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Abstraet

Extensive psychophysical and the more recent neurophysiological data from

single cellular recordings suggest that selective attention and memory guided

processing are some of the key properties of the primate visual brain that endows it

with cognitive visual abilities that have not yet been matched by traditional artifrcial

intelligence nor by the current artifrcial neural network models oflearning and pattern

recognition. Mostneural networkmodels of object and pattern recognition eitherignore

the mechanism of selective attention or are based on feedforward processes that ignore

the role of the feedback pathways and the established memory, which therefore limits

their application to simple visual scenarios.

This thesis proposes a neural theory, Selective Attention Adaptive Resonance

Theory, and a neuro-engineered solution to selective visual attention, Ílemory guided

processing and illumination invariant recognition of complete (unoccluded) but

distorted 2D shapes of 3D objects in cluttered visual images. 'We propose a family of

modulated competitive neural layers and neuroengineering design principles for the

design of multi-layered competitive 2-D neural circuits whose stability and success

depends on feedforward-feedback interactions. The proposed feedback pathways and

the top-down modulatory processes simultaneously supervise and stabilise the circuit

dynamics, selectively retune the signal transmission gains and the frltering char-

acteristics of the lower layers to enable unsupervised learning and recognition of 2D

shapes obtained from unoccluded 3D objects in cluttered images. We propose neural

circuits and networks that are capable of self-regulated attentional learning, selective

attention and memory guided processing, autonomous detection ofnovelty/familiarity,

distortion and illumination invariant recognition of familiar 2D shapes of real objects

in cluttered images.

We conclude that flexible design principles that are based on feedforward-feedback

interactions in a closed-loop real-time competitive neural circuit whose modulatory
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mechanisms can dynamically retune the signal transmission gains and the cellular

receptive freld profiles atvarious stages of processing overcomes some of the problems

and limitations that are faced by the rigid architecture of the current artificial neural

networks. The neuro-engineeering design principles, mechanisms and circuits as

proposed in the thesis provide a new and robust method for solving some of the most

diffrcult problems in visual object recognition that are currently not well handled by

the state-of-the-art artificial neural networks and the more conventional computer

vision systems. These design principles also open new avenues for further research

into more advanced modelling of cognitive and perceptual real-time artifrcial neural

systems that use selective information processing.
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Chapter L

Introduction

"We find ourselues in a bewilderíng world. We want to make sense

of what we see around us ønd to ask: What is the nature of the

uniuerse? What is our place in it and where did it and we come

from? Why is it the way it is?.

S. Hawkine (1988)

1.1 Background and Motivation

A typical visual scene is cluttered with many objects that may be embedded in

complex background and yet our visual brain is extremely effrcient at recognizing the

individual objects as well as the whole scene. What neural mechanisms enable our

visual brain to quickly recognize familiar objects in complex and cluttered visual scenes

where current artifrcial neural network models and conventional computer vision

systems fail? How do stable visual memories get established and what effect do they

have on the attentional processes and the success of the brain in complex and novel

scenes? What is selective attention, how is it implemented and what does it contribute

to? rWhat characterises the actual moments of visual perception and awareness? How

do these brain states arise and how are they sensed in a dynamic and potentially chaotic

brain? These and related cognitive aspects of the human brain, currently barely

understood, need to be solved ifwe are to unravel the fundamental architectural design

principles of biological neural networks in general and the primate visual brain in

particular so that we can design more intelligent and robust artifrcial neural systems

for technological applications.
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Most known cognitive properties of the human visual brain have been scientifrcally

revealed through psychophysical experiments using brief visual displays and through

the study of neuropsychological patients. These studies indicate that cognitive vision

andvisualmemorydepend oninteractingpre-attentive and attentive processes, without

which the visual system is virtually useless. Most vision researchers, cognitive

theoreticians and neural network modellers have, however, largely ignored the

importance of feedforward-feedback interactions between the bottom-up or pre-atten-

tive visual processes and the top-down attentive and memory driven processes. Current

literature therefore abounds with various artificial neural (and non-neural) models of

pre-attentive vision (filtering, edge and contrast detection, frgure ground separation,

texture segmentation, etc.) and object feature extraction and recognition that are

basically of the feedforward type. Top-down processes, although largely ignored in
computer vision and neural network models, are very important, both in central and

peripheral human vision, and often override the bottom-up pre-attentive processing

through cognitive control. Typical examples of visual problems where top-down

attentive processes may be required is when recognizing overlapping shapes, occluding

figures, objects embedded in cluttered background of low contrast and uneven illumi-

nation. Top-down attentional process may also be driven and influenced by prior

memory, such as when searching for a particular item in a cluttered input freld.

Thebasic architecturalorganization andthefunctioningoflow-level (pre-attentive)

biological vision, having been extensively studied at the experimental level and more

recently at the neuro-theoretic level (Grossberg and Mingolla, 1985a,b), are far better

understood than any other part of the brain. Although the detailed knowledge of early

visual processes is still to be worked out, it is now well established that visual infor-

mation from the retina proceeds through several stages of retinotopically organized

and massively parallel feature detecting cells in the lateral geniticulate nucleus (LGN),

the primary visual cortex ( area Vl) and the extrastriate cortex (areas V2 and V4), (Hubel

and'Wiesel, L977; Van Essen et al., 1990; Zel<t, L993). However, very little is knowr.

about the organizationalprinciples and the functioning of the higher levels of attentive

and cognitive primate vision. For examples, it is not yet known how the subsequent

cortical layers (inferior temporal (IT) cortex, parietal cortex, prefrontal cortex, etc.)

process the information from early visual layers to give rise to coherent visual

perception, memory storage and ability to recognise an object in a complex and cluttered

visual world despite numerous transformations that the sensory stimulation from an

obj ect may proj ect onto the retina. The neuronal mechanism that links vision, perception

and memory is thus largely unknown, although it is established that the neural circuits

within inferior temporal cortex are depositories for long term visual memories (Gross

et aI., 1972; Gross L973a,b; Desimone and Gross, L9791' Perret et a1.,1982; Richmond

et a1.,1983; Miyashita, 1993).
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1.2 The Need for Selectiue Visual Attention

It is the goal of this thesis to propose neurobiologically inspired and plausible

neural design principles, mechanisms and circuits of high level primate vision, with a
particular emphasis on selective visual attention, memory and object recognition in
complex and cluttered visual scenes.

1.2 The Need for Selective Visual Attention

The most basic cognitive requirement of a real-time adaptive neural sensory

informationprocessing system (be it specialisedforvisual, auditory or anothermodality)

is the ability to extract and recognise a familiar or a previously learned sensory stimulus

when that stimulus is embedded in a novel, cluttered or noisy sensory environment

that may often be severely degraded. A more general cognitive neural system should

also be able to recognise the same stimulus when it is partly occluded by other visual

stimuli or when its projection to the early sensory neurons has been transformed or

warped, such as when aviewed object undergos complex 3-D motion (leading to relative

changes in projected retinal size, position, orientation, etc). Thevisual brain of primates

is an example of a biological cognitive visual system that can learn to recognise familiar
objects and figures in complex visual scenes, even when portions of the object are

obstructed or appear in unfamiliar contexts.

A cognitive neural system that interacts with its environment must also be

able to adapt in real-time to the demands placed on it by a continuously changing

environment. Real-time learning is not the only prerequisite for an animal's survival

since the organism needs to be able to extract the stationary components of its envi-

ronment even when the contexts may change, otherwise frustration and death may

follow. A typical example of such a problem arises if the animal is unable to recognise

its food whenever it appears in different contexts, or is unable to recognise its predator

in unfamiliar contexts. Thus, organisms need to be able to extract the relevant and

relatively stable portions of the sensory input and be able to learn stable internal
memory representation of the extracted information. Otherwise, previously learned

information will be useless if it can be continuously eroded by recent experiences. At
the same time, sensory stimulation that has immediate physiological or psychological

consequence (ie. are important to immediate survival) needs to be processed and

evaluated, even ifit is at the expense ofother processing, so that an appropriate response

can be made (such as pain avoidance, escape from danger or satisfaction of internal

desires such as hunger relieÐ. In order to process the relevant stimulus in a continuum

of simultaneous sensory stimuli (and to ascertain its meaning or consequence), the

neural systems controlling the animal's behaviour and response need to be able to

selectively attend to (or tune into) the important (or desired) stimulus while at the same
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time temporarily ignore the rest of the stimulation. If the selected stimulus has no

direct consequence to the animal, then the neural system has to be able to shift attention

to other sensory events within.

Although the early layers of the primate visual system are massively parallel,

the shear volume of real-world visual information that may simultaneously barrage

the primate visual system suggests that there ought to be a neural mechanism that

can filter most of the information, thus allowing organisms to respond to the relevant

portion of the overall stimulation. On the basis of psychophysical (Sperling, 1960;

Eriksen, 1988;Eriksen and Schultz,L979;Eriksen andYeh, 1985;Eriksen andMurphy,

1987; Posner, 1980; Shulman et aI., L979; Tleisman and Gelade, 1980; Tsal, 1983),

neuropsychological (Posner et aL, L984,1987; Rafal and Posner, 1987) and neurophy-

siological experiments (Lynch et ø1., L977; Mountcastle 1978; Moran and Desimone,

1985; Mountcastle et al., 1987; Petersen et a\.,1987), consensus has been reached that

selective visual attention enables only the relevant portion of the sensory stimulation

to reach the higher cortical layers. Neurophysiological data has shown that various

neural centres may be involved (either directly or indirectly) in selective visual atten-

tion. The main cortical areas that have been found to be involved in selective visual

attention, or are affected by it, include the parietal cortex (Mountcastle ,L978; Desimone

et a1.,1990; Robertson et a1.,1988; Posner et a1.,1987), the medial pulvinar (Robinson,

1993; Chalupa, 1991; Bender and Butter, 1987; Petersen et a1.,1987), visual areaY{
(Moran and Desimone, 1985; Haenny et a1.,1988; Haenny and Schiller, 1988; Motter,

1993; Braun, L994), the inferior temporal cortex (Moran and Desimone, 1985; Sato,

1988) and the anterior cingulate gyrus (Posner and Rothbart, L992, L994).It is highly

likely that other areas, if not directly involved are in some way affected by attentional

factors, such as the hippocampus and other memory pathways. Recent experimental

data indicates that even the earliest visual cortical areas (Vl and Y2) arc influenced

by attentional factors (Motter, 1993), with the presence or absence of competing stimuli

being the determining factor for the differential selectivity of the cell.

Extensive psychophysical experiments conducted over the past three decades

(for a good summary refer to Van der Heijden, 1992) provide evidence that selective

visual attention has spatial and non-spatial components which have automated rudi-

mentary selectivity to the incoming visual information so as to orient the organism

(human) towards salient and novel features of the input. The automatic component of

visual attention facilitates what is often referred to by vision researchers as the

"pre-attentive vision", while the voluntary component contributes to the so called

"attentive vision". These two highly coupled components of human vision enable us to

selectively attend to (or tune into) a portion of input for further processing, the purpose

ofwhichmaybe toveri$rornullifr ahypothesis thatwe generate during ourexploratory

behaviour and interaction with environment.
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If we did not posses the ability to ignore the irrelevant inputs, we would frnd

it very difficult to comprehend anything in a complex visual scene. The fact that we do

indeed posses an attentional frltering system is exemplified by our limited ability to

simultaneously recognise more than one object. For example, we cannot simultaneously

recognize with high degree of certainty more than one word in this sentence nor can

we simultaneously ascertain whether two successive words in the sentence are spelled

correctly. We typically "pay attention" to one object at a time and then move attention

to another. How much processing time we allocate to a particular object depends on our

current goals, needs, relevance and the familiarity of the attended object. However, we

would be at a disadvantage if we were always limited to perceiving a scene in terms of

single isolated objects (which may be true for a scene containing novel objects). Once

familiarwiththe contents ofagiven scene, thatis, whenwehaveconstructedaninternal
representation of the scene, we should be able to attend to the whole scene rather than

to its constituent elements. In such cases, our attentional system should not only alert

us about a potential discrepancy between our stored representations ofa given scene

and its real contents (which may be caused by the dynamic changes in the scene), but
it should also orient us to the approximate location of the mismatch to allow us to attend

to and learn the novelty within the scene.

It is also recognised that selective attention may also be subject to voluntary

and adaptive influence from higher visual centres. Experimental psychological data

shows that there is a relationship between selective visual attention and visual memory

(Sperling, 1960; Rock and Gutman, 1981). For example, the experimental data on the

recognition memory of a briefly presented set of overlapping frgures shows that the

attended stimuli tend to be remembered reasonably well, whereas memory of unat-

tended stimuli is at chance level (Rock and Gutman, 1981). In addition to selective

transmission of visual information, it has been proposed that visual attention provides

the key to forming invariant object representations (Palmer, 1983) and, may also be

involved in the encoding of depth information (Epstein and Lovitts, 1985).

Evolutionary processes have thus endowed visually intelligent life-forms with
a neural mechanism to selectively pass the behaviourally relevant visual information

through to brain centres where learning and recognition takes place. Although visual

attention is not the only form of attention in biological systems, it is by far the most

studied at the psychological and the cellular level. Whether such a mechanism is needed

in technological applications of artificial neural networks remains to be seen.

Selective attention and memory guided processing thus appear to be some of

the key mechanisms of biological neural systems that provide them with cognitive

abilities that have not yet been matched by traditional artifrcial intelligence approaches

nor by current artifrcial neural network models of learning and pattern recognition. It
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is therefore both of theoretical and practical interest to understand the neural mech-

anism of selective attention and how it may contribute to intelligent behaviour in a
self-organising artificial neural network model of sensory information processing and

visual perception. Of particular interest are the interactions between attention and

memory, that is how attention affects memory and how the established memories affect

the attentional processes.

Very little is known about the neurobiological interactions and circuits that

mediate selective attention, although it has been recently suggested that the massive

feedback pathways in the brain may play a significant role (Mumford,1994; Posner

and Rothbaú, L994; Churchland et al., 1994). Feedback pathways in the brain are

perhaps one of the more important but the least understood and appreciated design

principles of the brain. With the advent of real-time competitive and self-organising

neural network models of learning during the past two decades, particularly the

invention of the Adaptive Resonance Theory (ART) by S. Grossberg (1976, 1980) and

its subsequent mathematical implementation in various neural network architectures

(Carpenter and Grossberg, L98'la, b, 1990), coupled with the advances and knowledge

being gained from psychology and experimental neuroscience and neurophysiology, it
should now be possible to make signifrcant inroads into the basic understanding of

fundamental neural design principles of biological neural networks.

1.3 Artificial Neural Networks and Computer Vision

Since the re-emergence of Artificial Neural Networks (ANNs) in the mid 1980's,

through the influential paper by Hopfield (1982), ANNs have become very popular,

particularly in pattern recognition applications. One of the main reasons for their

re-emergence and popularity since the early work by McCulloch and Pitts (1943) are

the new architectures and learning laws that enable ANNs to be adopted to various

problems domains. Because ANNs learn to solve a problem by being trained on examples

that are chosen from the problem domain, they re claimed to be able to generalise to

new, previously "unseen" examples within the same problem domain. It is also generally

regarded that the application of ANNs reduces the time needed to generate a solution

to a particular problem since the burden of providing a formal mathematical or

engineering solution (which cannot be always easily done) is replaced by training the

chosen network on the relevant data.

Even though ANNs have proven to be extremely good as pattern recognizers

and in some cases have exceeded the performance of conventional classifrers, yet after

some 10 years of their applications to various problems, particularly to visual object

recognition, we still do not have robust object segmentation and recognition systems.

This appears to be due to our failure to appreciate the intricacy and the complexity of
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mechanisms that enable biological vision systems to succeed so effortlessly on visual
problems to which ANNs are applied only to fail miserably. Perhaps we fail to appreciate

the fact that real-world visual sensory, and perhaps other sensory domains, are too

complex to be considered as the problems of simple pattern recognition.

The image of a visual scene is a two-dimensional mosaic of luminances that
are reflected from the objects and the background within the scene. In order to recognize

a particular object in a cluttered background, the object recognition system fìrst needs

to separate the various luminances from the other objects and the background so that
it can segregate the luminances that belong to one object. That is, the system must be

able to determine which of the various luminances in the retinal image belong to the

same object. Segregating the various luminances that belong to the same object is in
general a very difficult problem in computer vision. Problems arise when the scene

contains several occluding objects or when the luminance from an object is non-uniform

and merges with that of other objects or the backgtound. While such scenes do not pose

much of a problem to biological visual systems, they are particularly diffrcult to solve

by machine vision systems which would fail to properly segment an object, thus leading

to recognition failure (recognition of an improperly segmented object would most

certainly fail).

Computer vision and object recognition researchers generally apply various

pre-processing and feature extraction algorithms to visual images in order to reduce

the image data to a computationally manageable level while generating a simplifïed

description of its contents. Typical pre-processing algorithms for image filtering and

object segmentation include median filtering, edge detection, thresholding and

boundary following (Pratt, 1978; Ballard and Brown, 1982; Rosenfeld and Kak, t982;
Marr, L982; Peli and Malah, 1982), etc. These low level pre-processing steps are then

followed by a feature extraction process that transforms the shape of the segmented

object into a small number of shape descriptors that are representative and unique to

the object. These object descriptors are then used as the input to the classification
(recognition) module that may or may not be based on a neural network.

For example, in a typical application of ANNs to visual or infrared (IR) object

recognition (Lozo et aI., 1991), the problems of object segmentation (separation of the

object from its background), feature extraction and classiflrcation are done by inde-

pendent modules, all working in a feedforward manner. Neural networks, although not

restricted to, are generally applied in the final stages of processing (i.e., feature learning

and classification). This traditional approach to object segmentation and recognition,

schematized in Figure 1-.1, where each processing stage depends on the success of the
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previous stage, \4/orks quite well on well contrasted objects, such as those shown in
Figure 1.2, wherefeedforward computations canreliably separate the target objectfrom

its background.

O Class ¡
O Class 2o.
o.

Input imnge
(GraU leuels)

I

Feaütre Extraction
(Abstract shnpe descrþtor)

Ctass{ficatíon
(Conue¡ttlonal classificr or
taíned new al neü.p orl<)Segmentation

(Object silhouetfe or boundarg)

FIGURE l.l.Traditional feedforward processing steps in object segmentation
and recognition.

(a) Scene 1 (b) Scene 2

FIGURE 1.2. Examples of well contrasted objects in visual images where

current feedforward object segmentation and recognition systems are likely
to succeed.

However, these approaches generally fail on scenarios that typify the real visual

world of noise, clutter, complexity, occlusions and overlapping figures, etc. 'When the

segmentation stage fails to cleanly separate an object from its background, the whole

system is doomed to fail even though the higher levels of the network architecture may

contain the memory (network weights) of the desired object. Why bother training an

Artificial Neural Network if its acquired memory weights do not help it one iota in

circumstances when it is really needed, i.e., when the preceding stages fail? In fact, if
the pre-processing stages do succeed, there is really no need for a neural network at

the recognition stage since there are already many well established traditional
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approaches that work quite well. It seems intuitive to suggest that perhaps the memory

of a trained neural network should therefore play a greater role in the overall process

than is currently appreciated.

I

(a) Scene 3 (b) Scene 4 (c) Scene 5

FIGURE l.3.Examples of complex and cluttered visual images where current
feedforward object segmentation and recognition systems are likely to fail.

To expose some reasons why current artifrcial neural networks and more

conventional image processing systems are very likely to fail on the above images, below

we show the result of processing the above images with a typical edge detector. We have

used a simple 3x3 Sobel operator, although any other edge detector could have been

applied for the current purpose.

Þ

(a) Scene 3 edges (b) Scene 4 edges (b) Scene 5 edges

FIGURE 1.4. Sobel edge processed images of complex visual scenes that
demonstrate some of the difficulties faced by feedforward segmentation and
recognition systems.

Let us now examine these edge maps in the context of some of the most commonly

used algorithms that use image edges to segment individual objects. The reason for

considering the edges (rather than the grey level images) is primarily because most

#
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computer vision and object recognition systems typically include edge detection at the

very earliest stages of processing (as is also experimentally found to be the case in the

early stages of biological visual systems).

As can be seen in the three image edges of Figure 1.4, the boundary of the

target object is not well defrned and in some places has a much weaker edge strength

than the non-relevant object and the background. Ifthe edge maps are to be thresholded,

as is typically done, then parts of the target boundary would be discarded while

significant portion of non-relevant edges in close proximity to the target object would

be retained. If on the other hand \Me lryere to use a boundary following technique that

not only uses edge magnitudes but includes edge directions as well, the boundary

follower would still fail to trace the proper boundary of the target object. For example,

the target object in Figure 1.4(a) has strong edge magnitudes along most ofits boundary,

with the exception of a small portion below the neck of the toy animal. A boundary

follower will thus be driven off the target object. Hence any recognition system whose

segmentation is based on edges (and edge directions) is unlikely to succeed in

segmenting the target object in above images. The problem is that it is not always

possible to decide at the local level which of all the possible edges form part of the single

object.

2-D Gabor functions in image segmentation and feature extraction

Gabor functions, which were initially introduced as one dimensional functions

in the context of uncertainty theory ofinformation (Gabor, 1946) have been widely used

in image segmentation and feature extraction since their extension to two dimensions

by Daugman (1985). Figure 1.5 shows an example of two elongated and spatially

oriented 2-D Gabor functions.

(a) (b)

FIGURE 1.5. Example of oriented symmetric and asSrmmetric 2-D Gabor
functions: (a) symmetric; (b) asymmetric filter.



1.3 Artificial Neural Networks and Computer Vision 11

The reason for their recent popularity is two fold: (i) Gabor functions provide

an image frltering scheme whereby an arbitrary image area can be represented by the

response of symmetrical and asymmetrical2-D frlters that are simultaneously maxi-

mallylocalizedbothin space andinspatialfrequency; and (ii) 2-D Gaborfiltersresemble

the receptive field profiles of the simple cells in the visual cortex. The early experimental

neurophysiological data from single cell neuronal recordings (Hubel and Wiesel,1962)

has provided evidence that simple cells in the primary visual cortex (area Vl) consist

of elongated excitatory and inhibitory zones, thus producing a receptive freld that
responds maximally to oriented lines or edges.

Gabor functions, or convolution kernels, are typically represented by a product

of a Gaussian and a sinusoid. The two most commonly used Gabor frlters can be written
mathematically as

Gr(x,y) =g(x,y)cos(Õ) (1.1)

Go(x,y)= g(x,y)sin(¡Þ) (1.2)

where s@,y)=*dj([ot]'*[å]'))isa2-DGaussianwitho"ando,derrningitsspatial

extent (and elongicity), while cos(Õ) and sin(Õ) are the two sinusoidal functions that
determine the filter's spatial frequency and whether the frlter is symmetric or asym-

metric. The asymmetric and elongated frlter, Go(x,y), is typically applied to the detection

of edges and contrast differences in various directions and at various spatial scales. As

frlters, 2-D Gabor functions are considered to represent the lowest level of processing

in the visual systems and have been applied to various image processing problems.

Applications of Gabor filters include image compression (Daugman, 1988),

texture segmentation and discrimination (Du Buf, 1990; Fogel and Sagi, 1989; Clark

et aI., 1987; Turner, 1986), computation of surface orientation from textured images

(Gopa1 et a1.,1990) and combined image sampling and object feature extraction (Flaton

and Toborg, 1989). In typical applications, a larger number of such kernels, each

differing in spatial resolution and orientation is applied to an image. As the spatial

extent ofthe filter is increased, its resolution is decreased. The features thus extracted

are then used in the recognition process. For example, Flaton and Toborg (1989) have

devised a scheme whereby the feature vectors obtained from Gabor convolutions with
an image at different orientations and spatial scales are conveniently arranged into

suitable data structures to enable efficient object recognition in infrared images by a

simple similarity measure.



CHAPTER 1. INTRODUCTION 72

While the application of 2-D Gabor function to image segmentation and object

feature extraction provides an alternate approach to many existing image segmentation

and feature extraction techniques, there is no evidence that it provides a more robust

solution to the existing problems when the image clutter and complexity increases.

Thus while there are many alternate approaches that have been proposed in

the freld of computer vision and object recognition over the past three decades (not all

being inspired by neurobiolory), it may be concluded that when a particular solution

works well on a restricted set of images, one cannot guarantee its success on images

that depart even slightly from the ones that it was aimed at. The problem in general

is too diffrcult to solve. Current approaches to computer vision and object recognition,

whether they are purely based on conventional image processing algorithms,

state-of-the-art ANNs or a hybrid, are susceptible to failure as soon as the complexity

and the clutter in the image increases, thus placing a heavy burden on the object

segmentation processes. The overall system is likely to fail simply because the

segmentation process may fail to properly segment an object. In the process of

segmenting an object from its background and obtaining its simplifying descriptors or

patterns, often the important information may also be discarded. This may lead to object

descriptors or patterns that bear no resemblance to the descriptors of the complete

object (even if only a small portion of the object information is discarded). Since the

transformed simplifying abstract feature patterns obtained from an improperly

segmented object are unlikely to bear any relation to the original pattern from a cleanly

segmented object, the object recognition systems will likewise fail.

Image segmentat ion'the Achílle s heel' of obj ect recognition

Many researchers have realised that object segmentation in a realistic visual

image is perhaps one of the most diffrcult problems in computer vision. For example,

in their investigation of a neural network architecture for 3-D object representation

and recognition by a mobile robot, Seibert and Waxman (1992), have noted that "seg-

menting a 3-D object cleanly from a complex scene is a uery dfficult problem in general

because of interference from noise, occluding objects, background, illurnination and

spatial sampling effects". Although these authors have used ahybrid ofimage processing

and neural networks in their work on 3-D object recognition (see section 1.3.1), it does

not necessarily mean that a trained feedforward neural network is required in the

segmentation stages nor does it guarantee the success of such a network if it were to

be used.

Attempts to circumvent the failure of the segmentation process at higher levels

is prone to errors not only because the important information may have been discarded

by the lower level processing modules, but the higher levels may make a wrong clas-

sification or recognition response on the partial data that is available. This is unlike
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the case of human vision where for example \Me are able to recognize an occluded object

after seeing it first in its entirety. Even if an artificial neural network is able to recall

the complete memory from a partial description, memory recall does not necessarily

imply recognition unless the recalled memory is used effectively in the comparison

process. But the recall of the complete memory from a partial input will not match the

input. We are thus left with a paradox where on one hand we need a complete memory

recall from a partial input while on the other hand we need the input to match the

recalled memory. An interesting and relevant idea that was recently suggested is that
"it is much more significant for a part of the input pattern to match closely the stored

Ínernory, than for all of it to match slightly", (Mumford, 1994).

What appears to be needed is a neural architecture where the bidirectional

interactions between pre-processing and recognition stages enable the established

memory of an object to influence and assist the pre-processing stages when required.

The basic notion of bidirectional interactions or'interactive vision'(Churchlandet al.,

L994), is that higher levels of vision should provide top-down feedback to lower visual

layers, such that'partial segmentation helps partial recognition and partial recognition

helps segmentation'. Bidirectional interactions should be easy to implement in 2-D

neural circuits compared to conventional computer algorithms. However, we currently

do not have feasible neural networks with such interactive properties, nor do we know

what type of feedback should be used. Engineers are quite accustomed to electronic

circuits where feedback is heavily used, particularly in the design of feedback control

systems. Unfortunately, engineered feedback controls systems are typically char-

acterized by positive or negative feedback. Positive feedback is not very popular amongst

engineers (they loathe the positive feedback) because of potential instabilities that it
may cause. Positive feedback is used in both the Boundary Contour System (BCS) of

Grossberg and Mingolla (1985a, 1985b) and in the ART based neural networks (Car-

penter and Grossberg, 1987a, 1987b, 1990) to provide ne\ry computational capabilities

and yet these neural networks are stable ! However, there is at least one type of electronic

circuit, Automatic Gain Control (AGC), where a feedback signal is used in a completely

different way, i.e., it is not strictly positive nor is it strictly negative, but modulatory

(positive modulatory or negative modulatory). The feedback signal in the electronic

AGC circuit biases the gate of a Field Effect Ttansistor (FET) such that the amplitude

of the AC coupled input signal is modulated to produce a constant amplitude output

signal (Millman, L979, pg. 406).

Although the Boundary Contour System (BCS) does have feedforward-feedback

interactions (of the excitatory type) and can explain and reproduce numerous visual

illusions, it can still fail to properly segment objects in visual images such as those

shown in Figure 1.3, where the human visual systems succeeds readily. Even when

BCS is combined with an ART based neural network (such as the ART-3 neural network
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of Carpenter and Grossberg, 1990), the whole system will still fail to segment and

recognise a previously learned object when that object is subsequently embedded in
cluttered background.

Thus, even with the advent of Artifrcial Neural Networks, we have not yet

solved the problem of machine vision and object recognition, although we seem to be

getting closer to understanding the reasons why. In an article on competitive learning

Grossberg ( 1987) makes a following observation of the neural network field, particularly
the inadequacy of the current neural network models to deal with complex sensory

environments:

"The architecture of many popular learning and information processing

models are often inadequate because they haue not been constrained by the

use of design principles whereby they could stably self-organize. Many

models are actually incompatible with such constraints and some models

utilize physically unrealizable formal mechanisms. Learníng models whi.ch

cannot adaptiuely cope with unpredictable changes in a complex enuiron'

ment h au e an unp r orni s ing future a s mo del s of mind and b r ain, and p rou ide

little hope of soluing the outstanding cognitiue problems which are not

already well-handled, by traditionøI rnethods of artificial intelligence and

engineering."

So what new neural mechanisms and interactions are required? It we refer

back to the above images, it is interesting to note that when humans frrst view the

object shown in Figure L.2(a) and then the view the three images shown in Figure 1.3,

their short term memory of the seen object enables them to quickly segment and

recognize the same object in the cluttered backgrounds of Figure 1.3. This simple

example seems to support the view that stored visual memories are able to influence
(prime) the bottom-up neural signal processing, enabling only the relevant portions of
the input to be matched with memory at the higher levels. But for the memory to have

an effect on lower visual processing, there must be a top-down feedback. However this

feedback cannot be solely excitatory. The reason for this is that an excitatory feedback

(i.e., additive feedback) from memory to early visual layers would add information
(memory signals) to these layers, which translated to human vision would imply that
we should see an object whenever \Me remember or imagine it. What other feedback

enables the storedvisualmemories toinfluencehowtheearlyvisual layers subsequently

processes the information in cluttered scenes?

In Chapter 4 we will propose two new types of feedback mechanisms that are

neither positive nor negative but modulatory. The brain evolution may have discovered
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modulatory feedback as means of linking various neural layers into bidirectional
interactions, thus enabling memory to influence lower visual layers and attentional
mechanisms.

1.3.1 Related nenral architectures for 2D and/or 3D object
recognition

In this section we review several related neural network architectures for 2D

shape and./or 3D object recognition. At the outset, it should be stressed that there is a

considerable difference between the recognition of 2D shapes (which is the focus of this

thesis) and the recognition and representation ofSD objects, even though a 2D shape

may represent the boundary of a real 3D object when viewed from one perspective. The

latter generallyrequires that several differentviews (from different perspectives) of an

object be linked into a unified representation.

Adaptive 3D object recognition from different aspect views

Beginning in 1989, M. Seibert and A. Waxman (1989, 1991, 1992) have pioneered the

development of a novel hierarchical real-time artificial neural architecture that
self-organizes internal representations of 3D objects from 2D view sequences. The

approach, which is based on the concepts of aspect graphs (Koenderink and Doorn,

1979), uses transitions from one aspect view to another to link nearby aspects into a
sequence that would be normally obtained when the viewed object is being observed as

one moves around the object. One of the attractions of this approach is that the

recognition confidence increases as one gets more views of the same object. To achieve

positional invariance, Seibert and rWaxman have developed a neural network called

NADEL (Seibert and'Waxman, 1989) which computes the centroid of an object via a

diffusion process with feedback to align the camera towards the object. After extracting

the shape features (typically corners) they then find the centroid of these features and

apply the log-polar transform with respect to this feature centroid. Scale and rotation

invariant recognition of each 2D shape is achieved by a linear shift to the new centroid

in the transformed domain. Tolerance to small deformations (such as forthshorthening)

is achieved by sampling the log-polar features via 2D kernels. Each 2D shape (aspect

view) is then learned on-line by an ART-2 neural network. Successive views are then

linked by the aspect graph network which learns transitions from one view to the next
(Seibert and Waxman, 1991; L992). In order to enable the aspect network to learn

transitions, Seibert and Waxman have proposed the concept of neuromodulation, where

one aspect facilitates the learning of the next by gating the appropriate pathways.
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Whenever an aspect transition occurs from aspect -x, to aspect x¡, t}re activity of the

previous aspect decays while the activity of the new aspects builds. During the transient

time interval when both aspect nodes are co-active, the relevant weights are modified

according to the following equation:

# = k,w!,çt - ,þ{Õ, [(xi + e) (x, + Ê)] - \ ]or(r )o.(zr)

(1.3)

where k, governs the rate of the evolution of the weights relative to the *-node dynamics,

l- is the decay rate of the weights. Object nodes ye accumulate evidence for object

hypothesis over time, as specified by the following equation:

* =0,{[],ì, Õ,[(xi + e)w!,@,* t)]] - \rJ (r.4)

The Hebbian-like term (x, + e) (x, + e), where e is a small positive constant, combined with

the the gating term w,r{ forms an axo-axo-dendritic synapse (Seibert and Waxman, L990,

1991). The complete neural network architecture is embedded in a mobile robot and

has been demonstrated in real-time, albeit on simple visual scenarios where the object

of interest is embedded in a reasonably clean background. In addition to being able to

recognize 2D shapes ofSD objects and linking these into a 3D representation, they have

also demonstrated that the neural architecture can learn to recognize simple 3D visual

landmarks in real-time, the results of which have been compared with the recordings

from rat hippocampal cells (Bachelder and Waxman, L994; Waxman, Seibert and

Bachelder, 1995). While the above workhas introduced several novel concepts (such as

neuromodulation, as represented by above equations) and some new network archi-

tectures (such as aspect network) that were strongly motivated by living biological

visual systems (macaque monkey in particular), its main weakness is the inability to

deal with more realistic visual scenarios. The use of the log-polar transform, while being

based on known experimental frndings from the earlyvisual pathways (Schwartz, 1980)

provides an interesting and a convenient solution to achieving size and rotation

invariant recognition. However, the log-polar transform also limits the capability of the

system. Not only is it necessary that the sensor (in their case a camera mounted on a

mobile robot) be always pointed at the computed centroid of a2D shape before the shape

can be recognized. Not only that, the log-polar transform does not necessarily provide

a biologically plausible method for achieving perceptual constancy since it cannot

differentiate between two shapes that may represent quite a distinct entity in the real

visual world, such as when one 2D shape may be transformed into the other by a simple

geometrical transformation (see Appendix D for a critique on the log-polar transform).
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\NEWNET

The work by Seibert & Waxman, and that of Bradski et al., (1992) has inspired another

neural network model for 3D object recognition from accumulated views of 2D aspects.

The network called VIEWNET (Bradsky and Grossberg, 1995) also learns to code 2D

views but stores these categories in a working memory called STORE (Bradsky et al.,

1992). The VIEWNET architecture basically consists of the following three parts: (i) an

image preprocessor called CORTEX-2 (Carpenter et al., 1989; Grossberg and Wyse,

1991, L992) which is a simplifred version of the BCS network; (ii) a self-organízing

pattern recognition networkbased on the FuzzyARTMAP (Carpenter et a1., 1992); and

(iii) a working memory network, STORE, to accumulate evidence over multiple views.

As in the neural system of Seibert & Waxman, the VIE\ /NET architecture also uses

the log-polar transform to achieve size and orientation invariant recognition of 2D

aspects of 3D objects. However, both of the approaches suffer from the fact that neither

can successfully recognize a 2D aspect of a 3D object when that object is embedded in
a realistic sensory environment of clutter and noise, primarily because the image

preprocessing components cannot handle these types of images nor do they benefit from

a prior memory that the system may have previously learnt.

Neocognitron

Neocognitron (Fukushima, 1980, 1987, 1988; Fukushima and Miyake, 1984) is a

multilayered neural network model for visual pattern recognition. The network embeds

the mechanism of selective attention (i.e., it models feedforward-feedback pathways),

is tolerant to small deformations of the input pattern and is also capable of translation

invariant 2-D pattern recognition. Since the degree of translational invariance is

controlled by the number of layers, the network is found to suffer in its recognition

accuracy (Menon and Heinemann, 1988; Barnard and Casasent, 1990). Even though

Neocognitron is capable of selective attention and shape recognition in cluttered

backgrounds, the network as originally proposed was limited to binary inputs. A
subsequent extension of the network (Ting and Chuang, 1993) has shown that it is
possible to extend the network to analog images provided that two compensation

parameter s (moandm,, being representative "averages" of the background and the target

shapes respectively) are first derived from the statistical profile of the image. One of

the interesting features of this modification is that the network can be trained on binary

patterns and used for recognizing analog input images.

L.4 Neuro-Engineering with Non-linear Neural Networks

The primate visual brain is too complex to be understood in its entirety and

too large to be modelled on present day computers. It is therefore important to take
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into consideration the knowledge that has been gained from the experimental study of
simple biological neural circuits (such as those of invertebrates) and to integrate it with
the data from primate neurophysiolory while limiting ourselves to the consideration of

those problems that could expose the key neurobiological design principles and mech-

anisms of primate vision, memory and attention.

On the assumption that the visual brain can be considered as a neural circuit
(albeit complex) that is composed of dynamic elements, the problem then becomes that
of Neuro-Engineering.

Defrnition Neuro-Engineering is a discipline that applies the engineering design

methodologies to the design of parall.el and adaptiue artificial neural

processing círcuits and systerns while incorporating the domain specific

h,nowledge from cognitiue science, psychology and psychophysics,

neuroscience and neurophysiology, artificial neural networks, electronic

engineering and mathematics.

In addition to providing a better understanding ofbiological neural design

principles and cognition, Neuro-Engineering also has a major role to play in modern

computer technology and machine intelligence by providing us with new and robust

design principles.

Neuro-engineering a dynamic artiflrcial neural circuit that is not only capable

of solving the outstanding technological problems but that is also capable of emulating

and explaining some capabilities of biological vision requires that careful attention be

paid to psychophysical and neurophysiological data, as well as to good engineering

design principles and design logic. To be biologically plausible, as well as being of use

in solving difficult technological problems, particularly in the fields of machine vision

and automatic target recognition, artifrcial neural circuits should address the problem

of vision and object recognition in complex visual scenes. The problem of how a
self-organising neurobiological circuit of primate visual system can succeed to learn

and perceive objects in a complex visual sensory environment remains unsolved. If the

problem can be solved, at least theoretically, by a neuro-engineered artifrcial neural

circuit that is constrained by the key psychophysical and neurophysiological data, then

the neuro-engineered system forms a biologically plausible model of the brain function

that it addresses.

Unfortunately, due to the lack of a rich variety of fundarnental design blocks

and guiding design principles and design logic that characterizes other engineering

frelds, such as that of digital systems design, the field of artificial neural networks has

not yet evolved into a neuro-engineering discipline. It is thus appropriate to first develop

a suite of robust and useful neuro-engineering design principles, mechanisms and
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design logic that should enable us to design complex artifrcial neural circuits. While

the designed neural circuits should be capable of reproducing and explaining the key

neurobiological data and mechanisms of primate vision, their dynamics and behaviour

for a given input should also be amenable to introspection by following their design

logic. Just like an experienced digital systems design engineer can design complex

digital circuits and analyse their behaviour by following the design logic, similarly, once

we have mastered the fundamental neuro-engineering design principles through

extensive applications and computer simulations, we should eventually reach a stage

where \¡¡e can design complex artificial neural systems and predict their behaviour

without having to constantly carry out extensive computer simulation or mathematical

analysis (which may not always be possible).

Before we can even contemplate the design principles of visual neurobiology

and the brain functions in general, we need to be frrst a\Mare of the problems faced by

biological visual systems in the real world.

(a) What mechanisms are needed?

(b) How are they implemented?

(c) Does the massive psychological and neurophysiological data reveal any logic in
the brain design?

(d) Are there any useful design principles and mechanisms embedded in the

currently available Artificial Neural Networks (ANNs)?

(e) How does a designer of an artificial neural system know whether he or she is on

the right track and whether their model is correct and, perhaps biologically

plausible?

(Ð Is there a universal solution to vision or are there many possible solutions?

(g) Are there some common neural mechanisms in the brains of rats, cats, monkeys

and humans?

(h) What should a theorist and a nenrro-englneer of brain functions hope to achieve?

(i) To what detail should one model visual neurobiology?

0) Should the emphasis be on mathematics or design principles and mechanisms?

(k) What is the appropriate computational unit, a single cell or an array of competing

cells?

(l) What is the most relevant mathematics to model brain functions?
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In a text on neurophilosophy, Churchland (1986) offers the following glimpse

into what a theorist of brain functions should hope for and hoÌv one may decide whether

a theory is on the right track:

"The hope of any theorist is that if the basic principles gouerning how

neruous systems operate are discouered, then other operations can be

understood as euolution's articulation and refinement of these basic prin-
ciples. Sirnplifications, idealizations, and approximations, therefore, are

unauoidable as part of the first stage of getting a theory offthe ground, and

the trick is to find the simplification that is the Rosetta stone, so to speak,

forthe rest...What giues atheory the right "feel" in its early stages is whether

or not it is capable of making sense of the phenomena, whether it shows

itself capable of fitting in with established theory elsewhere in science

(bíology, genetics, physics, chemistry), whether it can unify and explain,

and perhaps whether it is simple and elegant. There are, d'Id,s, no formal
procedures for telling whether a theory is on the right trach, Iet alone whether

it is elegant, andperhaps thebest indicator here is whether atheory captures

the irnagination of other scientists who, in making it their own, get it to
reueal satisfying d.nswers to important questions and solutions to long

standing mysteries".

Since the brain is dynamic, can learn in real time without formal external

supervision (one exposure to a sensory stimulus can form a lasting memory of that
stimulus) and has to process information in complex sensory environments, it seems

obvious that plausible neural network models of brain functions must be capable of

self-organised learning in complex inputs and be modelled by dynamic mechanisms.

Most of the current ANNs are not capable of self-organised learning, while those whose

design principles address self-organisation cannot learn nor recognize familiar visual

stimuli in complex and cluttered inputs. It thus seems that one of the primary goals of

an initial neural theory ofbiological vision should be to provide general neural design

principles and mechanism for vision and object recognition in cluttered scenes.

We are now left to askwhether there exists a mathematical tool and a simplifying

model of brain functions that could be considered as "the Rosetta stone, so to speak, for

the rest". Amongst the numerous models of learning that are embedded in various

artifrcial neural network architectures, the only ones that are based on a scientific

theory of self-organised learning are the real-time neural network models of Carpenter

and Grossberg (1987a, b, 1990). These neural networks are based on the Adaptive

Resonance Theory (ART) of S. Grossberg (1976, 1980). ART is the first psychophysio-

logical theory of self-organised learning that embeds the cognitive concepts of attention,

vigilance, top-down priming and bidirectional learning in real-time neural systems.
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Real-time neural systems are characterized by dynamic mechanisms (i.e., they are

modelled by differential equations) and are able to learn and store memories without
a need for external supervision. Biological learning systems, such as the human visual
brain, can store the memories of new objects quickly and without the formal external

supervision. ART suggests that this type of unsupervised learning may be achieved by

a system that stores memories in the bottom-up and the top-down pathways, as shown

in Figure 1.6, thus enabling the recalled top-down memory to influence the learning
process.

F2

Fr

Fo

FIGURE 1.6. Basic ART concepts of bottom-up and top-down learning in a
system capable of detecting the match/mismatch between the input and the
recalled memory. Learning occurs when the spatial patterns across Fields F0 and Fl
are matched to within a specified tolerance (vigilance) level.

The established top-down memory, when activated or recalled by the bottom-up

input, serves as the internal supervisor against which all the inputs are compared.

Since it is possible to store many different visual memories, this in effect provides for

a large number of supervising memories. The main concept introduced in ART (reviewed

in more detail in Chapter 3) is that stable learning in real-time neural systems is

achieved by attentional mechanisms in which a reverberation or anadaptiue resonance

(a state during which a memory is modified by a standing wave or a resonating spatial

pattern ofneural activity that circulates across several interacting neural layers) is set

up between the internal representations (the recalled supervisory memory) and the

externally driven sensory stimuli. The attentional mechanism are actively engaged in
comparing the internal representations with external events and enable learning only

when the external events match their internal representations. Resonance occurs

between layers that encode the bottom-up inputs and the top-down learned expecta-

tions.
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Since ART derives its power from the interaction of the top-down memory and

the bottom-up inputs, it provides a strong theoretical foundation for a more advanced

neural theory of cognitive vision. A general neural theory of biological visual cognition

should provide a plausible rationalisation for the existence and the purpose of the

massive feedback pathways in the brain.

In addition to the cognitive concepts of attention, top-down priming and vigilance

that are introduced in ART, the non-linear mathematics of shunting cooperati-

ve-competitive neural systems, introduced by Grossberg (1973,1988) offers a suitable

mathematical tool for modelling the dynamics of complex neural systems. Non-linear

neural networks have been proven to be successful in the implementation of various

ART based neural networks (Carpenter and Grossberg, 1987a, 1987b, 1990) and various

other neural network models of brain functions, including models of early vision
(Grossberg and Mingolla, 1-985a, 1985b). Real-time non-linear neural networks are

characterizedby non-linear differential equations, such as the one shown below. This

is a version of the shunting cooperative-competitive feedback equation with the

on-centre off-surround anatomy that was introduced by S. Grossberg (1973, 1988) and

which represents the dynamics of a cell in a layer of competitive cells, as schematized

in Figure 1.7.

# = -o*, + (B - x,)Lri + r@)l- (c +x,)[ 4 *,t,Fr,s@f

(1.s)

where /i is the total excitatory input into the layer at i'¡ cell position; ,/, is the total

inhibitory input to the i'h cell (for more detailed description see Chapter 3 and Appendix

A).

-f(xr) +

+

FIGURE 1.7. Layer of shunting competitive neurons.



1.5 Outline of the Thesis

This thesis therefore uses the non-linear mathematics of competitive neural

layers and the concepts introduced in Adaptive Resonance Theory to propose a suite of

neuro-engineering design principles, mechanisms and design logic for complex multi-
layered 2-D artifrcial neural circuits with feedforward-feedback interactions. The

neuro-engineered circuits described in the thesis are capable of self-regulated

attentional learning, selective attention and memory guided processing, autonomous

detection of novelty and familiarity and the recognition of familiar objects in cluttered

visual images.

1.5 Outline of the Thesrs

This thesis is principally concerned with the development of a neural theory

of high level primate vision, with a particular emphasis on the interaction between

attention, memory, self-regulation and object learning and recognition in complex and

cluttered visual scenes. The thesis therefore attempts to unify the cognitive data from

several experimental disciplines, mostnotablythepsychological and neurophysiological

data on selective attention in order to propose a generalisation of Adaptive Resonance

Theory within the domain of attentive vision in realistic visual sensory inputs.

We thus provide a plausible account for the role of the massive feedback

pathways in the brain and propose neuro-engineering design principles, mechanisms

and design logic for two dimensional competitive neural circuits that are capable of

object recognition in complex and cluttered visual scenes. Since the chief aim of the

thesis is to provide a large-scale theoretical neural model of selective visual attention

and related phenomena of cognitive biological vision, we are currently not concerned

with the problems of implementation of the proposed 2-D neural circuits for real-time

technological applications. All computer simulations are carried out on a general

purpose workstation (486 PC) and are therefore limited to small scales. However, since

the property of the proposed neural layers is independent of the lateral extent of the

layer, the generated neural circuits are equally applicable to more realistic sizes of

primate vision. Numerous computer simulations of 2-D neural circuits are presented

in various chapters of the thesis to demonstrate the mechanisms and the dynamics of

the generated circuits. The capability of the generated neural circuits and mechanisms

is also demonstrated on grey level images. Simulations on grey level images demon-

strate some of the key properties of the proposed neural circuits on the recognition of

objects in cluttered images as well as the effect of dynamic attentional tuning of early

vision feature detecting cells or frlters.

23
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In Chapter 2 we review the relevant psychophysical and neurophysiological

data as well as the data from invertebrate learning. The neuroscientific data from

invertebrates, particularly that of associative learning in the simple neural circuit

controlling the gill withdrawal reflex of the sea snailAplysiø, is of particular theoretical

interest and relevance to the central theme of the thesis because it provides the simplest

form of evidence that modulatory mechanisms play a crucial role in biological neural

systems. Although largely ignored in current artifrcial neural network models of
learning, the synaptic modulatory mechanisms that have been found to be necessary

for strengthening certain synapses in the Aplysia circuit, supports the proposal that
learning is gated by attentional arousal. While the invertebrate data comes from

extremely simple neural circuits whose interconnectivity is very low and whose neurons

have an extremely small number of synaptic inputs (in some cases one or two input
synapse), the data from more complex biological systems, such as that of monkey's

visual cortex, also indicates the existence of modulatory mechanisms. For example,

some of the recent data from visual areas Vl, V2 and V4 indicates that the feature

detecting cells of the early visual pathways do not have fixed receptive frelds (as is

currently modelled by 2-D Gabor functions) but that they are subject to modulation by

the attentional factors (Moran and Desimone, 1985; Haenny et a1.,1988; Haenny and

Schiller, 1988; Motter, 1993). We also review the latest neuroscientific experiments

that demonstrate that top-down feedback from memory can directly influence the

attentional processes in a cognitive visual task.

Chapter 3 provides a review of the major mathematical tools, theories and

models of vision and learning. Since the thesis has its mathematical and scientific

foundations in various non-linear neural networks of S. Grossberg and his colleagues

(for a general summary of this field refer to Grossberg, 1988), we will primarily review

their most relevant models. In particular we provide qualitative analysis of ART in
simple and complex and cluttered visual images. This analysis, supported by computer

simulations ofART-3's processing frelds, will reveal that while ART is a powerful theory,

it has not solved some of the major problems. We identifu the weakness of ART to be

in its attentional subsystem, which, because of its rigidity, does not allow memory to

be effectively used to guide attentional processes. We then derive the theoretical concept

of Selective Attention Adaptive Resonance Theory (SAART) and propose a new inter-

action, which not only overcomes the limitation of the ART model but also predicts the

existence of modulatory feedback pathways in the primate visual brain.

In Chapter 4 we lay foundations for the remainder of the thesis by proposing

a suite of fundamental neuro-engineering design principles, synaptic mechanisms and

a family of neïv competitive neural layers, collectively called Presynaptically Modulated

Shunting Competitive Neural Layers (PM-SCNLs). We thus combine the experimental

neuroscientific data of synaptic signal transmission in simple invertebrates, particu-
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larly the data from the gill withdrawal reflex of the sea snail Aplysia (Kandel and

Schwartz, L982; Gingrich and Byrne, 1985; Hochner et al., 1986; Carew, 1987), with
the most recent data from primates (Moran and Desimone, 1985; Desimone et al., L990;

C}nelazzi et aI., 1993; Motter, 1993) to extend the previously published models of
chemical synapses (Grossberg, 1968, 1969; Carpenter and Grossberg, 1981) and the
models of shunting competitive neural layers (Grossberg,L973,1988). More specifically,

the chapter addresses the mechanisms of selective information transfer and processing;

the mechanisms of synchronization in pulsating and non-pulsating neural layers; the

mechanisms of top-down memory guided selective attention and recognition of familiar
stimuli in cluttered background; the mechanisms for the modulation of cellular receptive

freld profrles, and a neural circuit for the recognition ofdistorted 2-D shapes.

In Chapter 5 we present a mathematical procedure for the parameter design

of modulated neural layers to ensure stability and wide dynamic range.

In Chapter 6 we extend the neuro-engineering design principles and provide

two dimensional neural circuits of increasing complexity. In particular, we propose

neural circuits for more cognitive type of processing in order to address the various

cognitive data that was reviewed in Chapters 2. The emphasis is on the dynamics of
short term memory, awareness of familiarity/novelty, self-regulated attentional
modulation, attentional selection, translation invariant 2-D pattern recognition and

memory guided search in cluttered visual inputs. The proposed design logic and neural

circuits form the building blocks for neuro-engineering of complex real-time cognitive

and perceptual visual neural networks ofsubsequent chapters and in a general sense,

they also form a neuro-engineering foundation for the design of a cognitive artificial
visual neurocomputer. The Chapter concludes by presenting a minimum 2-D neural

circuit that can simulate and explain a recent neurobiological experiment on the neural

basis of memory guided visual search in the anterior temporal cortex of a monkey
(Chelazzi et al., 1993).

In Chapter 7 we propose a new self-organising real-time neural network called

Selective Attention Adaptive Resonance Theory (SAART). The most signifrcant property

of the SAART neural network that is not shared by its predecessors, such as the ART-3

neural network (Carpenter and Grossberg, 1990), is that the SAART networkis capable

of selective attention to familiar inputs. That is, the SAART neural network can

recognize previously learned 2-D shapes when they subsequently appear complete but
in a cluttered input. One of the new interactions in the network, top-down presynaptic

facilitation, enables the SAART neural network to use its established memory to
selectively frlter the desired object shape from the cluttered input. Although the SAART
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model is more general than ART, it is a long way from being a general neural model of
cognitive vision. Its major defrciency is an inability to deal with the various spatial

transformations of the sensory input.

In Chapter 8 we present the Advanced Selective Attention Adaptive Resonance

Theory (ASAART). ASAART extends SAART by addressing the complex issues of
perceptual constancy andvisual cognition. It is proposed that perceptual constancy is

achieved by bidirectional (bottom-up and top-down) transformations of exogenously

and endogenously generated signals via multiple and competing pathways whose

selection may be regulated by pre-attentive as well as attentive and memory driven
processes. Multiple and simultaneous spatial transformations in the bottom-up

direction are required to activate stored visual memories whose spatial extent, orien-

tation or location may not initially match the direct bottom-up input pathways. Multiple
and simultaneous spatial transformations in the top-down direction (which are equated

to imagined visual transformations) are required to enable the recalled memory to

match and regulate the bottom-up signals.

In Chapter 9 we conclude the thesis by summarising the main concepts that
were introduced. We discuss the main contribution that the thesis offers to the

understandingofvisual neurobioloryand the solutions thatitoffers to some outstanding

technological problems in visual information processing and object recognition.

1.6 Major Contributions of the Thesis

The principal contributions of the thesis are as follows:

A critical review of the current algorithmic and artifrcial neural

networks approaches to object recognition in cluttered images.

A critical review of the Adaptive Resonance Theory in simple and

complex visual inputs.

Extension and generalisation ofAdaptive Resonance Theory to cluttered

visual inputs.

The development of a new family of shunting competitive neural layers
(Presynaptically Modulated Shunting Competitive Neural Layers) and

a mathematical procedure for their parameter design.

Proposal of a suite of biologically plausible neuro-engineering design

principles, mechanisms and design logic for complex (multi-layered) two

dimensional self-regulating attentional neural circuits.
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Proposal of a new self-organising real-time artifrcial neural network

called Selective Attention Adaptive Resonance Theory (SAART) for
cluttered inputs.

Demonstrated applicability ofthe designed neural circuits and networks

to the recognition of familiar 2D shapes of 3D objects in cluttered visual
background.

Proposal of the Advanced Selective Attention Adaptive Resonance

Theory (ASAART) concepts for the generalisation of the SAART neural

network to translation, size and orientation invariant object recogni-

tion.
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Chapter 2

Neurophysiological and
Psychological Background

"The cerebral cortex in general and the uisual system in particular
are too complex to understand from an exclusiuely intuitiue
analysis. Accordingly, there is a pressing need for specific models

tahich are motiuated by biological issues and which capture as

much of the underlying structural and physiological data as

possible, yet which can account for specific tashs or aspects of system

performance. It is also critical that such models be robust and

efficient in handling the types of noisy data presented by natural
images and other real-world sensory input."

D.C. Van Essen, D.J. Felleman, E.A. DeYoe, J. Olavarria and J. Knierim (1990)

2.L Introduction and Overview

Up to 1950's neurobiology was largely descriptive and it was not until the 1960's

that the systematic experimental study begun to reveal the modes of neuronal

communication, the types of cells and the architecture of biological neural systems

(Whitfield, 1984). Modern anatomical data beyond the primary visual cortex (Van Essen

et al., 1990) has revealed that the connectivity among many visual areas is far more

complex and intricate than the simple serial (feedforward) processing that characterizes

most of the current artifrcial neural network models of pattern recognition. Although
the primate visual system is too complex to be understood from a purely intuitive and

mathematical analysis, the impressive body of experimental data about cortical

structure and the properties of cells obtained from single cellular recordings does

indicate that the visual system is highly organized, both in its structure and the cellular
properties. From a neuro-engineering perspective, highly organized structures
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(whether they be at the local level of an isolated neural circuit or at the level of complex

neural systems) imply the existence of some fundamental design principles that are

used repeatedly. Since the organizatíon of the primate visual system probably did not

arise instantaneously but may have evolved through numerous refinements of older

more primitive and simpler structures, unravelling its architectural design principles

requires that careful attention be paid not only to the experimental data from primate

neurophysiolory, but also to the data from the simplest studied organisms. It is therefore

important that plausible neural models of primate vision, even if they are initially very

crude, be founded on flexible design principles and neural circuits that could be easily

extended to capture much of the structural, physiological and cognitive data as possible.

Knowledge oftherelevant experimental data (whileitselfbeingamajorfeatfor a novice)

thus forms a cornerstone around which one can begin to propose useful design principles.

In this chapter we review what we believe to be some of the most relevant

neurobiological and psychological data from which a neuro-engineer can begin to
formulate 'neurobiologically inspired'design principles. The most interesting property

of complex neural systems that has been revealed through experimental work is the

existence of highly specialized local neural circuits and reciprocal interconnectivity
between many of them. Since the data from complex neural systems, such as the visual
cortex of a monkey, is often hard to interpret in terms of the underlying mechanisms

and circuit dynamics, it is even harder to discover the design principles upon which

such circuits are based. The experimental data from invertebrates on the other hand,

even if not related to primate vision, may be more useful in discovering some of the

most basic neurobiological design principles because of the simplicity and the

predictability of the underlying neural circuits. We will therefore review some of the

key experimental data from invertebrate learning, particularly the mechanisms of
associative learning in the simple neural circr¡it controlling the gill withdrawal reflex

ofthe sea snailAplysia (Kandel and Schwartz, 1982; Hawkins et aL,1983; Carew, 1987).

The experimental data obtained fromAplysia over the past two decades is of immense

importance, not only because it reveals some of the most basic dynamics of modulatory

mechanismsinbiological neural systemsbutbecausethe circuit embedswhatis possibly

the simplest form of selective information processing and selective learning.

In Appendix D we will discuss the psychophysical data on shape constancy in relation
to the concepts introduced in the latter parts of the thesis.

2.2 General neuroscience

The fundamental computational unit of biological neural circuits is considered

to be a cell or a neuron (Levitan and Kaczmarek, 1991), which in more complex systems

(such as the visual cortex of a monkey) samples its inputs via a large number of input
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pathways. 'When 
a neuron receives sufficient input to drive it above a threshold, it frres

an electrical pulse (an action potential) which is then distributed to a large number of
other cells via the output pathway called axon. Although it had been correctly predicted

as early as 1905 that neurons often communicate with one another chemically, it had

been generally regarded, until 1950's, that the central nervous system (CNS) did not

use chemical neurotransmission. The reason for discarding the idea of chemical signal

transmission was based on the grounds that only electrical processes would permit the

necessary rapid transfer ofsignals between various brains regions (for an overview see

Eccles, L964). This view has since changed and it is now widely accepted that both

electrical and chemical form of signal transmission is used throughout the brain. A
neuron may thus communicate with other neurons either via electrical or chemical

signals, the latter being much slower.
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FIGURE 2.1. Schematic of a typical neuron with inhibitory and excitatory
chemical synapses that may also be subject to modulation.

A typical neuron, shown in Figure 2.1, has a number of dendrites that form a

dendritic tree. Dendrites sample their inputs from other neurons via chemical synapses

(which may be either excitatory or inhibitory or both) that abut the dendritic branches.

When a presynaptic neuron is active, it releases a certain amount of chemical neuro-

transmitter that slowly diffuses across the junction to be picked up by receptors on the

postsynaptic site and converted into an electrical postsynaptic potential. Whether the

postsynaptic cell fires an action potential depends on the magnitude of the combined

excitatory and inhibitory postsynaptic potentials.

