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Abstract

In this thesis, a genetic-programming-based classifier system for the diagnosis of coronary
artery disease is proposed. It maintains good classification and generalisation performance.
Based on genetic programming, a software system called Evolutionary Pre-Processor has
been developed which is a new method for the automatic extraction of non-linear features
for supervised classification. The central engine of Evolutionary Pre-Processor is the genetic
program; each individual in the population represents a pre-processor network and a
standard classification algorithm. The EPP maintains a population of individuals, each of
which consists of an array of features. The features are transformations made up of
functions selected by the user. A fitness value is assigned to each individual, which
quantifies its ability to classify the data. This fitness value is based on the ability of a simple
classifier to correctly classify the data after it has been transformed to the individual's
feature space. Through the repeated application of recombination and mutation operators to
the fitter members of the population, the ability of the individuals to classify the data
gradually improves until a satisfactory point in the optimisation process is reached, and a
solution is obtained.

Recently there has been a rising interest in using artificial intelligent (AI) techniques
in the field of medical diagnosis. However, it is noted, that most intelligent techniques have
limitations, and are not universally applicable to all medical diagnosis tasks. Each intelligent
technique has particular computational properties, making them suitable for certain tasks
over others. Integration of domain knowledge into empirical learning is important in
building a useful intelligent system in practical domains since the existing knowledge is not
always perfect and the training data are not always adequate. However, genetic algorithms
(GAs) are robust but not the most successful optimization algorithms for any particular
domain. Hybridizing a GA with algorithms currently in use can produce an algorithm better
than both the GA and the current algorithms. A GA may be crossed with various problem
specific search techniques to form a hybrid that exploits the global perspective of the GA
and the convergence of the problem specific technique. In some cases, hybridization entails
employing the representation as well as the optimization techniques already in use in the
domain while tailoring the GA operators to the new representation.

In this connection a hybrid intelligent system is highly desirable. Here two different
hybrid techniques are also presented. In the first approach, fuzzy systems is integrated with
genetic algorithms. In this approach, each fuzzy if-then rule is treated as an individual and
each population consists of certain number of fuzzy if then rules. It can automatically
generate fuzzy if-then rule from training patterns for multi-dimensional for pattern
classification problems. Classifiers in this approach are fuzzy if then rules. In the second
approach genetic algorithms are combined with back-propagation algorithms to enhance the
classification performance. In this approach, a complete set of weights and biases in a neural
network are encoded in a string, which has an associated fitness indicating its effectiveness.
Each chromosome completely describes a neural network. To evaluate the fitness of a
chromosome, the weights on the chromosome are assigned to the links in a network of a
given archtecture, the network is then run over the training set of examples and the sum of
the sqaures of the errors is returned from each example.

All approaches were tested on a real-world problem of coronary artery disease data.
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Chapter 1

Introduction and Overview

1.1 Background to the Research

Coronary artery disease (CAD) is the most common cause of death in humans. It is a
degenerative disease which is the result of an increase of atheroma in the coronary
artery walls leading to total or partial occlusion. The resulting clinical feature is
Myocardial Infarction and subsequently sudden death. The main risk factors related to
this disease involve age, sex, chest pain type, resting blood pressure, cholesterol, fasting
blood sugar, resting electrocardiographic results, maximum heart rate achieved,
exercise induce angina, ST depression induced by exercise relative to rest, slope of the
peak exercise ST segment, smoking, hypertension, stress etc. This complex
multifactorial disease makes it difficult for clinicians to accurately assess the likelihood
of a cardiac event.

For this reason early detection of coronary artery disease is an important medical
research area. One of the most reliable ways to diagnose coronary artery disease is
cardiac catherization, leading to a final diagnosis (Watanabe, 1995). However, it differs
from other method in that it is invasive, it requires a catheter to be inserted into a vein
or artery and manipulated to the heart under radiographic fluoroscopic guidance. It is
performed by a puncture or cut down of the brachial or femoral artery, from which the
heart is approached retrogradely. Since some patients would die of an allergic shock to
the angiographic enhancing agent used, they must be examined beforehand for such
hypersensitivity by an intravenous injection of that agent. There is also the risk of life-
threatening arrythmia, or irreversible invasion into the coronary arteries or other
structures by the catheterization. If a sufficient high diagnostic rate can be assured at
some stage prior to catheterization, it will be a very useful addition to the present
medical diagnosis capability. Although accurate, it is costly and time consuming and
there is always an element of risk.

The diagnosis of coronary artery disease is a complex decision making process.
The electrocardiogram (ECG) is the principal diagnostic tool available at present but it
often fails to diagnose the coronary artery disease. There is however a standard test that
does give the correct diagnosis of coronary artery disease but this involves the
measurement of enzyme and ECG changes over a period of 24 to 48 hours. This
method offers no help in the early diagnosis of coronary artery disease.

A considerable number of methodologies have been developed to analyze clinical
data collected during patient evaluation in attempts to improve on the diagnostic
accuracy of physicians in identifying coronary artery disease. But none of these
approaches has been able to improve significantly on clinical data. Conventional
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statistical multivariate analysis methods are used to measure risk on those asymtomatic
patients who, nevertheless, present one, two or more CAD risk factors. Although
statistical methods provide information regarding the likelihood of CAD event through
systematic numerical calculation, it does not take in account the individual, neither
does it provide sophisticated human-like reasoning.

It is obvious that there is a need by which the data available in the clinical setting
can be analyzed to yield information that can be utilized to assist the clinician in
making a fast and accurate diagnosis of coronary artery disease. An intelligent approach
using artificial neural networks, genetic algorithms and fuzzy logic can assist the
clinician for this purpose.

The main objective of this research is to develop the intelligent techniques in
diagnosing coronary artery disease from a given set of patients data. The techniques
developed here include genetic programming in order to evolve optimal subsets of
discriminatory features for robust pattern classification and hybrid learning
methodology that integrates artificial neural networks, genetic algorithms, fuzzy
systems.

1.2  Anintroduction to Coronary Artery Disease

The term coronary artery disease (CAD) (Figure 1-1) refers to degenerative changes in
the coronary circulation. Cardiac muscles fibres need a constant supply of oxygen and
nutrients and any reduction in the coronary circulation produces a corresponding
reduction in the cardiac performance. Such reduced circulatory supply known as
coronary ishemia (is-KE-me-a) usually results from partial or complete blockage of the
coronary arteries. Figure 1-2 shows a myocardial perfusion scan and coronary
arteriogram in the presence of a mild stenosis of the left anterior descending coronary
artery.

The usual cause is the formation of fatty deposit, or plaque, in the wall of a
coronary vessel. The plaque, or an associated thrombus, then narrows the passageway
and reduces blood flow. In myocardial infarction (MI) or heart attack the coronary
circulation becomes blocked and the cardiac muscle cells die from lack of oxygen. The
affected tissue then degenerates, creating a non-functional area known as an infarct.
Heart attacks most often result from severe coronary artery disease. The consequences
depend on the site and nature of the circulatory blockages.
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CORONARY ARTERY DISEASE

COMMON SITES (in order of frequency) with REGIONAL DISTRIBUTION of
EFFECTS.

1. The LEFT CORONARY ARTERY - ANTERIOR DESCENDING BRANCH

Anterior part of
_—- |V septum

Anterior wall
T~~~ of LV

Apex of heart

_.- Posterior wall
of LV

"™ Posterior part
of |V septum

__Loteral wall
of LV

Figure 1_—2: A Mygcardial perfusion scan and coronary arteriogram in the presence of a
mild stenosis of the left anterior descending coronary artery (mid portion).
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1.3  Rationale of this Thesis
This thesis has the following objectives:

1. A genetic-programming-based classifier system for the diagnosis of coronary artery
disease (Chapter 8).

2. A comparison of genetic programming with various well-known classification
techniques.

3. A concise overview of pattern recognition (Chapter 2).

4. A concise overview of Neural Networks and genetic algorithms (Chapter 3, Chapter
4).

5. Use of multilayer perceptron for the diagnosis of coronary artery disease (Chapter
6).

6. Use of neuro/genetic algorithm for the diagnosis of coronary artery disease (Chapter
7).

7. Use of genetic/fuzzy classifier system for the diagnosis of coronary artery disease
(Chapter 9).

Furthermore, in the thesis the effects of the input clinical variables for the diagnosis of
coronary artery disease using neural network, a hybrid of genetic and the back-
propagation algorithms, and fuzzy and genetic algorithms are evaluated. It is shown that
these Al methods give best diagnostic performance than the other methods. It is shown
in this study that neural network appears to place diagnostic importance on certain
clinical variables.

It is obvious from brief literature review that there is not a single technique
which has answer to all the problems. Thus it is useful to integrate various artificial
intelligence based techniques such as, neural networks and genetic algorithms (GAs)
and fuzzy systems and GAs.

1.4  Artificial Neural Networks, Genetic Algorithms, Fuzzy System

Artificial neural networks and genetic algorithms are the examples of microscopic
biological models. They originated from modelling of the brain and evolution. ANNs
are a new generation of information processing systems. The main theme of neural
network research focuses on modelling of the brain as a parallel computational device
for various computational tasks that were performed poorly by traditional serial
computers. They have a large number of highly interconnected processing nodes that
usually operate in parallel. ANNS, like a human brain, demonstrates the ability to learn,
recall, and generalise from training patterns. The ANNs offer a number of advantages
over the conventional computing techniques such as the ability to learn arbitrary non-
linear input-output mapping directly from training data. They can sensibly interpolate
input patterns that are new to the network. Neural networks can automatically adjust
their connection weights or even network structures. The inherent fault-tolerance
capability of neural network stems from the fact that the large number of connections
provides much redundancy, each node acts independently of all the others, and each
node relies only on local information.

Genetic algorithms (GAs) were developed by John Holland in the 1970s. These
algorithms are general-purpose search algorithms based on the principles of natural
population genetics. The GA maintains a population of strings, each of which

4
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represents a solution to a given problem. Every member of the population is associated
with a certain fitness value, which represents the degree of correctness of that particular
solution. The initial population of strings is randomly chosen, and these strings are

Genetic Neural

Networks

Algorithms

Figure 1-3: Soft Computing

manipulated by the GA using genetic operators to finally arrive at the best solution to
the given problem. The main advantage of a GA is that it is able to manipulate a large
population of strings at the same time, each of which represents a different solution to
the given problem. This way the possibility of the GA getting stuck in local minima is
greatly reduced, because the whole space of possible solutions can be searched
simultaneously. A basic genetic algorithm comprises three genetic operators:

o selection,
. crossover, and
° mutation

Starting from the initial population of strings the GA uses these operators to
calculate successive generations. First, pairs of individuals of the current population are
selected to mate with each other to form the offspring, which then form the next
generation.

