushta¡i system of

equations which is given by (Leissa, L973):

L

[;]

=0, Q.3)

where L is a matrix differential operator (see Appendix 3 for elements of the operator). For a

particular circumferential mode number n, the solution to equation (2.3) may be obtained by

evaluation of the dispersion equation, leading to four unknown wave amplitudes for one

direction of wave propagation. The nature of the waves generated in a thin cylinder is

important to the study of vibratory power transmission. From the dispersion equation (see

Appendix 3), one obtains the odal wave numbers which can be real, imaginary or complex.

The real roots represent the travelling waves which propagate energy from the junction. A

plot of the \¡/ave number of the travelling lryaves against the non-dimensional frequency O (O

is sometimes referred to as the ring frequency ratio and is given by aalc¡, where o is the

circular frequency, ø is the cylinder mean radius and c¿ is the longitudinal wave speed) of a

steel cylinder with thickness h = 0.02 rn, radius a = | m, Poisson's ratio p = 0.3, and
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Figure 2.5 Co-ordinate system of cylindrical shell.
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circumferential mode number t = 2, is shown in Figure 2.6. Also shown in Fþre 2.6 are the

wave numbers of a flat plate in bending, longitudinal and transverse shear motions ks, k¿ and

fr1 respectively. Three travelling v/aves can be observed in the figure. These waves are

labelled as Tlpe I, II and III and at high frequencies, their wave numbers approach the values

of k6, k7 and É¿ respectively. The fourth root of the dispersion equation can be recognised as

the near field bending \r/ave solution for a flat plate at high frequencies. The low frequency

behaviour of these waves has been discussed in detail by Smith (1955) and Fuller (1981).

For circular and infinite plates, it is more convenient to express the plate equation (equation

(2.1) in terms of the polar co-ordinates,

Yo rp+ [12p(l - ¡r2¡tnÊ1tw¿aP = o, Q.4a)

AlAr{Auplôr + uolr + (r/r) tu/æl - {Q-¡tl2r\ô1ffi{õvoôr + vy'r - (t/r)AuOlæ\

- {p(t-¡t2)tD}tuy'ôt2 : o, (2.4b)

(t/r)ô/æ{Auplõr+uOlr+(t/r)Avp/æ}+ {(r-¡t)12}ôlùr{Avy'ôr+volr-(tlr)Auy'æ}

- {p(t-tt2)t4\tvo/ôí2 = o, Q.ac)

where V2 is the Laplacian operator in polar co-ordinates, uO and vp are the plate

displacements in the r and 0 directions respectively and wO is the out-oÊplane displacement

of the plate.

Solutions to these equations may be obtained in terms of the Bessel functions for circular and

annular plates, and Hankel functions for an infinite plate as shown in Appendix 3. Depending

on the types of cylinderþlate coupled structure, the solutions to equation (2.4) may be used

in conjunction with equation (2.3) to satisfy the boundary conditions of the junction and lead

to the determination ofwave amplitudes.



23

20
kB

¡r
(¡)þ
E

q)

€
È

l5

l0

Type I

l<"

Type II

I 2

Frequency parameter C)

Figure 2.6 Travelling waves in a cylindrical shell.

5

Type trI

3



24

2.5 Evaluation of Wave Powers and Transmission Efficiency

The power for a particular travelling wave in a semi-infinite structural element may be

determined from the junction forces urd displacements. For plate/beam junctions, the

bending, longitudinal and shear wave pouters may be expressed as:

fIn: Y"Re1U$* + Fztï*\, (2.5a)

fIL =VzRe{F*ù*\, (2.sb)

flr = %Fie{Fri*}, (2.sc)

where and * denote the derivative with respect to time and the complex conjugate

respectively, Fx, F, and F, are the plate forces in the x, y and z directions respectively, M is

the bending moment and 0 is the plate rotation about they-axis. Similar expressions for wave

poviers may be obtained for beam junctions. For cylinderlplatejunctions, the above wave

power expressions have to be integrated a¡ound the circumference of the cylinder to obtain

the total lryave power. Detailed expressions for wave powers of cylinderþlate junctions are

shown in Appendix 4.

The transmission / reflection efficiency is defined as the ratio between the transmitted /

reflected wave power and the incident wave porver. For plate junctions subjected to an

oblique incident v/ave, the efficiency is a function of the incident wave angle. If one assumes

that ihe souroe plate carries a diffilse vibration field, one may average the efficiency from an

incident angle ø of -æ12 to æ12 radians and obtain the mean transmission / reflection efEciency

which is defined as (Cremer et a1.,1988):

'rcl2

f : %
J

-ß12

t(cr,) cosa dcr,
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I
f t(") d sincr,
J0

(2.6)

This is a more meaningful parameter to cha¡acterise the wave transmission properties of plate

elements subjected to a diffilse incident vibration field as can be seen in Section 4.1.5 of

Chapter 4 where the derivation of coupling loss factors are presented.

Throughout the preceding analysis, it has been assumed that the material loss factor of all

structural elements is equal to zero. From the principle of conservation of energy, it can be

deduced that the sum of the transmitted and reflected wave powers is equal to the incident

wave poriler. Material damping in the structural elements may be accounted for by replacing

the elastic modulus E in the analysis by E (l + jn), where r1 is the material loss factor.

However, with the introduction of damping, there will be no definitive distinction between

the travelling and evanescent waves and that raises the problem in the definition of wave

power. The effects of material damping on wave transmission have been discussed by Craven

and Gbbs (1981) and will not be considered any further in the present study. For lightly

damped structures, the assumption of zero damping gives a good estimation of the

transmission efficiency (see, for example, the book by Cremer et al., 1988 where theoretical

and experimental results ofthe transmission efüciency of a right-angled structural junction are

presented and discussed).

2.6 Numerical Examples

2. 6. l.Plate-beam junctions

Figure 2.7 shows a plate/beam junction that consists of two semi-infinite plates coupled to a

thin rectangular beam with one of the plates subjeøed to a diffi¡se incident bending wave

field. The method of analysis outlined in Section 2.2 and Appendix I which involves treating

the thin beam as a finite plate (thin beam model) was used to determine the mean

transmission efficiency of the junction and the rezults a¡e shown in Figure 2.8. The effect of
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bending resonance frequencies of the thin beam on wave transmission can be observed. A

detailed discussion of the relationship between the natural frequencies of a junction element

and wave transmission has been presented by A[wright et al., 1994. To demonstrate the

effect of beam vibration on wave transmissior¡ a second set of calculations was performed on

the same junction but with the beam vibr¿tion ignored in the analysis (hick beam model).

This method is based on the work reported by Cremer (1948) and the results are also plotted

in Fþre 2.8 for comparison. As the beam thickness in this example is the same as that of the

plates, it is reasonable to assume that the thin beam model would give a more accurate

prediction ofthe transmission efficiency. Figure 2.8 shows that the thick beam model predicts

a low pass characteristic of the platelbeam junction and underestimates the transmission

efficiency at frequencies above 500 Hz.

As a second example, the beam thickness of the previous example was doubled and

calculations based on the thin beam and thick beam models were performed. Figure 2.9

shows the calculated mean transmission efficiency. Below a frequency of I kHz, the results

between the thick beam and thin beam models are in reasonable agreement. At higher

frequencies, the thin beam model predicts a higher transmission efficiency, possibly due to the

effect of beam resonance. It should be noted that the mathematical models used in this thesis

are based on thin plate theory and the assumption that the boundary conditions can be applied

on the plate/beam centreline. These assumptions may not be justified at high frequencies

where the cross sectional dimensions of the junction is not negligible compared with the

bending wavelength. Cremer et al. (1988) suggested that thin plate theory may be used if the

bending wavelength is longer than six times the plate thickness. For the present examples, this

occurs at a frequency of approximately 26 ktlz which thus represents the upper frequency

limit of the analysis. The effect of plate offset from the centreline of a thick beam may be

considered by modifying the compatibility and equilibrium equations. This approach has been

carried out and reported by Langley and Heron (1990).
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2.6.2 Symmetrical T-junction

Figure 2.10 shows three identical l-section beams in a symmetrical T-junction about the x-y

plane. The beam parüneters are shown in Table 2.1. This example is chosen to coincide with

an example discussed by Moore (1990) who used the Euler-Bernoulli theory to describe the

beam motion. Beam I carries an out-oÊplane bending wave which transmits into torsional

and out-oÊplane bending waves in beams 2 and 3. Due to the symmetrical natr¡re of the

junction, the transmission efficiencies of beams 2 and 3 must be equal. To account for the

shear deformation of the beam elements, it is required to determine the shear factors K, and

Krwtnchare defined as the ratio between the average shear strain and the local shear strain at

which the equivalent shear force acts. Expressions for shear factors of some beam sections

commonly found in engineering applications are given by Cowper (1966). However, for the

purpose of illustrating the present method of analysis, it is assumed in the following beam

examples that plane sections remain plane during bending, i.e., the shear factors are equal to

unity. To demonstrate the effects of shear deformation and rotary inertia on vibration

transmission, a second set of calculations was carried out using the Euler-Bernoulli beam

theory. This can be achieved in the present analysis by ignoring the rotary inertia terms (the

terms in the right hand side of equations Q.2b) and (2.2d)) and putting the shear factors

equal to infinity. Figure 2.11 shows the bending and torsional transmission efftciencies of

beams 2 and 3. With shear deformation and rotary inertia ignored in the analysis, the results

are identical to those given by Moore (1990). The transmission of torsional wave power is

due to a rotation of beam I about they - a"xis while the transmission of bending power results

from.the motion of beam 1 in thez direction. As expected, the effects of shear deformation

and rotary inertia become more signifïcant as the frequency increases. Below a frequency of

approximately 200 If,z, such effects on wave transmission are negligible. At higher

frequencies, shear deformation and rotary inertia reduce the transmission of torsional waves

while at the same time increasing the transmission of bending waves.
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Table2.l

E = 7.2x l0l0N/m2; p = 2.71x t03 kglm3; G = 2.69x l0l0 N/m3

A = +xl}-an?; Iy =2.8x10-6m4; Iz = 3.48x10-sma

GJ= 3.5 x 103 Nm2

Parameters of beam element

2.6.3 Tttree-beam orthogonal junction

A structural junction which consists of three orthogonal steel beams is shown nEigure 2.12.

Beam I ca¡ries a predominantly bending incident wave in the x¡1 - z7¡ plane. The bending and

torsional vibration modes of these beams are coupled and as a result, the incident wave is

partially reflected and partially transmitted as bending, longitudinal and torsional waves. For

beams I and 2, the attachment point is offsø from the shear centre and this has an effect on

the coupled torsional and bending modes ar¡ can be seen later in the results.

The bending incident wave in beam I produces torsional and out-oÊplane bending waves (in

the zpz - xpzPlane) in beam 2 with the transmission efficiency increasing with frequency (see

Figure 2.13). Both the longitudinal and in-plane wave powers are negtigible within the

Êequency range considered in this example. Figure 2.14 shows the transmission efficiencies

of beam 3. Significant longitudinal porver is transmitted to this beam due to the incident v/ave

motion of beam I in the zr1 - direction. The rotation of beam I about the y7¡ - a¡<is also

transmits into bending motion in beam 3 about its prinoipal a,xes. The torsional wave in beam

3 is due to the coupling effect caused by the offset between the shear centre and beam

centroid. Figure 2.15 shows the reflection efüciencies of beam l. The reflected wave power is

predominantly bending in the xr1 - zrLplane.



34

zrt

!¡

x,l

Figure 2.12 
^three-beam 

orthoganol junction.

Cross sectional dimensions of beams I and,2 ue
160mm x 80mm x 10mm thick.

Cross sectional dimensions of beam 3 are
80mm x 80mm x lOmm thick.
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To demonstrate the effect of bending - torsional mode coupling, as well as the offset of the

attachment point from the shear centre, two additional sets of calculations were performed on

this beam junction. First, the centroid of all beam elements wa¡¡ assumed to coincide with the

shear centre while all other beam parameters remain unchanged. Second, the attachment

point of all beam elements was assumed to coincide with the shear centre, again with all other

beam parameters unchanged. A discussion of such effects on wave transmission of bending

waves in beam I to bending waves in beam 2 is presented here. While the discussion is based

on this particular example, it is hoped that it may shed some light on the wave transmission

mechanism of general beam junctions. Fþre 2.16 shows the bending wave transmission

efficiency in the zr - xr plane of beam 2 due to an incident bending wave in beam l. To

explain how the offsets of the centroid and attachment point from the shear centre affect the

transmission of bending waves, it should be noted that the bending wave in beam 2 is strongly

influenced by the torsional component of the incident wave in beam 1. This torsional

component consists of two parts, the fi¡st part is due to the coupled bending - torsional mode

while the second part is due to the offset between the attachment point and the shear centre.

With the beam centroid coincident with the shear centre, there is no coupling between the

bending and torsional modes in the incident wave. The reduction in the torsional component

of the incident wave results in a decrease in the transmission of bending waves to beam 2. In

the second case, a shift of the attachment point to the shear centre has a similar effect and for

this particular example, it is more significant for bending wave transmission.

2.6.4 Cylnder/annular plate junction

Figure 2.17 shows two semi-infinite thin cylinders coupled rigidly to a finite annular plate at

the inside of the cylinders. This example is chosen to coincide with an example discussed by

Harari (1977) who treated the discontinuity as a ring stiffener. The physical pa^rameters

characterising the cylinders are the same as those of the example considered in Section2.4.

The thickness of the stiffening plate is twice that of the shell and the width of the plate is

eight times the thickness of shell. A Ty'pe I (see Section 2.4 for a discussion of the types of
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Figure 2.17 Cylinder / annular plate juncrion.
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waves in a cylinder) incident wave is applied to one of the cylinders. Figure 2.18 shows the

total transmission efficiency at a circumferential mode number n = 2 due to all admissible

propagating tl,aves in bending, longitudinal and torsional motions. Despite the difference in

approach in calculating the transmission efficiency, the results obtained by using the present

method of analysis are in close agreement with those obtained by Harari (1977) who also

discussed the effects of the resonance ftequencies of the stiffener on vibration transmission'

The major discrepancy occurs at the region of total transmission (C) : 0.6 - 0.8) which is

likely to be caused by the difference in resonance frequencies between the ring stiffener (the

model used by Harari) and the annular plate.

At high frequencies (O > 1) where the wavelength is small compared with the radius, a

cylindricat shell vibrates in approximately the same way as a flat plate. This is demonstrated in

Figure 2.18 where the total transmission efficiency of a beam stiffened plate is calculated and

plotted against the frequency parameter. The plate has a width of 2æa in they direction and is

infinite in both the positive and negative r-directions (see Figure 2.19).It can be thought of

as equivalent to a cylinder/annular plate system that is cut along a line parallel to the æ<is and

then flattened so that the junction is a straight line. The incident wave consists of a

component 'standing' in the y-direction with two \ryave cycles (corresponding to a

circumferential mode number n = 2 in the cylinder) and a component 'propagating' in the

positive x-direction. The wave heading angle a is given by :

cr: sin-l lnl(a k6)J, (2.6)

where n is the circumferential mode number, ø is the mean cylinder radius and kOg is the

bending wave number of the equivalent plate. The transmission efüciency of the plate/beam

system is calculated according to the method outlined in Section 2.l.It should be noted that

the wave heading angle a decreases as the frequency increases'
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Figure 2.19 Equivalent plate / beam junction.
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From Figure 2.18, it can be seen that the plate/beam system shows a region of total

transmission between a frequency parameter Çl of approximately 0.3 - 0.5, followed by a

point of total reflection at Q = 0.9. As the frequency increases, the shear r¡/ave cuts on at C) :

1.183 and rezults in a sudden increase in the transmission efficiency. A similar behaviour oan

be observed in Figure 2.18 for the cylindrical shell where the Type II wave cuts on at

approximately the same frequency. Above a frequency parameter O of 1.4, there is no

significant difference between the total transmission efficiency of the cylinder and flat plate.