Chemical Synapses

Although largely ignored by the general artificial neural network community,

chemical synapses, having a slower time scale than the electrical form of signal

communication, have some very interesting properties that if properly modelled may

Axon
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be very beneficial to a neuro-engineer. Experimental data gathered over the past four

decades has revealed that the internal dynamics of chemical synapses depends on a

number ofinter-related mechanisms whose time scales may differwidely. For example,

the three most important events in a chemical synapses which may be directly related

to various forms of memory are transmitter production, storage and mobilization
(Eccles, 1964). T?ansmitter production, being a relatively slow process, can thus be

considered to represent the long term average memory trace of signals that have

activated the synapse and led to its modification. T?ansmitter mobilization, on the other

hand, being much faster can be considered to represent the most recent signal that has

activated the synapse.

It has been suggested (Singer, 1987) that chemical synapses may be in two

states or modes of operation: (i) a relay mode during which the synapse transmits the

presynaptic signals to the postsynaptic cell without any long term modification of its

internal dynamics; and (ii) a plastic mode during which the synapse gets modified,

generally by an increased level of transmitter production.

Postsynaptic Feedback

The internal state of a chemical synapse may in general be influenced by

feedback from postsynaptic cells. Neurobiological data suggests that the postsynaptic

feedback signals, possibly mediated by nitric oxide, have a facilitatory increase on

transmitterrelease (Bohmeeú aL.,19971' Schuman and Madison, 1-991;Bredtet aL, 1990;

Gally et a1.,1990; Haley et aL, L992; O'Dell et a1.,1991).

Presynaptic and Posts¡rnaptic Receptors

Postsynaptic receptors, which also exhibit time variant properties (i.e, they

may be either active or inactive), convert the chemical signals into electrical pulses

(Changeux, 1993). Forward transmitter diffusion causes the binding of the released

transmitter to the postsynaptic receptors thus evoking an excitatory (or an inhibitory)
postsynaptic potential. However, in addition to forward diffusion of the released

transmitter onto the postsynaptic cell, some is returned back into the original synapses

via the receptors of the chemical synapses, called autoreceptors. The effectiveness of

some postsynaptic receptors, such as N-methyl-D-aspartate (NMDA) decreases with
repeated use (Constantine-Paton, 1990; Bekkers and Stevens, 1990), i.e., they become

desensitized. Because the NMDA receptor requires the binding of at least two distinct

neurotransmitters (glutamate and glycine) for their activation (Johnson and Ascher,

L987; Bekkers and Stevens, 1990), it was suggested that NMDAreceptors may in fact

be performing a logical AND operation, such as in detecting temporal correlations in
pre- and postsynaptic activity, (Collingridge, 1987; Friedlander et aL,1993).
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Neuromodulation

As shown in Figure 2.1, some chemical synapses, rather than being involved

in neurotransmission, ffiây be involved in modulation of other synapses, i.e., neuro-

modulatior¿. Unlike neurotransmitters that basically transfer signals from the synaptic
junction, neuromodulators may affect the synthesis of neurotransmitter, its release and

interaction with postsynaptic receptors (Barchas et a1.,1978). A neuromodulator may

in general act simultaneously on a large number of neurons with long lasting effects.

In section 1.3.1 (Chapter 1) we have mentioned how the concept of neuromodulation

via an axo-axo-dendritic synapse was modelled by Seibert and'Waxman (1990, L992)

in the context of a neural system for 3D object recognition (association ofviewed 2D

aspects of a 3D object during aspect transitions). In the next section $/e discuss

neuromodulation in the context of a simple biological neural circuit where it provides

a facilitatory effect on the efficacy of neurotransmission and also seems to be necessary

for the long term modification of the synapse.

2.3 Presynaptic Facilitation in Aplysia

In Figure 2.2we reproduce a portion of a neural circuit that controls the gill
withdrawal reflex in the sea snail Aplysia (Levitan and Kaczmarek, 1991). The figure

shows the interaction between three neurons: sensory neuron (SN), the motor neuron
(MN) and a facilitatory neuron (FN).
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FIGURE Z.2.Facilitation of SN/I\¡IN chemical synapse inAplysí,a. Fnom ï,evitan
and Kaczmarek (1991).
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The facilitatory interneuron in Aply siø infl uences the sensory/motor neuron
(SN/NIN) synapse by increasing the amount of transmitter that is released by the
presynaptic spike from the sensory neuron. This presynaptic facilitation enables a

habituated sensory pathway to be quickly dishabituated when a noxious stimulus is
applied to other parts of the animal (typically the head or the tail). Although the

facilitatory interneuron releases its own neuromodulatory transmitter into the pres-

ynaptic terminal whose efflrcacy it modulates, it does not appear to be directly involved

in the release of the transmitter of that pathway. That is, the presynaptic transmitter
in the pathway from the sensory to the motor neuron synaptic junction (synaptic cleft)

is not released unless it is acted upon by the presynaptic spike from the sensory neuron.

The action of the facilitatory interneuron can thus be considered to be priming the

SN/IIN synapse. Experimental data on learninginAplysio also provides evidence that
in addition to the increased concentration of releaseable transmitter after the frring of
the FN neuron alone, the SN/NIN synaptic pathwayis strengthened even further during
the correlated frring of SN and FN neurons. The latter form of synaptic modification

has a longer lasting effect on the synapse.

Presynaptic facilitation in sensory neurons has been attributed to transmitter
mobilization (Gingrich and Bryne, 1985; Hochner et a\.,1986; Gingrich et aL,1988;
Bhara et aL.,1990). If presynaptic facilitation enhances transmitter mobilization then

we can assume that the effect of presynaptic inhibition is to inhibit transmitter
mobilization. There is no plausible reason why similar synaptic events, perhaps

mediated by different neuromodulatory transmitters and by a distributed network of
cells, should not occur at higher cortical layers of the primate visual system. Given the

importance of presynaptic modulation as means of selectively amplifying the neural

signal transmission in as simple organism as that of Ap|ysia, it is highly likely that
neural systems ofhighly evolved organisms would also depend on similar (and perhaps

more complex) mechanisms of neural signal modulation.

2.4 Primate Visual Neurophysiology

Since most of the experimental data on primate visual neurophysiology has

been obtained from the monkey visual cortex, the data reviewed below will thus be

primarily from monkeys, although, where relevant, the data from other animals (e.g.,

rats and cats) will be mentioned.

Transient and Sustained Channels

The early visual pathways in the primate retina have been found to consist of
sustained ganglion cells or X-cells and transient or Y-cells (Enroth-Cugell and Robson,

1966). Sustained cells respond maximally to stationary stimuli within their receptive
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freld,have alongresponselatency and are affectedbyimageblurring,whereastransient
cells give transient responses to light onset or offset, are sensitive to rapid motion, have

a short response latency and are unaffected by blurring. This early division between

the sustained and transient cells reflects an early distinction between neural layers

that process form and motion independently. Output of sustained cells may be the
primaryfactor determining the pattern orformrecognition, whereas output oftransient
cells may be important for the detection of flicker and motion. Because of the different
temporal responses ofthe two channels, transient activation by the stimulus will become

available prior to sustained activation. Physiological evidence (Singer and Bedworth,

1973) and the data from visual masking experiments (Breitmeyer and Ganz, L976;

Breitmeyer and Valberg, L979; Breitmeyer, L9'78, 1980) indicate that transient and

sustained visual channels mutually inhibit each other.

Visual Pattern Recognition Pathway

The retinal information is routed to the striate cortex (area Vl) via Lateral
Geniculate Nucleus (LGN), where it is analysed by feature detecting cells that are tuned

to various spatial frequencies and orientations. From there it is routed via areas V2

and V4 to the inferior temporal cortex (DeYoe and Van Essen, 1987; Desimone and

Ungerleider, 1989).

In an influential study on the orientational selectivity in visual cortex, Hubel

and'Wiesel (1959, 1962,1963, L977) have found that neurons in the cat's striate cortex

respond optimally to elongated bars that are oriented in a specifrc direction. As the

experimental work (anatomical, lesion and cellular recordings) progressed over the past

three decades, it has been revealed that there are something like 30 different areas in
the monkey's brain that are related to vision and which constitute about 607o of t}:e

overall cortex (Van Essen and Maunsell, 1980). Most of these areas are organized as

two dimensional maps, such that higher cortical areas, although having cells whose

response is dependant on the larger areas of the stimulated retina, are in retinotopic

register with cells at the lower layers. Primary visual cortex or area V1, being the frrst
visual area where feature detecting cells are found, thus consists of an extremely large

number of cell whose receptive frelds are relatively small (about 0.5 degrees of visual
angle) compared to the receptive fields of cells in area V4 (around 5 degrees). As one

progresses to the inferior temporal (IT) cortex, cells are typically sensitive to very large

areas of the retina and, unlike the lower visual areas, lack any discernible topography.

Inferior Temporal (IT) Cortex and Long-term Visual Memory

The visual information from the visual areaY{ feeds into a large expanse of
visual cortex called inferior temporal (IT) cortex. The IT cortex of the primate temporal

lobe is considered to be the ultimate visual processing area (Gross, 1973a, 1973b;
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Mishkin, 1982). Numerous lesion experiments have shown that monkeys whose IT
cortex is removed fail to visually recognise objects and are deficient in learning and

rememberingvisual discriminationhabits (Chow, L9í ;Mishkin, 1966;Humphreyand
Weiskrantz, L969; Gaffan and Harrison, 1986). However, their lower level visual
functions remain intact, such as the threshold for the detection of a brief flash, backward

masking functions and critical flicker frequency (Gross, 1973a). IT neurons, especially

those in the anterior portion called TE, have large receptive frelds that often include

the fovea and respond to highly complex visual features (Gross et al., L972; Desimone

and Gross, 1979; Perrett et aL, L982; Richmond et al., 1983; Miyashita, 1993).

Experimental data also implicates IT neurons in short-terrn memory and selective

attention tasks (Fuster and Jervey, 1981; Baylis and Rolls, 1987; Fuster, 1990; Miller
et a1.,1991, 1993; Colombo and Gross, 1994); their activity is enhanced and modulated

during visual discrimination and selective attention (Sato et aI., 1980; Richmond and

Sato, 1987; Sato, 1988; Fuster, 1990); they are insensitive to pattern transformations

such as size, orientation and translation (Desimone et aI., L984; Gross and Mishkin,
1977; Schwartz et al., 1983; Sary et aL, L993). Single-unit recordings from IT cells

(Peruettetal.,I99í;Hasselmoet aL, L989) support thehypothesis ofan "vie\Mer-centered

representation" of a viewed 3D object while "object-centred representation" may also

be needed for 2D representations (i.e., the representation may depend on the centroid

ofthe 2D shape). It has also been proposed that IT cortex is the convergence site of
mernory and perception (Miyashita, 1993).

IT cortex has been subdivided into two major areas, TEO and TE. On the basis

of recent anatomical tracings, the classic IT cortex has further been subdivided into
three major areas, PIT, CIT and AIT (Van Essen et al., 1990). Each of these is also

found to consist of two parts that have different anatomical connections.

Inferior temporal cortex thus plays an important role in shape recognition and

the storage of long-term visual memories. It is now established that lesions of area TEO

causes devastating impairment in the ability of monkeys to learn visual pattern

discrimination that is even more severe than the impairment that is caused by the

lesion of TE (Cowey and Gross, 1970; Kikuchi and lwai, 1980; Weiskrantz andSaunders

1984; Gaffan and Harrison, 1986). Lesions of TEO makes it almost impossible for
monkeys to discriminate between simple 2-D patterns differing in form, size, orienta-

tion, color or brightness (Iwai and Mishkin, 1969; Gross, 1973;Ungerleider and Mishkin,
1982). However, ablasions of the area TEO does not impair visual memory (Iwai and

Mishkin, 1968; Delacour, L977).It is now believed that area TEO is responsible for
perceptual stability and constancy (i.e., ability to recognize a shape despite changes in
its size, position and orientation). The receptive fields of TEO neurons are intermediate

in size between those ofV4 and TE (Boussaoudet al.,L99L). Through extensive probing

ofthe IT pathway, (Tanaka, 1993;Tanaka et al., 1993), itwas found that as one traverses
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from posterior to more anterior portions of IT that the cells respond to more complex

visual features, although it is not yet experimentally established how IT cortex esta-

blishes its specifrcity for object features and what type of a neural circuit may mediate

such learning.

IT cortex interacts with many other cortical areas that are involved in memory

retention tasks, such as the prefrontal cortex (Fuster et al., 1985; Bauer and Fuster,

L976; Fuster and Alexander, 1970). In addition to providing further evidence that the

visual information is split into the'what'and the'where'pathways (Ungerleider and

Mishkin, L982) one of the interpretations of the interactions between the TEO area and

the prefrontal cortex is that TEO probably uses the prefrontal cortex for the temporary

storage ofvisual information. Other experimental data from monkeys (Goldman-Rakic,

1987) provides evidence that the prefrontal cortex is involved in short term memory

storage during delayed periods when amonkeyis required tohold a stimulus in memory

to compare it against the next.

Backproj ection Pathways

Experimental data on large areas of the visual cortex in monkeys shows that
the forward axon projections are typically equivalent to or are outnumbered by back-

projections (Tigges et aL,1973;' Rockland and Pandya,1979; Van Essen and Anderson,

1990; Van Essen et a1.,1990). Thus a projection form one area to another is matched

by a projection in the reverse direction. However it soon became apparent that these

reciprocal connections are usually asymmetric and are not merely reciprocating the

feedforward connections (Rockland and Pandya, L979; Friedman, 1983; Maunsell and

Van Essen, 1983).

These feedforward-feedback pathways, especially at the earliest stages ofvisual
processing where the operations are typically considered to be performing frltering and

feature extraction (the loop between Vl and the LGN) is in marked contrast to the
conventional feedforward engineering methods of frltering, noise removal and feature

extraction. However, the function of the massive feedback pathways in the primate
visual system is not yet understood. In a recent experimental study on the effect of the

feedback from visual area Vl to LGN, Sillito et al. (1994), have found that the cortical
feedback induces coherent oscillations in a pair of LGN cells that a driven by a stimulus

that crosses their receptive frelds. On the basis of their experimental results, Sillito eú

aL have concluded that "the feedback circuit searches for correlations that support the

'hypothesis' represented by a particular pattern of cortical activity and 'locks' the
esemble onto the stimulus". Although these researchers have not suggested what type
of feedback can test for the presence of the relevant pattern in the input cells, it seems

obvious that it cannot be achieved by a mutual excitatory loop between LGN and Vl.
'Whatever the nature of feedback, it must allow LGN cells to be sensitive to their inputs
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from the retina and it must be able to synchronize those LGN cells that are activated

by the retinal signals. Sillito et aI. have suggested that the cortico-thalamic input is
only strong enough to exert an effect on those LGN cells that are also depolarized by

their retinal input. Could it be that the cortico-thalamic feedback in fact facilitates the

input receptive freld profrles of LGN cells?

In a recent extension ofthe Boundary Contour System and Feature Contour System
(Gove et al., 1995) a top-down corticogeniculate feedback (top-down) was added to realize

a matching process which enhances LGN cells that are consistent with those of active

cortical cells while suppressing LGN activities that are not. In the implementation of

the neural circuit, this feedback multiplies with the bottom-up retinal input to provide

additional forward excitation of the LGN cells (see equation (8) -(10), Gove et al., 1995).

Selective Attention and Memory Guided Search

A number of neurophysiological experiments have demonstrated that the

cellular receptive fields in the visual pathway from area Vl to IT cortex of an alert
monkey are modulated by attentional factors. On the basis of their experimental results

Moran and Desimone (1985) have concluded that spatial attention serves to remove

irrelevant stimuli from the receptive frelds and sharpen their selectivity to the attended

stimulus. In a related experiment (Spitzer et aL, 1988; Desimone et al., 1991) have

obtained data which shows that when a monkey had to perform a diffrcult pattern

recognition task that the response of V4 neurons was larger and more selective to the

stimulus orientation.

Of all the neurophysiological experiments on selective attention that appear

in literature, the one most relevant to the central theme of this thesis was performed

by Chelazzi et aL (1993). These researchers have obtained experimental data from

monkey's IT cortex that implicates this cortex in the control of the top-down memory

guided selective attention and visual search in a cluttered visual display. Further
experimental support for the influence of the higher order feedback systems (top-down

signals) on the receptive fields of cortical neurons (V4) comes from the work by Haenny

and Schiller (1988) and Haenny et aI. (1988).

Response Decrement and Indication of Familiarity/1.{ovelty

Several experiments on a working memory task (where an animal is required

to hold a stimulus in memory) have shown that the response of IT neurons was

attenuated if an incoming stimulus matched a stimulus held in memory (Miller et al.,

1991, 1993; Gross et al., L979; Baylis and Rolls, 1987; Eskandar et aL,1991). Based on

these results, several researchers have proposed that the IT cortex is comprised of two

opposing classes of cells. For example, Miller et aI. (L993) have proposed the existence
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of an "adaptive mnemonic flrlter" class whose activity are compared with a "sensory"

class. On the other hand, Eskandar et aL (l992a,Igg2b) have proposed that IT cortex

contributes primarily to the comparison process, but it does so on the result of temporal

modulation of the visual input with the recalled memory. Miller et al. (1993) have also

proposed that the comparison process works on just the stimuli presented within a trial.

Since the general decrease in cellular response has also been found in many

other cortical areas (Riches et aL.,1991), it is unlikely that IT neurons indicate whether

a stimulus is familiar or novel (although their response may be needed in the actual

decision process). The most probable site of neurons that do the actual matching process

seems to be located in the medial thalamus (Rolls et aI., 1982; Fahy et a1.,1993a,b).

2.5 Psychological Background on Selective Attention

'Whereas the neurophysiological data on selective attention begun to appear

about 20 years ago, the psychological data extends to almost a century with the early

introspective work of rWilliam James (James, 1890) and Von Helmholtz (Helmholtz

I866/L925). However, the concept of selective attention to sensory stimuli has gained

its foothold in the mainstream of psycholory in 1960's through the influence of two

theories, the 'filter theory of attention' (Broadbent, 1958) and the 'response selection

theory of attention' (Deutsch and Deutsch, 1963). The common thread in these theories

is the emphasis on the selective allocation of some limited processing resource, although

there is no unified view on what that resource is. Below we provide a brief overview of

the psychophysical data on selective attention that was obtained from humans.

Ttaditionally, selective attention has been likened to a frltering process that
can either ampliff the target information, attenuate the background information or a

combination of both may take place (Broadbent, 1958; Deutsch & Deutsch, 1963;

LaBerge & Brown, 1989). What all these theories have in common is thefact thatthere
is a processing bottle-neck, although there is a disagreement on where in the neural

system this bottle-neck occurs. In Broadbent's theory the bottle-neck occurs early in
the processing, whereas Deutsch & Deutsch place the bottle-neck much nearer the

response end of the system.

Spatial Allocation of Attention

Through an experimental paradigm that cues the locations in the visual freld

prior to target stimulus presentation, Eriksen et aL (1985, 1987, 1988) have obtained

data which led them to conclude that the benefits of precueing (which are measured by

the reduced reaction times) are attributed to the alignment of the attentional spotlight

on the appropriate locations of the visual freld, thus speeding the processing of the
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stimulus. They have suggested that a variable po\Mer oî zooÍn lens is a more apt analogy

for the operation of visual attention rather than the spotlight metaphor of attention
that had been proposed by Posner (1980). The zoom lens has the property of wide freld

of view and low resolution at low lens power and a smaller field of view but a higher
resolution at high lens power.

Tlne gradienú model of attention, proposed by LaBerge and Brown (1989),

assumes that visual attention is resource limited and that the resources can be directed

over a space of varying size. The resources fall offcontinuously from the centre of the

focus of attention as a function of spatial distance and the stimulus identification time

varies with distance from the gradient peak. Accordingly, attending to a small region

of space compared with a large region is equivalent to creating a more narrow peak in
the resource gradient. Henderson (1991) conducted experiments where both the cued

area size and cue-target spatial relationship was manipulated. The main finding was

that a smaller cue led to greater facilitation at the cued location and gteater inhibition
at uncued locations. These frndings seem to support the gradient model of attention.

Reaction Times and Response Competition

The experimental datafrom attentional cueing experiments shows that precueing

target locations prior to target stimulus presentation has an effect on the reaction time
(time to recognise or respond to the target stimulus). Subjects are faster in detecting

and,/or recognising atarget stimulus when the spatial cue is valid than in the neutral
(non cue) condition. However, when the cue is invalid, reaction times are slower that
in the neutral condition. In addition, RT's for validly cued targets are typically faster

as the interval between the cue and the target increases (Tsal, 1983; Shulman et aL,

L979). Pre-cueing target locations prior to stimulus presentation has a facilitating effect

on the reaction time if the target is presented at the cued locations. Otherwise, the cue

has an inhibitory effect with a corresponding increase in reaction time compared to a

neutral (non cue) condition). This facilitory/inhibitory effect is dependant on the cue-

targetinter-stimulus interval (stimulus onset asynchrony or SOA) and on the distance

of the cued location from the fixation point. Figure 2.3 shows a typical reaction-time

data that is obtained from target cuing experiments. The reaction time decreases as

the SOA is increased until it reaches a plateau (at SOA's of about 400 ms) after which

the reaction time begins to increase. Results also show that RT's to validly cued targets

increase with the distance of the cued position from the frxation centre.
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FIGURE 2.3. Typical reaction times in target cuing experiments as a function
of the cued position from the fixation centre and at different cue-target
intervals. From Eriksen (1988), pg.14.

The reaction time to a target stimulus also increases when several irrelevant
visual stimuli are simultaneously presented with the target. This increase is attributed
to the response competition effect. It has been demonstrated that the response

competition is quite robust and that the extent to which target incompatible stimuli
affect the reaction time varies inversely with the distance between them, (Eriksen and

Eriksen, 1974; Eriksen and Schultz, L979; Miller, 1982). In addition to the distance

related effect, it was also found that the interference between the target and the non-

target stimuli has a component whose magnitude depends on feature similarity. Thus,

if a target is flanked by stimuli with which it shares some features then the reaction

time to the target is elevated. Response competition experiments have shown that while
there is an irreducible minimum size of the attentional spotlight (of the order of about

3 degrees ofvisual angle) it can be expanded to cover large areas ofthe visual freld (but

with a corresponding reduction in the efficiency of stimulus processing).

Speed of Attentional Shifts

Although the psychophysical datafrom target cueing experiments demonstrates

that there is a facilitory effect of pre-cueing target locations on the reaction time and./or

recognition accuracy, these experiments do not provide conclusive data on the speed of
attentional shifts and the distribution of attention across the visual field. Shulman et

aL, (1979) have concluded that attention moved across the visual freld in an analog

manner at a constant rate and that all intervening stimuli are processed. On the other

hand Tsal (1983), although confirming the analog movement of attention, rejected the

notion that the intervening stimuli are processed. These conclusions are in conflict with
that of Eriksen and Murphy (1987) whose experiments support the discrete shifts of
attention (as opposed to a sweep).
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Exogenous and Endogenous Control of Attention

In cueing experiments mentioned above, subjects are typically cued to a
peripheral spatial location by a high contrast visual marker in advance of the target
stimulus presentation, with the marker located at or near the impeding location of the

target stimulus. Experimental data taken during brief presentations (brief enough to
preclude overt eye movements) suggests that such a cue automatically captures

attention. Attention may also be subject to voluntary control. For example, a centrally
presented arrow may be another form of visual cue that indicates to the subject the
peripheral location of an impeding stimulus (Posner et aI., 1978). Visually informative
cues, such as an arrow, do not automatically cause attentional shifts away from the

fixation point but rather require higher level processing to flrrst interpret the cue

(direction of the arrow) followed by a voluntary shift in the direction of the arro\M.

Voluntary shifts of attention may also be driven by other endogenously generated

signals.

T\vo processes thus seemed to be involved in the control of visual attention: an

automatic process that is driven by the property of the visual stimulus, and an

endogenous process that is voluntary and allows subjects to have internal control over

the spatial allocation of attention (rffeichselgartner and Sperling, 1987;Posner, 1980).

It is quite likely that the two attentional systems are coupled. This would be advan-

tageous to an intelligent vision system in a natural scene when the exogenous

component of visual attention may often be attracted to non-relevant stimuli, such as

when the object ofinterest is camouflaged, partially occluded and surrounded by clutter
and noise. In such cases the endogenous system, which is knowledge driven, would

override the exogenous system either in spatial location or size ofthe attentional freld,

thus increasing the detectability of the object. When this fails, it may be necessary to

shift frxation across several locations.

Some Deficits in Vision and Visual Attention

Compared to thepsychophysical evidence mentioned above, the neuropsychological

data was obtained from human subjects who have some sort of a defect in their visual
ability. Here we will cite several well studied cases that expose the nature of vision and

visual attention from a different perspective and, to some extent, reveal how defrcit in
one visual function affects another (and which functions are dissociated). For example,

there are several striking examples that point to the dissociation between object

identification function and those functions that are of a more spatial nature (Holmes

1919). One of the most commonly occurring and intriguing visual defrcits is unilateral
visual neglect (Bisiach andLrzzatti, 1978; Bisiach et a1.,1981). This deficit reflects a

disturbance in the spatial distribution of attention and is manifested by patient's

inability to notice objects presented in the affected visual freld (contralateral to the site
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of brain injury). Patients with left-sided neglect seem to ignore stimuli that fall to their
left. This has been demonstrated on a number ofvisual tasks: crossing-out tasks, copying

viewed drawings, drawing an object upon a verbal instruction, etc. Evidence from recent

studies, Riddoch and Humphreys (1987), supports the view that this defrcit is due to

the malfunction of the visual attentional system. Often, patients with this visual defect

can be made to attend to previously ignored stimuli if verbally prompted to do so. This

seems to indicate that the bottom-up defective attentional visual pathways may be

overridden by controlled top-down attentional pathways.

Closely related defect to unilateral neglect is visual extinction (De Renzi, 1982).

Patients with this defect can identify a single stimulus when presented singularly in
any part of the visual field and yet when two stimuli are presented simultaneously in
the left and right visual field they do not seem to notice the stimulus in the affected

visual freld. An explanation for this defrcit appears to be consistent with Posner et aL,

(1984) frndings that patients have a difficulty in disengaging attention once it is
engaged.

Based on results of an experimental study of neuropsychological patients,

Posner et aL, (1984) have proposed that the process ofvisual attention proceeds in the

following three phases: (1) engaging attention to a target; (2) disengagrng; and (3)

shifting attention from one target to another. Failure ofany one ofthese stages leads

to visual neglect and to other related phenomena that have been observed in patients.

2.6 Conclusrons

In this chapter we have provided a brief overview of the general neuroscience

and the relevant neurophysiological and psychophysical background on primate vision.
'Wehave concentrated primarilyon the experimental data ofthe primatevisual memory

(IT cortex) and selective attention. This data indicates that selective visual attention
plays a crucial role in object recognition and memory.At the cellular level, selective

attention seems to modulate the receptive field profiles, thus sharpening their selec-

tivity and removing the irrelevant stimuli, while at the behavioural level it determines

whether an animal will perceive and remember a visual stimulus. The reviewed data

supports the view that selective attention is a selection (or a frltering) mechanism that
has spatial and non-spatial components which: (i) influence memory; (ii) are influenced

by memory; and (iii) are regulated by the familiarity/novelty of the stimulus or the

diffrculty ofthe pattern discrimination task. The general reduction in the level ofcortical

activation for familiar (or expected) stimuli suggests that memory circuits within the

primate visual system rely on the results of a matching process which: (i) compares the

contents ofmemorywith the incoming stimulus; and (ii) regulates its activity, the degree

ofattention, the accuracy ofthe response and hence the rate oflearning.
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Since very little is known about the neural circuitry of the higher levels of

vision, there is a need to develop a neural model oflearning and visual object recognition

that captures some of the experimental data on selective attention, response decrement

to familiar stimuli, self-regulation, etc. While it may be concluded that the aforemen-

tioned experimental data is scattered across several experimental disciplines and is too

complex to be incorporated into a single theoretical framework, we will show that the

Adaptive Resonance Theory of S. Grossberg (1976, 1980) already captures some of the

data and that it can be extended to explain most of the data. The main neurophysiological

data that cannot be explained by the current neural network models of attention is how

the feedback from higher cortical layers (including memory) can influence the orien-

tational selectivity of lower cortical cells. Since ART embeds top-down signal flow

(top-down memory) in a neural architecture that also relies on a matching process, we

will show how additional top-down pathways (of modulatory nature) may be incorpo-

rated to influence the lower neural layers. The main purpose of the thesis, however,

isn't to model and replicate the experimental data, but to use it in order to develop a

neural theory of biological vision and neuro-engineering design principles and mech-

anisms for robust artifrcial neural vision systems.
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Chapter 3

Mathematical and Theoretical
Foundations

"How can a learning system be designed to remain plastic in
response to significant new euents, yet also rernain stable in
response to irreleuant euents? How does the system know how to

switch betueen its stable and its plastic rnodes in order to preuent

the relentless degradation of its learned codes by the blooming

buzzing confusion of irceleuant experience?."

S. Grossberg (1987)

3.1 Introduction and Oven¡iew

The theoretical work that is presented in subsequent chapters does not only
rely on the experimental data that was reviewed in the previous chapter but also on

numerous mathematical tools, models, concepts and mechanisms that have been

proposed over the past three decades. The major theoretical and mathematical work of

the thesis is, however, by far largely based on Grossberg's theoretical work of the period

1960 - 1980, particularly his Adaptive Resonance Theory (ART) and its subsequent

implementation into a family of real-time artifrcial neural networks by Carpenter and

Grossberg since mid 1980's.

This chapter will therefore review the relevant mathematical and theoretical

background upon which the thesis is based, including some of the most important and

recent models and theories of vision, learning and pattern recognition, particularly
those that embed potentially useful mechanisms and design principles. We will
concentrate primarily on non-linear artificial neural networks whose design principles
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address self-organised learning (such as ART based networks, Carpenter and Gross-

berg, 1987a, 1987b, 1990), or are claimed to be biologically plausible and constrained

by the key psychophysical and neurobiological data, such as models of visual spatial

attention (Olshause n et al., L992, 1993 ; Niebur eú aL, L993). Although we have provided

a briefreview ofseveral related neural networks for 2D shape and 3D object recognition

in section 1.3.1 (Chapter 1), in this chapterwewill provide a detailed review ofAdaptive

Resonance Theory (Grossberg,1976;1980) and ART-3 neural network (Carpenter &

Grossberg, 1990). Other recently proposed theoretical concepts that address the role of
the feedback pathways in the brain will be discussed in the light of the neurobiological

data that is now available (and reviewed in Chapter 2).

At the end of the Chapter we propose the basic theoretical concept behind our

SelectiveAttentionAdaptive Resonance Theory (SAART), whichis thenfully developed

in the subsequent chapters of the thesis.

3.2 Theories and Models of Vision

Marr's Theory of Vision

Marr's theory of vision (Marr, 1982), although not of much relevance to the

central theme of this thesis, is mentioned here primarily because it is still considered

to be the most influential theory of vision upon which most current computer vision

models are based. Marr was influenced by several examples in which top-down infor-

mation was not needed (e.g., fusing random-dot stereograms). This led him to propose

a purely feedforward theory of vision that is based on linear mathematics and which

does not address the role of the feedback pathways.

Boundary and Feature Contour Systems (BCS & FCS)

In a series of articles beginning in early 1980's (Cohen and Grossberg, 1984;

Grossberg and Mingolla, 1985a,b) a real-time visual processing theory of 3-D form, color

and brightness perception began to emerge. Largely founded on the perceptual data

fromvisual psychophysics, the theoryis composed of two complimentary andinteracting
systems, the Boundary Contour System (BCS) and the Feature Contour System (FCS).

While addressing some aspects of earlyvision, such as grouping of textured regions via

cooperative linking, as well as being able to explain and simulate manyvisual illusions,

BCS and FCS still fall short of providing a robust solution to figure-ground segmentation

in realistic visual scenes (such as those of Figure 1.3, Chapter 1). Nevertheless, BCS

and FCS neural networks, although not yet widely accepted by vision researchers, have

been evolving rapidly over the past decade and have the potential to eventually explain

the key neurobiological design principles of early vision.
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Interactive Vision

In a recent review of the current assumptions and methodologies of mammalian

vision, which are largely based on Marr's theory ofvision, Churchlandet al. (1994) offer

a critique of the current wisdom and methodology of "pure vision" and provide a
theoretical outline for interactiue uision The basic tenet of interactive vision is that
vision is exploratory and predictive. Vision interacts with other sensory modalities to

improve motor control and facilitate the organism's success in feeding, fleeing, frghting
and reproduction. Compared to the conventional concept of a chiefly unidirectional
low-to-high feedforward processing hierarchy, interactive vision suggests that the

brain's recognition success in the real-world case depends on richly recurrent networks.

The notion of interactive vision suggests an important role for the interaction between

memoryandvision, wherebystored information (memory) from previous learningplays
a role in what an animal literally sees (perceives).

Interactive vision thus recognizes the need for top-down feedback pathways from

the higher to the lower cortical layers. In contrast to conventional engineered computer

vision systems whose design is serialized into the segmentation problem followed by

the recognition problem, interactive vision proposes interactive segmentation-re-

cognition. The strategy ofinteractive segmentation-recognitionmaybe extremelyuseful

in real world cluttered scenes, where there are many objects that partially occlude one

another. Churchland et al. (1994) thus note that frgure-ground segmentation and

recognition are more efficiently achieved in tandem than strictly sequential. They

provide the following neurobiological explanation for the difficulty of strictly feedfor-

ward visual processing and how it may be overcome with the feedback pathways: "The
problem is essentially that global information is needed to mahe decisions at the locøl

Ieuel concerning what goes with what. At lower leuels of processing such asV7, howeuer,

the receptiue fields are relatiuely small and it is not possible locally to decide which pieces

of the image belong together. If lower leuels can use informa,tion that is auailable at
higher leuels, such as representations of whole objects, then feedbach connections could

be used to help tune lower leuels of processing".

The proposition that one of the roles of the information flow in the feedback

pathways may be to retune the characteristics of lower level cortical cells based upon

the interpretation made in higher cortical layers has been made earlier byTsotos (1991).

Other researchers, for various reasons, have also realised that the top-down feedback

pathways in the brain cannot be ignored.
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Pattern Theory

"Pattern Theory", a term introduce by Grenander (1976-1981) and promulgated

as a framework for a theory ofvision by Mumford (1991, L992,1994) is similar in many

respects to the interactive segmentation-recognition strategy. Pattern Theory proposes

that in order to successfully reconstruct the world variables, it is necessary to first
synthesize the coded signals that one observes and then compare the synthesized signals

with the observed signals. Hence, the neural architecture implied by Pattern Theory

is not purely feedforward, but depends on recursive computations and interactions

between the bottom-up and the top-down processes. Pattern Theory thus recognizes

that the top-down feedback processes arejust as important as the feedforward processes.

In summary, Pattern Theory presupposes an analysis-synthesis loop that combines

feedforward feature extraction process with feedback loops that enable the system to

duplicate the stimulus by combining and transforming its basic features. The purpose

ofthe feedback pathways is to relay the interpretations ofhigher cortical areas to lower

areas in order to verify the high-level interpretation of a scene.

Dynamic Routing Circuits and Visual Spatial Attention

In an attempt to understand the nature ofvisual spatial attention and translation
invariant pattern recognition, Olshausen et al. (1992,1993), Van Essen et aI. (1994)

have introduced a feedforward neural network model of visual spatial attention to

achieve translation and size invariant recognition of 2-D patterns. The model uses the

dynamic routing circuits (previously proposed by Anderson and Van Essen, 1987) with
a set of control neurons that dynamically gate the alignment of the neural input to
achieve translation invariantrepresentation ofthe input stimulus. The model also uses

the Hopfield network (Hopfield, 1984) for pattern recognition. These authors have

proposed that visual spatial attention has evolved to subserve general purpose object

recognition since it is too computationally demanding to have the requisite neural

circuits replicated at each location in the visual field. Visual spatial attention also acts

as an informational bottle-neck, whose purpose is to reduce the amount of visual data

that is to be processed and learned by the higher neural layers. In addition to controlling
what is to flow to the higher neural layers, visual spatial attention also preserves the

information about spatial relationships within the window of attention. It has been

estimated that less than O.LVo of the information from the optic nerye passes through

the attentional bottleneck at any moment (Van Essen et aI., 1991).

Although the model presupposes the existence of top-down feedback pathways,

the information processing role of these pathways has largely been ignored. Since the

model does not incorporate the top-down control of attention it cannot explain how the
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memory within the system may assist the feedforward attentional processes. Hence

themodel cannot explain theneural processesthat enable thebrain torecognizefamiliar
stimuli in cluttered visual backgrounds.

Many other models of visual attention are also limited because they have

ignored the role of memory on the attentional processes. For example, the model of
attention by Koch and Ullman (1985) provides means for defrning the saliency of the
input based on relatively-low level cues such as pop-out due to motion, depth, texture,
or color. While one cannot deny the crucial role that these low level feedforward
processes play in our everyday vision, one certainly cannot ignore the role of memory,

particularlyin visual scenes where the visual stimulation from a scene does not always

lend itself to easy determination of attentional cues by feedforward computations.

3.3 Mathematics of Non-linear Neural Networks

Continuous-nonlinear neural networks, summarised in Grossberg ( 1988) began

to appear in 1960's. They either arose from a direct analysis of behavioural or neural
data. The Hodgkin and Huxley model (L962), although focussing on individual cells

rather than a network of cells, has provided a foundation for Grossberg's shunting

competitive model (Grossberg, 1968b, 1973). The shunting competitive feedback

equation, which was subsequently shown to encompass a wide variety of neural models
(Grossberg, 1988), can be written in its sirnplest form as

lA = -Ar, + (B - x,) {J* + f(x,)} - (c + x,){t- + l: f@} (3.1)

where ,/* is the total excitatory input into the layer, ,I- is the total inhibitory input onto

the layer while 2 l@) is the inhibitory input that is due to the competitive interactions
j+i

between the cells in the layer. Function /(.r) governs the nature of cellular interactions

in a given layer and hence the property of the layer. If f(x) is faster than linear above

a threshold, then (3.1) represents a winner-take-all competitive network. Equation (3.1)

has contrast enhancing properties whereby strong inputs are enhanced at the expense

ofthe weaker inputs. Each node in a layer may also self-excite through positive feedback.

This equation has two automatic gain control terms, (B -x,) and (C +-r,), which ensure

that the dynamics of each cell in a layer remains sensitive to input fluctuations and is

bounded in range (-C, B).
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In AppendixA, we provide a qualitative analysis of the equilibrium behaviour

of (3.1), as well as computer simulations, which show that, from an engineering
perspective, a competitive neural layer whose dynamics is described by the above

equation has an undesirable characteristic whereby the inhibitory inputs do not

effectively regulate the cellular dynamics. 'We then develop a more general model in
Chapter 4, called Presynaptically Modulated Shunting Competitive Neural Layer,

whose parameter design procedure and the relevant computer simulations are pres-

ented in Chapter 5.

Learning Laws

One of the most popular forms of learning widely adopted by neural network

modelers was introduced by Hebb (1949). Hebb has proposed that whenever neuron A
causes the frring of neuron B, then the synaptic strength between the two neurons

increases. The neuroscientific data obtained from the gill withdrawal reflexinAplysia,
reviewed in Chapter 2, provides strong evidence against the biological plausibility of
Hebb's proposal. The data clearly indicates that the magnitude of the excitatory post-

synaptic potential (EPSP) on the motor neuron decreases with each successive pulse

from the sensory neuron (provided that the facilitatory interneuron is silent). This

decrease in the synaptic strength is considered to be the simplest form of learning
(termed habituation) and is exactly opposite to what Hebb has proposed. The data does

show, however, that the synaptic strength can be increased, but only when the facili-
tatory interneuron i s active. Although the experimental data from Ap Iy s ia fr st became

available in 1970's (well after Hebb published his book), it is quite remarkable that
Hebb's rule is still widely used (albeit in slightly modified versions). One example is

the following equation which also includes a passive decay term

(3.2)

where ¡,çx,)h¡(x) is often called a Hebbian term. An alternate learning equation, called

the gated decay long term memory (LTM) equation and proposed by Grossberg is

d.2.,,

dt = -F, ¡2, ¡ 
+ G,,f,(x,)h,(x¡)

+ = h ¡(x,) l-F,,2,, + G f (x )) (3.3)

This gated decay LTM learning equation represents the form of learning that is
implemented in all ART neural networks and also forms a foundation for the learning
equations that we will use in subsequent chapters.
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3.3.1 Model of Chemical S5rnapses

One of the earliest models of chemical synapses was by S. Grossberg (1968,

1969). This model is of extreme importance because it embeds three coupled variables
that represent transmitter production, storage and mobilization, as well as modulated
transmitterreleasebythe synapticinput signal. Aversion ofthe modelwith transmitter
mobilization is represented by the following two equations.

(3.s)

where [w]* = max(w,0) is a thresholding function; 2,,(t) ís the total amount of the trans-

mitter in the synaptic pathway at time t;2,,(t) is the total amount of the mobilized

transmitter at time t; z,¡(t) is the total number of actiue transmitter production sites at

time t (i.e., it represents the transmitter production rate)i 4; is the spiking frequency

driving the synapse and the transmitter release process. By assuming a steady-state

spiking frequency F and by ignoring the slow variations in z,¡(t), Grossberg has shown

that equations (3.4) and (3.5) can be solved explicitly for the transient response of the

model. The solution for 2,,(t) is given by

¿Zi.i

dt = l,ul(ô,iz¡i - Z,¡) - t,,F,,l Z¡.¡- U,,f.

+=r.(r,,-2,,)-x;,r,,l|,,-u,,f.-r,,12,,-u,,].

2,,(,)=[m)[*o..^'+},';jF)t)-##(1_exp(-(ri+r,-.rlrll)

; , , *iLi¡ô¡;e¡;(O)
L;.i\*) = 

(o:-,-, + ú),1) (fi, úÐ

(3.4)

(3.6)

which is a monotone decreasing function in F, with the steady state being given by

(3.7)

It can be shown that the amount ofthe mobilized transmitter that is available for release

per unit time (for the case of zero thresholds) jumps from a maximum of

l,;roiôiz,r(0)F

cù,, + (ù;,

at time zero and thereafter decays asymptotically to the value of

(3.8)
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(3.e)

(3.10)

which is monotone increasing in F. Whereas the above model assumes that the rate of
transmitter mobilization is independent of the spiking frequency, it can be shown that
for the case where the mobilization rate does depend on the spiking frequency, the

amount of the mobilized transmitter rises from zero and then decays to a positive

asymptote. Thus, in either case, the model ends up in a stable state, which from an

engineering point of view is crucial if the model is to be used in the design of complex

neural circuits that depend on the model for signal transmission.

A slightly modified version of the above model, which forms the basis for the

model used in this thesis, is represented by equations (3.10) and (3.11), from Carpenter

and Grossberg (1981).

I;tiotiôiz¡¡(0)F
(r¡,; + o,l,) (I; +Ì,"tjF)

# = urt -w) - (Mw - Nz)

ff=r*r-¡rz)-sz (3.1 1)

where the term K(L -w) in equation (3.10) says that w(r) tries to maintain a level L via

transmitter accumulation; the term -(Mw -Nz) in (3.10) says that the storage trans-

mitter is mobilized at a rate M and that the mobilized transmitter zis demobilized and

restored at a rate N. The term -,Sz is (3.11) says that the mobilized transmitter is

released (and depleted) by the input signal S.

A simplifred version of the above models (which does not include the transmitter
mobilization process) has recently been used in the implementation of the ART-3 neural

network (reviewed in section 3.4.3), in modelling the dynamics of the fly visual system

(Ögmen and Gagné, 1990) and in the implementation of our simple feedforward neural

networkmodel ofvisual spatial attention (Lozoet a1.,1993a, b) andtranslation invariant
pattern recognition (Lozo et al., L994,1995; see Chapter 6). Although the application

of simple models of chemical synapses in a number of different artificial neural network

architectures has provided these networks with new processing flexibility, there is no

strong evidence that these networks have benefited much from the additional compu-

tational elements. For example, modelling chemical synapses in the ART-3 neural

network replaces the need for a threshold upon the network reset. Similarly, in our

application to a simple feedforward model of visual spatial attention (Chapter 6), the

dynamics of chemical synapses has been chiefly used to implement the mechanism of

attention shifting.
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Self-regulated Transmitter Release

It has been suggested (Grossberg, 1984) that the reuptake ofthe released

transmitter back into the synapse via autoreceptors has an inhibitory effect on further
transmitter release, i.e., the reuptake process provides a self-regulated release of
transmitter. Grossberg has also suggested that when lateral transmitter diffusion and

reuptake occurs between several synapses, then the feedback inhibition from the total
released transmitter provides a normalizing effect such that the maximum amount of
transmitter that can be released is independent of the number of active synapses

(assuming that all inputs are equal).

Equation (3.12) represents the inhibitory effect of the total released transmitter,
for the case of a simple model of a synapse that does not include transmitter mobilization
(Grossberg, 1988).

(3.r2)

where z¡; is the transmitter level in the pathway from the ith to the jth cell; S, is the

signal emitted by the ith cell into this pathway; x, is the activity of the jth cell; e, F, G

and H are constants. This equation says the reuptake via autoreceptors ofa fraction of
the reledsed transmitter inhibits the growth of the corresponding LTM trace.

Presynaptic autoreceptors and the transmitter reuptake thereby mediate a

type of self-regulated competition for the activation of the postsynaptic cells. This

theoretical prediction (supported by the experimental results of Stricker and Zigmond,

1976) suggests that when some neurons are damaged and can no loner participate in
transmitter release from their target synapses, then other neurons whose synapses are

in close contact, compensate by producing more transmitter. We will make use of this
concept to implement a normalization procedure in neural circuits whose neurons

sample their input by more than one synapse.

3.4 Adaptive Resonance Theory and Implementation

ART was initially introduced by S. Grossberg (1976, 1980) as a physical theory

of cognitive information processing in the human brain and has since been implemented

in a family of artifrcial neural network architectures. These include: ART-I for binary
inputs (Carpenter & Grossberg,I9STa), ART-2 forbinary and analoginputs (Carpenter

& Grossberg, 1987b), ART-3 for hierarchical neural architectures (Carpenter &
Grossberg, 1990), ART-MAP for supervised self-organisation of memory codes (Car-

penter et a1.,1991), and various otherversions.

# =rs, [-r.,, 
-t Gx, -, L,sozo,]
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ART arose from attempts to solve the stability-plasticity dilemma of real-time
competitive learning systems. The dilemma is that real-time learning systems must be

able to rapidly learn about significant novel events while at the same time being able

to autonomouslyimpose stability on their learning to prevent the erosion or corruption
ofpast memories. The adaptive resonance concept suggests that onll¡ the resonant state

(Grossberg,

1980, 1982). ART models therefore embed bottom-up and top-down learning in a

network that consists of two subsystem that regulate learning: (i) an attentional
subsystem where top-down expectancies (recalled memories) interact with the

bottom-up information; and (ii) an orienting (or avigilance) subsystem thatis sensitive

to the mismatch between the two. Interactions between these two subsystems ensures

that memory modification occurs under exceptional circumstances, i.e., memory can be

modified when an approximate match has occurred. This state is called an adaptiue

regona,nce.

3.4.1 Strength of AR,T

Because the ART model departs from conventional neural network models by

also introducing the top-down learned pathways and a mismatch arousal subsystem,

the model has been able to predict and explain the existence and the nature of Event

Related Potentials (ERP's), Banquet & Grossberg (1987). The strong correspondence

between the neural mechanisms embedded in the ART model and that of cognitive

information processing has enabled the model to be used as a physical and explanatory

theory ofvarious brain functions. For example, the theory has been used to explain the

data on visual perception, speech perception, neural substrates of learning and memory,

amnesias and a host of other cognitive data. It is quite remarkable that one theory

alone, which conceptually is quite simple, can be used to explain such a diverse set of
biological cognitive data. Belo\M rve qualitatively analyse the behaviour of the model

during learning in simple and uncluttered inputs.

Let us assume that in the context of primate vision, ART represents the highest

level of visual information processing, say at the level of the inferior temporal cortex
(Carpenter & Grossberg, 1993). The theory then suggests how our visual memory
(internal representation of visual stimuli) can be stored and evolved through further
experience with the same (or almost the same) sensation, without eroding the internal
representation of this memory when it is recalled or activated by another sensation

that does not match it. Figure 3.1 shows how various ART neural mechanisms interact
to ensure stable and real-time evolution of internal representations of external sensory

stimuli.
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To qualitatively analyse the behaviour of the ART model in the context ofhigh
level vision, let us consider how the long term memory traces are evolved through

exposure to sensory stimulation.
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FIGURE 3.1. Very simplified representation of the visual brain sketched
primarily to illustrate the main ART concepts (we are presently ignoring the

numerous intermediate layers of the visual cortex).

The memory of the very first visual stimulation can be stored into LTM pathways

since no prior top-down learned memory trace will be recalled to cause a mismatch

betweentheinput and theresultantpattern ofactivity acrosslayerFl. Once thememory

trace of this stimulus is stored (the strength ofwhich depends on the learning rate that
may itself depend on a host of other factors, such as the degree of arousal, etc.) it can

then be evolved into a stable memory by further experience. For example, if at some

later time this stored memory trace is recalled by another visual stimulus that does

not differ very much from the recalled memory, then the memory trace is increased

further. Once the top-down memory trace of this visual experience is strong enough to

override the bottom-up activations, it can no longer be corrupted by sufficiently different
visual stimuli that share some common features. This causes a mismatch arousal and

a memory search for a better matching memory. If a memory search does get engaged

by the new input stimulus but cannot activate or recall another stored memory, then
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this sensory stimulation gets stored as a nerü visual memory. This example is a

simplifred treatment since the theory also suggests that when the memory traces are

weak, they can be overwritten by non-matching inputs but should eventually stabilise
through self-organisation.

The strength of Adaptive Resonance Theory therefore lies in the proposal of
the top-down learned pathways whose signals mix with the bottom-up inputs to form
an attentional subsystem, which by its interaction with the orienting (or vigilance)
subsystem ensures that the memory modification of stored (or new) representations
occurs under exceptional circumstances, i.e., learnine is gated. In the next subsection

\Me present a simple example to support our claim that ART's attentional subsystem is

incomplete and is too rigid to be of much use in more realistic visual scenes.

3.4.2 Weakness of ART's Attentional Subsystem

Although it has been claimed that ART models can self-stabilize learned codes

in an "arbitrary input environment" (Grossberg, 1987) or "arbitrary complex input
environments" (Grossberg 1988), we will show that this is not so. In fact, it can be very
easily demonstrated that none of the ART neural networks developed to date can

recognise a familiar input when it is embedded in cluttered and complex backgrounds.

It should be very obvious that ifa learning system cannot recognize a learned input
when it is embedded in a cluttered background then the system cannot learn in those

types of backgrounds. Simple computer simulations in section 3.4.3 of ART-3's neural
layers (processing Fields) will clearly demonstrate this. The problem that we are

exposing below, however, is not a peculiarity of any of the ART based networks but is
inherent in all because of the shortcoming of the theory itself. ART does not propose

how such problems may be dealt with by a real-time neural system. Hence it is first
necessary to provide a theoretical argument, which actually happens to be very simple,

to support our claim that ART model lacks the generality needed to be used as a physical

theory of biological cognitive information processing in complex, cluttered and arbitrary
input environments, primarily because of its rigid attentional subsystem.

The exposed problem, schematized in Figure 3.2, canbest be understood if one

ignores the signal amplitudes that are fed into the system and simply considers the
input to be a pattern in 2-D space that excites neurons in a 2-D lattice, such that each

activated neuron corresponds to a location of the space that is occupied by the input
pattern.
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FIGURE 3.2. Revised thought experiment that reveals the inadequacy ofART's
attentional subsystem: (a) shows the case during the learning of an input pattern
(pattern 1); (b) and (c) show the processing stages of the ART model when the learned
pattern is embedded in a cluttered background. Note that ART's attentional subsystem
is unable to selectively attend to and recognize a familiar pattern (input x,) when it is
embedded in the cluttered backgtound of input pattern xr. The network fails to recognize

the familiar stimulus because the attentional subsystem is not capable of paying
attention to those parts of the input that can be matched by the top-down memory.

'We are now led to ask whether the attentional subsystem, as proposed in ART,

is sufficient to explain how we can recognise a previously learned visual stimulus when

that stimulus is embedded in a complex background. Let us for the sake of the argument
assume that a person is looking at the familiar visual stimulus and that this stimulus
is embedded in a cluttered backgrourrd. Let as also assume that the earlyvisual layers

of the person's brain are not able to separate (segment) the familiar stimulus from its
background. Since the stimulus is at the centre of gaze and has not changed in size or
orientation, there is no reason to suppose why its features will not be aligned with the
cor:responding memory pathways that have on previous occasion encoded these features.

Therefore we should expect that the recognition nodes of the familiar stimulus will be
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activated and its memory will be recalled and transferred via the top-down memory

pathways into the short-term memory at Field Fl. Figure 3.2 illustrates this simple

scenario.

As shown in Figure 3.2(c), strong top-down memory traces are able to completely

override any activity in Fl. Any bottom-up initiated activity in Fl that does not match

the recalled top-down activity will be annihilated by competitive interactions in Fl.
However, this has no effect on the activity in F0. Therefore if F0 is simultaneously

activated by several external stimuli, as shown, its activity will not match that of FI.
Thus, although the correct memory may be initially activated and recalled, ART

suggests that because of the resultant mismatch between patterns in F1 and F0, the

recalled memory should be reset and the memory search engaged. Hence the familiar
object cannot be recognised. Accordingly, we will never be able to recognise a familiar
object when not presented in isolation. This obviously is not the case for we are able

segment and recognise a familiar object in a multitude of complex environments.

We note that ART suggests that in such case one of the following can occur: (i)

once the recalled memory is reset and temporarily biased against further activation,

the input stimulus can reactivate the system and eventually get stored in memory as

a new stimulus; or (ii) the vigilance may be reduced to accommodate higher degrees of
mismatches. However, we argue that neither of these is appropriate. In the former case

the familiar stimulus is not recognised, while in the latter case the memory can never

stabilize since it will be continuously modified whenever it is activated by non-matching

inputs.

We conclude that the weakness of the ART model is its rigid attentional s]¡stem.

This rigidity is due to the fact that the system always pa}¡s attention to the whole neural

activit]¡ across its input layer rather than to parts of the input and, as a result, does

not allow resonant activit]¡ to occur with a portion of the input that may in fact be very
familiar. That is, the theory does not suggest how a neural system can selectively attend

to and recognize a familiar stimulus in complex sensory stimulation. Thus, the same

neural mechanism that has empo\Mered the ART model with stable self-organised

learning in randomly presented but simple input environments now prevents it from
recognising a previously learned stimulus in complex and cluttered environments.

ART model therefore does not have sufficient processing capability and flexibility
to offer a thorough rationalization of cognitive information processing, but it does

provide a strong theoretical foundation for a more general theory. Since ART is the only
theory developed to date that has the necessary ingredients that correlate with the
psychologicallyand neuropsychologically observable phenomena ofbiological cognition,

it is imperative that we seek a more refined solution to real-time learning. This solution

should simultaneously cater for the mechanism of stable evolution of memories as well
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as selective attention. Before we proceed to propose a more general solution in subse-

quent chapters, it is worthwhile to consider the original thought experiment around

which the theory was developed.

Grossberg's thought experiment (Grossberg, 1980) considered an array of cells

in two neural Fields (F1 and F2). However, because the input was not treated as a 2-D

spatial pattern of activity, the arguments that led to the proposal of ART's attentional
mechanismwere developed in a one-dimensional domain. Consequently, some problems

that are obvious in the two dimensional spatial vision have not been considered and

have therefore led to a restricted neural theory. For example, in 2-D visual pattern

recognition problems, the amplitude of signals is not as important in defrning an object

as are the spatial locations of the activated neurons. Although ART was not aimed to

be a theory ofvision but a theory ofself-organised learning regardless ofthe sensory

modality, it may be argued that our thought experiment is only applicable to vision.

However, since selective attention is not unique to vision but permeates every other

sensory modality, our claim about ART's deficiency is independent of the sensory

modality.

Thus, although ART models are applicable to simple and uncluttered sensory

environments. they are inadequate in complex. cluttered, noisy and arbitrar.',/ envi-

ronments. This is well exemplified in a recent application of the ART-2 neural network

where it is embedded in a vision hierarchy for adaptive 3-D object recognition by a
mobile robot (Seibert and Waxman, 1992). The problem faced by such a system is that
it only succeeds if the objects to be recognized are presented in a manner that allows

easy and clean segmentation by feedforward computations. Objects were either painted

matte black to ensure signifrcant contrast with the background or were represented by

a suitable arrangement of lit light globes. The architecture used by these authors is

strictly feedforward, although some parts of the system, such as the ART-2 network,

do have internal feedback. Since the internal feedback in the ART model provides it
with one of the most powerful cognitive neural concepts i.e., attention, why should not

that feedback be also used to enhance processing at lower layers?

One of ART's predictions is that whenever a novel stimulus appears then the

arousal of the system should increase. However, the theory does not propose how a

self-organising neural learning system knows whether the input is familiar or novel.

It is assumed that whenever a top-down expectancy (or recalled memory) mismatches

the bottom-up input that an orienting subsystem triggers a non-specific arousal

mechanism, thusresettingthe activated top-downmemory. Butdoesmemorymismatch

and reset always imply novelty? Is increased arousal and memory reset always needed

for familiar inputs? In all the current neural network implementations of the theory
(e.g., in ART based networks such as ART-2 or ART-3), a familiar input can cause a
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mismatch reset when it is presented after another input. Should a familiar input be

able to activate its memory without a prior memory reset by having a direct route to

the memory (i.e., direct memory access or DMA), which by-passes some neural layers?

3.4.3 ART-3 Neural Network

'We now review one of the implementations ofART called ART-3 neural network
(Carpenter and Grossberg, 1990) and present several computer simulations that
demonstrate the weakness of ART in cluttered background. ART-3, schematized in
Figure 3.3, is the frrst ART based neural network whose adaptive bottom-up and top-

down memory pathways are based on a simple model of chemical synapses. The primary
purpose of using a model of chemical synapses in the memory pathways was to
implement a mechanism for parallel memory search of learned pattern recognition

codes, thus enabling ART-3 to be embedded in network hierarchies.

Although ART-3's learning capability has not been demonstrated nor were its
learning equations specifred in the published article of Carpenter and Grossberg, our

investigations of ART-3 have indicated that its learning does not exceed that of its
predecessors (such as ART-2, Carpenter and Grossberg, 1987b) on l-D analog spatial
patterns. We have also found (Lo2o,1993) that ART-3 neural network can end up in a
never ending search cycle (where it continuously activates the same set of LTM nodes,

followed by a mismatch reset) and that this memory search is in fact serial. That is,

the network is likely to activate a number of non-relevant (partly or poorly matching)

memory nodes before it activates and settles down into a resonant state with the best

matching node. The serial nature of memory activation and search is also evident in
the published computer simulations (see Figures 23-25, Carpenter and Grossberg,

1990). Nevertheless, ART-3 is of particular interest because it demonstrates that it is
feasible to design artifrcial neural network architecture whose signals flow through

dynamic pathways that have a close correlate with the neurobiological form of signal

transmission.

Each of ART-3's processing Fields are identical with the exception that Field

F', is modelled by a winner-take-all competition (although not strictly necessary in
ART-3). In Figure 3.4 we reproduce one ofthe processing Fields, whose implementation

approximates the competitive feedback equation (3.1). Large black circles represent

signal normalization across each layer (i.e., approximation of lateral competition).

Reverberatory loops in each of the Fields maintains a short-term memory (STM) of
their input. Within each Field, the gain in the top-down directions is typically chosen

to be at least ten times the gain of the bottom-up signals. The purpose of the larger
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top-down gain is to ensure that when a given spatial input pattern establishes a

reverberatory activity within each Field, then this reverberatory activity maintains a

contrast enhanced memory of the input after the input offset.
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FIGURE 3.3. Implementation of ART-3, with simple model of chemical
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These reverberatory Fields have the interesting property that when activated,

their activity prevents subsequent inputs to enter (unless the reverberations are reset).

That is, because of the higher top-down gain, the established activity prevents subse-

quent inputs to enter and corrupt the integrity of the spatial pattern that the Field is

'remembering'via the reverberatory loops. The system is reset when the match between

Fields F" and F, (measured by an indirect evaluation of the cosine of the angle between

the two multidimensional vectors that are represented by the spatial activity across

the two Fields) falls below a preset level (called vigilance).