Selection is based on the survival of the fittest strategy, but the key idea is to

select the better individuals of the population as in tournament selection, where the
participants compete with each other to stay in the competition. The most commonly
used strategy to select pairs of individuals is the method of roulette-wheel selection, in
which every string is assigned a slot in the wheel sized in proportion to the string's
relative fitness. This ensures that highly fit strings have a greater probability to be
selected to form the next generation through crossover and mutation. After selection of
the pairs of parent strings the crossover operator is applied to each of these pairs.
The crossover operator involves the swapping of genetic material (bit-values) between
the two parent strings. In single point crossover a bit position along the two strings 1is
selected at random and the two parent strings exchange their genetic material as
illustrated below.

Parent A = a, a, a,a, | a, a,
Parent B = b, b, b, b, | b, b,

The swapping of genetic material between the two parents on either side of the
selected crossover point produces the following offspring:
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Offspring A’
Offspring B’

a,a,a;a,lbsbg
b, b,b,b, | a5a,

The two individuals (children) resulting from each crossover operation will now
be subjected to the mutation operator in the final step to forming the new generation.

The mutation operator alters one or more bit values at randomly selected locations
in randomly selected strings. Mutation takes place with a certain probability, which in
accordance with it's biological equivalent is usually a very low probability. The
mutation operator enhances the ability of the GA to find a near optimal solution to a
given problem by maintaining a sufficient level of genetic variety in the population,
which is needed to make sure that the entire solution space is used in the search for the
best solution.

1.5 Fuzzy Systems

The fuzzy logic was developed by Lotfi Zadeh (1965) to provide approximate but an
effective means of describing the behavior of the systems that are not easy to tackle
mathematically. Zadeh stated that as the complexity of the system increases, our ability
to make precise and yet significant statements about its behavior diminishes until a
threshold is reached beyond which precision and relevance become almost mutually
exclusive characteristics. Attempts to automate various types of activities including
diagnosing a patient have been impeded by the gap between the way human reasons
and the way computers are programmed. Thus the fuzzy logic is a step towards
automation. Inspite of many advantages, fuzzy logic has few problems. These are, for
example, the lack of design procedure for determining membership function and the
lack of design adaptability for possible changes in the reasoning environment. The use
of artificial neural networks in designing the membership function reduces system
development time and the cost and increases the performance of the system.
Traditionally, the users set the structure of a feed-forward neural network a priori. The
type of the structure used may perhaps be based on some knowledge of the medical
diagnostic problem but usually the neural network structure is found by the trial and
error method. In many cases the structure is a fully connected feed forward neural
network and the users might try to vary the number of neurons in the hidden layers.
Such a network structure is then trained using a suitable learning algorithm to generate
an optimal set of weights while the structure is taken for granted or chosen from limited
domain. The method of trial and error is not only time consuming but may not generate
an optimal structure. It is possible to use genetic algorithm in the automatic generation
of neural network structure and optimise its weights.

1.6 Outline of this Thesis

The thesis contains the following chapters.

The work begins in Chapter 2 with an introduction to pattern recognition. The
classification methods used for the experimental work are described. Difference
between Perceptron and Gaussian classifiers also presented.

Chapter 3 presents a detail description of single layer perceptron, and multilayer
perceptron (MLP). In this chapter limitations of perceptron, learning techniques and
mathematics of MLP, are highlighted.
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Chapter 4 is an introduction to the genetic algorithms (GAs). In this chapter
mathematical foundation of genetic algorithm, genetic operations etc. are described and
compared it with the gradient descent algorithm.

Chapter 5 describes the fuzzy set theory. It presents principal concepts and
mathematical notions of fuzzy set theory, fuzzy set operations, properties of fuzzy sets,
etc. The purpose of this chapter is to build the sound theoretical background which is
necessary to design fuzzy systems. This chapter forms a basis for Chapter 9.

Chapter 6 presents experiments and results of MLP. This chapter begins with a
description of the data sets used to test the algorithm. In this chapter an attempt has
been made to formulate the neural network training criteria in medical diagnosis. Also,
the results are compared with various neural networks such as modular networks, radial
basis function, reinforcement learning.

Chapter 7 describes the experimental results of hybrid system. In this chapter, the
training of MLP by the GA optimization method is presented. It involves the
optimization of connection weights of MLP architecture for solving a specified
mapping of an input data set to output data set. Also, it is compared with the back-
propagation algorithm. Experimental results are presented using 1-point crossover, 2-
point crossover, uniform crossover, NN-specific 2-point crossover, and NN-specific
uniform crossover.

Chapter 8 presents the experimental results of genetic programming. Five simple
statistical classification techniques are used, and the results are compared.

Chapter 9 presents the experimental results of genetic-algorithm-based fuzzy
classifier system. Here each fuzzy if-then rule was treated as an individual. The fitness
value of each fuzzy if-then was determined by the numbers of correctly and wrongly
classified training patterns by that rule.

In Chapter 10 the conclusions are presented about the overall research topic,
followed by implications for the larger field of research. This chapter ends with
suggestions for future research.

Finally, there are three appendices. Appendix A contains the generalised delta
rule for Multilayer Perceptron. Appendix B contains neural network learning using
GAs. Appendix C contains codes for the design of fuzzy/genetic classifiers respectively.

1.7 Conclusion

This chapter has presented an overview of this thesis. It has established that CAD is a
major problem. The present methods of diagnosis have been described and problems
with them identified. It also presents brief introduction to artificial neural networks,
fuzzy systems and hybrid intelligent techniques. These methods outperform the present
methods of diagnosis in several important ways. The background of the research
problem was introduced and the basic methodology used for the research was
described.



Chapter 2

Pattern Recognition

2.1 What is pattern recognition?

Pattern recognition can be defined as a process of identifying structure in data by
comparisons to known structure; the known structure is developed through methods of
classification. For example, a child learns to distinguish the visual patterns of mother
and father, the aural patterns of speech and music. A mathematician detects pattemns in
mathematics. By finding structure, we can classify the data according to similar
patterns, attributes, features, and other characteristics. Any object or pattern that has to
be classified must posses a number of discriminatory features. The first step in any
recognition process, performed either by a machine or by a human being, is to choose
candidate discriminatory features and evaluate them for their usefulness. Feature
selection in pattern recognition involves the derivation of salient features from the raw
input data in order to reduce the amount of data used for classification and
simultaneously provide enhanced discriminatory power. The number of features needed
to successfully perform a given classification task depends on the discriminatory
qualities of the selected features. The input to a pattern recognition machine is a set of N
measurements and the output is the classification. We represent the input by N
dimensional vector X, called a pattern vector, with its components being N
measurements. The classification at the output depends on the input vector x. Different
input observations should be assigned to the same class if they have similar features and
to different features if they have dissimilar features. The data used to design a pattern
recognition system are usually divided into two categories: training data and test data.
Discriminant functions are the basis for the majority of pattern recognition problems.
Pattern classification techniques fall into two categories.

1. Parametric

2.  Non-parametric

A parametric approach to pattern classification defines discriminant function by a
class of probabilities densities defined by a relatively small number of parameters. In
fact, all parametric methods in both pattern classification and feature selection assume
that each pattern class arises from a multivariate Gaussian distribution, where the
parameters are the mean and covariances.

Numeric techniques include deterministic and statistical measures. These can be
considered as measures made on geometric pattern space. In the statistical approach to
numerical pattern recognition each input observation is represented as a multi-
dimensional data vector. Statistical pattern recognition systems rest on mathematical
models.

Non-numeric techniques are those that include the domain of symbolic processing
that is dealt with by such methods as fuzzy sets.
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2.2 Pattern Classification

Any object/pattern that has to be recognised or classified must possess a number of
discriminatory properties or features. The first step in any recognition process,
performed either by a machine or by a human being, is to choose candidate
discriminatory properties or features and evaluate them for their usefulness. Feature
selection in pattern recognition involves the derivation of silent features from the raw
input data in order to reduce the amount of data used for classification and
simultaneously provide enhanced discriminatory power. The number of features needed
to successfully perform a given classification task depends on the discriminatory
qualities of the selected features.

The traditional form of a pattern classifier is shown in Figure 2-1. The original
data measurements are fed into the pre-processor x; which outputs features y;. These
features are then fed to the classifier, which outputs a class label ci. For the training
samples with known class labels c;, the difference between ¢; and ¢; and are used to train
the classifier. For novel samples, c; isthe predictor for the class of that sample.

Measurement
vector

—p| Feature extractor Classifier —» (Class label

Figure 2-1: A pattern recognition system

2.3 Minimum error rate Classification Error

In classification problems, each state of nature is usually associated with a different one
of the ¢ classes and the action oy is usually interpreted as the decision that the true state
of nature is ;. If action o is taken and the true state of nature is ®; then the decision is
correct if i=j, and an error if i#j. The job of the classifier is to find an optimal decision
that will minimize the average probability of error i.e. risk or error rate. A loss function
so called symmetrical or zero-one loss function assigns no loss to a correct decision, and
assigns a unit loss to any error. Thus all errors are equally costly. The risk
corresponding to this loss function is precisely the average probability of error, since the
conditional risk is

R(o4%) = Y Moy|e)P(w;fx)

= Zjaei P(mj IX)
=1-P(a;[x) 2
where
0 i=]j
Moy|o)) = { Tl el 2.2)
1 1# ]

and P(wjlx) is the conditional probability that action a; is correct. The Bayes decision
rule to minimize risk calls for selecting the action that minimizes the conditional risk.
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Thus to minimize the average probability of error we should select the i that maximizes
the a posteriori probability P(w;lx). In other words, for minimum error rate:

Decide oy  P(wilx) > P(wjlx) V j #1i.
2.4 Bayesian Classification

The Bayesian approach is an analytical method and is very powerful and widely used.
Under this approach the problem is posed in probabilistic terms and all the probabilities
and distributions are assumed to be known (Duda and Hart, 1973). The advantages of
this approach are that it is theoretically well-founded empirically well-proven and
involves procedural mechanisms whereby new problems can be systematically solved.
It relies on the basic statistical theory of probabilities and conditional probabilities.

p(xl®;)
£
e
= p(xl®z)
1]
W
X X

Figure 2-2: Conditional probability density functions and a posteriori probabilities.

The pivotal mathematical tool for this analysis is Bayes Rule:
p(x l®,)P(®;)

2.3
p(x) A

P(o;) =

where

P =Y p(x!0)P(®) (2.4)

Bayes rule shows by observing the value of x changes the a priori probability P(w;) to
the a posteriori probability P(wjlx). For example, if we have an observation x for which
P(w;lx) is greater than P(m,lx), we would normally decide that the true state of nature is
;. Similarly, if P(wIx) is greater than P(w;Ix) we would decide to choose . For x, the
probability of error is defined as follow.