2.6. 5 Cylinder/circular plate junction

This example consists of a thin solid circular plate coupled to the inside of two semi-infinite

cylinders (as for Figure 2.17 butwith the annular plate replaced by a solid circular plate). The

cylinder parameters are the same as for the previous example and the thickness of plate is the

same as that of the shell. Figure 2.20 shows the total transmission .efficiency for an incident

Type I wave and circumferential mode number n = 2. Regions of peak transmission efficiency

due to the resonance effects of the circular plate can be observed. The bending resonance

frequencies of the plate with two nodal diameters and various nodal circles were calculated

and plotted in Figure 2.20 asf¡(k: number of nodal circles). It can be seen that the regions

of peak transmission efficiency are closely related to the plate resonance frequencies above a

nodal circle of three (see Atlwright et a1.,7994, for a detailed discussion of the relationship

between the plate resonance frequencies and wave transmission)'

2. 6. 6. Cylinder/infi nite plate junctio n

As a final example, transmission efñciency calculations were performed for a semi-infinite

cylinder coupled to an infinite plate at the outside of the cylinder. Figure 2.21 shows the

transmission efficiencies due to bending, longitudinal and shear motions of the plate with a

circumferential mode number n = 2 and an incident Type I wave in the cylinder. It can be

observed from Figure2.Zlathat a significant amount of shear povrer is transmitted below the
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cut-on frequency of the Type tr wave (O < l.lS). This is due to the component of

circumferential motion in the Type I wave, coupled with the fact that the plate has a much

higher shear rigidity than bending so that a moderate value of circumferential ll'ave

amplitude will result in a considerable amount of shear power being transmitted. The cut-on

of the Type tr wave is followed by a sharp increase in bending power (see Figure 2.21b)

because the T1rye II wave has a large o<ial component at low frequencies that is readily

transmitted into bending motion in the plate.

As a comparison, the transmission efficiencies of a right angled two plate junction in bending,

longitudinal and shear motions were calculated and plotted in Figure 2.21. The source plate

has a width equal to the circumferenoe of the oylinder and the receiving plate is semi-infinite.

The source plate is subjected to an incident bending wave with the heading angle ct given by

equation (2.6). The shea¡ wave and longitudinal \¡/ave can propagate only in the plates above

a cut-on frequency which is related to the wave heading angie by (see Cremer et a1.,1988):

kp/kpy = sin c{, ; kO¡lk6 : sin ct, (2.7a,b)

where kOl and kr7 are the wave numbers for longitudin¿rl and shear waves in the plate

respectively. The cut-on frequencies correspond to a frequency parameter O : 1.183 and 2.0

for the shear wave and longitudinal wave respectively. After the cut-on of the longitudinal

wave, the wave transmission properties of the cylinder are approximately the same as those

of a flat plate.

The transmission efficiencies of the same cylinderþlate and plate/plate junctions with a

circumferential mode number n = I are shown in Figure 2.22. The cut-on frequencies of the

longinrdinal and shear waves now occur at half the values as those of the previous case.

However, the general shapes of the transmission efficiency plots for the two cases are similar.

both the cylinderþlate and plateþlate junctions show approximately the same transmission

efficiency at high frequencies after the cut-on of the longitudinal u'ave.
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2.7 Summary

The analysis presented in this chapter dealt with the vibratory Power flow through structural

junctions that consisted of elements of semi-infinite extent. Detailed studies on three t¡pes of

structural junctions were presented; they included :- plate elements coupled to a thin

rectangular section bearn, three-dimensional beam junctions and cylinderþlate junctions. The

effects of mode conversion at a junction (for example, from bending waYe to longitudinal and

shea¡ waves in a plate/beam junction), together with the coupling between different vibration

modes in an element (for example, the bending and torsional mode coupling in a beam

element) were fully accounted for. Particular attention \ryas given to the effect of cross

sectional deformation of stiffening elements in a junction due to vibration. Such an effect is

significant in junotions that cha¡acterise naval ship structures as demonstrated in Section

2.6.1 ofthis chapter.

Although the preoeding anaþsis provided an insight into the transmission of different wave

types through structural junctions, the analysis is limited to elements of semi-infinite extent

coupled at a single junction. Real stn,ctures differ from this idealised consideration in that

they are finite in extent and are characterised by multiple junctions. The next two chapters

consider respectively the wave propagation in periodic structures and the application of SEA

to study vibration transmission in complex built-up structures. The work presented in this

chapter is used as a basis for the analysis of periodic structures and the evaluation of coupling

loss factors in SEA studies
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CHAPTER 3

COTIPLED PERIODIC STRUCTURES

3.1 Introduction

periodic structures are used extensively in engineering constructions. Examples of these may

be found in many engineering applications such as ship structures (for example, decks,

bulkheads and hull structures) where relatively lightweight uniform plates or shells are

reinforced by the attachment of stiffeners at regular intervals. The study of wave transmission

through periodic structures is an integral part in the overall investigation of noise and

vibration transmission through complex built-up structures such as naval ships'

Brillouin (1946) studied the wave motion of a number of periodic systems such as atoms,

crystals and transmission lines using the Bloch (or Floquet) theorem. This approach greatly

simplifies the analysis by relating the wave solutions in adjacent bays of the system. For a

periodically supported beam of infinite extent in bending motiorL the Bloch theorem gives the

spatial variation of transverse displacement through each bay of the structure as (Mead,

le71):

w (x+ l) exp Ûot) = exp (1,) w(x) exp (jco/), (3. 1)

where / is the length of an element in the periodic structure and I is the propagation constant'

If thé propagation constant is purely imaginary, the bending wave will travel freely in the

periodio structure. The frequency band in which wave propagation occurs is referred to as the

pass band. On the other hand, if the propagation constant contains a real component, the

bending wave will behave in an evanescent manner and the corresponding frequency band is

referred to as the stoP band.
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The wave transmission properties of a large number of periodic structures (for example,

beams, plates and shells) have been studied extensively (see, for example, Heckl, 1964; Mead,

1971;Mead and Bardell, 1986, 1987 and Lang)ey,1991). Howeveç periodic structures are

often coupled to other structural elements and the transmission of vibration through such

coupled structures has received less attention. The present study is concerned with the

transmission of vibratory pourer through coupled periodic structures and the application of

SEA for response prediction of such structures.

In this chapter, the wave transmission properties of a plate with periodic stiffeners are

analysed following the work of Mead (1971). The stiffened plate is then ooupled to a uniform

plate at right angles þoth of semi-infinite extent) and the transmission efficiency of this

coupled struct¡re is investigated based on the method described in Chapter 2.

3.2waveTransmission Through a Plate with Periodic stiffeners

To demonstrate the effects of pass and stop bands on the wave transmission properties of

periodic structures, a simple structure which consists of stiffening beams attached

symmetrically to both sides of the plate is chosen for the analysis (see Figure 3.1). This

arrangement avoids the generation of in-plane waves in the platdbeam junction' The bending

\¡/ave displacement of the plate may be obtained in a similar way as was done by Mead (1971)

in his treatment of a periodically supported beam, except that in this case the bending wave

number has components in both the x - and y - directions due to the nature of the oblique

wave. A detailed analysis of the plate with periodic stiffeners is given in Appendix 5' This

sectibn outlines the procedures and results of the analysis.

For an arbitrary bay i (l : 0, l, 2,3,....æ),the plate displacement is given by:

4

w(xù = exp (À Ð { t Arx exp (kr*x¡)}exp (kyy + jo/),

m=l
(3.2)



52

z

x

v
xt

i t element

i = 0,1,2,3,....

Figure 3. t A plate with periodic beam stiffeners.



53

where / is the stiffener spacing, xi= x - i l, kn'is the root of the dispersion equation for plate

bending and A, is the associated wave amplitude. The last exponential factor on the right

hand side of equation (3.2) represents they - direction dependency and time dependency of

the wave amplitude.

Applyrng the compatibility and equilibrium conditions to two adjacent bays of the structure,

the following matrix equation can be obtained :

lvlAml: exp (L)l.Aml, (3.3)

where m = !....4,Â is a 4 x 4 matÅxdefined by the system parameters andlA* ] is a column

vector representing the wave amplitudes.

Thus the analysis of wave propagation through a periodic structure may be reduced to a

standard eigenvalue form. The four eigenvalues exist in two pairs, one of each pair being the

reciprocal of the other, indicating the propagation of waves in both the positive and negative

directions. The eigenvector which corresponds to each eigenvalue may be normalised to give

ll, A2lA1, A3lA1, A4lAIlT .

As an example, the wave transmission properties of the plate with periodic stiffeners shown

in Figure 3.1 were evaluated in terms of the wave heading angle and frequency. The plate and

beam materials are steel with a elastic modulus of 1.95x1011 N/m2, density oî7700 kg/^3

and Poisson's ratio of 0.3. The thickness of plate is 2 mm and the beams are 6 x 14 mm

sections spaced at 100 mm apart. Figure 3.2 shows the propagation and attenuation zones of

the structure. At normal incidence (zero wave heading angle), the first four stop bands lie

within a frequency range of 359 - 483I1:.,1535 - 1884 Hz, 3598 - 4048I12 and 6591 '6730

Hz.

The wave transmission through two-dimensional elements such as plates with periodic

stiffeners differs from that through one-dimensional elements in that the former is dependent
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on the wave heading angle and frequency. Consider a beam stiffened plate subjected to a

diffi.rse vibration wave field. The incident wave will find a raîge of angles that transmit the

wave freely and therefore two-dimensional elements do not normally exhibit a single pass or

stop band at a particular frequency as is the case for one-dimensional periodic structures.

This may explain the good agreement between experimental results on coupled plate

struotures with periodic stiffeners and SEA predictions using uniform plate theory as reported

by Ødegaard Jensen (1978). However, the complex nature of wave transmission through

coupled periodic stn¡ctures and its effect on SEA modelling warrants a more detailed

investigation and this is outlined in the next section.

3.3 Coupled Periodic Structure

Figure 3.3 shows a coupled periodic structure which consists of a plate with periodic

stif¡eners coupled at right angles to a uniform plate. Both plate elements are assumed to be of

semi-infinite exterit to avoid the complication of wave reflection at the plate edge boundaries.

This particular structural junction is chosen on the basis of simplicity as well as its

resemblance to many practical engineering structures including naval ship structures. If the

uniform plate is considpred as the source plate which carries an oblique incident bending

wave of wave angle cr, and unit amplitude, then the out-oÊplane displacement for the source

plate is given by (see Appendix I for solution to plate bending equation):

w, = {exp 0 É.yx rs cos cr) * ,,4" exp Gj És xs cos 1) +.4! exp [-&s¡ rs ./(1 + sin2l)] ]

x exp (ktyy + jo/), (3.4)

where r4" and l! are the complex \ryave amplitudes of the travelling and decaying reflected

r¡/aves respectively, subscript s represents the source plate, and T is the reflected wave angle

which is related to the incident wave angle ø through Snell's law (see Appendix l)'
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For the plete with periodic stiffeners (the receiving plate), the out-oÊplane displacement due

to tvaves in the positive r- direction may be expressed in terms of two eigenvalues î,1 and þ,
together with their associated eigenvectors :

4 4

wr- exp (fr Ð {lA1Z(AnlA) exp(knax¡)l+ exP ØzÐ[A\2(A'v/A'r) e*p (knxxùl]
m=l m:l

x exp Qgl+iat), (3.s)

where subscript r represents the receiving plate.

The expressions for plate displacements of the coupled structure therefore consist of four

unknown wave amplitudes (lo A's, Al and z{'¡). If only the bending wave is considered in the

analysis, then the boundary conditions can be expressed in terms of the displacements,

rotations and moments as shown below:

the plate displacements at the junction are equal to zero,a

a

a

v.t = 0,

vr:0,

the plate rotations at the junction must be compatible,

Aws ßxs= ôwy lôx¡ ,

the plate bending moments must be in equilibrium,

(3.6)

(3.7)

(3.8)

DrÍ*nrl At? + prûw7l Afl+ Dr[twrt Ar? + ¡tr&tst Ú]:0, (3.e)

where Dn Ds are the flexural rigdlty of the receiving and source plates respectively, and pn

lrs üe the Poisson's ratios of the receiving and source plates respectively. All the above
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boundary conditions are evaluated at the junction (i.e., x" = 0, i = 0 and ri = 0)' Solution of

the boundary conditions leads to the four complex wave amplitudes and the wave powers and

transmission efEciency can be evaluated according to the procedure as described in Section

2.5 of Chapter 2.

3.4 Numerical Example

Calculations of the transmission efficiency were performed on the coupled periodic structure

as shown in Figure 3.3. The plate with pøiodic stifFeners has the same parameters as for the

example presented in Section 3.2 of this chapter while the uniform steel plate has a thickness

of 2 mm. Figure 3.4 shows the transmission efficiency ar¡ a function of the incident wave

angle at a frequency of 1000 tlz. The incident angles that allow for free wave propagation are

0 - 26 degrees (propagation zone 2) and 30 - 36 degrees þropagation zone l). The mean

transmission efficiency of the coupled structure was also evaluated as a function of frequency

and averaged in one-third octave bands as shown in Figure 3.5. It makes use of the

expression presented in Section 2,5 of Chapter 2 .vurth allowance for zero transmission in the

attenuation zones. A drop in the transmission efficiency can be observed at band centre

frequencies of 1600 ffz,.zOOOlfz and 4OOOHz where the wave transmission properties are

dominated by the attenuation zones. The application of mean transmission efficiency to

evaluate the coupling loss factor for periodic structures is discussed in Section 4.2.2 of

Chapter 4. It is interesting to note that for two uniform plates of equal thickness coupled at

right angles, the mean transmission efficiency has a constant value (independent of frequenÐ

of 0.333 (Cremer et al., 1988).

3.5 Summary

The analysis of wave transmission in a plate with periodic stiffeners may be reduced to an

eigenvalue problem where the eigenvalues represent the propagation constants and the

eigenvectors give the complex wave amplitudes. Wave propagation can only exist if the



59

à
L)

.E 0.6
o
E
o)
Éo
ü)
c/,

q)

F 0.4
È

0.8

0.2

l0 20 30 40 50 60

Wave angle (degrees)

Figure 3.4 Transmission efficiency as a function of the incident wave angle
for a uniform plate connected at right angles to a plate with
periodic stiffeners.



60

1.0

()
o
I

c)
Éo
(â
.t)
ÉH(t)
d

cÉq)

r000
Frequency (Hz)

Figure 3.5 Mean transmission eftìciency of a coupled periodic structure consisting
of a uniform plate coupled to a plate with periodic stiffeners. The mean
t¡ansmission efficiency of a plate / plate structure is also shown for
comparison.

, coupled periodic structure;

, plate / plate structure.