The following six equations represent the implementation of the shown Field.

xi' =t +pTSi' (3.13)

v
nl xit

pi +llx* ll

=si'+pisi'
xi'

(3.1s)

!¡= pi +llx"'ll
(3.16)

n3 an2xi =ùi (3.17)

n2
)ci

(3.14)

n2

(3.18)

where Sio =G[yio -@]*= Gmax(yik -@,0); G is the gain at the output of each layer; @ is

the threshold on the output stage of each layer and is chosen so that a uniform spatial
pattern across the whole layer is quenched below the threshold, i.e., O = 1/{-(n), where

n is the number of neurons in the layer; ll X* ll is the Lrnorm; pí (= 0.0001) is a compu-

tational convenience for zero inputs.

Model of Chemical Synapses in ART-3's Bottom-up Mernory Pathways

Atthough both the bottom-up and the top-down memory pathways are modelled

by adaptive transmitter dynamics, here we will consider only the bottom-up pathways.

Equation (3.19) represents the dynamics of the bottom-up synapses between Fields F,

and F".

¿"!f
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pis!'ulf @;+xit)dt
(3.1e)
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where z,'j represents the bottom-up transmitter production level (learned long term

memory); wlf reptesents the stored transmitter (medium term memory); S,á' is the

bottom-up input from cell i of Field F6 to cell j of Field F,; pT and pi are constants. This

equation says that the medium term memory (MTM) tracks the long term memory
(LTM) and that the stored transmitter (MTM) is reduced by the action of the input
signal 

^Sf" 
and by the correlated frring of the input signal and the postsynaptic feedback

signalxre from the active cell in Field 4. The excitatory postsynaptic voltage ,v!;,is given

by

¿rlf
dt

hc cnb3 bct cl c\--vii +Psùi u¡j\xj +Pe ) (3.20)

where p{ and pf are constants. The pre-postsynaptic interactions in the bottom-up

memory pathways are schematizedin Figure 3.5.

As shown in Figure 3.5, the postsynaptic signal xit ínteracts multiplicativelly

with the input signal Sfi to provide a further boost in the EPSP. As mentioned above,

although Carpenter and Grossberg (1990) did not provide learning equations forART-3,

it can be assumed that the transmitter production rates in the bottom-up and the

top-down pathways are adaptive. As in the previous ART neural networks, the

bottom-up pathwayslearn their drivingsignal (i.e., the presynapticlearningrule), while
the top-down pathways learn the signals on their postsynaptic target cells (i.e., the
postsynaptic learning rule).

The learning equation for the bottom-up memory pathways may be written as follows

ü- =Rõ(s,13 - r!Ð (3.21)
dt

where õ is the learning rate, while R is a gating signal defined by

R_ I if M >p AND SteadyState

0 otherwise
(3.22)

In the above, M is the degree of match between the relevant neural layers while p is a

dimensionless parameter (vigilance) that controls the degree of the approximate match

that needs to be satisfied before learning is enabled. It is thus necessary to track the

system dynamics, so that the memory update is enabled whenever a steady state is

reached and, when the match between the relevant Fields is above the preset vigilance

level of p.
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FIGURE 3.5. Schematic of a simple model of chemical synapses in ART-3's
bottom-up memory path\üays. Note that the transmitter production rate (zNi) adapts

to the level of the presynaptic signal Sf3.

In addition to the problems of serial and cyclic memory search cycles as discussed

above (which are reasonably trivial), ART-S neural network (as well as its predecessors,

such as ART-2) has a far more serious problem that limits its application to simple

problems. As claimed in section 3.3.2, none of the ART based neural netrvvorks that have

been developed to date can recognize a familiar pattern when it is embedded in a

cluttered background. To reveal this problem it is not necessary to provide a computer

simulation of the whole network, but its individual processing Fields. Below we provide

six computer simulations that clearly reveal the inadequacy of ART neural networks

in more complex inputs.

a j
ca
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J
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ART-8's Processing Field: Simulation I

The first simulation uses 2-D shapes shown in Figure 3.6. These shapes are

pre-aligned in the input to maximize their spatial overlap. Input l is presented for two

iterations of the equations (3.13)-(3.18), followed by Input 2 for further 15 iterations.

Note that the Field is not reset upon the presentation of the second input. The purpose

of the simulation is to show that an established reverberatory activity in the Field
prevents subsequent inputs to enter into the Field. To expose the property of the Field,

we will show the state of each variable in the Field in the form of the resultant steady

state activity. The Figure below shows the steady state activity of the Field after the

presentation of the inputs.

Input 1 Input 2

(a)

(b)

zsxil 1000y,,9 sxi; ro0oyii tllxij 1000y,rt'

FIGURE 3.6. ART-3's processing Fields: Simulation L.(a) steady state due to input
1; (b) steady state due to input 2 (without prior reset). Field parameters: pi = pi = 10.0;

G = 5.0; @ = 0.03125, number of neurons in each layer = L024; pi = 0.0001. Convention:

dark = 1; white = 0;

The simulation in Figure 3.6 shows that when a reverberating spatial pattern

of activity is established across one of ART-3's processing Fields, then this activity has

strong suppressive effects on subsequent inputs that do not match the reverberating
pattern. Hence, unless all activities within the Field are reset to zero, a neyw input
cannot enter into the processing Field. Since the established reverberation continues

after the input offset and for as long as there is no active reset, it can be said that the

established reverberation represents a memory of the spatial pattern that has caused

it (the strength of which depends on the gain in the top-down direction). It should also
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be noted that this reverberatory memory acts as a filter. That is, when a new input
shares some common pathways with the reverberatory activity within the Field, then

these common pathways will be amplified while the competition within the Field will
prevent all other inputs from entering into the Field.

As can be seen in the above figure, the activity of the established reverberatory

pattern will increase in some places and decrease in others. The reason for this is that
the initially activated cells that no longer receive a bottom-up input will be suppressed

by all the other cells that are still receiving a bottom-up input.

ART-3's Processing Field: Simulation II

The frltering action of the reverberatory pattern is further exemplified below where

the first 2-D shape is embedded in the cluttered background of the second input, as

shown in Figure 3.7.

Input 1 Input 2

(a)

-..1- *.l-É----= ¡'---3

(b)

zsxii 1000yi/ sxi: tollyii tooxil 1000y,rt'

FIGURE 3.7. ART-3's processing fields: Simulation II. Field parameters as for
Figure 3.6.

ART-3's Processing Field: Simulation III

In the next simulation, the frrst shape also appears in the cluttered background,

but some of its boundary elements are weaker in strength than the background

elements. The purpose of this simulation is to demonstrate that while the non-relevant
inputs cannot get into the Field, the competition within the Field also annihilates

weaker inputs of the relevant pattern.

+ l¡
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I

(a)

Input 2

-/-.J *¡*'l -r-'J

(b)

_|.-.1 .J

zsxii to}oyfj s4 r}ooyii to}xif 1000y,f

FIGIIRE 3.8. ART.8's processing fields: Simulation III. Field parameters as for
Figure 3.6.

ART-3's Processing Field: Simulation fV and V

The next two simulations show the resultant steady state when the input is
cluttered with several shapes.

Input

zsxii toooyij s4; r000yii ro}xi; ro}oyif

FIGURE 3.9. ART-3's processing fields: Simulation fV. Field parameters as for
Figure 3.6.
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Variable input strength along object's boundary

zsxil 1000y,r{ s*ii roo}yii r\\xil 1000yiJ

FIGURE 3.10. ART-3's processing fields: Simulation V. Field parameters as for

Figure 3.6.

In Simulation fV all inputs have equal intensity whereas in Simulation V some

parts of one of the shapes varies in strength along its boundary. The purpose of these

two simulations is to show that when no prior activity is reverberating then a nertr input
pattern, regardless of its complexity, will register itself, but only in locations where the

input can drive its target cell above the threshold.

ART-3's Processing Field: Simulation VI

Below we present computer simulations of ART-3's Field F6 when it is driven

bythe bottom-up and the top-down inputs, as shownin Figure 3.11. The top-down input
is assumed to represent the recalled memory of a previously learned 2-D shape.

Instead of modelling the top-do\ün synapse into Field Fr,for simplicity rve use

equation (3.23) to represent the activity of node in Field F, where f3 is the top-down

input into the node. The larger gain for the top-down input ensures that the fïnal steady

state of the Fieldwill be due to the top-down input. This type of suppression of all initial
activities in F, and its replacement by the recalled memory generally occurs in all ART

based neural networks when the top-down memory is reasonably large (or has

converged).

,!'=s!'+loJ!3 (3.23)
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Top-down input (recatted rnernory)
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FIGLIRE 3.ll.Mixing of the bottom-up input and a recalled top-down memory
inART-8's Field Fr.

(a) ,ì,

(b)

soxii 1000yi.r s4i to}oyil t\\xif 1000yi3

FIGURE 3.12. ART-3's processing Fields: Simulation VI. (a) steady state before

the activation of the top-down input; (b) steady state after the introduction of the

strong-top down input. Field parameters as for Figure 3.6.
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As can be seen in the above simulation data, the top-down input has suppressed

the activity of all other cells. Thus, in a steady state, Field F, witl contain an active

memory of the recalled shape. However, as has been seen demonstrated in the previous

simulations, the input Field F, will in addition contain other non-relevant shapes and

clutter. This will cause the match between Fields F" and F, to be low and below the
vigilance level that is typically used to discriminate between similar looking shapes. It
can thus be concluded that ART-3 (as well as ART-2) neural network would not in
general recognize a previously learned 2-D shape when that shape is embedded in a

cluttered background or when its boundary edges are non-uniform in intensity.

3.5 The Concept of Selective Attention Adaptive
Resonance Theory (SAART)

In this section we return to the thought experiment of Figure 3.2 and derive

the basic theoretical concept of Selective Attention Adaptive Resonance Theory
(SAART), which is then fully developed in the subsequent chapters of the thesis.

As in section 3.4.2, \Me assume that a memory of a given sensory stimulus is
stored in the bottom-up and the top-down adaptive memory pathways. We now embed

the stimulus in a cluttered background, such that it remains un-obscured. If we can

somehow filter out the non-relevant information (the background stimulation) from the
input Field Fo so as to cause a match between Fo and the recalled memory at the short
term memory (STM) Field F,, then we will enable the system to recognize the familiar
stimulus. The problem then is to figure out how to filter out the irrelevant inputs in
order to cause a match between the recalled memory and a portion of the input pattern.

But how can the system know which bits of the bottom-up input are irrelevant? Rather
than attempting to answer this problem first, let us see whether the system has the
means of knowing which bits of the input are relevant. But in order for it to have any
knowledge ofwhatisrelevantitmusthave an establishedmemory. Henceifaparticular
memory is activated and recalled, then the system can use it to attend to the known
bits of the input. Thus it seems intuitive to suggest that the activated memory across

the STM Field F, should be used to enhance the corresponding bottom-up input path-

ways into the input Field F'o. Lateral competition in the input Field Fo will then suppress

the activity of all neurons whose inputs are not enhanced by the coresponding neurons

in the STM Field F,. Figure 3.13 shows our proposed solution to how A-FùT's attentional
subsystem may be extended to enable a self-organising neural network to pay attention,

and hence to recognize, familiar inputs in the cluttered bottom-up neural activity.
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FIGURE 9.13. Selective Attention Adaptive Resonance Theory (SAART)

concept. The top-down modulatory feedback from recalled memory amplifies the
corresponding bottom-up inputs into the input Field Fo. Lateral competition in the input
Field Fo will annihilate the activity of all cells whose bottom-up signal transmission
gain is not amplified by the active top-down memory pathways. These feedfor-

ward-feedback interactions enable resonance to occur between the recalled memory

and a selected portion of the input.

Thus rather than resetting the system as soon as the match falls below the
required threshold (as in the ART models) which would lead to recognition failure, we

can alter the course of processing by providing a top-down facilitatory feedback to the
input Field (Fo), enabling the network to test whether the recalled memory can be

matched with a portion of the input. Clearly this feedback must act on the presynaptic
pathways of the input Field Fo in order to extract the familiar stimulus while suppressing

all the other inputs. The mechanisms by which the relevant neural activity across the
input Field Fe can be enhanced at the expense of all the other activity is referred to a
top-down selectiue attention. Top-down selective attention in the above example can be

achieved by projecting the output activity of the STM Field F, to act on the neuro-

transmitter dynamics at the presynaptic terminal of the input Field Fo. This feedback
pathway acts to selectively facilitate bottom-up signal transmission by enhancing the
transmitter levels of corresponding bottom-up pathways. This simple but a very crucial
step marks our departure from the ART model.

Because the facilitatory signals and the competitive interaction in Fo do not

act instantaneously but take some time, the resonant steady state develops over a period

of time during which the network may be in a highly dynamic state. To follow the
progress of these interactions, it becomes necessary to measure the degree of match
between the spatial patterns across the Fields Fo and F, as well as the time rate of
change of this match. To protect the long term memory from unwarranted modification
by non-matching inputs during these rapid changes, long term memory is updated when

t<,
+
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the system is in a stable resonant state. Similarly, the certainty of the network's pattern
recognition response increases as the steady state is approached. Thus, what may
initially be taken as a bad mismatch may eventually end up as a perfect match but with
a selected portion of the input pattern. Refer to Appendix C to see how ART-3 (as well
as ART-2 and various other ART based networks) may be modified to model top-down

memory guided selective attention.

The above concept of memory guided selective attention forms the main
theoretical foundation of the thesis and is further developed in the subsequent chapters.

3.6 Conclusions

This chapter has provided a review of maj or theoretical concepts and mathematical
tools upon which the thesis is based. A qualitative analysis of ART and the related
computer simulations of ART-3's neural Fields have demonstrated that ART based

neural networks have a serious limitation when the input is cluttered. We have

identified this limitation to be primarily due to the fact that the attentional subsystem

as proposed in ART is too rigid. The rigidity of ART's attentional subsystem does not
allow resonant activity to occur between the recalled memory and a portion of the input
with which it can match. This leads to the recognition failure of the familiar (previously

learned) object when it is embedded in a cluttered background.

It is interesting to note that some of the most recent views on vision, which
conveniently appear as three chapters in the same book, (Churchland et al., L994;

Mumford, L994;Ullman, 1994) have one thingin common: they all suggest an important
role for the feedback pathways in the brain. Given that ART as a theory is already two
decades old, it is quite remarkable that its concepts do not feature much in the work of
others. Although Mumford has mentioned the ART neural networks of Carpenter and

Grossberg (1987a, b), this was only to emphasise a matching process between a

synthesized pattern and the input pattern. Even more surprising is that none of the
above authors have mentioned the Boundary Contour System, even though it embeds

feedforward-feedback interactions that the others seem to consider as being ofgreat
importance. If one were to predict where all these three views are likely to lead, one

cannot escape noticing the similarity between their main propositions and ART (as well
as the BCS and FCS neural network models). Mumford (1994), for example, has

proposed the need for top-down pathways whose role would be to duplicate (or synthesize

the stimulus). Isn't that exactly what the top-dorvn memory as proposed in ART is all
about? It would be interesting to see, as time goes by, whether an ever-increasing

number of researchers converge onto the concepts that are already embedded in ART.

Since ART addresses the most fundamental problem that is faced by real-time learning
systems, i.e., stable evolution of memories, one can safely assume that it can be used
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as a bench-mark against which future theories and models of the brain are to be

compared. Thus rather than rediscovering ART, why not accept it and build onto it?
This thesis attempts to build onto the po\¡¡er of ART, but from the perspective of a
designer of a neurocomputational machine vision and object recognition system in
cluttered visual scenes.

In section 3.5 we have shown how a simple extension to Grossberg's thought
experiment has led us to derive the basic theoretical concept behind our Selective
Attention Adaptive Resonance Theory (SAART). We have thus theoretically predicted

the existence of axo-axonal interactions (where one axonal terminal modulates the
synapticterminal ofanother axon). We also predictthe existence ofmodulatoryfeedback
pathways in the primatevisual system, whose role is to selectivelyfacilitate the transfer
of neuronal signals from lower to higher cortical layers. In the following chapters we

use the concepts of selective attention and modulation to propose novel neural layers,
mechanisms, design principles, neural circuits and networks for complex and cluttered
visual scenes.
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Chapter 4

Novel Neural Layersr Mechanisms
and Design Principles

"The uisual systern is impressiuely efficient at ertracting useful

information, discarding ineleuant information, and being mini-
mally disrupted by spurious data contained in the barrage of
images that it must continuously process. This efficiency did not

arise instantaneously during euolution, and to incorporate it into
neural models will require careful attention to basic principles of
good engineering".

D.C. Van Essen, D.J. Felleman, E.A. DeYoe, J. Olavarria and J. I{nierim (1990)

4.1 Introduction and Overview

In this chapter we propose neurobiologically inspired fundamental neuro-en-
gineering design principles and synaptic mechanisms for non-linear visual artifrcial
neural circuits. The proposed design principles and mechanisms are based primarily
on the experimental data from the gill withdrawal reflex ofthe sea snailAplyslø (Kandel,

L979;Kandel and Schwartz,L992,Hawkinsetal.,L983;Carew, 1987), themathematical
models of chemical synapses with transmitter mobilization (Grossberg, 1968, 1969;

Carpenter and Grossberg, 1981), the mathematics of non-linear neural networks
(Grossberg, L973, 1988); the concepts of the Adaptive Resonance Theory (Grossberg,

L976, 1980) and the theoretical concept of Selective Attention Adaptive Resonance

Theory (SAART) introduced in section 3.5 of Chapter 3. We also derive a family of new
shunting competitive neural layers, called Presynaptically Modulated Shunting
Competitive Neural Layers (PM-SCNLs) and a powerful new 2-D circuit called Feed-

forward Excitation-Feedback Presynaptic Facilitation (FFE-FBPF).
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The proposed neuro-engineering design principles and mechanisms form the
foundation for the design of cognitive and perceptual real-time artifrcial neural circuits
and networks of subsequent chapters. It is assumed that the fundamental neuro-
computational unit of cognitive biological information processing is a2-D Presynapti-
cally Modulated Shunting Competitive Neural Layer. Inputs to each cell in a PM-SCNL
are gated by dynamic neural model oftransmitter based chemical synapses whose signal
transmission gain may in general be subject to various modes of modulation. The
inhibitory interaction coefficients between neurons in a 2-D layer of competitive cells

may in general be distance modulated and, unless otherwise stated, are presently
assumed to be distance independent and symmetric. Symmetric interaction coefficients
in a competitive layer of neurons provide stable pattern processing (Cohen and
Grossberg, 1983).

We begin by generalising the model of a chemical synapse of Chapter 3 and
consider how the internal synaptic dynamics may be altered and./or modulated by the
following three types of interactions:

(i) influence of the synaptic input signal;

(ii) modulatory influences by the facilitatory/inhibitory gain control signals;

(iii) influence ofpre-postsynaptic interactions.

The gain of a chemical synapse is defrned as the amount of chemical
neurotransmitter that is in the mobilized state and hence available for release. Initially
we consider an idealised model of a chemical synapse in isolation and suggest how it
may be extended and then we generalise the inodel by embedding it at the input stage

of competitive neurons and consider the effect of feedback signal from the postsynaptic

cells. The layer of neurons thus formed is called Presynaptically Modulated Shunting
Competitive Neural Layer,whose properties are revealed through various applications
and computer simulations. The basic structure of a PM-SCNL is initially derived in
Appendix A and is then developed in section 4.3 of this chapter. The parameter design
for layer stability is presented in Chapter 5.

The chapter addresses the various mechanisms and synaptic interactions for
selective information transfer; mechanisms for synchronization of pulsating neurons;

mechanisms for cooperative linking of non-pulsating neurons; top-down memory guided

selective attention and the recognition of objects in cluttered visual backgrounds;

synaptic mechanisms for the modulation and the fine-tuning of simple and complex
receptive field profrles, and the recognition of distorted 2-D shapes. In subsequent
chapters we will considerhow the neuro-engineering design principles established here
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can be further evolved and integrated into design logic for real-time cognitive and
perceptual neural circuits and adaptive networks that can learn and recognize
(perceive) a familiar object shape in cluttered and complex bottom-up inputs.

4.2 Modulation of Synaptic Transmission Gain

An idealised chemical synapse is a synapse that can be considered in isolation.
The internal dynamics of an idealised chemical synapse is therefore independent of the
postsynaptic activity. The Carpenter-Grossberg model discussed in Chapter 3 (section

3.3.1) is an example of an idealised chemical synapse that we now wish to extend by
suggesting that signals other than those along the synaptic pathway may have influence
on the transmitter dynamics. Specifically, the gain of a chemical synapse, which we

have defined as the quantity of chemical neurotransmitter that is in the mobilized state

and above the release threshold, may be altered by another signal that acts directly on

the transmitter mobilization process. In biological systems, such signals are due to
synapses that abut and modulate neural signal transmission of other synapses by
releasing a neuromodulatory type of a chemical transmitter (as in t};re Aplysiø circuit,
section 2.3).

Below \¡/e present two complementary models, a facilitated synapse whose

signal transmission gain is increased and an inhibitory model whose gain is decreased

by the external (or non-synaptic) signal.

4.2.L Model of Facilitated Chemical Synapses

Figure 4.1 illustrates the simplest model of a facilitated chemical synapse

whose signal transmission gain is increased by the facilitatory signal4. The following
two equations represent the internal dynamics of a facilitated synapse

du,

i = u,(z¡ - u,) - (þ, + K,J ) (u, - y,)

#=(Þ, +r, + J,)(u,- );) - PrJ,Íy,-Y,f* -Tyli

(4.1)

(4.2)

where d,, þ, and p, represent the tonic activities of the synapse. The term u,(z¡ - u,) in

(4.1) says that u,(t) attempts to maintain a level z¡ via the transmitter accumulation
(production) rate o,z, and the feedback inhibition rate -uuu¡.The term -(P,+ KuJ¡)u¡,

where K, is a constant, says that the level of the stored transmitter is reduced by the
input signal (some ofwhich is lost to the mobilization process), which is counterbalanced

by (Ê, +K,J,)y,. The term (Þr+4 +J,)u, in (4.2) says that the stored transmitter u, is
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transported (mobilized) to the release sites by the action of the facilitatory input F, and

by the synaptic input signal /,. The term -pr4[!¡-Y¡l*, where p, is a constant, says that
the mobilized transmitter y, is released by the input signal but only when !¡ ) Y¡, where

Íy, - Y,l* = m¿x()¡ - Y,,0) and Y, is a threshold for transmitter release. The last term in (4.2)

represents the passive decay of the mobilized transmitter that is due to the enz5rmatic

destruction of the transmitter at the release sites. Figure 4.2 shows the simulated
response of the facilitated synapse.
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FIGLIR,E 4.1. Simplest model of a facilitated chemical synapse.
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FIGLIRE 4.2. Response of the facilitated chernical synapse. (a) tonic synaptic

activity;(b) synaptic input switched on at t = 500; (c) response of the synapse described

by (4.1) and (4.2) when the facilitatory input is switched on at time t = 1000 and then

switched offat t = 1100; (threshold for transmitter release in all the shown simulations
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was set to zero). Parameters! c[,u=0.005, Þ,=Þr=0.05, K,=0.0005, py=0.1, Ty=0.0005,

4 = 10, J¡=1, Y = 0. Equations (4.1) and (4.2) arc iterated using Euler's flrrst approxi-

mation method with Âr = 1.

The initial conditions in the above simulations are zi = l, ui(O) = 0, y¡(0) = 0. For

a useful set of synaptic parameters refer to Chapter 5 for the parameter design

procedure.

It can be shown (see Chapter 5) that the steady state solution to equation (4.2),

for zero thresholds (and constant inputs), is given by

Z'Ad
Y,(-)=---;---' ad+ae +ce

du,

i = (u,+ F,J,)(2,- u,) - (8, + K,J,)(u,- y,)

(4.3)

where d=au, d =þy+Fi+J¡, c =þ,+KuJi, e =pyJ¡+yr. If the facilitatory signal F, is small

compared to p, and,/,, then it is not going to have much of an effect on the synaptic gain.

However, if F, is very much larger, then it will dominate the synaptic gain.

'When active, the facilitatory presynaptic signal F, increases the transmitter

mobilization rate and hence boosts the synaptic signal transmission gain. In the above

model the facilitatory input F, does not interact with the synaptic input J,. If we assume

that these two signals do interact to boost the level of transmitter even further, but
under the condition of correlated frring of the facilitatory and the synaptic inputs (as

is found in the Aplysia circuit), then we can write equation (4.1) in the following \May

(4.4)

Figure 4.3 shows a more general model of a facilitated synapse whose transmitter
levels are increased by the facilitatory signal F, alone and by the multiplicative inter-
action ofF, andthe synapticinputsignal.l,. Figure 4.4 showstheresponse ofthe synapse.

Comparison of Figures 4.2 (c) and 4.4 shows that the correlated frring of the

synaptic input and the facilitatory input has boosted the levels of transmitter above

the levels provided by the action of the facilitatory signal alone. Whether this type of
processing is required in more complex neural circuits will most likely depend on other

system requirements. Throughout most of this chapter (and the rest of the thesis) we

will in fact ignore this component and will concentrate primarily on the facilitation of
the transmitter mobilization rate.
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FIGURE 4.3. More general model of a facilitated chemical sJrnapse.
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FIGURE 4.4. Response of the more general model of a facilitated chemical
sJmapse. The synaptic input is switched on at t = 500 (and remains on), the facilitatory
input is switched-on in the time interval 1000-1100. Parameters as for Fig.4.2.

4.2.2 Model of Inhibited Chemical SSrnapses

The neural counterpart of the facilitated synapses is a synapse whose transmitter
levels are reduced by the modulatory signals. The following two equations represent

the internal dynamics of an inhibited synapse whose gain is decreased by an inhibitory
signal d.
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FIGURE 4.6. Response of the inhibited chemical synapse. (a) tonic synaptic

activity; (b) synaptic input switched on at t = 500 (and remains on); (c) response of the

synapsedescribedby(4.3) and (4.4)when theinhibitorysynapticmodulationis switched

on at time t = 1000 and then switched offat t = 1300; (d) response under the additional

condition of sorrelated frring.



CHAPTER 4. NOVEL NEURAL I.AYERS, MECHANISMS AND DESIGN PRINCIPLES 80

(4.s)

(4.7)

(4.8)

(4.6)

The inhibitory signal d affects the synapse by decreasing the rate of transmitter

storage in (4.5) under the condition of corelated frring with the synaptic input J' and

is involved alone in the decrease of the mobilization rate in (4.6).

4.2.8 Synaptic Potentiation and Depression

In above sections we have assumed that the modulatory signal acts directly

and instantaneously on the transmitter storage and mobilization rates. However, in
biological systems such as in the neural circuit of the gill withdrawal reflex of Aplysia
(and particularly in the mammalian hippocampus), the effect of modulatory signals

tends to last for some time. Synaptic potentiation (depression) describes the durable

effect of a facilitatory (inhibitory) gain control signal on the transmitter levels. In order

to model the lasting modulatory effects on the synapse, we introduce two intermediate

variables, cr,(l) and p,(r), whose dynamics is described by the following shunting equa-

tions:

dy, (Þ, +/,) .

; -iø (u' - Y') - P,J'lY'-Y'l* -Y,Y'

du.,

ì = -Aou,+ (1 - G,) (Ao + F,J,)

dþ'
dt -BpÞi + (1 - Þ,) (Bo + F,)

where Ao and Bo are the tonic adaptation constants. Using these equations, \Me can

rewrite the models of modulated synapses in the following way:

Long-terrn facilitated (potentiated) synapse

du,

; = A)u,(2, - u) - (þ, + K,J ,) (u, - y 

') 
(4.9)

dv,7=Aiþ,(ui-!¡)-PrJ,fy,-Y,f* -Tvli (4'10)
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Long-term inhibited (depressed) synapse

du, au(zt-ut)

81

(4.11)(þ,+ K,J,)(u,- y,)
dt

dyt

(1+,4,u,)

Þr(ut- l,) prJ¡Í!i- 4l* -^{y!i (4.12)dt (l +A;B,)

Figure 4.7 below shows the simulated dynamics of the potentiated and the

depressed synapse during various input conditions. Comparison of these results with
those in Fi gs.4.4 and 4.6 demonstrates the longer lasting nature of synaptic modulation

by the potentiating and the depressing agents.
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FIGURE 4.7. Simulation of long term synaptic potentiation and depression.
(a) dynamics ofthe potentiatingandthe depressingagents (cr, and p')before(0 < r < 4000),

during (¿OOO < I < 4100) and after (r > +tOO) the introduction of the synaptic modulatory

signal; (b) response of a potentiated synapse (synaptic input switched on at t = 2000);

and (c) response of a depressed synapse. Parameters: Ao = 0.0001i Ao = 0.00005; Bu = 0.001;

Bo = 0.0005i F¡ = li J¡ = O.5i ü, = 0.005; Þ, = Þr, = 0.025i K, = 0.005; Py = 0.1; Ty = 0.0005; Ai = l0;
Ai= 10; A,= l}i A, = I}rY = 0.



CHAPTER 4. NOWL NEURAL I.AYERS, MECHANISMS AND DESIGN PRINCIPLES 82

The parameters for the above simulation were simply chosen to demonstrate

the dynamics of long term synaptic effects rather than the robustness of the model. The

many parameters that are involved may be chosen on the basis of the required temporal

dynamics which can only be determined from the more global system requirements. In
the next section rve propose how the model of modulated chemical synapses may be

embedded at the input stage of a shunting competitive neural layer to provide new

computational capabilities.

4.3 PresSrnaptically Modulated Neural Layers

We now use the above mechanisms of synaptic modulation to provide a

mathematical model and the circuit implementation for a new family of shunting

competitive neural layers called Presynaptically Modulated Shunting Competitive

Neural Layers (PM-SCNLs). PM-SCNLs are characterized by non-linear differential

equations that represent the dynamics of a layer of shunting competitive neurons whose

inputs are gated by dynamic models of modulated chemical synapses. PM-SCNLs

represent our neurobiologically motivated generalisation of S. Grossberg's shunting

competitive neural layers (Grossberg, L973, 1988) by incorporating the synaptic

modulatory mechanism to provide ne\M computational capabilities.

To begin with, we initially ignore the postsynaptic feedback and propose a

simple feedforward modulated neural layer with single excitatory synapse into each

cell. 'We then extend the layer through several stages, frrst by incorporating the post-

synaptic feedback and then bipolar synaptic inputs into each cell. Throughout the

section we will address one-dimensional layers. Extensions to two-dimensions will be

done in the latter part of the chapter (section 4.10).

The mathematical and an intuitive procedure for the parameter design of

presynaptically modulated shunting competitive neural layers that ensures stability,

wide dynamic range and invariance to the size of the layer is described in Chapter 5.

4.3.1 Simple Model of Presynaptically Modulated
Competitive Neural Layers

Figure 4.8 illustrates an example of simple PresynapticallyFacilitated Excitatory

Shunting Competitive Neural Layer (PFE-SCNL) that is actually implemented in two

layers, a layer offast excitatory cells and a layer ofslow inhibitory interneurons (large

black circles). The inhibitory neural layer mediates the shunted competition in the fast

excitatorylayer. Throughout the subsequent sections and chapters we will refer to these

two layers as aField of competitive neurons.
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Postsynaptic cellular activity

Cellular activity of the i'r neuron in the excitatory layer is described by the

following non-linear differential equation

d*,

dt - -Axi+ (B - x,)Gv: - (C + x,) (Gv, + f) (4.13)

where Gvi is the amplified transmitter gated excitatory postsynaptic potential, given

by (4.L4), G is the amplification factor; Gv, is the amplified lateral feedback inhibition
that is mediated by slow inhibitory interneurons, given by (a.15); f is the tonic level of

inhibition; A is the passive decay rate, B is the upper saturation level and C is the lower

saturation level (4, B, C > 0). This equation thus represents shunted competition of a

layer of neurons with the on-centre off-surround anatomy whose cellular activity is
restricted to range (-C, B).
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FacíIítc;tory terrnttal

FIGURE 4.8. Simplest implernentation of a Presynaptically Facilitated Exci-
tatory Shunting Competitive Neural Layer. Note that this model does not include

the postsynaptic feedback from a cell to its synapse.

Each neuron in the excitatory layer receives its excitatory input through a

facilitated synaptic pathway whose internal dynamics is slower than the postsynaptic

dynamics. The following set of equations describe the dynamics of the layer:

Excitatory postsynaptic potential

The excitatory postsynaptic potential (EPSP) acting on a cell is due to the bound

transmitter on the postsynaptic cell and is given by

-[¡i
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(4.16)

(4.r4)

where D and pv are constants. The term P"J¡f!¡-Y,l*, where ly,-Y,l* = max(y, - f,,0), says

that the EPSP is charged by the released (and bound) transmitter, but only when the

synaptic input ,/, is active and when the mobilized transmitter is above the release

threshold of Y.

Lateral feedback inhibition

The lateral feedback inhibition (l¡) is assumed to be due to slowly charging

inhibitory interneurons whose potential is given by

# =-Dri + p"J,ly¡-Y7*

#=Ãilø L f@)

B Gvi - C(Gv, + f)
-r-.-..............................:-' A +Gvi + Gv¡ +f

(4.1s)

where Ã and E are positive constants 6 <A,E <Ð; f@)=max(.x;-O,0) =lx¡-@¡l* is a

thresholding function which says that the postsynaptic cellular activity must be above

the threshold @ before the cell fires, with the assumption that each cell has the same

threshold.

Postsynaptic cellular activity at equilibrium

Since the excitatory postsynaptic potential (v,l(t) results from the gating of fast

input neural signals by slow chemical synapses and because the lateral feedback

inhibition is mediated by slowly charging inhibitory neurons that have fast interactions

with their target cells, we can represent (4.13) by its equilibrium state (4.16). Thus, by

assuming that the postsynaptic cell reaches its equilibrium before a signifïcant change

occurs in its input synapses, we obtain the following approximation by letting # = O in

(4.13)

which has a range (-C , B). If we restrict the operating range of (4. 16) to positive values

by letting C = 0 and if f = 0, then (4.16) can be simplifìed to

BGvi
xi

+
i +A+ Gv Gv

(4.17)
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To complete the minimum model of a simple presynaptically modulated

competitive neural layer, below we write the two equations that represent the dynamics

of the simplest facilitated chemical synapse whose internal dynamics is independent

of the postsynaptic cellular activity (a more general model is presented in the next

section).

Stoned transmitter

Mobilized transmitter

du,

i = uu(z¡- u,)-(þ,+ K,J)(u,- y,)

# =(Þ, + r,¡ (u, - y,) - P rJ ¡li ¡ - Y,)* - Tr! i

(4.18)

(4.1e)

W'e have presently left out the facilitation of the storage transmitter. This may

be included when needed and, as already mentioned, most of the modelling work
presented in subsequent sections and chapters is based primarily on the facilitation of
the transmitter mobilization process. 'We have also left out the contribution to trans-

mitter mobilization that may be due to the synaptic input signal. This component may

be incorporated when required, but is presently assumed to be very small compared to

the facilitatory signal F, (see Chapter 5 for the rationale of large facilitatory gain). The

transmitter production level (e,) may also be subject to temporal adaptation, but is
presently assumed to be constant (¿' = 1).

Figure 4.9 shows the feedforward (unilateral) interactions between an excitatory

input synapse and its postsynaptic cell, while Figure 4.10 shows the equilibrium
response of one neuron in the layer (and its lateral feedback inhibition) as the number

of active inputs (all equal in intensity) in a 1024 neuron layer is increased from 1 to

L024. As can be seen, the equilibrium activity of the cell decreases with an increase in
the number of active synaptic inputs. This is due to the greater lateral feedback inhi-
bition provided by the extra active cells.

Note that in the shown simulation, the parameters were not chosen in any

predetermined way and the emphasis is on showing the effect of competition on the

cellular activity as a function of the number of active inputs. The simple model of a

presynaptically modulated neural layer described above does not take into account the

possibility that the excitatory layer may also receive inhibitory synaptic inputs.
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Furthermore, the model has ignored the effect of postsynaptic feedback signals on the

transmitter release process. In the next section we generalise the model to take into

account the bidirectional pre-postsynaptic interactions and bipolar synaptic inputs.
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FIGURE 4.9. Feedforward interactions betu¡een a synapse and its postsyn-

aptic cell.
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FIGURE 4.10. Property of the simple transmitter gated shunting competitive
neural layer. Each plot is obtained after the layer reached a steady state (typically

after20 iterations). Parameters: A = B = 1; C = 0;D = 0.5; P,=0.25;Y¡=0; @, =0; f =Q;
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4.3.2 General Model of PresSrnaptically Modulated
Competitive Neural Layers

In the previous section we have presented an idealised model of a modulated

chemical synapses whose internal dynamics is independent of postsynaptic cellular
activity. We now consider the effect of feedforward-feedback interactions between a

synapse and its target cell and extend the model to bipolar synaptic inputs and bipolar

synaptic modulation (synaptic facilitation and synaptic inhibition).

Figure 4.11 illustrates a presynaptically modulated competitive neural layer

whose neurons have one excitatory and one inhibitory input synapse. The excitatory

synapse is represented by an unfilled semi-ellipse, while the inhibitory synapse is shown

shaded. Pre-postsynaptic interactions are represented by the arro\tr from the post-

synaptic cell to its input synapse.



CIIAPTER 4. NOWL NEURAL LAYERS, MECHANISMS AND DESIGN PRINCIPLES 88

In general, each neuron in a PM-SCNL may have a number of excitatory and

inhibitory synaptic inputs whose combined effect determines the cellular response. Each

of the input synapses may also be modulated by facilitatory/inhibitory gain control

signals. In order to develop a general mathematical model of an input gated and

presynaptically modulated shunting competitive neural layer, we first consider the

qualitative properties of the model described by equation(4.20). This is a version of the

shunting cooperative-competitive feedback neural layer with the on-centre off-surround

anatomy that was introduced by S. Grossberg (1973).

pre-postsgnaptic
intersctions

inhibíÍory
sgru¡pse

excltntory
sannpse

FIGURE 4.11. General model of a Presynaptically Modulated Shunting
Competitive Neural Layer.

Ø = -Ar, + (B - x,) lJi + f@,)l- (c + x,l 
I 
q + L,r,,g ø ¡f

(4.20)

In Appendix A we show that a neural layer described by the above equation

has the undesirable characteristic where the inhibitory synaptic inputs do not effec-

tively regulate the cellular response. For example, it can be shown that if the total

excitatory synaptic input,I,r (acting on the i'r cell) is exactly matched in amplitude by

the total inhibitory synaptic input,I, acting on the same cell, then it is possible for the

cellular activity-x, to exceed the threshold for self-excitation and become highly active.

This is notveryuseful andwouldmakeit awkwardto engineeraneural networkwhose

layers use both excitatory and inhibitory input synapses. In order to overcome this

undesirable characteristic of the system described by equation (4.20), we propose the

following equation (see Appendix A) as having more desirable characteristics for the

neuro-engineering design of circuits whose neural layers use bipolar synaptic inputs.

+

+o
I

+

+
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dx,

# = -o*,+ (B - x,) ÍG (v!- Iä)1. - (c + x,) (ro ttf - 4)1. + cl, + r)

(4.2t)

where tG(I4-If)l*=max(G(If -y¡),0) is the net excitatory posts]¡naptic potential that

drives the cell towards its positive saturation limit of B; lG(V¡ - W)l* +Gl , + f is the net

shunting inhibition that drives the cell towards its negative saturation level of -C; G is

the gain of excitatory and inhibitory synaptic inputs (assumed equal); f is the tonic

level of inhibition.

With the exception of the self-excitatory feedback term that appears in (4.20),

which we will incorporate below in a different way, the main difference between (4.20)

and (4.21)is thatin thelatterthe excitatory andthe inhibitoryinputs interact additively

before they affect the cell. The equilibrium solution of (4.2L) is given by

(4.22)

Note that when Vl =V, , the equilibrium state is independent of the synaptic inputs and

is given by

BIG(V\- y¡)1.- c(¡CçV, - V,.)1.+ cI, + f)
h. 

--
--I 

A +rcVi - yt)1. +lc(vt - V,*)l* + Gv, + f

Since r¡ ( 0, Vi, the lateral inhibition will decay to zero (i.e., l, -+ 0, Vi). Hence the

resting state is given by

Cf
^i- A +f

(4.23)

(4.23a)

Throughout this chapter (and the rest of the thesis), we will base the design

of presynaptically modulated shunting competitive neural layers on a version of (4.21)

with C = 0, shown below.

dx,

T = -o *, + (B - x,) tG (vi - Ðf - *,(tc rW- rö1. + c v, + r)

(4.24)
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In order to generate the model of (4.21) we have ignored the positive self-excitation

term (/(.x,)) that appears in (4.20). The model described by (4.20) has the property of
retaining a contrast enhanced memory of its inputs after the input offset, while the

model described by (4.2L) does not have this property. Since biological neurons are

oscillators (i.e., they frre at some frequency in response to a frxed driving signal), it is
not possible for one layer of neural oscillators to retain a memory of their driving signals

once their inputs are removed. Hence, the system described by (4.20) cannot be a

neurobiologically plausible method of storing short term memory. In Chapter 6 we will
provide several alternate solutions to how the short term memory may be maintained

between several interacting neural layers. However, neurobiological data does suggest

that postsynaptic feedback signals do interact with the transmitter dynamics by

increasing transmitter release. To take this into account, \lre suggest that the post-

synaptic cellular activity interacts with the dynamics of the synaptic variables to

enhance transrnitter release thus providing self-excitation. There are two possible

means by which postsynaptic signal may contribute to cellular self-excitation: (i) direct

release of the mobilized synaptic transmitter; or (ii) release ofthe mobilized presynaptic

transmitter under the condition of corelated frring of the synaptic input and the

postsynaptic cell.

Below we write a set of equations that defrne a general model of presynaptically

modulated shunting competitive neural layers with the on-centre off-surround anatomy

and distance independent competitive interactions. We will initially consider a pres-

ynaptically facilitated neural layer whose cells have one excitatory and one inhibitory
synapse. The modulated neural layer presented in this section will be extended to

multiple and spatially distributed synapse in section 4.10.

Postsynaptic Cellular activity at Equilibrium

The equilibrium postsynaptic cellular activity of (4.24) is given by

BIG(Vi - ya)1.
(4.2s)xi

A +lc(vi - Yi)1. + tc(Y¡ - Y,)f + Gv, + r

Since rve are presently addressing the case of a single excitatory and a single

inhibitory synapse, we can use the same indices for synaptic variables as for the cellular

variables. However we need to be able to distinguish between the two types of synapses.

Excitatory synaptic variables (and the associated constants) will therefore be labelled

by a positive superscript, whereas the inhibitory synaptic variables will be labelled by

a negative superscript. Ifwe assume that all cells have the same postsynaptic threshold

of @ and that all synapses have the same threshold for transmitter release, then we

can write the synaptic dynamics as follows:
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Excitatory postsynaptic potential

The excitatory postsynaptic potential (EPSP) acting on a cell is due to the bound

transmitter on the postsynaptic cell and is given by

(4.26)

where D*, pj and Kj are constants in the excitatory synaptic pathway (pj and Kj determine

the relative contributions to the EPSP from the uncorrelated and the correlated

pre-postsynaptic signals respectively). The equation says that when Kï > pi, the major

contribution to the EPSP is from the comelated firing of the synaptic input and the

postsynaptic cell. The term tyr.-y.1.=max(y,l-Y*,0) says that the transmitter in the

excitatory synaptic pathways can be released only if it is above the release threshold

level of I; while the function f@) = max(x¡ - O,0) is linear above a threshold. That is, the

postsynaptic feedback signal needs to be above the threshold of @ before it can affect

modifu the EPSP.

In equatiorL(4.26) we have assumed that once activated above a frring threshold,

each cell contributes to its self-excitation but under the condition ofcorrelated frring

with the synaptic input signal /i. The alternate case where the activated cell can

self-excite by direct release of its presynaptic transmitter is given by (4.27).

drÏ
dt =-D*v! + ty¡.- f;l.tpjJ,.+ KTf@,)l (4.27)

The EPSP modelled by the above equation produces oscillatory (pulsating)

behaviour in a layer of neurons. lvith the exception of section 4.5 where we will propose

several synaptic mechanisms for the synchronization of a layer of pulsating neurons,

this model (equation (4.27)) will be largely ignored in the thesis.

Dynamics of pre-postsynaptic interactions in an excitatory synapse

The gain of an excitatory chemical synapse (which we have defrned as the

amount of transmitter that is in the mobilized state and above the release threshold of

Y) can be increased by the facilitatory presynaptic signals 4 (or decreased by the

inhibitory presynaptic signal 1,). The following two equations represent the transmitter
variables in a facilitated excitatory chemical synapse.

# = -D*ul + rityi- rl- tpj + Kif@,)l
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# = oikï -r,.1 - tFi + tixiflx,¡l(ui - yï)

(4.28)

which says that the transmitter storage rate in the excitatory synapse is depleted by

the conelated frring of the input signal ,/i and the postsynaptic feedback signal /(.r,)
(refer to the parameter design procedure and computer simulations in Chapter 5).
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dvi
dt = (p; + F) ("T - y) - r:tyi - rl. tpj + rir(ù) - yjy|

(4.2e)

where pj is a tonic level of transmitter mobilization. This equation says that the

transmitter mobilization rate is increased by the facilitatory signal Fi and that the

transmitter is released (and hence depleted) by the input signal Ji and by the correlated

frring of,If and the postsynaptic feedback signal/(*,) (provided that the level ofmobilized

transmitter is above the release threshold of f. The postsynaptic cellular activity must

be above the threshold of @ before it can influence the synapse.

Note that the transmitter production rate (z,J) is presently assumed to be

constant. In subsequent chapters we will generalise our present model of chemical

synapses by taking into account the possibility that the transmitter production rate

may also be subjected to adaptation (i.e.,learning) but on a slower time scale. The above

two equations do not include the dynamics of the long term potentiating/depressing

agents (cr, and p,) of section 4.1.3. These may be modelled when required and, unless

otherwise stated, will be generally ignored in subsequent sections and chapters.

Dynamics of pre-postsynaptic interactions in an inhibitory synapse

For completeness rve represent the dynamics of inhibitory synapses by a similar

set of equations, with an understanding that its tonic synaptic activity does not

necessarily have to be the same as for the excitatory synapses.

Inhibitorv posts]¡naptic potential

The inhibitory postsynaptic potential (IPSP) due to an inhibitory input synapse

acting on the cell is given b

dv,

dt = -D-v; + J,ly, - rl. tp, + K,f(x,)l (4.30)

where D-, p; and K; are the time constants in the inhibitory synaptic pathway.

Transmitter variables

The following two equations represent the transmitter variables in a facilitated
inhibitory chemical synapse.
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(4.31)

du,

; = aik, - u,) - lþ; + K,J, f(x,)l (u¡ - y¡)

dy,

dt =(Êr+ F,)(u, -y¡)-J,ly, -fl.tp; +Krf@ù-yry,

(4.32)

Presynaptically Inhibited Shunting Competitive Neural Layer (PI-SCNL) is

represented by similar set of equations, with the exception that the excitatory and

inhibitory synaptic variables are presynaptically attenuated by an inhibitory signal 1,.

The general model of presynaptically facilitated shunting competitive neural

layers presented above (equation (4.15) of section 4.3.1 and equations (4.25) - (4.32))

assumes that each cell in a layer interacts competitively with all the other cells through

distance independent interaction coefficients. Extension to distance dependant (but

symmetric) interactions can be easily envisaged. In the next section we briefly discuss

the computational properties of two-dimensional shunting competitive neural layers.

4"4 Properties of 2-D Competitive Neural Layers

Atwo dimensional neural layer of competitive cells whose dynamics is described

by the shunting competitive equation has some important pattern processing prop-

erties. The two most basic properties are illustrated below. Figure 4.13 illustrates how

the steady state cellular activity of a layer varies with the input signal strength. At low

levels of the input, the steady state response of the layer is also low in magnitude and

increases with the increase in the input strength, but in a converging fashion. The

non-linear convergence is due to the competitive inhibition of cells as well as the

inhibition from term (B -x,¡) (see equation (4.13)). This ensures that the steady state

activity of each cell in the layer converges to magnitude that is below the saturation
point.

Thus if the input signal strength is held fixed, then the complexity of the input
(numberof activeinput pathways) will determine the magnitude ofthe cellular activity.

Figure 4.14 illustrates how the amplitude of the cellular activity is increased when the

density of the input is decreased (i.e., when the number of active input pathways is

decreased, while keeping the strength of the other inputs constant). The reason for the

increase in the cellular activity is due to a decrease in the level of lateral inhibition.
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FIGURE 4.13. Effect of input signal strength on the steady state cellular
activity in a shunting competitive neural layer (inputs are assumed to be exci-

tatory). The thickness of the object's boundary in a particular location represents the
magnitude of the associated steady state (equilibrium) cellular activity at that location
(thicker boundary implies stronger activity). TYansmitter levels are depleted by the

correlated pre-postsynaptic activity.
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FIGURE  .L4.Etreet of input signal density on the steady state cellular activity
in a shunting competitive neural layer.

In Figure 4.15 we illustrate how the activity of one shunting competitive layer

can be altered when it receives signals from two different sources. We wish to consider

what happens to the activity of this layer when the signals from one of its sources is

steadily increased in strength, while the signals from the second source are held

constant. TWo two source Fields, F0 and F2, contain a common spatial pattern of neural

activity (boundary of a car that is perfectly aligned in all respects), but the source Field
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F0 also includes other patterns of neural activity. When the signals from Field F2 are

very much stronger than the signals from Field F0, the competitive interactions in Field
Fl will suppress the activity that was initially due to the inputs from Field F0.

F7 F7

I2 ro Ig ro

t2 to
(a) No íttprtt ;ftorn_freld n.

FZ to
(b) Weak ínputJrorn-fæd e.

F7 FI

+

I2 Io I2 ro

t2 to
(c) StrorW íry>utfrornJ:¡eld- F2.

FZ to
(d) Vew strong frq>utfrornJield F2.

FIGURE 4.15. Cooperative cornbination of two 2-D shunting competitive
neural layers.

Each of the shown Fields obeys the shunting competitive equation (4.24) of
section 4.3. Since there are no inhibitory inputs in Figure 4.15, the cellular activity of
each Field can be written as

+=-A*l +6 -xiþG,l* -xi;acri;+ry)

(4.33)

where the superscnpt Fn identifies the layer. Although we can write this equation in

a l-D form (i.e., by changing indices ij to a single index, it is more convenient to analyse

the behaviour of the network as a 2-D aftay of cells). For example, the cellular activity
of Field Fl is given by
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+ = -A*I' + 6 - xi)G(,|f''. *,1''.)-.i @nij+ 4')

(4.34)

where v{,oo'* is the excitatory postsynaptic potential due to the synaptic pathways

F0 + F/, while vl,t''* ís the excitatory postsynaptic potential due to pathways F2 + FL

In the example shown, the strong input from Field F2 acts to suppress the

non-matching inputs from F0. This can be achieved effectively only if the cells in freld

Fl are not initially activated by F0 at levels close to their saturation point and if the

input from F2 is very much stronger than the input from F0. Otherwise, the addition

of signals from source F2 will not have much effect on F1 since highly active cells in Fl
cannot increase their activities much further in order to competitively annihilate the

activity of cells whose input is only from source F0. Although the diagram shows that
the resultant activity in Fl contains elements that are common to both F2 and F0, this
need not be so. When the signal strength from F2 is much stronger than that from F0,

theresultant activityin F1will onlyrepresentsource F2,regardLess ofwhatwas initially
transferred from F0. It is only when the magnitude of signals from both source Fields

are approximately equal (as in examples 4.15(b) and (c)), that the activity in Fl will
contain information from both sources.

In order to completely suppress the non-matching cellular activity in Fl by

strong inputs from F2, it is desirable to design Fl to be more sensitive to the excitation
from F2 than F0. In addition, the tonic level of transmitter mobiiization in synaptic
pathways F0 + F1 should not be too high so as to excite the cells in Field Fl close to

their saturation point. To emphasise the fact that the relative sensitivities may be

different, we write equation (4.34) as

+ = -A*l + rn - xi)(Gorl,o''- + G,vl,"'.)-.ii çcri!+ ry)

(4.3s)

where Go and G, are the constants (postsynaptic gains) that determine the relative

sensitivities to the two input synapses. If Gz>> Go, then Field Fl is more sensitive to

inputs from F2 than it is to inputs from F0. The steady state solution to this equation

is given by

F]x¡.i = (4.36)
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'Whereas in the above example we have assumed that both F0 and F2 provide

excitatory inputs to F1 and hence interact cooperatively in Fl (i.e., both are involved

in excitation of F1), below we consider a competitive interaction of F0 and F2 in Fl
where the two input Fields provide inputs of opposite polarity. Figure 4.16 illustrates
the result of competitive combination of the source two Fields, where one provides

excitatory synaptic inputs while the other provides inhibitory synaptic inputs.

FI F7

+

r2 ro I2 I o

t2 to
(a") No ínput ;frorn -fæld FZ.

F2 -Ft)
(b) Weak üqtut Jrorn JieLd- F2

FI F7

+ +

I2 I o I2 ro

F2 Fo
(c) Stro¡W irtpttt;frornleld" FZ

F2 tO
(d) VetU stortg ítt¡tttt;frorrtJñeld. FZ.

FIGLIRE 4.16. Competitive combination of two 2-D shunting competitive
neural layers.

The dynamics of Field Fl is now described by the following equation

+ = -¡ rii + g - xiþlc ov l,o". - c,rll"-)* - xïi ffcy 1;,,- - coulf"l* +-c;i j + f j)

whose equilibrium solution (for the case Go - Gz= G) is given by

B Glvl¡oFt* 'vl;rr-r*

A + G[v{,oF]* -r{Í't1* + Glv{,"t- -vl,oot.l. +Gifl +flfl
F1x¡j

(4.37)

(4.38)



4.5 Synchronization of OsciLlatory Neural Layers 99

As shown in Figure 4.16, Field F2 suppresses the cellular activity of Field F1

through its inhibitory synapse, but only in those cellular locations where F2 and F0

have common activity. The degree ofsuppression is dependant on the relative strengths

of the corresponding activities of F2 and Fl (and the postsynaptic gains Go and G2), as

well as the levels oftonic transmitter mobilization . During the course ofthis suppression

in Fl, the total lateral inhibition on the other active cells in Field Fl will temporarily

drop, forcing the Field to seek a nertr equilibrium state by increasing the activity of the

other active cells. However, ifField Fl also receives excitatoryinputs from other sources,

then the resultant state will be determined by the combined effect of all the excitatory

and inhibitory inputs.

In addition to the two modes of interactions between neural layers as shown

in Figures 4.15 and 4.16, it is also possible for the modulatory signals to mediate

inter-layer interactions by selectively facilitating or inhibiting synaptic pathways. In

the following frve sections we consider how presynaptic facilitation and presynaptic

inhibition may be used in various combinations to provide a rich set of simple design

principles and building blocks for two-dimensional neural circuits.

4.5 Synchrorrization of Oscillatory Neural Layers

The experimental data from stimulus evoked synchronized oscillations in the

primary visual cortex (Eckhorn et aI., 1988; Gray and Singer, 1989; Gray et al., L989)

has led to several neural network models of how such synchronized oscillations may

arise. Although the existence of these synchronized oscillations orresonances and their

role in the development of cortical feature-detectors was theoretically predicted by

Grossberg (in the context of Adaptive Resonance Theory, Grossberg, L976,1978, 1982),

well before they were detected in the visual system, it is only recently that neural

network modelers began to propose models and architectures that could explain the

mechanisms of coherent oscillatorybehaviourinwidely distributed cellular assemblies.

The interest in oscillatory synchronization offeature detecting cells has also attracted

the attention of applications oriented researchers since it is believed that such mech-

anisms may be useful in image texture segmentation. Below we first review two very

different models of synchronized oscillations that \Mere recently published and then we

propose several alternative models that are based on the mechanisms of presynaptic

modulation by lateral coupling.

Grossberg and Somers, (1991), have demonstrated robust synchronization in

a l-D layer of neurons with several different coupling architectures (Cooperative Bipole

Coupling, Adaptive Filter Coupling, Nearest Neighbour Coupling and Random

Coupling).
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Bípole celt

100

(4.41)

(4.42)

(4.43)

+ + ++

Shtnúed
excítøtory
cells

Irqouts
+ + +

InhÍbítory
celLs

FIGURE 4.17 Synchronized oscillations via bipole coupling in the Grossberg
and Somers model (1991).

dx,

dt
- -Axi+ (B - x,)(Clx,-ll* + uClZ,- fl. +4) - Dx,[y¡ - fl* Ø.39)

and

++

(4.40)

where a determines the size of the excitatory couplingwith respect to the self-excitatory

term C[.x, -f]* and Z, is t};re activity of the ith coupling unit. For the cooperative bipole

coupling architecture, Z, is given by the following equations:

dv.

; = -EY'+ Fx'

I r¡nignt,y P(Left,)" - l.
L o' <-"ttx 

* 
a" * w*,y-t n"l

1 width

Right, =;h,à [x,*; - fl*

| -w¡.hh

Lefti = -;, >=-, [r, *; - f¡*

/,.=

where

and

Parameter fo,r is the coupling threshold. The other parameters (P, Q and n)

represent a nonlinear summation within each cell compartment. For bipole coupling,

both compartments of the bipole ceII need to be sufficiently activated for Z, to activate

and thus provide the necessary excitatory coupling feedback. Since this coupling

architecture forces coherent cellular synchronization to emerge as a result of direct

cellular excitation by the feedback from thebipole cell,ítis possible to induce oscillatory

activity at cellular positions that do not correspond to any inputs. Other coupling

architectures (such as the Adaptive Filter) do not introduce oscillations in cells whose

inputs ate zero.Although Grossberg and Somers (199L) were able to demonstrate robust

synchronization with several different coupling architectures, their simulation data
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shows that they have used one dimensional binary patterns. It is therefore not clear

howtheirmodelwouldbehavein amore general casewhen theinputs are ofnon-uniform

intensity, such as what is typically obtained when a visual image is preprocessed by

oriented contrast detectors (edge detectors). Since their model does not embed

competition across the input layer and because the coupling feedback to the input

neurons is positive, it can be concluded that those cells that receive maximum input

will frre first, followed by neurons that receive the next highest excitation, etc. The

model is therefore restricted to special cases and cannot be of much practical use in
linking collinear edges whose magnitudes may differ widely.

The neural model of EcHrorn et al. (L990), whose fundamental component is

schematized in Figure 4.18, is also of particular interest. Unlike the above model that

uses excitatory coupling, the model by Eckh orn et aI. ( 1990) shares some basic principles

to the models that we are proposing below. This model not only provides means for

synchronizing two interacting neural layers but it uses two functionally different

synapses, referred to asfeeding syndpses andlinking syndpses.Their models of synapses

are not as extensive as those discussed in this chapter and are simply represented by

leaky integrators. However, the idea of linking synapses is similar in principle to our

presynaptic facilitation. That is, the integrated signals from the I inhing inpuús (together

with a constant offset term) interact multiplicativelly with the integrated signals from

thefeeding inputs.

The membrane voltage U^.oQ) of the åth neuron is given by

U^,oQ) = FtÍ)ll + Lo(t)l (4.44)

where Fo(r) is the total contribution via the feeding inputs and LoQ) is the total

contribution via the linking inputs. The neuron is modelled by a spike encoder whose

output is high if the membrane potential is higher than a time variant threshold. As

well as being able to synchronize neurons in one layer, this model is also able to

synchronize two successive layers of neurons by the use of top-down feedback from the

higher layer. However, as in the model of Grossberg and Somers (1991), the reported

simulations have only demonstrated the model on binary inputs. Since there is no means

in this model by which highty active neurons can be suppressed to compensate for

weakly active neurons, the model cannot deal with inputs of non-uniform intensity.
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FIGURE 4.18. Synchronized oscillations via linhì,ng and.feed,ing inputs in the
model by Eckhortl- et øJ., (1990).

Below we propose three basic presynaptic mechanisms that may be used to

synchronize cells within a presynaptically modulated shunting competitive neural

layer, even when the spatial pattern feeding the layer is non-uniform in input strength.

The basic mechanisms introduced here will be further extended to multiple neural

layers in sections 4.8, while the neural circuit that is capable of detecting whether two

interacting and pulsating neural layers are locked into synchronized oscillations (res-

onance) will be proposed in Chapter 6 (section 6.2).

