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Abstract

fn this thesis, a genetic-programiming-based clussifier system for the diagnosis of coronary
artery disease is proposed. It maintiins good classification and generalisation performance.
Based on genetic programming, a software system called Bvolutionary Pre-Processor hus
been developed which is n new method for the automatic extraction of non-linear leatures
for supervised classification. The central engine of Evolutionary Pre-Processor is the genetic
program; cach individual in the population represents a pre-processor network and a
standard clussification algorithm, The BEPP maintaing o population of individuals, each of
which consists of un array of features, The features are transformations made up of
functions sclected by the user. A fitness value is nssigned to each individual, which
quantifies its ability to classify the data. This fitness value is based on the ability of a simple
clussifier to correctly classify the data aller it has been tansformed to the individual's
feature space. Through the repeated application of recombination and mutation operators Lo
the fitter members of the population, the ability of the individuals o classify (he data
pradually improves until a satisfactory point in the optimisation process is reached, und o
solution is obtained.

Recently there has been a rising interest in using artificial intelligent (Al) techniques
in the field of medical dingnosis. However, it is noted, that most intelligent techniques have
limitations, and are not universally applicable o all medical dingnosis tsks. Bach intelligent
technique has particular computationa! properties, making them suitable for certain tasks
over others, Integration of domuin knowledge into cmpirical learning is important in
building n useful intelligent system in practical domains since the existing knowledge is not
always perfect and the training datu are not always adequate, Genetic algorithms (GAs) are
robust but not necessarily the most successful optimization algorithms for any particular
domain. Hybridizing a GA with algorithms currently in use can produce an algorithm better
thin both the GA and the current algorithms, A GA may be crossed with various prablem
specific search techniques to form u hybrid that exploits the global perspective of the GA
und the convergence of the problem specific lechnique. In some cases, hybridization entails
crploying the representation as well as the optimization techniques already in use in the
domain while wiloring the GA operators to the new representation.

In this connection a hybrid intelligent system is highly desirable. Here two different
hybrid techniques are also presented. In the first approach, fuzzy systems is integrated with
genetic algorithms. In this approach, cach fuzay il-then rule is teated as an individual and
cach population consists of certain number of fuzzy if-then rules. It ean automatically
generate fuzzy if-then rule from wraining patterns for multi-dimensional for patern
clussification problems. Classifiers in this appronch are fuzzy if~then rules, In the second
approach genetic algorithms are combined with back-propagation algorithms to enliance the
classifieation performance. In this approach, a complete sel of weights and binses in a neural
network are encoded in a string, which has an associated fitness indicating its effectiveness.
Each chromosome completely deseribes a neural network. To evaluate the fitness of a
chromosome, the weights on the cliromosome are assigned to the links in a network of a
given archiecture, the network is then run over the training set of examples and the sum of
the sqaures of the errors is returned from each example.

All approaches were tested on a real-world problem of coronary artery disease data.