10000



6l

propagation coßtant is purely imaginary. The propagation constant of a two-dimensional

periodio structurc such as a plate with periodic stiffeners is governed by the wave heading

angle and the frequøroy in addition to the physical properties of the structure. For a bending

wave propagating in one directiorç the wave motion may be expressed in terms of ¡uo

ünknown wave amplitudes, representing the travelling and decaying components in a similar

manner as the wave motion in a uniform plate.

functions that consist of periodic structural elements may be analysed by using the

expressions for wave motion of the individual elements and then applyrng the boundary

conditions at the junction to obtain the wave powers and transmission efficiency. Results

from an example structural junction show that the band pass nature of the periodic element

has a significant effect on transmission efficiency. The frequency bands which a¡e dominated

by the attenuation zones of the periodic element correspond to regions of low transmission

efficiency.
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CHAPTER 4

COMPLEX BTIILT-IIP STRUCTURDS. THE APPLICATION OF STATISTICAL

ENERGY A}IALYSIS

4.1 Introduction

4. 1. I General introduction

Chapters 2 and 3 have considered the wave transmission through junctions that consists of

uniform or periodic stri¡ctural elements of semi-infinite extent. The analysis of a real structure

is more difficult since it consists of structural elements of finite extent coupled together at a

number of junctions. A method known as Statistical Energy Analysis (SEA) has been

developed for the analysis of complex built-up structures. SEA is a framework of study for

analysing the average vibration levels of interacting elements based on energy flow

relationships. This study has its origins in the aero-space industry and was developed by Lyon

(1975) and others for the analysis of complex mechanical and acoustical systems, especially at

high frequencies, where, an exact analysis is difficult because of the large number of modes

that have to be considered. With the availability of modern computer technology and

numerical methods such as FEM, it would appear that the dynamic response of a large

number of complex systems can be solved readily by numerical means. However, experience

shows that FEM is very sensitive to system parameters at high frequencies and any

uncertainties in system parameters may result in considerable discrepancy between the

numerical prediction and actual system response.

In contrast, SEA deals with the average behaviour of complex systems based on the concept

of a statistical ensemble of nominally identical systems and does not suffer from the drawback

just mentioned (FEM could, in principle, determine the average response by repeating the

calculations with a large number of system parameters randomly varied about their nominal
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values and then averaging the results, but the computational effort would be prohibitively

large for practical engineering structures). The average response is a more reliable indicator

at high frequencies since it eliminates the effects of small variations in construction details on

system response. In this method, a complex system is considered to be an ensemble average

of a set of physically similar systems. The system is then sub-divided into a number of inter-

connecting subsystems, usually at looations where the coupling between subsystems may be

considered as 'weak' (for example, at structural discontinuities where incident waves are

substantially reflected). The subsystems are then modelled as SEA elements, each consisting

of a group of resonant modes of the same nature. For example, a uniform plate under bending

and in-plane motions may be modelled as two SEA subsystems representing the resonant

modes in these two types of motion respectively. The mean energy of the subsystems may be

related to the input power by SEA parameters, known as internal loss factors and coupling

loss factors, to form a set of linear, power balance equations. Solution of the power balance

equations leads to the mean energy level of the individual elements. The fundamental

equations of SEA, as well as the basic theory and assumptions concerning the interaction

between multi-mode subsystems, are given by Lyon (L975).In addition, review papers on this

subject have been presented by Hodges and Woodhouse (1986) and Fahy (1974,1994)'

The work described in this chapter is concerned with the modelling of ship structural

elements as SEA subsystems and in particular, the coupling loss factor for cylinderlplate

coupled structures and coupled periodic structures. Some of the findings in Chapters 2 and 3

serve as the basis for the development of these SEA parameters.

4.1.2 Power balance equation

Before considering the modelling of ship structural elements as SEA subsystems, it is perhaps

useful to review briefly the power balance equation and the determination of SEA

parameters. Based on the simpliSing assumptions that are normally used for a practical
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application of SEA (see, for example, Lyon, lg75), the mean energy of the SEA subsystems

may be related to the input power via the following power balance equation:

K

dI¡> (nt+¿ î1¡) n(co)1, -îp n(o)t, -r16n(co)t, <Et>ln(a)1

itr

K

4r2> -I21n(co)r, (\z+E qd n(a)2, -\Yçn(a)r, <82>ln(a)2

i+2

=o

K

<116> -rl¡1n(o)o (n6+l ny) n(a)y, <Ey>ln(a)s

i+K

(4.1)

where <fI¡> and <E¡> arethe time averaged input power and energy in element i respectively,

11¡ is the internal loss factor of element l, q¡¡ is coupling loss factor between elements i andi,

K is total number of subsystems and n(o)¡ is the modal densþ of element i. Given the modal

densities, internal loss factors, coupling loss factors and input polryers, the energy level of

individual elements of the system may be evaluated by solving the power balance equation.

4.1.3 Modal densþ

Sincé SEA is based on the energy flow between groups of resonant modes, the modal density

is effectively a measure of the energy storage capabilþ of a subsystem. For homogeneous

elements (for example, uniform plates and beams), the modal density will converge to an

asymptotic value regardless of the boundary conditions at high frequencies. The asymptotic

modal density expressions for one and ¡vo-dimensional elements are given below:
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for one-dimensional elements (for example, beams)

n(co):ll(æcg), (4.2)

for two-dimensional elements (for example, plates)

n(o)=kAl(2ncg), (4.3)

where I and A are the lengfh and a¡ea of the element respectively, É is the utave number and

c, is the group velocþ.

Other theoretical or empirical expressions for modal densþ exist for uniform elements such

as thin cylinders (see, for example, Szechenyi, 1971 and Hart and Shah, l97l). Langley

(1994b) derived modal densþ expressions for one- and two-dimensional periodic systems

based on the derivative of the phase constant (the imaginary part of the propagation constant)

with respect to frequency. However, for the majority of structural elements that are not

considered to be ideal or homogeneous, theoretical expressions are not normally available

and experimental methods may be the only practical means to obtain modal density values.

Modal densþ may be measured by the direct structural mode count technique, but for most

SEA applications where the frequency is high, this method is prone to errors since resonant

modes are very close to one another in frequency, A more suitable method based on drive

point mobilþ is described by Cremer et al (1973) and has been successfully applied by

Clarkson and Pope (1981) and Keswick and Norton (1987). The expression for modal

densþ in terms of drive point mobilþ is given by:

o2
n(co)= l/(ol2-co1) I

o1

4 p,s,A Re (If dro, (4.4)
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where p,a is the mass per unit area of element and Re (Ð is the real part of point mobility'

4.1.4 Internal loss factor

Internal loss factors of structural elements consist of rwo components, the material damping

and the acoustic radiation damping. Thus, the internal loss factor depends on the material

properties as well as the geometry of an element. Unlike the modal densþ which sometimes

may be estimated from theoretical considerations, internal loss factors are generally obtained

experimentally by separately measuring the energy dissipation in each of the uncoupled

elements. Structural elernents ue zubjected to bending, longitudinal and shear waves. Thus,

there are three loss factors which pertain to the th¡ee wave types for each element' In

practice, it is the bending wave internal loss factor that is of main concern in SEA studies, not

only because it is most important with respect to sound radiation, but also because bending

waves can be excited easily for a practical measurement of the internal loss factor without

oausing other wave types to be generated simultaneously. The internal loss factors for

longitudinal and shear r¡/aves are sometimes estimated as a certain percentage of the bending

v/ave value depending on the geometry and material properties of the element.

A commonly used method for measuring the band-averaged internal loss factor involves

exciting the element by a random force with a flat spectral density in the frequency band of

interest. The force is then cut off and the decay of response is noted. The internal loss factor

may be deduced from the decay record using the following expression:

\'=2.2 / (Í Teù, (4.s)

where 4o ir the reverberation time (i.e., the time taken for the response to decay by 60 dB).

Ranlry and Clarkson (1933) found that for elements with approximately equal modal internal

loss factors in the frequency band, the reverberation time method provides a good estimation
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of the band-averaged internal loss factor. However, when gfoups of modes in the frequency

band do not have similar loss factors, the logarithmic decay record is not linear with respect

to time and it is difficult to determine the appropriate average value. In this case, the steady

state energy balance method gives a better estimation of the internal loss factor. This method

requires an accurate measurement of the input power and vibrational energy. The input

pov/er may be determined from the force and velocþ signals from an impedance head while

the vibrational energy for uniform structural elements may be determined from the mass and

the spatially-averaged mean square velooity. For non-uniform structures, Lalor (1989)

introduced the concept of equivalent mass to evaluate the vibrational energy.

The internal loss factor may be expressed in terms of the input power and vibrational energy

a!¡

î : <fÞ I (a <E>) (4.6)

For lightly damped elements, care must be taken to ensure that the contact damping

introduced by the excitation system is not sufficient to affect the aôcuracy of measurement.

This problem can be eliminated by disconnecting the excitation system from the structure

during the vibration decay measurement.

4.1.5 Coupling loss factor

The coupling loss factor (CLF) defines the amount of energy flow from one element to the

othei and may be evaluated experimentally by measuring the input power as well as the

distribution of vibrational energy (see, for example, Bies and Hamid, 1980; Clarkson and

Ranþ, 1984; and Lalor, 1990). Unforn¡nately, for most practical engineering structures, the

energy in the subsystems is not sensitive to the CLF and as a result, significant errors can

occur in the CLF values due to small experimental errors in measuring the energy and power.

For this reason, CLFs are often determined theoretically, perhaps with some simplifications to
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the structural junction so that a theoretical analysis can be carried out. The method of wave

transmission analysis for semi-inñnite elements as described in Chapter 2 may be used to

determine the CLF provided that there is a sufficient modal overlap (FahV and Mohammed,

1992; modal overlap is measured by the modal overlap factor which is defined as a product of

the modal density, internal loss factor and circular frequency). In this section, the

conventional derivation of CLF for two-dimensional subsystems (Lyon, 1975 and Cremer et

ø/., 1988) is briefly reviewed. Consider two coupled two-dimensional elements such as a

plateþlate junction, the power transmitted one way from plate i to platej may be expressed

in standard SEA form as:

dl¡jt-o\ü<Ei>, (4.7)

(4.8)

(4.e)

where ni; is the CLF between plate i and j *6 <Ei> is the time averaged energy of plate i.

From wave transmission analysis, the power transmitted to plateT due to an incident wave in

plate i with a wave angle cr, may be expressed as a product of the transmission efficiency and

incident power :

dli; (ctÞ = t¡y <fl¡n", (cr)>.

Under the assumption of a diffi¡se wave field, the total transmitted po\À/er may be written as

ar¡y = L cst Ic 4i> t (zæ e¡) I t
Tcl2

t¡; coscr dø,
-nl2

I
=lcsttc4pt@e¡)) ! t¡7 d sina,

0

where /" is the coupling line length, ,4¡ is the area of plate I and ct¡ is the group velocity of

plate i. From equations (a.7) and (4.9), the CLF becomes:
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I
,lü=lrgrlrt(æa,qi)l I ry d sincr . (4.10)

0

SEA studies on platdplate structures using this approach have been presente.d by Swift

(1977) and Tratch (1985). Both studies reported good agreement between calculated and

experimental results. Recentl¡ Lyon and Delong (1995) argued that the energy term <E'i> in

equation (4.9) should be related to the sum of the incident and reflected powers rather than

the incident power alone as stated in equations (a.8) and (a.9). They suggested that the CLF

should be expressed in the form:

ß12

\ü:l"grl"t(naAùll lr¡ I (2 - ri¡\ cosq da (4.11)

-æ12

However, for most practical structural junctions, the transmission efficiency r,ij is typically an

order of magnitude less than two and hence both formulations will give approximately the

same value of CLF. The present study follows the conventional approach (equation (4.10) in

the derivation of CLF.

Based on the same reasoning as a plate/plate junction subjected to a diffilse wave field, the

CLF for a beam/beam junction may be expressed as:

rti¡: ct¡r¡¡ I (2 a I¡), (4.12)

where /; is the length of beam i. The application of travelling wave theory and SEA to study

the vibration transmission through a two-dimensional beam network has been reported by

Sablik et al. (1985) and Moore (1990 b). For general three-dimensional beam networks that

çonsist of beam elements of arbitrary sections, the CLFs may be evaluated from the

transmission efficiencies as described in Section 2.3 of Chapter 2.
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4.2SELModelling of Ship Structures

4.2.1 CLF for a cylinder/plate coupled structure

A number of researchers have studied plate/plate coupled structures using SEA (for example,

Hwang and Pi, 1973; Swift,lg77 and Tratcl¡ 1985) and derived the CLFs on the assumption

that the wave field in each subsystem is difr¡se. The concept of a diffi¡se wave field poses no

difficuþ for isotropic elements like uniform flat plates but is less clear from an SEA point of

view for non-isotropic elements like curved plates and cylinders. Langley Q99a$ pointed out

that the assumption of a diffi¡se wave field is equivalent to the equipartition of energy

amongst the resonant modes for an isotropic element. He then derived the CLFs for

structural junctions between curved plates based on the modal concept of equipartition of

energy. In this Sectior¡ the modal concept is extended to a cylindrical shell coupled to an end

plate. The plate is assumed to have a hole cut out to accept the cylinder. This arrangement

enables the results to be compared with those of an equivalent plate/plate structure.

Before proceeding to formulate the CLF, it is perhaps worthwhile to review briefly the wave

propagation characteristics of a cylindrical shell. As mentioned in Section 2.4 of Chapter 2, a

cylindrical shell is subjected to three types of waves, often classified as Type I, II and III, and

the behaviour of these r¡/aves depends strongly on the frequency of vibration. Above the ring

frequency, the response of the cylinder is similar to that of a flat plate and the three types of

v/aves in the cylinder (i.e., Type I, II and III) are therefore similar to the bending, shear and

longitudinal waves respectively in a flat plate. However, the response of a cylinder below the

ring frequency is strongly influenced by the effect of curvature which couples the cylinder

displacements in the radial, circumferential and longitudinal directions. A measure of the

degree of coupling of cylinder displacements is given by the amplitude ratios UlW and VlW,

where U, V and lY are the displacement amplitudes in the longitudinal, circumferential and

radial directions. The amplitude ratios are functions of the frequency and the circumferential

mode number n. A detailed discussion of the displacement characteristics of propagating
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waves in a cylindrical shell is given by Smith (1955) where he shows that the Type I lryave

cuts on at a progressively higher frequency as the circumferential mode number is increased,

together with lower amplitude ratios UlIl nd Vll't/. Thus the Type I wave has a higher radial

component as the circumferential mode number is increased. Since the response of a cylinder

may be considered as a superposition of each of the allowable circumferential modes at a

particular frequenc¡ it is argued that for a cylindrical shell having a resPonse dominated by

high order circumferential modes, the total response due to a Type I wave is dominated by

the out-oÊplane motion. The response of a thin cylindrical shell will be further discussed in

Section 5.2.2 of Chapter 5 where different methods for the measurement of loss factor a¡e

investigated.

When a cylindrical shell is coupled to an end plate, a Type I wave will generate bending and

in-plane waves in the plate element. The significance of in-plane \¡/aves in the transmission of

vibration has been investigated by Tratch (1985) where he studied a number of coupled plate

structures with different levels of complexity (from two to twelve coupled plates)' He found

that the in-plane v/aves act as 'flanking paths' for the bending motion and increase the energy

transmission for complex structures which consist of more than two structural elements.

However, for a simple structure with only two structural elements, as is the case for the

present study, the in-plane waves generated in the elements have little effect on the flexural

energy level.