4.õ.1 Synchronization via Lateral Presynaptic Facilitation

The simplest presynaptically modulated shunting competitive neural layer is

one whose input synapses are facilitated by the neighbouring cells within the layer via

Iateral presynaptic facilitatioz, shown in Figure 4.19. An oscillatory neural layer,

coupled via lateral presynaptic facilitation has the interesting property of achieving

synchronization ofits cellularresponsewhenthelayeris given randominitial conditions

and frxed inputs (random initial cellular activity x,(re) and random initial lateral inhi-
bition u,(to)). Figure 4.20 shows the simulation results obtained with a layer whose cells

are (a) uncoupled; and (b) coupled via nearest-neighbour presynaptic facilitation. For

the case of nearest neighbour coupling all inputs were held fixed at equal magnitudes
(¡, = t.o)whilethe cellular activityandthelateralfeedbackinhibitionwere givenrandom

initial values.
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ínput

FIGLIRE 4.19. Transmitter gated shunting competitive neural layer coupled
via neørest neighbour laterøl presynøptüc føcílítøtion.
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FIGURE 4.20. Simulation results of lateral pres¡rnaptic facilitation: (a)

uncoupled case; and (b) coupled case. Layer equations and parameters are given

in Appendix B.1.
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FIGURE 4.Zl.Dynamics of cellular and synaptic variables in a lateral nearest
neighbour presJrnaptically facilitated neural layer: (a) - (e) uncoupled layer;
(Ð - C) coupled layer.
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The following equation describes the dynamics of the mobilized transmitter to each

excitatory cell in the layer

d,¡,

I = lÞ, + Lrc,, f (x,)l (u, - r,¡ - J iU i- rl* [p, + K y f(x ¡)] - T y! i

(4.4s)

where Lrc¡f(x¡)(u,-y,) is the additional component to the transmitter mobilization

process that is provided by the active neighbours; Z, is the gain of lateral presynaptic

facilitation, while c;¡ is the coupling coefficient. For the case of nearest neighbour

coupling (as in the present case), cr¡ is gwen by

It
=1cj¡

if llj-tll =1
0 otherwise

(4.46)

Simulation results shown in Fig. 4.20 demonstrate that a layer of oscillatory

neurons can effectively synchronize via nearest neighbour lateral presynaptic facili-

tation, but over a large number of cycles (> 20). The rate of synchronization depends

on the lateral extent of the coupling neighbourhood. Synchronization is very rapid
(within the frrst two cycles) when the coupling neighbourhood is comparable to the size

of the layer. Figure 4.21 shows the dynamics of cellular and synaptic variables for one

cell (cell 0) in the uncoupled and the coupled case.

Note that because the coupling mechanism of lateral presynaptic facilitation

does not provide direct cellular excitation, it cannot induce oscillatory dynamics in cells

whose synaptic inputs aîe zeto (which may be required in some applications).

4.5.2 Synchronization via Later Presynaptic Excitation

In addition to the neural mechanism of lateral presynaptic facilitation, it is
also possible to synchronize neurons within the layer via the neural mechanisms of

Iateral presynaptic excitation. In lateral presynaptic excitation, each cell within the

layer provides excitatory inputs to its neighbour, but through the neighbour's input

synapse. That is, each cell in a layer may cause the release ofits neighbour's presSmaptic

transmitter. Below we consider two possible mechanisms by which an active cell may

cause the release of its neighbour's excitatory synaptic transmitter.
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(i) Lateral Presynaptic Correlated Transmitter Release

The postsynaptic feedback signal from an activated cell in the layer may

multiplicativellyinteractwith the synaptic input ofits neighbour and cause transmitter
release under the condition of correlated firing. Figure 4.22 shows a layer of competing

neurons that can be synchronized via the correlated firing of the synaptic signal and

the nearest neighbour coupling. This interactions is represented by the following

equation.

4 = -D r, + J ¡U ¡- n-{ p" + K, f(x,) * L: 
ì,r,, ¡{4}

(4.41)

where Zf is the gain of lateral conelated transmitter release while c;¡ is a coefficient

that defïnes the coupling neighbourhood. In a one dimensional layer of competing

neurons, where the coupling is between the nearest neighbours, the coupling coefficient

is also specifred by @.aÐ.

rnput

FIGURE 4.22. Shunting competitive neural layer coupled via neørest neígh-

bour løteral presyna.ptüc ercítøtùon and. correlated, trønsmítter releøse.

Simulation results for a one dimensional layer of 20 competing neurons is

shown in Figure 4.23. This simulation shows that for the same size of coupling

neighbourhood, coupling via correlated lateral presynaptic excitation is more efficient

in synchronizing the layer than the mechanism of lateral presynaptic facilitation (i.e.,

the layer becomes synchronized over a smaller number of cycles when the coupling is
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-rc

via correlated lateral presynaptic excitation). Correlated presynaptic excitation also

provides more robust means of synchronizing a layer of competing neurons when their

synaptic inputs are non-uniform in strength.
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FIGURE 4.23. Simulation results of synchronized oscillations via nearest

neighbour correlated transmitter release. Layer equations and parameters are

given in Appendix B.1.

Figure 4.24below shows an input signal waveform that is used in the simulation

whose results are shown in Figure  .2í.Thecoupling neighbourhood in this simulation

was extended to include all the cells in the layer.
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FIGURE 4.24. Non-uniform synaptic input into a layer of cornpeting neurons

coupled via correlated lateral presynaptic excitation.
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FIGURE 4.25. Synchronized oscillation in a competitive neural layer whose

inputs are non-uniform and whose coupling neighbourhood includes all the

neurons in the layer.
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The above simulation data (Figurc 4.25) shows that when the coupling

neighbourhood is increased, then the layer can be quickly synchronized even when the

synaptic input signal is non-uniform in strength. However, only those neurons whose

bottom-up synaptic input strength is large enough to drive the cell above its firing
thresholdwill be synchronized. Below we present an alternate synchronization method

that is effective in frring and synchronizing a selected portion of neurons that may not

receive any synaptic inputs other than via lateral interactions.

(ii) Lateral Presynaptic Excitation via Direct Transmitter Release

The third coupling method that can synchronize a layer of competing neurons

is where each active cell in the layer is directly engaged in the release ofits neighbour's

presynaptic transmitter, i.e., via direct lateral presynøptic ercitation. Figure 4.26

represents a layer of shunting competitive neurons that are coupled via direct lateral
presynaptic excitation. To expose the capability of this synchronization method, each

alternate input was set to zero. Thus half of the input synapses are driven by a non-zero

input signal (equal to 1) while the other half are driven only by their neighbours. For

the case of nearest neighbour coupling, the following equation describes the dynamics

ofthe excitatory postsynaptic potential acting on each cell.

dv,

dt - -Dri+ []¡ - rl.{p"¿ + K"J,f(x,) * Li 
ì,r,,X*)}

(4.48)

where Zjl is the gain ofthe direct lateral transmitter release, c;¡ is the coupling coefficient,

defrned as in (4.46). Simulation results, shown in Figure 4.27 , are plotted for each of

the two groups of neurons.

input

FIGLIRE 4.26. Shunting competitive neural layer coupled via d.ìrect løteral
pre synøp tíc e re ít øt ion.
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FIGURE 4.27. Simulation results of synchronized oscillations in a competitive
neurallayer coupledvia direct lateralpresynaptic excitation and transmitter
release: (a) response ofthe neurons that receive a steady synaptic input signal; (b)

response of the neurons that receive only the presynaptic lateral excitation. Layer

equations and parameters are given in Appendix 8.1.

The above simulation demonstrates that synchronized oscillations via direct

lateral presynaptic excitation is a very effective method of synchronizing a layer of

shunting competitive neurons, even if some of the neurons in the layer do not receive

any direct synaptic inputs. This form of synchronization is very useful in applications

where it is desired to generate a neural pattern of activity in a sub-population of cells

that do not receive a direct synaptic input but need to be activated in order to match

other system requirements. A good example of this application is in the Boundary

Contour System (Grossberg and Mingolla, 1985a,b) where, under certain input condi-

tions, illusionary 2-D contours may be generated.

In all the above simulations of synchronized oscillations, we have assumed

that the lateral coupling coefficient is distance independent. However, in general

applications to 2-D visual information processing problems, synchronization mayhave

to be achieved across distant cells and perhaps across several interacting neural layers.

The coupling coefficient should thus be distance dependant as well as orientation

dependant. The neural mechanism of presynaptic modulation may thus be also used

in modulating the extent and the orientation of the coupling neighbourhood. That is,

since the cells in the visual cortex are generally sensitive to some optimum spatial

frequency and orientation, cells oflike orientation mayhave to be cooperatively coupled

more strongly than cells whose optimum orientation sensitivity differs (as in the BCS

model of Grossberg and Mingolla). However, unlike the frxed receptive freld of the

theoretical bipole cell, w};ríc}r is used in the CC Loop of the BCS neural network model
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of preattentive vision to cooperatively link perceptual features into emergent boundary

segmentation, we propose that presynaptic modulation be used as means ofmodulating
its receptive field profrle. Presynaptic neural mechanisms for the modulation of cellular
receptive fields are described in section 4.10.

4.6 Lateral Pres¡rnaptic Facilitation in Non-oscillatory 2-D

Neural Layers

Presynaptic nnodulation has thus proven to be an extremely useful neural

mechanism in synchronizing a layer of oscillatory neurons and is likely to play a
significant role in many other applications. Below \ile present the simulation data of

cooperative linking in a two dimensional non-oscillatory presynaptically modulated

shunting competitive neural layer whose cells are cooperatively linked to their nearest

neighbours, via several coupling topologies shown in Figure 4.28.

o

(a) F-tttt couphirg (b) IVIM-SE couptirE (c) N-S coupl@

oo ooo
o G'-H
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(d) NE-SW couplíttg (e) E-W coupl@

FIGLIRE 4.28. Simple coupling topologies for laterally presJrnaptically

modulated shunting competitive 2-D neural layers.
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(a) Test input (b) Steady state results for an uncoupled

layer

FIGURE 4.29. Test input for 2-D cooperative coupling in a presynaptically
modulated shunting competitive neural layer.

î¡i î¡j tî¡j i,¡
FIGURE 4.30. Steady state simulation results with the full coupling topology.
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FIGURE 4.31.Steady state simulation results with the E-W coupling topology.
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FIGURE 4.32. Steady state simulation results with the N-S coupling topologa.
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TL Ì1 ""h 'rga a

î¡j î ¡i û¡i i,i
FIGURE 4.33. Steady state simulation results with the NW-SE coupling
topolory.

J $ F

¡

tF #

î¡j î¡j û¡j î,¡

FIGURE 4.34. Steady state simulation results with the NE-SW coupling
topology.

The above simulation data shows that the laterally presynaptic coupling topology

can be very effective in amplifying weak inputs of certain cells if their coupling

neighbours are strongly active. Thus even when some inputs are much smalier than

others by a factor of 10 and would therefore not enter into the circuit (as exemplified

above in Figure 4.29(b)), their synaptic signal transmission gain can be increased to

compensate for this. Below we provide simulation data that was obtained from edge

processed images of several objects.

The simulation data on more realistic inputs shows tlrat the simple coupling

topology considered here is not sufficiently robust to be of much practical use. The

problem is due to the fact that we have lumped all input edges into one aftay and have

thus ignored the edge orientation. Since the competitive interactions in the simulated

neural layer are distance independent and cover the whole extent of the layer, the first
output that begins to form via cooperative coupling are those from an input region with
lots of strong input signals. Therefore, a weak input edge that does not have many

strong neighbours is unlikely to enter into the circuit. Nevertheless, this simple

simulation supports the view that image edges should be distributed into different edge

arrays such that edge magnitudes within each array share common spatial orientation.

The experimental data from the cat and monkey visual cortex does suggest that the

early visual filters (edge and contrast cletectors) are in fact arranged in edge maps of

similar orientation.

T I

.¡..!5
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Image 1 edges (256x256)

113

Input 1 to the layer
(32x32)

Input 2 to the layer
(32x32)

Steady state output for
Input I (32x32)

Steady state output for
Input 2 (32x32)

Steady state output for
Input 3 (32x32)

Steady state output for
Input 4 (32x32)

Image 2 (256x256) Image 2 edges (256x256)

Image 3 Image 3 edges (256x256) Input 3 to the layer
(32x32)

Input 4 to the layer
(32x32)

Image 4 (266x256) Image 4 edges (256x256)

Image 5 edges (256x256) Input 5 to the layer Steady state output for
(32x32) Input 5 (32x32)

FIG{.IRE 4.35. Steady state simulation results of the full coupling topology
when applied to edge processed images of objects.

In the next section \Me consider how presynaptic facilitation and presynaptic

inhibition may be used to selectively transfer 2-D spatial patterns from one neural layer

to another.

4.7 SelectivelnformationTransfer

'We now propose how the presynaptic facilitatory/inhibitory gain control signals

can be used to selectively modulate the transfer of t\Mo dimensional spatial patterns of

neural activity between several transmitter gated and presynaptically modulated
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shunting competitive neural layers. In all the examples discussed below, it is assumed

that the common 2-D neural patterns of activities across each layers are spatially

aligned in all respects (position, size and 2-D orientation). Generalization to multiple

size, orientation and position will be presented in subsequent chapters.

To expose the new properties of PM-SCNLs, we will assume that each layer is

modelled by its steady state. This enables us to represent the neural patterns of activity

by drawing various 2-D shapes within a given layer (such that the thickness of a shape

in a particular spatial location denotes the strength ofthe steady state cellular activity).

Modelling a neural layer by its steady state also enables us to achieve faster simulation

times and to represent the simulation results as a spatial pattern.

Figure 4.36 depicts three neural Fields whose steady state cellular activity in

various spatial locations is represented by the drawn shapes within each 2-D layer.

Fields F0 and F2 receive inputs 1o and 12 respectively, such t}:rat lris a subset of 1o (i.e.,

Fields F0 and F2 share common activity). If we assume that Field F0 provides excitation

to Field F1, then there are two \Mays that signals from F2 can influence the neural

signal transmission in the pathway F0 + Fl .T}'tat is, F2 can either facilitate or inhibit
this transmission. If we allow the signals from F2 to facilitate the signal transmission

from Field F0 to Field Fl, then the resultant activity in Fl will be determined by the

common spatial pattern of activity between F0 and F2 (the car boundary). If on the

other hand F2 has an inhibitory effect on the presynaptic pathways F0 -+ F1 , then what

results in F1 is the activity of F0 minus the activity of F2 (i.e., the neural pattern of

activity that is in F0 but not in F2).

.F't FI

excìlatory chemical
sunrupses

F2 ¡u F2 .FU

U

I I2
T

Io
T

Iz ro

(a) pre sgnaptic Jacililation þ) presgnaptic i¡útíbition

FIGURE 4.36. Presynaptic facilitation and inhibition in selective transfer of
neural signals.
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Unless otherwise stated, empty circles abutting another synapse (as in the

above diagram) will represent facilitatory presynaptic modulation, while the black-

frlled circles will represent the inhibitory modulation of synapses. Similarly, empty

semi-ellipses will represent excitatory synapses whereas shaded synapses will denote

inhibitory synapses.

This facilitatory/inhibitory modulation of presynaptic signals is a useful form

of selective transmission of neural information between various layers. The above two

examples illustrate only some very simple but powerful neural design principles that
\Me can use in order to neuro-engineer aneural network model with ability to selectively

attend to portions of the bottom-up neural activity or the sensory input. Figure 4.37

shows a one dimensional schematic of the simplest 2-D neural circuit capable of

selectively transferring neural signals in the synaptic pathways F0 -+ F1. Simulation

result in Figure 4.38 show the cellular activities of the two layers and the synaptic

variables (ul,o'' , yl¡o'' ) ¡nthe F0 -+ F1 pathway (for the frrst 14 iterations of the network).

For general layer design and parameter selection, refer to Chapter 5.

steadg
actiuífu

state
rnFI

steadg
octiuitg

state
in¡U

ínput

FIGURE 4.37. Neural circuit for pattern specific presynaptic facilitation of
information transfer.
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bottom-up input pattern specific
facilitatory pres-

ynaptic signals ^F1x¡j^F0x¡j ^FOFIu¡j ^FOF]l¡¡

FIGURE 4.38. Steady state simulation results of pattern selective information
transfer by presynaptic facilitation. The leftmost columns shows the bottom-up

input to Field F0 and the pattern selective facilitatory presynaptic signals to Field Fl.
For layer design and parameter details refer to Chapter 5.

Simuiation results in Figure 4.38 show that the pattern selective (or pattern

specifrc) form of facilitatory presynaptic facilitation is very effective in transferring the

desired bottom-up neural pattern of activity between two layers of shunting competitive

neurons. Of particular interest is the effect on the input synapses of Field Fl (variables

uf,oo' and yl¡o'') arrd the resultant steady state activity of Field Fl (x,;{'). The data shows

that the resultant steady state neural pattern of activity across F1 contains only a

speciflrc (selected) portion of all the bottom-up inputs impinging F1 from F0.

steodg
actít:íta

state
i¡rFI

pattern seLectiue
íttJr;íbítory pre sgnøptic

sþnctús

steadg
actiuitg

state
rn.Fl,

ínput

FIGURE 4.39. Neural circuit for pattern selective presynaptic inhibition of
neural information transfer.

F7

2 --t _2

FT

o ô



4.7 SelectiuelnformationTransfer

bottom.up input inhibitory pres-
ynaptic signals

LL7

Figure 4.39 shows a complimentary neural circuit that inhibits a selected

pattern from being transferred to Field F1, while Figure 4.40 shows the simulation

results for the same bottom-up input as in the above example.

^FOF] ^FOFIu¡j I ¡¡

FIGURE 4.40. Simulation results of pattern selective inhibition of information
transfer.

Note the absence of a portion of the bottom-up input that appears across F0

but not across F1 (i.e., the boundary of a ship that appears in the middle of the input
array). The missing portion was eliminated from Fl by the inhibitory presynaptic

signals that have effectively reduced the gain of signal transmission in shown locations.

The above two examples demonstrate only the pattern-selective (pattern specific)

nature of selective information transfer via presynaptic modulation. In addition to the

pattern-selective transfer of 2-D neural signals, it is also possible for the modulatory

gain control signals to be spatiall]¡-selective. Figures 4.4L and 4.43 show the neural

circuits for spatially selective transfer of 2-D neural signals, while Figures 4.42 and

4.44 show their respective steady state simulation results.

steadg
actLvltv

steadg
a-ctíulty

sta.,te
ínFI

state
tnFþ

íttpttt

FIGURE 4.41.Neural circuit for spatially selective presynaptic facilitation of
neural information transfer.
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bottom-up input) spatially
selective facilita-
tory presynaptic

signals

state
¿n FI

state
inFl]

spatially selec-
tive inhibitory

presynaptic
signals

^F0x¡j u
FOF]
tJ

^FOF]l¡¡^Ftx¡j

FIGURE 4.42. Sirnulation results of spatially selective information transfer
by presynaptic inhibition. (For parameter design refer to Chapter 5).

steadg
actívíty

spøtí.allg selectiue
inhibitory presgnaptic

sígnøls

stea.dg
actiuifu

input

FIGURE 4.43. Neural circuit for spatially selective presynaptic inhibition of
information transfer.

bottom-up input

^FOF]j¡¡^FOFIu¡j^F0x¡j ^F1x¡j

FIGURE 4.44. Sirnulation results of spatially selective information transfer
by presynaptic inhibition. (For parameter design refer to Chapter 5).
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In the above four examples we have considered only the case when Field F0

provides excitatory synaptic inputs to Field F1. In Figure 4.45 we consider a more

general case where Field Fl may receive both excitatory and inhibitory synaptic inputs,

each of which may be modulated by separate signals and each of which may be either

pattern or spatially selective. To expose the dynamics ofmodulated inhibitory synapses,

assume that Field F1 also receives excitatory synaptic inputs from Field fS.

.ft! .83
excífnbry clemical

syn4pses

FI ,F.I

fe Is

ítútibitory clwmlcal
synapses

zIo I2

FZ
Io

F2 FO ¡.o

(a) Selcctuse presgnnpticJacîIíÍation
oJN itútihitory sunapses bA F2

(b) Selectiue presgnaptíc ítútibäion
oJF0 ítrlltibítow syrurpses bg F2

FIGURE 4.45. Schematic representing a neural circuit of pres¡rnaptic facili-
tatory and inhibitory interactions between transmitter gated,2-D shunting
competitive neural layers.

If pZ facilitates the F0 + F1 pathways by pattern selective presynaptic signals,

as in Fig. 4.45(a), then Field F0 will selectively inhibit the cellular activity of Field f1.
Therefore, only those active F3 +F1 pathways that are not matched by the active

F0 -+ F/ pathways will be able to activate Field F1. However, if Field F2 selectively

inhibits tlne F0 + F/ pathways, as shown in Fig. 4.45(b), then the steady state activity

of Field F1 will be enhanced in some locations and competitively suppressed in others.

The level of enhancement (and suppression) is not only determined by the strength of

signals from F0,F2 and F3, but also by the tonic level of inhibition that Field F0 can

exert on F|. Figures 4.46 and4.47 show the steady state simulation results for the two

cases discussed.
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+
input to Fields input to Field F2

F0 and FB

FIGURE 4.46. Steady state simulation results of pattern selective facilitation
of an inhibitory input synapse.

The above simulation results show that the steady state neural pattern of

activity across Field Fl (see the column labelled by x[') does not contain those portions

of the excitatory synaptic input from Field F3 that was effectively removed by the

facilitated inhibitory synapses from Field F0. Note that if an inhibitory synapse is to

be facilitated (either by pattern or spatially specifrc modulatory signals) then its tonic

level of inhibition should be very low. Similarly, if an inhibitory input synapse is to be

inhibited presynaptically, then its tonic level of inhibition should be high. In general,

where an inhibitory input synapses is to be presynaptically modulated by either

facilitatory or inhibitory signals, the tonic level of inhibition provided by the inhibitory

synapses should be moderate.

l"*¡

^F3x¡i^F2)t ij^Flx¡j^F0xij

+
input to Fields

F0 and FB
input to field F2

^F2xij^F0x¡j ^FIx¡j ^F3x¡j

FIGURE 4.47. Steady state simulation results of pattern selective inhibition
of an inhibitory input synapse.

Below we propose how the neural mechanisms of selective presynaptic facilitation

and inhibition may be used to separate the spatial patterns of neural activities that are

common to two neural Fields from the spatial patterns that is not shared. Consider the

two dimensional scenario of Figure 4.48 which shows two input Fields F0 and F2 (that

contain a common activity - the car boundary) and two output Fields FL, and F1r. As

shown, the common neural activitybetween F0 and Fl maybe transferredto Fl,ifboth
F0 and F2 ptoject excitatory synapses to Flu, while each also being involved in the

facilitation of the other. For the example shown, the neural activity that is in F0 but

not in F2may be transferred to the second output Field (F1¡) if Field F2 presynaptically

inhibits the excitatory synapses of F0 at the input of Fl.
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pattent cotrmtolrL
ta FP an¿fZ
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Jacilifaüon
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FIGURE 4.48. Proposed scheme for the separation of spatial patterns between
two input fields by presynaptic facilitation and inhibition.

The simple circuit shown above is not sufficientwhen in addition to the common

neural pattern of activity, Field F2 also contains an additional pattern of activity that

does not appear across Field F0. The minimum neural circuit that can completely

separate the neural activities is shown in Figure 4.49.

patternlnF2
btúnatlnN patternlnñ a¡tdF2 pa,tterraln-ñ

butnatbtF2
F7o Fla F7"

TT

T"
ít-l,yztr,t 2 ítl.ytr-r,t 7

FIGURE 4.49. Neural circuit for the complete separation of 2-D neural patterns
of activity between two shunting competitive nenral layers.

The purpose of presynaptic inhibition of F1, by Fl, and Fl" is to ensure that

Field F I 6 remains inactive when only one of its input Fields (F0 or F2) is active. Thus,

therewill be atransient activity ínF16as soon as one ofitsinputFields become activated.

F2
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The three neural Fields in Figure 4.49 (F1",Flu andF/,) now contain a useful

separation of the two input patterns. This breakdown of neural activities between two

neural layers will form an important neural design principle when we propose the more

advanced concepts and neural circuits in latter chapters of the thesis. As an example

ofhow the above neural circuit can be extended to transfer the separated patterns into

another layer, consider Figure 4.50.

F¿

Attentíonsll
seLectíon ,f

FI c

¡ï)

T" T"
ítr¡tut 2 ítlytut 7

FIGURE 4.50. Neural circuit for the attentional selection of the separated
spatial patterns.

As indicated in the above figure, the separated spatial patterns of activity may

then be selectively transferred into another Field (FB) by a winner-take-all competitive

decision system that may consist of a minimum of three neurons, each presynaptically

facilitating one set of pathways into F3.

In the next section we extend the above ideas further by suggesting how the

neural mechanisms of presynaptic facilitation and presynaptic inhibition may be used

in selective resonance and top-down memory guided selective attention.

F¿
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4.8 Top-down Memory Guided Selective Attention

In this section we formalise our neural design principles by considering the

steady state 2-D neural patterns of activity shown in the three neural Fields of Figure

4.5t. Let us suppose that Field Fl is more sensitive to neural signals from Field F2

than Field F0 (indicated by the thicker excitatory synaptic pathway F2 + F1). Let us

also assume that the two dimensional spatial input to Field F2 is a subset of the input

to Field F0 (i.e., input 2 is a subset of input 1). Then the steady state 2-D neural pattern

of activity across Field Fl (Xf1) will contain this subset (the car boundary). Stated in

another way, the car boundary, represented by neural activity X[t , is embedded in a
complexbottom-up 2-D neural pattern of activityX,r{o that appears across Field F0. Thus,

X,r? witl only partially match X,r{0.

FI

+

FZ FrO

T
nput2 nput 1

FIGURE 4.51. Example of steady state 2-D neural patterns of activity for two
neural layers (FO and Fl) that is partially matched.

Suppose that it required to maximize the match between the spatial patterns

of activity across Fields F0 and Fl. In other words, we wish to address the following

questions:

How can the 2-D neural pattern of actiuity X[l across one layer of transmitter gated

shunting competitiue neural cells be used to rnaximize the match with another layer from
which it receiues a complex bottorn-up 2-D pattern of actiuity Xl¡t within which Xij is

embedded. How can the 2-D neural pattern of actiuity X{l selectiuely segment portions

of the bottom-up input with which it can match or resonate? How is the selectiue resonance

achieued?
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Using the properties of transmitter gated 2-D shunting competitive neural

layers and the properties of the neural mechanisms of presynaptic facilitation, we are

now ready to postulate a solution to the above problem. rWe postulate that a facilitatory

the neural mechanism of selective attention. In the context of Figure 4.52, a top-down

facilitatory presynaptic feedback (X,j') from Field Fl to Field F0 will ensure that Fl
attends to the neural patternX,fr in the bottom-up patternXr{o (but onlywhen Fl receives

the relevant signals from F2). Ifthe boundary ofthe car, represented by the 2-D neural

pattern of activity, is perfectly aligned in F2 and F0 (in scale, position and orientation),

then the net steady state will be a matching 2-D neural pattern of activity between

Fields F0 and Fl (the problem of misalignment is addressed in subsequent chapters).

We call the neural mechanism by which Field Fl facilitates its own input from

Field F0 as top-down selectiue attention and the resultant state as selectiue resonance.

Figure 4.52 illustrates the basic neural mechanisms of top-down selective attention

and selective resonance between two neural Fields F0 and Fl, while Figure 4.53

illustrates the equivalent neural circuit.

F1

+ topdown jaßíL¡tatory
pre sg tro¡t tic Je e dback
JomFl to N

p"z ¡lt

ínput2
(top-doun)

ínput I
(bottom-W)

FIGURE 4.52. Selective attention and selective resonance via top-down
facilitatory presJrnaptic feedback.

Top-down presynaptic facilitatory feedback from Field F1 to the input synapses

of Field F0 regulates the bottom-up signal flow into Field F0. Since the gain of the

facilitated synapses is amplified, the conesponding bottom-up inputs into F0 are also

amplified as they enter the layer to provide increased excitation of their target cells.

Competition in F0 quickly annihilates the neural activity of all other active but
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non-facilitated cells in the layer. The resultant activity in F0 now begins to match the

contents of Fl. This process leads to a selective resonant state between Fields F0 and

Fl.

input 2
(topdown)

steodg
actít:ítg

statc
í¡¡-Fl

JacíIitatory pre sgn aptíc
JeedbackJromFl to N

steodg
actiu@

state
¿n ¡U

input 7
(botto¡ntry)

FIGURE 4.53. Neural circuit for the top-down selective attention and selective
resonance via the top-down facilitatory presynaptic f,eedback.

Because of the bidirectional nature of interactions bet\ryeen the two neural

layers, the circuit is called Feed.forwørd. Ereitation-Feed.bøeh Presynøptúc

Føcilítation.

The simplest modification that needs to be made to the equations of each Field

to model the FFE-FBPF neural circuit is to incorporate the top-down presynaptic

facilitation into the synaptic dynamics of Field F0. Ignoring the effect on the storage

rate of transmitter, the following equation then specifies the dynamics of the mobilized

transmitter into the input synapses of Field F0.

*F7
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Transmitter dynamics

+ = tÞ, + n lo flxi)r @:: - vïþ - r, ¡tp y + x, f @li\l tvi: - y'ot* - v,v I
(4.4e)

which says that the transmitter mobilization rate at input synapses of Field F0 is

increased by the active top-down feedback signals l@l') from Field F1, where I{0 is the

gain factor. This is counterbalanced by the release of the mobilized transmitter by the

correlated frring of the bottom-up input signal and the postsynaptic feedback signal

¡(*f¡') from Field F0. The equation for the storage transmitter in the input synapses of

Field F0 is given by

(4.s0)

In the simulation whose result is shown in Figure 4.54, Field F1 was designed

to be more sensitive to the top-down input (input 2), represented in the circuit of Figure

4.53 by the thicker top-down synaptic pathway. This is achieved by choosing the

postsynaptic gains in Field F1 to be much larger for the top-down synapses (see section

4.4). The purpose of choosing the larger top-down postsynaptic gain for Field F1 is to

transfer into F1 a spatial 2-D neural pattern of activity that is also embedded in the

complex bottom-up neural activity of Field F0.

top-down input bottom-up input ^F0x¡j ^FOFIJ¡¡

FIGURE 4.54. Steady state simulation results of selective resonance in the

Feedforward Excitation-Feedback Presynaptic Facilitation (FFE-FBPF)

neural circuit. Parameters for the individual layers are given in Chapter 5.

Above simulation results (achieved with the equilibrium point approximation

of the cellular activity) demonstrate that although the two interacting neural layers

are receiving inputs that are only partially matched, the top-down pattern selective

facilitatory presynaptic feedback has forced one of the layers (Field F0) to shed-off the

non-matching neural activity.

ry = a,kï¡o - riþ- [8, + x,t,, ¡1xl,o¡1

^F1)t ¡j
^FOF]u¡j
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Other relevant simulations of the FFE-FBPF neural circuit are given in Chapter

5. In the next section we demonstrate the potential of the FFE-FBPF neural circuit in

an application to object recognition in cluttered real-world images.

4.8.1 Recognition of an Object in Cluttered Visual Images

We now demonstrate the potential of the FFE-FBPF neural circuit i.n real-world

visual applications by providing sirnulation results on the recognition of the 2D shape

of a 3D object in cluttered images. The primary goal of the simulation described below

is to demonstrate the unique nature and the power of the neural mechanism of top-down

memory guided selective attention in complex visual images. T'he images used in the

simulation are therefore of the type that we believe to be too diffrcult for conventional

object segmentation algorithms and even some of the most advanced neural models of

pre-attentive vision and object recognition, basically because of the diffrculty in

separating the target object from its background. The FFE-FBPF neural circuit in its

current stage does not use distributed sampling of its input (i.e., its inputs are derived

from single synapses) and because it ignores the orientation ofobject edges, it can still
fail, particularly on textured irnages. Similarly, the current circuit cannot recognize an

object when some of its boundary is not detected or is occluded. Nevertheless, this

simulation is useful because it will reveal that the proposed neural mechanism of

top-down memory guided object segmentation in cluttered visual backgrounds is an

extremely efflrcient process. The simulation will also reveal further problems that need

to be addressed.

Initial input to the
FFE-FBPF neural

circuit

F.1 L
IFJ

,L,ar¡TScene 1 Scene 1 edges

Resultant top-down
reference

FIGURE 4.55. Target object to be recognized in cluttered visual images by the

FFE-FBPF neural circuit.
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Figure 4.55 shows the target object (a toy dinosaur) whose edges (all lumped

into one array by a simple edge detector, regardless of their directions) are used as the

initial input and hence the top-down reference into the FFE-FBPF neural circuit. The

procedure for image rendering, generation of the top-down reference and the threshold

settings is described below.

Image rendering, top-down reference and threshold settings

Original greylevel images (8 bits, 256x256 pixels, captured by aVidicon camera

and then digitized) were preprocessed by a 3x3 Sobel edge operator to obtain object

edges. The resultant edge processed images were then scaled to the size of the FFE-

FBPF neural circuit (32x32 cells) by a simple averaging procedure (which therefore

reduces the resolution by a factor of 8). The edge processed image of the target object

(shown above) was initially fed to the circuit. The resultant steady state activity was

then used as the top-down reference. This simple procedure by-passes the need to learn

the shape, although the end result would have been equivalent had the learning of the

top-down memory been enabled. Note that as a result of the competition in the circuit,

the weaker edges in the image of the target object, such as the horizontal line and some

parts of the target shape, did not survive and were absent in the top-down reference

shape, as shown in Figure 4.55.

Recognition in the circuit is achieved when the match between the spatial

patterns of activity across Fields F0 and F1 (currently measured by the cosine of the

angle between the two multidimensional vectors) exceeds the pre-set threshold level of

0.95 and when the time-rate rate of change of the match is below the pre-set steady

state threshold level of 0.001 (i.e., the computational decision is taken at the steady

state). The threshold for recognition is determined by presenting two similar objects

separately in clean background and then frnding a threshold at which the two are

discriminated (the two objects shown in scene 1 and scene 2). This threshold is then

set and remains fixed thereafter. The steady state threshold is also determined from

the same experiment and it too remains fixed thereafter.

The recognition response of the circuit on the cluttered test images is shown

graphically in Figures 4.57 and 4.58. In summary, the circuit failed on only one of the

shown test images. The target object was not recognized in scene 9 at the required

threshold because some of its input edges were either missing or were too weak to

re-enter into the circuit. However, because of its simplicity, the circuit has a number

of other problems, as discussed below.
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Scene 2 Scene 2 edges

L29

Input to FFE-FBPF
circuit

Input to FFE-FBPF

circuit

Scene 3 Scene 3 edges

# Input to FFE-FBPF
circuit

Scene 4 edges

FIGURE 4.õ6. Cluttered visual images used to demonstrate the power of
top-down memory guided object segmentation and recognition by the FFE-

FBPF neural circuit.
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Þ

s Input to FFE-FBPF
circuit

Scene 5

Scene 6

æ

Scene 5 edges

Scene 6 edges

Input to FFE-FBPF

circuit

Input to FFE-FBPF
circuit

Scene 7 Scene 7 edges

FIGURE 4.56. (Cont.) Cluttered visual images used to demonstrate the power

of top-down memory guided object segmentation and recognition by the

FI.E-FBPF neural circuit.
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Input to FFE-FBPF
circuit

Scene 8

Scene 9

Scene 8 edges

Scene 9 edges

Input to FFE-FBPF

circuit

Input to FFE-FBPF
circuit

Scene 10 Scene 10 edges

FIGURE 4.56. (Cont.) Cluttered visual images used to demonstrate the power

of top-down memory guided object segmentation and recognition by the
FFE-FBPF neural circuit.
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FIGURE 4.58. Time-rate of change of the match between Fields F0 and Fl on
cluttered input images (log scale).

Note that if the top-down presynaptic facilitation (i.e., selective attention) was

tobe disabled, the circuitwould completelyfail to recognize thetargetin all the cluttered

scenes. As an example of a typical state when a non-matching object is presented to the

circuit, below we show the various variables in Field F0, at the time when a steady

state is reached for the object shown in scene 2 of Figure 4.56.

Tr:-, ï\-
;1,,* t"l-h l._"!¡¡

Mobilized trans-

Non-matching input Top-down reference Activity of Field F0 Stored transmitter, mitter,

0þ @ii) Gþ Field F0 (úf;) Field F0 (ifl)

FIGURE 4.59. Example of a steady state activity in the FFE-FBPF neural
circuit on a non-matching object.
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The circuit was also tested on numerous other images, some of which were of

extremely low contrast and high clutter, such as the image shown in Figure 4.60.

Although the circuit responded correctly on such images in most of the cases (i.e., it
gave a correct recognition response on virtually all the images that contained the target

object), in a number of cases this was more due to coincidence than circuit robustness,

as will be described below.

Target object in extreme clutter and low

contrast

Low contrast edges ofthe cluttered scene

FIGURE 4.60. Example of an image with extreme clutter and low contrast on

which the FFE-FBPF neural circuit succeeded.

Further testing on textured images has exposed the problem with the circuit.

The problem, not unexpected, is due to the fact that the cunent FFE-FBPF neural

circuit does not have sufficient processing flexibility nor does it use as much featural

information as can be derived from an image in order to work robustly. Since we are

using a very simple neural circuit whose edge inputs are obtained by the Sobel operator

which lumps all the edges into one edge map (or layer), regardless of their direction,

the circuit will respond with a recognition whenever spatial location of the active edge

inputs matches the locations of the active top-down pathways. Hence, when a textured

image is presented that contains edges in positions that correspond to the target

boundary, the circuit in its present form will use whatever edges it can in order to match

their spatial location with the location of the top-down edges. However, the existence

of an active edge in the same location as the active top-down pathway does not

necessarily mean that the two are matched unless their local directions are matched

also. Hence the robustness of the circuit can be improved (at the expense of increased

complexity and computations) by incorporating the mechanisms of top-down matching

for various spatial orientations. Although the implementation and computer simula-

tions of such an extensive circuit may pose a computational problem for the current

serial processing computers, such an architecture is ideal for parallel processing and

is probably implemented in the visual brain of primates. The simple scheme used in
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our simulation whereby a simple edge detector (Sobel operator) lumps all the edges into

one 2-D edge map, regardless of their directions, does not represent a robust solution

nor does it represent the properties ofthe primary visual cortex. The Sobel edge operator

was primarily used as a quick image pre-processing method to obtain the necessary

edge inputs into the circuit so that we could demonstrate the concepts and the power

of top-down selective attention in cluttered visual scenes. In Chapter 8 we will propose

a possible extension to the circuit for orientation invariant recognition of2-D shapes

and objects.

4.8.2 Pulsating FFE-FBPF Neural Circuit

Up to no\¡¡ we have modelled the FFE-FBPF neural circuit by the equilibrium

point behaviour (i.e., non-pulsating dynamics). Below lve present two simulations for

the case when the thresholds in the circuit are increased (f =0.2,@=0.3) until each

neuron extribits pulsating dynamics for a frxed input signal. The frrst example (Fig.

4.61) is an open loop simulation, while the second example (Fig. a.62) is a closed loop

simulation. In these simulations, input 2 (top-down input to Field F1) was introduced

12 iterations after the introduction of the bottom-up input to Field F0 (i.e.,roughlyhalf

way through the cycle of Field F0) which causes an initial 1800 phase shift between

oscillations in F0 and F1.

Figure 4.61 shows that, for the given bottom-up and the top-down input patterns,

the oscillating neural pattern of activity across the two Fields is not locked into

synchronized oscillations. However, by closing the loop with the facilitatory presynaptic

feedback, the two layers can be forced into resonance, as shown in Figure 4.62.Infact,

the lower of the two layers (Field F0) is forced to resonate with the higher layer (Field

F1).

It should be noted that while the two layers are almost always in resonance

when the loop is closed, the 2-D neural pattern of activity that is resonating need not

always be constant. Simulation data in Figure 4.62 shows that the resonating pattern

on one cycle is replaced by a pattern that was selectively ignored on the previous cycle.

Comparison of the graphs of 4.63(a) and (c) (open and the closed loop response

respectively) shows that while the two corresponding cells are firing asynchronously

in the open loop system, they are quickly brought into synchronization (resonance) via

the top-down facilitatory presynaptic feedback. These graphs also show that, during

resonance, all amplitudes that are associated with the variables of the frrst layer (Field

F0) are enhanced.
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circuit. Graphs (a) and (b) show the dynamics of the variables in the open loop

system (without the facilitatory feedback from Fl to F0), while glaphs (c) and (d)

show the same variables when the loop is closed.

4.9 Selective In-attention

In contrast to the top-down facilitatory presynaptic feedback where the neural

pattern of activity across the facilitated layer is forced to match the activity of another

layer, top-down inhibitory presynaptic feedback, shown in Figure 4.64, does just the

opposite. rWe call such process as selectiue in-attention. Figure 4.65 shows the steady

state simulation results of selective in-attention for the same two inputs as used in the

previous simulation.

As can be seen in the simulation results of Fig. 4.65, the top-down spatial

pattern across Fietd Fl has, through its inhibitory presynaptic feedback to F0, removed

the same spatial pattern from Field F0 (see the column labelled bV xf¡t). The removed

input cannot re-enter into the circuit at F0 as long as the relevant top-down pathways

are active.
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FIGURE 4.64. Neural circuit for selective in-attention by the top-down
inhibitory presynaptic feedback.
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FIGURE 4.65. Simulation results of top-down presynaptic inhibition (selective

in-attention).

There is no reason why the same top-down signals should not be used to

selectively facilitate some bottom-up neural layers while being simultaneously involved

in presynaptic inhibition of others. The purpose of selective in-attention in real-time

self-organising neural networks is discussed in more detail in Chapters 7 and 8.
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4.1O Modulation of Cellular Receptive Field Profiles

Up to now we have concentrated primarily on presynaptic modulation of neural

layers whose cells were assumed to have a single input synapse. The experimental data

from complex biological neural systems (e.g., from monkey's visual cortex, unlike that
from theÁp lysia cftcuit that is characterized by monosynaptic pathways) indicates that
each cell samples its input via distributed input receptive frelds (IRFs) that may consist

oflarge number ofinput synapses (of the order of several thousand). Although the early

electrophysiological recordings from the cat and the monkey visual cortex obtained

during 1960's -1970's (Hubel and Wiesel, 1959, 1962, 1963, 1968, L977), upon which

most of the current neural models of cellular receptive freld profiles are based, did not

provide evidence for modulatory mechanisms, the most recent data from monkey's

visual cortex provides striking evidence that cellular input receptive fields can be

influenced by attentional factors (Moran and Desimone, 1985; Haenny and Schiller,

1988; Motter, 1993). The spatial profrle of the cellular receptive frelds in the monkey's

visual cortex was found to be subject to various spatial and non-spatial attentional
modulations that can dramatically alter their specificity and spatial size. Haenny and

Schiller (1988) have for example reported that cellular selectivity ofV4 cells can increase

up to t\OO%o. The most recent data from Vl and V2 (Motter, 1993) suggests that even

the very earliest feature detecting cells in the monkey's visual cortex, whose receptive

frelds are much smaller than those of V4, can be modulated. This data suggests that
we need to extend our neuro-engineering design principles to explain how increased

attention can fine tune cellular receptive fields. Some of the recent neural models of

visual attention (Olshausen et al., L992, 1993; Lozo et aI., L995, see Chapter 6) have

been primarily concerned with the spatia.l aspects of visual attention and have not yet

provided plausible neural mechanisms of how the input receptive field profrle of a cell

may be dynamically changed from a broadly tuned to a frnely tuned spatial frlter by an

increased level of attention (or arousal).

In this section we provide simple modulatory mechanisms that can fine tune

the cellular receptive fields from what are otherwise broadly tuned cells. First we

provide a modulatory mechanism for simple unipolar and isotropic receptive frelds and

then extend the concepts to the more general case of bipolar and spatially oriented

receptive frelds. Computer simulations on grey level images demonstrate the effec-

tiveness of the modulatory mechanisms. In Chapter 6 we will consider some possible

sources of the modulatory signals and will show how the degree of attention itself may

be automatically modulated in a simple memory based neural circuit that is able to

detect the familiarity and the novelty of its inputs.
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4.10.1 Modulation of Unipolar and Isotropic Receptive Fields

Let as norw assume that each cell in a two dimensional PFE-SCNL samples its

bottom-up inputs via a set of spatially distributed and dynamic excitatory synaptic

pathways. A cell at location (ij) in a 2-D array will thus sample its input from a local

input region (or a cluster of cells in a preceding layer) through synaptic pathways whose

strength is a two dimensional function of the distance between the input location (m,n)

and the position of the sampling cell, (ij). Let us also assume that this function specifres

thelevel oftransmitter productionin each excitatoryinput synapsefrom spatiallocation
(m,n) to cellular location (ij), i.e., zfiqn¡¡, antdthat it is consùant in time. Then the simplest

such function is a2-D gaussian G[f*r(m,n,i,i ,c¡j),where the subscript EIRF rcfers to an

Excitatory Input Receptive Field (as opposed to an Inhibitory Input Receptive Field

of IIRF, to be discussed in the next section), whose synapses provide cellular excitation.

F0 nFO t
zä¡ ¡ = GËi*r(* , n , i , j , o ,,)

-Fo ( f¡ -m)2 +(l -r)'l=z:i'expl-W) @.sD

where the subscripts (mnij) refers to a bottom-up input pathway (m,n) into the cell at

location (ij); ou defines the spatial extent of the EIRF. This EIRF can be facilitated by

another 2-D spatial kernel Gfqro(m,n , i , 
j ,Y,), referred to as the Facilitatory Modulating

Field or FMF (as opposed to the Inhibitory Modulating Field or IMF), whose centroid

is coincident with G[f^r(m,n,i,j,6,¡), but whose spatial extent is narrower (i.e., Vu < ou).

The spatial profrle of the FMF may represent efferents from a cell (or cells) of another

2-D neural layer which may be at a higher hierarchical level, or it may represent

efferents from neurons that regulate the general level ofarousal, etc. The activity of

the facilitatory neuron, represented by f@l), will therefore determine the strength of

the FMF and hence the degree of fine tuning of the EIRF. Let F[l,t be the magnitude

of the FMF along the synaptic pathway (m,n) + (ii). Then

FIon¡¡ = n!; 
"*r( -(i 

- *)'+ q - ')'ì ,o'",¡ (v,;)' )

where Rff is the maximum amplitude of the FMF (at cellular centroid), which in general

may also be a function of the location in the 2-D anay.
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FIGURE 4.68. Facilitatory mechanism for the modulation of simple

isotropic Excitatory Input Receptive Field (EIRF) profiles.

FIGURE 4.87. One-dimensional schematic of a 2-D PFE'SCNL with
isotropic unipolar excitatory input receptive fields.

The following set of equations then define a two-dimensional PFE-SCNLwhose

cells sample their inputs via distributed and modulated excitatory synaptic pathways.
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Posts¡rnaptic cellular activity at equilibrium (x¡-,{0)

t42

(4.s3)

(4.s4)

(4.ss)

(4.s6)

(4.s7)

(4.s8)

Lateral inhibition (vfl9)

# = -Anif *E r' 02, *,',,,f@i"¡

Excitatory po stsynaptic poten tial (v 11 ¡ ¡\

Mobilized transmitt er (y|o^, ¡)

+ = -Dv*!*ii + ï,!,Ip" + rc, f@ïþllyï,',,, - v'ol*

where fiÌ,,, is the input from the spatial location (m,n) to the cell (ii). The term

flx|t)c\jrr(m,n,i,i ,ty,,)in the above equation is the strength ofthe facilitatory modulating

freld that enhances the transmitter mobilization rate (and hence the gain) of the input

synapses into the layer. This equation may thus be written as

+ = lþy + f@!')G['ro(m,n,i, j ,\t i)içuffi,¡ - ilX,i)

- tïl,,,lp , + x, fl*ii\llyï!,,¡ - Y'ol* - T, yll,,¡

+ = Íþ, + f(xn )F *,ur çu[i,¡ - flo^,¡)

- 4!^,,1p, + r, r@T¡o)llyIX,¡ - y',ol* - T, ylo,,¡

Stored transmitt er (rIX,i)

+ = a,(zll,, ¡ - u\o^, ¡)- [ p, + J :X ü 
K, r @l: )] (uli, ¡ - v IX, ¡)

which says that the stored transmitter is depleted by the correlated firing of ttre synaptic

input signal fi|,,, and the postsynaptic feedback signal ¡<*i¡\.
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A competitive neural layer whose cells sample their inputs via distributed

receptive fields that can be modulated, thus altering their tuning characteristics,

provides a building block for the neuro-eng'ineering design of self-regulating artifrcial

neural systems. We now qualitatively examine the processing characteristics of a

modulated 2-D shunting competitive neural layer in an application to image frltering.

Image Filtering with Modulated Competitive Neural Layers

Below we provide computer simulations on several images for various levels

of modulation. Note that the input image is 64x64 pixels in size while the simulated

two dimensional PFE-SCNL consists of 28x28 cells, each cell sampling its inputs over

a7x7 image region. Although it would have been preferable to simulate a much larger

layer, our simulations (being performed on a DOS based PC) are restricted by the

computing platform. Hence the resolution of the filtered image is roughly half of the

original. Nevertheless, these simulations clearly demonstrate that a change in a single

facilitatory signal (such as what may be provided by a shift in the degree of general

attention) can quickly alter the resolution of the sensory information that is to be passed

to higher cortical layers.

In the following five examples, the original grey level images (256x256 pixels)

of several indoor scenes were captured by a Vidicon camera, digitized and then stored.

A 64x64 region was then selected from these images and used as the input to the

PFE-SCNL. For each of the five test images, we have used the same but re-initialized

PFE-SCNL. The only parameter that was varied during each of the simulation runs

was the strength of the facilitatory signal flri), which was constant across the whole

layer and was slowly raised in steps of 0.1, starting from zero (unfacilitated case) up to

0.8. These increments rvere made after the layer reached a steady state (typically after

20 iterations of the equations using the first order Euler's approximation method). For

each of the frve examples, we show the original256x256 image, the extracted 64x64

portion that was used in the simulation and the steady state response of the layer for

9 levels of facilitation.



CHAPTER 4. NOVEL NEURAL LAYERS, MECHANISMS AND DESIGN PRINCIPLES t44

Selected 64x64 region used as the input
to the PFE-SCNL.

Original gray level image (256x256 pixels).

f@X\=o f(*l)=ol f@lþ=oz f@ii)=o.z f@lÐ-0.4

f@I\=o.s f(xï\=0.ø f@I\=o't f@|,')=o-s

FIGURE 4.68. Filtering a 64x64 image by a 28x28 PFE-SCNL: Example l.Shown

are the steady state cellular levels for various magnitudes of the facilitatory signal

f@ij). Layer parameters: n =786 (28x28 cells); B = l.VA = 1.0; A =O.Ii B =0.11786; @ = 0.1;

G = 1000; G = 50000; D = 0.5i p, = O.5; K, = 5; au= 0.05i Þ, = Þ, = 0.01i py = 0.05; Ky = 0.5; yy = 0.5;

Ku=O.5, Y = 0.
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Selected 64x64 region used as the input
to the PFE-SCNL.

Original 256x256 image depicting text on a

cardboard box.

f@l) = 0 f(x[]¡ =o.t Í(x?l) =o.z f(*X\ = o.z f@1,') =0.+

f(xf,I¡ = o.s f(x|) = o.e f @iþ -- 0.t /(x,f/) = o.t

FIGURE 4.69. Filtering a 64x64 image by a 28x28 PFE-SCNL: Example 2.

Parameters as for Figure 4.68.
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Selected 64x64 region used as the input
to the PFE-SCNL.

Original 256x256Iow contrast image of a

clock face.

l@!þ=0 r@{Ð=o.t Í@f)=oz f(x['¡=o.z l@lh=o.q

l(*!l) = o.s l@X\ = o.a f@[]) = o.t /("'Ï) = o.s

FIGIIRE 4.70. Filtering a 64x64 image by a 28x28 PFE'SCNL: Example 3.

Parameters as for Figure 4.68.



4.10.1 Modulation of Unipolar and Isotropic Receptiue Fields

(a) Light switch

rmage an offlrce scene
a light switch and a partially
power point.

L47

Selected 64x64
regions used as
the input to the
PFE.SCNL.

occl
(b) Power point

f(*fh=o f(x['¡=o.t f(*l)=o.z Í(xlt)=o.z f(*{þ=0-+

f(x['¡ =o.s f(x[]) =o.a f@l) =o.t /(xf') = o.s

f@l\=o Í(x?')=o.t f@l)=o.z f@tr\=o.z f@Xt)=0.+

r(ryf')=o.s f(x[]¡=o.e f@lþ=o.t f(rll)=o.e
FIGURE 4.71. Filtering a 64x64 image by a 28x28 PFE-SCNL: Example 4.

Parameters as for Figure 4.68.
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In the next example we use an edge processed image as the input to the layer.

The shown image \Mas processed by a 3xB Sobel edge operator and was then scaled to

32x32 elements, which therefore reduces the resolution by a factor of 8.

Original 256x256 image

region.

Edge processed image of
the original (256x256).

Scaled version ofthe edge

processed image used as

the input to the layer
(32x32).

l@li )=o l(*|,')=o.t f(*l)=o.z f@lÐ=o.z f@X\=0.+

f@iþ=o.s Í(*I\=o.e f@I')=o.t /(¡f')=o.s
FIGURE 4.72.Filtering a 32x32 edge processed image by a28x28 PFE-SCNL.

Parameters as for Figure 4.68.

In addition to demonstrating the effect of a neuronal mechanism of facilitation
via facilitatory modulating fields on the contrast and the resolution of the processed

images, these simulations also demonstrate the robustness of the designed layer on a

wide variety of input images. In the next section we show how more complex types of

input receptive fields may be modulated to produce new types of PFE-SCNLs for use

in edge and contrast detection, as well as in the detection ofmore complexinput features.
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4.10.2 Modulation of Bipolar Receptive Fields

Unlike the simple unipolar and isotropic receptive fïelds of the previous section,

bipolar receptive fields are characterized by excitatory and inhibitory synaptic inputs

which therefore model more complex feature detecting cells of the visual cortex. þpical
examples of bipolar receptive fields that have found numerous applications in image

processing and computer vision are the two dimensional Gabor functions (Daugman,

1985) and the standard Laplacian of a Gaussian or its approximation by the difference

oftwo gaussians (i.e., the DoGfrlter ofMarr and Hildreth, 1980), where the 2-D gaussian

of the inhibitory region has a larger spatial extent. Since they use inhibitory and

excitatory regions that may be elongated in various directions, bipolar receptive frelds

provide a very rich variety of cell types. Below we will consider three special cases of

modulated bipolar receptive freld profiles (RFs): (i) isotropic; (ii) oriented and even; and

(iii) oriented and odd bipolar RFs.

(i) Isotropic Bipolar Receptive Fields

Figure 4.73 represents the simplest case of a cell that samples its input via

distributed inhibitory and excitatory synapses. The cell thus samples its excitatory and

inhibitory inputs via spatially distributed and isotropic input receptive frelds. The

spatial extent ofthe inhibitoryinputreceptive field (IIRF), definedbya two-dimensional

gaussian G,,^o(o) is generally larger than the spatial extent of the excitatory input

receptive freld (EIRF), defined by G", 
"(o*).

FacÍLítatory MF FacíIitøtory MF

G( )+o"p G(t* )

Excifatory
sarTlapses Inhíbítory

sunøpses

Zrnn'= G(o"t)

Nan:orlo bottorn-rtp excitatory RFP Wíd-e bottorn-ttp itthíbitory RFP

FIGURE 4.73. One dimensional schematic of a neuronal mechanism for the
modulation of isotropic bipolar 2-D input receptive field profiles.
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The receptive freld of such a cell rnay thus be represented by the difference of

the two gaussians, i.e., DoG(o1,, orl) = GErRF(o;) - Gtt^r(o¡¡),where the gaussian of each freld

specifres the transmitter production level for each synapse as a function of its distance

from the cellular centroid. The subscripts (ij) in o,lr. and o,.rl are used to indicate that in
general the spatial extent of the gaussians may also be a function of the cell's position

in the input atray. The transmitter production levels for the two input RFs at cellular

location (ij) may be written as:

z),,.i=ZÏ¡

F;,
I-m +(i -n)'

(4.se)

(4.6r)

( f¡ -m)2 +(r - r)'l".p[- ("-J J
zi,¡¡=Zi (4.60)

where (l,j) is the cell's centroid (i.e., the location of the cell in the 2-D neural layer),

while ZI andz¡ define the maximum amplitudes of the gaussians (these mayin general

be also dependant on the location of the cell within a2-D neural layer, but are presently

assumed to be constant across the layer). If we choose Zij> Z,t and o,-*, < o¡:, then we are

specifying the conventional DoG filter.

As shown in the above frgure, modulation of isotropic bipolar receptive fields,

such as the DoG, may be achieved by two independent facilitatory modulating frelds

(FMFs), one for each of the input receptive fields, whose spatial extent is smaller than

the IRFs they modulate.Let Flni¡ and F;n,,, given by the following expressions, represent

the facilitatory modulating fields for the excitatory input RF and the inhibitory input
RF.

(
tl R;

(vl;)'

F^rt.¡ _R; (4.62)

where R,r1 and R¡ specify their maximum amplitude (which may be a function of the

location in the 2-D arcay), while r¡ri and r¡; specify their spatial extents respectively.

These may also be a function of location in the atray. For effective modulation of the

input RFs, it is preferable to have (yf,ryu¡<io,lr,o¡:), i.e., the facilitatory frelds are

generally considered to be smaller than the corresponding input receptive frelds. The
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(4.63)

following equations speciff the synaptic dynamics for each input RF, where positive

and negative superscripts on synaptic variables and constants are now used to differ-

entiate between the excitatory and inhibitory synapses.

Mobilized transmitter in the excitatory input synaptic pathways (yI",¡)

,l t+ ..

T= tp; + 1,. r)^,f(xii )l @Å,,¡ - !i,,¡)

_J^,,,lpj+ KT f@¡)llyl¡¡-Y)* _v* .,,*

r + q*wl¡ 'Y 
Jmnu

where 14¡ = 22w] ,,¡¡ represent the total excitatory transmitter that is released onto the
mn

postsynaptic cell and serves to normalize t}rre excitatory postsynaptic potential (q* is

the normalízinggain). This normalization procedure approximates the lateral synaptic

competition that has been proposed by Grossberg (1984, 1988) to be involved in
self-regulated transmitter release via the lateral diffusion of the released transmitter
and subsequent reuptake by synaptic autoreceptors. Thus each synapse will have its

rate of transmitter release inhibited by all the activated synapses which ensures that

the resultant EPSP is approximately constant regardless of the number of active

synapses that are participating in cellular excitation.

The amount of excitatory transmitter that is instantaneously released at each

synapse by the action of the input signal is given by

wïn¡¡ = J 
^,,,Ípl, 

+ xi f@ t ))Íti,,,, - l1'lt (4.64)

Stored transmitter in the excitatory input synaptic pathways (u),¡¡)

+ = u\kl,¡¡ - uï,,¡) - lþi,+ J^^,¡Ki Í@,¡)l(ui,,¡ - yï,^,¡) (4.6s)

Excitatory postsynaptic potential (rI 
^, 

¡)

J*^fpj+ Kj )llyï,,¡- Yl*

+=_D*vl,n¡¡t
(4.66)

I + q*Wi,

Next three equations specify the dynamics in the inhibitory synapses
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Mobilized transmitter in the inhibitory input synaptic pathways (y.,,¡)

L52

(4.68)

32

+= tB;+ x r;,,f@ll)t@^,t¡-!i,¡¡)

_J^,,,lp;+ Ki f(x¡¡)lly*,¡¡-Yl* _v v- ..

l+q-Wl 'Y 
¿mnLl (4.67)

where Wu=22w^,,¡ now represents the total inhibitory transmitter that is released

onto the postsynaptic cell and serves to normalize the inhibitory postsynaptic potential.