P(o,(x)) if wedecide w, (2.5)

P(error 1x) = . .
P(w,(x)) if wedecide o,

We can minimize the probability of error by deciding ; for the same value of x if
P(w1x) > P(m1x) and o, if P(axlx) > P(w;lx). The average probability of error is given
by

10
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P(error) = TP(error, x) dx
. (2.6)

P(error, x)p(x) dx

3 ——8

Figure 2-2 shows the difference between p(xlw;) and p(xlmwz) and the variations of
P(wjlx) with x. Let P(w;) be the a priori probabilities and p(xlw;) be the srate-
conditional probability density function for x, the probability density function for x
given that the state of nature is ;.

To summarise, the overall Bayesian approach for minimising error rate is to
estimate or hypothesise the priors and the conditional class densities, then invert these to
obtain the posteriors. For a new X, the posterior with maximum value corresponds to the
Bayes optimal class. The freedom in choice of learning algorithms is in the way the
conditional probability density functions are formed. Some common methods are
discussed here.

2.5 Linear Discriminant Functions

A linear discriminant function divides the feature space by a hyperplane decision
surface. The orientation of the surface is determined by the normal vector w, and the
location of the surface is determined by the threshold weight w,. The discriminant
function g(x) is proportional to the signed distance from x to the hyperplane, with g(x) >
0 when x is on the positive side, and g(x) < 0 when x is on the negative side.

A discriminant function that is linear combination of the components of x can be
written as

g(x) = W'x + Wo, Q.7

where w is called the weight vector and wy the threshold weight. A two category linear
classifier implements the following decision rule: Decide w; if g(x) > 0 and o, if g(x) <
0.
Thus, x is assigned to ®; if the inner product w'x exceeds the threshold —wy. If g(x) = 0,
x can be assigned to either class.

The equation g(x) = 0 defines the decision surface that separates points assigned
to @; from points assigned to ®;. When g(x) is linear, this decision surface is a
hyperplane. If x; and x; are both on the decision surface, then

thl +WwWy = WtX2 + Wy
2.8)
or wt(xl -x2)=0,

so that w is normal to any vector lying in the hyperplane. In general the hyperplane
divides the feature space into two halfspaces, the decision region R for ®; and the
decision region R;. Since g(x) > 0 if x is in Ry, it follows that the normal vector w
points into R;.

The discriminant function g(x) gives an algebraic measure of the distance from x
to the hyperplane.

w (2.9)
X=Xp +rm,
11
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where xp is the normal projection of x onto H, and r is the desired algebraic distance,
positive if x is on the positive side and negative if x is on the negative side. Then g(xp)
=0,

g(x) = W'xq + wo = rliwll, (2.10)

An illustration of these results are given in Figure 2-3.

R

i/

( &
vl

Figure 2-3: The linear decision boundary g(x) =w'x + wo =0

2.6 Quadric discriminant function
A quadric discriminant function has the form
d d-1 d d
gi(X) = 2j=1 wjjxj? * 2j=1 Zk=j+1 ijxjxk + 2j=lex.i T Wan (2'11)
Any machine, which employs quadric discriminant function, is called a quadric

machine (see Figure 2-4). A quadric discriminant function has (d+1)(d+2)/2 parameters
or weights consisting of

d weights as coefficients of x;” terms Wi
d weights as coefficients of x; terms Wj
d(d-1) weights coefficients of x; xx terms, k#j Wik
1 weight which is not a coefficient W+l

Equation (2.11) can be put into matrix form after making the following definitions. Let
the matrix A = [a;] have the following components given by

5= Wjj j=1,...,d
ak= 1/2ij j, k=1,..,4d, j#k

12
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(bl 3
b2

Let the column vector B=| | have components given by bj=w;,j=1,...,d.

\b" /

Let the scalar C = wg.1. Then
gX)=X'AX+XB+C (2.12)
where X is a column vector and X' denotes the transpose of X. The term X' AX is

called a quadric form. If all the eigenvalues of A are positive, the quadric form is never
negative for any vector X and equal to zero only for

%)

0

0

\

When these conditions are met both the matrix A and the quadric from are called
positive definite. If A has one or more of its eigenvalues equal to zero and all the others
positive, then the quadratic form will never be negative, and it and A are called positive
semidefinite.

2
fi=x" )

X1

X; p|| Quadric
Processor

- —p

Xd ;

Figure 2-4: A quadric discriminant machine

13
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2.7 Maximum-Likelihood Gaussian Classifier

A single-layer perceptron and the maximum-likelihood Gaussian classifier are both
examples of linear classifiers. The decisions regions formed by perceptron are similar to
those the maximum-likelihood Gaussian classifier which assume inputs are uncorrelated
and distributions for different classes differ in mean values.

The maximum-likelihood Gaussian Classifier minimizes the average probability of
classification error. This minimization is independent of the overlap between the
underlying Gaussian distributions of the two classes.

The maximum-likelihood method is a classical parameter-estimation method that
views the parameters as quantities whose values are fixed but unknown. The best
estimate is defined to be the one that maximizes the probability of obtaining the
samples. The observation vector x is described in terms of mean vector | and
covariance matrix C which are defined by, respectively.

u =E[x] (2.13)
and
C=E[x-wx-w") (2.14)

where E is the expected value. Assuming that the vector x is Gaussian-distributed, the
Jjoint-probability density function of the element of x as follows.

_ 1 eH(H)T C"(x—u)]
(2m)% (det C)*

fx) (2.15)

where det C is the determinant of the covariance matrix C, the matrix C!is the inverse
of C, and p is the dimension of the vector x.

Suppose that the vector x has a mean vector the value of which depends on
whether it belongs to class ®; or class @, and a covariance matrix that is the same for
both classes. Furthermore we may assume that the classes ®; and ; have equal
probability and the samples of both classes are correlated, so that the covariance matrix
C is non-diagonal, and it is non-singular. Then the joint-probability density function of
the input vector X can be expressed as follow:

1 [—1<x—u>’ C"(x—m}
K|®) = e’ 2.16
76 (2m)”% (det C)* (0
Taking the natural logarithm of both sides of (2.16), and expanding terms, we get
In f () = = In(2m) - Lgetoy-1xrcix+p cix—Lp 7y, 217
T 2 2 : pri T 2.17)
L) =, Cx—+p,"C
i K 5 M ©Oly (2.18)

14
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For i=1, 2.
Hence a log-likelihood for class 1 can be defined as follows:
L(x) =ufc-1x-%u;c-lul 2.19)

Similarly a log-likelihood for class 2 can be defined as follows:

- 1 _
,(0) =, C'x — 2k, Chy (2.20)
Hence subtracting equation (2.20) from (2.19)
I =1(x) - 1x(x) (2.21)
- 1 - _
=W, - uz)TC X — E(MTC 1”1 - ”2TC 1l‘lz) (2.22)

which is linearly related to the input vector x. Rewriting the above equation

=w'x-0 (2.23)
S wx b (2.24)

where W is the maximum-likelihood estimate’ of the known parameter vector W, defined
by
w=C" (l—ll - uz) (2.25)

and  is a constant threshold defined by

~ 1 . _
0= E(HITC lu’l _uzTC 1”2) (2.26)

Neither the perceptron nor the maximum-likelihood Gaussian classifier is appropriate
when classes can not be separated by a hyperplane.

2.8 The k-Nearest Neighbors Classifier

Nearest neighbor classification (Cover and Hart, 1967) is one of the most well-known
classification methods. The k-nearest neighbors performs vote on the class of a new
sample based on the classes of the k nearest training samples. The k-nearest neighbors
(k-NN) algorithm attempts to improve upon the previous rule. It determines the k-
nearest training samples to the test sample being classified, and uses these samples to
vote on the class label of the test sample. Let n training patterns be denoted as x' (I), i =
1,2, ... n,1=1, 2, ..., C, where n; is the number of training patterns from class ,

! The maximum-likelihood estimate of w is, that value W , which maximizes f(x/w).

15
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ZC:]n, =n,and C is the total number of categories. Let Ki(k,n) be the number of

patterns from class ; among the k-nearest neighbors of pattern x. The nearest neighbors
are computed from the n-training patterns. The k-NN decision rule 8(x) is defined as

ox)=c; if Kjk,n)=Kik,n) forj#i (2.27)

The Euclidean distance metric is commonly used to calculate the k-nearest neighbors.
Let D(x,x") denote the Euclidean distance between two patterns vectors, x and X', then

D(x,x') = z; (x; —x})* = 2M(x, x')+ z; sz

where (2.28)

i i1 i
M(x,x") = Z}ijxj _52; (xj)z’

and d is the number of features. M(x,xi) as the matching score between the test patterns
x and the training pattern x'. So finding the minimum Euclidean distance is equivalent to
finding the maximum matching score.

2.9 Difference between Perceptron and Gaussian Classifier

The single layer perceptron is capable of classifying linearly separable patterns. The
Gaussian distributions of the two patterns in the maximum-likelihood Gaussian
classifier do certainly overlap each other and therefore not exactly separable; the extent
of the overlap is determined by the mean vectors and covariance matrices.

The perceptron convergence algorithm is non-parametric in the sense that it makes no
assumptions concerning the form of underlying distributions; it operates by
concentrating on errors that occur where the distributions overlap. On the other hand,
the maximum-likelihood Gaussian classifier is parametric; it is based on the assumption
that the underlying distributions are Gaussian.

The perceptron convergence algorithm is both adaptive and simple to implement;
its storage requirement is confined to the set of synaptic weights and threshold. In
contrast, the design of the maximum-likelihood Gaussian classifier is fixed; it can be
made adaptive, but at the expense of increased storage requirement and more complex
computations.

2.10 Conclusion

This chapter has presented an introduction to pattern recognition and a comprehensive
overview of supervised classification. Bayesian classification, linear and quadratic
discriminate functions, maximum likelihood Gaussian classifiers and the K-nearest
neighbours classifier have been discussed. Material presented later in this thesis refers
back to this chapter.

16



Chapter 3

Artificial Neural Networks

3.1 Introduction

The human brain is a highly complex nonlinear information processing system. Parallel
processing at all levels of information processing is of major importance to intelligent
systems. The recognition of patterns of sensory input is one of the functions of the
brain. The question often asked is how do we perceive and recognize faces, objects and
scenes. Even in those cases where only noisy representations exist, we are still able to
make some inference as to what the pattern represents. Much of the research is
motivated by the desire to understand and build parallel neural net classifiers inspired
by biological neural networks.

Artificial neural networks have been applied successfully to a variety of tasks.
These tasks include pattern recognition, classification, learning and decision making. A
neural network derives its computing power through, its massively parallel-distributed
structure and its ability to learn and therefore generalize. These two information-
processing capabilities make it possible for neural networks to solve complex problems.
All knowledge in ANNSs is encoded in weights. One possible reason for the good
performance of these networks is that the non-linear statistical analysis of the data
performed tolerates a considerable amount of imprecise and incomplete input data.
Current applications can be viewed as falling into two broad categories. In one class of
applications, neural models are used as modelling tools to simulate various
neurobiological phenomena. In the second class of applications, neural models are used
as computational tools to perform specific information processing tasks.