It follou/s from the preceding discr¡ssion that the transmission of vibration through a

cylinderþlate coupled structure is dominated by the out-oÊplane motion and as a result, only

such motion is considered in the present study. By modelling the cylindrical shell as a number

of wave components representing each of the circumferential modes, the power loss by the

cylinder due to coupling to the plate may be expressed as (Cremer et a1.,1988):

il
<Ir¿ = (lç I Aç)Z 4cn> cgcnfcpn ,

n=0

(4.13)
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where /, is the coupling line length, z{" is the surface area of cylinder, n is the circumferential

mode number, il is the number of modes, <Eçn> is the energy of the cylinder for the zû

mode, cgcnisthe group velocity of the oylinder for the rü mode and r"Onis the transmission

ef6ciency between the cylinder and plate for the nü mode when the cylinder is subjected to a

Tlpe I incident wave. It should be noted that cylindrical waves of the form cos(nQ) are

generated in the plate due to an incident wave in the cylindrical shell.

The equipartition of subsystem energy amongst resonant modes implies that:

<Eçn> : <Eù n(a)cn I n(a)", (4.t4)

where <Ec>is the total energy of the cylinder, n(a)c is the modal density of the cylinder and

n(a)cnis the modal density of the cylinder for the nft circumferential mode'

Substituting equations (4.14) into (4'13) gives:

anç¿ = llc 4È lAç n(a)çll cgcn n(ø)¿nrçpn

JV

n=0

(4.1s)

The transmitted power <lc¿ may be expressed in standard SEA form as :

dtr¿: a \cp 1Ec) ,
(4.16)

where qcp is the CLF between the cylinder and plate. It follows from equations (4.15) and

(4.16) that :

\rp= ll.^ I a Ac n(a)cil cgcn n(a)cnrcpn '

¡Í
(4.t7)

n=0
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For a given circumferential mode, the number of resonance frequencies for a cylinder of

length / is given by (Hart and Shah, l97l):

N(a)cn= I hrnl rc, (4.18)

and hence the modal densþ

n(a)cn= ôN(a)çn lôa = (l I n) Akcn lA@: I I n cgcn , (4.1e)

where k"nisthe Ðdal wave number of the cylinder for the nü mode. From equations (4.17)

and (a.19), the CLF may now be expressed as:

¡/

\cp: [1 /o n n(a)r]Z""pn (4.20)

n:0

The transmission efficiency for a range of cylinder/plate coupled junctioîs tçpn has been

derived in Section 4 of Chapt er 2 and expressions for modal density of a cylindrical shell

n(a)cmay be obtained from the published literature (see, for example, Ha¡t and Shah, l97l).

The concept of equipartition of energy amongst resonant modes in a subsystem a¡¡ presented

in the preceding derivation of CLF may be shown to be equivalent to the assumption of a

diffuse wave field in an isotropic system. Consider two plates i and j coupled at right angles

and subjected to a diffi¡se vibration field. If plate i is simply supported along two parallel

edges I, apart(see Figure 4.1), the incident wave will consist of a component 'standing' in

the y - direction (analogous to the circumferential mode) and a component 'propagating' in

the r - direction (analogous to the æ<ial mode of a cylinder). The incident wave angle a may

be expressed in terms of the wave number as:
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si¡tc¿=2nnll¿k¡. (4.21)

It can be observed that the wave angle ct can only accept discrete values which are governed

by the 'standing' wave in the y - direction (i.e., for n = 1,2,3," ')' As a result, the general

expression for CLF of a two-dimensional system (equation (4.19) must be modified by

replacing the integration sign with a zummation sign. Also, d sina from equation (4.10) must

be discretised and by using equation (4.21), it can be expressed as 2æ I I¿ k¡' The CLF may

now be written as:

/V

\i¡ = Ícg¡ lç I a A¡ æll2 n I Iç k¡l D'¡in' (4.22)

n=0

Upon noting that the modal density for a two-dimensional system is given by

n(o)i: k¡A¡ l2rc cgi, (4.23)

and substituting the modal densþ expression into equation(4.22),

lV

nrj=U larn(a)¡l trün. (4.24)

n=0

It can be seen that equati on (4.24) is identical to equation (4.20) for a cylinderþlate coupled

,tru.tur. derived under the assumption of equipartition of modal energy. A detailed

discussion ofthis concept is presented by Lyon (1975)'

One of the fundamental principles of SEA is that the CLFs must satisfy the requirement of

reciprocþ as stated below:
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n(a)prtpr: n(a)c\cp, (4.2s)

and it is important to verify that the preceding analysis satisfies this requirement.

Consider a cylindrical shell coupled to an annular plate with the latter subjected to an out-oÊ

plane incident wave of circumferential dependency of co(nO) propagating towards the

cylinderþlate interface. It can be shown from the asymptotic expansion of the Bessel

functions (see, for example, Mclactrlaq 1955) that the wave amplitude is inversely

proportional to the square root ofthe radius. Since the energy is proportional to the square of

the wave amplitude, the energy densþ of the plate for a given ci¡cumferential mode number

n may be expressed as:

4n> æ,71r,

or

4n) = Kr, (4.26)

where K is a constant. The energy of the plate can be obtained by integrating the energy

density over the entire plate area:

r2
.ZOrr:t (Kr)2nr dr,

rI

= 2trK (rz - rt), (4.27)

where 12 andrl âro the outer and inner radü of the plate respectively. From equations (4'26)

and (4.27),the energy density of the plate at the plate/cylinder interP¿ce is given by:

eù= &pn>llZw:Qz- rùl (4.28)
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The wave number of this out-of-plane tvave propagating in the radial direction at a

circumferential mode number n may be obtained ftom the asymptotic expansion of the Bessel

functions (Mclachlan, 1 95 5):

kpr: kO'rrnl2r 'æ14r, (4.2e)

for hO r )> I and kO r >> n2; where ,tp is the wave number of the plate. It follows from

equation (4.29) that the group velocity of this wave may be expressêd as:

cær= Uþkp/eul (4.30)

The power transmitted from the plate to the cylinder may now be expressed in terms of the

energy density ofthe plate as:

¡ú

<flpc>: Ic Z.sn> r,pcncæn' (4.31)

n:0

From equations (4.28) and (4.31):

¡f
{Ipc> = ll/(r2- rr)] I &pr, Ípcn cgn, (4.32)

n:o

By using the assumption of equipartition of energy and the standard SEA expression for CLF

(see equations (4.14) and (4.16), the CLF between the plate and cylinder is given by:

JV

Ttpc : [ / o n(a)p (rz - rù) E cpn n(a)pn tpcn (4.33)

n=0

For a given order of nodal diameter n, the modal density of the plate may be written as

Glart and Shah 1971):
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n(a)pn = ôN(a)pn lù¡ : l(rz - \l nl ôkpn lù¡ = (r2 - r)l rt cgffi ,

Substituting equation (4.34) into (4.33) leads to the following expression for CLF :

lV

(4,34)

\pc:ltl ann(a)plLrpcn
n:0

By comparing equation (a.20) with equation (4.35) and noting that the transmission

efEciency is symm*ric (tcpn : rpcn), it can be seen that the reciprocity requirement is

satisfied.

4.2.2 CLF for a coupled periodic structure

The SEA modelling of one-dimensional periodic systems has been considered by Keane and

Price (1989) by using a statistical description of the problem where a given deterministic

system is regarded as one realisation taken from an infinite set of similar, but not identical

systems. A piece-wise constant Probability Densþ Function (PDF) has been adopted by

these authors to model the non-uniform distribution of natural frequencies of a periodic

system where the boundäries of high and low probabilities represent the pass and stop bands

respectively. This means that the modal density of the periodic system takes on a high level in

the pass band and a low level in the stop band. The non-uniform natural frequency PDF has

been incorporated into an enhanced SEA model and calculations of the system response in

terms of the ensemble average showed a significant improvement over the normal SEA

model.

In the present study, the emphasis is focused on the application of wave transmission analysis

to evaluate the CLF of a coupled periodic structure which consists of two-dimensional

elements (such as plates with periodic stiffeners) rather than the investigation of ensemble

average statistics associated with the response of simple, one-dimensional, periodic systems.

To this end, an SEA model may be regarded as an ensemble average of an infinite set of

(4.35)
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similar systems so that the SEA parameters may be defined in a deterministic manner. To

make use of the information gained from the analysis of periodic structures, and at the same

time provide a practical solution to the noise and vibration problems of coupled periodic

structures, the standard travelling wave analysis procedure is used to evaluate the CLF, with

the proviso that wave transmission is not permitted in the attenuation zones in calculating the

mean transmission efficiency. This approach allows the salient characteristic of a periodic

system (i.e., the existence ofpropagation and attenuation zones) to be incorporated into the

standard CLF formulation. Consider an example structure which consists of a uniform plate

coupled to a plate with periodic stiffeners as shown in Figure 3.3 of Chapter 3. The CLF can

be obtained from the standard expression for two-dimensional systems (equation (4.10)

together with the appropriate mean transmission effioiency as presented in Chapter 3. It can

be shown that the present formulation of CLF satisfies the reciprocity requirement by

representing both plate elements as an assembly of one-dimensional components

corresponding to each of their standing waves in they-direction (see Sections2-6'4 and 4'2.1

where the response of a cylindrical shell is modelled as a plate element subjected to a

combination of standing and travelling waves). The derivation procedure for reciprocity is

similar to that of a cylinder/plate structure as outlined in Section 4.2.1. Considering the

transmission of vibratory power from the plate with periodic stiffeners (subsystem Í) to the

uniform plate (subsystemit), by using the assumption of equipartition of subsystem energy

amongst all resonant modes, the CLF can be expressed as (see the derivation of equation

(4.17) in Section 4.2.r):

N

\ij = Uc I a A¡ n(o)¡l Z cgin n(a)¡n t ¡¡n (4.36)

n:0

For a given standing \Ä/ave, the modal densþ of the one-dimensional component of the plate

with periodic stiffeners is given by (I¡ngley, 1994b) :
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n(a)¡n= lKp I (ß cgin), (4.37)

where / is the length of each element of the periodic plate structure in the r-direction, Kp is

the number of elements and cgin is the group velocity ofthe one-dimensional component.

From equations (4.36) and (4.37),the CLF between subsystems i andi can be expressed as:

N

qtj: [l I ø nn(a)¡\ Zti¡n. (4.38)

n=0

Similarþ, the CLF between subsystemsi and i is given by:

/V

'y*i 
= [1 I a æ n(a)¡l 2, r¡in. (4.3e)

n=0

It is evidenr from equations (4.38) and (a.39) that the reciprocþ condition is satisfied.

4.3 Numerical Examples

4.3. I Cylinderþlate coupled structure

Calculations were performed on the CLFs of three steel cylinders each coupled to a 2 mm

thick steel end plate. The shell thicknesses of the three cylinders are 0.5, 1.0 and 2.0 mm

respoctively. The length and mean diameter of all cylinders are chosen as 0.8 m and 0'45 m

respectively to coincide with an example structure for an experimental investigation which is

described in Chapter 5. Figure 4.1 shows the CLFs of the three cylinderþlate structures. The

CLFs of their corresponding equivalent plate/plate structure based on a diffi'¡se bending wave

field are also plotted in the figure for comparison. The source plates are assumed to have the

same surface area and thickness as those of their corresponding cylindrical shells'
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It can be seen from Fþre 4.1 that all of the cylinderþlate structures show a dip in the CLF

at around the ring ftequency of 3730I{2,, prenrmably caused by the increase in modal density

of the cylinder a¡ound the ring frequency region. Thereafrer the CLFs asymptote to the values

of their equivalent plate/plate structures as the frequency increases. This finding is consistent

with the well established fact that the response of a cylinder may be approximated by a flat

plate at high ftequencies. Below the ring frequency, the response of a cylinder is dominated

by the membrane effects and as a result, the CLFs of the cylinderþlate structures differ

considerably from their equivalent plate/plate structures.

4.3.2 Coupled periodio structure

An example structure which consists of a plate with periodic stiffeners coupled at right angles

to a uniform plate as shown in Figure 3.3 is considered in this section. The coupling line

length of the structure is 0.7m. Both plates are rectangular in shape with overall dimensions

ofg.Tmxlmand0.Tmxl.2mfortheuniformplateandtheplatewithperiodicstiffeners

respectively. AII other plate parameters are the same as for the examples discussed in

Sections 3.2 and 3.4 of ChaPter 3.

Figure 4.2 shows the CLF between the uniform plate and the plate with periodic stiffeners.

As predicted from the calculation of mean transmission efficiency (see Figure 3.5), the CLF

shows a drop in value in the 1600 IIz, 2OOO llz and 4000 Hz frequency bands where the

wave transmission properties are dominated by the attenuation zones of the plate with

periodic stiffeners. Calculations were also performed on the CLF of the coupled structure by

removing the stiffening beams from the structure (effectively a structural junction with tr¡¡o

uniform plates coupled together) and the results are also plotted in Figure 4.2 for

comparison. As expeoted, the removal of stiffening beams eliminates the band pass

characteristics of the system and increases the CLF.
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4.4 Summary

In this chapter, methods for evaluating SEA parameters for simple structural elements such as

beams and plates were reviewed. The modal densþ may be estimated theoretically using

asymptotic modal density expressions. Alternatively, an experimental method based on drive

point mobilþ may be used for complex systems. The internal loss factor of an element

depends on the material properties and geometry and is normally determined experimentally

using either the steady state power balance method or the reverberation time method. CLFs

may be derived from the travelling wave analysis based on semi-infinite elements.

For cylinderþlate coupled structures, the CLF may be derived from travelling wave analysis

and the assumption that the vibrational energy is distributed equally amongst circumferential

modes. It was demonstrated that the condition of reciprocþ is satisfied in the present

formulation of CLF by using a cylinder/annular plate coupled structure. Numerical results for

three examples of cylinder/plate structures were presented and compared with those of their

equivalent plate/plate structures. The results show that the CLF values of the cylinder/plate

structures asymptote to those of their equivalent plate/plate structures above the ring

frequency.

Complex built-up structures often consist of elements of a periodic nature. This chapter

presented the analysis of an example structure which consisted of a plate with periodic

stiffeners coupled at right angles to a uniform plate. To formulate the CLF for this type of

coupled periodic structures, it was proposed that the standard travelling wave analysis

procedure, with due allowance for zero transmission in the attenuation zones, be used'
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CEAPTER 5

EXPERIMENTAL INVE STIGATION

5.1 Introduction

The derivation of CLFs as presented in Chapter 4 has involved a number of assumptions. For

the cylinder/plate cotrpled struc'tr¡re, it is argued that the aszumption of a diffi¡se wave field

which is normally used for the derivation of CLF for coupled uniform plateg is equivalent to

an equipartition of energy among$ the circr¡mferential mode.s of a cylinder. The latter

asnrmption is subsequently applied to the cylinder/plate stn¡cture in Chapter 4. While the

former assumption has been supported by a number of experimental studies in plate/plate

coupled structures (see, for example, Swift, 1977 and Tratcl¡ 1985), the latter assumption

has yet to be verified. As for the coupled periodic structure, it is proposed that the standa¡d

travelling wave analysis may be used for deriving the CLF, provided that the band pass nature

is accounted for in the evaluation of mean transmission efficiency. Again, this is an

assumption that requires experimental verification.