Stored transmitter in the inhibitory input synaptic pathways (u^,¡¡)

n

-32 -24 -'1 6

---- ntï,ll : o'a

¡t'â,it : o.a

¡t'[,]t : o.+
J(xu): o

4þ*¡¡ ^'- '|-- \
dï= aik^,¡¡- u^^¡¡)-fþi+ J^''¡Ki f@'¡)l(u^,,'¡- !^"¡)

Inhibitory postsynaptic potential (v 
^ ^, 

t)

(4.6e)

Figure 4.74 shows the response of the facilitated isotropic bipolar receptive

field to increased levels of facilitation for a constant input signal. Plotted is the net

postsynaptic potential along a line passing through the central region of the cell. The

complete 3-D RF is shown in Figure 4.75. The 3-D plot represents the net synaptic

potential of a 65x65 input receptive field for even illumination across the whole input,

as a function of the facilitatory magnitude f@þ.

o.oo75

o.oo50

o-oo25

o.oooo

-o.o025 -a o a 16 24

FIGURE 4.74. Net postsynaptic potential along the central axis of a facilitated
isotropic bipolar input receptive field (spatial extent 65x6õ).
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/(x,rry) = o.o f(xflI¡ = o.s

f@iþ=o't r@X') = o.a

f@lþ=o.z l@l¡')=o.l

f@lþ = o'z /(",.r{') = O.S

f(xll) =0.+ f@X\ =o.s
FIGLIRE 4.75. Three dimensional view of a facilitated isotropic bipolar input
receptive field. Parameter s: Zí = 1.i Zi =O.S; (o,-.rl' = 100; (ot)' = 500; (r¡i¡'z = 5i $lt¡¡)' = 25i

R,.r1= 1; R,r.=0.5; l,*=1, =0.05i q*=q-=li pj=pr=0.05; Y]=6=9.5t Kj=X;=9.5;
D+ =D- =0.5i pi=p" =0.5; Ki =Ki =5i aj=u;=0.05i Þj=0.05; Ê;=O.OOS ÞÏ=Þ;=0.01;
Ki=Ki=0.1;cellularthreshold@=0.1;thresholdfortransmitterreleasel=0;allinputs
J 
^,ij = 1. All differential equations are iterated using Euler's first approximation method,

with A¡ = 1.
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Note that with the exception of: (i) the spatial extent and the amplitude of the

gaussians; and (ii) the tonic level of transmitter mobilization (Bl = 10P;), all the para-

meters for the two types of synapses are equal. The purpose of choosing a higher level

of transmitter mobilization in the excitatory synapses was to provide net cellular

excitation for a bottom-up input of even illumination across the cellular receptive field
(J^n¡i=1, V m,n).

In earlier sections of this chapter (and in Appendix A) we have proposed that

the postsynaptic cellular activity in a layer of shunting competitive neurons with bipolar

synaptic inputs and a cellular range restricted to (0, B), can be written as:

d.x,,

T = - o * 
i ¡ + (B - x, ¡) lG (vi¡ - \)1. - ",,(rc tW, - vï,)1. + -Gi t.i) (4.70)

where we have said th at tG (Vi - V)l* = max(G (Vi - V, ), 0) is the net excitatory postsynaptic

potential that drives the cell towards its positive saturation level of B while

tG(V,j-V[))*+-Gli; is the net inhibitory postsynaptic potential that drives the cell

towards zero; G is the gain of excitatory and inhibitory synaptic inputs; G is the gain

of the lateral competitive feedback inhibition; Vtr = 

^Z^rr|i; 

is the total transmitter gated

excitatory postsynaptic potential (EPSP) acting on the cell at location (ii); y; = 
,à,rÃ^,t

is the total transmitter gated inhibitory postsynaptic potential (IPSP) acting on the

same cell. This equation can be approximated at its equilibrium by

BG l*
xij =

A + G (lvi, - V rl* + lvi - Vi,l*) +-Gv,,
(4.71)

A Presynaptically Facilitated Excitatory Shunting Competitive Neural Layer

(PFE-SCNL) with isotropic bipolar IRFs may be used to detect contrast difference (i.e.,

object edges) in an input image. For example, if the parameters as chosen such that for

even illumination across the input RF the total excitatory input is always matched by

the total inhibitory input (regardless of the level offacilitation), then the cell will respond

only when there is a contrast difference across its input RF. The output of such a layer

of competitive neurons for an input grey level image will be an edge processed image,

but whose resolution will depend on the degree of presynaptic facilitation. At low levels

of facilitation, the processed output will have coarse edge representation which would

become progressively finer as the level of facilitation is increased. Thus, for an input

image of an object, the edge processed output along the object's boundary at low level
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of facilitation will not contain the fine boundary detail (small curyes and cornert).fr"
resultant resolution can then be progressively increased by increased levels offacili-
tation to reveal more accurate boundary details.

Because the bipolar isotropic receptive frelds do not distinguish between edges

of different orientations, a neural layer with such isotropic properties has limited
potential. It therefore becomes necessary to consider the design of a layer whose cells

are tuned to various spatial orientations. Although we are currently not concerned with
the actual number of such layers that may be needed when designing a machine vision

and object recognition system, it does become obvious that even a modest number of

between 8-16 directions (as is typically done in some of the current neural network

models) places an extremely heavy computational burden on present day workstations.

While the need for edge and contrast detection at a number of different orientations

increases the complexity and the size of a neural circuit, the fact that each layer may

be used for edge detection over various spatial scales may help in keeping the overall

size of the circuit somewhat smaller because it reduces the need to perform the same

type of computation at a large number of different spatial scales. We are not suggesting

that there is no need for simultaneous edge and contrast detection at various spatial

scales, but that perhaps a very small number, each being able to be tuned to a variety

of spatial scales, may in general be sufficient.

(ii) Oriented Even Bipolar Receptive Fields

An oriented even bipolar receptive freld may be also be formed from a combination

of 2-D gaussians as in the previous case of isotropic frelds, with the exception that the

gaussians need to be elongated in a certain direction. The simplest way of generating

an elongated 2-D gaussian is by a product of two perpendicular one-dimensional

gaussians whose spatial extents differ. For a general case of an elongated RF in direction

0 (where 0 is taken with respect to a reference, say a horizontal axis), the receptive freld

of a cell can be written as

f r cos(o) + y sin(o) 12 f -¡ sin(O) +y cos(o) 12

G(x,y,e)=Gn¿-L % l¿-L 5 I

(4.72)

where 0 is defined by o, and o, ( which specify the elongicity of the two l-D gaussians).

For example, a vertically elongated even bipolar input receptive field, denoted by

IRFç:,l,,"run,i)can be represented by the following expression:



CHAPTER 4. NOWL NEUNAL I.AYERS, MECHANISMS AND DESIGN PRINCIPLES 156

(4.73)

(4.74)

(4.76)

(4.77)

r RFQ,, y, ev en,;) 
", 

lÍr, :;?;{r;,** 

*,î)

zi"
f x cos10) + y sin(o) l2 f -r sin(o) +y cos(o) 12

-l-_-T-l-r_--------]-lL "i )rl cj I

where Gd and Go defrne the maximum amplitudes of the gaussians, while (ol,oj) and

(o,, or) define their spatial extent and elongicity. We can thus represent the transmitter
production levels for the excitatory and the inhibitory IRFs by ElRF(x,y,even,0) and

IlRF(x,y,even,0) respectively. Hence, a cell at location (ij) will have its transmitter
production levels specifred by the following two equations:

zÏo¡j = EIRF (x, y, even, 0)

Z^n¡j = IIRF- (x, y, even,0)

zi,
f ¡cos(o)+ysin(o)12 f -¡sin(o)+)crts(o)'12-L "; l"-l 5 ) (4.7s)

Facilitation of even bipolar receptive fïelds may be achieved by two independent

facilitatory fields, FMF* and FMF- (one for each of the IRFs), that are more finely tuned

than the IRFs they facilitate and whose centroids are also coincident with the cellular

centroid. For example, the facilitatory MFs (FMF*(x,y,even,0) and FMF-(re ,y,even,0)) for

the two IRFs (EIRF(x,,y,even,O) and IIRF(x,y,even,O), respectively) can thus be written
as

F;,tj@) = FMF* (x, Y, even, o)

F 
^,,¡(0) 

- FMF- (x, y, even, 0)

f ¡ cos(o) + y sin(o)'12 f -x sin(o) +y cos(o) l2

R,lr-L -i lr-l -i l

| ¡ cos(o)+y sin(o)ì2 l- -¡ sin(o)+y cos(o)12-r-' -' ç lRirL *r )"1

and

where (Vi,VÐ and (r¡r;,ry;) defrne their spatial extent and elongicity (assumed smaller

than for IRFs), while 0 specifies their orientation (assumed to be same as for IRFs).
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r@ii)=o.o lþ,fj) =o.s

l@{¡') =o.t l@fl)=0.ø

flxï)=o.z l@{l)=o.t

r@ii)=0.3 /(xf') = o.s

r(xiþ=0.+ f(xx\=o.s
FIGURE 4.76. Three dimensional view of a facilitated oriented even bipolar
input receptive field. Zi =0.5; (o)'= t00; (oj)'z= tOOg;(or)'= 500; (or)'z= 5000; (V)'= 5;

(yj)'z=100; (V)'=ZS; (V)'z =500; R,rl=1; R,;=0.5; l.*=1, =0.051 q*=q-=1; pi=Py=0.05;

yj=^{r=O.S; Ki =K;=O.5; D*=D-=0.5; pi=Pu=0.5; K,*-K"=5; uf,=cr,=0.05; Þj=0'05;

Þ;=o.OOS ÞT=Þ,=0.01; Ki=Ki=0.1; cellular threshold @=0.1; all inputs J,,¡i=1. All
differential equations are iterated using Euler's frrst approximation method, with At = 1 .
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When the oriented even bipolar receptive freld is used in the input stage of a

PFE-SCNL, cells within the layer become selective to the strength of its inputs but

along a certain direction. Although not widely used in traditional image processing

systems (with the exception of the cunent applications of 2-D Gabor functions), these

bipolar receptive fields, having an elongated excitatory central zone, may be used to

detect illuminations of an image in a particular orientation (i.e, 'bar' detection). Their

role in biological visual systems is not yet clear.

Figure 4.76 shows the response of the modulated and even bipolar receptive

freld to various levels of facilitation. The input is held constant across the whole input
field, while the strength of the facilitation is slowly raised (in steps of 0.1) every 20

iterations ofthe synaptic variables (i.e., after a steady state is reached for each level of

facilitation).

(iii) Oriented Odd Bipolar Receptive Fields

Oriented odd bipolar input receptive frelds may also be generated by a combination

of elongated gaussians, but unlike the case of even receptive fields, the inhibitory and

the excitatoryinput RFs need to be displaced in the opposite directions from the cellular

centroid (and perpendicular to their major axis), as shown in Figure 4.77.

Oríetúed Facllftufory MFs cenfred
closer to the celfuktr cenffid"

+

loced
lnced

Cehisr ce¡tt¡old

FIGURE 4.77. Two dimensional schematic of a neuronal mechanism for the
modulation of oriented odd bipolar receptive fields with offset input and offset
facilitatory receptive fields.
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Modulation of such an input RF may be done by two elongated facilitatory
frelds whose spatial extents are smaller than the input RFs they facilitate and whose

centroids are also closer to the cellular centroid, as shown in the frgure. The transmitter
productionlevel for the twoinput Rn's that are orientedin direction 0 can thus bewritten
in general terms as follows:

zi,,¡(O) = EIRF (x - xs, ! - Yo, odd ,0)

¡ ¡ -'oþorel+(r -r6),rnter-12 ¡ 1, -,g)'i"tel*(r -ro)"o.(ell2

=z:j(Ðu-l ": lr-L d l

z^,,¡(0) = IIRF (x I xs, ! + yo, odd ,0)

(4.78)

(4.7e)

| ft +'s)co1e¡+(v +rg)stnlet'12 I t *,0),"r.¡*i, *r¡)"u.tetl2
_l------------7-rr---------l-.

=Zu16¡)eL "; )rl c, l

When 0 = 0 and when the two input receptive frelds are equally displaced from the

cellular centroid, but in opposite directions, these equations can be written as

Zi.i=,r*'[{,-fr]')"-'[i"+r]') (4so)

zi.-'*,[]+r]')"-,[-|+r]') (48')

where (xo, yo) is the cellular centroid.

Oriented odd bipolar IRFs may be facilitated by two RFs that are also elongated

(with their major axis of elongation being aligned with IRFs), but whose spatial extent

is smaller and whose centroids are closer to the cellular centroid.
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f(xiþ=o.o f(x[') = o.s

f(xi,)=o.t l@l)=o'e

f@l\=o.z ¡lxll¡ = o.t

f(x[]¡ = o.z f@l)=o's

f@ll)=0.+ l@X\=o.g
FIGURE 4.78. Three dimensional view of a facilitated oriented odd bipolar
input receptive field. Zi=o.5; (o)'= tOo; (oi)'z= 1000;(0;)2 = 500i (o;)'= 5000; (r¡]¡'z= 5;

(yj)2= 100; (V)'= ZS (V)2 =500; Ri=l; R,.;=0.5; I*=I-=0.05i q*=q- = 100; pj=pr=0.05i
yj=yr=O.S;Ki=K;=O.5;D*=D-=0.5;pT=p,=0.5;KJ-K,=5;oj=c,=0.05;pj=$=0.01i

Þi = F; = 0.05; KI = Ki = 0.1; cellular threshold @ = 0.1; all inputs rnn¡j-- 1. AII differential
equations are iterated using Euler's first approximation method, with Âr = 1. The two

input receptive frelds are displaced from the cellular centroid by 10 synaptic pathways.
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Unlike the case of even receptive fields, modulation of elongated odd bipolar

receptive frelds provide a layer of competitive cells the capability to be tuned to contrast

differences in its input along a certain direction. If such a layer was used to process a

graylevel image, then the response ofthe layerwill represent all edges that are oriented

in the same direction as the cellular RFs. However, at low levels of facilitation, the

receptive fields (being reasonably large with crude orientational selectivity) will
similarly give a crude edge representation of the input image. Fine detailed edge

structure will thus not be seen at the output of the layer. The layer will in general

respond to image contrasts over broad input region and in directions whose angular

displacement from cell's optimum orientation is reasonably large. Fine tuning the

cellular receptive freld will have two effects. Since increased facilitation shifts the peaks

of the excitatory and the inhibitory maxima closer to the cellular centroid, contrast

differences will be detected over smaller spatial extent. Simultaneous with this

reduction of the spatial extent is the narrowing of the two input RFs. The net effect is

that the cell becomes progressively tuned to higher spatial frequency and a narrower

range of contrast directions.

It is thus possible to design more complex modulated RFs simply by a suitable

arrangement of the individual inhibitory and excitatory zones and their facilitatory

modulating frelds.

We have shown how presynaptic facilitation may be used to dynamically

frne-tune various types of cellular input receptive fields. However, for this dynamic

mechanism to be useful, a self-organising artifrcial neural system (capable of

unsupervised learning) must be able to decide autonomously whether to fine-tune its

cellular receptive fields, by how much and when. Self initiated regulation of cellular

receptive fields, attention, general arousal, etc., may be beneficial to an unsupervised

learning system, particularly if it has to deal with complex and cluttered visual inputs

where fixed receptive fields may limit its robustness. For an artifrcial neural system to

be able to regulate its receptive frelds appropriately, it must have some rudimentary

form of 'consciousness'or'a\¡¡areness'. This is unlike the case for the currently popular

artifrcial neural networks, whose inability of self-regulation requires that in most cases

human consciousness decides what the network is to learn, when, for how long, at what

rate, etc. Once trained, these networks become rigid thereafter and are therefore not

able to cope effectively with more complex and cluttered inputs than the ones that were

used during training. In order to enable a self-organising artifrcial neural system to

self-regulate its dynamics and cellular receptive freld profrles, 'we must first discover

the relevant neuro-engineering design principles. The simple neural circuit of Aplysia,

which has inspired most of the neural circuits and mechanisms that were proposed so

far in this thesis, is too simple a system to exhibit the type of new mechanisms that are

needed. One can hardly call the facilitation of the sensory to motor neuron synapse by
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the facilitatory interneurons from the tail sensory neurons as being due to a high level

memory based decision from elsewhere within the circuit. We must therefore find a

neuro-engineered solution to the problem of self-regulation andinvestigate its potential

on problems that cannot be handled robustly with neural circuits that do not posses

such capability. The scientific study of the neuronal basis of awareness and

consciousness has just recently begun and forms the frontier of curent neuroscientific

and theoretical investigations (Crick and Koch, 1990a, 1990b, L992; Koch and Crick,

1994). In Chapter 6 we will propose a self-regulating mechanism for a simple neural

circuit that uses its established memory to decide whether its input is familiar or novel.

Throughout this section we have concentrated only on the facilitatory mechanisms

for the modulation of cellular receptive freld profrles and have also assumed that the

facilitation was non-specific (i.e., each cell in the layer received the same level of
facilitation). We have also considered a simple case of facilitation where the facilitatory
MFs were similar to their IRFs. It is, however, also possible for FMFs and IRFs to be

very different. In Chapters 6, 7 and 8 we will propose more complex neural circuits that
use the types of synapses discussed above. In addition, we will propose a neural

mechanism for self-regulation as well as nerw types of modulatory frelds that may be

very different to their IRFs and each being able to convey specific 2-D spatial infor-
mation, such as a complete boundary of an object.

A.LL Recognition of Distorted 2-D Shapes

In section 4.8 we have proposed a two layered neural circuit called Feedforward

Excitation-Feedback Presynaptic Facilitation (FFE-FBPF) whose cells had only one

input synapse. We now propose a simple extension to the circuit that provides it with
additional processing capability, such as the recognition ofdistorted 2-D shapes. Similar
capability has already been provided to ART-2 and Fuzzy ARTMAP (Seibert and
'Waxman, 1992; Gove et al., 1995) by sampling the bottom-up inputs via 2D receptive

frelds (i.e., coarse coding of the input). However, the scheme that we are proposing below

is based on modulated 2D receptive frelds of section 4.10. First rüe propose a useful

neuroengineering design principle called " Princíple of bíolo gúc øl ímp løu síbility"
which says that if an artifrcial neural network has layers whose cells sample their inputs

via a single synaptic pathway, then this will in some way limit the capability of the

network. This design principle (whether biologically plausible or not) is a useful design

guide since it allows one to quickly spot those parts of the network design that may

need further development.



4.11 Recognition of Distorted 2-D Shapes 163

The extended circuit, shown in Figure 4.79, samples its bottom-up input via
excitatory input receptive frelds whose synapses are pres)maptically modulated by
top-down facilitatory frelds that are more finely tuned, the purpose of which was

discussed in the previous section. Each cell in the first PFE-SCNL or Field F0 at location
(i, j) samples its bottom-up input via a set of dynamic synaptic pathways whose level

of transmitter production is defrned by a2-D gaussian. Each cell in Field Fl at location
(i, j) backprojects a 2-D facilitatory freld to a cell in the corresponding location of Field

F0. As shown in Figure 4.80, the top-down reference into Field Fl and the distributed
sampling by cells in F0 enables the FFE-FBPF neural circuit to test for the presence

ofthe target shapein awiderrange oflocations than is possiblebysingle input synapses.

If the target shape is located within the facilitated bottom-up input receptive frelds, it
will be recognized even if its boundary does not fall within the central region of the

input receptive fields. This enables the circuit to recognize distorted 2-D shapes.

to p - dotts rt re-1þ re rrc e
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FIGIIR,E 4.79. Extended Feedforward Excitation-Feedback Pres-
ynaptic Facilitation (FFE-FBPF) neural circuit for the recognition of
distorted 2-D shapes.
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top-dousn re;ference

FIGURE 4.80. Distributed sampling enables the FFE-FBPF circuit to
test for the presence of the relevant 2-D shape within the facilitated
input receptive fields.

To demonstrate the capability of the proposed neural circuit we provide computer

simulations for three cases: (i) with a top-down reference shape into Field F1; (ii) without
the top-down reference; and (iii) with a top-down reference that is generated by first
presenting the target shape to the circuit and then using the resultant steady state

spatial pattern as the top-down reference. For each of the simulations, the input aftay
is 40x40 elements, while the two PFE-SCNLs in the circuit are both 34x34 cells in size.

All network variables were re-initialized upon each new input presentation.

Each input shown in the left column of Figure 4.81 was presented to the extended

FFE-FBPF circuit for 50 iterations. The resultant steady state spatial patterns across

Fields F0 and Fl are shown in the second and the third column respectively.

TABLE 4.1: Receptive and Facilitatory Fields in FFE-FBPF circuit

0.018316

0.082085

0.135335

0.08208õ

0.018316

0.082085 0.135335 0.082085

0.367879 0.606531 0.367879

0.606531 1.000000 0.606531

0.367879 0.606531 0.367879

0.082085 0.135335 0.082085

Receptive flreld

0.018316

0.082085

0.135335

0.082085

0.018316

0.000335

0.006738

0.018316

0.006738

0.000335

0.006738 0.018316 0.006738 0.000335

0.135335 0.367879 0.13533õ 0.006738

0.367879 1.000000 0.367879 0.018316

0.135335 0.367879 0.135335 0.006738

0.006738 0.018316 0.006738 0.000335

Facilitatory field
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CASE I - top-down input into Fl

Test input I steady state F0

165

-..t¿.--L^¿va-¡.¡

steady state F0

steady state Fl
(0.9999)

steady state Fl
(0.9833)

Tesú input 2

Test input 3 steady state F0 steady state Fl
(0.9988)

Test input 4 steady state F0 steady state Fl
(0.9730)

FIGURE 4.81. Simulation of the extended FFE-FBPF neural circuit on
distorted 2-D shapes. Case I: with a top-down reference. The data is shown in
reverse contrast (black = 1.0, white = 0).

The circuit parameters are as follows (refer to equations in section 4.8 and Chapter 5):

¡F0 - 3F0 =AFt =BFt =l; A'o =Tt =0.1; threshold for transmitter release Y = 0.001; post-

synapticthreshold@=0.1;E'o =8" =O.llnwherenisthenumberofneuronsinthelayer
(n =1156);uIo =al,' =0.5;þY =þ!: =0.005; þf =þi'=0.05iúo =út =0.5;DFo =DFl =0.5;gain
oftop-downpresynapticfacilitationll =O9g;KIo =KFt =0.5;pfo =Pl,t =0.5; plo =Pl/ =0.05;

Klo =Klt =0.5; KIo =Io; Kl' =5; postsynaptic gains are GFq =GFt= 1000; gain of lateral

feedback inhibition G'o =G" = 5000. The spatial extent of the input receptive freld and

the facilitatory field into F0 is 5x5 synapses, the latter being more frnely tuned. Table

4.1 showstheelementsof thetwo2-Dgaussiansthatdefìneeachof thefrelds (o2=2

for the input receptive field, f = 1 for the facilitatory field).
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The bracketed numbers in the rightmost column indicate the steady state

match between the spatial patterns across Fields F0 and Fl (the required match for

recognition is > 0.9800; steady state is assumed when the rate of change of the match

falls below 0.0001). Note that all distorted versions of the reference shape were recog-

nized because of the additional bottom-up synapses through which the relevant parts

of the input may be routed. The shape embedded in test input 4 did not cause a match

above the required threshold because some parts of its boundary fell beyond the

facilitated receptive fields. The circuit is also tolerant to small variations in the position

and the size of the input. The degree of tolerance is controlled by the spatial extent of
the input receptive frelds. The size of the input receptive frelds in the shown simulation
is 5x5 (see Table 4.1 for the actual values). Although a broader input receptive field
would provide a higher degree of tolerance to distortions and positional displacements,

it would also lead to greater number of discrimination errors between different shapes

that share many common features.

CASE II - no top-down input into Fl

-d+-L. 
-J

{4,

-..t¿.--aÂ¡r-l+f

Test input 1 steady state F0

steady state F0

steady state Fl
(0.9999)

steady state Fl
(0.9999)

-tg 4T't
a

¡.. -fl'

-L

steady state Fl
(0.9999)

+111: -.{ -L. -.-*-l

Test input 2

Test input 3

É. -X -_ /, -¡,-,

Test input 4 steady state F0 steady state Fl
(0.9999)

FIGURE 4.82. Simulation results of the extended FFE-FBPF neural circuit on
distorted 2-D shapes. Case II: without the top-down reference.
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Figure 4.82 shows that in the absence of a top-down reference, the steady state

depends solely on the strength of the bottom-up inputs. As expected, weak bottom-up

inputs do not enter into the circuit because of the competitive effects in each neural

layer. If weak bottom-up inputs are facilitated by a top-down reference (as in the case

of input 3, Figure 4.82), then weak and relevant inputs can re-enter into the circuit at

the expense of strong and non-relevant inputs. The above simulation data also shows

that some diagonal elements of the various inputs did not enter into the circuit. The

reason for this is given below.

CASE III - top-down reference generated by the circuit

t'r-
l'est input I steady state tr'O steady state Fl

(0.9999)

-f r- t'r-
Test input 2 steady state F0 steady state Fl

(0.9999)

-..t¿.a.r.-t+¿f¡a+r dr-

lest input 3 steady state F0 steady state Fl
(0.984e)

t'r-
Test input 4 steady state F0 steady state Fl

(0.9988)

É4- -/ 
L*, .¡ a-

lest input õ steady state F0 steady state Fl
(0.e712)

FIGUR,E 4.83. Simulation of the extended FFE-FBPF neural circuit on
distorted 2-D shapes. Case III: top-down reference generated by the circuit.
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In the next simulation (Case III), we frrst present the target shape as the

bottom-up input into the circuit and then use the resultant steady state spatial pattern
across Fl as the top-down reference. The results are shown in Figure 4.83. Note that
the generated top-down reference has some missing parts. The reason for this can be

found in Table 4.1. The spatial kernel that defines the input receptive fields, being

generated by using the euclidian distances in the 2-D gaussian function, is biased

towards synaptic pathways that are offset either vertically or horizontally from the

cellular centroid. Vertical and horizontal parts of the input shape therefore provide a

larger bottom-up excitation of their target cells than is provided by the diagonally

oriented line segments. Cells that are excited by diagonally oriented parts of the input
shape do not receive sufficiently high bottom-up excitation to overcome the inhibitory
inputs from the more activated ceils. Nevertheless, the circuit was still able to recognize

the distorted versions of the original shape, as indicated by the degree of match between

F0 and Fl.

We have thus shown that the solution to distorted 2-D shape recognition can

be neuro-engineered into a 2-D neural circuit by providing additional bottom-up input
pathways (via a distributed input receptive freld), through which the various portions

of the input may enter into the circuit. Note that the proposed circuit interactions also

simultaneously solve a number of other related problems: recognition in clutter,

tolerance to small displacements of the input, tolerance to small variations in the size

and the orientation of the input shape, as well as the recognition of the shape when

some of its local parts are missing.

From the above simulation data we conclude that in order for the circuit to

register diagonal elements it needs to be split into multiple spatial orientations. In
Chapter 8 we will consider how the circuit may be extended to cater for size and

orientation invariant 2-D shape recognition.

4.12 Conclusions

In this chapter we have proposed novel neural layers, a number of new design

principles and mechanisms for the design of 2-D neural circuits. These design principles

and mechanisms are based on the properties of shunting competitive neural layers that
have not been previously utilised in neural network designs. By realising that the

amplification of some inputs into a layer of shunting competitive neurons can

competitively suppress the activity of other neurons in the layer whose inputs are left
unaltered, we have been able to derive a new type of a competitive neural layer,

Presynaptically Modulated Shunting Competitive Neural Layer (PM-SCNL).

PM-SCNLuses models ofchemical synapseswhose transmissiongainmaybefacilitated
(or inhibited) by a variety of methods that are either non-specific or are specifrc for a
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particular pattern or spatial location.'We have proposed how these new layers may be

used in selective information processing. In particular, we have derived a novel neural

circuit, Feedforward Excitation-FeedbackPresynaptic Facilitation (FFE-FBPF), which

uses a top-down reference to selectively modulate the bottom-up signal transmission
into the circuit. The potential of the FFE-FBPF neural circuit was demonstrated in an

application to object recognition in cluttered visual images.

The principle of synaptic gain control was extended to the general case of cells

with multiple input synapses to show how the frltering characteristics of the cellular
receptive frelds (and thus a layer of neurons) may be altered and fine-tuned by a single

parameter. Ho',vever, we have not yet provided a self-regulating mechanism that should

enable an artificial neural circuit (or a network) to autonomously decide when and by

how much it should alter its level of attention. Similarly we have not considered how

a particular input may be attended and learned when it does not have a top-down

reference or is not aligned with the top-down reference and appears in a cluttered

background of other objects.

Since the primary aim of this chapter (which also includes AppendixA) was

to derive a set of useful and flexible neuro-engineering design principles, mechanisms

and building blocks for more complex neural circuits, we have limited our discussion

and computer simulations to simple cases in order to reveal the dynamics of selective

information processing. Numerous computer simulations have not only demonstrated

the potential ofthe proposed design principles and mechanisms, buthave also revealed

a host of further problems that need to be solved. For example, the simulation results

of the FFE-FBPF neural circuit in an application to object recognition in cluttered visual
images suggest that we need to design a parallel set of circuits, such that each circuit
is devoted to the processing ofedges ofa particular spatial orientation (or spatial extent).

Although the need for parallel neural layers and circuits may have been anticipated

from prior knowledge of the primate visual neurophysiology, it is not yet known how

the parallel circuits of the primate visual system are integrated at higher levels to give

rise to coherent visual perception of an object's shape. It is debatable whether experi-

mental neurophysiology will ever be able to provide an answer to this "feature inte-

gration" problem of visual perception. However, by careful attention to good

neuro-engineering design principles and design logic, it is highly likely that the solution

to the feature integration problem, as well as the solutions to the other problems of

biological vision (some of which were mentioned in the previous paragraph), will reveal

itselfwhen one attempts to neuro-engineer an artificial visual objectrecognition system

for cluttered images and scenes.
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The rest of the thesis builds onto the concepts proposed in this chapter in order

to provide neuro-engineered solutions to the above mentioned and related problenos of
cognitive biological vision. In the next chapter we provide a mathematical procedure

for the design of presynaptically modulated competitive neural layers.



T7T

Chapter 5

Mathematical Analysis, Parameter
Design and Simulations

5.1 Introduction and Oven¡iew

In this chapter we provide a mathematical analysis and a parameter design

procedure for facilitated shunting competitive neural layers to ensure stability, wide
dynamic range and invariance to the size of the layer. We analyse the stability of a
layer under the worst possible condition, i.e., when all the cells are driven by the same

input (zero input contrast). If the layer converges to a stable (non-oscillatory) state

above the cellular threshold @ for zero input contrast patterns whose input intensity
is Jr, then it will also converge to a stable state for all input patterns whose average

intensity,Io is above "I,ln,where n is the number of neurons in the layer. We thus analyse

the stability of the layer for a uniform input,/, in the open loop condition (i.e., without
the postsynaptic feedback).

5.2 Determination of Steady State

We first flrnd a steady state solution for the case when there is no postsynaptic

feedback acting on the synaptic dynamics. We then find the critical value for the
inhibitory gain (C,") that leads to oscillatory behaviour. After frnding G", \Me then choose

G <G" (for the case where all cells are equally activated by a maximum possible input
,Ir) such that it gives as a desired steady state. Since each layer has a large number of
parameters (about 15), our design procedure is heavily based on our extensive computer

simulations of various layers and their interactions. Note that all neural layers, circuits
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and network architectures proposed in the thesis are based on the same set of five basic

equations that are listed in this chapter (equations (5.I2), (5.13), (5.17), (5.21) and
(5.22)).

rWe thus start by frnding a steady state solution to the dynamics of an isolated

chemical synapse. After obtaining the steady state solution we then relate the
expression to a desired steady state.

Synaptic varíables

ø, is the stored transmitter;

y, is the mobilized transmitter;

z¡ is the transmitter production level (assumed fixed orvery slow compared

to the other two).

Write the synaptic equations in the following form

In order to solve the above equations, let us initially assume that there is no postsynaptic

feedback signal acting on either variable. The effect of pre-postsynaptic interactions

will subsumed into the parameter design.

Initial conditions; u,(0) = 7,

Y'(o) = 0

Rewrite (5.1) and (5.2) as

lD,+Ar]u,- cyi= azi (s.3)

ú,=a(2,-u,)-c(u¡-Yi)

! ¡= d(u¡- y¡)- e!¡

-u,*:lD,+ArJy¡=o

where At= a r c, A2= d. + e, O, =#operator.

Apply the operatot lD,+A,l to (5.3) and add to (5.4). Then

(s.1)

(s.2)

(s.4)

which can be written as

îD? + (Ar+Ar)D,+ (AtAz- cd)llt= Z¡ad. (s.5)
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)¡ + (4, + Ar)! ¡ + (Aêz- cd)y ¡ = z¡ad. (s.6)

This system has a general solution

lrt î2t
(s.7)+ c2e

where cr and czare constants; l,t and ?aare the roots of

t? + @ + c + d + e)?u+ (ad + ae t ce) =Q (s.8)

Using the initial conditions and the method ofvariation of parameters, it can be shown

that

Z'Ad
y¡(t) =¡n+ cS

z¡d(a +Ìut) rrr z¡d(a +79) \t
i(r- l") 

ê 'r )uçr-¡reYi(t) =
z¡ad

Ì"t\

The roots of (5.8) are related by

+ (s.e)

)"r\.= ad + ae + ce (s.10)

Note that if the roots of (5.8) both have negative real parts (i.e., Re(À1) < 0 and Re(\ò <0)

then the exponential terms in (5.9) will in the limit t ) æ decay to zero. Therefore the

steady state solution of (5.2) is given by

î,
z¡ad

)rtM

z¡ad
(s.11)

ad+ae+ce

where /, denotes the steady state solution to equation (5.2), where we have assumed

that there is no postsynaptic feedback acting on the synapse. Let there be n cells in a
layer of shunting competitive neurons whose equilibrium activity is given by (5. 12) and

whose lateral inhibition is given by (5.13).

î¡=
BGûi

(s.12)
A+Gî,+Gv¡

+=-tl,+!E L r@)dt n .i+i
(s. l3)
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The thresholding function in (5.13) is given by/(x;)-max(xr-@,0) where @ is the

threshold value below which the cell is not contributing to lateral inhibition of the other

cells in the layer. In order to design the parameters of the layer such that its cells do

not enter into persistent oscillations, we want the equilibrium value of each cell to be

above the threshold O when each cell is driven by the maximum input,I".

Let this equilibrium value be

Íi=@+ô (5.14)

where õ is the amount by which the cell's activity at equilibrium exceeds the threshold.

The steady state solution of (5.13) is then given by

^ ôl4llul (sls)v i=u 
l.ã.11. , /

Substituting (5.14) and (5.15) into (5.12) and rearrangrng gives

o,=[u-(".u)_q]itå)(å)(+)'.*] (s16)

Now, the steady state EPSP,î,, can also be derived from

dv,

î =-rr,+ J,øly¡- tsl*(p" +KJ@))

- -Dvi+ Jylti- Yl*(p, +K,ô) (5.17)

where we have said that Í(i,) = î,- @ = ô; Y is the threshold for transmitter release. At

the desired steady state (Í, = @ + õ), this becomes

^JM'î , =-Ë [Í, - Y]. (p, +K,ô) (5.18)

where /, is the steady state level of the mobilized transmitter. Equating (5.16) and

(5.18) gives

,.1+ rD(o.Ðr[(å)(;x+)u.*]li,-Yl-= (s.19)
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For simplicity, let us assume that Y = 0. We know that f , in equation (5.11) leads to a

steady state when there is no postsynaptic feedback. Hence in order to design the
parameters that will force the layer of shunting competitive neurons to reach a steady

state at ii = @ + ô, we can let

rD(o.Ðr[(å)(å)("Þ.å]
(s.20)

J*[B - (O + ô)] [p, +K"ô]

Thus, a PFE-SCNLwhose parameters arerelated by(5.20) andwhose cells arereceiving

the maximum input ,Ir, will reach a stable state at Íi = @ + ô.

Now let us rewrite equations (5.1) and (5.2) in the following form:

Stored Tlansmitter

ù,= a,u(z¡- u,) - (þ,+ K.Jrõ)(u,- y,) (5.2I)

Mobilized transmitter

l, = (Þ, +F,)(u,- )¡) - Jr(Pr+Krô)y' -^{y!i 6.22)

Comparison of (5.21) and (5.22) with (5.1) and (5.2) respectively, shows that the
parameters a, c, d and e can be written in terms of the desired equilibrium stateÍ, = @ + ô

(with all synapticinputs atJr). Sincewewantthetoniclevel oftransmittermobilization
(0r) to be able to drive the synapse so that it satisfres (5.20), we can let F, = 0, Vi. Then

(s.23)

c =þ,+K,JMõ (s.24)

v
z¡ad

ad+ae+ce

a=Uu

¿ =Þ,

e =J*(pr+Krô)+y,

Substituting (5.23)-(5.26) into (5.20) gives

Ziü,þy
cr, Þ, r u,lJu(py+Krô) +yyl + lþ,+K,J*õllJ"(pr+Krô) +yrl

(s.2s)

(s.26)

Go@. o (+X+)a*aoqo * o¡

GJMIB - (O + õ)l [p" +K"õ]

(s.27)
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Note that the above equality holds only for the case where every neuron receives the

same input. Now rearrange (5.27) and express G in terms of all the other variables.
First write

GM +N
0 P

(s.28)

where

Z¡O.uþy

cru Þ, * a,lJu(py +Krõ) +yl + fþ,+ K,J*õ)lJ*(py +Krõ) +yrJ

(s.2e)

O=t=

M=D(@.r[^4)(+)'

N =AD(@ + ô)

P = GJ¡ølB - (@ + ô)l [p, +K,ô]

(s.30)

(s.31)

(s.32)

Then we can express G (the inhibitory gain) in terms of all the other parameters as

GJMIB - (@ + ô)l [p" + K,õ]Q -AD(O + õ)

¿¡ro.Ð(+X?)
G

PQ_N
M

(s.33)

5.3 Determination of Critical Values

Since our whole design procedure relies on our ability to find a robust value of

ô that is not too large, we first need to determine the critical values (G,,i,,,ô.) that are

to be avoided since they may lead to oscillations. That is, we need to know the critical
value of ô. Let ð" be the critical value at which the layer will oscillate persistently. Below

we describe a method for obtaining ô,.

By realising that for a sufficiently large inhibitory gain (large G in equation (5.12)),

the layer will persistently oscillate regardless whether the postsynaptic feedback is

enabled or not, it should be clear that ô" can be determined by ignoring the postsynaptic

feedback. This simple realisation enables us to determine ô, because the synaptic

variables (u¡ and y, in equations (5.21) and (5.22) respectively) as well as the EPSP

variable (v, in equation (5.17)) will reach a stable state, while -x'(r) in (5.I2) and the

inhibitory potential f,(r) (in (5.13)) will oscillate (xr(¡) will oscillate about @ +õ"12, while
v,(r) will oscillate about its average that is related to ô,).
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Write (5.12) as

(s.34)

where ú denotes the steady state EPSP. There exists a critical value ofõ,l,, that drives

the layer into persistent oscillations. If this oscillation is a limit-cycle (between @ and

@ + õ"), then the inhibitory potential will oscillate about its average with an amplitude

Ã7,.. Below we provide a method for determining the critical õ" at which the variable

.x¡(r) will oscillate between @ and ô".

First determine the critical value of the product @1,. from

where u.. is the critical value of the inhibitory potential. Rearranging (5.35) gives

(s.3s)

(s.37)

(s.38)

(s.36)

Now realise that the critical value of õ" (i.e., the maximum value ofx,(l)) is given when

the inhibitory potential is at its minimum value of v,,(1-A). Then

BGç i

A+Gû,tG,v¡,

which can be rearranged as

ô.=

Now we can determine v,. (the upper peak of 7,(r)) from

(v i, - Ai i,) +r i,= Èl4ll, _11

2 2[A/\ n )

1

(s.3e)

i.e., at the critical values, the average of the inhibitory potential is related to the peak

of the oscillation in -r,(r). Therefore the critical v," is given by
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(s.40)

The critical inhibitory gain (G") can then be determined by substituting v," into (5.36).

This gives

(s.41)

Note that this critical gain represents the gain of the lateral inhibition at which the

layerwill oscillatewith amaximum amplitude (i.e., between@ andô",with an amplitude

of õ¡z). However, there exists a lower critical gainE! above which the layer will also

converge to a stable oscillatory state but with a smaller amplitude, and below which it
will converge to an absolute stable state. Therefore to ensure layer stability we need to

be able to determine a suitable value of G which is smaller tlnanE!. Before we specify

how a suitable value of G rr'ay be determined, we first provide a procedure for the

selection of the various parameters and demonstrate the oscillatory behaviour of the

layer via several computer simulations. We then show that a layer will converge to an

absolute stable state if G is chosen such that it maintains the cellular activity x,(t) at
õ

or above @+;.

5.4 Intuition in the Parameter Selection

With such a larger number of parameters embedded in (5.33), it is obvious that
most of them should be chosen on the basis of good intuition since not all combinations

that satisfy (5.33) are going to be useful. Here we present an intuitive argument on how

to choose most of these parameters.

Stored transmitter

The first thing to realise is that if the presynaptic facilitation is to be effective in
the regulation of the bottom-up synapses for general cases where the attended

bottom-up input spatial pattern is not of constant amplitude across the input layer,

then by far the main contribution to the depletion of the stored transmitter should be

due to the conelated frring of the input signal and the postsynaptic feedback signal.

The implication of this is that if the facilitatory presynaptic 2-D spatial pattern is

uniform in strength but the coresponding input pattern is not, then the presynaptic

facilitation should increase the synaptic gains for these pathways by a larger amount
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than for those pathways whose bottom-up inputs are much stronger. Therefore, we

want the depletion of the stored transmitter to be mainly controlled by the term KuJrE

in equation (5.21). This means that we want Ku)þ'

Now we need to choose the rate of transmitter storage (ø,). Since we want the

dynamics of the synapse to be slower than the dynamics of EPSP, we need a, <D (see

equations (5.17) and (5.21)). Let us choose u,--Dll0.

Mobilized transmitter

Our next intuition comes from the understanding of how the non-relevant inputs
may be suppressed by lateral competition in the layer. If the attended bottom-up input
pattern is presynaptically facilitated, then the amplitude of the facilitated cells must

be able to increase in order for them to suppress the non-facilitated cells. For this
suppression to be effective, the initial cellular activity must be low. Otherwise, the

inhibition from term (B -x¡) (see equation 4.2L, Chapter 4) will prevent the facilitated
cells from increasing their activity to a level that can suppress the non-facilitated cells

to below the threshold. Hence, we want the tonic level of transmitter mobilization to
be low but sufficient to enable an input to excite the layer above the threshold @. The

implication of this is that 4 >> Br. Choose Þy = 0.01. This gives us plenty of room to provide

a large gain for presynaptic facilitation of the synapse.

We are now in a position to choose the other parameters, leaving one aside (G -

the gain of lateral inhibition, which we will determine from (5.41) after we calculate

ô").

5.5 Example of a Design

In this section we provide an example ofthe application of the parameter design

procedure. Computer simulation results of the designed layer and the Feedforward

Excitation-Feedback Presynaptic Facilitation (FFE-FBPF) neural circuit will be

presented in section 5.7.

Parameters that define the global property of the PFE-SCNL (the number of
neurons, the upper saturation level, the postsynaptic threshold, etc.) can be set

according to the desired characteristics. We can thus specify some of the parameters

(4,8, @,Jr)accordingtoaparticularrequirement.Todemonstratethedesignprocedure,
let us consider the following requirements:
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Let the cellular activity be bounded in the range (0,1). This implies B = 1. We can

also let A = 1 (the cellular dynamics is much faster than the synaptic dynamics). Let

@=B/10=0.1. Let the maximum bottom-up input be Jr=B = 1.0. Choose the layer to
have 1024 neurons (32x32 array). Let the transmitter production level be 7,- 1.0,Vi.

Choose the EPSP to be slower than the cellular dynamics but faster than the synaptic

dynamics. Let D = 0.5. Let the contribution to the EPSP from the correlated firing of
the input signal and the postsynaptic feedback signal be ten times that of the input
signal alone, i.e., let K" = 10p". Choose K" = l}D = 5, thereforê P, = 0.5. Let the EPSP gain

(G) be 1000 . This is large enough to excite the layer above the threshold for small inputs
(typically G is set according to the required dynamic range, larger G implies a wider

dynamic range). Let the mobilized transmitter decay at arate yy = 0.5. Let the combined

action of the postsynaptic feedback and the input signal deplete the mobilized trans-

mitter at ten times the rate of the input signal alone, i.e., K, = 10py. Thus for a layer

that is approximated by the frrst order Euler's iterative method with a time step Lt = l,
this gives:

A=B=1.0; G=1000; Ã=å=O.t; B='o4=0.1; n=!024; J.=1.0;

@=0.1; Z¡=1.0; Ku=5; D=0.5; Py=0.05; Kr=0.5; Tr=0.5; P"=0.5;

K,=0.99; F¡=0.99 ü, = 0.05; Þ, = Þ, = 0.01.

Stead]¡ state mobilized transmitter

Substitute the chosen values into (5.29). Note that for zero-postsynaptic feedback,

this equation simplifres to

Q,=î¡=
z¡du

cr, Þ, + a,lJupy+yl + þ"lJ*pr+Tl

=0.01492537 (s.42)

Estimation of õ", G,, ô and G

Plugging the calculated value of Q and the other selected parameters into (5.41) gives

õ, = 0.0098092613. Plugging this value into (5.41) gives G, =25850.215. To ensure layer

stability we need G < G,.In section 5.6 we specify how a suitable õ may be determined

to ensure convergence to a non-oscillatory steady state.

In the following two simulations we use the critical G,for two cases: (i) without

the postsynaptic feedback (Figure 5.1); and (ii) with the postsynaptic feedback (Figure

5.2).
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FIGURE 5.1. Simulation of the PFE-SCNL without the postsynaptic feedback,
oscillating at the critical values (ô"=0.0098092613, G"=25850.2). Shown is the

dynamics of one cell in the layer: (a) Oscillatory behaviour ofx, observed over 2000 time

steps; (b) oscillatory behaviour of v, observed over 2000 time steps; (c) Oscillatory

behaviour of x, observed over 50 time steps; (d) Oscillatory behaviour of v, observed over

50 time steps. The three synaptic variables reached their steady state values after 100

iterations : î ¡ = O.0I4925; rî, = 0.83582; î ¡ = 0.014295.
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FIGURE 5.2. Simulation of the PFE-SCNL at the critical values and with the
postsynaptic feedback. Steady state values are: î¡=0.104745; î¡=0.014453;

i ¡ = 0.0047 40:' û, = 0.77970:' Í¡ = 0.01 3798.
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Figure 5.2 shows that postsynaptic feedback provides a stabilizing effect on

the layer that would otherwise oscillate. Comparison of the synaptic steady state values
(î,, û,and Í¡) for the above two simulations shows that in the latter case all variables
have a lower equilibrium point. The reason for this is that the combined action of the
input signal and the postsynaptic feedback signal simultaneously depletes the levels

of both the mobilized and the stored transmitter in the synapses. Note however that
the postsynaptic feedback has stabilized the layer.

5.6 Absolute Stability Requirement

In this section we show that if G is chosen such that it maintains the cellular

activityofan open-looplayer (i.e., thelayerwithno posts5mapticfeedback) above @ + õ,12,

then the open loop layer will converge to a stable non-oscillatory state. By assuming

that the synaptic variables have reached their steady state, we can analyse the
behaviour of the layer by forcing it with a suitable initial input condition.

Let us consider the following initial conditions:

Synaptic variables at steady state: v(0) = ú, y(0) = f ; u(0) = û;

x(0) = g'

v1O¡ = 5o

We can now force the layer towards the specified equilibrium point ôoby driving

it with a inhibitory gain G that can be determined from (5.43). Note that this equation

is derived from (5.34) by letting the equilibrium point be x1-¡ = i = ô0. If ôo is below some

critical value ôf , then the layer will converge to a stable oscillatory dynamics, otherwise

it will converge to an absolute stable state (non-oscillatory). We aim to show that if
ô0 > ô,/2, where õ" is given by (5.38), then the layer will converge to a non-oscillatory
state for zero contrast in the input spatial pattern whose average is Jrln (where n is

the number of neurons in the layer).

(t-
BGî -(A+Gî)(@+ðo) (s.43)

ôo(@+u.)(*)(#)

Since the initial condition for the cellular variable.r(0) = 0, then .x(1) will jomp

above O after the frrst iteration. The attained value after the frrst iteration will be

(s.44)
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lf (BlA)(n -1,1n) < 1 and for õr = 1, then for the layer to converge to an oscillatory

steady state, the upper peak of the oscillation will converge above ô6, while the lower

peak will converge below ôs. Now the necessary condition for convergence is that the

upper peak of the oscillation (x'(t)) decays in magnitude and approaches ôo from above,

while the lower peak should approach ôe from below. To illustrate this condition, Figure

5.3 shows a simulation for two different initial values of ôo (all other parameters are as

in section 5.5).

x" (t) -õo
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o 50 100 150 200 250 300 350 400 450 500
tíme (íteratíons x 7OO)

FIGURE 5.3. Departure of the cellular variable -r'(t) from the forced steady

state value for two input conditions. The vertical axis represents the difference

between the peakvalue of.r(t) and the forced equilibrium value of õ0. The graphs shows

that the layer cannot be forced into a stable non-oscillatory state when ôois below some

critical value. That is, there exists some critical value below which the layer will enter

into persistent oscillations.

That is, for x(t) to converge to a stable non-oscillatory state, then two iterations after

it is given an input, the value of x(3) must be below x(1). The following three equations

represent the evolution of the variables x(r) and v(r) during the first few iterations.

/- - r \
l1r; = (1 -Ã)ôo +El 

- lt"(l)-ol*\n )

(1-Ã)ôo.u(+)l#dt-o| (545)
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"1.

(s.46)
BGç

BGû

(s.47)

Alternatively, the inhibitory potential at t = 2 must be below its initial value
(i.e., the peak ofthe inhibitorypotential decays). Thatis, ifv(2) < t(0) then the oscillations

will decay. Tl:e reason for this is that the final steady state i is always less than (Í - @).

The rate of the oscillation decay will depend on how close ô"/2 is to the lower critical

value ôl (tne closer the two are, the slower the rate of decay).

The critical ôf can be found by solving nØ-ôo = 0. Although we have not found

a closed form analytic solution to õÍ (computer simulations show that for the chosen set

of parameters ôf-0.0049032,d-ZSlg+.5) we have been able to show that if BIA = 1 and

õr=1, then v(2)-õ,12<0 (i.e., ô"/2 leads to convergence). Thus ôo=ô"/2 guarantees

convergence. Since õ¡2 canbe determined from (5.38) and G from (5.43), we can then

determine the magnitude of the input that can drive the layer to stability. Since õ,12 > E, ,

the predicted input magnitudes will be somewhat pessimistic (i.e., they will be higher

than the minimum required to drive the layer to stability).

Thus for stability, we want i > @ + ô./2. Therefore

A +c r + cL ( 1 - Ã)õo . F( f ) [ r- *.*- - "]l

A + Gî*a[rr -Ã)¡o. F(?)l ffi- "]l

(s.48)
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FIGLIRE 5.4. Decay in oscillations at õs = E,lZ in the open'loop and the closed-

loop layer. Initial conditions for the simulation are: .r(0) = 0; v(0) = 0; v(0) = 0; ø(0) = 1;

y(0) = 0. Note that the postsynaptic feedbackhas increased the rate of oscillation decay.

Substituting for õ"l2from (5.38) gives

o 1 00 200 300 400 500 600 700

o 1 00 200 300 400 500 600 700

I (s.4e)

Rearranging and substitutin g for v and G (i = (BlA)Í(n - I)lnlõ,|z,G is given by (5.a9))

gives

î> -Ar! (A1- 4Aø4)
(s.s0)

2Al

where

Ar = G'[B - 'q(n - o)] (B - o) - oB) (s.s1)

BG.ç - o( nc'ï,--------:_
A + G.î +-Gi - "' 2[cri,¡a -Ãtn- o)] +¿eo

Az=2BGS -}€'AGR -zG@S -2@GvGR -A@.BG

_@BGGv +OGRA +OGRGV +OSG (s.s2)
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Az= -Ze,As - 2octs + osA + osct (s.s3)

where

S =,4@

R = [B -A(B - O)]

(s.s4)

(s.ss)
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FIGURE 5.5. Stability of the facilitated shunting competitive neural layer as

a function of the average input strength.

The above figure shows that an increased level of facilitation will enable the layer to

stably process input patterns whose average strength is low. Note that the worst case

scenario is a zero contrast input pattern since all the cells will be engaged in competition.

6.7 Simulation of Designed Layers

Below we provide simulations of the designed PFE-SCNL at the lower lateral

gain G = 5000 for three cases: (i) feedforward-only computations with zero postsynaptic

feedback; (ii) feedforward-feedback case; and (iii) a preferred implementation where

the fast cellular variable is iterated several times for each iteration of the slow synaptic

variables.

186

Now from equations (5.18) and (5.50) .r¡¡e can determine the minimum average intensity

that an input spatial pattern needs to have to drive the layer to a stable state. Figure

5.5 shows the simulation result for increased levels of facilitation.

._r
d

Reg{orL ¡fstabllItg
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FIGURE 5.6. Simulation of the designed PFE-SCNL (zero postsynaptic feed-

back, G = 5000): (a) Cellular dynamics (xi); ft) Synaptic EPSP (v¡) and the lateral

feedback inhibitory postsynaptic potential O¡); (c) Stored transmitter (u¡); and (d)

Mobilized transmitter (yi). The steady state values (after 200 iterations) are:

î ¡ = 0.121420; ú, = 0.014925; i ¡ = 0.02140i úi = 0.83582) 9 ¡ = 0.01'4295.
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FIGURE 5.7. Simulation of the designed PFE-SCNL (with posts¡rnaptic feed-

back, G = 5000): (a) Cellular dynamics (r,); (b) Synaptic EPSP (vr) and the lateral

feedback inhibitory postsynaptic potential (v,); (c) Stored transmitter (u); and (d)

Mobilized transmitter (y,1. The steady state values (after 200 iterations) are:

i ¡ = 0.!1.9448; úi = 0.0 1 33 1 34; i, = 0.019429; û ¡ = 0'6350; Íi = 0.01 I 146.

The simulation results in Figure 5.7 demonstrates that the steady state variables

approach their calculated values. Note that the sharp spike shown in graph 5.7(a) is
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due to an initial fast rise in -xi, versus a much slower rise in v,. This undesirable effect

can be removed by iterating the variables x, and v, several times for each iteration of

the other three variables (typically 5-10 times; see Figure 5.8).
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FIGURE 5.8. Simulation of the designed PFE-SCNL (with postsynaptic feed-

back and l0iterations of the variables x,, and l,¡i G = 5000): (a) Cellular dynamics

(",); (b) Synaptic EPSP (vr) and the lateral feedback inhibitory postsynaptic potential

(v,); (c) Stored transmitter (ø,); and (d) Mobilized transmitter (yr). The steady state values

(after 2OO iterations) are: i¡=0.119448; û¡=0.0133134; v¡=0.019429i ú¡ =0.63500;

Í¡ = 0.011146.

Note that the steady state values are equal to those of Figure 5.7, but the spike

that appears in Figures 5.6 and 5.7 has been removed by iterating the variables x, and

v, (equations (5.12) and (5.13) respectively) fO times for each iteration of equations

(5. 17), (5.21) and (5.22).

õ.7.1 Simulation of Selective Information Transfer

PM-SCNLs may be presynaptically facilitated or inhibited and this modulation

may be pattern-specifrc or spatially specifrc. Each of these modulatory mechanisms

affect the neural signal transmission in a different way and give rise to different end

results. rWe will presently limit our discussion to presynaptic facilitation, i.e., we will
consider the two facilitatory modes of regulating the signal flow into a PFE-SCNL.

Below we provide computer simulation results of the designed PFE-SCNL for

each mode of synaptic facilitation (spatially-specific and pattern-specifrc).
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Simulation of Spatially-specific Facilitation

Figure 5.9 shows the bottom-up 2-D spatial input and the resultant steady

state of the layer for the case of zero facilitation. In Table 5.1 we show a 5x5 matrix,

I(ij), that depicts the amplitudes of the bottom-up inputs from a 5x5 region that is
centred at the leftmost vertical edge of one of the ships (the ship shown in the middle

of Fig 5.9(a)). In order to expose the synaptic and cellular dynamics, we will present

simulation data for three input pathways whose bottom-up input amplitudes are shown

in bold. The entry in position (4,0) corresponds to a high amplitude bottom-up input
whose pathway is not on the ship's boundary. That is J(4,1) = 1.0. The entry in position

(3,3) corresponds to a pathway that is on the leftmost edge of the ship's boundary and

whose input magnitude is also high, J(3,3)= 1.0. The third bold entry, at position (4,4)

corresponds to an input pathway that is on the ship's boundary 0ocated on the horizontal

edge at the far left corner) but whose input magnitude is relatively low, i.e. , J (4,3) = 0. 1 .

In the simulations shown below, all parameters are as per design, with G = 5000.

+.

(a) J¡¡ ft) Steady state cellular activation level (Í¡) for the
case ofzero facilitation (nu=O y,,,rt,

FIGURE 5.9. Bottom-up input and the resultant steady state cellular activa-
tion level for the case of zero facilitation.

The simulation runs for 100 iterations of the layer (each differential equation

is iterated using the Euler's frrst order approximation method with Lt = l) and is split

into two parts: iterations in the interval 0 - 49 are without the facilitatory gain control;

iterations in the interval 50 - 100 include the facilitatory gain control.

TABLE õ.I
0.00 0.00 1.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 t.oo 0.00 0.00
t.oo 0.00 0.00 0.lo 0.40
0.00 0.00 0.00 0.00 0.00

The table shows the amplitude of the
bottom-up inputs, centred at the leftnost
vertical edge of the ship shape (refer to the
text for further explanation).
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FIGURE 5.10. Synaptic and cellular dynamics for three input pathways,

before, during and after the application of the spatially-specific facilitatory
gain control.

+

J¡j F¡¡ i,¡j

î¡j u¡j 9,¡

FIGURE 5.11. Steady state after the introduction of the spatially-specific
facilitatory gain control signals.
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Figure 5.10 shows the synaptic and cellular dynamics for the three input
pathways: (i) on, high - for a cell whose location is on the reference shape and whose

bottom-up amplitude is high; (ii) on, low - for a cell whose location is also on the reference

shape but whose bottom-up amplitude is low; and (iii) off, high - for a cell whose location

is not on the reference shape but whose bottom-up amplitude is high.

As can be seen in Figures 5.10 and 5.11, the bottom-up signals whose synapses

are facilitated give rise to relatively high activation levels of their target cells, while

the unfacilitated cells have their activity suppressed by lateral competition.

Simulation of Pattern-specific Facilitation

This simulation repeats the one above with the exception that we are now using

a specifrc 2-D spatial pattern to provide the synaptic facilitation. Hence the frnal steady

is expected to be different but only in those locations where the pattern-specific and

the spatially specifrc facilitatory gain control signal differ. It is thus expected that the

horizontal line that appears within the boundary of the input target ship will be

eliminated from the layer once the shown pattern-specifrc facilitation is introduced into

the layer.

J¡j F¡j î¡j

4

+

û¡¡ tî¡j 9,¡

FIGURE 5.12. Steady state after the introduction of the pattern-specific
facilitatory gain control signals.
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In the above simulations we have considered simple input spatial patterns that
were not derived from real-world images. To demonstrate the robustness of pattern

selective information transfer on real-world image data, below we show the simulation

results of presynaptic facilitation on real-world visual image data.

Figure 5.13 shows an object (a toy dinosaur) whose edges are used as the input

to layer. The grey level images (8 bits, 256x256 pixels, captured by a Vidicon camera

and then digitized) were preprocessed by a 3x3 Sobel edge operator to obtain object

edges. The resultant edge processed images were then scaled (by a simple averaging

procedure) to the size of the layer (32x32 cells). This reduces the resolution of the target

and the test images by a factor of 8. The edge processed image of the target object is

initially fed to the layer. The resultant steady state (shown in Figure 5.13(d)) was then

used as the facilitatory spatial pattern on cluttered images that contained the same

object. Note that as a result of the competition in the layer, some of the weaker edges

in the edge images of the target object did not survive and were absent in the memory,

as shown in Figure 5.13(d).

(a) Object 1 (256x256) (b) Objects 2 edges (c) Input (32x32) (d) Steady state ofthe layer

FIGURE 5.13. Target object whose resultant edges are used as the 2-D

facilitatory spatial pattern.

Test image 1
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Test image 2 Image 2 edges Layer input Layer output

Test image 3 Image 3 edges Layer input Layer output

tr.IGUR,E 5.14. Example of selective information transfer on cluttered visual
images.

In the next section we provide a computer simulation of the designed Feedforward

Excitation-Feedback Presynaptic Facilitation neural circuit and expose its tuning

properties on inputs whose intensity may differ along a given object's boundary.