Both categories use the same basic building blocks, but the final structures and
measures of performance are tailored to the end use. For example, neural models have
been used for diagnostic problem solving. In a diagnostic problem one is given certain
manifestations such as symptoms, signs, and laboratory test abnormalities and must
determine the disease causing those findings. Each input node typically represents a
different manifestation and each output node represents a different disorder.

By contrast, a neuroscientist may regard back propagation of error as biologically
unlikely and could regard the feedforward structure of the multilayer perceptron as
being too limited as a model for biological systems. Such a researcher may choose to
use a more biologically oriented paradigm, which is able to model specific aspects of
biological systems. Thus, although it is possible to define the field of neural networks in
terms of systems of parallel non-linear interconnected processing elements, it must be
bomne in mind that, within the field, there is a very wide variety of approaches and an
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intending user will need to carefully assess the most appropriate for the task in hand.
There is at present no universally “best” paradigm.

The ability of a neural network to perform or learn a certain task or function very
much depends on the properties of the neurons used, the network architecture and the
rules for modifying structure or information within the network.

¢ Biologically Inspired Neural Networks

The elementary nerve cell, called a neuron, is the fundamental building block of the
biological neural network. A neuron is built up of three parts: the cell body, the
dendrites, and the axon as shown in Figure 3-1. The body of the cell contains the
nucleus of the neuron and carries out the biochemical transformation necessary to
synthesis enzymes and other molecules necessary to the life of the neuron. Each neuron
has a hair-like structure of dendrites around it. They branch out into a tree-like from
around the cell body. The dendrites are the principal receptors of the neuron and serve
to connect its incoming signals. The biological neuron is a complex cell that
incorporates both biological and signal processing characteristics.
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Figure 3-1: A simplified sketch of a biological neuron

A number of abstract mathematical models have been proposed to capture varying
levels of neuronal complexity. The McCulloch-Pitts, (1943) neuron, a summation-
threshold device, is perhaps the simplest and most generally used. The sigmoid function
is by far the most common form of activation function used in the construction of
neural networks. Any function that is monotonically increasing and continuous can be
used as an activation function in neuron modelling.
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3.2 Types of Activation Function

The input-output characteristics of the more general sigmoidal function, threshold
function and Sign function are shown in Figure 3-2.

A
1 / ,,,,,,,,, f(x)
=] >
0
(a): Sigmoid function. f{x)= 1_
l+e™
A
=+ f(x)
> x
0
. +1ifx>0
(b): Threshold function. f(x) = :
0ifx=<0
sgn(x)
| fx)
0
>
-1
(©): Sign functi sgn(x) +1if x>0
c): Sign function. sgn(x) =
) s ~1ifx<0

Figure 3-2: (a): Sigmoid function. (b): Threshold function. (c): Sign function.
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3.3 Learning Techniques

One of most significant attributes of a neural network is its ability to leamn by
interacting with its environment. This is accomplished through a learning rule, by
adjusting the weights of the network to improve the performance measure. Learning
process can be viewed as search in a multidimensional parameter space for a solution,
which gradually optimizes a prespecified objective function.

There are several learning methods such as error-correction learning, Hebbian
learning, competitive learning, Boltzmann learning, reinforcement learning.

e Supervised Learning Versus Unsupervised Learning

In supervised learning, each input received from the environment is associated with a
specific desired target pattern. It is also known as learning with a teacher or associative
learning. Usually, the weights are synthesized gradually, and at each step of the learning
process they are updated so that the error between the networks output and a
corresponding desired target is reduced. Examples of supervised learning algorithms
include the least-mean-square algorithm and its generalisation is known as the back-
propagation algorithm. The back-propagation algorithm has emerged as the most
widely used and successful algorithm for the design of MLP. There are two distinct
phases to the operation of the back-propagation learning: the forward phase and the
backward phase. In the forward phase the input signals propagate through the network
layer by layer, eventually producing some response at the output of the network. The
actual response so produced is compared with a desired response, generating error
signals that are then propagated in a backward direction through the network. In this
backward phase of operation, the free parameters of the network are adjusted so as to
minimize the sum of squared errors.

Unsupervised learning involves the clustering or the detection of similarities
among unlabeled patterns of a given training set. The idea here is to optimize some
criterion function defined in terms of the output activity of the units in the network.
Here the weights and the outputs of the network are usually expected to converge to
representations that capture the statistical regularities of the input data. Once the
network has become tuned to the statistical regularities of the input data, it develops the
ability to form internal representation for encoding features of the input and thereby
new classes automatically. To perform unsupervised learning, for example, we may use
competitive learning rule for a two-layer network, input and competitive layer. In its
simplest form, the network operates in accordance with a winner-takes-all strategy. The
input layer receives the available data. The competitive layer consists of neurons that
compete with each other for the opportunity to respond to features contained in the
input data.

20



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

3.4 The Perceptron

The single-layer perceptron depicted in Figure 3-3 has a single neuron. The term was
first used by Frank Rosenblatt (1958). It is the simplest feedforward neural network
structure. The single node computes a weighted sum of the input elements, subtracts a
threshold and passes the result through a hard limiting nonlinearity such that the output
y is either +1 or —1. The decision rule is to respond class A if the output is +1 and class
B if the output is —1. The input-output relationship of the unit is represented by the
inputs x;, output y, connection weight w;, and threshold 6, and as follows:

y=3" wx, -0 (3.1)

The perceptron learns by adjusting its weight. Connection weights w,, w,,..w_ and the

threshold © in a perceptron can be fixed or adapted using a number of different
algorithms. First connection weights and the threshold value are initialized to small
random non-zero values. Then a new input with N continuos valued elements are
applied to the input and the output is computed. The equation of the boundary line
depends on the connection weights and the threshold. For analyzing the behaviour of
nets such as the perceptron is to plot a map of the decision regions created in the p-
dimensional space spanned by the input variables x,,X,,..x,. In the case of an

elementary perceptron, there are two decision regions separated by hyperplane defined
by
’ wx,-0=0 (3.2)

i=1

These decision regions specify which input values result in class A and which
result in class B response. For the case of two input variables the decision boundary
takes the form of a straight line. A point that lies above the boundary line is assigned to
class A and point that lies below the boundary line is assigned to class B. Connection
weights are adapted only when an error occurs. Such a perceptron is limited to
performing pattern classification with only two classes. The single layer perceptron can
be used with both continuous valued and binary inputs. The externally applied
threshold is denoted by 8. The effect of the threshold is to shift the decision boundary
away from the origin.

’
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Figure 3-3: Single-layer Perceptron
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3.5 Limitations of Single Layer Perceptron

Linear separability limits single-layer networks to classification problems in which the
sets of points corresponding to input values can be separated geometrically. For two
input case the separator (decision boundary) is a line.

The perceptron forms two decision regions separated by a hyperplane. Rosenblatt
proved that if the inputs from two classes are separable then the perceptron convergence
procedure converges and positions the decision hyperplane between two classes. This
decision boundary separates all samples from the A and B classes. An example of the
use of perceptron convergence procedure is presented in Figure 3-4. Circles and crosses
represent samples from class A and B.

Vectors to be Classified Veclors to be Classified

Figure 3-4: Classification with a 3-input perceptron.
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1.  Initialise weights and thresholds

Define weights wy to be the weight from input i at time t, and 6 to be the threshold
value in the output node. Set w, to be -6, the bias , and x, to be always 1. Set w;(0) to
small random values, thus initialising all the weights and the threshold.

2. Present input and desired output

Calculate actual output
yt) = f, (Z?:o w, (L), (t))

3. Adapt weights

if correct w (t+1)=w,(t)
if output 0, should be 1 (class A) w,(t+1)=w,(t)+x,()
if output 1, should be O (class B) w,(t+1)=w,(t)—x,(t)

The weights are unchanged if the net makes the correct decision. Also, weights are not
adjusted on input lines which do not contribute to the incorrect response, since each
weight is adjusted by the value of the input on that line, x; which would be zero.

Figure 3-5: Perceptron Learning Algorithm
3.6 Multilayer Perceptron (MLP)

The Rumelhart-Hinton multilayer perceptron is a feed-forward network with an
arbitrary number of layers. A three-layer perceptron with two layers of hidden unit is
shown in Figure 3-6. The network is organised into layers with an input layer, an output
layer, and hidden layers in between. Usually either one or two hidden layers are used.
Each node in the first layer behaves like a single-layer perceptron and has a high output
only for points on one side of the hyperplane formed by its weights and offset. The
input-output relationship of each unit is represented by the inputs x;, output y,
connection weight w;, threshold 0, and differentiable function ¢ as follows:

y=¢ Llwixi - 9)

It extends the perceptron principle and capabilities in important ways by
including more layers of variable weights and by replacing the hard non-linearity by a
smooth sigmoidal function. A single-layer perceptron forms half-plane decision
regions. A two layer perceptron can form any, possibly unbounded, convex region in
the space spanned by the inputs (Lippmann, 1987). It can generate arbitrarily complex
decision regions. These nets can be trained with back-propagation algorithm (BP) also
known as generalised delta rule. The BP learning procedure, based on the chain rule
and gradient descent, provides one of the most efficient learning techniques in this
respect.
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The back-propagation algorithm uses gradient descent search in the weight space to
minimize the error between the target output and the actual output. There are two
distinct passes of computations. The first pass is referred to as the forward pass, and the
second one as the backward pass.

In the forward pass the synaptic weights remain unaltered throughout the
network, and the function signals of the network are computed on a neuron-by-neuron
basis. In the forward phase of computation begins at the first hidden layer by presenting
it with the input vector, and terminates at the output layer by computing the error signal
for each neuron of this layer.

The backward pass, on the other hand, starts at the output layer by passing the
error signals leftward through the network, layer by layer, and recursively computing
the local gradient for each neuron. This recursive process permits the synaptic weights
of the network to undergo changes in accordance with the delta rule of equation (3.14).

For the presentation of each training example the input pattern is fixed throughout
the process encompassing the forward process followed by the backward process.

The back propagation algorithm, despite it’s simplicity and popularity has several
drawbacks. It is slow, and needs thousands of iterations to train a network pertaining to
a simple problem. The algorithm is also dependent on the initial weights, and the values
of momentum, o and learning rate™.

E=%2(tk —y.) (3.3)

where,
t, = target output of the kth neuron in the output layer

y, = actual output of the kth neuron in the output layer

The derivative of the error, with respect to each weight is set proportional to weight
change as:
JE

oW

Aw, =-n 3.4

where 1 is called the learning rate. It is a general practice to accelerate the learning
procedure by introducing a momentum term ¢ into the learning equation, as follows:

OE
Ay (t+D) =Nz

(t+1)+oAw,, (t) (3.5)
jk
where,
W =- weight from the jth unit to the kth unit
There is another form of the weight update rule as given below in (3.6):

oE
oW

AW, (t+1]) = ~(l-en=——oI(Ct+D) +0dw, (1)  (3.6)

The factor (1— ) is included so the learning rate does not need to be stepped down as
the constant o is increased.