This ohapter describes an experimental program to verify the CLF for a cylinderþlate

stn¡cture and a coupled periodic structure. The program involves a measurement of the

internal loss factor of the individual elements, after which the elements are welded together to

form a rigid connection and further measurements taken to determine the input power and

distribution of vibrational energy due to a random input excitation. The application of

welúng to form a rigid connection between the structural elements is consistent with

previous experimental studies on the transmission of vibration in coupled structures (see, for

exarnplg Tratcb 1985 and Pollard, lgg2), To control the dissipation of heat during the

welding process, it was decided to ri.¡n a small section of weld at a time and alternate the

process at different parts of the joint in order to maintain an even distribution of heat across

the struotural elements. These mea$¡res minimise the distortion of the elements and the effeø
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of heat on the damping material. The effect of welding on the response and damping of the

structural elements is ínvestigated in Secti ons 5.2.2 and 5.3.2 where the internal loss factors

ofthe individual elements are compared tvlrthln-sltu measurements.

The measured internal loss factors, together with the input power and spatially werageÅ

vibrational energy of the coupled elements, are used in a numerical procedure to estimate the

CLF and compare with the theoretical values.

5 .2 Cyhnder I plate Structure

5.2. I Experimental arrangements

The objective of the oçeriment was to measure the CLF of a cylinderþlate structure. The

test structure consisted of a thin cylinder and an end plate as shoüm in Fþre 5.1. Steady

state power balanoe measurements @ies and Hamid, 1980) and reverberation time

measurements were conducted on the individual cylinder and plate elements to determine

their internal loss factors. Further tests \lrere conducted on the coupled structure to determine

the input power and distribution ofvibrational energy due to a random input excitation.

The frequency range of the experiment was selected to be 500 - 8000I{4 corresponding to a

ring frequency ratio O of 0.ll - 2.14. This enabled the effects of cylinder curvature on

vibratory poyer transmission to be investigated at low frequencies (O << 1). Also, at the

higher end of the frequency spectrum (O > 2), the cylinder is expected to behave

apprgximately as a flat plate and well established rezults on plate/plate structures may be used

to check against thé present theory. In line with previous research work on the transmission

of vibration througb coupled oylindrical structures (for example, Hwang and Pi, 1973;

Blakemore et a1.,1992 and Polla¡d, lgg2,) and the discussion presented in Section 4.2.1 of

Chapter 4, t¡1e present experimental investigation is limited to the out-oÊplane motion (in the

radial direction) of the cylindrical shell. To check that the in-plane motion has no significant

effect on the florural energy level, the modal density of the plate element subjected to an in-
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plane motion was calculated urd compared with the out-of-plane modal densþ. The in-plute

modal densþ was found to be 4.02 x l0'5 and 6.43 x 10-4 drad at a frequency of 500 and

SOOO I{z respectively, compared with an out-of-plane modal densþ of 1.52 x l0-2 s/rad

(independent of frequency). Thus the plate energy is dominated by the out-oÊplane motion.

Both the cylinder and plate have more than 10 resonant modes (out-of-plane) in the lowest

third octave band. Calculations performed on the dispersion equation of the cylindrical shell

show that l0 circumferential modes exist at a frequency of 500 Hz.

Consideration was given to the damping requirement for the cylinder and plate. If the

cylinderþlate sructure has a CLF very nuctr gfester than the internal loss factor of the

individual structural elements, then the modal energy of the elements would be approximately

equal and insensitive to any variations in the CLF. To determine the CLF from energy and

power measurements, it is therefore desirable to have the internal loss factors at least the

same order of magnitude as that of the CLF. For the present study, this was achieved by

adding selÊadhesive damping strips to the cylinder and plate (see Fþre 5.1). The added

damping also increased the modal overlap of the structural elements to a level that enabled

the travelling ïvave analysis procedure to be used for the determination of CLF (Fahy and

Mohammed,1992).

Figure 5.2 shows the set up of the experiment for steady state power balance measurements.

The structure \4ras suspended by strings and driven by an electromagnetic shaker through an

impedance head. Care was taken to align the shaker æris normal to the test structure and a

thin stinger was used to conneot the shaker to the impedance head to minimise the input of

bending moment and in-plane force. Band limited random signals were used as the excitation

souroe.

fuiother point of consideration for the present experimental study was the excitation source.

Fatry (1970) has suggested that the injection of power into a structure with point excitation

will result in modes which are not statist¡as[y indopendent (i.e., coherent modes) and violate
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a basic assumption used in SEA modclling. Bies and Hamid (1930) have studied this problem

and showed that modal incoherence can be ¿chieved by averaging the results over three

randomly ohosen orcitation points. The present study followed this approaoh in the

meazurement of intcrnal loss factor using tho steady state power balance method and the

disüibution of vibrational energy for the coupled structure. In the latter mear¡urement the

cylinder was first orcited and measurements taken to determine the input power and

vibrational enerry of the cylinder and plate. The experiment was then repeated by injecting

power into the plate element to check for reciprooþ. To determine the power injected into

the structural element, the force and acceleration signals from the impedance head were

processed using the following expression:

ÍI= ll2 Re{4r x (A¡tt1a)*\, (s.1)

where F¡ and A¡ are respectively the complex amplitudes of the force and acoeleration

measured by the impedance head, and + denotes the complex conjugate. To ensure that the

acceleration sþal is in phase with.the force signal, the impedance head was alranged in such

a way that the acceleration of the structure was measured directly from an accelerometer

attached to the opposite side of the force transducer as shown in Figure 5.3 (a factor of -1

was introduced to reverse the direction of the acceleration signal). It should be noted that the

seismic mass of the force transducer has no effect on the measurement of input power since it

only results in an imaginary term al¡ can be shown readily from equation (5.1).

The vibrational energy was determined from the spatial average of the acceleration signals

Aom a number of randomly chosen points on each element. To determine the number of

measurement points necessary for an accurate estimation of the spatially averaged response,

preliminary tests were conducted on e¿ch element by using six and eight accelerometers in

turn for spatial averaging. It was found that both test configurations resulted in approximately

the same value of spatially averaled acceleration and henceforth six accelerometers urere

used to waluate the vibrational energy of each of the elements. Before calorlating the
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vibrational qrergy, the accelerometer signals were corrected to allow for the effect of mass

loading due to the accelerometers using the following expression @eraneþ l97l):

I lutlol2 = t+ lo nalzl2, (5.2)

where Au is the complor amplitude of the acceleration of the unloaded structure, Ao is the

complex amplitude of the acceleration a¡¡ measured by the accelerometer and mo is the

accelerometer mas$. The impedance of the test structure , Z, was obtained from Table I 1.5 of

the book by Beranek (1971). The vibratioonl cnergy was then determined from the following

expression:

<E> = ll2 m, lrl,u t¡rl', (5.3)

where n" is the mass of the structural element and-denotes the spatial average.

5,2.2 Results

Experiments were canie.d out to determine the internal loss factors of the cylinder and plate

using the steady state power balance method and the reverberation time method as described

in Section 4.1.4 of Chapter 4. In the steady state power balance method, the results were

averaged over three randomly chosen excitation points. For the reverberation time method, a

hammer impact was used as the initial excitation. The time history of the acceleration signal

was recorded after passing through a onethird octave filter and subsequently processed to

obtain a complex signal with the real and i.agouty parts given by the measured aoceleration

and its Hilbert Transform respectively (seg for example, Thrane, 1984). The magnitude of

this complex signal representing the envelope function was then calculated and plotted on a

logarithmic scale for the estimation of reverberation time. This measurement feature is

available in a numbcr of signal analysers for ttre measurement of system response and the

advantages of this Dethod of measr¡roment over tho tnditional method where only the real
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valued function is used has been discr¡sscd by Herlufsen (1984). Five averages of the time

history were taken for each measurement point and the internal loss factor was sveraged over

three randomly chosen measurement points. A typical envelope of the acceleration time

history is shown in Figure 5.4.

Figures 5.5 and 5.6 show the internal loss factor of the cylinder and plate respectively. It can

be seen that the ren¡lts given by the reverberation time method and the steady state power

balance møhod are in reasonable agreement. However, due to the coupling of in-plane and

out-of plure motions in the cylinder, the rezults for the cylinder internal loss factor have to be

interpreted carefrrlly. In the first method of measurement (i.e., the reverberation time

method), the intern¡l loss factor of the cylinder is related to the decay of the out-of-plane

motion. This is not the case for the steady state power balance method since the total energy

dissipated includes both in-plane and out-of-plane motions. Coupling of these two types of

motion will result in in-plane motion which is not measured by the accelerometer at the

power injection point. Howeveç there is no in-plane extenral power input into the cylinder

provided that the external excitation transmits no in-plane force or moment into the cylinder.

This condition was met in the present orperimental study by mounting the æris of the shaker

normal to the cylinder.and using a thin stinger (1mm in diameter by 40 mm in length) to

attaoh the shaker to the impedance head which in turn was bonded directly to the cylinder'

On the other hand, the energy in the cylinder is distributed into components associated with

both in-plane and out-of-plane motions. The latter motion was damped in the present

experiment by self-adhesive damping strips which were arranged to give an effective damping

for both the circumferential and axial modes. Referring back to Figure 5.5 which shows the

internal loss factor of the cylinder using the steady state power balance method and the

reverberation time method, an agreement between these two methods of measurement

suggests that the input power to the oylinder is predominantly dissipated by the out-of-plane

motion and justifies the present experimental investigation where only such motion is

considered. This is expected Êom the theoretical considerations in Section 4.2.1 of Chapter 4

since the cylindrical shell has I high order of circumfere,l¡tial modes.
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Subsequent to tho joining of tho cylinder to the end platg meazuremonts were ca¡ried out to

døermine tho input power and the vibrationat energy distribution by first exciting the oylinder

and then repeating the oçerime,nt by orciting the plate. Before daermining the CLF from the

pov/er and energy meagr¡rements of the coupled structure, the results were first checked for

reciprocity. Clarkson and Ranky (1984) have shou'n that the reoiprocity requirement is

satisfied when

l<E¡¡>ldly z(o)il ll<E¡¡>ld,l¡ z(ro)¡l = I,

where <E¡yis the energy of element j due to an input excitation at elementj. The left hand

side of equation (5.4) representing the energy ratio was determined from the measured

subsystem power and energy, together with the modal densities obtained from theoretical and

empirioal expressions (see Section 4.1.3 of Chapter 4) for the uniform plate and cylinder

respectively. I! can be seen from Figure 5.7 thatthe energy ratio i¡ reasonably close to unity,

thus the results satisfy the requirement for reciprocrty. A matrix inversion routine based on

the minimisation of the sum of the squared errors (Bies and llarnid, 1980) was used to

determine the internal loss factors of the cylinder and plate, as well as the CLF of the

structure. This methoó involved a re-a¡rangement of the energy balance equations in the

following form :

Äl : er <Ett> + ItZ <Ert> - ¡;Þt <tZt> - <flt>/o, (s.s)

where Â1 denotes the experimental errors in determining the power and vibrational energy

associated with subsystem l. Simila¡ equations may be formulated for other subsystems and

for the present elgerimental set up, a total of for¡r equations were formulated (two

subsystems for each configuration of input excitation). The sum of the squared effors may

then be expressed as :

(s.4)

'rri:
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2 (s.6)

Following the least Equare procedurg the zum of tho squared e¡rors was minimised with

respect to the internal loss factors and CLF's. It is convenient to generalise the internal loss

factors and CLFs at this stage by denoting them as n^.By using this notatiorU the expression

for minimised e'rror is given by:

àrtuh--o. (s.7)

The reciprocþ condition (i.e., n(a)pW= z(o)c îcp) was incorporated into equation (5.7)

and resulting in three linear algebraic equations (for m = 1,2 and 3). The internal loss factors

and CLF were then determined by standard matrix inversion of these equations.

Fþres 5.8 and 5.9 show the internal loss factor of the cylinder and plate respectively. The

results given by the in-situ method (inversion of matrix) are in close agreement with the

steady state power balance method. This finding is consistent with earlier work reported by

Bies and Hamid (1980) for the case of flat plates and zupports the present experimental

approach in determinin! the CLF. It also zuggests that the coupled modal energies of the

elements are approximately equal to the uncoupled modal energies. Furthermore, the welding

process has little effect on the damping of the structural elements. Figure 5.10 shows the

CLFs of the cylinderþlate structure obtained by equation (a.20) and measurement. The

experimental results are fairly well predicted by the theory presented in Section 4.2.1 of

Chapter 4 although the theoretical values are slightþ higlrer than the measured values in the

frequency range of 800 - 2500 IIz. The dip in CLF which is predicted in the theoretical

analysis can be observed in the experimental data. It ocours at a frequency of around2500llz

compared with a predicted value of 3730 IIz which corresponds to the ring frequency of the

cylinder. The experimental data also shows some discrepancy with the predicted CLF above a

frequency of 6300 Hz &r attempt to condust further tests (above 8000 IIz) to confirm the

4

I=IAi
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convergence of the experimental rézults to the theoretical CLF of a plate/plate structure was

hampered by the limitation in sampling rate of the data acquisition system' Howwer, fi¡rther

examin¿tion of the rezults reveals th¿t the discrepancy is consistent with pervious work on

the experimental investigation of CLF (seg for example, Bies ¡nd l{amid, 1980 and Clarkson

and Ranþ, 1984) and may be partialty attributed to the random nature of the experiment as

well as the aszumptioru involved in the derivation of CLF (for example, the equipartition of

energy amongst circumferential modes). Overall, the calculated CLF is considered to be

satisfactory as an SEA parameter for the estimation of response levels in a cylinderlplate

structure.

5.3 Coupled Periodic Structure

5.3. I Experimental arrangements

The test structure was made up of a uniform plate and a plate with periodio stiffeners as for

the example disct¡ssed in Section 4.3.2 ofChapter 4. To deteûnine the modal densþ of the

plate with periodic stiffeners, it was decided to measure the drive point mobilþ of the

structure and then obtain the modal density from equation (4.4) of chapter 4. The modal

densþ of the uniform plate was also measured by this method so that the validity of the

experimental procedure could be checked by comparing the experimental results of the

uniform plate with the asymptotic modal densþ expression (equation (4.3). In line with the

test prooedure for the cylinderþlate struoture, self adhesive damping strips were added to the

structural elements. After the measurement of modal density and internal loss factor, the

elements were welded at right angles to each other and further tests conducted to determine

the internal loss factors in-situ and the CLF. Figure 5.11 shows the test struoture used for the

measurement of input power and vibrational energy. The experimental procedure for the

measurement of internal loss factors and CLF was similar to that of the cylinderþlate

structure whioh has been described in detail in Sections 5'2.1 and 5.2.2.
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Figure 5.11 Coupled periodic structure set up for the measurement of input
power and vibrational energy.
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To determine the mobility of the stn¡sture, the following expression which allows for a

correction ofthe effect of seismic mass was used:

Y= (A¡tfia\(F¡- Ahrt), (s.8)

where Zis the drive point mobility, An ñ F¡ are respectively the complex amplitudes of the

acceleration and force measured by the impedance head, z, is the seismic mass which

includes the mass between the sensing element and the surface of the structure plus the

associated mounting accessories.