5.7.2 Simulation of the FFE-FBPF Neural Circuit

To demonstrate the nature of tuning in the FFE-FBPF neural circuit of Chapter

4, we present simulations results on the two spatial patterns shown in Figures 5.17

and 5.18. The shape shown in Figure 5.17 is used a top-down reference that is fed into

F1. This shape is also embedded in the cluttered bottom-up input of Figure 5.17, but

some of its elements are very much weaker in amplitude than those of the non-relevant

shape and clutter. The aim is to use the spatial pattern across F1 (the reference shape)

to extract the same pattern from the input such that the match between Fl and F0

exceeds the required threshotd of 0.98 (which is currently measured by the cosine of

the angle between the two multidimensional vectors Xl,o andXii).In the simulation, we

frrst present the input of Figure 5.18 for the first 50 iterations of the circuit equations

and then introduce the reference shape into Fl. We will follow the dynamics of all

variables in the circuit for three cellular positions in both PFE-SCNLs, i.e., Fields F0

and F1 (refer to TABLE 5.1). Both Fields have the same parameters with the exception

that the bottom-up transmitter mobilization rate from Field F0 to Field Fl is five times

that of the input synapses to F0. Synaptic pathways between the two Fields may also

in general be modulated (as in the self-regulated attentional neural circuit of section

6.3.1in Chapter 6).

Þ
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variables in Field F0, at three
cellular positions (before, during
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FIGLIRE 5.16. Dynamics of the five
variables in Field Fl (at the same

cellular locations as for FO).
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ar

FIGURE 5.17. 2-D top-down refer-
ence input into Flused to regulated
the circuit dynamics (shown in
reverse contrast: black = 1; white =
0).

FIGLIRE õ.18. 2-D cluttered
bottom-up input used to demonstrate
the tuning characteristics of the
FFE-FBPF neural circuit.

Figures 5.15 and 5.16 show the dynamics of various variables in the circuit,

for each of the Fields, at three cellular positions: (i) on, high - for a cell whose location

is on the reference shape and whose bottom-up amplitude is high; (ii) on, low - for a cell

whose location is also on the reference shape but whose bottom-up amplitude is low;

and (iii) off, high - for a cell whose location is not on the reference shape but whose

bottom-up amplitude is high. The actual values (centred at the leftmost vertical edge

of the ship shape) are shown bold in Table 5.1.

ii! ûif ,îi! ti!
FIGLIR,E 5.19.Steady state variables of Field F0 before the introduction of the

top-down reference input into Fl.

îif iif ,îif tif
FIGURE 5.20. Steady state variables of Field FO after the introduction of the

top-down reference input into Fl (the final steady state match between F0

and Fl is 0.9950).

.l

rl
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The results shown in Figure 5.20 show why the circuit has an interesting tuning

property. If we refer to the two columns on the right, \Me can see that, in the steady

state condition, the synaptic transmission gain (mobilized transmitter, variable ,lfl) is

higher in magnitude in those locations where the facilitated input signal is lower in

magnitude, while the stored transmitter shows the opposite effect. The uniform top-

down pattern specific facilitatoryfeedback signal and the pre-postsynaptic interactions

have adjusted the two synaptic variables such that the synaptic gain is non-uniform

across the input. This continual readjustment of the synaptic transmission gain

(without long term memory modifications) provides the FFE-FBPF neural circuit (and

the SAART neural network) the type of flexibility that does not appear to be available

in the current artificial neural networks. This flexibility is needed to overcome the

problem of having a fixed number of receptive fields that in general may not be able to

handle the vast variety of cluttered backgrounds in which the same object can appear.

Figure 5.21 shows the global dynamics of the circuit during the simulation run.

As can be seen in graph (a), the match between the spatial patterns across the two

interacting neural Fields has fallen at the instant that the top-down input is introduced,

but is soon elevated to a very high level (above 0.98, as measured by the cosine of the

angle between the two multidimensional vectors that represent the two spatial

patterns). Graph (b) shows that the circuit converges to a stable state (as measured by

the time rate of change of the match).

1.0

o.9

oa

100

1 0-1

10-2

1 0-5
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o7
o,6

o5
o.4

o.3

o,2
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o 10 20 30 40 50 60 70 80 90 100 o 10 20 Jo 40 50 60 70 80 90 100

time (iteration) tíme (lteration)

FIGURE 5.2l.Dynamics of the FFE-FBPF neural circuit: (a) degree of match
between F0 and F1 (threshold = 0.98); (b) rate of change of the match (steady

state threshold = 0.0001).

5.8 Conclusrons

We have presented a mathematical procedure for the design of modulated

competitive neural layers which is based on finding the steady state solution to the

synaptic variables when there is no postsynaptic feedback. The method has proven to
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be quite effective in determining the critical values at which the layer will oscillate.

Computer simulations of the designed layer have verified that the layer is stable under

various input conditions.
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Chapter 6

Self-regulation, Spatial Attention
and Memory Guided Search

"segmentation is a dfficult task, especially when there are mdny objects

in a scene partially occluding one another. The problem is essentially that
glob øl information i s needed to make decisions at the local leu eI concerning

what goes with what. At lower leuels of processing such as V7, howeuer,

the receptiue fields are relatiuely small and it is not possible IocaIIy to

decide which pieces of the image belong together. If lower leuels can u,se

information that is auailable at higher leuels, such as representation of
whole objects, then feedback connections could be used to help tune lower

Ieuels of processing".

Churchland, P.S., Ramachandran, V.S., and Sejnowski, T.J. (1994)

6.1 Introduction and Oven¡iew

In this chapter we extend the neuro-engineering design principles of Chapter

4 and propose a design logic for two dimensional neural circuits that are based on several

interacting 2-D Presynaptically Modulated Shunting Competitive Neural Layers.

Hence the mathenìatics that was introduced in Chapters 4 and 5 is also applicable here.

Ho'wever, in this Chapter we will propose several new \Mays of using PM-SCNLs in more

complex neural circuits. As a guide to the desired neurodynamics and circuit properties,

we will partially address the various aspects of cognitive visual functions (whose

cognitive and electrophysiological data was discussed in Chapter 2) with a particular

emphasis on the dynamics of short term memory, attentional modulation and atten-

tional selection. The generated neural circuits, while increasingboth in complexity and

capability, are based on very simple psychophysically and neurophysiologically

supported concepts of biological visual information processing.
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The chapter addresses the following issues in mechanisms and circuits of

primate vision and visual memory:

(i) neural circuit for the detection of resonant (matching) states;

(ii) reverberatory memory and self-regulated attentional modulation during learning;

(iii) feedforward (bottom-up) neural network architecture for pre-attentive attentional

selection, shifts ofvisual spatial attention, translation invariant 2-D pattern repre-

sentation, learning and recognition;

(iv) neural circuit for top-down (memory) guided attentional selection and visual search

in a cluttered bottom-up input.

At the end of the chapter we will provide a minimum 2-D neural circuit that

can simulate and explain a recent neurobiological experiment on the neural basis of

memory guided visual search in a monkey (Chelazzi et a|.1993)'

6.2 Detection of Match/Nlismatch and Resonant States

In Chapters 4 we have demonstrated that the facilitatory presynaptic feedback

from one neural Field of competitive neurons to another can cause selective resonance

(or a match in spatial activity) between the two if both have a common spatial pattern.

In all the neural circuits discussed and simulated so far, whenever it was required to

measure the degree of match, we have used a simple algorithmic procedure (i.e., by

calculating the cosine of the angle between two multidimensional vectors). This

computation, although performed by a slightly different algorithmic method in ART

based neural networks, forms a crucial step in ART's orienting subsystem as it compares

the bottom-up inputs with the top-down memory. The result of this comparison is then

used to control whether the network is to learn the input or whether it is to be reset

(in which case a memory search gets engaged). While being computational simple and

easy to implement, these algorithmic procedures for evaluating the degree of match is

not suitable for more general neural network designs where it may be required to use

the degree of match/mismatch to regulate system dynamics. It leaves us now to propose

a neural mechanism for the detection of resonant or matching states.

Figure 6.1 shows how we can detect whether spatial patterns across two

interacting neural Fields F0 and Fl are matched or mismatched. As shown, cells from

each neural Field project both excitatory and modulatory signals to two competing

neurons, M (the match neuron) and N (the mismatch neuron). For simplicity we have

only shown one set of synaptic pathway into the match/mismatch cells, although there

are as many such pathways as the number of neurons in the two interacting Fields.
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The activity of cell M indicates the degree of match while the activity of cell N indicates

the degree of mismatch between the neural patterns of activity across the two Fields.

Equations (6.1) and (6.2) describe the activities of the two competing neurons, M and

N.

+ +

tr¿1u:tlJø.;l nuhnt
presanaptlc
ínhíhífion

input

FIGLIRE 6.L.Neural mechanism for the detection of match/mismatch between

the spatial patterns across two interacting neural Fields FO and Fl.

#=-ArM + (Bu- M)GM\M- MG Mv M (6.1)

# =-A"N + (BN - N)cN vN - N G Ni N (6.2)
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where A, and A¡ are the passive decay rates of the match and the mismatch neuron

respectively; B, and B" are their respective upper saturation levels; G, and G" are their

respective excitatory postsynaptic gains; G, and G" are their respective lateral inhi-

bition gains; V, and Vy are their respective total excitatory postsynaptic potentials; vt
and v" are the potentials on their respective slow inhibitory interneurons that mediate

the competition between the two cells.

These equations may be solved at equilibrium to give

(6.3)

(6.4)
A*+G*V*+G,¡v,¡

The competitive interactions between the match"/mismatch neurons is mediated

by slow inhibitory neurons whose activation levels,ly andl*, are given by

dv,
dt = -Auv u+ B Mf(N) (6.s)

(6.6)

where f(.) is a thresholding function (linear above a threshold). Below we describe the

synaptic dynamics into the match"/mismatch neurons.

Synaptic dynamics of the match cell pt

The total excitatory postsynaptic potentialV, acting on neuron M is given by

v¡"t=lìr:Y +>r7,ii" 6.7)

where ,i,il i"the (i, j)'ù synaptic input from Field F0 to cell M andis given by (6.8), while

u,f't ir the (i , j)'h synaptic input from Field Fl to cell M and is given by a similar equation.

+--D':,il .r4:;)lp:* +rlil ¡çur][rí* -Yoil). (6 8)

d.v 
^,

;=-ANvN+BNf(M)
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where D is the passive decay rate of the EPSP. The second term in the above equation

represents two contributions to the EPSP: (i) an input driven contribution via the term

¡Gi;)pifllri,* -¡et).tnat is independent of the postsynaptic activity; and (ii) a

contribution that is due to the correlated pre-postsynaptic activity (given by the term

f(.if)K:il ffqlyi,il -rfflþ As in Chapter 4, the latter is assumed to exert a gïeater

effect (i.e., by choosing rí't pll.

Stored transmitter

¿"Ï! FùM

d; - .-u- (t - "i,*)-lBi* +I* ¡Gi;)+ xfil ¡qrw){"Í)] (":'* - r:Y)

(6.e)

The term -xi{ ¡<u¡¡{.::)("i,* -ri,*) in the above equation says that the stored

transmitter is depleted by the conelated frring of the postsynaptic neuron M and the

synaptic input signal f{.:,ù Note that all synapses have a fixed transmitter production

,^t kl¡il = 1, V(i,i)).

Mobilized transmitter

+=-^[NfÏ - ¡(,:;)lr:* *{ xur][rí* -Y'û'f.

*[pi* *Hi# r(,:,')](":,* -r:,*) (6.10)

where B;* i. the tonic level of transmitter mobilization in the excitatory synaptic

pathways abutting cell M. The term ,i. f{-iì("i,* -ri,*)i"equation (6.r0) says that

the (i,j)'r synapse from Field F0 to cell M is facilitated by the (i,j)'h cellular activity of

FieldFl, whercUlil isthefacilitatorygain. Similarsetofequations applyto theFI -+ M

synapses.

Synaptic dynamics of the mismatch cell N

The excitatory set of synaptic pathways into the mismatch cell N also have the

same dynamics but, instead of mutual presynaptic facilitation, these pathways are

engaged in mutual presynaptic inhibition. That is, the corresponding cells in Fields F0

and Fl presynaptically inhibit the transmitter mobilízation process in the synapse of

the other. The following equation represents the dynamics of the transmitter mobi-

lization process in a synapse from Field F0 to cell N.
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+ =-{{ f!-{",1)to;. *ridnrol[rí* - r"il].

+
Biil rnrul

- !¡.¡ ) (6.11)( r¡t
\u,.¡r*ui! tþ{;

The term
l'.";*,(";')]

in the above equation is the inhibitory term that reduces the

transmitter mobilization rate of the excitatory (i,j)'h synapse from Field F0 to cell N

when a neuron in the corresponding location of Field Fl is activated above its threshold.

When the mobilized transmitter in all the active excitatory synaptic pathways to cell

N is reduced, the total EPSP on cell N is also reduced, while the EPSP on cell M is

increased, thus enabling cell M to become active. However, this can only occur if the

spatial patterns of activity across Fields F0 and F1 are well matched. The degree of

match that needs to be met before cell M becomes active can be controlled by the tonic

level of transmitter mobilization in the synapses. A higher level of tonic transmitter
mobilization in the excitatory synaptic pathways to cell N means that if cell M is to be

activated, then the degree of match between the spatial patterns across Fields F0 and

Fl needs to be very high.

6.2.1 Simulation of the MatchllVlismatch Neural Circuit

Below we provide two computer simulations that demonstrate the match/mismatch

neural circuit on oscillatory neural layers. However, rather than simulating the circuit

shown in Figure 6.1, we provide computer simulations of the circuit shown in Figure

6.2 whose neurons are modelled by oscillatory dynamics (refer to Chapter 4, section

4.5.2).

Note that the circuit shown below differs from that shown in Figure 6.1. In the

circuit below, both neural Fields receive the same bottom-up input (whereas in the

circuit of Fig. 6.1, only Field F0 receives the bottom-up input, while Field F1 receives

its excitatory input from F0). The purpose of simulating this circuit is to demonstrate

that: (i) the facilitatory presynaptic feedback can synchronize the two oscillatory neural

Fields; and (ii) the match neuron will become active onlywhen the two are synchronized.

As in section 4.5.2 (Chapter 4), each oscillatory neural Field consists of 20 excitatory

neurons and 20 slow inhibitory interneurons. Each excitatory neuron in the two Fields

is given random initial conditions. Cells in each Field are also subjected to the same

fixed bottom-up input that is constant in amplitude and time at each spatial location.

Neurons within each oscillatory neural layer are coupledvialateral presynaptic exci'
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tation (see Chapter 4). This ensures cellular synchronization across each layer.

Facilitatory presynaptic feedback from one Field to the other ensures synchronization

of the two. These neural Fields are thus similar to those described in section 4.5.2 of

Chapter 4. Note that the circuit is equally applicable to the case where pulsating Field

F0 provides bottom-up excitatory pulses to F1, provided that there is no significant

time delay introduced between the two. The non-oscillatoryversion of the circuit shown

in Figure 6.1 will be used in section 6.3.

+ +

]W -nr

lnpvt

FIGURE 6.2. Simulated match/mismatch neural circuit on oscillatory neural
layers.

Alt differential equations in the circuit (including equations (6.1) and (6.2))

were iterated using Euler's first order approximation method with time increment

Lt = L For this time step, the circuit parameters are as follows: Au = AN = 0.01i B, = B* - 1'

Gu = Gw = 0.0005i G, =G* = 5;Ãu = Ax = 0.001; E, =E ¡r = 0.001; threshold for postsynaptic

activation @=0.3, f(x)=max(.x-@,0); D =0.ï pTil =pl'' =ro; KIM =KIil =go'
Y'ûo -t''' =0.2; d,P =crl't=0.05; þI,il =þI'' =o; pIil =pI'' =o.012; KÏfl =Kl'' =1.2;

^[r* =y:'* =o.ot;pTl =p]'* =0.001; rc\il =KI'' =t;þiil'=þFrMr=0.004; HI# =HI'' =0.2.411

the parameters in the synaptic pathways to the mismatch cell are as above, with the

exception of the following: pffl = pf'" = 100; Hl{ = H"' - z; nifl =-H''r = 2. The parameters

for the two neural Fields (F0 and F1) are the same as for those in section 4.5.2of Chapter

4, and are given in Appendix 8.1.

F7,

o

lnput
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>{_ to



6.2.1 Simulation of the Match / Mismatch Neural Circuit 206

For the above model to be applicable to oscillatory neural layers, the threshold

in the inhibitory modulating presynaptic pathways must be lower than on the facili-

tatory pathways. The reason for this is that if the excitatory and the presynaptic

inhibitory signals from Fields F0 and Fl arrive simultaneously, presynaptic inhibition
may not have sufficient time to prevent the mismatch cell N from firing when the spatial

patterns across Fields F0 and F1 are well matched. Alternatively, one can use slower

intermediate variables (as in section 4.2.3) to depress the relevant synapses. In the

simulation results shown below, the presynaptic inhibitory term in equation (6.11) is

1 I

t +H;û' f(xir, r +nlil *!,'
(6.t2)

That is, there is no threshold on the output signals driving presynaptic inhibition.

Figures 6.3 and 6.4 show the simulation results that were obtained with the oscillatory

version of the circuit for two cases: (i) interacting neural Fields, where one Field (Field

Fl) presynaptically facilitates the other (Field F0); and (ii) independently oscillating

neural Fields (i.e., there is no interaction between F0 and F1).

Results in Figure 6.3 show that the two neural layers eventually become

synchronized. This synchronization takes some time, as sensed by neuron M, which

begins to fire at t = 4500 iterations. Since the competition between the two sensing

neurons is mediated by inhibitory neurons whose decay rate is slow, it take some time

for the excitatory inputs on neuron M to build to a level sufficiently high to overcome

the inhibitory input from neuron N. However, when this happens, the flip between M

and N is very fast.

Figure 6.4 shows that if the two neural layers do not interact, then they remain

out of phase with one another. These simulations thus demonstrate the powerful effect

that the facilitatory presynaptic feedback from F1 has on the dynamics of F0. Simulation

results in Figure 6.4 (open loop system) show that although cells within each neural

layer synchronize, the two layers remain asynchronous (as sensed by neuron N).

Although it is not the intention of this thesis to use oscillatory neural layers in circuit

designs, above simulations show that, at least for simple circuits, it is feasible to use

our proposed neuro-engineering design principles to model oscillatory neural layers.

However, since there is no established parameter design procedure nor suitable

mathematical methods for stability analysis of oscillatory neural layers, their appli-

cation is currently limited.
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6.3 Storage and Self-regulation of Memory

In this section ìMe propose how presynaptic modulation may be used in the

attentional regulation and the storage of memory, particularly the storage of the

Immediate Short Term Memory (ISTM).'We define Immediate Short Term Memory as

the memory of the most recent spatial pattern (or neural activity) that is retained after

the input offset. One of the ways that the ISTM may be retained after the input offset

is by an excitatory reverberatory loop between two neural Fields. In Chapter 3 we have

seen how the reverberatory loop is implemented in the ART-3 neural network. Current

neural network models and theories (including ART) do not provide a plausible solution

to how such reverberations may be modulated by attentional factors. Grossberg (1976)

has proposed that one source of non-specific arousal modulating signals may be due to

a mismatch between a bottom-up input and a top-down expectancy. However, due to

the lack of plausible design principles by which such modulatory effects may be

embedded in a real-time neural network, none of the ART based neural networks

developed to date model such mechanisms. In this section we propose neuro-engineering

design principles for the design of self-regulated attentional neural circuits whose

inputs and reverberations may be presynaptically modulated by the facilitatory/inhi-

bitory synaptic gain control signals.

To begin with, we first consider the schematic of a reverberatory neural circuit

shown in Figure 6.5(a). The circuit consists of three presynaptically modulated shunting

competitive neural layers (or Fields), denoted by F0, F I and F2. Each of the shown Fields

is assumed to be modelled by equilibrium steady state activity (i.e., non-pulsating

dynamics). The bottom-up 2-D spatial pattern enters into the circuit via Field F0, which

provides excitatory synaptic inputs to FL. Field F1 interacts with Field F2 t}rro:ug}a a

mutual excitatory reverberatory loop. Field F1 also provides top-down presynaptic

facilitation of Field F0. The excitatory reverberatory loop between Fl and F2 will
maintain the ISTM of the bottom-up input once the input is removed. It is our aim to

investigate how the reverberation between Fields Fl and F2 may be modulated and

how the strength of this modulation affects the integrity of the stored ISTM when the

input is either offset or is replaced by another 2-D spatial pattern that may or may not

embed the original pattern in a cluttered background.

Let us now suppose that the strength of the reverberation between F1 and F2 is

presynaptically modulated by facilitatory and inhibitory synaptic gain control signals,

as shown in Figure 6.5(b). If Fl and F2 are coupled by a strong facilitatory gain control

signal, then the ISTM activity will not only be higher in magnitude but will also persist

for a longer period of time when the input is removed. Since in general there may be a

need to modulate the strength of these reverberations, thus modulating the duration
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of ISTM, we need two modulatory signals (f - facilitatory and 1 - inhibitory) to pres-

ynaptically modulate transmitter mobilization in the respective pathways. These

modulatory signals may be generated elsewhere in the system by a pair of competing

neurons or circuits. For example, signals F and I may be generated by at least two types

of circuits: (a) by a neural circuit that detects novelty/familiarity of the input stimulus;

or (b) by a neural circuit that detects whether the spatial pattern across F0 and Fl are

matched or mismatched.

I¡'

FI FI

F0 Fl)

FI

F2

Input Input

(b)(a)

FIGURE 6.5. Schematic of a reverberatory attentional neural circuit for the
maintenance of the Immediate Short Term Memory (ISTM). Reverberatory

activity between Fl and F2 maintains ISTM, the strength of which may be pres-

ynaptically modulated, as shown in (b).

As an example, let us assume that the presynaptic signals are driven by the

novelty/familiarity part of the system (as yet unspecifred). Then, if the bottom-up input

is familiar the strength of the reverberation should be decreased (i.e., pay less attention

to familiar stimuli - a well established result from psychology). Otherwise we would

want the opposite, i.e., an increase in the strength of the reverberation. However, this

should occur only after the familiar stimulus is recognized (otherwise one cannot

conclude whether the stimulus is familiar or novel) and when it is determined that the

familiar stimulus is of no immediate interest. Thus, when the other parts of the system

reach a consensus that the stimulus is novel, we should expect that strong facilitatory

signals are issued to increase the strength of ISTM reverberation. Otherwise, it is
assumed that a weak facilitatory and a strong presynaptic inhibitory signal is issued.
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FIGURE 6.6. Strong versns weak ISTM in a reverberatory attentional neural
circuit.

If a bottom-up input stimulus is retained in the ISTM by a strongreverberatory

loop between FL and F2 and if the sensitivity of F1 to the inputs from F2 is much larger

than it is to the bottom-up input from F0, then as schematized in Figure 6.6(a), the

neural pattern of activity across Fl (the car boundary) should be able facilitate the

same object boundary when it is embedded in a cluttered bottom-up input. If on the

other hand the retained ISTM is not very strong, more of the non-matching bottom-up

input will enter into the circuit, as schematized in Figure 6.6(b), thus corrupting the

original ISTM. As indicated, the frnal spatial pattern that ends reverberating in the

circuit depends on the relative strengths ofthe original ISTM activity and the bottom-up

input. Because the strength of the facilitatory top-down presynaptic feedback from Field

Fl to Field F0 is indirectly affected by these modulatory mechanisms, it may be

concluded that the circuit's level of attention is regulated by the combination of the F-I

signals.

Figure 6.7 shows a three layered neural circuit that maintains the ISTM in

the reverberatory loop between Field Fl and F2. For simplicity we have shown only

one set of modulatory pathways that abut the bottom-up inputs into Field F2.

Figures 6.8 and 6.9 show the simulation results that were obtained with the

above neural circuit for two examples. In each of the simulations we first store a

reference 2-D shape (shape 1) in the reverberatory neural activity by presenting it to
the circuit for ten iterations of the circuit equations. This is then followed by a new

input for another ten iterations. In the first example shown in Figure 6.8, the second
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input embeds shape 1in a cluttered background, whereas in the second example shown

in Figure 6.9, the second input contains a nelü shape. We should thus expect the final
steady states for the two examples to differ.

.F'

reuetberatotA
loop

ítl;pttt

FIGURE 6.7. Attentional neural circuit for ISTM storage in reverberatory
neural Fields.

As can be seen in Figure 6.8 at time t = 20 iterations, the steady state response

of the reverberatory neural circuit shows that the stored ISTM has not been corrupted

by the second input. The reverberating pattern has also facilitated the transmission of

the matching portions of the bottom-up input, thus causing a steady state match

between the ISTM across F1 and the attended portion of the input pattern at F0. The

strong circuit reverberation and the competitive effects in each Field have thus

prevented the degradation of the ISTM. If the strength of the reverberation was much

weaker, then the activity across the three Fields (F0, Fl and F2) would be a combination

of the ISTM and the cluttered background.
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FIGLIRE 6.8. Steady-state simulation results on the effect of strong ISTM on
the bottom-up neural signal transmission in a cluttered input.

The relative intensity of each portion v/ould thus, in the steady state, depend on the

strength of the initial ISTM reverberation (as was indicated previously in Fig 6.6(b)).

However, because the resultant 2-D spatial pattern across F1 is always engaged in the

facilitation of the corresponding bottom-up pathways into F0, the steady state response

will always end up in a match between F0 and F1 (provided that every subsequent

input contains the original pattern). This reverberatory neural circuit is thus more

flexible and capable than the reverberatory loops as currently implemented in ART

based neural networks.
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FIGURE 6.9. Steady-state simulation results on the effect of strong ISTM in
the presence of a neïv input stimulus.

The simulation data in Figure 6.9 shows that because the strong reverberating

ISTM (due to shape 1) cannot match with the portion of the bottom-up input that it can

facilitate, a steady state is reached where the degree of match is below the required

tolerance level (which was chosen to be 0.98). Figure 6.10 shows the degree of match

between Fietds F0 and F1 for the two examples considered above. Note that at the

instant the second input is presented to the circuit, the degree of match in the frrst
example (graph (a)) has fallen below the required match threshold but was soon elevated

and remains above the threshold, whereas in the second example it has fallen and

remains below the match threshold.
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FIGURE 6.10. Degree of match between the reverberating ISTM and the
selected portion of the bottom-up input. (a) circuit dynamics during a matched

phase; (b) circuit dynamics during a mis-matched phase.

In the next section $/e propose how the modulatory synaptic signals may be

generated and used in a simple attentional neural circuit.

6.3.1 Self-regulated Attentional Neural Circuit

In the previous section we have discussed the simple case of memory storage

as a spatial pattern of a reverberatory activity between two competitive neural Fields

and have not provided the mechanism by which the circuit can autonomously self-re-

gulate its degree of attention. 'We now extend the above concepts by frrst proposing how

one can design a nerv circuit that can detect whether its input is familiar or novel. We

then propose a simple example to indicate how the resultant signals may be used to

provide self-regulated attentional modulation during learning. It is well known that
novel stimuli attract a higher degree of attention and that a memory of an external

sensory event is highly dependant on the degree ofattention that the eventhas received

at the time of its occurrence, (Rock and Gutman, 1981). A high degree of attention

presumably ensures stronger memory encoding, and vice versa.

Ttre schematic shown in Figure 6.11 indicates that in a neural circuit that
consists of three competitive Fields, two pairs of match"/mismatch neurons are needed

to regulate various synaptic pathways. One pair regulates the bottom-up synapses in

the pathway F0-+FL, while the other pair regulates the top-down synapses in the

pathway F2 --> Fl. The memory in the circuit is held in the top-down synapse of Field

F2 and is learned. As shown, the signals from Field Fl to the top-down synapses of

Field F2 provide the spatial pattern that is to be stored in the top-down memory. Figure

6.12 shows the equivalent neural circuit, whose learning mechanism in the top-down

memory pathways is schematized in Figure 6.13.
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FIGURE 6.11. Neural scheme for familiarity/novelty detection and self-re-

gulated attentional modulation. The memory within the circuit is learned and is

stored within the top-dorwn synapse abutting Field F2. Tlvo pairs of match/mismatch

neurons regulate the synaptic transmission gains in the bottom-up and the top-down

synapses to Field Fl. For a novel stimulus, the cellular activity within the circuit will
be high since the mismatch neurons will facilitate the shown synapses, thus increasing

the strength of signals into the neurons of Field Fl. Since there is no previously

established top-down memory, Field F2 will initially be inactive. As the memory

strength increases it begins to activate Field F2. The match neurons then inhibit the

transmitter mobilization of the top-dolvn synapses into Field Fl, thus reducing the

cellular activity and hence the incremental rise in the memory strength.
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FIGURE 6.12. Simple neural circuit capable of single memory storage and
attentional regulation by familiarity/novelty of the bottom'up input.

The following three equations describe the facilitatory/inhibitory modulation of the

synapses in the relevant pathways. All other equations remain same as per pres-

ynaptically modulated shunting competitive neural layer. Equations for the two sets

of match/mismatch neurons are as given in section 6.2.

Top-down transmitter mobilization into Field F2

F2# =- tvi; -ri;lp? *î' r|:lll,i; - Y"f* * B?(,ï; - !¡¡

(6.13)
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where T,F I,V(i, j), is the top-down input into Field F2, which initially does not excite

Field F2 because the top-down synaptic memoryvariables (z{¡',ulttandyff) into the Field

are initialized to below a threshold for transmitter release (these are learned, as shown

in Figure 6.13).

Bottom-up transmitter mobilization into Field Fl(pathway F0 -+ Fl)

+ = - ^f', ff" -rt,î) [ o ?0, *x?',{,; )] [ r,î.", - F"0",]*

[pi'"'* nl"'flNr))¡ o,o, FoF,l

frffi*1r"" -!¡¡ )

This equation says that the transmitter mobilization rate in the synaptic pathways

from Field F0 to Field Fl is regulated by the activity of match./mismatch neuron pair

M2 and Nr. Neuron M, inhibits the transmitter mobilization rate, while neuron N,

facilitates the synapse. Since the two competing neurons measure the match/mismatch

between the spatial patterns across Field Fl and F2, it may be said that the degree of

this match will determine the amplitude of the bottom-up inputs into Field Fl.

Top.down transmitter mobilization into Field Fl (pathway F2 -+ Fl)

+

+

(6.r4)

(6.1s)

(6.16)

+ = - ^i;" rï;" -¡{":;)lo}o' *K\" ¡1*i,' >llrï;" - Y""f*

,"f(NJ] FzFtIBí'"'* FzF
u¡.i

-F^F,l+Hr' 'f(Mt) !¡¡

This equation says that the transmitter mobilization rate in the synaptic pathways

from Field F2 to Field Fl is regulated by the activity of match./mismatch neuron pair

Mrandry,. Hence the degree of match between spatial patterns across Fields F0 and Fl
will determine the strength of the top-down signals from Field F2 to Field Fl.

The memory trace of the input stimulus is stored in the transmitter dynamics

of the top-down synapses that abut Field F2. Specifically, the transmitter production

level, zl', in tlne (i,i)'h top-down synapse adapts to the sum of signals from Fields F1

and F2. This adaptation is specifred by the following gated long term memory equation.

tF2
aZij

dt = -akf - "i) + rr,,tl0.5f(xii¡ +o.sf(xTi> - rÏíl
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where r is the learning rate (r < l), T¡¡ (= 1, V(i,i)) is a top-down driving signal (i.e., all

top-down synapses into Field F2 receive the same bias) and e is a gating signal that
enables memory modification. Because the top-down synapses are initialized to below

the threshold for transmitter release, the top-down input into Field F2 does not excite

its neurons until the synaptic memory strength has increased (i.e., Field F2 remains

inactive until its top-down synapses have learned a spatial input pattern). The term

-õkXt - uff¡ in the above equation says that the transmitter production rate decays via

the storage transmitter (the importance of this term will be discussed in the next

chapter). The factor of 0.5 in the second term ensures that the top-down transmitter
production level (LTM) is bounded.

Tr¡
(acttue top-down bins)

ad;aptíuetrartsrnitter
prodrtction

top - down pre sAnotptíc terminaL

e
(enoble adaptatíon)

-f{xij) -f(xff)
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(ceLtij - Fteld

FIGURE 6.13. Synaptic mechanism for regulated storage of top-down memory.

Memory modification is allowed only when e = 1. The learn enable signal (e) is

specifred as

e ceLt
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c-
I if Ml > @M and L(ML+N1) < ô,

0 otherwise
(6.r7)

where @M is the threshold that must be exceeded by the match neuron Ml, L(Ml +N1)

is the time rate change of the combined activity of MI and N1 (which measures the

stability of the match); ô, is the threshold below which the network is assumed to be in

a steady state. This equation says that the combined rate of change of activity must be

below a threshold for the memory modification to be enabled. Note that the learn enable

signal is obtained from the activity of the lower two neural Fields (F0 and F1).

Detection of Novelty/Familiarity

Since Field F1 also receives excitatory top-down signals from Field F2, the net

spatial pattern of neural activity across Field Fl is therefore a combination of the

top-down memory and the bottom-up input, Figure 6.14.

+ +

rctT@fv

íttpttt;frorn N

FIGLIR,E 6.14.Detection of novelty/familiarity in a self-regulated competitive
artificial neural circuit.

For a novel input, Field F2 will therefore be inactive for a period of time. The

activity of Field Fl will therefore match that of F0 and hence lead to memory modifi-

cation in the top-down synapses of Field F2. Neuron N2 (which measures the mismatch

between the spatial pattern across Fields Fl and F2) will therefore be initially highly

active, thus suppressing the activity of neuron M2. F{íg};, activity of neuron N2 (or low

activityof neuronM2)indicates thatwhateveris across FieldFl (i.e., theinput pattern)

lV3M"

F2
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is not stored in memory. That is, the input stimulus if found to be novel. The net effect

of this is that the transmitter mobilization rate in the bottom-up synapses from Field

F0 to Field Fl is increased, thus increasing the overall cellular activity of Fl.

6.3.1.1 Simulation of a Self-regulated Neural Circuit

Below we provide six computer simulations of the proposed self-regulated

attentional neural circuit. The primary purpose of these simulations is to demonstrate

the dynamics of self-regulation and its effect on memory and shape recognition in both

a simple and a cluttered bottom-up input.

In the first two simulations we compare the cellular activities and the synaptic

memory for two cases: (i) without regulation; and (ii) with self-regulation. These two

simulations run for L00 iterations of the circuit equations. In the next two simulations,

whichrunfor S00iterations, werepeat thefirsttwo simulations butthis timeweremove

the input after the first frfty iterations and follow the circuit and memory dynamics. In
the fifth simulation, which runs for 300 iterations, \Me frrst present a2-D spatial input
to the circuit and allow this to be stored in the top-down memory for the first 50 iter-
ations. We then remove the input for 50 iterations and then represent it, but in a
cluttered background for another 150 iterations. This is then followed by the input offset

for another 50 iterations. In the sixth and the final simulation, we repeat the fifth
simulation, but on the second presentation of the input we introduce a ne\M 2-D shape.

The results for these six simulations are graphed in Figures 6.16-6.21. These graphs

are obtained from one cellular position in each of the neural Fields and at the location

where the first 2-D shape has an active input. The six simulations use the following

2-D inputs:

2-D input for First input used Seqqnd input r.qed Secorrd input'raqed
Simulâtions 1-4. in Simu-lation 5 and 6. in Simulation 5. in Simulation 6.

FIGURE 6.15. The two dimensional inputs used in the simulation of a
self-regulated attentional neural circuit.

The simulation data for each of the simulations is presented graphically for

one cellular pathway. The following is a list of the variables that are plotted in each of

the graphs: (a) cellular activity of one cell in each of the neural Fields; (b) the dynamics

of the top-down synaptic memory variables into Field F2; (c) the synaptic dynamics of

the bottom-up input synapses into Field F0; (d) the activity of the match"/mismatch
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neuron pair (M1,N1); and (e) the activity of the match/mismatch neuron pair (M2,N2).

Since the operation of the circuit has been described above, below we will only briefly

compare the results for each pair of simulations.
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FIGURE 6.16. Cellular and
synaptic memory dynamics
duringlearning in an unregulated
attentional neural circuit.

FIGURE 6.17. Cellular and synaptic
memory dSrnamics during learning in
a self-regulated attentional neural
circuit.

Comparison of the above two simulation results shows that the cellular activity

of the circuit and the top-down memory strength for the self-regulated circuit is lower.

The data shows that as soon as the top-down memory is strong enough and begins to

activate Field Fz,ítcauses a rise in the activity of the match neuron Ml (which becomes

fully activated at t = 40 iterations). Hence the rate of learning is also reduced (unlike

the case for the unregulated circuit, where the memory converges to a much larger

magnitude).



6.8.1 Self-regulatedAttentionalNeuralCircuit 22L

Ê '"€
r
È- o.7

o.J

po
t<

F7.x
F¿t<

F¿z
FZ¿tt
Fl¿a

o6
o5

o.J

200
tltu (aletutloß)

o.J

o2

o.J
o.2

" (a)'"
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memory dynamics during learning
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FIGURE 6.19.Cellular and synaptic
memory dynamics during learning
and memory retention in a self-re-
gulated neural circuit.
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The above simulation data shows that when the circuit is self-regulated, the

activity of Field Fl rises as soon as the input stimulus is removed (i.e., the circuit is

receiving a strong top-down memory of the learned pattern from Field F2). Since Field

F1 is very active and because the input is offset, the transmitter mobilization at the

input to Field F0 rises, thus priming Field F0.
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FIGURE 8.2O. Cellular and
memory dynamics in a self-re'
gulated attentional neural circuit
during learning, memory
retention and 2-D shape recogni'
tion in cluttered background.

FIGLIRE 6.21. Cellular and memory
dynamics in a self-regulated atten-
tional neural circuit during learning,
memory retention and mismatch
with a new input shape.

Comparison of the above two simulation results shows that in the first case, Figure

6.20, the reverberatory memory has enabled the facilitation and hence the recognition

of the shape when it is embedded in the cluttered background (as indicated by the high

activity of neuron M2 at t = 100 iterations). In the second example (Figure 6.21), the

activity of the same neuron drops as soon as the new shape is presented to the circuit
(which implies that the new input does not match the reverberatory memory). The two

dimensional representations of the above two simulations are shown in Figures 6.22

and 6.23.
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FIGLIRE 6.22. Two dimensional simulation results of a self-regulated atten-
tional neural circuit during learning and pattern recogtlition in a cluttered
input.

10 -*-l

56

110 É=]5-

-t

260

Iteration Input x{to x{l *!i z{i

FIGLIRE 6.23. T\n¡o dimensional simulation results of a self-regulated atten-

tional neural circuit during learning and mismatch with a new input.
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6.4 Spatial Attention, Translational Invariance
and Memory Guided Search

During the early phases of our research on biological vision and selective

attention, wehave developed areal-time competitivefeedforward neural networkmodel

that is capable of translation invariant 2-D pattern recognition in simple input envi-

ronments (Lozo et aI., 1994,1995). The model, shown in Figure 6.24, uses ART-3 neural

network of Carpenter and Grossberg (1990) for pattern recognition and an attention

shifting module (Lozo et a1.,1993a, 1993b) whose window of attention shifts across the

input space and selectively transfers the attended patterns to ART-3.
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FIGURE 6.24. Simple feedforward real-time neural network model of
bottom-up attentional selection and translation invarÍant 2-D pattern
recognition (Lozo et a1.,1995).
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The attention shifting module is based on the psychophysical data of the target

cuing experiments (as reviewed in Chapter 2) and assumes that there is a neural

structure in biological visual systems whose bottom-up and the top-down memory

pathways are independent ofexternal spatial locations but are referenced to an internal

frame of reference. Our attention shifting module and the mechanism for achieving

translation invariant representation is thus similar in principle to the dynamic routing

circuit that was previously proposed by Anderson and Van Essen (1987) and subse-

quently implemented in a pattern recognition network by Olshau sen et aL (1992, 1993),

Van Essen et aI. (7994). The main difference between the model by the above mentioned

authors and that described here is that we have used a simple model of chemical

synapses (described in Chapter 3) as a neural mechanism for biasing previously

attended inputs against continually winning the competition for attention. In addition

we have modelled the input transients. Apart from these small variations and the fact

that we have used ART-3 neural network (rather than the Hopfield network), the

method of achieving the translation invariant representation of the selected bottom-up

input is identical. That is, before an object can be recognized, its centroid needs to be

spatially aligned with the central axis of the pattern recognition system. The mechanism

that achieves this spatial alignment is called 'visual spatial attention'.

The visual spatial attention neural network is driven by transient and sustained

neural layers, the output of which feeds into two competitive layers that align the

centroid of the attended bottom-up 2-D shape with the centre of ART-3's input layer.

The first of the two attentional layers was modelled by Grossberg's cooperative-com-

petitive feedback equation, whose lateral cooperation \¡/as selected to be the size of the

attentional window (7x7 cells). The second attentional layer was a winner-take-all layer

that gated the signals in the attentional window so as to form translational invariant
input to ART-3's input layer. The central group of attentional neurons have an internal

bias (i.e., "the frxation centre") and the lateral competitive interactions are distance

dependent. Since the above model will be generalised in the next section (and in Chapter

8), below we briefly provide some simulation results that were obtained with the model.

Figure 6.25 shows the simulation results for two images that contain the same

shapes but at different locations. The network is frrst exposed to the image shown in
the left column. The activity of the attentional layer is shown on the left of each pair

of columns while the output of the translation invariant layer is shown on the right of

each pair of columns. These data are taken at different times (time increasing down

the column). The data in the left pair of columns shows that the network was first
attracted to character M (because it contains more information than character L) whose

translation invariant representation is learned when the system reached a resonant

steady after 29 iterations of the network. The attentional layer is then reset and

attention shifts to character L which is learned at iteration 56'
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The data in the right column \Mas obtained when the second image was presented

to the network. As before, the network was first attracted to the character M, but took

only 21 iterations to reach a resonant state (because the shapes have been previously

learned during the exposure to the first image and ART-3's recognition nodes become

activated sooner). Character M was recognised after 2L iterations and character L after

39 iterations.

Input 1 Input 2

Steady state activity InputtoART-3
of the first attentional
layer

FIGURE 6.25. Translation invariant recognítion of 2-D patterns in a simple

visual input.

Pre-cueing Target Locations

To fully appreciate how the above network behaves when pre-cued to a valid
(or non-valid) visual location of an impeding target stimulus, it was required to run the

simulations over a large number of different input conditions. For example: precueing

target locations at different distances from the frxation point, varying the validity of

the cue, and repeating this for different cue-to-target inter-stimulus interval (stimulus

onset asynchrony or SOA), and doing so at a number of contrast levels of both the cue

and the target stimulus. In order to reduce this to a computationally manageable set

of simulations that still reveal the important characteristics of the network, we have

restricted the simulations to a single contrast level of the target stimulus (and the cue)

which was presented at varying distances from the fixation centre and have repeated

the simulation at each location a number of times and each time incrementing the

cue-to-target time interval.

Steady state activity
of the first attentional
layer

Input to ART-3
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Note that the cued position was valid for each simulation (i.e., the target

stimulus was always presented at the cued location). Since even this restricted set of

simulations is still formidable when the 2-D version of the network is simulated on a

486 PC, the results shown below were obtained with the 1-D version of the network.

The target location was cued by presenting the network with a constant amplitude

signal whose spatial extend equalled in size to the impeding l-D target stimulus and

then removing the cue at the onset of the target stimulus.

Figure 6.26 shows the results of the cueing experiment. These simulation

results resemble the psychophysical data from target pre-cueing experiments. Firstly,

the results support the psychophysical data that shows that the benefit of target pre-

cueing is a function of distance of the cued target from the frxation point. Secondly, our

results also agree with the observations that the benefit of target pre-cueing on the

recognition time increases with longer SOA s and that the greatest increase in the

benefit is at short SOA s. The simulation data also shows that at long SOA's the benefit

to reaction times begins to decrease (i.e., the recognition time begins to increase). This

is attributed to the fact that at long SOA s the cue itselfhas had long time to sufficiently

deplete the transmitter levels of the cued pathways so that by the time the target

stimulus is presented, its transmitter gated signal is much weaker and takes longer

time to surpass the level of inhibition from the frxational neurons. The increased

reaction time at longer SOA's is actually observed with human subjects (Shulman eú

aI., L979).

FIGURE 6.26. Simulation results of target pre-cueing at 5 different locations.

Note that the recognition time is represented by the number of iterations and

is measured from the onset of the target-stimulus. Each successive SOAis incremented

by presenting the target stimulus at successively longer delays from the onset of the

cue (data shown is for 40 different SOA s).
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The other signifrcant result that can be noted from the above graphs is that
the regression in the reaction time is faster and occurs sooner for far locations, that is,

further the cued location is from the fixation centre sooner will it begin to feel the rise

in reaction time. This is attributed to the fact that the level of fixationai inhibition that
needs to be surpassed by the transmitter gated post-synaptic potential increases as a

function of distance from the fixation centre.

While being able to learn and./or recognize the bottorn-up 2-D neural pattern

ofactivity regardless ofthe pattern's spatial location in the input artay and reproduce

and explain the psychophysical results on target cueing experiments (Lozo et aL,1995),

the above model does not succeed when the desired 2-D pattern is surrounded by

non-relevant neural activity in close proximity or when there is a spatial overlap

between the input patterns. Thus even when a familiar pattern is at the input but is

translationally displaced as well as being embedded in a complex background activity,

the recalled memory in the above network cannot resonate with the input. In the next

section we will consider how the mechanisms of presynaptic facilitation and top-down

memory guided selective attention may be used to model an advanced neural model of

attention selection where top-down attentional processes, mediated by the neural

mechanisms of top-dorrn presynaptic facilitation, may interact with and even override

the bottom-up processes.

6.4.1 Advanced Neural Model of Visual Spatial Attention

In the primate visual system the selection of a desired input stimulus and the

transfer ofits neural representation to higher brain structures can be influenced by a

number of factors. Some of these factors may depend on the characteristics of the

stimulus (such as its colour or contrast;its spatial location, size or orientation; relative

motion; continuity of its boundary or symmetry, etc). Although attentional selection

can often proceed in a feedforward manner, in general it is a dynamic process that

couples the bottom-up (pre-attentive) processes with the top-down attentive processes

that may be under the influence of memory. For example, the memory of the colour of

a person's clothing may often enables us to quickly spot that person in a crowd of people.

- In Chapter 4 we have exposed only one top-down attentional mechanism

(top-down presynaptic facilitation) that allows top-down memory to cause resonance in

cases where the familiar input, although embedded in a cluttered bottom-up neural

activity, was aligned with its top-down reference (top-down memory) pathways.

However, the problem arises when there is a spatial misalignment between the memory

pathways and the input pattern. On one hand, the misalignment may be total, such

that the memory of the pattern cannot be activated, while on the other hand, a partial

misalignment will lead to recognition failure.
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As mentioned in the previous section, the visual spatial attention module of

Figure 6.24was developed during the early phases of this research (Lozo et a1.,1993a,

b) and, although implemented with competitive neural layers, was not based on the

presynaptically modulated shunting competitive neural layers. Because the model does

not use top-down feedback it fails in cluttered inputs, particularly when inputs are

closely spaced. We now propose design principles for a more advanced neural model of

attentional selection and translation invariant 2-D pattern recognition. The proposed

model couples the bottom-up attentional neural mechanisms with the top-down

facilitatory presynaptic feedback pathways to enable the overall system to succeed in

cases where the model shown in Figure 6.24fails.

The basic concept of feedforward visual spatial attention and translation

invariant representation of 2-D patterns can now be summarised in the context of

presynapticallymodulated shuntingcompetitive neurallayers, as showninFígwe6.27 .

Centoid. oJ the selected
íttputís centredinÐn

Bottom-up o,ttentíonal
selectíonløger

FO tuÍnning cell

Bottom-up ínput

FIGURE 6.27. Basic neural mechanism of bottom-up visual spatial attention
and translation invariant representation in the formalism of presynaptically
modulated shunting competitive neural layers.

Field F0 receives its inputs from layers whose activity represents scenic edges

and object boundaries. Field Fl (which may be modelled by a winner-take-all PFE-

SCNL) is a 2-D bottom-up attentional selection layer that presynaptically facilitates

signal transmission from Fietd F0 to Field F2. Each cell in Field Fl at locatíon (m,n)

samples its bottom-up inputs from a local cluster of MxM cells in F0 whose centroid is

coincident witln (m,n). The same cluster of cells also project their signals to Field F2,

such that their centroid is coincident with the central axis of F2. That is, a contiguous

2-D region of MxM cells in F0 is mapped onto a central group of MxM cells in Field F2.

FI
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The winner-take-all competition between the cells in F1 ensures that, in a steady state,

only one cluster of MxM cells in F0 transfers its signals to F2. Figure 6.28 shows the

receptive fields of cells in Field Fl.

receptíaeftelds
of cells ÍnEl
ãlong horizontat dì¡ection
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celt
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cilong uerticol dí¡ectíon

FIGURE 6.23.Inputreceptivefields of thebottom-upvisual spatial attentional
layer. For simplicity we have not shown the inhibitory interneurons which mediate

the lateral competition.

Before proceeding on, let us pose for a moment and attempt to understand

what is it that the bottom-up visual spatial attention layer is computing. Consider a

single object being represented in the input array.If the boundary of this object, being

represented by a spatial pattern ofneural activity, appears alone across Field F0 such

that all active cells that conespond to the object's boundary are equally active and, if
its complete boundary frts within the receptive field of neurons in Field Fl, then the
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location of the winning cell in Fl corresponds to the centroid of the object. Hence, the

location of the winning neuron in Fl can be used to align the centroid of the selected

object with the centre of Field F2. This mechanism will thus ensure that the spatial

pattern that is dynamically routed from Field F0 to Field F2 is independent of the

spatial location of the input. Furthermore, since the receptive fields of cells in Fl are

derived from a local sub-population of cells in F0, it can be said that local clusters of

cells in F0 compete in Fl. Alternatively, the bottom-up inputs compete for attentional

selection via Field F1. It can no\M be easily envisaged how nearby neural activity (or

highly varying strength along the objects boundary) in Field F0 can cause misalign-

ments.

Tra;nslrrtían inuaninnt &
presAnøpticøttgJacititated
neuralLager

spafiøLLg

â
bottom-up inputs
Jromfield.ñ

s ele cted b ottamttp p athta ag s & input Jrom fi eld" N

FIGURE 6.29. Bottom-up visual spatial attention layer presynaptically
facilitates the transfer of neural signals from the input layer. Each cell of Field

F2 teceives MxM input synapses from Field F0.

Since Field Fl facilitates the bottom-up synapses into Field F2, there is no

reason to suppose why F2 should not send top-down facilitatory presynaptic feedback

to facilitate the bottom-up synapses into Field Fl. The feedforward-feedback interac-

tions between the attentional selection layer and the translation invariant layer, shown

in Figure 6.30, is of mutual presynaptic facilitation. That is, each neural layer or Field

presynaptically facilitates the other. The attentional neural layer (Field Fl) provides

bottom-up spatially specific presynaptic facilitation of the translation invariant layer,

while the latter provides pattern-specifrc top-down presynaptic facilitation of the

former.
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FIGURE 6.30. Schematic illustrating the bidirectional facilitatory interac-
tions between the bottom-up attentional selection layer and the translation
invariant layer.
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FIGURE 6.31. Pattern specific top-down presynaptic facilitation of the

bottom-up attentional selection layer.

In the next section \Me propose how the top-do$tn memory within the system

maybe usedtoinfluence thebottom-up attentional selection andthus effectthememory

guided search process in cluttered bottom-up inputs.
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6.4.2 Memory Guided Search in Cluttered Environments

Let us no\M suppose that Field F2 projects excitatory inputs into another

presynaptically modulated shunting competitive neural layer, Field F3, that also

receives pattern-specific top-down memory, as shown in Figure 6.32.

top-dousn
Joríhtaüon top-doun

nefirory

Centroíd. oJ the selected ínput
is centred atlager H

Bottom-up attentional
selectíonlnger

FO I
Bottom-up ínput

FIGURE 6.32. Inftuence of the pattern-specific top-down memory on the
bottom-up attentional selection circuit.

If Field F3 is more sensitive to the top-down memory than it is to its bottom-up

input, then the active memory across F3 can be used to influence the bottom-up

attentional selection process by presynaptically facilitating the bottom-up attentional

selection layer. This memory may thus drive the bottom-up attentional layer to search

for a matching pattern in the input array and may also comect any misalignments that

are initially due to the competing patterns across the bottom-up input Field F0. Note

that the excitatory synaptic pathways F2 -+ F3 may also be modulated, either by

non-specific arousal mechanisms or by pattern (or spatially) specifrc facilitatory
(inhibitory) presynaptic gain control signals.
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FIGURE 6.33. Schematic of a competitive neural circuit for memory guided

search in a large and cluttered bottom-up input field. Note that the input Field

F0 may in general have a much larger number of neurons than the translation invariant
Field, F2. It is presently assumed that the receptive fields of the attentional selection

neurons in Field Fl are all equal in spatial extent and that the target shape frts within
these receptive fields.

To see how the immediate and pattern-specific short memory may participate

in the top-down attentional selection and memory guided search in cluttered bottom-up

inputs, we now use the reverberatory neural circuit of section 6.3 for immediate short

term storage. With reference to Figure 6.33, let as assume that a certain 2-D shape is

stored in the reverberatory neural circuit between Fields F3 and F4. Let us also assume

that this reverberatory spatial pattern is centred (as shown) and that it facilitates each

receptive freld of the bottom-up attentional selection layer (Field F1).

Pattern

ã ã

a
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If we now embed the original input shape (the car shape) in a cluttered

background of other shapes, then only those cells in Field F1 whose input receptive

frelds are driven by the car shape will be activated. Hence, regardless of where the

target shape is in the input array, the attentional selection layer, being guided by the

top-down pattern-specifrc memory, will find it. When found, the target features are

facilitated into Field F2. rWhen the spatial patterns across Fields F2 and FB are matched

above the required threshold level, the circuit has found and recognized the target

shape. The simple neural circuit described above is the minimum required to explain

and simulate the recent neurobiological experiment on memory guided search in a
monkey (Chelazzi et aI., 1993). However, we will provide the simulation of that

experiment with a more advanced neural network that not only uses the above circuit

but is also capable of self-organised real-time learning.

6.5 Conclusions

In this chapter we have provided several novel neural design principles and

mechanisms for the design ofself-regulated two dimensional attentional neural circuits

that are capable of memory guided search. We have shown how the stored memories

within a neural circuit may guide the bottom-up attentional processes to affect the

bottom-up visual spatial attention and search for a desired 2-D pattern (or shape) in a

much larger cluttered bottom-up input freld. We have also provided a simple solution

to how the activity of a neurobiological system may be decremented upon the presen-

tation of familiar stimulus and how the neural activity is increased in the presence of

novel stimuli. It is concluded that the top-down activated memory within a

neurobiological system has a gteater role than is currently appreciated. In the next

chapter we propose a ne\il self-organising neural network that can store a large number

of memories and use them to facilitate the bottom-up signal transmission.
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Chapter 7

SAART Neural Network

"HotD, then, can we decide when a network tnodel is wrong? Such a task

is deceptiuely simple. If the model's leuels are incorrectly chosen, then

it is wrong. If its interactions are incorrectly chosen, then it is urong.

And so on. The only escape from such a critique would be to demonstrate

that a dffirent set of \euels and interactions can be corcectly chosen,

and shares similar functional properties with the original model. The

new choice of leuels and interactions would, howeuer, constitute a new

model. The old model would still be u)rong."

S. Grossberg (1987)

7.1 Introduction and Overview

This chapter describes a novel real-time and self-organising neural network

called Selective Attention Adaptive Resonance Theory (SAART). SAART extends the

capability ofART neural networks of Carpenter and Grossberg (1987a, 1987b, 1990) to

complex and cluttered visual sensory environments. The most significant property of

the SAART network that is not shared by ART based models, such as the ART-3 neural

network (Carpenter and Grossberg, 1990), is the capability of selective attention to

familiar inputs. That is, the SAART neural network can recognize previously learned

2-D patterns and 2D shapes of 3D objects when they subsequently appear complete

(and spatially aligned with the stored memory) in a cluttered bottom-up input. One of

the new interactions in the network, top-down presynaptic facilitation, enables the

SAART neural network to use its established memory to selectively frlter the desired

object shape from a cluttered input. This modulatory top-down selective gain control

feedback, when combined with pre-postsynaptic interactions, also provides the network

with invariance to spatial illumination effects that severely affects most other artifrcial

neural networks.
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7.2 SAART Neural Network Architecture

Figure 7.1 shows the architecture of the SAART neural network that is capable

of real-time stable learning (and recognition of familiar neural events) in a complex

and noisy bottom-up neural activity.
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FIGURE 7.1. SAART nenral net\ñ¡ork architecture. All neural Fields, with the

exception of Field Cl, are two dimensional. For simplicity we have shown only one set

of synaptic pathways to and from memory cells in Field Cl.
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The network consists of five Presynaptically Facilitated Excitatory Shunting

Competitive Neural Layers (PFE-SCNLs), or neural Fields (A1,81,82,83, and C1).

SAART's processing Fields are interconnected via dynamic synaptic pathways whose

internal dynamics represents the decaying memory of the most recent neural activity

that entered the network via Field 41. Memories of past and regularly experienced

neural events are evolved (learned) and retained in the adaptive bottom-up long-term

memory GU-LTM) pathways (nt + C1) and the adaptive top-down long-term memory

(TD-LTM) pathways (Cl -+ B2).

The top down pathways originating from cells in Field 83 enhance transmitter

mobilization at input synapses of the corresponding cells in Field A1 (i.e., the inter-

actions between these two neural Fields represent the FFE-FBPF neural circuit of

Chapter 4). The bottom-up input is thus amplified by the recalled memory that appears

across Field 83 (as well as Fields B1 and 82) when neurons in Field Cl have exceeded

a "physiologically signiflrcant frring frequency" (at least one f,rfth of their maximum

activation level). Field B2 is designed so that its cells are more sensitive to the top-down

signals from Field C1 than to signals from Field B1 and also have a greater saturation

level (by at least a factor of 10). This prevents the corruption of the long term memory

(residing in the pathways BI -+ Cl and Cl -+ B2) fuom intrusion by noise, clutter and

non-matching inputs. Long term memory is updated whenever the 2-D spatial patterns

of cellular activity across Fields A1 and BB are matched to within a pre-set tolerance

level (or vigilance) and when the network reaches a stable state (i.e., when dRldt =0

where R is the degree of match). Desensitization of postsynaptic receptors on cells of

Field Cl provides a temporarybias against the activation of the same memory cell after

the network is reset.

Since the bottom-up neural activity at the input to Field A1 is gated by the

mobilized transmitter in the presynaptic terminal, only those cells whose synaptic gain

(amount of neurotransmitter that is in the mobilized state) is elevated will be highly

active. All other cells in Field 41, although they may receive strong bottom-up input,

will have their activity suppressed by the competitive interactions that occur between

the cells across the whole Field 41. Since Field B3 contains a sum of two spatial patterns

or neural activities (the bottom-up activity from Field A1 and the top-down activity

from Field B2) the resultant neural activity that ends resonating in the loop

B3 -+ Bl + B2 +83 will depend not only on what has entered this loop from Field A1

but also on the signals entering this loop from Field C1 via Field 82. Very weak inputs

to Field B2 from Field C1 (i.e., weak top-down memory) will not have any effect on the

system, allowing the bottom-up input activity to enter and resonate in the loop, which

then leads to learning of the new input stimulus. However, strong inputs from Field

C1 will totally overwrite the contents of Field 82 (and hence Fields 81 and 83) that
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was initially due to the input signals that are passed through Fields A1 and 81. This

strong top-down activity will circulate (reverberate) in the B3 -s Bl --> B2 -+ 83 loop

while at the same time it will ampli$r the corresponding bottom-up neural signals that

may be available at the input to Field 41. Whether this reverberation leads to stable

resonance (equilibrium) and learning depends on whether the reverberating neural

activity across Field 83 can select a portion of the bottom-up activity across Field A1

with which it can resonate. Comparison of the activities across Fields B3 and A1

indicates whether the two are in resonance or not. The long term memory, which resides

in the synapses of adaptive pathways 81 -+ Cl and Cl -+ 82 is updated whenever the

cellular activities (spatial patterns) across Fields B3 and A1 are matched to within a

desired vigilance criterion and when the network is in a stable resonating state. If the

reverberating activity cannot be matched to the selected portion of the input, the

network will reset and then attempt to access another previously learned memory or

will learn the total input activity across Field 41. The neural activity that may be

reverberating in tlne B3 -+ BI + B2 + 83 loop decays very rapidly after the input offset.

This fast decay, due to the low level of tonic transmitter mobilization in the synaptic

pathway 83 -->81, is in contrast to a more durable memory that is usually associated

with short term memory.