24



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS




CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

3.7 Approximate Realization of Continuous Mappings by Neural Network

Let ¢(x) be a non-constant, bounded and monotonically increasing continuous function.
Let K be a compact subset (bounded closed subset) of R® and f(x,,....x_) be a real

valued continuous function on K. Then for an arbitrary € > 0, there exists an integer N
and real constants ¢;, 8; (i=1, ... ,N), w (i=1,... ,N,j=1, ..., N), such that

f=(x,,x, )= Z:lciq) (2;1 WX, — (-)i)

satisfies max, f(xl,...,xn)—7(x1,...,xn1 < €. In other words, for an arbitrary € > 0,

there exists a three-layer network whose output functions for the hidden layer are ¢(x),
whose output functions for input and output layers are linear and which has an input-

output function f(xl,...,xn) such that

max,.x

F& X, )= 7(}(1 ,...,xnj <e.

We start with Irie-Miyake’s theorem to prove it.

Irie-Miyake’s Integral Formula

Let y(x) € L)(R), that is, let y(x) be absolutely integrable and f(x,,...,x,)e I’(R™),
Let W(E) and F(W,...,w_ ) be Fourier transforms of y(x) and f(x,,...,x, ) respectively.

If y(1) #0, then

n 1 iwg
flx ,enx, )= E”',’:W(Zi:l X,W, — WO) MF(WL ceesw )e™dw dw, ...dw_.

This formula clearly asserts that if we set

Iw’A(xl,...,xn)

A A N 1 .
= I_A“-J_A[J:w(ziﬂxiwi - WO)EWF(WL ...,Wn)e( )dwo]dwl ...de.
Then

=0

L2

lim “I‘,‘,.A (x, s X )— f(xl,x2,...,xn1
A—oo

Irie and Miyake (1988) asserted that a three-layer network can represent arbitrary
function with an infinite number of computational units. In this formula w, corresponds
to threshold, w; corresponds to connection weights and y(x) corresponds to the output
function of the units. However, the sigmoid function does not satisfy the condition of
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this formula that y(x) be absolutely integrable and so the formula does not directly give
the realization of the theorem of functions by networks.

Lemma 1

Let ¢(x)be a nonconstant, bounded and monotonically increasing continuous function.
For o > 0, if we set

gx) =0(x +a)-d(x — o,
Then g(x) € L'(R), that is ,

fw |g(x)| dx <eo
Furthermore, for some & > 0, if we set
2500 =9(x/3+ ) - (x/8— ),
then the result of Fourier transform G5(E) of gs(x) at £ = 1 is non-zero.

Proof: Let Ig(x) < M|. ForL>M,

[[ewldx=] gydx
L L
[ s
[
_ J'L+0t¢(x) dx
L-a
-[ ::q)(x) dx < 4oM

Therefore,

lim .E, lg(x)| dx <eo
L— oo

We show that for some & >0, Gs(1) # 0. If the assertion does not hold, then for any
6>0,

[ «o(x/8+0)- & x/8 - 1) Je"dx =0
By the change of the variable,
.E, (d(x + o) - d(x — o) )e'i"adx =0 for any & >0 3.7

Taking the complex conjugate of the equation (3.7)
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J: (O(X +0) - 0(x — ) )e™®dx =0 forany § >0 (3.8)

Since the Fourier transform G;(E) of g,(x) =0(x + ) - 0(x — ), € L'(R) is continuous,
so from (3.7) and (3.8), G,(§) is identically zero. Therefore,

O(x +0)-0(x —0) =0

This is a contradiction because ¢(x) is not a constant. This lemma holds for
¢(x) which is locally summable.

Lemma 2

Let A; > 0 (i = 1,...m), K be a compact bounded closed subset of R” and A(xy,...Xp,
t1,...ty) be a continuous function on [-A;, A;] X...X[-Ap, An] X K.

) g
II(t)—j "I h(X ,...,X ,t gose t )dx{-.-dx
A A 1 m 1 **n m

can be approximated uniformly on K by the Riemann sum

k,.2A k 2A
m— m

2A. ..2A
H ()=—>_ _—myyN-1 p_A 41 1. A 4
N m k,...k

N 1 m

In other words, for an arbitrary € > 0, there exists a natural number Ny such that N 2
No,

max [H(t) - Hy (t)] <e.

Proof: The function h(x,t) is continuous on the compact set
- Al,Al]x---x - Am,Am]x K, so h(x,t) is uniformly continuous. Therefore for any

e > 0, we can take the integer Ny such that if N = N and

X; — Ai+ki'2Ai <24 (i=1,...,m) then
N N
A(X 5eeesXmslprenesty) —h —Al+ﬁl\—‘—,---,—Am+k’“'2A“‘,tl,...tn D -—
N N 2A,..2A,
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This proves lemma 2.

Step 1: Because fix) (X = Xy, . . ., Xp) )is a continuous function on a compact set K of
R", f(x) can be extended to be a continuous function on R" with compact support.

If we operate the mollifier' p,” on f{X), p fX), is C™ -function with compact support.
Furthermore, p, fix)— f(x) (0t—+0) uniformly on R" Therefore we suppose f(x) is a C*
-function with compact support to prove the above theorem. By the Paley-Wiener

theorem (Yosida 1968), the Fourier transform F(w) (w = wy, . . . w,) of fix) is real
analytic and, for any integer N, there exists a constant Cy such that

[F(w)| < Cy (L+|w]) ™ (3.9)
In particular, F(w) € L' N LA(R".

We define Iz(X;, - . - » Xn), Loa(X1, - - ., Xp) and Jo(Xy, . . ., Xp) as follows:

o i n 1 iw
L, (50X, )= LA~--I_AW(zi=1XiWi - WO)WF(WI. oW, )e™dw dw, ...dw_ . (3.10)

I.A (xl,...,xn ) = J‘_AA,,,I: lt‘[‘:w(zi":l X,W, — WO)WF(WL ce W, )e(iw°)dwoi| dw, ...dw,.

(3.11)
(XX, )= (2115)“ fAfAF(wL . ..,wn)e(iz‘"="““")dw1 ..dw,. (3.12)
where y(x) € L' is defined by
yx) = x/d+0a)- & x/8-0),
for some o and & so that y(x) satisfies Lemma 1.
The following equality is the essential part of the proof of I-M integral formula
Ly (% ppeerX ) =T (X e X, ) (3.13)

and this is derived from

EW(Zinwi -wo)e““’“dwo S AE) (3.14)

Using the estimate of F(w) we can prove

! The operator p," is called a mollifier
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lim T, (XX, )= F(XpemnX, )

A—>o
uniformly on R". Therefore

im Lo (XpeeX,)=F(XpenX,)
A —>eo

uniformly on R". That is we can state that for any € > 0, there exits A > 0 such that

maXII»A Xpsee ,x) f(xl’ Xy j*% (1)

xeR"

Step 2: We will approximate I 5 by finite integrals on K. For any € > 0, fix A which
satisfies (7).

For A’ > 0, set
A pA | A n 1 iw
IA,'A(x,,...,xn)=J‘_A---.[A,[J_A,w(zizlxiwi—wo)fF(wlv...,wn)e( °)dw0:| dw,...dw_.

2m)"w(D)

We will show that, for any € > 0, we can take A” > 0 so that
€
m?(X|IA'.A(X17"'axn)_I‘_,_A(Xl,...,xn1'<-£ (i)

Using the following equation

A’ (Zn _ }(iwo)d
| Y2 XV T W Wo

T (xw)¥ . iZL‘XiWi
- JZZ( i A\y(t)e('“)dt.e[ )

:=1(xiw‘ )-A

the fact F(x) € L' and compactness of [-A, A]" X K we can take A’so that

(iwg) n (iwg)
_A W(Zn—] 2l _WO} ° dwO —J:,W(Zidxiwi _Wo)h' ° dwo‘

e 2m)"lw()| g
JFx)ld
(2j [ [Feolax +1)I “Ldpeoles

<

on K. Therefore

max|IA’,A(x1""’xn)_ »A( XpseenX n
xeK

(2r il |F(x)|d 4,1]J I JFoojdx <

Step 3: From (1) and () we can say that for any € > 0, there exits A, A" > 0 such that
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maxlf(xp---,x,,)—IA,'A(xl,...,an-<e (*)
xeK

that is to say f{x) can be approximated by the finite integral Is- o(x) uniformly on K. The
integrand of I, A(x) can be replaced by the real part and is continuous on [-A’, A’]
X...X[-A A] x K, so by Lemma 2 , Ix-o(x) can be approximated by the Riemann sum
uniformly on K.

Since

‘V(Z:___]xiwi - Wo)= ¢(Z?=1Wixi/5_ w, + 0‘)_ ¢(zin=1wixi/8_ Wo —0(.)

A three-layer network can represent the Riemann sum. Therefore f(x) can be
represented approximately by the three-layer networks.

3.8 Derivation of Back-propagation Algorithm

The back-propagation algorithm provides an approximation to the trajectory in weight
space computed by the method of steepest descent.

Let E, is the error function for pattern p, t,; represents the target output for pattern
p on node j, whilest oy; represents the actual output at the node. wj; is the weight from
node i to node j. We begin by defining the cost function as the instantaneous sum of
squared difference between the actual output and the desired output is:

1
E, = E;(tpj ~o, (3.15)

The activation of each unit j, for pattern p, can be written as the weighted sum, as in the
single layer perceptron.

net, = > w0, (3.16)

The output from each unit j is the threshold function fj acting on the weighted sum. In
the multilayer perceptron, it is usually the sigmoid function, although it can be any
continuously differentiable monotonic function.

o, = f,(net;) (3.17)
By chain Rule, we can write,

P

ow. anetpj ow..

i 1

oE _ JE, onet,

(3.18)

Looking at the second term in (3.18) and (3.16)
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E)net
2 & kJ pk

wij aw

(3.19)

] =( except when k = i when it equals 1. We can define change in error as a

Since —*=
W
function of the change in the net inputs to a unit as
%y _ (3.20)
onet;, ”
and so (3.18) becomes
oE
- 8wp =00, (3.21)

ij

Decreasmg the value of E, therefore means making the weight changes proportional to

8pjopl )
A,w, =m8 0, (3.22)

We can now find §; for each of the unit. Using (3.6) and the chain rule, we can write

JE dE, do,
(3.23)

= P ==

5. =— =
P onet ao anet

Consider the second term, and from (3.9),
(3.24)

Consider now the first term in (3.15). From (3.7), we can differentiate E, with respect

to o, giving

JoE
50_p = _(tpj - Opj) (3.25)
P
Thus
8pj = f J"(n'etpj tij - OPJ') (3'26)

This is useful for the output units, since the target and output are both available but not
for the hidden units, since their targets are not known. So if unit j is not an output unit,

we can write, by chain rule again. that
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2 oE, onet,

o anet ole
= ik Opi 3.27
zk" Inetpk E)opJ 1 Wi (3.27)
== 8, W, (3.28)

k
8pj =f j’(netpj )z 6pkw ik (3.29)
k

This equation represents the change in the error function with respect to the weights in
the network. This provides a method for changing the error function so as to reduce the
error. The function is proportional to the errors dy in subsequent units, so the error has
to be calculated in the output unit first and then passed back through the net to the
earlier units to allow them to alter their connection weights. Equation (3.26) and (3.29)
together define the weight adjustment of output neuron of MLP.