5.3.2 Results

The experimental procedure for the measurement of modal density was checked by

comparing the experimental results of the uniform plate with equation (4.4). Figure 5.12

shows the modal densþ of the uniform plate. It can be seen that the measured modal densþ

is somewhat lower that the theoretioal value, especially at high frequencies. The large contact

area between the impedance head and the structure (13 mm diameter) was thought to be the

main reason for such discrepancy. To improve the accuracy of modal density measurement, a

spacer of 5 mm diameter was inserted between the impedance head and the structure to

reduce the force contact area so that the results measured by the impedance head could be

regarded æ the drive point mobility. For the present experiment, the structural wavelength at

the highest one-third octave band (3000 IIz band centre frequency) was approximateþ ten

times the diameter of the contact a¡eq thus the attachment of the impedance head to the

,t-.turc could be regarded as a point contact. Fþre 5.13 shows the modal densþ of the

uniform plate measured by this experimental arrangement. The measured modal densþ is in

excellent agreement with the theoretical prediction, thus confirming the validity of the

experimental procedure. Fþre 5.14 shows the modal density of the plate \¡vith periodic

stiffeners. The experimental results a¡e somewh¿t higher than the sum of the modal densities

for the plates and bearng possibly due to the addition of coupled modes in the system.
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After the structural elements were welded together, further tests were conducted on the

coupled periodic structure using a procedure similar to that used for the cylinderlplate

strucûrre. The reciprocity requirement was again checked by evaluating the on€rly ratio in

equation (5.4) from the measured input pourer, energy and modal densþ. It can be seen from

Figure 5.15 that the energy ratio is close to unity across the entire frequenoy range; thus the

results satisfy the requirement for reciprooþ.

The numerical procedure described in Section 5.2.2 was used to determine the intern¿l loss

factors in-situ and the CLF. Figures 5.16 and 5.17 show the internal loss factors of the

uniform plate and the plate with periodic stiffeners respeøively. Rezults from both the in-situ

method and the steady state power balance method are shown in the figt¡res. In line with the

finding for the cylinder/plate structurg rezults from both methods of measurement a¡e in

close agreement and hence the validity ofthe in-situ method is again verified.

Figure 5.18 shows the CLFs ofthe couplod periodic struch¡re obtained by the travelling \rtave

analysis (equation(4.10)) and measurement. The results are in very good agreemènt in the

lower frequency bands. At higher frequencies, the theoretical rezults appear to have shifted by

one-third of an octave compared with the experimental data. The apparent shift in frequency

may have been caused'by the assumptions and simplifications involved in the theoretical

analysis. For example, it is assumed in Section 3.2 of Chapter 3 that the boundary conditions

of the plate with periodic stiffeners can be applied on the platdbeam centreline. However, the

plate/beam attachment point is in fact offset from the beam centreline by an amount equal to

halfthe beam uridth and this has an effect on the accuracy of the theoretical model, especially

at high frequencies where the cross sectional dimensions of the junction are not negligible

compared with the bending wavelength. Also, the offset of the attachment point from the

beam centreline means that the bending wave will travel in the plate elements by a distance (in

the x-direction) equal to the beam spacing minus the beam width rather than the beam

spacing as used in the theoretical model. In an attempt to investigate the effect of plate offset

from the beam cenheline, the beam spacing was decrsased by 3 mm and the corresponding
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shifr in propagÊtion and attenuation zones of the plato with periodic stiffeners was calculated

and shown in Figure 5.19. It can be seen that the shift in propagation zones is more

signiûcant in high ftequencies. This is due to the reduction in bending wavele'ngth as the

frequency is increased so that the beam spacing plays a more significant role in bending wave

propagation. fuiother factor that may have contributed to the discrepancy between the

experimental and theoretical rezults is the welding proc€ss in the construction of the periodic

structure that has resr¡lted in a fillet of metal at the plate/beam interface. As a first

approximation to account for the addition of metal at the welded junctions, the beam utidth

was increased by 2 mmand Figure 5.20 shows the corresponding change in propagation and

attenuation zones. In general, an increase in beam width results in a widening of attenuation

zones. From Figures 5.19 and 5.20,it can be seen that the combined effect of reducing the

beam spacing and increasing the beam width is to shift the attenuation zones upward in the

frequency scale. The effeots of a shift in attenuation zones on the CLF can be seen in Figure

5.21. Despite the discrepancy at 4000 IIa the results confirm that the drop in CLF at 2000

lfz and 5000 tlz corresponds to the frequency regions which are dominated by the

attenuation zones. Overall, the experimental results are reasonably well predicted by the

present theory.

5.4 Summary

fui experimental program has been conducted to verify the CLF of a cylinderþlate coupled

structure over a frequency range of 500 - 8000 Hz. This corresponds to a ring frequency

ratio C) of 0.ll -2.14.

The internal loss factors of the cylinder and plate were measured individually by the steady

stato power balancc method and the reverberation time method. Rezults from these two

metlrods of mea,s¡rcment were uscd ¡s the benchmark to check against the tn'sttu

measurement mehod where the internal loss factors and CLF of the coupled structure were

evaluated. All three methods of internal loss factor moasurement give results that are in close
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agreement and therefore the validþ of the in-situ measurement procedure is confirmed. The

experimental rezults for the CLF a¡e fairly well predicted by the theory presented in Section

4.2 of Chapter 4.

Modal density measurements ü,ere conducted on the uniform plate and the plate with

periodic stiffeners using the ftequency-averaged drive point mobility. The measurement

procedure was verified by comparing the experimental results of the uniform plate with the

asymptotic modal densþ expression.

The internal loss factors and CLF of the coupled periodic structure were evaluated by an

experimental procedure simila¡ to that used in the cylinder/plate structure. Þespite the slight

discrepancy at high frequencies which may have been caused by the assumptions and

simplifications involved in the analysis, the measured CLF and the theoretical prediction are

in good agreement.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR F'IIRTHER WORK

6.1 Conolusions

A naval ship structure may be considered as an assembly of plate, beam and shell elements

coupled together at a number of structural junctions. As a first step towards understanding

the transmission of vibration in such structure, the present study first examined the \¡/ave

transmission properties of a number of structural junctions including plate/beam junctions,

three-dimensional beam junotions and cylinderþlate junctions.

The plate/beam junctions considered in the present study consist of thin stiffening beams

which are conrmonly used in naval ship structures. These beams were modelled as finite

plates subjected to bending and in-plane vibrations. The effect of beam vibrations on \ilave

propagation thnough a plate/beam junction was demonstrated by examples and found to be

signifioant in the evaluation ofvibratory power transmission.

For general beam elemènts in a th¡ee-dimensional beam junction, the attachment point and

the beam centroid may not coincide with the shear centre and as a result, a bending-torsional

coupling exists in the beam. The effect of such mode coupling, together with shear

deformation and rotary inertia of a beam element in vibratory power transmission of beam

junctions was investigated. Results from an example beam junction show that mode coupling

increases the transmission of bending waves.

The method of analysis for wave transmission through a coupled oylinderþlate structure was

applied to a junction which consists of two semi-infinite cylinders coupled to an annular plate.

The total transmission efEciency of the junction was found to be in good agreement with that

obtain by Harari (1977) who treated the annular plate as a ring. stiffener. However, the

present method of analysis is more general in that it can be applied to junctions where the
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stiffening plate has a large width to thickness ratio, and in the extreme case where the

stiffener becomes a circular plate (for example, hull/bulkhead coupling of a submarine

structure). It can also be applied to cylinder/infinite plate junctions.

A¡rother area of concern in this thesis is the transmission of vibration through periodic

structures such as uniform plates reinforced with periodic beam stiffeners. The wave

transmission properties of a plate with periodic stiffeners were investigated using the Bloch

theorem and found to be dependent on the wave angle and frequency. This implies that for a

plate with periodic stiffeners subjected to a diffi¡se wave field, the incident wave will find a

range of angles that allows a free transmission of waves. By identifying the transmission

angles of the periodic structure at a particular frequency, a method based on travelling wave

analysis has been developed to evaluate the transmission efñciency of a uniform plate coupled

to a plate with periodic stiffeners. Calculations performed on an example structure reveal that

the mean transmission efficiency reÍlects regions of low transmissibility due to the dominance

of attenuation zones.

Following the analyses of structural junctions and coupled periodic structures, the present

study then reviewed briefly the application of SEA for predicting the transmission of vibration

in built-up structures and the methods for evaluating SEA parameters. In line with previous

SEA studies on coupled plate and beam structures, the method of wave transmission analysis

as presented in earlier parts of this thesis was used to derive the CLF for a cylinderþlate

coupled struoture and a coupled periodic structure. For the cylinderþlate structure, it is

assumed that the vibrational energy is distributed equally amongst the circumferential modes.

This is equivalent to the assumption of a diffi:se wave field which has been used successfully

for the derivation of CLF for isotropic elements. Numerical examples for a number of

cylinderþlate structures were presented and the results confirm that the response of a

cylinder may be approximated by a flat plate when the excitation frequency to ring frequency

ratio is higher than one. To derive the CLF for the coupled periodic structure, it is necessary

to incorporate the band pass characteristics of a periodic structure into the analysis. The
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present study zuggested that this can be achieved by using the standard travelling wave

analysis procedure with the appropriate mean transmission efficiency that accounts for no

u/ave being transmitted in the attenuation zones.

fui experimental program has been conducted to verify the formulation of CLFs for the

cylinderþlate coupled structure and the coupled periodic structure. The internal loss factors

and CLF of the test structures were determined in-situ by a numerical procedure which

involves the inversion of power balance equations similar to that described by Bies and

Hamid (1930). The validþ of this procedure has been confirmed by comparing the internal

loss factors measured in-situ against the benchma¡k results from measurements of the

individual structural elements. Experimental rezults of the CLF for both structures show good

agreement with theoretical predictions and it is therefore suggested that the present

formulation of CLF may be used for SEA studies.

6.2 Further Work

This study has taken a step towards characterising the wave transmission properties of

struotural junctions typical of naval ship constructions and the development and refinement of

SEA parameters for the analysis of vibration transmission in built-up structures. However,

mention must be made of a number of a¡eas that warrant further study. First, the present

study has only selected three types of structural junction for analysis, on the grounds that

they are representative of naval ship constructions. Real structures of course consist of many

more different combinations of elements in a junction, each of which has to be studied in

ordei to determine the wave transmission properties. The method of analysis presented here

may be of use for guiding the direction offurther studies in this area.

In the analysis of coupled periodio structures, the present work has only considered bending

waves to simplify the analysis. In reality, the stiffeners of ship structures are often offset to

one side of the plate and thus generate in-plane waves which may have a significant effect on



l2l

vibration transmission. A more detailed study of coupled periodic structures which includes

in-plane waves would be worthwhile. Also, the coupling between other tj?es of periodic

structt¡re typical of naval ship constructions zuch as ring stiffened cylindrical shells requires

furth€r investigation.

Finally, it should be mentioned that the long term goal of the present study is to develop

methods for prediøing vibration levels of naval ships at high frequencies. To this end,

attempts should be made to investigate some example naval ships, using SEA and to conduct

full-scale experimental measurements to verif the theoretical predictions.
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APPEIYDD( 1

Evaluation of wave Amplin¡des for ¡ Pl¿te/thin beam Junction

Al.l Expressions for plate displacements

Figure Al.I shows the displacements and junction forces of an arbitrary semi-infinite plate in

a plate/thin beam junction due to the transmitted/reflected rilaves. The wave equations for

bending and in-plane motions ofthe plate are given by (see, for example, Love, 1927):

Yaw + trzp(t+)t EÊ1twl ôP = o, (Al.r)

ûu/#+ t(1-¡r)/21 ûulA¡P + lQ+p)l2ltilAxav - bT-thlLftvlõíz :0, (41.2)

ûvlatP + t(1-p)/21 &v/Ñ + l(t+¡ty2ltúaxav - þ(t1htEltutôP :0, (A1.3)

where u, v andw arethe plate displacements in the x, y andz directions respectively; E, p, ¡t

and hare the elastic modulus, density, Poisson's ratio and thickness of plate respectively and

ya : {&lôxz + t/ù2y2. the in-plane wave equations (equations (41.2) attd (41.3)) are

functions of the plate displacements u andv. To obtain a solution to these equations, one may

make use of the following substitutions:

u=-ôq/ôx-A@lù, (41.4)

v: -ôcplôy + ôalôx. (41.s)

using equations (A1.4) and (A1.5), each of the in-plane wave equations may be reduced to a

function of one indcpendent va¡iable (9 or o) only:
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v2q - lp!-úyt1&<plôí2 :0, (A1.6)

Y2ø- l2p(l+¡tlC'l&ølôt2 : O. (A1.7)

The parameter <p is associated with longitudinal waves while o with shea¡ waves. The general

solutions to equations (Al.l), A(1.6) and A(1.7) may be expressed as:

w=Wexp(knx+fuyt+jof), (41.8)

q = S exp (k¡¡x* ktyY + jof), (A1.e)

tu: ç exp (k7yx+ kryl + jof), (Al.lo)

where ÍI/, $ and ç are the wave amplitudes. For the solutions to be valid, the following

conditions must be satisfied (these conditions may be obtained by zubstituting the solutions

back to equations (41.1), (41.6) and (41.7)):

à

-çfu* o&,):t[t2poz(t -uzYnh2 )% = ¡kÊ,

-1tt'u * kly) = Í1o'uQ-úYE l: kl,

-çfu* k&)=[2p<oz(t+p¡ tEl= k;,

(A1.11)

(Ar.l2)

(A1. 13)

where kn, kr and ky are the bending, longitudinal and shea¡ lvave numbers respectively.

These wave numbers may be expressed by their components in the r and y directions as

shown in equations (Al.l I - 1.13). Snell's law states that the trace velocþ of all wave types

at the junction must be the same. This implies that the y components of the wave numbers
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(i.e., fuy ,k¡y and kry) for the transmitted and reflected waves must be the same as that of

the incident wave. The x component of wave numbers may be determined from equations

(Al.ll - 41.13). For bending waves, equation (Al.ll) yields four roots, the negative

imaginary root and the negative real root must be chosen for the reflected and transmitted

\¡yaves since they represent travelling and decaying \¡/aves respectively in the positive x

direetion (i.e., away from the junction). Similarly, the solutions for longitudinal and shear

waves must be negative imaginary. Equations (A'1,4), (41.5) and (Al'8) - (41'10) give the

plate displacements u, v and w. By expressing the r and / components of wave numbers in

terms of the wave anglesT',TLand¡r, the plate displacements may now be written as:

u:lBtcost¿exp (-j k¡xcosTù-Bzsiny.exp Cj kTxcosYr)l exp (kyl+ jøt), (41.14)

v : l-Btsin y¿ exp Cj k¡x cosfù - Bzcos yrexp Cj k7x cosYr)l exp (k, y + iat), (41.15)

w= {Atexp Cj &¡x cosy¡) + A2expl-knx./(1 + sin2yu)l} exp (kyl + jcrrf), (41.16)

where kristhey component of the incident wave number and Ay A2, By Bzare the complex

wave amplitudes. The last exponential factor on the right hand side of the above equations

represents they direction dependency and time dependency of the displacements. The source

plate of the junction is subjected to an oblique incident wave with the wave heading angle ct

related to the reflectior/transmission angles through Snell's law:

(Al. r7)

where /r is the incident wave number. Given the incident wave angle a, the bending and in-

plane displacements of the plate depend only on four unknowns representing the complex

wave amplitudes; namely, the amplitudes for longitudinal and shear ìryaves, as well as the

travelling and decaying bending waves.
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Some engineering structures (for example, ships, aircraft) often make use of thir¡ rectangular

section beams to reinforce plate elements. A thin beam in the context of this thesis implies

that the beam thickness is of the same order as that of the plate and is therefore subjeøed to

bending and in-plane vibrations. Fþre Al.2 shows a schematic diagram of the structure

which consists of two semi-infinite plates ooupled to a thin beam. The analysis of this tSpe of

structure may be conducted by assuming that the thin rectangular beam behaves as a flnite

plate with waves travelling in both the positive and negative x directions. Referring back to

equations (Al.ll) - (41.13), the solutions to wave motion must include the positive and

negative roots. Following the derivation procedures as presented for the semi-infinite plate

leads to the beam displacements in terms of eight unknown complex wave amplitudes.