Inspection of Figure 7.1 shows that ART models are embedded in the SAART

model. Although the implementation may look different, in fact the network reverts to

the ART model when several parts are removed (layer 83 and the top-down feedback

from Field BB to Field A1) and then integrating 81 and B2 into one layer and comparing

its activity with that of Field 41. By further elimination of the top-down memory

pathways and the matching (orienting or the vigilance) subsystem, we end up with a

basic Instar model (Grossberg , L972).In the process of eliminating the mentioned parts

of the system, we also reduce the generality of the model. Although the SAART model

is more general than ART, it is a long way from being a general neural model of cognitive

vision. Its major defrciency is an inability to deal with the various spatial transform-

ations of the sensory input. Thus, ART is a special case of a more general SAART.

7.2.1 Implementation of SAART's Processing Fields

All of SAART's processing Fields are implemented with the same basic set of

frve equations that we have proposed in Chapters 4 and 5 as a general model of pres-

ynaptically modulated shunting competitive neural layers. Thus almost all pre-post-

synaptic interactions that were discussed in the previous chapters, as well as the

parameter design procedure of Chapter 5 is validfor most of SAART's processing Fields'

However, since Field C1 contains winner-take-all memory cells whose input and output

pathways are modified during learning, the implementation of Field Cl requires extra

equations. Although most of the network's processing Fields obey similar dynamics,
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they vary in the way they receive and interact with their inputs. Hence we will describe

the dynamics of pre-postsynaptic interactions for each layer in the network. For

completeness, \rye provide all equations of the network.

7.2.L.1 SAART's Field A1

The following frve equations define the dynamics of pre-postsynaptic interactions

at each cellular position of Field 41, as schematized in Figure 7.2.
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FIGURE 7.2.Pre-postsynaptic interactions in SAART's Field 41.
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Postsynaptic activity at equilibrium (Field Al)

The equilibrium activity of each cell in Field A1 is given by

al
x¡.i

gal 6a0at, aOaI

Aol + oooo'rlfut +G'1 lij

where vif"t is the excitatory postsynaptic potential; 7i/ is the lateral inhibitory post-

synaptic potential; 6a0al irthe gain in the excitatory synaptic pathway, while -G" is the

gain of lateral inhibition.

Inhibitory postsynaptic potential (IPSP) due to lateral competition

The activity of the inhibitory layer is described by the following equation:

(7.1)

(7.2)+=-t'-'¡ij +E' r f@ii)
(k,m)+(i,.j)

Excitatory postsynaptic potential due to the bound transmitter

The excitatory input is gated by the mobilized transmitter in the synaptic terminal to

produce an EPSP that is given by (7.3).

+ = -D'o'' vif"' + J,¡ltif'. - ya,at 
1+ lpio" + KTo"t f@iÐl

(1.3)

where pl1't and K!ùot are constants which determine the relative contributions to the

EPSP from the input signal alone and from the corelated pre-postsynaptic activation

respectively. The frrst term in the above equation represent the passive decay of EPSP.

The second term says that the total excitatory input is gated by the mobilized trans-

mitter yif"]. The transmitterlevel must be above a threshold Yooot beforeit can be released

to contribute to the EPSP. The bottom-up input into the synapse (which may be from

a previous neural layer) is denoted by J,¡. The postsynaptic feedback (f(tih) interacts

with the bottom-up input to release the transmitter under the condition of correlated

pre-postsynaptic frring (i.e., multiplicative pre-postsynaptic interaction). The released

transmitter binds to the postsynaptic cell and is converted into an excitatory post-

synaptic potential (EPSP), representedby vffq"t. Top-down feedback signal from Field

B3 (¡6N:¡ primes the presynaptic terminal by enhancing (facilitating) transmitter
mobilization. In the absence of bottom-up inputs, the priming signal can enhance

transmitter mobilization but does not cause any release.
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Stored transmitter

242

(7.4)

(7.s)

+ =aio' ki:" - uif"' ) - lpi*' + Ki,il J,, ¡çxij >l @if" - viï' )

The second term in equation (7.4) says that the stored transmitter is depleted by the

cor:related pre-postsynaptic activity.

Mobilized transmitter

¿yi!"'
dt = - n¡;o'' tf"' - J ,.,llif'' - yi!"'l* lpio" + t<;*' ¡çxiþ)

* [þio" + H;*' f@!; )] @if"'
a0al

- !¡.¡ )

where Hiq"I is the gain of facilitation. This equation says that the top-down feedback

signal/(x,fJ) from Field B3 facilitates transmitter mobilization in the input synapses of

Field 41.

7.2.1.2 SAART's Field 81

Each cell in Field Bl receives synaptic inputs from Fields A1 and 83, as shown

in Figure 7.3. The input from Field 83 is part of the feedback pathway that forms the

reverberatory loop Bl + B2 + B3 -+ 81. However, this reverberatory feedback does not

maintain a permanent memory of the input once the input is offset. The reverberatory

pattern in the loop thus decays when the input is offset, enabling new inputs to enter

into the network. Since all the basic synaptic interactions were discussed previously

(in section 4.3.2), below we will only write the equations that model Field 81.

Posts¡rnaptic activation at equilibrium

pbt ç6atbl ra|bI +Gb3btvffb,¡
(7.6)

Abt + 6utbt ru.tbl + Gb3bt vffb, +Gu, llj
Inhibitory postsynaptic potential due to lateral competition

b1
x¡,ì

# = -p',ii *Ê',u,^ì,,,,,r@li) (7.7)
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Excitatory postsynaptic potential (pathway Al -+ BI)

s lrlrrrrte d p o s t s g rtap tí.c
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ry! = -D " 
u' 

v i¡' 
u' 

+ r @Tl ) lyij 
u' - yat b t 

1+ lp?,' 
o' * t<T"' r@! | )ldt

Stored Transmitter (pathway Al --> B1)

+ = ú'u' kil" - uiju' ) - Íþi'u' + r<i'b' ¡çxij )f @!il (uilo' - yi;o' )

(7.8)

(7.e)
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FIGLIRE 7.3. Pre-postsynaptic interactions in SAART's Field 81.
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Mobilized Transmitter (pathway Al + Bl)

d'i:- 
=-^{"'u'yi¡'u' - Í@ij')ryilot -yatbtl+ Ípl'u' + Kí'" r@!;)ldt 'Y

*þi,tut(ui,'ut - ri,tut) (7.10)

The next three equations describe the synaptic pathways into Field B1 from Field 83.

Excitatory postsynaptic potential (pathway B3 + Bl)

+ - -Du'u'u!.lbl + r@!þÍv!lo' - yb3b. l+ lpu"'u' * K:'b' r@!l)l

Stored Transmitter (pathway B3 + Bl)

+ =,,u,'o' k!:u' - u!lu') - lþl'u' + K:"'f.¡!;¡¡çxij>xu!i"

Mobilized Transmitter (pathway 83 -+ Bl)

d 

";"- 
= - ^/.1" 

yflu' - l@!þ lyflu' - yb3bt l+ lp!,'u' + Kl'u' f@!; )ldt tY

+þ!r'r,@!lu' _ rflo')

7.2.1.8 SAART's Field BB

- !¡¡

(7.11)

(7.r2)

(7.t3)

b3br
)

Field B3 receives bottom-up synaptic inputs from Field A1 and the top-down

synaptic inputs from Field 82. The feedforward-feedback interactions between Fields

A1 and BB constitute the FFE-FBPF neural circuit (section 4.8, Chapter 4). The top-

down input into Field 83 from Field 82 therefore has a higher postsynaptic gain than

the bottom-up input from Field 41. This ensures that when the top-down memory is

activated, it will mix with the bottom-up initiated activity in Field 83. If the activated

top-down memory is strong, then it will completely overwrite the contents of 83, which

in turn facilitates its own bottom-up input from 41. This enables the top-down memory

to influence what is to enter into the network.
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FIGURE 7.4.Pre-postsynaptic interactions in SAART's Field 83.
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Postsynaptic activation at equilibrium

tøs ¡Gb2b3 vlfut + G'' bt 
vy,tut 1

Ab3 + çb2b3rb2bi + Grlb3vi¡,bt + Cuti!;

Inhibitory postsynaptic potential due to lateral competition

b3x¡j
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(7.14)

(7.1s)

(7.16)

-e:u'u7; +Eu'

Excitatory postsynaptic potential (pathway AI -+ B3)

+ = -D"" ri.lo' + f@líj)tvilu' - vatbt1+ [pi'o' * Kilb3 f@!þ]

Stored Transmitter (pathway Al + 83)

d "i:- = oí' u' 
kilu' - rij 

u\ - [þi"' + ri' b3 
¡qxij )r@!il] @il 

u' 
- vil 

u' 
)

dt

(7.r7)

Mobilized Transmitter (pathway AI + B3)

Ui:- = - ú'u' yi¡'u' - f@il ) lvilu' - vatb:]+ [pi'u' + K;'u' lþc!þ]dt tY

*þi'u'@il" - vijo\ (7.18)

The next three equations describe the top-down synaptic dynamics from Field 82.

Excitatory postsynaptic potential (pathway 82 -+ B3\

# = -Do'u'r!lb' + ¡çx!þlvfi" - yb2ßf+ lp!,'u' + K:'b'f'¡!þl

(7.1e)
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7.2.1.4 SAART's Field B2

Each cell in Field B2 has a top-down presynaptic terminal originating from all

the cells in Field Cl, while it has only one presynaptic terminal from the corresponding

cell in Field 81. The cell interacts with all the synapses that abut it, sending feedback

to all the top-down synapses to provide them with a postsynaptic learning signal, while

it interacts with the signals in the bottom-up synapses to modulate their transmitter
depletion and release.

Postsynaptic activation at equilibrium

Stored Transmitter (pathway B2 --> B3)

# =au,'o'e!;u' - ufl') - lþX'u' + Kb,'?b3 Í@!;¡¡ç*!)l(u!iu' - v!:u')

Mobilized Transmitter (pathway B2 -+ B3)

# = - ^fíu' y!ío' - f@!þ lyfiu' - yb2ß l+ Þufu' + Kl'b' f@!þl

+þX'u'@!:u' - v!lu')

b2 uu'lc"tu'ìrf,!!' + cu'u'vffb'l
xii = 

Ouz * Oaøz 2n"otø,4
k

(7.20)

(7.21)

(7.22)

where Zuilft is the total EPSP on the cell due to the binding of the released transmitter

from all the active top-down pathways that are driven by cells in Field Cl.

Inhibitory postsynaptic potential due to lateral competition (Field B2)

-b2v¡j f@n) (7.23)
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FIGURE 7.5. Pre-postsynaptic interactions in SAART's Field 82.

Excitatory postsynaptic potential due to top-down transmitter binding
(pathway Cl -+ B2)

ry = -D"u'rí!!2 + Kjlb2 g(xí'>ty'r!!' - vctbzl+

s@l) ={,ro_oT i}' i,,= 
'o,i

(7.2s)
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where -e"' is a defrned as a "physiologically significant frring frequency" below which

neurons in Field Cl do not cause transmitter release in the pathway Cl + B2 (A=I = 0.2).

Stored Transmitter (pathway CI + B2\

t c1b2(lUp¡ ¡ -th)

+=u:,'u'kí!!' - ";!:')-þ:,'u'@í!!' - víi!')

- s(x"u\1p","' + K','b'zr@!þrr"íi!' - yíi!\ e .26)

The term -þ,lut("í,!!t-yíi!) in the above equation is the passive decay of the stored

transmitter (it decays towards the level of the mobilized transmitter). Since the

mobilized and the stored transmitter interact, this decay slows down as the level of one

approaches the other. The third term in the above equation represents a gated decay

of the stored transmitter, Again, this decay is via the faster transmitter mobilization

variable. However, when the pre-postsynaptic signals are simultaneously active, some

top-down synaptic memory pathways will have their level of the stored transmitter
selectively depleted. Hence if the top-down LTM variable (zíi!t) also decays (via t};re uf!!'z

variable), this process can lead to selective erasure of some features from a top-down

memory. The need for this type of process in the top-down memory pathways will be

discussed in section 7.2.2.

Mobilized Transmitter (pathway Cl + B2)

ry =-^fr'o'yíi!' - t<j'u's@í')fyi!!' -yc1b21+ *Íþ!r'u' + u'r'b's@"*\l@íi!' - y;i:')

(1.21)

The next three equations describe the synaptic dynamics in the BI -+ 82 pathway.

Excitatory postsynaptic potential (pathway Bl -+ B2)

# = -Du'u'rflu' + f@!,'u')Iy!ju' - yb,b2f+ [p!,'u' * K:'b'f@!þ]

(7.28)
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Stored Transmitter pathwãy (Bl -+ 82)

ry =aX'u' k!;u' - ufj'\ - tþ','u' + KXtb'z f@!j)f@!þl(u!ju' - v!;u')

Mobilized Transmitter (pathway B1 -+ B2)

# = - fi"' tl 
u' 

- r@!; ) lv!|" - yb t b2 
f+ Ípf,'u' + K!' u' 

f Qc!þl
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(7.2e)

(7.30)

(7.31)

+ plr"t @!;ut
b1b2

- !¡¡ )

Dynamics of the top-down LTM variable (zí!!t) is given in section 7.2.2.

7.2.1.5 SAART's Field Cl

Field Cl differs from all the others because it is implemented as a winner-take-all

layer. Furthermore, Ìwe also use a simple model of postsynaptic receptors whose

desensitization provides a mechanism for attention shifting upon the network reset.

Figure 7.6 shows the cellular and synaptic interactions of Field Cl. In order to model

fast memory search process, we also embed lateral presynaptic competition at Field

c1.

Postsynaptic activation at equilibrium (cell k' Field Cl)

pct çbrcr L rflf,
cI (t'i)

Lt'-k 
¡ct * 6btct L ,!,,f , +G,t i,t

(''.1)

where 2 r!!f is the total EPSP on the k'h cell that is due to the binding of the released
(r, r,

transmitter from all the active bottom-up pathways from Field 81

Inhibitory postsynaptic potential due to lateral cornpetition

d.l"u'

dt =-Ã"ii'+E"t L nçxi¡
m*k

(7.32)
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where h(*íl)is faster than linear above a threshold, represented by equation (7.33). The

faster than linear thresholding function in Field Cl models a winner-take-all
competitive layer.

h@"j)
o if xl< g'l

lq6": -g")'

Excitatory postsynaptic potential due to bottom-up transmitter binding

t blcl
av¡.ir

dt - -o"" ,!lf ' + x!"'wllf ' lr!;;' - ,btc.1+

(7.33)
if x'j > e'1

(7.34)

where wllfl is the amount of transmitter that is released from the (i , 
j)'h synaptic pathway

from Field 81 into k'h cell of Field C1 and is given by (7.35); rllft is the activation level

of the postsynaptic receptor in the same pathway and is given by (7.36).

Released transmitter

,!i;' = f@!; ) lþ!:" + xl"' h çxf\ly!;" (7.3s)

Postsynaptic receptor (on cells in Fietd Cl)

The reason for modelling postsynaptic receptors on the cells of Field Cl is to provide a

dynamic mechanism that can bias an active cell in Field Cl against continuallywinning
the competition after the network is reset. Since the level of the postsynaptic receptor

on the active cell(s) in Field Cl is reduced when the bottom-up synaptic pathways are

active, the resultant EPSP on the winning cell in Field Cl is also reduced. Due to strong

self-excitation, other non-active cells in Field C1 cannot overcome the lateral inhibition
thatis providedby the already activated cell. Ho'trever, when the networkis reset, other

cells can subsequentlywin the competition since their postsynaptic receptor levels will
be above the level of previously activated cells whose receptors were desensitized. The

following shunting equation models postsynaptic receptors along the (i,j)'å synaptic

pathway from Field 81 to tlne k'h neuron in Field Cl.
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FIGURE 7.6. Pre-postsynaptic interactions in SAART's Field Cl.For simplicity,

we have not shown the postsynaptic receptors on the cells of Field Cl.

xbj"'g{*i' ) -f (*fr, )

ry = to'f;' "' + tlí' I (t - rfj;' ¡ - r!;;',!;;' tþ!,"' + Ku,"' s (*í' - (Þ" )l (7.36)
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where ¡fijfi , g¡venby (7.37), quickly restores (or sensitizes) postsynaptic receptors after

the network reaches a steady resonant state (i.e., when the network recognizes its

input). The second term in the above equation says that only those synaptic pathways

whose postsynaptic cell is frring above a large threshold (O"1) and whose bottom-up

signals are active will have their level of postsynaptic receptor reduced by an amount

that is proportional to the correlated frring of pre-postsynaptic signals.

-yrtl,j;: +Y¡fiL t p (xf' ) 0 - p?j;' )

I ir RbIb3 >

0 otherwise

(7.31)

(7.38)

where

ur-t-

In the above equation, Rbtb3 1s the match between the spatial patterns across Fields B1

and 83, while dRb'b3ldt is the time rate of change of the match (p is the match threshold,

þ is the steady state threshold); p(xí') = I if the k'h cell in Field Cl is active above half
of the maximum (otherwise p(xí')=g). That is, the postsynaptic receptors on inactive

cells in Field Cl are rapidly sensitized when the network has recognized its current

input.

Mobilized Transmitter

¿y\',f' btcr brct -brcr u,r, .lþ!r"' +Kbr"'f@!¡')l@!i,:' -y!¡'0")
d.--Yy !i.¡* -Py w¡jr + 

¡l+Wfral

(7.3e)

where WfI"t,givenby(7.40),isthetotaltransmitterthatisreleasedontothepostsynaptic

cell and which contributes to presynaptic inhibition of all active bottom-up synapses

ínto k'h cell of Field Cl.

wl'"' = àrr!j;'
(7.40)



dt
(1.4r)

The second term in the above equation implies that the stored transmitter (meduim

term memory or MTM) is depleted by the correlated pre-postsynaptic activityactivity

o-lpiesis equation sa

Dynamics of the bottom-up long term memory variable (zljf') is given in section 7.2.2.

7.2.2 Gated Decay LTM Equations

The learning equations used in the SAART neural network are based on

Grossberg's gated decay long term memory (LTM) equation (Chapter 3). Through

numerous computer simulations of the network and at various learning rates, we have

found that during slow learning, several different shapes may be encoded in the same

memory pathways. Ho'wever, as learning proceeds and different spatial patterns begin

to establish their o\ryn memory, it becomes necessary to selectively "forget" the memory

of those features that do not belong to the individual inputs. This selective forgetting

is needed and is crucial in the top-down memory pathways to ensure rapid removal of
irrelevant features from memory, thus en abling the network to learn effectively in noi sy

inputs. Selective forgetting in the top-down memory pathways also ensures that as the

top-down memory converges, the initial differences in the individual memory pathways

for a particular input are levelled out and converge to the same asymptote. Based on

our computer simulations, we have arrived at the following two learning equations

which provide a good compromise between slow learning and selective forgetting.

CIIAPTERT. SAART NEURAL NETWORK

Stored Transmitter (pathway Bl -+ C1')

¿"!l;'
ol"'k!;;' - "!;;\ - Ku,"' s(*í')f@!j)

Top-down gated LTM learning equation

dz,,ru,

;o = - ^f 
1 b2 

s @h t i iT - "",!!' ¡ + v e;' 
b'z 

6 çxlf ) - z"!!' l

Bottom-up gated LTM learning equation

dzur",

;r- = - { 
t c t 

E rth r,i j f ' - u!j," ) + v e!"' ç çxll ) -'! j ;' I
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(7.42)

(7.43)

where Y is the learn enable signal (as specified by equation (7.38)), eitb2 and {1't are ttre

learning rates in the top-down and the bottom-up memory pathways respectively, while
nf,tb2 and,fi'| aretheir respective memory decay rates. The thresholding function E@it),
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given by (7.44), is a gating term that enables the decay of the LTM variables (a;!!'z and

z!l;t) tor t};re J'h cell of Field C1, but only when the activity of the cell is below a high

threshold.

if xj'<05
otherwise

(t.44)

Note that selective forgetting is enabled only after the winning cell is deactivated by

memory reset, while the LTM variables are incremented only if the top-down memory

from the winning cell leads to the match of the spatial patterns across Fields A1 and

83. Thus, once the activity of the winning cell in Field Cl is reset and as long as the

cell's activity level is below half of the maximum possible level, then its LTM decays.

This gated LTM decay is via the medium term memory (MTM) variable u"r'!!t, whose

level is reduced by pre-postsynaptic signals while the cell was very active (see equation

(7 .26)). However, since the MTM variable tracks the LTM variable, the rate of the decay

decreases with time. The effect of selective forgetting will be demonstrated in section

7.3.2.1, where we test the network's learning capability on noisy but patterned 2-D

input data.

7.2.3 Simulation of the SAART Neural Network

Below \Me present a computer simulation of the SAART neural network on the

problem of shape recognition in a cluttered bottom-up input (the network parameters

are given in Appendix 8.2). The simulation is designed to show that once the memory

of an object's shape has stabilized, it enables the network to recognise (perceive) the

familiar shape in a cluttered input, provided that the complete boundary is available.

- +L
IT

I

(a) Input 1(shape 1) (b) Input 2 (shape 2) .j;L".iëi'"å:l"ffijï. :1lli"t";hi!..iäfSå'J,

F'IGURE 7.7. Inputs presented to the SAART neural network (each image is

32x32 elements, and are shown in reverse contrast).

The network is initially trained on two different shapes (boundaries of two

ships), illustrated in Figure 7.7. Shapes 1 and 2 (inputs 1 and 2) arc spatially aligned

to maximise their common elements, as shown in (c), the purpose ofwhich is to maximise

the diffrculty of discrimination between the two. The order of presentation is as follows:
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input 1 for 100 network iterations (learns shape 1); input 2 for another 100 iterations
(learns shape 2); input 3 for 30 iterations (resonance with shape 1) followed by input
offset.

'We now wish to observe the intermediate activities of synapses and cells at

several network layers when one of the inputs is presented in a complex background,

shown in Figure 7.7(d). The simulations data will be shown from the instant the new

input is presented until the steady state resonance with the correct top-down memory.

The purpose of presenting input 3 after input 2 is to demonstrate mismatch reset with
the active memory of shape 2 followed by the activation and resonance with the correct

memory.

In Figure 7.8, all shown variables are scaled by the maximum activity and are

shown in reverse contrast. The simulation time (number of iterations) is shown

bracketed in the far left column. The numbers below the indicated time are: the degree

of match between neural activities of Fields 83 and A1 (threshold = 0.98, measured by

the cosine of the angle between the two spatial patterns across BB and A1), followed by

the time rate of change ofthe match (measured every four iterations, steady state when

l#so.oooos).

The simulation data in Figure 7.8 shows that the network was reset at time t = 210

and that a stable resonant state is reached at t = 218. Comparison between xlf and xil

at t = 218 shows a match of pattern activity. Figure 7.9 below shows the dynamics for

one top-down synaptic memory pathwayfrom a cell in Field Cl during the four phases

of the simulation.

The graph in Figure 7.9 shows that the transmitter production rate is increased

(and converges) during the resonant period with input 1 (ship 1). These memory vari-

ables decay during the presentation of input 2 (ship 2) because the new input cannot

resonate with the top-down memory of input 1 and activates a new cell in Field C1 (cell

2). rWhen input 3 is presented to the network the top-down facilitation and the

competitive interactions at Field Al have enabled the network to resonate with shape

1.
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FIGURE 7.8. SAART network variables sho\ñ¡n as a function of time from the
instant input 2 of Figute 7.7 is replaced by input 3 (time flows downwards).
(a) cellular activity of Field 82; (b) cellular activity of Field 81; (c) cellular activity of

Field B3; (d) cellular activity of Field A1; (e) mobilized transmitter levels at the input

synapses of Field A1 (note the higher synaptic gain for those input pathways whose

bottom-up inputs are low in magnitude)'
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FIGURE 7.9. Dynamics of the SAART's top-down transmitter (memory) vari-
ables for one pathway.

Above results demonstrate that the network can recognize shape 1 when it
appears in a cluttered background of input 3, despite the non-uniform edge intensities

along its boundary. These simulations also show that although input 3 contains a

familiar input (shape 1), but in a cluttered background, the network has to first undergo

a reset before the memory of shape 1 is activated. In the next section we provide a

simple extension to the network that enables familiar inputs do quickly activate their

memory by having a direct pathway to their bottom-up LTM (thus reducing the

network's reaction time, i.e., time to recognize an input).

7.3 Direct Memory Access SAART Neural Network

The SAART network as presented above has an unusual problem of not being

able to recognise familiar stimuli under special circumstances. This occurs when a nerü

(unfamiliar) stimulus is presented for a brief period of time and is learned at a slow

learning rate (thus preventing its top-down LTM to grow high), followed by the pres-

entation of a familiar stimulus. If the unfamiliar stimulus has caused a memory reset

and activation of a nerv (previously uncommitted) cell in Field C1, then the familiar

stimulus will begin to resonate with this cell. That is, if the top-down LTM of the ne\tr

stimulus is too weak to cause a memory mismatch and reset when the familiar stimulus

is presented, then the familiar stimulus will begin to be encoded in these new memory

pathways. Hence it is possible for one stimulus to be learned by a large number of

memory pathways. This is undesirable because it leads to recognition failure of a

familiar stimulus. In order to solve this problem, we extend the SAART architecture of

Figure 7 .Lby adding another layer of neurons (Field A2) whose output has direct access

to the bottom-up (Bl + C1) LTM pathways, as shown in Figure 7.10.
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FIGURE 7.10. SAART architecture with direct bottom-up LTM access.

The following frve equations describe the dynamics of Field 42. Note that as a

result of adding Field A2,we also need to modify the equations in the bottom-up LTM

pathways to Field Cl.

Postsynaptic activity at equilibrium (Field A2)

a2 
pu2 çaoa2 raoa2

L!: 
- 

-

'-tr 
Ao2 +Gooorvlfut +G"riii

(1.4s)

Inhibitory postsynaptic potential (IPSP) due to lateral competition (Field A2)

-e"'iff +8"' f(.n) (7.46)
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Excitatory postsSrnaptic potential

drif,, _
dt

Stored Transmitter
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(7.4e)

-ouoot rlfo' + J,¡lyif" - yaoazl+ lpî," * xio" f(*iþl (7.47)

ry = ú0" ki!" - uif'\ - lþio" + Klo"' J,, ¡7xii >l @if" - yiï')

(7.48)

Mobilized Transmitter

Af =-{oo'v!!u' - J,,lyif" -yu0a21+ lpio"' + K;o"l@iþl
dt IY tij

+

The denominator in the last term of equation (7.49) says that the transmitter mobi-

lization rate in ttre (i, j)'h input synapse of Field A2 is inhibited by the activity of the

(i,j)'h cell in Field 83. Hence if the input synapses to Field A2 have a high tonic level

of transmitter mobilization (þf;* +n;^', where þi0.* ,<Hioo'), the cells within the layer

will be highly activated by their inputs. When the cells within Field BB are activated

above their threshold, then they inhibit the mobilization rate in the synapses of the

corresponding cells in A2. This process can thus deactivate Field 42. The output of Field

A2 interacts with the bottom-up LTM pathwayfrom Field 81 to Field Cl by also being

involved in the transmitter release and the excitation of neurons in Field Cl. Hence

equations (7.35), (7.39) and (7.41) from section 7.2.L.6 can no\ü be rewritten to incor-

porate the direct bottom-up memory access by neurons of Field 42.

Released transmitter in the 81 + C/ pathway

Equation (7.35) now becomes

,!;;' =l@!;) y!1"'lþ!j" + Kl,".h1x'o')l+flxiþ y!1"'lr(j" + nl'"'nçx"o'¡1

Mobilized Transmitter in t}ae B1+ C/ pathway

' alhl albl,\u¡¡ - !¡¡ )

Equation (7.39) becomes

(7.50)
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n/rt" y -pblcl
)

blcl
w¡j*b1 cl

ijk

(7.s1)

Stored Transmitter in t}ne B1+ C1 pathway

Equation (7 .47) becomes

ry =au,"'e!;;' - u!;;\ - K!,'"' s(*;,\lf'¡!þ + ¡rxiþ)

(7.s2)

Field A2 canthus be involved in the direct release of the transmitter in the bottom-up

LTM pathways, which under special circumstances can cause attentional switches (see

computer simulations in section 7.3.2.3).In the next section we describe how Field A2

can play an important part in the network dynamics, enabling rapid access to the

relevant memory pathways by the bottom-up inputs that have an established memory.

7.3.1 Processing Stages in BU-DIìIA SAART Network

Below we describe the processing stages in the BU-DMA SAART neural network

when it is presented with input signals (waveforms or 2-D shapes) that share many

common features (i.e., input pathways). Note that for the network to be applicable to

general signal processing and pattern recognition applications, it is assumed that these

signals are represented in a2-D format, i.e., any signal then becomesjust another shape

in 2-D space. For example, the electrocardiogram (EKG) signal is a waveform with
time axis running in one direction (typically the horizontal axis) while the amplitude

of the signal is defrned along another axis (i.e., vertical). This type of signal represen-

tation is typical of most non-imaging sensors. The amplitude and the time axes thus

define a 2-D space within which the shape of the EKG signal (as well as other time

dependant signals, such as a seismogram) is embedded. By a suitable division of the

amplitude and the time axes into a 2-D lattice to give the desired resolution for pattern

discrimination, any tirne dependant signal can therefore be mapped onto a 2-D at-tay

of competitive neurons and be processed and learned by 2-D neural circuits and

networks such as the SAART and the BU-DMA SAART.
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Now consider one such signal being fed to the BU-DMA SAART neural network

as shown in Figure 7.11. The input signal that is represented in two dimensions enters

the network via Fields Al and 42. Since the tonic level of transmitter mobilization in
the input synapses of Field A2 is much higher than for the input synapses of Field 41,

the cells of Field A2 will initially reach a much higher level of activation. The BU-DMA
pathways that are driven by the active cells in Field A2 will thus be the first to activate

Field Cl. At the same time, the activity from Field A1 spreads to other Fields while the

competition in Field C1 establishes a winning cell.

Fleld Cl

ulwúryæU
Bu-DùlApatll@qs @ffi
rcl.d. Cl Jfrrst

Ftet¿I'g Føldez

Iryrut 7

FIGLIRE 7.ll.Initial activation of Field Cl by highty active cells in Field 42.

The reverberatory activity in the network amplifies the bottom-up inputs into

Field A1 thus maintaining the activity of the winning cell in Field Cl while Field BB

presynaptically deactivates Field 42. rWhen the steady state is reached, the rever-

beratory spatial pattern transfers into the bottom-up and the top-down pathways of

the active cell in Field Cl, Figure 7.12.
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FIGURE 7.13.Non-matching portion of the next input activatesA2 but cannot

activate Field CL.
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FIGLIRE 7.12. Establishment of a reverberatory activity and its transfer to
memory.
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FIGURE 1.1.4.After network reset, the new input establishes a resonant state
and gets registered into memory.

When a ne\M input waveform (or another 2-D shape) that shares some common

features (pathways) with the currently reverberating spatial pattern is presented, then

the components of the new input that do not match the reverberatory pattern, as shown

in Figure 7.13, will activate Field 42. Simultaneously with this, the components of the

new input that do match the reverberatory activity will be amplified, thus leading to

higher amplitude reverberations. The increased activity of Field A1 in the facilitated

locations will suppress all other cells in Field A1 that no longer receive the input. This

increased activity will also prevent the new features of the input to enter into the

network via Field 41. Since the BU-DMA pathways that are driven by the activity

across Field A2 do not have a prior established memory they cannot activate another

cell in Field Cl to a sufficiently high level to overcome the inhibition from the already

active cell. The network therefore ends up in a non-matching steady state and is then

reset (i.e., all the cellular variables and the postsynaptic potentials are set to zero,

leaving the synaptic variables unaltered).

Following the reset, the new input then reactivates the network and activates

another memory cell in Field Cl establishes its own reverberatory activity which then

gets transferred into the memory pathways of the newly activated memory cell, Figure

7.L4.
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FIGURE 7.15. A familiar input activates its memory cell in Field Cl via the
BU-DIì{A pathways.
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FIGLIRE 7.16.The familiar input has recalled its memory directly without the
network reset.

When a previously learned spatial pattern is re-presented, then those components

of the input that do not match the reverberatory activity and that appear across Field

A2willnowbe ableto activatethememorycell directlyviathe strongbottom-upmemory

pathways. As shown in Fig 7.15, there is a period of time during which the already

active cell and the newly activated cell in Field Cl are both sending their top-down
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memory into the reverberatory loop. Although the match between the spatial patterns

of activity across Fields 83 and A1 are below the required threshold level, the network

is not reset because it is still in the dynamic state (i.e., the rate of change of the match

is above its steady state threshold level). When the steady state is reached, the LTM

of the familiar input is increased further, as indicated in Figure 7.L6.

In the following section we provide several computer simulations of the BU-DMA

SAART neural network.

7.3.2 Simulations of the BU-DMA SAART Neural Network

Each of the simulations in the following three sub-sections emphasises different

capabilities of the network. The first simulation in section 7.3.2.1 emphasises the

network's ability to self-organise its long term memory when presented with shapes

that are embedded in noise. This is followed by a simulation in section 7.3.2.2 that'

demonstrates the network's ability to recognize objects in cluttered visual images. The

last simulation in section 7.3.2.3 demonstrates the network's dynamics during

perceptual reversals on a 2-D version of the Necker cube. All network parameters are

given in Appendix 8.2.

7.3.2.L Learning in Noisy but Patterned Inputs

Below we show various network memories during real-time and self-organised

learning in noisy but patterned input data. Because the simulated BU-DMA SAART

neural network currently does not have the benefit of early visual processing, such as

what can be provided by the Boundary Contour System (Grossberg and Mingolla,

1985a,b), its task is far more diffrcult than may be initially imagined. Since BCS is a

model of early vision that emphasises neural activity of spatially aligned cells by

cooperative linking, we expect that the interaction between BCS and the BU-DMA

SAART neural network will provide a more powerful visual learning system. Thus,

when judging the difficulty of the learning problem addressed below, we should keep

in mind that because of the absence of cooperative linking between spatially aligned

features, the current network initially treats all inputs equally until its memories begin

to influence the processing. The diffrculty of the problem can best be gauged by

representing each 2-D spatial pattern as a l-D pattern (where each row is placed side

by side) as shown in Figures 7.18(a) and 7.18(b). Although the current network can

(under special conditions mentioned below) learn in noisy inputs, we do not claim that

this is the main feature of the network nor do we claim that it is a robust feature.

However, we do claim that once the network memories are reasonably strong (have
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converged), the network is robust in recognizing a familiar input in a cluttered back-

ground, as will be demonstrated in the next section where we apply the network to

object recognition in cluttered visual images.

The input data consists of three shapes (boundaries of three ships) that are

successively presented but each time with another random dot background. The only

supervision that is provided is that after each resonance (memory update) a new input
(with a ne\M noise and shape) is presented. All other parameters of the network remain

frxed. The purpose of continuously modifring the background is primarily so that the

network does not overlearn any particular input (although in a full self-organising and

unsupervised real-time artifrcial neural learning system, there is a need to automati-

cally reduce the attentional gain when certain stimuli become familiar). Upon each

memory-mismatch reset, activities of all cells in the network (and their corresponding

EPSPs) are reset.

The network is thus presented with noisy 2-D inputs that contain boundaries

of three objects (ships) that are shown in Figure 7 .L7 . Tlte binary images of the three

ship boundaries are used to generate a set of noisy inputs (shown in Figure 7.18 below)

using the following formula:

J(i,j) if J(i,j)
n if J(i, j) 1J. (i, i) = (1.s3)

(7.s4)

0

where J"(i,j)isanewinputatlocation(ij),/(t,j)istheoriginalinputandnisarandom

number given by

n
1 if random(O,1) < 0.1

0 if random(O,1) > 0.1

where random(O,1) is a random number between 0 and 1. Equations (7.53) and (7.54)

imply that while the original elements in the binary images of the ship boundaries are

left unaltered, the background is modified by the noise. The threshold in (7.54) controls

the percentage of the background elements that are modified. In the simulation shown

below, this threshold is chosen to be 0. 1. Hence, roughly LÙVo of t}:re background elements

are set to a value whose magnitude is equal to the magnitude of elements on the ship's

boundary (equal to 1.0).

To enable the network to self-organise its memory and learn the stationary

components in the input, the top-down learning rate is set to a small value, while the

bottom-up learning rate was set to a value that is ten times larger (i.e., the parameter

eitbt in equation (7.42) was set to 0.02, while e!"' in(7.43) was set to 0.2). The decay

rates (parametetsÉtut andnf,t'I in(7.42) and (7.43)) were set to 0.002. In order to enable
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the network to average over several inputs before the top-down memory becomes

effective, the threshold for transmitter release in the top-down memory pathways was

set to 0.005 (which was predetermined by frrst testing the network for the frrst five

inputs).

(a) Shape 1 (ship

boundary 1)

(b) Shape 2 (ship

boundary 2)

(c) Shape 3

(ship boundary 3)

- l¡LrJ

-l

(d) Common elements (e) Common elements (Ð Common elements (g) Common elements

(shapes L &,2) (shapes 1 & 3) (shapes 2 &,3) across the three
shapes.

FIGLIRE 7.l7.Binary shapes (shapes 1,2 and 3) used to generate a set of noisy
inputs for the BU-DI\[A SAART nenral network. Each input image is 32x32

elements is shown in reverse contrast. All network layers arc 32x32 with the exception

of Field Cl, which has frve cells. The three shapes are pre-aligned in the input so as to

maximise their spatial overlap, as shown in (d) - (g).

The simulation data in Figure 7.19 shows that during the early phases of

learning (first fifty input presentations) the memory of each LTM cell in Field C1

contains features of all three shapes. For example, cell 1 (whose memory data is shown

in the left two columns) has an initially strong mixture of both shapes 1 and 2. As

learning progïesses and the network is presented with more examples of each noisy

input, the features of shape 2 begin do decay from the LTM of cell 1. However, because

of the early influence of shape 2 on the memory of cell 1 (which was finally assigned to

shape 1), some features that are common between shapes 1 and 2 (e.9., the horizontal

line) have a larger top-down LTM than those features that belong to shape 1 but not

to shape 2.
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(a) 1-D representation of the original
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FIGURE 7.18.Noisy inputs used to train the BU-DMA SAART neural network.
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BU-DMA SAART neural network while learning in noisy but patterned input
data. Shown are the bottom-up and the top-down LTMs for three cells in Field Cl
whose LTM pathways were modified during learning on noisy inputs. The number in

the left column indicates the input pattern since the beginning of the simulation. The

memory data is shown after every 10'å input presentation.
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FIGURE 7.19. (Cont.) Bottom-up and the top'down long term memory (LTM)

in the BU-DMA SAAR,T neural network while learning in noisy but patterned

input data. Shorvn are the bottom-up and the top-down LTMs for three cells in Field

Cl whose LTM pathways were modified during learning on noisy inputs. The number

in the left column indicates the input pattern since the beginning of the simulation.

The memory data is shown after every 10'å input presentation'
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Thus in addition to removing the irrelevant features from the top-down memory,

selective memory decay in the top-down memory pathways also irons out the initial
differences in the strength of the various features that are retained. As can be seen in
the above data, these differences eventually become negligible. Since we have used a

very low learning rate in the top-dorvn memory pathways (= 0.02), the top-down LTM

converges before it can totally suppress the non-relevant noise from Field 41. Hence

the bottom-up LTM can still be modified by the noisy data. Nevertheless, this simulation

demonstrates that the BU-DMA SAART neural network has powerful processing

capabilities that already exceed all current self-organising artificial neural networks.

This capability can be further enhanced by appropriate lower level artifrcial neural

network architectures, such as the Boundary Contour System of Grossberg and

Mingolla (1985a, b). In the next section we demonstrate the network on visual object

recognition in cluttered images.

7.3.2.2 Object Recognition in Cluttered Visual Images

'We now demonstrate the capability and the potential of the BU-DMA SAART

neural network in real-world visual applications by providing simulation results on the

recognition of 2D shapes of 3D objects in cluttered images. The images used in the

simulation are generally of the type for which we currently do not have robust solutions.

Figure 7.20 shows the three target objects (toy dinosaurs) whose edges are used

as the initial input to be learned by the network. The procedure for image rendering

and a method for predetermining the recognition threshold are described below.

Image rendering and threshold settings

Original grey level images (8 bits, 266x256 pixels, captured by a Vidicon camera

and then digitized) \Mere preprocessed by a 3xB Sobel edge operator to obtain object

edges. The resultant edge processed images were then scaled (by a simple averaging

procedure) to the size of the network layers (32x32 cells). This reduces the resolution

of the target and the test images by a factor of 8. The edge processed images ofthe three

shown target objects are initially learned by the network. The network is then tested

on the cluttered visual images. Note that as a result of the competition in the network,

some of the weaker edges in the edge images of the target objects did not survive and

were absent in the memory, as shown in Figure 7 .20. The shape of each target object

was learned with a high learning rate (0.5). Note that this learning is not switched off

during the test phase.
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Input (32x32) Bottom-up LTM Top-down LTM

Object 1 (256x266) Object 1 edges

Input (32x32) Bottom-up LTM Top-down LTM

Object 2 256x266) Objects 2 edges

Input (32x32) Bottom-up LTM Top-down LTM

Object 3 (256x266) Object 3 edges

FIGURE 7.20. Objects to be learnt and recognized by the BU-DI\{A SAART

neural net\¡vork.

Recognition in the network is achieved when the match between the spatial

patterns of activity across Fields BB and A1 exceeds the pre-set threshold level of 0.90

(currently measured by the cosine of the angle between the two multidimensional

vectors) and when the time-rate rate of change of the match (which is measured over

four iterations of the network) is below the pre-set steady state threshold level of 0.00005

(i.e., the computational decision is taken at the steady state). The threshold for

recognition is determined by first finding the highest level of the match between the

three target shapes of Figure 7.20 (which was 0.851), and then setting the threshold

above this value. A choice of 0.9 for the recognition threshold (or the vigilance level)

was thus chosen simply on the basis of requiring a sufficiently high discriminatory

porffer between the target shapes, while providing sufficient flexibility for the cases

when a fraction of the object edges are not detected in the cluttered images. This

threshold is then set and remains frxed thereafter.
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FIGLIRE 7.21. Cluttered visual images used to test the BU-DIIIA SAAR,T neural
network. In the left column \tre show the match level at which each individual object

was recognized.
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FIGURE 7.21(Cont). Cluttered visual images used to test the BU-DI\{A SAART

neural network. In the left column we sho\M the match level at which each individual

object \Mas recognized.
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Image 11 edges

Network input

Test image 12 Image 12 edges

FIGURE 7.2l^(Cont ). Cluttered visual images used to test the BU-DI\{A SAAR,T

neural network. In the left column we shovv the match level at which each individual

object was recognized.

To summarise the above simulation, we note that only one object \Mas not

recognized (in the Test image 11). The reason for this is that a large fraction of the

object's shape blends in with the cluttered background and its edges are not detected.

The recognition of several objects was just above the threshold level. This is mainly due

to the loss of resolution when reducing the size of the original images. However, none

of the objects were misclassifred. The data in Figure 7.21 indicates that had we chosen

the recognition threshold to be just above 0.9 (e.g., 0.91) then the network would not

have recognized two more objects. On the other hand, had the recognition threshold

been close to but just above the threshold level required to discriminate the target

objects in the clean background of Figure 7.20, t}:ren several objects would have been

misclassifred. Thus there is a tradeoff between misclassification, correct recognition

and no-recognition. In Figure 7.22 we show the cellular activity of the network from

the instant when the frrst test image (Test image 1) is presented to the network. Note
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that at this instant the top-do\Mn memory of the previous object (target object 3) is still
active. The cellular activity of Field Cl and the degree of match over the whole simu-

lation run is shown in Figure 7.23.
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FIGURE 7.22. BIJ-DIIIA SAART neural network activity during attention
switching and object recognition in a cluttered visual image. The bracketed

number in the left column is the degree of the match, while the second number indicates

the time rate of the match (see Figure 7.23 for more details).
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Figure 7.22 shows that when the target object in the Test image t has activated

its memory (via the DMA pathway), there is a brief period of time during which two

memories are active. However, the already active memory decays soon after its LTM
cell in Field Cl has been suppressed by the newly activated cell. The data shown in the

far right column shows that when an object is attended (i.e., when its features appear

across Field A1), then its features are removed from Field 42. The network is thus

capable of quick attention switching when a familiar input is presented at the input.

The graphs in Figure 7.23 show that the network was reset only 7 times. This is about

half of what would have occurred had the DMA been disabled.
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Automatic attention switching without a prior memory reset is further
demonstrated in the next section where we provide computer simulations of perceptual

reversals on the Necker cube.

7.3.2.3 Simulation of Perceptual Reversals

The example of a visual stimulus that leads to perceptual reversals is the

Necker cube, shown in Figure 7 .24. Although our theory is currently aimed at 2-D visual
processing, in order to simulate perceptual reversals, the cubes within the Necker cube

are treated as 2-D stimuli. When viewing the Necker cube, we observe that only one of

the cubes can be perceived at any one time. Because the two cubes share the exterior

edges, they are always perceived (although their perceptual interpretations differ in
depth). The internal edges, however, are not shared and cannot be perceived simulta-

neously when one or the other cubes enters perception. Thus, when one cube enters

perception, the internal edges of the other cube somehow fade away. What is it that
determines which set of all the possible edges should enter perception as one coherent

lot? Clearly, with a large number of possibilities that can arise, there must be some

mechanism that organises the edges into coherent visual precepts. Since we are quick

in perceiving the alternatives, this coherence must be caused by the influence of prior

visual experience, i.e., memory. If each of the cubes is independently stored in memory,

then we should expect the top-down memory pathways of each stimulus to extract the

inputs with which it can resonate.
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FIGURE 7.24. Necker cube and its competing perceptual states.

Since only one of the alternatives can be perceived at any one time and because

perception alternates between the two, there must be a winner-take-all competition

between neural cells whose bottom-up and the top-down pathways contain the visual

long term memory of the stimuli. The stimulus whose memory cell has lost the
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competition in one instant is eventually able to overcome its inhibition and resonate

on the next cycle. This gives rise to cyclic alterations in perception ofvisually ambiguous

stimuli.
Below lile present simulation results of perceptual reversals on the Necker cube

that were obtained with the BU-DMA SAART neural network. Note that initially each

cube was independently presented to the network in order to establish strong top-down

memory for each cube before exposing the network to the Necker cube. Because of the

postsynaptic receptor desensitization, as expected, the network enters into a cyclic

resonance when exposed to the Necker cube. Figure 7.25 shows the cellular activity
(and the dynamics of R"tbi andl dRotb3ldt l)for the two neurons in Field Cl whose memory

pathways have encoded the individual cubes. Figure 7.26 shows the resultant levels of
postsynaptic receptors, while Figure 7.27 shows the dynamics of a top-down synaptic

memory trace for one of the cubes (note the dynamics of the memory decay).
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Note that in the above computer simulations we have disabled the term that sensitizes

the postsynaptic receptors on Field Cl when the network is resonating (i.e., pb,rlrf1 in
equation (6.36) was disabled). The purpose ofthis (although not necessary) was to allow

the network to resonate with one perceptual version of the cube for several iterations.
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FIGURE 7.26. Postsynaptic receptor dynamics during perceptual reversal (or
non-spatial attentional shifts). Shown is the total sum of all the bottom-up receptors

in the Bt -+ C1 pathway (a total of LO24 receptors) for each of the two cells of Field Cl
that have encoded the memories of the individual cubes.
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FIGURE 7.27.Top-down memory dynamics in one pathway for a cell in Field
Clwhose memory represents one of the perceptual states of the Necker cube.

7.4 Conclusrons

In this chapterwe have described a novel real-time and self-organising artificial
neural network called Selective Attention Adaptive Resonance Theory (SAART) and

have provided several computer simulations that demonstrated its learning and
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recognition capability. We have demonstrated that the network can 2D shapes of 3D

objects in a variety of cluttered visual images, provided that most of the object's

boundary is visible and that there is no spatial misalignment between the input and

the relevant memory pathways. Even though the network is presently very limited in
scope, it already surpasses the learning and recognition capability of all the currently
known approaches on the types of images considered. The network can be easily

extended to incorporate the distributed and modulated input receptive fields of Chapter

4 (which would enable the network to handle small misalignments between the input
and memory that may be due to foreshortening effects) as well as the mechanism of
self-regulated attentional learning of Chapter 6. However, at this stage it is of greater

theoretical and practical interest to consider its extension for more general visual
applications. In Chapter 8 we lay the conceptual foundations for a more advanced

network and suggest how it may be generalised to translation, size and 2-D orientation
invariant obj ect recognition of object shapes.
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Chapter 8

Advanced SAART Neural
Network Concepts

"It has become increasingly euident in recent times, howeuer, that
nature works on a dffirent plan. Her fundamental laws do not

gouern the world as it appears in our mental picture in any uery

direct way, but instead they control a substratum of which we

cannot form a mental picture utithout introducing irceleuancies.

The formulation of these \aws requires the use of the rnathematics

of transþrmation. The important things in the world dppear as the

inuariants (or more generally the quantities with simple trans-

formation properties) of these transformations. The things we are

immediately aware of are the relations of these nearly inuariants

to a certain frame of reference, usually one chosen so as to introduce

special simplifying features which are unimportant from the point
of uiew of general theory".

P.A.M. Dirac (1935)

8.1 Introduction and Oven¡iew

In this chapter we integrate the various mechanisms, design principles,

circuits and networks of the previous three chapters and propose concepts for the

Advanced Selective Attention Adaptive Resonance Theory (ASAART) neural network.

ASAART addresses the concepts of self-organised real-time learning, memory guided

search in cluttered backgrounds, perceptual constancy (ability to recognize an input
stimulus despite its variation in input size, orientation or position). lVe first integrate

the SAART neural network of Chapter 7 with the advanced neural model of visual

spatial attention of Chapter 6 (sections 6.4.1 and 6.4.2) to provide a neural network
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that is capable of self-organised real-time learning, translation invariant 2-D pattern

and shape recognition, and memory guided search in cluttered inputs. We then consider

how the concepts of the previous chapters may be used to extend the network to cater

for size and orientation invariant recognition.

8.2 Advanced SAART-I Neural Network

In Chapter 6 (section 6.4.2) we have proposed a minimum 2-D neural circuit
that stores the Immediate Short Term Memory (ISTM) of the attended spatial pattern

in an excitatory reverberatory loop between two competitive neural Fields oftransmitter
gatedneurons. Wehave also discussedhowthereverberatingmemorywithinthe circuit
can be used to presynaptically facilitate and hence influence the bottom-up attentional

selection, thus enabling top-do\ün memory guided selective search and recognition of
2-D spatial patterns and shapes in a wide bottom-up input freld. Once the target pattern

is found and selected, it is then dynamically routed to and centred in a higher neural

layer such that it is transitionally invariant. We now show how that circuit can be

integrated with the BU-DMA SAART neural network of Chapter 7 (section 7.3) to

provide a self-organised and real-time learning artiflrcial neural network that is capable

of translation invariant2-D pattern (shape) recognition and memory guided search in
a wide and cluttered input field. The proposed neural network, called ASAART-I, is

shown in Figure 8.1.

Note that the excitatory reverberations between Fields B2 and 83 maintains

the ISTM of the most recent input after it is offset. Since Field BB (as well as Field A0)

backprojects a specifrc 2-D spatial pattern (i.e., a Facilitatory Modulating Field (FMF))

to each cell in the bottom-up attention selection layer (Field D1), the reverberatory

memory can thus search for and find the same 2-D spatial pattern in the input freld

(Field D0) when its is embedded in the cluttered background, regardless of its location.

When found, the centroid of the selected 2-D spatial pattern will be aligned (i.e., centred)

with the translation invariant neural Field A0 (which then feeds the BU-DMA SAART

neural network).

Since the active cells in Field Dl facilitate the synaptic pathways of Field A0

to achieve translation invariant 2-D representation of the selected stimulus, the

network will be able to frnd and recognize a 2-D pattern wherever it appears. If the

pattern had been previously stored in the reverberatory loop between Fields B3 and

82 (orinthe SAART's LTM pathways),thenthis establishedmemorywillonsubsequent

input presentation influence the bottom-up visual spatial attention layer, thus enabling

the network to recognize the remembered pattern or object when if it is embedded in
cluttered visual images.
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FIGURE 8.1 Advanced Selective Attention Adaptive Resonance Theory
(ASAART-1)neural network for translation invariant pattern recogtrition and
memory guided search in cluttered inputs. Each cell in the bottom-up attentional

selection layer (Field D1) samples its excitatory inputs from a local cluster of cells in
the input array (Field D0). The same cluster of cells from D0 also project excitatory

synaptic pathways to Field 40, such that the central neuron within the cluster is centred

in A0 (see Figures 6.27-6.33, Chapter 6). The input receptive frelds of neurons in A0

are spatially modulated by neurons in D1. Top-down pattern specifrc facilitatory
feedback from SAART's Field 83 to Dl constitutes a Facilitatory Modulating Field
(FMF) that facilitates the input receptive fields of D1 (thus enabling a previously

established reverberatory memory as well as SAART's long term memory to influence

the bottom-up attentional selection).
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The following equation describes the transmitter mobilization in t};le (i,j)'h

synapse of the (m,n)'o neuron in the bottom-up visual spatial attention neural layer
(Field D1).

Mobilized transmitt er (y l¡oå1 )

s,,DoDI

dt
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(8.1)

where H!1Dt is the facilitation gain for the signals from Field 40, while F{'Dl is the

facilitation gain for the signals from Field 83. If the tonic level of transmitter mobi-

lization in these synapses is much smaller than the two facilitatory gains and if
Hîo'' = Hort't, then the reverberatory ISTM across Field 83 will strongly prime all cells

in Field Dl. Thus when a new input scene (edges of a scene) are presented at the input
Field D0, then these priming signals will enhance the activati<¡n of cells in Field Dl
but only in those locations where the corresponding spatial patterns appears in the

input. This enhancement is at the expense of all the other inputs.

Below we provide a computer simulation of the network to demonstrate its
self-organised learning, translation invariant 2-D shape recognition and memory

guided search and selection for a simple example. Because of the extremely large

number of synaptic pathways between the input freld (D0) and the visual spatial

attention neural layer (Field D1), we are only able to provide a simulation for small

input arrays. In order to relate the property ofthe above neural network to the recent

neurobiological data, we provide a computer simulation of the visual problem that was

experimentally performed by Chelazzi et al., (1993) with a trained monkey. 'We thus

first store the recognition memories of two simple shapes (a triangle and a square) by

training the network on the individual shapes (triangle frrst and then the square).

Following this period of training, we present the network with a blank input freld for

a period of time. During this period the cellular activity of Field Cl decays, but the

ISTM ofthe most recent shape (the square) is retained in the reverberatory loop between

Field B2 and 83. After this brief period, we re-introduce the triangle, the purpose of

which is to hold the triangle in the ISTM. This is then followed by a blank period during

which the triangle is being remembered in ISTM. We then introduce both shapes, but
at different spatial locations. Since the triangle is also in the ISTM, we expect that the

ISTM will facilitate the visual spatial attention layer to frnd and transmit the triangle,

thus leading to its recognition.
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FIGURE 8.2. Simulation of Chelazzi et ø1., (1993) experiment with the
ASAART-I neural network.

The simulation data in Figure 8.2 represents the activation level of two cells

in the ASAART-1's Field Cl. The data shows that when both shapes are presented to

the network simultaneously, the long term memory cell of the triangle (cell 1) was

activated before the other shape had time to enter into the network and activate its
memory cell. This simple simulation thus demonstrates that the network is capable of

translation invariant 2-D shape recognition and memory guided search in cluttered

inputs. However, this simulation does not demonstrate the network on realistic visual
images. Hence there is a need to simulate the network on a much larger size and with
realistic inputs. Our simulation was restricted to the small size primarily because of

the limitations of the computing platform on which the simulation was run.
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8.3 Concepts for Size Invariant Recogtrrition

In order to develop the neural concepts for size invariant 2-D object recognition,

let us consider how the Feedforward Excitation-Feedback Presynaptic Facilitation
neural circuit of Chapter 4 may recognize a stimulus when it is changed in size. Thus

we initially assume that the circuit has an established top-down reference shape.

Let us suppose that the bottom-up input from Field Fo is sampled by a number

of SizeFields(F,r,F,rF,r,...,4i,...,F,,)rsuchthateachSizeFieldF.,samplesitsinputsat
t'r spatial scale. If the Size Field F", samples at the highest spatial resolution, then F"n

samples at the coarsest spatial resolution. In addition to there being a change in the

samplingresolution of thebottom-up input as one goes from Size FieldF",, toF,,,*,, there

is also a gradual shift in the position of the input receptive fields (IRFs) a\May from the
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array centroid. Hence, the highest resolution Size Field (4,,) will receive its information
from a small input region, while the Size Field of the coarsest resolution will not receive

any information from a central region.
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FIGURE 8.3. Bottom-up sampling stratery for achieving size invariant
recognition.

Thus rather than having coincident input receptive fields, each successively

coarser Size Field will have its input receptive field displaced outwards relative to the

input receptive frelds of smaller spatial scales. For example, Field F*, will have input
receptive frelds whose spatial extent is larger than those of Field Fß (i.e.,

llrRFß ÞllIRF", lÞll1R4, l).

Now let us assume that each Size Field projects its output to a common layer,

as in Figure 8.4, that may also receive a top-down memory. The signal flow from each

of the Size Fields needs to be regulated by layer of competitive match./mismatch neurons.

The neuron that detects the highest match will facilitate the signal transmission gain

from its associated Size Field.

fna.ccessible,
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FIGURE 8.4. A competitive layer of match./mismatch neurons regulates the
selection of the best matching bottom-up Size Field.

However, if there is no top-down input, then a bias is needed to initially select

a Size Field for attention. 'We now need to consider how a particular object memory

may be activated by a bottom-up input that does not match the spatial size of the stored

memory. We suggest that a complimentary scheme to that shown in Figure 8.4 is

required. The same match/mismatch neurons may be used to regulate the top-down

and the bottom-up signal flow. Thus, in addition to the parallel Size Fields in the

bottom-up direction, there is also a need for similar Size Fields in the top-down direction

so that the recalled memory may be appropriately scaled to be matched with the input,

as well as to regulate the bottom-up signal transmission gain.

8.4 Concepts for Orientation Invariant Recognition

In order to cater for orientation invariant recognition we suggest that a similar

scheme as shown in Figure 8.4 may be used. Thus, there is a need for parallel and

competing neural layers in the bottom-up and the top-down pathways, such that each

succesive layer produces a slightly different oriented version of their input pattern. A

competitive match/mismatch layer may be used to decide how the information is to be

routed in the bottom-up and the top-down directions in order to match the top-down

memory.In addition, there oughtbe abiasforacertainspatial orientation (e.g.,vertical).

Below we describe the implementation of a massively parallel real-time artifrcial neural

networkforrotation invariantrecognition of 2D shapes invisual clutter (its relationship

to the psychophysical data is discussed in section D.4, Appendix D). The network shown

in Figure 8.5 is based on the concepts of parallel and competing frames of reference in
the bottom-up and the top-down directions and is called Rotation Invariant Selective

Attention Adaptive Resonance Theory (RI-SAART) neural network.

FOs

¡'s
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FIGURE 8.5. Rotation Invariant Selective Attention Adaptive Resonance

Theory (RI-SAART) neural network.

Let us assume that a certain 2D shape (e.g., upper case character 'A ) is stored in the

LTM pathways such that the stored representation is that of a shape in its usual

orientation (e.g., upright). Let us now consider how the above network would recognize

a rotated shape. Thus if character 'A'is subsequently presented in a clockwise orien-

tation as shown in Figure 8.5, then its bottom-up memory will be activated via the

BU-DMA pathways by one of the bottom-up orientation layers whose output matches

the stores BU memory pathways. This will then cause the activation of the top-down

memory and its transfer into a large number oftop-down orientation layers. Orientation

control neurons measure the degree ofmatchbetween the actualinput andthe top-down

rotated versions of the recalled shape. The winner will further enhance the top-down

pattern whose orientation best matches the input while all other top-down versions are

@

Malßh,
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suppressed. This leads to a steady state where only one top-down oriented version ends

in SAART Field 83. Similarly, only one oriented bottom-up version will be active across

SAART's Field 82 (preventing the BU LTM to be comupted by other orientations).

Interestinglyenough, the twoversions have opposite orientation. The top-downversion

matches the orientation of the input, but the bottom-up version matches the orientation

of the BU memory.

8.5 Concluslons

In this chapter we have suggested how the neural mechanisms of synaptic

facilitation and the matchr/mismatch detection may be used in more advanced neural

network designs. We have proposed an extension to the SAART neural network for

translation invariant 2-D pattern recognition. We have also suggested that one

approach to achieving position, size and 2-D orientation invariant object recognition is

to use a large number of synaptic pathways and layers through which the bottom-up

(as well as the top-down) signals may be simultaneously routed. The information flow

along the various pathways is regulated by a layer of match"/mismatch neurons.