The computation of the local gradient for each neuron of MLP requires
knowledge of the derivative of the activation function. Differentiability is only
requirement that an activation function would have to satisfy. The sigmoid function is
most commonly used as a non-linear continuously differentiable nonlinear activation
function. Hyperbolic tangent is another example of sigmoidal nonlinearity. The
derivative is simple function of the outputs. Given the output of unit, o; is given by

e f(net) = m

the derivative with respect to that unit, f’(net), is given by

ke-k net

(1 + e—k net )2

=k f(net 1 - f (net))

flnet)=

=k0pj(1_opj)
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1.  Initialise weights and thresholds. Set all weights and thresholds to small random
values

2. Present input X,,X,,...x and desired output

3. Calculate actual output
Each layer Calculates

n-1
ypj = f i=0 Wixi)
and passes that as input to the next layer. The final layer outputs value oy;.
4, Adapt weights
Starting from the output layer, and working backwards.

pjopj

w,(t+1)=w,(t)+nd

wy; represents the weights from node i to node j at time t, 1 is a learning rate, and G; is
an error term for pattern p on node j.
For output units

8pj = kopj (1 — 0y tij . Opj)
For hidden units

8pj = kopj (1 — 0y )zk: apkwjk

where the sum is over the k nodes in the layer above node j.

Figure 3-7: MLP Learning Algorithm
3.9 Practical Issues

There are several practical considerations that must be addressed to successfully use the
MLP.

e Local Optima

In practice it is highly unlikely that the error function will contain a single optimum;
rather the function that is being optimised will tend to be very rough and noisy, and
dotted with local optima (Widrow and Lehr, 1990). Since back-propagation training is
a gradient descent method, convergence to a local optimum is final and the network
becomes trapped at this suboptimal point. Therefore two networks with the same
architecture can often achieve the same goal using different sets of weighs. It is sensible
to train the network several times, starting with different initial weights for each
training instance. For each training run, the weight vector may start in a different basin
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of attraction, and hopefully the basin of the global optimum will eventually be
encountered. Figure 3-8 shows error surface with a contour plot underneath. Error
surface calculates errors for a neuron with a range of possible weight and bias values.
Notice the low error point near the middle, and the two valleys leading away from it.

e
O
e

Figure 3-8: The error surface and contour

One method for escaping small local optima is the use of a momentum term in training,
although this adaptive step-size update method was explicitly developed to speed up
training. Momentum allows the step-size parameter to adapt to the local landscape: in
regions where successive updates involve gradients with the same sign, the weight
update increases in magnitude, metaphorically gaining momentum. In the case where
gradients change sign on successive updates, the weight vector has overshot a local
minimum and the weight update magnitude decreases to fit in the smaller basin. For an
appropriately chosen o, the weight vector can overshoot and thus escape relatively
small local optima.

e Architecture

The first decision that must be made is the choice of architecture. If too, many hidden
neurons are used, the network tends to over-fit the data; if too few, the network may
under-fit since it does not posses enough free parameters to perform the mapping. In
addition, the number of layers may make a difference to the performance of the MLP.
We could go as far as to allow arbitrary forward connections among the neurons. These
factors depend on the underlying complexity of the data which is generally unknown,
so far near-optimal results a search must be made over the set of possible architectures.
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There is a significant amount of research into the use of evolutionary algorithms for this
purpose, the different methods varying in the extent of the search. For instance, genetic
algorithms have been used to find the best neural connections for a fixed number of
hidden nodes, while more extreme approaches have used genetic programming to find
the number of hidden layers, hidden nodes, and the interconnections between them.

3.10 Conclusion

This chapter has presented an overview of the perceptron and MLP. A brief review of
the biological inspiration for neural networks has been given. The relative merits of
supervised and unsupervised learning have been discusssed. The single layer perceptron
has been described and its limitation to input values which can be seperated
geometrically has been identified. Generalisations to a multilayer perceptron in order to
remove this limitation has been outlined and the mathematical theory of MLP with
practical issues has been presented.

36



Chapter 4

Genetic Algorithms

41 Introduction

The Genetic Algorithm (GA) were introduced by John Holland (Holland 1995, first

published 1975), and a seminal treatment has been given by Goldberg (Goldberg,

1989). Genetic algorithms like neural networks are a biologically motivated paradigm

based on natural selection and genetics. They are based on the genetic processes of

biological organisms. These algorithms represent the complex structure of a problem by

a simple code of bit strings, which mimic the genes in a chromosome. Over many

generations natural populations evolve according to the principles of natural selection

and Species. GA’s work with a population of individuals each representing a possible

solution to a given problem. Each individual is assigned a fitness score according to

how good a solution to the problem it is. The technique is robust and can deal with a

wide range of problems. In his recent book, David Goldberg describes genetic

algorithms °... search algorithms based on the mechanics of natural selection and

natural genetics (resulting in) a search algorithm with some of the innovative flair of

human search.’

Genetic algorithms differ from traditional search algorithms as follows.

1. GAs work with a coding of the parameter set, not the parameters themselves.

2. GAs search from a population of points, not from a single point.

3. GAs use pay-off ( objective function ) information, not derivatives or other auxiliary
knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

The parameters of a problem are usually coded into a string of binary features
analogous with chromosomes in biology. This coding is done by the user of the GA.
The GA itself has no knowledge at all of the meaning of the coded string. If the
problem has more than one the string contains multiple sub-strings or genes, one for
each of the parameters. Each coded string represents a possible solution to the problem.
The GA works by manipulating a population of such possible coded solutions in a
reproduction process driven by a number of genetic operators.

During the reproduction process, new solutions are created by selecting and
recombining existing solutions based on pay-off information(often called fitness) using
the genetic operators. The process can be compared with natural selection and the
Darwinian theory of evolution in biology: fit organisms are more likely to stay alive and
reproduce than non-fit organisms. The basic outline of a genetic algorithm is as
follows:
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/*Genetic Algorithm*/

BEGIN
Generate initial population
Determine fitness of each individual

WHILE NOT finished DO
Begin

FOR population size DO

BEGIN
Select two individuals from old generation for mating
Recombine the two individuals to give two offspring
Determine fitness of the two offspring
Insert offspring in new generation

END

IF population has converged THEN
Finished = TRUE

END

END

Figure 4-1: The Basic Genetic Algorithm
4.2 Fitness function

The fitness function reflects the ability of the individual which that chromosomes
represents. For each problem, a fitness function has to be solved. For a particular
chromosome, the fitness function calculates a single numerical fitness or figure of
merit. In genetic terms, the set of parameters represented by a particular chromosome is
referred to as a genotype. The genotype contains the information required to construct
an organism which is referred to as the phenotype. The fitness of an individual depends
on the performance of the phenotype. The fitness of a string (or solution) can be
evaluated in many different ways. If the problem, for example, is finding the root of a
mathematical function, the fitness can be the inverse of the square of the function value
of the proposed solution. If the problem is finding an optimal neural net, the fitness
could be the inverse of the convergence time and zero if the network couldn’t learn the
problem. It could also be the inverse of the error at the output nodes. The GA is not
aware of the meaning of the fitness value, just the value itself. This implies that the GA
can’t use any auxiliary knowledge about the problem. Starting with a population of
random strings, each new population (generated by means of reproduction) is based
upon (and replaces) the previous generation. This should, in time, lead to a higher
overall fitness, and thus to better solutions to the original problem.

The four most commonly used genetic operators used are selection, crossover,
inversion and mutation. With each of these of the operators, only random number
generating, string copying and changing of bits are involved. Crossover, mutation and
inversion are all applied with a certain probability: for each application of an operator it
must be decided whether to apply the operator or not. Selection alone is usually not
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enough for the GA to work, so, one or more of the other genetic operators have to be
applied to the selected string. Table 4-1 shows sample population of 10 strings.

Table 4-1: Sample Population of 10 strings

Fitness Bitstring Fitness Bitstring
1 1 1111111111 6 5 1101110101
2 2 1100001000 7 5 0001100010
3 3 0000000001 8 6 1000000001
4 3 1111111000 9 7 0000100010
5 4 0001000100 10 9 1100010101

4.3 Genetic Operators
e Selection

Selection is used to choose strings from the population for reproduction. On each
generation parents are selected to produce new children. The selection of parents is
biased by fitness, so that fit parents produce more children and very unfit solutions
produce no children. This is known as selection. The genes of good solutions thus
begin to proliferate through the population. The chance of selection as a parent is
proportionate to chromosomes normalised fitness. In parallel with the natural selection
mechanism, strings or solutions with a high fitness are more likely to be selected than
less fit strings. The two selection methods applied in this research are described
respectively by Goldberg and Whitley. The roulette wheel is shown in Figure 4-2.

Figure 4-2: The roulette wheel.

With roulette wheel selection, strings are selected with a probability
proportional to their fitness. Another method is called rank based selection, where the
chance of being selected is defined as a linear function of the rank of an individual in
the population. The population must remain sorted by fitness for this method to work.
One advantage of rank based selection is that it does not need the fitness scaling
necessary with other methods, to prevent high fitness strings from dominating the
population, which may result in a premature convergence into a non-optimal solution.
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e Crossover

The crossover operator involves the swapping of genetic material (bit-values) between
the two parent strings. Having selected two parents, their chromosomes are recombined
by means of crossover. The crossover operator creates new members for the population
by combining different parts from two-selected parent strings. First a number of
crossover points are chosen at random. A new string is created by using alternate parts
of the parent strings. The following various crossover techniques are supported often
involving more than one cut point.

one-point crossover: here two chromosomes are joined at a single point and swap
ends.

two-point crossover: here two chromosomes are joined at two points and swap the
middle section between the two.

uniform crossover: In this the two randomly swap any number of genes that is they are
completely reshuffled.

n-point crossover: here the user specifies how many crossover points should be used
in this version. Figure 4-3 shows the various crossover methods.