Before the plate and beam displacement equations may be assembled through the boundary

conditions and solved for the wave amplitudes, one must also consider the incident wave that

is ca¡ried by the source plate. The incident wave may be either bending, longitudinal or shear

and the plate displacements due to the incident wave may be obtained in a similar manner as

that of the reflected/transmitted waves. The only diffcrence being that the positive imagnary

solution of the wave numbers must be used since the incident \¡/ave propagates towa¡ds the

junction. For the purpose of evaluating the transmission efficiency, the incident vrave may be

regarded as having a unit amplitude.

Al.2 Boundary conditions

To consider the boundary conditions, it is convenient to introduce the subscript i to denote

the plate number (i = l, 2,3, ... K; the thin beam is regarded as a finite plate). The first set of

boundary conditions deals with the compatibility of plate motion and requires that the

displacements of all plates along a set of reference co-ordinates (for example, 11, / and zy) at

the junction must be the same. In addition, the rotation about the y a:<is of all plates must be

equal, The plate rotation is given by:
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Figure 41.2 Schematic diagram of a plate / thin beam junction.
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þ¡= tultui (Al.l8)

Resolving the displacements of plate I along co-ordinates xi, f and z¡ leads to the following

compatibility equation:

K

ui

vi

wi

0i

H

cos vi,

0,
sin ry¡,

0,

-sin Vi,

0,
cos\ri,

0,

I

0

0

0

1

0,

0,

0,

u¡

v1

w¡

0r

(Al.le)

where ry¡ is the angle between plate I and plate i. The second set of boundary conditions

deals with the equilibrium of forces and moments. For thin isotropic plates, the junction

forces and moment per unit length (along they - direction) may be expressed as:

Fxi= -lE¡h/(r-¡t\lÍU¡1tu¡ + tt¡ tu/Ù\, (41.20)

Fyi : -[E¡h/2(t+Ð]lau / av + ôv / ôx¡1, (A1.21)

F zi : lE ¡h ¡3 / tz(l - uz¡11Ú w / õ* ¡3 + (2 - tt ù d w / õx ¡ôfl, ( t.22)

M ¡ = -lE ¡h ¡3 t tzlt-pz¡ll&w / ôx¡2 + pi &o / Afl (41.23)

Note that equation (Al.Z2) represents the effective edge force which consists of the shea¡

force plus the effect of twisting moment. Equilibrium requirements for the balance of forces

and moments at the junction lead to the following equation :
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K K

Fxt+ZFxicos \ri +ZFzi sin rY¡ - 0, (4r.24)

l=2 i=2

K

2 Fyi= 0, (41.25)

i:2

K K

Fzt-ZFri sin Vt + t Fr¡e'os Vi = 0, (A1.26)

i=2 i=2

K

ZMi=0. (^t.27)

i:2

Equations (A1.19) and (A1.24) - (41.27) give the boundary conditions at the junction. These

equations are evaluated at the origin of the co-ordinate system (i.e., 11, xz,...xK: 0)' In

addition to these boundary conditions, the forces and moment at the free end of the finite

plate must vanish. Together these conditions are sufficient to permit solution for the wave

amplitudes of interest.



130

APPENDD( 2

Evaluation of Wave Amplitudes for a Three-dimensional Beam Junction

42.1 Expressions for beam displacements

The equations of motion for a beam vibrating in couple.d bending and torsional modes, taking

into account of the shear deformation and rotary inertiq are given by (see Figure Ã2'l fot

beam co-ordinates):

GAKz(æy'axp+ *wnxoz): pA@ aze¡aP + a\laí\, (A2.1)

u, *erÞxf - GAKz(sy + ôw/ôxp): Iyp &eyaíz, (A2.2)

GAKy(&v/axp2 - æ / tup¡ = pt(&vt a? - t &e¡ atz¡, (M.3)

a, ûer¡axoz - clxr{attup - or) = Irp &or¡ôí2, (A2.4)

GJ ælaxp: t, *o¡aP - pAb &laP + pAs az*tatz (42.s)

where Iy, I, are the second moment of area of beam about the y, and zO æ(es respectively;

Ky, Krare the shear factors in theyp and zpdirections respeotively, "/is the torsional constant

of beanU .I" is the second moment of inertia per unit length of beam about the shear centre, A

is the cross-sectional a¡ea of beam, G is the shear modulus and b, g represent the offset

between the shear oentre and beam centroid as shown in Figure A2.4. These equations are

satisfied by solutions ofthe exponential form:

v =Vexp(-jktp+jrof ), (A2.6)
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Figure 42.1 An arbitrary beam element.
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w :Wexp(-jkrp+j co f ),
(A2.7)

0x:@rexp(-j kxO+ jat), (A2.8)

Qy: @y exp ( -j kxO+ j a t), (A2.e)

0z: @z exp ( -j kxO+ j a t). (A2.10)

By substituting the solutions into equations (42.1) - (42.5), one obtains five linea¡ equations

in terms of the wave amplitudes V, W, @x ,@y and @r:

B 0. (A2.r r)

V

W

or

@y

@z

For a non-trivial solution, the determinant of matrix B must be zero. The expanded

determinant leads to a fifth order dispersion equation in Iê and results in five wave numbers

for one di¡ection of wave propagation. These wave numbers represent five types of waves

including travelling and decaying r¡raves of predominantly bending in nature in the direction of

the two principal axes yp and zp, and a predominant torsional wave. It should be noted that

the magnitude of the propagating and decaying wave numbers for such predominant bending

modes are not equal, as opposed to the case for simple bending where they are equal' The

positive real roots and the negative imaginary roots represent propagating and decaying

v/aves respeotively in the positive xO direction.

The general solutions for waves travelling in the positive rp direction become :



5

v =I V¡¡ exp(-iknxr+iat),
m=L

5

)

w =ZWm eW ('i kmxO+ i a t),
m=L

5

0x : X @¡* exp ( - i kmxO + i a t ),
m=l
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(A2.r2)

(A2.13)

(A2.r4)

0/ : I @r¡¡, exP (- i km x, + j a t), (A2.r5)

m:l

5

Az:2 @r¡n exp ( - i kn x, + j a t ). (42.16)

m:t

By substituting each of"the roots back into equations (42.1) - (42.5), the amplitude ratios

Vl@x, W@*, @/ø* and @rlG,,ç can be obtained. Hence the equations for coupled bending

and torsional beam displacements may be expressed in terms of five unknowns @xt.....@xs'

The longitudinal vibration mode is not coupled to the bending-torsional mode and may be

expressed in terms of the longitudinal wave amplitude Uand wave number ktræ:

u=Uexp('jkt rO+j o r). (A2.t7)

Equations (A2.12) - (A2.17) show that there a¡e six unknown $/ave amplitudes for a beam

element. These equations fully describe the transmitted or reflected waves in a beam element

of a junction. The source beam carries the incident and reflected waves while the receiving
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beams carry the transmitted u/aves. To calculate the transmission efficiency, the incident

component may be regarded as I u/¿vc of unit amplitude in either longitudinal or a

predominantly bending or torsional mode. The unknown reflected and transmitted wave

amplitudes may be solved by the boundary conditions of the junction.

42.2 Boundary conditions

The subscript i is used to denote the beam number. Figure 42.2 shows the orientation of an

arbitrary receiving beam (beam Ð with respect to the source beam (beam l). Two position

angles (¡ (measured on the r¡1 -y¡1 plane) and ry¡ (measured on the xri'zrt plane) are used

to define the orientation of the beams with respect to their reference co-ordinates. The beams

are assumed to be rigidly connected at a common attachment point P. The displacements

shown in FigUre A2.l (u, v,w, Q1¡,0r, and 0r) are referred to as the local beam displacements

while Figure 42.3 shows the reference beam displacements about the attachment point'

From Figure MJ, the local displacements for each beam may be resolved about the

respective reference beam axes xri, !ri, z¡ and expressed as a component ofthe reference

values as follows :

d'i = Ci d¡ + E¡ r¡, rt¡ : C¡r¡, (42.18, A2.19)

where di= (ui,vi,rili)T, ri = (Qxi, \yf,}zùTi d';, r'¡ are the respective reference values and

Ci:
1,0,0
0, cos p;, - sin P¡

0, sin p¡, cos B¡

0, '(b¡+e¡),

ei cos 9¡+ d¡ sin P¡, 0,

-d¡cos9¡+ ei sin P¡, 0,

E¡

The symbol p¡ denotes the angle between the reference Ð(es and principal axes of beam i; å¡,

gi arcthe offset between the centroid and the shea¡ centre measured along the zO andyO axes
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Figure 42.3 Reference displacements of beam.
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of beam i respectively and ei, di are the offset between the shear centre and the attachment

point measured along the zp úÅ yp ares of beam i respectively.

By considering the beam co-ordinates and displacements as shown in Figures Ã2.2 and A2'3,

the compatibility requirements in terms of the reference displacements between beam i and

beam 1 may be obtained :

d'l = Gi d'i, t'l = G¡ tr¡ , (A2.20, A2.21)

cos \ri cos (¡ ,

cos \Yi sin €i,

-sin Y¡,

sin (¡,

cos (¿,

0,

sin ry¡ cos Ç¡

- sin y¡ sin (¡

cos \ri

Substituting equations (42.18) into (42.20) and (42.19) into (42.21) gives

Crdr*E1 r1= Gi{Cidi+E¡r¡}, Crrt = G¡C¡r¡ (A2.22, A2.23)

Equations (M.ZZ, A22.23) represent the compatibility requirements for a general three-

dimensional beam junction. The next step is to consider the equilibrium requirements' Figure

A2.4 shows the junction forces and moments of a beam. It can be shown that these forces

and moments a¡e related to the local beam displacements by the following expressions:

Fxi: -Ei Ai a"/æp Fyi = -G A Ky (av/ Axp- o), Fzi = -G A Kz @wl}xp + 0/ )'

Mxi= -G¡Jiffi1ç/ôxp, Myi= -E¡lyiæy,lùxp, Mzi:'Eilzi æ,l}xp' (^2'24 - A2'29)

By summing the forces and moments at a junction with respect to the reference co-ordinates

of beam l, one obtains the equilibrium equatioræ :
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Figure 42.4 Junction forces and moments of a beam element.
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K R

-CrPr+IGiC¡P¡ = 0, -C1 Qr:DtPt+IGi{ciQi+D¡P¡}= 0' (A2'30'Ar2'31)

i=2 i:2

where Pi = ( Fy¡ Fyi, Fzi )T, Q¡ = (Mx¡, Myi, Mzi f , K is the number of beams in a

junction and

ni:
0, -9i,

(ó¡ + e¡)cos 9i+ @¡ + d¡)sin P¡ , 0,

-@¡+ d¡)cos 9¡+ (b¡+ e¡)sin P¡, 0,

Equations (A2.22), (A2.23), (42.30) and (A2.31) represent the boundary conditions for a

three-dimensional beam junction. Solution of these equations will lead to the complex wave

amplitudes ofthe beam elements, ie., U and @xt.... @¡s'

d¡

0

0
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APPENDD( 3

Evaluation of Wave Amplitudes for Cylinderþlate Junctions

A3.l Expressions for shell displacements

The motion of a thin cylindrical shell u, v and w in the anial, circumferential and radial

directions respectively (see Fþre 2.5 for cylinder co-ordinates) may be described by the

Donnell-Mushtari equation :

0L
[;]

(A3.1)

where L is a matrix differential operator with matrix elements given by:

LLt = ùAxz + f(t-¡ty2azl&tæz - lpQ-Ê)lE\ûþP, LL2 = lQ+¡t)lþlæl}xæ,

LL3 : Q.úa)ôlôx, L2r : l(1+¡)l2al&nxæ,

L22= ÍQ-Ðtzl&ta* + (tl&)ætæz - lp0-ú)tø"!&ntz' L23: lttû¡atæ,

Lt!= $lQôtùx, L3z: çtt&¡Atæ,

L33= tt& + Ø2n2d)l&æß* + ûtffizJz + tp(l-p2)/El ætôP .

The symbols h, a,4 p and ¡r, denote the thickness, mean radius, elastic modulus, densþ and

Poisson's ratio ofthe cylindrical shell respectively.
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Equation (43.1) is satisfied by solutions of the form:

u: (J cos(z 0) exp (-j k x+j o f ), (¡ß.2)

v : Y sin(n 0) exp ('j k x+j o l), (A3.3)

w=llcos(n 0) exp (-jkx +j o r). (A3.4)

By substituting the solutions into equation (A3.1), one obtains three linear equations in terms

of the displacement amplitud es (J, Y and I{. For a non-trivial solution, the determinant of the

coefficient matrix must be zero. The expanded determinant leads to a fourth order dispersion

equation in knz for a particular circumferential mode number r. Solution of the dispersion

equation results in eight roots, of which four represent the æ<ial wave numbers for one

direction of wave propagation. These roots may be expressed in terms of their real and

imaginary parts and the conditions for waves travelling in the positive x direction are:

=0, Xrn) 0 ,

kmn= X^, + i Çr, ( (A3.s)

Ç^n<0,

where fl:l,2,3,4andn =0, 1,2...æ. Thegeneralsolutionsforonedirectionofwave

propagation may then be expressed as:

4æ
u=2 Z U^rcos (n 0) exp (-j k^nr+j ro f ),

m:l f¡4

(A3.6)

Ç^n
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4@
y:f, Z V*nsin(n 0) exp (-jkrnr+j o f ),

m=l fr4

(43.7)

4æ
w:2 2 lY^ncos (n 0) exp (-ik^rr+j o r)

m=l rr4

(A3.8)

By substituting each of the roots back into equation (43.1), one can obtain the amplitude

ratios (JmnlwmnandV^r/W'r, and the general solutions for wave motion in a cylindrical shell

may be expressed in term of four unknown wave amplitudes lIl¡ ..'..W+n-

A3.Z$xpressions for plate displacements in polar co-ordinates

The displacements of a plate in polar co-ordinates up, vp and wo are shown in Figure 43.1'

Since the bending and in-plane motions of a plate are uncoupled, the equations that govern

these two types of motion can be treated separately. Neglecting the effects of shear

deformation and rotary inertia, the bending equation of motion for a thin plate in polar co-

ordinates is given by :

Yn ro - (poa2 hpl Dp)*p: o ,
(A3.e)

where wo is the out-oÊplane plate displacement, y+ = 1ttÑ + (Ilr) Aþr + QIP)æffiz\z,

Dp= EpttO3 I tZlt-Itp2) andthe subscriptp denotes a plate element'

The general solution of the bending equation for an ar¡nula¡ plate in terms of unknown

constants A p¡, A2¡, A3n, A4nis'.
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Figure 43.1 Pola¡ co-ordinate system of a plate element.
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æ

np=2 {A,,In(kpBr) + A2nYn(koor) + Atnln(korr) * A+nKn(,/.pnr)}cos (n 0) exp (i ar l)'

n:0
(43.10)

where the plate bending wave numb o kpr= (9rø2h. t Dìyo. Jn, Ynare Bessel functions of

the first and second kind respectively and ln,Kna¡e the modified Bessel functions of the first

and second kind respectively. The subscript n indicates that the Bessel functions are of order

n, andfor a circular plate, Azn= A4n= 0. The circumferential mode number of the plate must

be the sarne as that of the cylinder in a oylinderþlate junction since their trace velocities along

the junction must be the same'

The equations of motion for in-plane waves in a plate are given by :

aþr {au/ar + uy'r + (ltr) tu/æl' - {(t-¡tr)lzr\ ô\ffi {ar/tu + vy'r - (tlr) tu/æl

: {op(r-tto2)lap} tuy'ôP ,
(43.1 1)

(rtr)ôlffi @n/tu + uolr + (l/r) ù/æl + {Q-¡t)12} atar {av/ar + v/r - (t/r) tu/æl

= {op(r-ttr\tÛp} &v/aP .
(A3.r2)

where uO and vp are the plate displacements in the r and 0 directions respectively. The in-

plane wave equations may be reduced to functions of one independent va¡iable in a similar

manner as that of the wave equations in cartesian co-ordinates (see Appendix 3.1) by using

the following substitutions:

q= a,t/Ar + uy'r + (1/r) tu/æ, (A3.13)
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2 @: ar/A, + volr - (llr) fu/æ .
(A3.14)

With these substitutions, the equations of motion then become :

v2 q : {ooe-v/)tüo} t<o lôP ,
(A3.rs)

Y2 ø: {2poQ+¡tolEr} &ø lôí2 .
(43. 16)

For an annular plate, the solutions for equations (43.15) and (43.16) have the form

e = {B' t, I n(ku,r) + B' 2nY n@orr)\ cos (n 0) exp 0 o t) 
'

(A3.17)

ø -- {B'snlr(korr) + B'4nYr(korr)\ sin (n 0) exp (i o f) , (A3.18)

where kpL: o {{pp(l-pp2)/Ep\, kpr: o r/{2po(1+þùlEp}, and B'¡n , B'2, , B'3n , B'4n rÍa

unknown constants.