However, because of the large number of synaptic pathways that are required for

real-world visual object recognition problems, the suggested solution is currently not

practical. The implication of the proposed solution to rotation invariant 2D shape

recognition is further discussed in Appendix D (section D.4) in relation to the psycho-

physical data from human subjects.
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Chapter 9

Conclusions and
Recommendations

"The foundations of science as a who\e, and of physics in particular,

await their next great elucidations from the side of biology, and

especially from the analysis of the sensations ... psychological

obseruation on the one side and the physical obseruation on the

other may make such progress that they wiII ultimately come into

contact, and that in this way new facts rnay be brought to light. The

result of this inuestigation will not be a dualisrn but rather a science

which, embracing both the organic and the inorganic, shall

interpret the facts that are cotnrnon to the two departments."

E. Mach (1914)

9.1 Introduction and Overview

In this chapter \Me summarise the main contribution that the thesis offers to

the understanding of primate visual system. Although the theory presented in the thesis

was developed within the context of higher cortical layers, particularly the infero-

temporal cortex, the concepts are not necessarily restricted to IT cortex nor are they

necessarily restricted to the visual modality.

By assuming that the neural layers in the primate visual brain may be modelled

byreal-time2-D competitive artifrcial neural layers, we have provided a new approach

to solving some of the most diffrcult problems in machine vision. Starting with a simple

theoretical concept of top-down modulatory feedback that we have derived from

Grossberg's Adaptive Resonance Theory, we have proposed novel neural layers,

mechanisms and design principles for the design of complex 2-D neural circuits and

networks. We have demonstrated our neural circuits and networks on difflrcult problems

of object recognition in cluttered visual images and have shown how the mechanism of
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top-down and memory guided selective attention is implemented. We have also shown

how the arousal of a real-time neural system may be self-regulated by the familiari-

tylnovelty detection and how this self-regulation may alter the degree of attention, thus

altering the selectivity of cellular receptive frelds.

9.2 Neurobiological Implications

The most important contribution that the theory offers to the understanding

of neurobiology is the role of the massive feedback pathways. The theory proposes that,

in the context of neurobiology of vision, top-down feedback pathways form a closed loop

and do so by selective modulation of bottom-up neural signal transmission. The theory

predicts that these modulatory signals act throughout the brain and affect the receptive

frelds of cortical and subcortical neurons. For example, the theory predicts that the

receptive freld of V4 neurons will be dramatically influenced when the animal pays

attention to a visual stimulus in one part of the visual freld while ignoring another,

(Moran & Desimone, 1985). This is achieved by the amplification of signals from the

attended source, while the unattended signals are annihilated by competitive inhibition

oftheir target cells. In an inattentive state, each neural signal in the receptive freld of

the cell will be weak but their total contribution may be signifrcant to excite the cell

above its firing threshold. Because of the effects of top-down selective attention on the

properties of receptive fields, we stress that one needs to be cautious when interpreting

the experimental data that is obtained from anaesthetised animals. An anaesthetized

monkey, for example, is unlikely to be able to exert top-down modulation of the

bottom-up synapses and hence the neural response may solely be due to the simulta-

neous co-activation of many feedforward pathways.

The bottom-up/top-down interactions as proposed in the thesis imply that at

any one instant, the vast majority of the synaptic pathways in an alert animal are not

accessed due to competitive effects between them. For example, translation invariant

pattern recognition can be achieved if each IT neuron has access to pathways from the

whole visual freld, but when selective attention is engaged, only a contiguous set of

pathways from the attended area transmit their bottom-up information. Our prediction

is that there is a set of complementary spatial transformations in the bottom-up and

the top-down directions. Spatial transformations in the bottom-up direction are

required so that a stored memory may be activated, while the top-down spatial

transformations (of opposite polarity) are needed so that an appropriate top-down

feedback may be matched with the input and to presynaptically facilitate the appro-

priate bottom-up pathways. This may explain for the large size of the inferior temporal

cortex (which occupies some'77o of the monkey's neocortex) and the anatomic frnding

of several distinct foci in IT.
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The theory has also suggested that some top-down pathways (especially those

that involve memory traces) may be equated to visual imagination or visual imagery.

This implies that conscious visual awareness of external stimuli relies on the integrity

of the cognitive visual layers. Thus, patients whose top-down attentional pathways are

lesioned will not be able to perceive a familiar object in the presence of non-relevant

distractors. A small disruption to either pathway will lead to unusual effects that the

subject may not be aware of, such as visual neglect. Since the top-down pathways act

to force the neural system to seek a stable resonant state, their disruption will cause

distortion to visual perception, such as in a patient who claims to see distorted faces

(Bodamer, L947). The equivalence between the top-down feedback and mental imagery

has also been recently proposed by several researchers (Le Bihan et ø1., L992; Kosslyn

et a1.,1993; Mumford 1994).

In Chapter 6 (section 6.2) we have presented a neural circuit which implies

that the matching between the sensory input and the recalled top-down memory is

carried out by two types of neurons. One type responds vigourously to novel stimuli

while the other type responds vigourously to familiar stimuli. Since the response of

these neurons may be needed to influence the signal transmission at the earliest level

of the visual system, it is appropriate that these neurons be located in the part of the

brain where they can also interact with similar neurons of other sensory modalities

(e.g., auditory). The appropriate location for these neurons would be the thalamus. This

proposal agïees with the experimental frndings of a group of neurons in the medial

thalamus whose properties seem to conelate well with our proposal (Rolls et aI., L982;

Fahy et aL,1993a, 1993b).

Although the theory was developed within the context of higher level primate

vision (beyond visual area V4), \Me propose that similar modulatory mechanisms as

proposed in the thesis also exist in the lower level visual hierarchy (LGN, Vl, V2 and

V4). Since IT cortex does not appear to be in the retinotopic register with the visual

area V4, \Me suggest that the observed modulatory effects on V4 cells are due to the

top-down facilitatory presynaptic feedback from elsewhere, most probably the

prefrontal cortex. However, since the prefrontal cortex interacts with the IT cortex, it
is possible that the origin of the modulatory signals on V4 cells is from the IT cortex

but are relayed via the prefrontal cortex. If that is the case, then it is tempting to suggest

that, the prefrontal cortex contains cognitive neural layers where visual memories are

temporarily stored, and that these layers are also used for visual cognition and

imagination.

'We have assumed that the bottom-up neural signals representing the edges of

a visual scene and the boundaries of objects are represented in one layer. However, it
is known that the early visual layers (V1, V2 and V4) are orientation selective. Hence
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there is a need to extend the theory to take this into account. It should be stressed that

our model has assumed distance independent competitive interactions right across the

whole neural layer. Therefore, if the model is to be extended downwards (i.e., towards

areaY1 and below), the lateral extent of interactions should begin do decrease, such

that they are restricted to small neighbourhoods of cells whose receptive frelds overlap.

Nevertheless we have presented a neural theory that should point us in the right

direction. Perhaps the most satisfying result of our theoretical model to date is that we

can now satisfactorily explain and model a recent neurobiological experiment demon-

strating the memory guided visual search (Chelazzi et al., 1993)'

9.2.1 Visual Perception

A valid neural theory of cognitive biological vision and visual perception should

go beyond explaining the role of the massive feedback pathways in the primate brain.

It should also explain the computational need for and the role of neural layers within

which the process of "visual imagination" is performed. Since humans (and perhaps all

primates) are able to imagine a visual stimulus or a scene, it is highly likely that such

process is also crucial to visual perception. A theory ofvisual perception should therefore

be able to provide an integrated approach that relies on the interactions between the

bottom-upvisual processes that are responsible for "seeing" and the top-down processes

that are responsible for "imagining". Numerous psychological examples demonstrate

that the process of "seeing" is not sufficient for visual perception. These examples

demonstrate that the

when the loop is successfull.'¿ closed. A good example of an ambiguous visual stimulus

that so potently demonstrates the closed loop nature of the brain is the Boring's wife -

mother-in-law image. Although most humans eventually perceive both visual precepts,

usually considerable amount of viewing time is needed before one of the gestalts is

perceived. Novices to this image have a great diffrculty in perceiving the second precept

once their attention is focused on the first. However, if they also manage to perceive

the second precept then the two will be perceived in an oscillatory fashion, i.e., the

subject experiences perceptual reversals. The other observation that can be made and

whichhas importantimplications to neural theories ofvisual perceptionis thatalthough

the mother-in-law image is binary, the underlyrng visual structure (the young/old

',voman's face) is perceived as three dimensional.

What happens at the instant one of the gestalts is perceived? The most obvious

observation is that the perception of the alternate fades. However, this does not tell us

very much other than that \ile are not capable of perceiving more than one stimulus at

a time. We claim that, at the instant the stimulus is perceived, a closed loop steady

state is achieved and is made possible by the top-down memory. Where does this visual

memory end up? rWe certainly don't see it. It is plausible to suggest that this memory
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ends-up in a "cognitive visual space" that is also used when we imagine a visual stimulus.

That this may be the case is supported by visual imagery experiments. Considerable

amount of frndings from neuropsychology provide evidence that visual imagery and

perception share common neural substrates (Kosslyn 1980; Kosslyn et a1.,1993). This

is further support by neuropsychological experiments that show that patients who

cannot imagine a visual scene (or an object) from a given vantage point also fail to
perceive that scene or object when it is presented in the same part of the visual freld

(Bisiach andLuzzatti 1978; Bisiach et a1.,1981).

Because the adaptive resonance concept of ART almost proposes the closed

loop functioning of the brain, ART is placed in a favourable position to lead the way to

a general theory ofcognitive biological vision and visual a\ryareness. In the context of

the above, the concept of adaptive resonance can be used to define visual perception,

visual a\Mareness, selective visual attention and the necessary conditions for visual

learning. Below we offer a neural definition of these concepts.

(ù uisual perception and awareness is a brain state during which the external sensory

stimulus elicits a top-down imaeination (or mernory) of a stimulus with which it
resonates.

(iÐ selectiue uisual attention is a neural mechanisrn that enables uisual perception

by

(äÐ only the consonant (matching\ reuerberation between the selected external

stimulus andthe imagined stimulus (or recalled rnernory) enters uisual awareness

and leads to memory adaptation.

(iu) the established resonance must be stable for some minimum period of time for it
to be detected.

Visual perception of an external sensory stimulus will thus fail when the

external stimulus cannot activate the correct top-down imagination (or memory) ofthat

stimulus or cannot resonate with it. This dual and complementary nature of perceptual

processing arises from a need to survive and carry out intelligent behaviour in a complex

sensory environment, whose sensory events need not all be analysed and interpreted.

The above defrnitions do not differentiate between the perception of 2-D and 3-D visual

objects. One may wonder how is it that a two dimensional binary visual stimulus (such

as the binary image of wife - mother-in-law) can resonate with an imagined three

dimensional surface (a face), unless one transforms the other. We propose that it is the

bottom-up 2-D neural representation of the external stimulus that, by recalling the

imagined (or memorised) 3-D representation, gets transformed into a three dimensional

representation by the recalled representation (the difference between the two is
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discussed in section 9.2.2). The external stimulus will thus forever be perceived as a

two dimensional stimulus unless an appropriate three dimensional imagination or

memory is recalled which can lead to resonance with the input. If the top-down

attentional signals are defective and cannot transform the stimulus into a 3-D precept,

then even direct viewing of a person's face (or viewing a picture of a real face) will also

be perceived as a two dimensional stimulus. There are a number of cases in

neuropsychological literature of patients who cannot perceive and identifr faces. An

interesting example of a patient who cannot perceive faces as three dimensional has

claimed "I can see the eyes, nose, and mouth quite clearly but they just don't add up.

They all seem chalked in, like on a blackboard", Pallis, 1955. Further studies of

prosopagnosia (an impairment of face recognition and face memory) has led to a
conclusion that faces have a special representation. However, rüe suggest that it is the

3-D representational system in these patients that is malfunctioning.

9.2.2 2-D versus 3-D Representation

We suggest that a 2-D representation of an input stimulus is characterized by

synchronized firing of neural cells whose position in the layer corresponds to the object's

boundary (or a line), whereas a 3-D surface depth is also represented by synchronized

frring but across a number of neural layers. Motion sensitive layers of the visual cortex

should play an important role in providing the initial modulation that can then be stored

as appropriately. When a sufficiently large repertoire of modulated patterns are stored

in memory, then their subsequent activation by static and binary inputs (such as the

Boring's wife-mother-in-law image) should enable the appropriate 3-D perception.

Often, the reflected intensity of light from real objects may be related to the surface

structure, but this need not be so for the brain to interpret the correct surface structure
(example is that of uneven illumination of an object)'

The currently popular view is that the brain derives surface shape and depth

from shading. If we are to believe that synchronized oscillations (i.e., resonances) are

the key states of biological visual perception, then we must acknowledge that there are

only two modes of synchronizations possible: (i) synchronization with zero phase lag;

or (ii) synchronization with a constant (or modulated) phase lag. While in ideal cases

the bottom-up processes may extract the correct phase modulations, in general they

need to be supplemented by top-down modulations. The fact that \Me can all perceive

depth in binary images, drawings and sketches clearly demonstrates that shading is

not required to enable us to perceive surface shape and depth, although it may be a

good cue in removing possible ambiguities'
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9.3 Conclusions

'We conclude thatflexible design principles that arebased onfeedforward-feedback

interactions in a closed-loop real-time competitive neural circuit whose modulatory

mechanisms can dynamically retune the signal transmission gains and the cellular

receptive field profrles at various stages of processing overcomes some of the problems

and limitations that are faced by the rigid architecture of the current artifrcial neural

networks. The neuro-engineeering design principles, mechanisms and circuits as

proposed in the thesis provide a new and robust method for solving some of the most

difficult problems in visual object recognition that are currently not well handled by

the state-of-the-art artifrcial neural networks and the more conventional computer

vision systems. These design principles also open new avenues for further research into

more advanced modelling ofcognitive and perceptual real-time artificial neural systems

that use selective information processing.

From a technological viewpoint, it is unlikely that the application of the

SAART/ASAART neural networks to general visual problems will be possible in the

foreseeable future. The reason for this is that \üe currently do not have plausible

hardware technology to implement extremely large scale artificial neural networks that
are required for general visual applications. However, it may be possible to apply the

proposed neural networks to a restricted set of problems that do not have a large degree

of freedom. For such restricted problems, the implementation of the SAART neural

network on a silicon wafer, coupled with time-multiplexing, may be sufficient. Multi-

wafer integration may be required for more realistic visual problems. Nevertheless, the

knowledge that we may frnally be able to solve some extremely diffrcult problems in

vision may provide an impetus for novel hardware processing technologies and

implementations of the proposed artifrcial neural networks.

9.4 Recommendations

Since our computer simulations (being performed on a 486 PC) were limited
by the computing platform, there is a need to integrate the proposed concepts and

demonstrate it on a larger scale. We therefore recommend that:

The concept of self-regulated attentional modulation of distributed cellular

receptive freld profiles be integrated into the SAART neural network and

demonstrated on the relevant visual images;

(i)
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(ii) The proposed concepts for size and orientation invariant object recognition be

further developed and demonstrated. This may initially done with multiple

copies of the Feedforward Excitation-Feedback Presynaptic Facilitation (FFE-

FBPF) neural circuit.

From a mathematical point of view, we feel that there are still many problems

that need to be addressed, such as the stability analysis (which we have ignored). Our

extensive computer simulations have demonstrated that for the chosen set of para-

meters, the SAART neural network always ends up in a stable state. In addition to

developing a formal mathematical analysis, we feel that there is also a need to develop

a full mathematical theory of modulated neural layers. It is quite possible that there

are many other useful neural layers that we have not considered, such as the on-sur-

round off-centre shunting competitive neural layer (which would be very useful for the

modelling of the lower level visual cortical areas, e.g., LGN and V1).

From an engineering point of view, \¡/e recommend that a study be carried out

to determine the feasibilityofimplementingthe proposedmodulated competitive neural

layers in VLSI.

Although we have presented our theory in the context of biological vision and

have limited our discussion to the inferior temporal cortex and its immediate afferents,

the concept of priming by enhanced transmitter mobilization is quite general. In

addition to enhancing the strength of signal, the signals in the primed pathway will
access the attention of other layers faster than a non-primed pathway. For example, if
a certain stimulus is expected it will be processed faster than if it was unexpected, since

in the former case all the relevant pathways will have their respective transmitter

levels enhanced by the top-down priming signals. Thus, there is a need to investigate

how the SAART concepts may be used in other sensory madalities where sensory clutter

makes it too difficult to separate the various stimuli (e.g., in speech recognition).

Finally, rve recommend that Neuro-Engineering (which we have formally defined

in Chapter 3) be further evolved as a neïv scientific discipline. Neuro-Engineering defies

the traditional departmental boundaries that separates psychologists, neurobiologists,

neural network theoreticians, mathematicians and engineers. Although a researcher

from one of the traditional disciplines may initially become disoriented when confronted

with the wealth of the experimental data and a new mathematical language, we have

found that it is only when v¡e attempt to solve a realistic problem (that our brains need

to cope with) that we can discover some underlaying mechanisms. A good knowledge

of engineering design methodologies thus plays a crucial role since it enables one to see

the role of the mechanism at the more global level. Through the repeated crossings of

the traditional boundaries, such a researcher may eventually be able to provide an
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unified theoretical understanding of neurobiological systems, from the level of single

neurons and chemical synapses, to the behavioural level ofwhole organisms and finally

to the realisation into a machine based system.
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AppendixA

Basic Structure of a Modulated
Competitive Neural Layer

In this Appendix we derive the basic structure of a Presynaptically Facilitated

Shunting Competitive Neural Layer, which is then formally developed in Chapter 4

and analysed in Chapter 5.

In general, each neuron in a shunting competitive neural layer may have a

number of excitatory and inhibitory synaptic inputs whose combined effect determines

the cellular response. Each of the input synapses may also be modulated by facilita-

tory/inhibitory gain control signals. In order to develop a general mathematical model

of a transmitter gated and presynaptically modulated shunting competitive neural

layer, we frrst consider the qualitative properties of the model described by equation

(4.1). This is aversion of the shunting competitive feedback equation with a single

on-centre and wide off-surround anatomy that was introduced by S. Grossberg (1973,

1988).

dx'

dt
- -Axi+ (B - x,)fJi + f@,)l- (C + x,) Jt Ft¡s@i)

n+I
j=

(4.1)

where /i is the total excitatory input into the layer at i'h cell position; ,/' is the total

inhibitory input to the i'i cell. The term

n

(4.2)

is the total lateral feedback inhibition due to cellular competition, where {i is the lateral

interaction strength from the j'h cell to the i'¡ cell in the layer. The term (B - x,)Vi + Í@,)l

says that the total excitatory input ,ri and the self-excitatory feedback signal /(-r')

increase the activity of x¡. The self-excitation provided by the term (B -x¡)l@) in the

above equation ensures that a layer of neurons whose dynamics is described by (4.1)

retains a contrast enhanced memory of its inputs after the input offset. The term



AppendixA. Basic Structure of a Modulated Competitiue Neural Layer 302

-(C +x,) J: F,,s@¡)
n

+> (4.3)

says that the inhibitory inputs drive the cell towards is negative saturation level of -C.

The cellular activity of (4.1) is thus restricted to the range (-C,B)'

We now wish to qualitatively analyse the equilibrium behaviour of (4.1) when

J! = J ¡ ,V i.In order to do so, let us temporarily ignore the positive self-excitation term

and write (4.1) in the following form:

(4.4)

where If is the total transmitter gated excitatory postsynaptic potential (EPSP) acting

on the ith cell that is due to all the excitatory input synapses, given by (A'5); V, is the

total inhibitory postsynaptic potential (IPSP) acting on the cell that is due to all the

inhibitory input synapses, given by (4.6); v, is the lateral feedback inhibition that is

mediated by slow inhibitory interneurons, given by the additive equation (4.7); f is a

tonic level of inhibition. Figure 4.1 illustrates a simple model of transmitter gated

shunting competitive neural layers (on-centre off-surround anatomy) as modelled by

(4.4) and (4.7).

(A.s)

(A.6)

where M represents the number of excitatory input synapses into the i'r cell and N

represents the number of inhibitory input synapses into the cell. For simplicitywe will

assumethatM=N.

dv,

dt
=-Aii+B ],f(xi)

(4.7)

where ¿, <l and B << B. The thresholding function f@) = max(x; -O,0) =fx¡-@l* in the

above equation ensures that a cell contributes to lateral inhibition of other cells only

when its activity is above a threshold of @. The excitatory postsynaptic potential due

to one input synapse is given bY

ry = -D*vii+ n*si,tii Ø.8)
dt

dx,

I = -o*,+ (B - x,)fr - (c + x,)(If + l, + f)

M

vi =}ri'
l

/f
lç =2v¡t

,t
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\Mhere D* and E* are constants that defìne the decay and the rise time of EPSP

respectively;S¡t is the synaptic input signal; y,rt is the amount of mobilized transmitter

in the synapse. Since we are initially ignoring any self-excitation that may be provided

by postsynaptic feedback, we can write the synaptic dynamics by the following two

equations:

r+au,,

I = alzrl - u;) - þ;La;t- yit) (A.e)

dyi,
(4.10)

dt = þo@ì,- yr1) - ps¡ly;,1 - I yi,

where z;,1 is the transmitter production level (presently assumed to be constant); urt is

the level of stored transmitter; and yr,,t is the mobilized transmitter (available for release).

Similar set of equations may be written for inhibitory synapses.

++

+
slow itútibítory lntern'erll'on's

+ (ú)

,-/ JastexcìtatorycelLs

'' &¡)
slow itthibifory sgnnpse

slow esccitøtory sA nap se

FIGURE A.l.Simple model of transmitter gated shunting competitive neural
layers. External inputs to each cell are gated by slow transmitter based synapses.

Lateral competition is mediated by slow inhibitory interneurons.

If lateral feedbackinhibition (v,) is assumed to be due to slowly charging inhibitory

interneurons and if the input synapses are also assumed to have slow dynamics relative

to the fast excitatory cells, then we can represent (A'4) by its equilibrium solution given

by (4.11).

BVi-C(V, +v'+f)
*'-T' A+Vi+fi+v,+f

(4.11)
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Since B and C are positive constants that determine the upper and lower saturation

levels respectively, we can let C = aB, where ø > 0. Then equation (4.11) becomes

BVi-aB(V¡+v,+f)
)c¡

A +fr + V-+v, +f

B(Vi - a(v¡ +1, + F))

A +fr + V-+v' +f

whose resting potential (no synaptic inputs) is given by

-aB(v,+l)

(4.12)

xi
A +v, +f (4.13)

Because the resting potential is negative (provided t}i,at a + 0 and 6 > 0), then, by

(4.7), thelateral feedbackinhibition (v,)willdecaytozero. Therefore, therestingcellular

potential is given by

-aBlY- --'"i A +f (4.t4)

Now let as consider what happens to (4.12) as \Me parametrically increase both V'*

and V¡ while keeping them equal (i.e., I4 = Vl, Vi). Then

(t - a)B (4.15)
2

which monotonically approaches the asymptote of (l-a)812. When 0<a<l (C <B),

(I -a)Bl}is positive. Thus, even though the cell is receiving net inhibition via the term

F, its equilibrium activity keeps increasing as we parametrically increase both the

excitatory and the inhibitory inputs. Similarly, when a > I (C > B), the equilibrium

monotonically approaches a negative asymptote. The problem does not disappearwhen

a = 1 (i.e., when C = B), even though the asymptote is shifted to zero (it is above the

negative resting state). When ¿=0 (i.e., C=0), the resting potential is zero and the

asymptote is shifted to B12.

In Figure 4.2 we show the simulation results of a transmitter gated shunting

competitive neural layer defrned by equations (4.7){4.11). The excitatory and the
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inhibitory synapticinputs were equal in magnitude and progressivelyincreased. Note

that each point on the graphs was obtained after 100 iterations of the above equations

and that the network variables were reset upon the beginning of each simulation run.

tI.tx o,5

o,4

o.J

o.2

o.t

o.o

-o.l

-o.2 oool 02 05 04 05 06 07 0a 09 10

1.O
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l'l{rut

fn¡,tlt

FIGURE 4.2. (a) Steady state synaptic excitatory postsynaptic potential as a

function of the input signal strength (equal in strength to the synaptic
inhibitory postsynaptic potential).

As can be seen in the graphs of Figure 4.2, the steady state cellular activation

level converges to a level that is positive and well above the resting state. The graphs

clearly demonstrate that even though the cell is receiving higher inhibition than

excitation (the difference being v, +f), the steady state cellular activity of the system

described by the above equations still keeps increasing and converges at a positive

value well above the negative resting potential (the actual asymptote depends on the

magnitude ofthe tonic inhibition term F). This undesirable characteristic ofthe system

where the inhibitory synaptic inputs do not effectively regulate the cellular response

is not very useful and would make it awkward to engineer a neural network whose

layers use both excitatory and inhibitory input synapses'

In order to overcome this undesirable characteristic of the system described

by equation (4.1), \Me propose the following equation
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4 = -Ar,+ (B - x,)lc(v:- Ðf. - (c + x,) (fof tf - tl¡1. +-cl, * r)

(4.16)

where ÍG(Vi-V,)l*=max(G(V,i-y¡),0) is the net excitatory postsynaptic potential that

drives the cell towards its positive saturation limit of B; lG(V¡ -V)l* +-Gl,+f is the net

inhibitorl¿ posts.'¿naptic potential that drives the cell towards its negative saturation

point of -C; G is the gain of excitatory and inhibitory synaptic inputs (assumed to be

equal); f is the tonic level of inhibition. The equilibrium solution of (4.16) is given by

BIG(V: - v¡)1.- c( lG(Vt -V)1. + Gv, + f)
(A.r7)xi=

A + lG(Vi- v¡)l* + lG(V¡ - v¡)1. + Gv, + f

Note that when VI =V, ,the equilibrium state is independent of the synaptic inputs and

is given by

C(Gv, + f)
xi=-

A +(Gv,+f)

Cf (since v, + 0 whenx, <0 Vr)
A +f

(A.18)

which is zero when C = 0. The system described by (A.16) still has the useful properties

of automatic gain control provided by the (B -x,) term. All neural circuits in the thesis

are based on a version of (4.16) with C = 0, shown below.

#=-o*,+(B -x,)lG(W- rt)1. -*,(fcf;- t{ll.+Gv, +r)

(4.19)

whose equilibrium is given by

BIG(vi - v¡)1.
(A.20)

In order to generate the model described bV (4.7) - (4.10) and (4.16), we have

ignored the positive self-excitation term that appears in (4.1). In the above we have

also considered an idealised model of chemical synapses whose internal dynamics is
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independent of postsynaptic cellular activity. The full mathematical model of a Pres-

ynaptically Facilitated Shunting Competitive Neural Layer, whose self-excitation is

provided by postsynaptic feedback, is developed in Chapter 4 (section 4.3.2).



308

Appendix B

Parameters of the Simulated
Circuits and Networks

This appendix lists the equations of the oscillatory neural layers and the

parameters of the SAART neural network. Most of the listed parameters are based on

the parameter design procedure ofChapter 5, withthe exception ofthe oscillatoryneural

layers. We will therefore list the equations that were simulatedfor the oscillatorylayers.

8.1 Equations for the Oscillatory Neural Layers

The following are the equations that were simulated for oscillatory neural

layers of section 4.5 (Chapter 4). Note that all the parameters in the following four

simulations are almost identical (the main difference being in the coupling strength).

(I) Equations for Figure 4.2O (Chapter 4)

The following is a list of equations that were used to obtain the data in Figure

4.20 of Chapter 4. The input is constant across the layer ("I, = 1, Vi).

Excitatorv postsynaptic potential

v,(.t + l) = v¡(t) - 0.5v,(r) + 10"{[v,(r) - 0.2]* tl + 80/(x,(r))l (8.1)

Stored transmitter

u,(t + l) = u ¡(t) + 0.05 ( I - u ¡(t)) - o.o04l2 + J, + 3oo J, f (x,(t)l (u,(t) - v¡ (r))

(8.2)
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Mobilized transmitter

yiT + 1) =y,(r) - 0.01y,(r) - 0.00U,ty ,Q) -0.21*Íl +20f@,GÐl

+ O.OO2\2 + J, + 30s,(r)l (u,(t) - y,(t))
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(8.3)

where si(/) = 2 f@¡Ø) is the total lateral presynaptic facilitation from nearest neigh-
.i *i

bours.

Posts]¡naptic cellular activation

x,(t + 1) = x¡(r) - 0.01x,(r) + 0.01[1 - x,(t)]v,(t) - Sx,(t)v ,(t)

Lateral inhibition

l,(t + 1) = l,(r) - 0.00lt,(t) + 0.0000251'(r)

(8.4)

(B.s)

where t,1t¡ = 2 f@¡Ø) and is summed over the whole layer of 20 neurons. Function
J +t

f(x,(t)) = max(ri(t) - 0.3' o).

(II) Equations for Figure 4.23 (Chapter 4)

The following is a list of equations that were used to obtain the data in Figure

4.23 of Chapter 4 (all inputs J¡=l,Vi).

Excitatory posts]¡nantic potential

v,(t + l) =vi(t)- 0.5v,(r) + 10"{tv,(r) -0.21* [l + s0/(x,(r)) +40s,(r)]

(8.6)

where s,(r) = | f(x¡(t))is the total lateral presynaptic excitation from nearest neighbours.
l+t

Stored transmitter

u,(t + l) = u,(t) + 0.05( I - ui?Ð - 0.oo4l2 + J í + 300J, f(x,(t)l (z¡(r) - v'(r))

(8.7)
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Mobilized transmitter

y¡(t + l) =y,(r) - 0.01y,(r) - 0.00lJ,ty,(/) - 0.21+ | +zof(x,(t))l

+O.0O2Í2+ J,l(u,(t) - y¡(t))
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Mobilized transmitter

yi? + l) =y,(r) - 0.01y,(r) - 0.001"{,ty,Q) -0.21*ll +z\f(x,(t))l

+0.002Í2+ J,l(u,(t) - y,(/))

Postsvnantic cellular activation

(8.8)

x,(t + l) = x ¡(t) - 0.0 1,r, (r) + 0.0 I [ 1 - x,(t)]v,(t) - Sx,(t)v,(t) (B.e)

Lateral inhibition

i,(t + 1) = v,(r) -0.001t,(t) +0.0000251,(r) (8.10)

where t,1t¡ = 2l@¡Ø) and is summed over the whole layer of 20 neurons. Function
j+¡

f(x,(t)) = max(ri(t) - 0.3, o).

(III) Equations for Figure 4.26 (Chapter 4)

The following is a list of equations that were used to obtain the data in Figure

4.25 of Chapter 4 (random inputs into the layer).

Excitatory postsvnaptic potential

v,(t + l) = v¡(t) - 0.5v,(r) + l0J,tv,(r) -0.21* [1 + 80/(x,(t)) + 20s,(r)]

(8.11)

where si(ú) = 2 f@¡(t)) is the total lateral presynaptic excitation
J+t

Stored transmitter

u,(t + l) = u,(t) + 0.05 ( 1 - u,(t)) - 0.004[2 + J i + 300J, f (x'(t)] (u ¡(t) - yr (r))

(8.12)

(^B.13)
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Posts.'¿naptic cellular activation

x,(t + l) = xi1)-0.0lx,(r) +0.01[1 - x'(t)]v,(t) - Sx,(t)v,(t) (8.14)

Lateral inhibition

i ,çt + 1) = v,(r) - 0.001v'(r) + 0.0000251,(r) (8.15)

where t,1t¡ = 2 f(x¡(t)) and is summed over the whole layer of 20 neurons. Function
J+t

f@¡QÐ = max(ri(t) -0.3'o).

(fÐ Equations for Figure 4.27 (Chapter 4)

Excitatory postsynaptic potential

v,(t + 1) = v,(r) - 0.5v,(r) + 10[y,(r) -0.2]*lJi+ 80J,/(x,(r)) +40s'(r)l

(8.16)

where s,(r) = > ¡(x¡(t))is the total lateral presynaptic excitation from nearest neighbours.
.l +t

Stored transmitter

u,(t + l) = u,(t) + 0.05 ( 1 - u lt)) - 0.004f2 + J i + 300J 
t f (x,(t)) (u,(t) - y¡ (r))

(B.u)

Mobilized transmitter

y¿(t + 1) =y,(r) - 0.0ly,(r) - 0.001/,ty ,Q) -0.21* ll +z\f(x,(t))l

+0.0O212+ J,l(u,(t) - yr(/))

Postsvnaptic cellular activation

(^B.18)

x,(t + 1) =x,(r) -0.01x'(r) +0.01[1 - x'(t)]v,(t) - Sx,(t)v,(t) (8.19)

Lateral inhibition

i,1t + 1) = v,(t) - 0.00lt,(t) + 0.0000251,(r) (8.20)



8.2 Parameters for the SAART Neural Network 3L2

where t,çt¡ = 2l@¡Ø) and is summed over the whole layer of 20 neurons. Function
j+¡

f@,QÐ = max(ri(t) -0.3,0).

8.2 Parameters for the SAART Neural Network

The following are all the SAART neural network parameters that were used

in the computer simulations of Chapter 7. Each differential equation was iterated using

the Euler's first order approximation method, with Lt = I. The parameters for all the

processing Fields, with the exception of Field Cl, are very similar and are mostly as

prescribed in Chapter 5. The main difference between the parameters across all the

simulations discussed in the chapterwas the learningrate (very slow in the simulation

on noisy inputs, very fast in other cases). The other main difference from the prescribed

parameters was that we have set the threshold level for postsynaptic activation to be

0.01 (instead of 0.1). However, the parameters that were designed for the higher

threshold level are also valid for lower thresholds. The main reason for setting a lower

threshold was to enable new inputs to register into the reverberatory loop more effec-

tively (particularlywhen the network needs to learn slowly, as in the case of noisyinput
data).

(i) Field A1

A"t = l; Bol = l; 6o0a1 - 1000; -G'1 = 5000; A'' = O.!;Eot =O.lln where n is the number of

neurons in the layer (n = 1024)) Dooot =0.5; Y"qoI = 0.005i pIo"t =0.5; Kiq'I = 5; ú,oot = 0.05;

þ,,0"'=o.or; Ki1"t=0.99; ^fro"'=0.5; pi,o"' =0.05i Klo"'=o.5; þf;'' =0'01i Hloo'=0'5; o"/=0.01i

,if" = r,v(i,i).

(ii) Field A2

Ao2 =l; Bo2 =l; ça0a2 -ß00; G"2 =5000i A'2 =0.1; 8"2 =o.lln; Do0o2 =0.5; yu0a2 -0.005;

pîo"t =0.5; Ki0"2 =5; cl¿î.o"' =0.05; þîoot =0.001; Kloo'=0.01' 50"2 =0.5; pXo" =0.05; Kio" =o'5;

þf;"t =0.001; Hloo' = t}o Hl0'2 = 10000; @'2 = 0.01; rif"t =1, v(i,i)'

(iii) Field B1

Abt =I; Bbr =l) 6arb1 _çbibt _ 1000; -Gål =5000i -art =0J; Ebl =O.lln; patbt -Db3bt =0.5;

yøtbt -yb3bt -0.005; pîtut =pu,lut =0.5; Kilbt =Kltu'=5; ui"t =ouju' =0.05i þ\,'ut =þ!,lut =0.01;
yalbt -çbjbt -0.5;útut =nlrlu'=0.5;pXtu'=pfut =0.05; Ki,'u'=Kltut =O.S;þitu'=O.t;þliut =0.011

@äI = o.o1; ,i,'ut = rflu' = 1, V(i,i).
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(iv) Field BB

Ab3 =l; Bb3 =r; Gb2b3 - 10000; ça.b3 -500;-Gb3 =5000i Abt =0.1;P3 =o.lln; patbi - Db2br =0.5

i yotut -Yb2b3 =0.005; Pl,tut =Pu,'ut =0.5; KiIb3 =Klt" =5; nfrtbr =^fÍut =O.5; ai,'ut -u,b2b3 =0.05i

þ\,'ut =0.001; Kltut =0.02; þlfut =0.0t; Pur'ut =0.01; Kltut =0.1; þ?,tut =0.001; Ki'ut =0.05;

þl'ut =0.05; pllbs = 0.05; Kltut =0.5; @b3 = 0.01i ,ilut = rllut = 1, V(i,i);

(v) Field B2

Ab2=l; Bb2=10;6blb2- 100; G'1b2=10000; Gb2=5000;-Abt=o.l;Eb2=O.Iln; Dbtb2=0.5 i

YbIb2 -yctb2 -0.005; p?,'ut =o.5; Kltb2 =5; a?,'b'=0.05; þ!,tut =0.o1; þXtut =0.05; PXtot =0.01:'

Kurtot =o.t; z!¡tut = r,v(i,i)'

(vi) Field Cl

A"t =l; B"t =l; Gbl"t =1000i -G"1=5000; Ã"t =0.1; 8"1=0.005; D"t =0.5; KI'"t =0.05;

,btct -0.005; þI"t=0.0r; Klt'I =l; al"' =0.001; þu,'"'=0.002; íçbtct -o.2; Y'I =0.5; Yr,=0.5;

p|t" - 0.o5;51"1 = 0.01; p!,t"' =0.01; þ!1"1 = 0.01i K!t"' =0.5; ub,t"t =0'l', þ?""t = 0.01i

(vii) Gated LTM learning equations

nf,'u'=ú'"' =0.002; ,btcl -0.2for slow learnittg (o.s for fast learning); ¿tbz -0.02 for slow

learning (0.5 for fast learning); all bottom-up and the top-down LTM variables were

randomly initialized to small values.



3t4

Appendix C

Adding Selective Attention to
ART-B Neural Network

Below vve suggest how ART-3 (and ART-2) neural network of Carpenter and

Grossberg ( 1990) may be modified to model top-down memory guided selective attention.

The modification shown is very easy to add to ART-3 and should enable it to recognize

familiar inputs when embedded in cluttered and noisy background.

F-
9,

x

x
J

g
J

æx

aJ
2s*s"

J z
JI

Add- tÍ-Li.s
¿feedba.-cl<.Xo AR.T-S

b2v
a

x
a

v
a

x
f

g

a,

b2x
a

btg

x

at

x

I

Fb

E-

a

D

Top-doun mpllflcatlon
af boúom-uI2 ìnPvts

FIGURE C.1. Simple extension to ART-3 neural network to model selective

attention. Project signals.r,l' to ampliff the bottom-up signals into Field F" as indicated.

Also reduce the top-down gain in F,.This simple extension enables ART-3 to recognize

previously learned 2-D shapes when they are subsequently embedded in clutter.

However, the network is unable to learn in noisy inputs'

po sot sot
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The following three equations specify the dynamics at the bottom-up input node

ulaslxi = Pt tv¡

315

(c.1)

(c.2)

(c.3)

Since Carpenter and Grossberg have not provided the learning laws for ART-3

(see Carpenter and Grossberg, 1990), below we specify the learning equations that were

originally used by us. Note that ART-3 is the first of the ART based neural networks

to use simple models of chemical synapses (in the bottom-up and the top-down adaptive

memory pathways), but the model uses only two variables. Rather than using the

published version (which did not model learning) we have used a modified version with
an adaptive threshold applied to cells in Field F, (Lozo,1993a). The learning law for

the top-down adaptive memory pathways, from cell j in 4 to cell i in F6 was

# = -vi' + I,uiI (o.l +xir)

+ = 0 - ui\ - ui" 1o.r+ {,) (1 +¡,13)

tcb
oZ,, , xh3 cb,-T=rV, -Z¡i) (c.4)

where r is the learning rate (r = 0.5). Similar equation was used in the bottom-up

memory pathway. Below we present our initial results that were obtained with the

above modification.

(a) ship 1 (b) ship 2 (c) ship 3

FIGURE C.2. Binary silhouettes of three ships used to train the extended
Af,,T-B neural network. These were scaled and aligned to approximately occupy

the same region of the input image so that the shapes, rather than the sizes or

locations, become the distinguishing features that the network has to learn. After
the network was trained on the above three examples it was then exposed to the noisy

images (shown below).
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The network was initially trained on binary silhouettes of three different ships,

after which it was tested on severely degraded images öf these silhouettes, shown below.

Note that the level of noise is high (probably higher than what may be expected in

applications) and extends throughout the whole image region. The purpose of degrading

these images by a severe amount of noise was to demonstrate that the network is as

good as many well trained observers (and better than novices) in differentiating the

ship classes in the test images.

test of

test of shi

noisy test images of ship 3

FIGURE C.3. Examples of noisy images (silhouettes of three different ships)

used to test the extended ART-3 neural network. These images lüere generated

from those of Figure C2 using the following equation: 1* = r1I + r2where 1- is a new pixel

intensity, I is the original value,0 3 t1,r2< 1 and r11r2àtê random numbers generated by

the random number generator. One hundred such images were generated for each of

the three ship silhouettes.

The signal-to-noise ratio of the test images lies in range 2.8 to 3.2 DB. Below we

provide the classifrcation results (note that when the network unsuccessfully activated

the same memory at least three times it was deemed that the input was unknown)' The

network's learning is never terminated, but once the memories of objects are well

established (have converged) they cannot be corrupted by noise. Although the network

was given up to 5 cells in freld F", it only activated the nodes that contained the memory

of the three silhouettes.
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Recognition res¡rlts (across a total of 3OO innages)

Correct Incorrect Unknown

82Vo lOVo

Although the above results are very impressive, we have since been able to establish

that the concepts of top-down selective attention as discussed in this thesis should not

be applied to grey level directly but to edge processed images (as it is possible to introduce

"illusionary" states). Similarly, the concept of top-down modulatory feedback is valid

only when the inputs are treated as 2-D spatial patterns.

87o
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Appendix D

Log-polar Transform

vs.

Parallel Frames of Reference

"We trace the oceans of hyperbole, controuersy, and rediscouery

whích still fl.ood our science of the inability of some inuestigators

to fully let go of unappropriate technological metaphors and

nineteenth century mathematical concepts. Although initially
attractiue because of their simplicity and accessibility, these

approaches haue regularly shown their impotence when they are

confronted by a nontriuial set of the phenornena that they haue set

out to explain. A unified theoretical understanding cannot be

achieued without an a.ppropriate mathematical language in our

science any rnore thøn in any other science."

S. Grossberg (in preface to The Adaptive Brain, volumes I & II, 1987)

D.l Background

In this Appendix we review and offer a brief critique of the well known log-polar

transform which was ignored in the theoretical approach presented in the thesis, even

though this important transform is often invoked as a model of the geometrical

transformations imposed by the connectivity from LGN to Vl, as noted in the often

cited work of Schwartz (1980). In addition to its apparent relevance in early visual
pathways, log-polar transform has found a useful application in several neural networks

for 2D shape and 3D object recognition (reviewed in Chapter 1).
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As a comparison with the log-polar transform method, below we also discuss the

alternate solution to size and rotation invariant recognition in the primate visual brain,

i.e., the concept of parallel frames of reference in the bottom-up and the top-down

pathways that was introduced in Chapter 8.

D.2 Non-linear retino-cortical transformation

It is known that there is an intimate connection between the non-uniform sampling of

the image on the retina and the resulting cortical magnification factor as measured

directlyonthe primaryvisual cortex(Virsu andRovamo,1979. Thus therepresentation

of the fovea on the cortex is larger than that of the periphery. It was found that reti-
no-cortical projection can be approximated by a logarithmic transformation (Schwartz,

1980). It can therefore be argued that because this non-linearity is a non-affine

transformation about a unique origin (the optical line of sight) that the projected 2D

shape of a 3D object will very much depend on its location with respect to the line of

sight. This would then imply that there should be a gross deformations of the shape

when it is viewed in the periphery. Gross deformations of the shape in the periphery

would also invalidate the biological plausibility of the neural model of translation

invariant 2D shape recognition as proposed in Chapter 6 (and a large number ofrelated

and published models). The model of translation invariant 2D shape recognition as

proposed in this thesis, although largely based on the psychophysical data that was

reviewed in Chapter 2,has ignored the problem that is associated with the non-linear

retinal sampling strategy and the curyature of the sensory surface, primarily because

it is aimed for artificial neural vision and 2D shape recognition systems that use a

planar sensory surface, such as a standard TV camera.

Since the afore-mentioned non-linearity should introduce distortions ofthe visual world

in our periphery, it is natural to question why is it that other than reduced resolution,

we don't see such distortions in our peripheral vision?

Furthermore, the various psychophysical experiments on visual spatial attention and

attentional cuing (reviewed in Chapter 2) has clearly shown that humans are able to

recognize shapes and objects arway from their periphery without having to consciously

perform any complex transformations on the visual data. The reader may verify this

by directing their fovea to the dot shown in Figure D.l while attempting to recognize

the shown character from a normal reading distance (without eye movements away

from the dot).

We are therefore prompted to ask whether the observed non-linear transformation in

the retino-cortical pathways is there for any other useful reason than to facilitate the

application of the log-polar transform at higher levels of vision.
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a A

FIGURE D.1. A simple test problem designed to show that we can recognize
a shape in our periphery without noticing any significant distortions of the
shape (although the recognition accuracy does depend on the size of the shape and its
location; the further it is in the periphery the larger it needs to be for successful

recognition).

In order to obtain a large field ofview (about 200 degrees in human vision), the evolution

of the retina and the cortex had to overcome the major problem of how to deal (at higher

levels ofvision) withvisual information that is sensed through a curved sensory surface.

It is therefore valid to assume that the nonlinear mapping from the retina to the cortex

is there primarily to minimise (or annul) the distortions that would otherwise be

defrnitely seen because of the curved nature of the retina. This would then allow higher

brain regions to store internal neural representation of the external visual world in
such a manner as to allow a one-to-one correspondence between the visual input and

its memory, as well as enabling the cognitive neural centres to covertly shift attention
to recognize visual stimuli in peripheral locations.

Fast covert attentional shifts without eye movements to detect and recognize a stimulus

a\üay from direct fixation would defrnitely provide a survival advantage to those

organisms that are endowed with it, compared to those that constantly had to direct

their fovea to all possible objects and predators in the scene. While eye motions may

often be required, for example to provide a more detailed information though the central

part ofvision (the fovea) they also come at a cost. Motion of an eye is a physical motion

of a sensor which requires motor control and generally takes much longer than covert

attentional shifts. The latter does not involve any physical movement since it is a
dynamic redirection of the neural signals, but it comes at the cost of providing the

recognition system with information that is of lower quality (i.e., of lower resolution).

This most primitive invariance surelyhad to be established before other more complex

and demanding operations such as mental rotations.

Considering the benefit of a large freld of view, which therefore imposes curvature on

the retina; the need for fast covert attentional shifts to peripheral locations; the

psychophysical data on visual spatial attention and the observation that we don't see

a distorted world and objects in our periphery leads us to conclude that the non-linear

transformation in the retino-cortical pathways has evolved to enable stimulus

recognition in the periphery, i.e., translational invariance.
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The purpose of the non-linear retino-cortical transformation (and the validity of the

log-polar transform in neurobiology) has also been questioned recently by several

neuroscientists (Oram and Perrett, 1994). These authors also note that translational

invariance is a very primitive operation which needed to be established very early in
thevisual system (and before the size and the rotational invariance). Direct application

of a non-affine transformation such as the log-polar transform (which is not the same

as the application of anon-uniform sampling strategy oftheretina) to a TVimagewould

defrnitely prevent translational invariance. However, if one were to design a camera

with a curved sensory surface, then one would defrnitely need to frrst eliminate

distortions by applying the relevant non-affine transformation (to cancel out the effect

ofa curved sensory surface) before translational invariance can be achieved.

In the next section \¡¡e present a case against the biological plausibility of the log-polar

transform for size and orientation invariant 2D shape recognition.

D.3 The case against the log-polar trarnsform

Although the psychophysical and neurophysiological data does not reveal the exact

nature of processing by which the primate brain achieves the capability of size and

orientation invariant 2D shape recognition, it certainly provides sufficient evidence

contrary to what the log-polar transform implies. B elow we present two simple examples

that when combined should expose the inadequacy and biological implausibility of the

log-polar transform, particularly in dealing with the rotation invariant 2D shape

recognition. Since the psychophysical data on rotation invariant recognition is far more

extensive than that on size invariant recognition, the arguments presented below will
therefore concentrate on this problem (although similar arguments can be used for size

invariant recognition).

Let us consider a familiar and well studied problem of character recognition. Consider

the following four lower case characters: 'b','d', 'p', and'q':

dp

Figure D2. Example of characters that cannot be distinguished by phase

insensÍtive pattern recognition systems.

Each of the above shapes represents a distinct entity in many written languages,

including English. Each thus has a unique interpretation and therefore distinct visual

representation in our memory. The shape of each of the above characters not only has

the same centroid, but each shape is related to others via a simple geometrical trans-

formation of rotation, reflection or a combination of both. Therefore, if one were to apply

qb
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the log-polar transform to each shape, followed by the centering in the transformed

feature domain, then each of the shapes will have an exactly the same representation.

This implies that any 2D shape recognition system that uses the log-polar transform
(or any other invariant feature set) will not be able to distinguish between them. Thus,

while providing a method of achieving rotation invariant recognition, the log-polar

transform discards some non-invariant information since phase information is

discarded, as was also noted by others (Carpenter, Grossberg and Lesher,lgg2). Hence

any approach that achieves orientation invariant recognition of2D shapes by ignoring

the phase information (i.e. orientation) by definition, cannot store different represen-

tations for the above character set (as well as many other examples).

The second argument against the log-polar transform is a bit more involved and requires

knowledge of the psychophysical data (from humans). The data that we wish to invoke

concerns the influence of shape familiarity on the recognition speed. This data (Koriat

and Norman, 1985; Jolicoeur, Snow and Murray, 1987) shows that the strength of

memory strongly influences how fast a disoriented shape will be recognized. Of

particular interest here is also the data of Cooper and Shepard (1973) which shows that

the recognition time for disoriented characters is symmetrical about 180 degrees. This

data poses an intriguing paradox. If our recognition time depends on the angle of

orientation of the presented shape and if our brain performs mental rotations, then

how does the brain know which direction of mental rotation (clock-wise or anti-clock-

wise) will produce the faster recognition response? Psychophysical experiments (Joli-

coeur, 1990) also indicate that while in a sequential presentation of disoriented

characters, the reaction time to the very first character is longer than it is for its upright

version but the reaction time to subsequent characters (even if they are different to the

ones preceding it) is reduced as long as their orientation is congruent to the ones

preceding it. When all of this data is combined, then a clear picture emerges: the visual

brain does perform mental rotations; the brain does know in which direction
to perform the mental rotation so as to achieve the fastest recognition time; and the

magnitude and the direction of mental rotation does depend on the stored

representation. This is in direct conflict with the log-polar approach (or any other

approach that does not preserve the phase of orientation) because such methods can

predict the orientation of the shape (with respect to the chosen frame of reference)

regardless of whether that shape has been previously stored in memory or not.

In the next and the frnal section of the appendix we consider the implication of the

massively parallel solution that was briefly outlined in Chapter 8.
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D,4 Massively parallel and competing frames of
reference

One way (and possibly the only way) that our visual brain can store different repre-

sentations for shapes that are related via a geometrical transformation of rotation

and/or reflection and which would also be consistent with the available psychophysical

data, is for our visual brain to have multiple and competing frames of reference through

which the visual input can be analysed and interpreted. Although the concept of parallel

frames of reference has been proposed previously (Hinton, 1981; Hinton and Parsons,

1981) ithas neverbeen considered seriously because: (i) it implies an extremely massive

implementation; and (ii) the solution that \Mas proposed does not solve the problems

entirely nor does it fully explain the psychophysical data, primarily because it only

suggests massively parallel frames in the bottom-up direction. It is not sufficient to

have parallel frames of reference in the bottom-up direction because that creates a

problem as to how is it that we are able to recognize any of the shapes when they appear

in an orientation other than their usual upright, while still being able to differentiate

between them in their upright version. However, the novelty of the proposal in Chapter

8 is that there be a complementary frames of reference in the top-down pathways,

including a layer of competitive orientation (and size) control neurons, each of which

is responsible for the gating of the information flow though a pair of complementary

bottom-up and top-down neural layers. Such an approach has the potential to explain

and uniff more data than any of the alternatives proposed in the literature so far, as

will be revealed in the following paragraphs.

Ifwe assume that there are many possible interpretations that may be used (as implied

bythe multiple frames of reference in the bottom-up and the top-down pathways), then

the context within which one sees various shapes and characters should play an

important part in selecting the most relevant interpretation. With reference to Figure

D.2 and without any other prior knowledge of the context, then the first of the shapes

('b') can be interpreted as follows; (i) character'b'in its upright orientation; (ii) character

'd'reflected about a vertical axis; (iii) character'p'upside down and reflected about a

vertical axis; or (iv) character'q'rotated by 180 degrees. Similar transformation links

the shapes of the other three characters. The coruect interpretation would then be

influenced by other information. For example, if the word "darallel" is to make any

sense in English, then what should have been typed is "parallel". Hence the correct

frame of reference through which the frrst character in the word is to be interpreted is

the one that takes "d" and produces "p". The simple mental rotation of "d" by 180 degrees

would then be the correct operation. The orientation of the other characters and their
combined meaning thus adds context which quickly narrows the options as to how the

viewed character should be interpreted. However, if one sees a partial word (such as
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"dar ") without knowing how many other characters are to follow, then the search space

for the conect frame of reference is much larger (i.e., one cannot conclude from the

available information whether the first character is 'p' typed as 'd', or whether it should

be a'd', etc.).

Some predictions and experimental support

rWe now make two predictions that arise from the hypothesis of multiple BU-TD

(bottom-up and top-down) frames of reference, and relate these to the experimental

data. TWe then follow by a theoretical explanation of what is it that \Me are aware of

during the process of a mental orientation and why.

1. Massive size of the visual brain

The first prediction of the massively parallel bottom-up and top-down frames of

reference theory is that whatever region in the brain is responsible for size and

orientation invariant 2D shape recognition, it is necessarily very massive in size, it
should be composed of several distinct modules and should be easy to locate anatomi-

cally. The lesion and other experimental data on the area TEO indicate not only that

this area is involved in perceptual constancy but that is reasonably large and consists

of a number of distinct anatomical foci.

2. Difficulty in learning some shapes without supervision

The second prediction is that humans (and animals) should have a relative difficulty

in learning those 2D shapes that are related via simple geometrical transformations of

rotation and/or reflection (which implies that there should be a need for external

supervision to initially enable the learning of some shapes). There is some evidence

that young children initially confuse characters whose shapes are related by a simple

geometrical transformation, most commonly the left-right inversion (the author has

observedthis withhis own children during their early education inreading andwriting).

The experimental data (Gross, 1978; Holmes and Gross, 1984) also shows that TEO

lesioned animals find some pattern discrimination tasks, such as being able to

discriminate between two identical patterns (one being the reflected version of the other)

relatively easier than non-operated animals. These results indicate that non-operated

animals tend to treat mirror-reflected pair of patterns as being the same (and therefore

are confused when the task context requires that they be interpreted as being different).

On the other hand, operated animals whose area TEO is destroyed are no longer able

to recognize that the two mirror-reflected patterns are the same and therefore treat

them as being different and hence store in their memory a different representation for

each.
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rtrhy are we aware of the top-down but not the bottom-up mental rotation?

The theoretical proposal of multiple and competing frames in both the bottom-up and

the top-down directions (whose selection may be influenced by a prior memory) invites

us to ask why is it that when recognizing an oriented shape we are only aware of the

top-down and not the bottom-up mental rotation. Consider the following example:

suppose that we are presented with a familiar character that is oriented clockwise from

its usual upright orientation. It can be easily verified that during the process of

recognising such a character we are only aware of the clockwise mental rotation (a

top-down rotation), although an anti-clockwise bottom-up rotation of the character is

required to activate the stored memory. How can we explain that? The theory of massive

competing frames of reference, when combined with ART's principle of resonance can

provide a simple insight into what is going on. The principle of resonance, which in its
most glorious application, can be used to argue that we are immediately arvare of what

is it that \rye recognize through our vision (or any other sensory modality) corresponds

to the very instant that a detectable resonant state is established between the sensory

input and the past memories. The theoretical explanation of what happens during the

process of recognising a clockwise oriented shape can then be summarised in the

following few steps:

(i) Although all possible orientations are initially available to activate the stored

memory in the bottom-up pathways, the memory can only be activated by those

bottom-up representations whose active pathways are sufficiently well aligned with

the stored bottom-up memory pathways;

(ii)When the stored memoryis activatedvia the bottom-up pathways, various top-down

representations become available and are tested with the input;

(iii) Since the best matching top-down representation is the one that is in the opposite

orientation to the best matched bottom-up representation, the two complimentary

orientational representations mutually support each other and competitively suppress

all other active representations via their control neurons;

(iv) Because the competition strength between different orientational representations

is biased (such that it grows with the angular difference), the order ofsuppression (being

also dependant on the degree of mismatch) will be such that highly mismatched

orientations will be the first to lose the competition, followed by the next highest

mismatched orientation, etc., until the winner is selected; in the context of the above

example, the worst matching top-down representations are the ones that are oriented

in the opposite direction to the input, followed by their nearest clockwise oriented

neighbours and will therefore be the first to be shut off, followed by the next nearest

clockwise oriented representation and so on, until the winner emerges whose clockwise
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top-down orientational representation provides a best match to the bottom-up input
and whose bottom-up representation best matches the orientation of the stored

bottom-up memory;

(v) The gradual shutting off of the top-down representations in the clockwise direction

will be sensed as a internal clockwise rotation by other neural circuits within the brain

that are specialised for detecting rotations; such a circuit will be activated by the order

in which the neural activity spreads across the neurons that are involved in the gating

ofthe various orientational representations; if this activity can resonate for a period

long enough for it to be detected by other circuits, then the brain becomes a\ryare of the

internal clockwise rotation of its activated memory.

The above explanation also implies that there should be an interference between the

viewing of an external rotation of an object and an internal mental rotation. That is,

viewing a clockwise rotating object should also activate an imagined (top-down mental)

rotation, thus skewing the symmetry of the reaction times. The psychophysical data

does show such an effect. Character rotation in the direction of mental rotation facili-

tates mental rotation, whereas rotation in the opposite direction inhibited it (Jolicouer

and Cavanagh, L992). The data from a related experiment, where the subjects were

first exposed to a rotating disk and then had to judge whether the displayed characters

were oriented normally or not, shows a strong interaction between the perceived motion

aftereffect and the orientation of the character (Corbalis and Mclaren, 1982). The

perceived motion aftereffect (which was opposite to that of the observed rotation) did

skew the latency of the response about 180 degrees, the direction of which depended

on whether the rotational aftereffect was in the same or the opposite direction to the

orientation of the presented character.

The interaction between observed external motion such as a rotation, scale change. etc.,

and imagined motion is understandable considering that the learning of the internal
processes and the establishment of the necessary synaptic connections between the

various neural layers does depend on first being able to see (or feel?) such motions.

D.5 Concluslon

Despite the lack of sufficient and conclusive data from neurophysiology, our o\trn

experience and capability in the visual world of real objects and written text, combined

with the extensive psychophysical data, provides a very strong base for reasons to

believe the existence of multiple frames of reference in our brain through which we

analyse and interpret what \ile see. The intelligence and the survival of a species does

not only depend on it being able to recognize an object from various orientations but

also on it being able to recognize the pose of the object. Humans are particularly good
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at adopting to new frames ofreference and in combining past knowledge and experience

with context to decide upon the most suitable frame of reference through which the

visual (or any other) sensory data should be interpreted. It is possible that a theoretical

solution to size and orientation invariant recognition has eluded various theoreticians

because they did not view the available data from visual psychophysics through the

most relevant paradigm or frame of reference. This thesis has attempted to show that

when the same data is analysed with Adaptive Resonance Theory, then it does resolve

a number of paradoxes as it immediately invites us to consider massively parallel frames

of reference. Although the initial theory did not propose the existence of a vast number

of parallel pathways through which the data can be analysed simultaneously in both

thebottom-up andthetop-down directions, it certainlydid not exclude such apossibility.

The ultimate goal of any theoretical approach to the understanding ofbrain mechanisms

is to compress a large body of experimental data into a manageable set of laws while

at the same time establishing itself as a ne\M theoretical framework or a window through

which the future experimental data may be understood. The success of the theory is

then the measure of the volume of the data it can unify, explain and predict. Although

the theoretical solution implied in this thesis will need to be further developed and

proven in a simulated artificial neural network, the fact that its massive neural network

implementation poses a technological problem should not prevent us from seeking out

those theoretical solutions that in the longer term will prove to be more robust, more

fault tolerant and more flexible.
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