One-point Crossover

©

Parent 1
Offspring

O O

oooo]
coool™

Parent 2

Two-point Crossover
© O 006
OO0 e e
Uniform Crossover
©
O

©0 000
oooooo]@
©0 00 0

ooooo]::>

Figure 4-3: Example of 1-point, 2- point and uniform Crossover.
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e Mutation

Mutation is possibly the simplest of the genetic operators. It randomly flips bits in the
string from O to 1 or from 1 to 0. The purpose of this string mutation is to improve the
algorithm by introducing new solutions not present in the population and by protecting
the algorithm against accidental, irrecoverable loss of (valuable) information due for
example, to unfortunate crossovers. An example of mutation is shown Figure 4-4.

In order to keep the algorithm from becoming a simple random search, mutation
rate has to be low, so it doesn’t interfere too much with crossover and inversion. There
are some applications however, where selection and mutation are enough for the GA to
function.

O%OOOJ
O @ O OO

Figure 4-4: Example of mutation; bit 3 has been mutated.

4.4 Mathematical Foundations of Genetic Algorithms
e The Building Block Hypothesis

Holland introduced the schema Theorem, which is often viewed as the fundamental
theoretical foundation of genetic algorithms. It can be applied to chromosomes that are
fixed length strings only.

A schema is a template describing a subset of strings with similarities at certain
string positions. If we take for example a population of binary strings, schemata for
these strings are string themselves, consisting of 0’s, 1’s and * symbols. The * (wild
card symbol) matches either a 0 or a 1. A schema matches a particular string if at every
position a 1 in the string and a 0 matches a 0 in the string. If we take strings of length 8
(binary representation of the numbers 0 to 255) the schema 1*0001*1 matches four
strings: 10000100, 10000110, 11000100 and 11000110.

Let us take a look at the number of schemata involved in a population of n strings
of length [. If each string is built from k symbols (k=2 for binary strings), these are
(k+1)l different schemata (because each of the 1 positions can be one of k symbols, or

an asterisk). So, for our example, there are 256 (28) different strings, but there are
(2+1)8= 6561 different schemata. Also a string of length 8 belongs to 28 different
schemata because each position may take on its actual value or a wild card symbol. For
string of length !, this number is 2'. So, for a population of size n, the population

contains somewhere between 2' and n.2' schemata. So even moderately sized
populations contain a lot of information about important similarities. By using
schemata in the genetic search, the amount of information can be much larger than by
looking at the strings only. Each schema can be assigned a fitness. This is the average
fitness of the members in the population corresponding to that particular schema. We
will denote this average fitness with fs. The defining length of a schema, is the distance

between the first and the last fixed bits in the schema (non-wild card). Schemata
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provide a means for combining attributes, and for analysing their contribution to
performance through the population. The order of a schema is the number of non-wild
symbols it contains. Looking at the defining length, we note that crossover has a
tendency to cut schema of long defining length when the crossover points are chosen
uniformly at random: for example, the schema 1*****10 has a higher chance of being
cut than *****10% (6/7 or 86% vs. 1/7 or 14%)

A lower bound on the crossover survival probability ps for a schema with

defining length delta can be expressed with the following formula (for crossover with
one crossover point ):

5
p, 2 1-73 . (4.1)

where pc is the probability with which crossover will occur, delta is the defining length

of the schema, and [ is the length of the schema. The formula contains an inequality
sign instead of equality sign because even when the schema is cut it can survive if the
crossover results in a string that still contains the schema. New strings with the schema
can also come into existence.

We can also calculate the effect of selection on the number of schemata. When
we have m(t) examples of a particular schema at time t in our population, we can
expect

f
m(t+1) = m{)n— (4.2)

n

D

i
i=1

examples at time t+1 where n is the population size , fs the average fitness of the strings

representing the schema and Zfi the total fitness of the population. If we rewrite the
i=1

formula using
1 n

favg = ; Zfi (43)
i=1

for the average fitness of the whole population, it becomes:

m(t+1) = m() ffs (4.4)

avg

Or: a particular schema grows as the ratio of the average fitness of the schema and the
average fitness of the population. So schemata with fitness values above the average
population fitness have a higher chance of being reproduced and receive an increasing
(exponential) number of samples in the new population. This is carried out for each
schema in the population in parallel.
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Because mutation has only a very small effect on the number of schemata mutation rate
is usually chosen very low), the combine effect of selection and crossover can be
expressed with the following formula, which is the result of combining (4.1) and (4.2):

£, 5
m(t+1) = m(t) f—lil—pc Zl_] (4.5)

avg

So a particular schema grows or decays depending upon a multiplication factor.
With both selection and crossover the factor depends upon whether the schema’s fitness
is above or below the population’s average fitness and on the length of the schema.
Especially, schemata with high fitness and short defining length are propagated
exponentially throughout the population. Those short schemata are called building
blocks. Crossover directs the genetic search towards finding building blocks (or partial
solutions) and also combines them into better overall solutions. Inversion also
facilitates the formation of building blocks. Complex problems often consist of multiple
parameters which are coded by different genes on the chromosome. With these multiple
parameter problems however, complex relations may exist between different
parameters. When defining the coding of such a problem, related genes should be
positioned close together. When not much is known about the relations between the
parameters, inversion can be used as an automatic reordering operator.

o Implicit parallelism

The exponential propagation of high fit, small size schemata goes on in parallel,
without any more special bookkeeping or memory than a population of n strings.
Goldberg presents a more precise count of how many schemata are processed usefully
in each generation.

o Epistasis

Epistasis is the interaction between different genes in a chromosome. It is the extent to
which the contribution of fitness of one gene depends on the values of other genes. The
degree of interaction will be different for each gene in a chromosome. A small change
to one gene makes a change in resultant chromosome fitness. The resultant change may
vary according to the values of other genes.

4.5 Diversity and Convergence

Although convergence to the optimal solution is often used as a measure for an
algorithms performance, this criterion has been rejected by Holland (Holland, 1995)
according to the argument that even enumerative search converges under this criterion.
Rather, the best solution must be found in a reasonable time. Convergence in the
genetic algorithms typically refers to the situation that the population becomes
homogeneous, containing M copies of the same individual. Further search points can
not be reached through crossover, since crossing over identical string results in
identical offspring , and the very low mutation rate is the only chance of introducing
new genetic material. One hopes that the algorithm has converged upon the optimal
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solution; if not, the only recourse is to start the algorithm with a different initial
population.

Under this definition of convergence, the diversity of genetic structures in the
population is expected to decrease as evolution progresses. Due to the geometric rate at
which highly fit individuals propagate into future generations, the GA can converge too
quickly without having explored enough of the search space to encounter a global or
near global optimum. This phenomenon is called premature convergence. In the
presence of bit mutation, premature convergence is stagnation in the search for an
undetermined amount of time.

The way to stop the GA from converging prematurely is to promote diversity in
the population. There are several ways to achieve this:

= Use a high mutation rate.

» Disallow genetic duplicates in the population, where two individuals are genotypic
duplicates if they are exactly the same. Note the distinction from phenotypic
duplicates, which are individuals with different strings resulting in the same
behaviour.

» Use selection pressure.

= Use a population model that promotes diversity.

A gene is said to have converged when 95% of the population share the same value.
The population is said to have converged when all of the genes have converged. Once
the population has converged, the ability of the GA to continue to search for better
solutions is effectively eliminated. A problem with GAs is that the genes from a few
comparatively highly fit individuals may rapidly come to dominate the population,
causing it to converge on a local maxima.

4.6 Comparing GA with Back-Propagation

Back-propagation and genetic algorithms are two techniques for optimization and
learning, each with its own strengths and weaknesses. The back-propagation learning
algorithm is a well-known training method for feedforward neural networks. Back-
propagation is a method for calculating the gradient of the error with respect to the
weights for a given input by propagating error backward through the network. It
generally uses a least-squares optimality criterion. It can find a good set of weights and
biases in a reasonable amount of time and sensitive to parameters such as learning rate
and momentum. Successful though it is, the algorithm does have some shortcomings.
Since it is gradient descent method it has as a tendency to get stuck in local minima of
the error surface and thus not find the global minima. Also, it can not handle
discontinuous node transfer functions because to compute a gradient requires
differentiability.

The basic difference between back-propagation and GA based training
mechanisms is that, unlike BP, GA does not make use of local knowledge of the
parameter space. Genetic algorithms are good at exploring a large and complex space to
find values close to the global optimum. Back-propagation works well on simple
training problems. However, as the complexity increases the performance of back-
propagation falls off rapidly. The problem of GAs is that they are inherently slow and
takes a long time to converge. A hybrid of genetic and back-propagation algorithms
which should always find the correct global minima without getting stuck at local
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minima. A hybrid training algorithm making use of both GA and BP methods may thus
be very useful.

Genetic algorithms should not have the same problem with scaling as back-
propagation because they generally improve the current best candidate monotonically.
They do this by keeping the current best individual as part of their population while
they search for better candidates. Secondly, they have the ability to escape local
minima. The mutation and crossover operators can step from a valley across a hill to
an even lower valley in the energy function landscape. Control parameters required for
standard GA are shown in Table 4-2.

Table 4-2: Control parameters required for standard GA

population size

max. number of generations
probability of crossover
probability of mutation
probability of reproduction
selection scheme

fitness scaling scheme
elitist strategy

4.7 Conclusion

This chapter has presented a brief introduction to genetic algorithms and their
mathematical foundations. The fitness function has been introduced and the effects of
genetic operators have been considered. Detailed discussion of the four most common
operators: selection, crossover, inversion and mutation has been entered into.
Description of the mathematical foundations of genetic algorithms has included the
building block hypothesis, implicit parallelism and epistasis. Diversity and convergence
issues have been considered. Comparison with back-propagation is also presented. A
hybrid learning methodology that integrates genetic algorithms and neural networks is
presented in chapter 7.
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Chapter 5

The Fuzzy set Theory

5.1 Introduction

Fuzzy sets were first introduced by Zadeh in 1965 for handling uncertain and imprecise
knowledge in real world applications. It provides effective tools to handle and
manipulate imprecise and noisy data. Fuzzy sets can be considered as a generalisation
of classical set theory. A classical set (crisp) is normally defined as a collection of
elements or objects which can be finite, countable, or overcountable. Each single
element can either belongs to or does not belong to the set. Such a classical set can be
described in different ways: one can either enumerate the elements that belong to the set
describe the set analytically, for instance, by stating conditions for membership or
define the member elements by using the characteristic function, in which 1 indicates
membership and 0 indicates non-membership.

1 if and onlyif xe A
Ka (x)= . .
0 if and onlyif x ¢ A

The boundary of the set A is rigid and sharp. On the other hand a fuzzy set is a
collection of distinct elements with a varying degree of relevance. For a fuzzy set, the
characteristic function allows various degrees of membership for elements of a given
set. In fuzzy set, the transition from membership to non-membership function is gradual
rather than abrupt. The degree of membership usually denoted by the Greek letter .
The utility of fuzzy sets lies in their ability to model the uncertain or ambiguous data so
often encountered in real life.