It can easily be verified (by using equations (43.13), (43.14), (A3.17) and (43'18)) that the

general solutions for in-plane motion of an annular plate are :

æ

up:Z {Brndln(kpLr)t dr + n Bylln(korr)l r * B3ndYn(kplrl dr * n B4nYn(korr)l r\ x

n=0

cos(n0)exp0of), (A3.re)

æ

up = Z - {n B n ! r(korr)l r * B 2n dJ n(korr)t dr + n B3n Y n(korrl r + B a, dY n(krrr)l drl x

n=0

sin (n 0) exp 0 co f) , (43.20)



t46

where B'Ln = -Btri;L,B'zn = B2nÇ, ,B'r, = 'B3rúr^d B'4, = B4rÊpr

For a circular plate, B3n = B4n = 0. The solutions for bending and in-plane motions of an

infinite plate with a circula¡ hole of radius a may be obtained more conveniently by using the

Hankel functions. Upon noting that the waves must propagate outward from the junctioq the

following solution for the out-oÊplane displacement may be obtained :

æ a) a)
np= Z {AsnHn(kpnr) * A6rH, Gj kpnÒl cos (n 0) exp (i o l) for r>a. (A.3.21)

n=0

(2)

Here H, is the Hankel function of the second kind of order n.

The solution for in-plane motion of an infinite plate may be obtained by replacing the Bessel

functions J, in equations (43.19) and (43.20) with the Hankel functions and putting B3n =

B4n= o :

æarQ)
up:L{BsrdH, (korr)l dr+nBønHr(korr)tr}cos(n 0)exp(i col) for r>a, (A3.22)

n=O

æ (2) Q)

up=2 -{n Bsr[r(korr)t r * B6n dÍln(korr)/ dr }sin (n 0) exp 0 o l) for r>a. (A3,23)

n=0

The preceding analysis expresses the wave motion of a cylinder as well as annular and infinite

plates in terms of wave amplitudes (W¡....WU for a semi-infinite cylinder, A¡.'.A4r¡ and

BV....B+nfor a finite annular plate and A5n, A6n, B5¡1, B6n for an infinite plate). Depending

on the t]rpes of cylinderþlate coupled structure, the wave amplitude expressions for a finite

annular plate and/or an infinite plate may be used in conjunction with a semi-infinite cylinder
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to study the wave propagation charaoteristics of the junction. For example, consider an

annular plate coupled to the inside of two semi-infinite cylinders as shown in Figure A3'2'

The wave motion is described by equations (43.6) - (43.8) for the cylinders and equations

(43.10), (43.19) and (43.20) for the plate, gvine a total of sixteen unknown wave

amplitudes (four for each cylinder and eight for the annular plate). The wave amplitudes may

be determined by consideration of the appropriate boundary conditions at the junction.

43.3 Boundary conditions

The types ofjunction to be studied consist of semi-infinite cylinders rigidly coupled to various

types of plate element. As an example, consider a semi-infinite cylinder with the outside edge

coupled perpendicularly to the inside edge of an infinite annular plate. Compatibility of

cylinder and plate displacements at the junction requires:

ü ='Vp, V = Vp, W = Up, Ö 
: Öp, (A3.24) - (A3.27)

where the cylinder and plate displacements æe given by equations (43'6) - (43.8) and

(43.21) - (A.J .23) respectively and Q 
: õwlòx, Þo: Aw¿ar

Consider now the equilibrium of forces and moments at the junction. The direction of the

junction forces and moments are shown in Figure 43.3. For a cylindrical shell, the junction

forces and moment per unit length of circumference are given by:

F*: {-E h l(t-¡t2)){aulax + $/a) @vlæ + w)}, (43.28)

Fr= {-E h lz(l+¡t)}{õulaffi + Avl}x- (h216û) &wlôxffi}, ( 3.2e)

F, = {E hs I r2(r -þ2)\ {Úw nx3 + l(2-¡l I a2l dw I ôxffiz\, (A3.30)
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Figure 43.2 Cylinder / annula¡ plate junction.
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Figure 43.3 Junction tbrces and moments of a cylinder coupled to
an infinite plate.



M: {-E If ttzlt-¡¡z)lttwl& + (vlû> æwlæ21,

and for a plate element in polar co-ordinatcs:

Fp*: Do {Úw/ú + (rta) tw/AP + [(2'¡t)tûl êw/aræ2 ' (tta\ tu/A'

- l(3-¡r)tê)&w/ffi21,
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(A3.31)

(A3.32)

F, = {Ep he I (r- lpþl {Au/Ar + Q'/a) (uo+ U¿æ¡¡, (43.33)

Fe: {Epho12 a(l+¡to)l{A"/æ + a ôv/ôr -vpl, (A3.34)

Mp: -Do {&w/ôrz + @/a2)@Aw/ôr +&w/Ñ2)l (A3.3s)

The equilibrium requirements lead to:

F*: Fpx, Fy: Fg, Fz= F, M ='Mp, (A3.36) - (43.3e)

These boundary conditions enable a solution to be obtained for the wave amplitudes

Wn....W+n and A5n, A6n, B5n, B6n for a given circumferential mode number and incident

propagating wlve in the cylinder.
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APPENDD( 4

Evaluation of Wave Powers in Cylinderþlate Junctions

The cylinder wave pou/er consists of components due to bending, longitudinal and torsional

motions. Each of these components may be expressed in the following form :

frB: Y, {Mþ* + Frw*\a dQ ,

2n

fo Re (44. r)

Írt: Y, f
2æ

Re{&ù*lad0,
0

(^4.2)

2n
flr=V, n" { &ù*}a d0, (44.3)

0

where ' denotes the time derivative, * denotes the complex conjugate, a is the mean cylinder

radius, 0 is the polar co-ordinate of the cylinder and 0 : ôwlôx. The cylinder forces and

moment Fx, Fy, Fz, M, and the cylinder displacements z, v and w, are shown in Figures (2.5)

and (43.3) respectively. Note that the second term on the right hand side of equation (44 l)

consists of the v/ave povver due to'shearing and twisting of the cylinder since F, is made up

of components due to the transverse shea¡ force and trvisting moment in the cylinder'

Substituting the expressions for cylinder forces and moment (equations (43.28) - (,{3.31)

together with the expressions for cylinder displacements (equations (43'6) - (43.8)) into

equations (44.1) - (44.3) leads to:

ilB = Ur.Etf alÍ12a2(t - îP)l\{(kmn af lw^nl2 + n2krn olw^rl2\ for n + o,

f

: grÐh3alþaz(t - pz)ll¡lr'*o a¡tlw*ol? for n = o, (A4.4)
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fI¡= lnlhatlz(t- pÐl) {k^,alu^rl2+rplu^)lv^rl *plwrnl\urnl } fot n*0,

= qrrÐhat(r - w\|{k^oalu*olz * plwrol lu*,1\ for n = 0, (A4.s)

rty= þrÐhaftae + w)]]{k^nolv^rl2 * nlu^rl lv*nl + (n k^,rtû l1a)llYrnl lt'^rl¡

for n+0,

:Q forn:0, (A4.6)

where ø denotes the travelling wave in the cylinder, z is the circumferential mode number,

k^nisthe a:<ial wave number of the cylinder; E, p, lt and h a¡e the elastic modulus, densþ,

Poisson's ratio and thickness of the cylinder respectively and (Jmn, Vmn and ll/*, are the

complex wave amplitudes. Depending on the frequency of interest and the cut-on frequency

of the Type I, tr and III waves (see Section2.4 of Chapter 2 for a discussion of the tlpes of

waves in a cylinder), there may be up to three waves propagating simultaneously in the

cylinder. The total v/ave power is the sum of each of the propagating waves.

For an infinite plate, the bending, extensional and shear wave powers that propagate outward

from the cylinder may be obtained by integrating the expressions for power per unit length

over an arbitrary circle of radius r (r > ø). The derivation for wave power can be

considerably simplified by using the asymptotic approximation of the Hankel function:

Q)
H; (k r) * tll2lrckrl expfi k r + i r'14 + ¡ nn/Z), ( 4.7)

for kr >> I and krÐ n2,

Following a derivation procedure similar to that of a cylinder, the wave powers of an infinite

plate are given by:
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fl pa = {E o h 
o3 

al 6(l -ppz)l 1*oul.n 5rl 12 forn+0,

= {Epho3at3(r-pf)l{kpnl¿soll2 for n = 0, (44.8)

flpL= {E o hoat (t -w;)l {kpl I a srl 12 forn*0,

: 2{Ep hoat(r-p})\ {ka.l ¡so I }2 forn=0, (A4.e)

frpr= {Eo hoa/2(t+¡t)} {ko, lnerlrz fot n * 0,

:0 forfl=0, (A4.lo)

where A5n, B5n and B6n represent the complex wave amplitudes and the subscriptp denotes

a plate element.



t54

APPEI\IDD( 5

Wave Transmission fuialysis of a Plate with Periodic Stiffeners

For a plate with periodic stiffeners of infinite extent as shown in Figure 3.1, the out-of-plane

displacement of the plate at an arbitrary bay i is given by:

4

w(xù: exp (I Ð { t As exp (kr*x¡))exv (þl + iat), (As.r)

m:L

where / is the stiffener spacing, i is the element or bay number (i : 0, 1,2,....æ), xi = x ' il, î'"

is the p.ropagating constant, k'r'yisthe root of the dispersion equation for plate bending and

Ar¡ is the wave amplitude. If the plate is subjected to an oblique bending wave of wave

number kp and or¿ys angle y, then k¡rry and k, may be expressed as (see Appendix I for a

more detailed discussion of the wave numbers for an oblique wave):

kw: j kg cosl, kzx= -j kscosf, k3*: ka llt+ sin2Y ], k4r:' ka'll1+ sin2Y ];

and kr=tjÉ¿sinY.

Consider an arbitrary junction of the periodic structure as shown in Figure 45.1, the forces

and displacements at the left hand side of element i are related to the corresponding forces

and displacements of element i + 1 by the Bloch theorem as:

exp (?v) w(xÐl rv(ri+r)l ti+l =o'
(4s.2)

¡i=o

exp (î,) $(x)l ¡i=o 0(ri*r)l ¡i+l =o t
(4s.3)
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F(x')14 = o
F(x,)lx¡ =l F(4*r)1r,, 

=o

I

C
M(x)lx, =o w(xt)lx, =o M(x,)lx, = t

C
þ(x,) 14 = o

j+1

M(x*r)l
4*r =0

w(x,-r)l
0X¡*t

þ(x,.r)l4*r =0

z
x

Figure A5.1 Forces and displacements at an arbitrary junction

of a plate wittr periodic beam stiffeners.
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exp (Î,) ^F'(Ðl F(¡i*r)l (As.4)
¡r=o ¡i+l -o'

exp (?r,)M(x)l = M(x¡*ùl r¡a¡ =0 t (As.s)
¡i=o

where þ, F and M are the plate rotatio4 junction force and junction moment respectively (see

equations (Al.l8), (A1.22) and (41.23) in Appendix I respectively for expressions of these

quantities).

The quantities on the right hand side of equations (45.2) - (45.5) can be expressed in terms

of element i by the compatibility and equilibrium requirements at the junction. Consider first

the compatibility requirements:

w(x¡ +r)l lr(Ðl (A5.6)
r¡ a1= 0 xí=l'

0(x¡ +r)l 0(xrl (As.7)
x¡ l=o x¡= I

The equilibrium of forcês and moments at the junction must allow for the torsional, bending

and inertia effects of the beam. As a result of beam bending in they ' z plane (see Figure 3.1),

the plate force I' is augmented by the shear force of the beam. Summation of forces inthe z'

direction gives:

F(Ðt - F(ri +r)l AFilAy = - pAa2w(x¡)l xi=It
(4s.8)

xi= I ¡i+l =o

where AFblAy=EIxtw(x¡Yôt'| ,,-, ,

md p, A, E, I, arcthe density, cross sectional area, elastic modulus and second moment of

area of the beam respectively.

+



The variation in plate rotation in along thoy - axis car¡ses the beam to twist and results in a

torsional moment. Consider the equilibrium of moment about a line parallel to the y - axis and

passing through the beam centroid:

U(x¡)l*.=¡- M(x¡+illr-*l=d ùMblAy =-Ico2ô(Ðl x¡=t, (45.9)

where AMblAy = - Cl ûþ(x¡)l}fl 
x¡= t ,

and G, J, I, are the shear modulus, torsional constant and second moment of inertia per unit

length ofthe beam respectively.

Eliminating the quantities that relate to element i + I from equations (A5.2) - (45.9) and

expressing w(xù,ö(Ð , F(x¡) nd M(x¡) in terms of the wave amplifides A1..44:

4 4

Z Am exp (k* /) : e*p (?') >, Am , (As.lo)

m:I m=L

4 4

Z Am k* exp (km f) = exp (^.) t A^ k* , (45.11)

m=l m:L

4
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(45.r2)

Z (km2 - Ic @2 kmlD - GJ kf kmlD + ¡t, tcrh A, exp (km I) =

exp (1.) 2(km2 + ¡t,*r?) An,

m=l

4

m=l

4

m=L

4

2 (km3 + pAa2tD - EIx ky4lD + (2 - Ð Ü km) Am exp (k6 I) :

exp (I) 2 (km3 + (2 - tÐkf km) Am

m=l
(As.l3)
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where D and p are respeotively the flerural rigldlty and Poisson's ratio of the plate elements.

Equations (45.10) - (45.13) can be oçressed in matrix form:

(s.14)ItÍA7.l: exp(I) ÍAml,

where /r is a 4 x 4 matrix aú lAvrl is a column vector. Equation (45.14) represents a

standard eigenvalue problem. The four eigenvalues exist in two pairs, one of each pair being

the reciprocal of the other, indicating propagation of waves in the positive and negative

directions.
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