5.2 Fuzzy Sets

A fuzzy set is completely characterized by an ordered set of pairs, the first element of
which denotes the element and the second the degree of membership.

A = {xp,x),xeX} G.1)

W, (x) is called the membership function or grade of membership function. (Sometime
it is also referred as the degree of compatibility or degree of truth) of x in A which maps
X to the membership space M. When M contains only the two points 0 and 1, A is non-
fuzzy and p, (x)is identical to the characteristic function of a non-fuzzy-set. The set
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{0,1} is called a valuation set. If the valuation set is allowed to be the real interval [0,1],
A is called a fuzzy set. The closer the value of p, (x) is to 1, the more x belongs to A.

Clearly, A is a subset of X that has no sharp boundary. The range of the membership
function is a subset of the non-negative real numbers whose supremum is finite.
Elements with a zero degree of membership are not normally not listed. A fuzzy set is
solely represented by stating its membership function. Membership functions for a crisp
set and fuzzy set are shown Figure 5-1.

V
%

Figure 5-1: Membership functions for a crisp set and fuzzy set.

If X is a finite set {xl,xz,...xn}a fuzzy set on X is expressed as

A=——u”‘(x‘)+ +—u"(x")
xl xn
I B, (X;)
g’—xi (5.2)
when x is not finite
_rm,(x)
i (5:3)
5.3 Fuzzy Set Operations
e Union and Intersection of Fuzzy sets
VxeX, Pas(®) = max(u,(x), Ly(x) (5.4)

VxeX, UorgX)
VxeX, p,(x)

min(l , (X), Ky (X)
1-p, (%)

Union and intersection of fuzzy sets A and B, and complement of fuzzy set A are
shown in Figure 5-2.
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A B
~
-
0 2/ 4 6 X
Wacmr(x)
~
0 2 4 6 X
uAnR(x)
=
0 2 4 6 x
U-a(x)

Figure 5-2: Union and intersection of fuzzy sets A and B,
and complement of fuzzy set A.

Two fuzzy sets A and B are said to be equal (A=B)

V x € X,pa(x) = pa(x) (5.5)
e Cardinality

For a finite fuzzy set A the cardinality |A| is defined as

A= g,(m(x) (5.6)
o The support of fuzzy set
The support of fuzzy set A is the ordinary subset of X
Supp A= {V x € X, pa(x) > pp(x)} (5.7)

The elements of x such that p,(x) = 0.5 are the crossover points of A.
The height of A is

hgt (A)= sup K, (X) (5.8)

xeX
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That is, the least upper bound of W, (x). A is said to be normalized if and only if
dxe X
n,(x) =1 (5.9

—  hgt(A) =1

max(p, (x), B (x))
VxeX, Panp® = min(,(x), ny(x))

VxeX, Hop(X)

where L, z(X)and U, ., (x) are membership functions of AUB and ANB respectively.

e Inclusion of fuzzy set

A is said to be included in B(AcB) if and only if

V x € X, pa(x) < up(x) (5.10)
e o-level set

The-crisp set of elements that belongs to the fuzzy set A at least to the degree « is called
o-level set.

Ac={xeX | paza) (5.11)
A={xeX | pa®) >0} (5.12)
is called strong o-level set or o-cut.

e Normal Fuzzy set

A fuzzy set with a membership function that has a grade unity or 1 is called normal
fuzzy set.

e Convexity

Convexity conditions are defined with reference to the membership function rather than
the support of a fuzzy set. A fuzzy set is convex if

i, [Ax, + (1= )x, = min(p, (x,). 0, (X)) %%, €X A elo]] (5.13)

Alternatively a fuzzy set is convex if all o-level sets are convex.
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5.4 Properties of Fuzzy Sets
(1) The algebraic sum C = A + B is defined as

C = & ups(®) |xe X}
where

Was (X)) =, () +p5 () —p, (OB ()}

(5.14)

(2) The bounded sum C = A@B is defined as

C = {x, Waos(X) |x € X}
where

Maes(®) = min{l, p, () +py (0}

(5.15)

(3) The bounded difference C = A-B is defined as

C = {x, L, p(x) |x e X}
where

L (x) = max{0, p, ) +p, (0-1}

(5.16)

(4) The algebraic product of fuzzy sets C = A.B is defined as

C = {x, Ry ()R (¥) [x € X} (5.17)
5.5 Fuzzy Numbers
A convex and normalized fuzzy set for which each oa-level set is a closed interval is
called a fuzzy number. The m-function and the S-function are the two commonly known
examples of fuzzy numbers. The n-function and S-function are shown in Figure 5-3 and

Figure 5-4 respectively.

The nt-function is defined as follows

) S(X;B_a’B) if X*B
m(x,0.B) _{I-S(x;B,BJfO‘) ifx}B}
1
ap (5.18)

50



CHAPTER 5. THE FUZZY SET THEORY

0.5

o-f

a o+p

Figure 5-3: The n-function.

(b) The S-function is defined as follows

=<

S(x, 0, B)

0.5

(0 if x<o
2
g = oSt
-0 2
B 2
1—2("" } it B <y B
-0 2
|1 if x>0
a o2 B X

Figure 5-4: The S-function
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5.6 The Extension Principle

One of the most important tools of fuzzy set theory introduced by Zadeh is the
extension principle which allows the generalisation of crisp mathematical concepts to
the fuzzy set and extends point-to-point mappings to mappings for fuzzy sets. Let X be

a Cartesian product of universes, X=X, xX,X..xX_
and A,, ... A berfuzzysetsin X, x X, X ... X X respectively.
The Cartesian product of A, ... A defined by
Ap A, = minCp, (%) b, (%) (520
Xy xXax...x X, (xl""xr)
Let fbe a mapping from X=X, x X, X ... X X toauniverse Y such that
Y = f(x,,.. ..X,)

The extension principle allows us to induce from r fuzzy sets A; a fuzzy set B on Y
through f such that

Uy (y) = sup ’?il’}r(uAl(xl),...,uAr(xr)) (5.21)

y = f(X;....X,)
ue(y) =0if fi(y)=¢

where f'(y) = ¢ is the inverse image of y. pp(y) is the greatest among the membership
values of the realizations of y using r-tuples. Zadeh usually writes the above equation
as

min(pL, (%) -.-» By (X,))

J' (5.22)
XX XgX... XX, f(xl,_._xr)

B=f(A,,...A))=
where sup operation is implicit.

5.7 The Resolution Principle

Let A be a fuzzy set in the universe of discourse U. Then the membership function of A
can be expressed in terms of the characteristic functions of its o-cuts according to

H,(x)= 51(1p][oc/\uAu (X)J Vxe U,
as(0,1
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where A denotes the min operation and 1, (x)is the characteristic function of the crisp

set Ag.

x) 1 ifandonlyif xe A,
X)=
Ha, 0 otherwise

Proof: Let v denote the max operation. Since u, (x) = o0 we have,

sup [O‘Al-l,\,,(x)]'—' sup [CXAHA‘,(X)]V sup [OCAP-M(X)]

ae(01] 0e(0,ka(x)] ce(ua (x),1]
= sup [anl] v sup [ 0]
00,4 (x)] o (x),1]
= sup @
0e(0ua %) ]
=W, (X)

The Resolution Principles states that the fuzzy set A can be expressed as in terms of its
o-cuts without resorting to the membership function. Conversely, a fuzzy set A can also
be decomposed into atA, and it can be expressed as the union of these aA,, oe (0,1].
The following relational equation so called the resolution principle. Figure 3-5
illustrates the concept of decomposition of fuzzy set.

F

oL 0L A0
/ (0.4] AOC1

R Aoy

< P Aoy

Figure 5-5: Decomposition of a fuzzy set.

5.8 Fuzzy Relational Equations

e Composition of fuzzy relations

Let Q be a fuzzy relation from X to Y and let R be a fuzzy relation from Y to Z we
define R 0 Q, a fuzzy relation from X to Z by
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Moo (A,C) =suplug (A, B) ALy (B,O)] (5.23)

BCY

when A is a fuzzy subset of X the sup-min composition of R with A yielding
B=RoA (5.24)

which is a fuzzy subset of Y defined by

mg., (y) =sup[min(u, (x),1e (x,y)]} Vye Y

xeX

Mea(¥) = v B ®) v (x.y)] VyeY (5.25)

5.9 Fuzzy Rule-Based Systems and Fuzzy Inference

A fuzzy system is characterized by a set of linguistic statements based on expert
knowledge. The expert knowledge is usually in the form of “if-then” rules which are
easily implemented by fuzzy conditional statements in fuzzy logic. In fuzzy logic and
approximate reasoning, there are two important fuzzy implications inference rules
named the generalised modus ponens (GMP) and the generalised modus tollens
(GMT):

premise 1: xis A

premise 2: ifxis A ghen yis B,
consequence: yis B

premise 1: yis B

premise 2: if x is A then yis B,
consequence: X is A

where A, A’, and B, B” are fuzzy sets or relations also known as fuzzy predicates.
The fuzzy implication inference is based on the compositional rule of inference for
approximate reasoning suggested by Zadeh.

Every rule has a weight, which is a number between 0, and 1 and this is applied
to the number given by the antecedent. It involves 2 distinct parts. First evaluating the
antecedent, which in turn involves fuzzifying the input and applying any necessary
fuzzy operators and second applying that result to the consequent known as
implication. If the premise is true, then the conclusion is true (for 2-valued or binary
logic) In the case of fuzzy statement if the antecedent is true to some degree of
membership then the consequent is also true to that same degree

A fuzzy inference is the powerful tool as a modeling method for complex and
imprecise systems. The fuzzy inference is also a very suitable method to represent the
knowledge of human experience. However, the fuzzy inference does not possess
essentially the learning mechanisms or algorithms in it. We can acquire the knowledge
for the objective systems in the form of fuzzy inference rules form the given data.
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5.10 Aggregation of Fuzzy Rules

Most rule-based systems involve many rules. The process of obtaining the overall
consequent from the individual consequent contributed by each rule in the rule-base is
known as aggregation of rules. In determining an aggregation strategy, two simple
extreme cases exit.

(1) Conjunctive system of rules: In the case of a conjunctive system of rules that must
be jointly satisfied, the rules are connected by “and” connectives. In this case the
aggregation output y is found by the fuzzy intersection of all individual rule
consequent

y =y ¥y n.ny (5.26)
which is defined by the membership function

Wy = min(uy, (¥), By’ (3, By (s Wy'(y))  forye Y (5.27)

(2) Disjunctive system of rules: For the case of a disjunctive system of rules where the
satisfaction of at least one rule is required, the rules are connected by the “or”
connectives. In this case the aggregated output is found by the fuzzy union of all

individual rule contributions, as

1, 20,3 r
y=y uUyuUy u...UYy (5.28)
which is defined by the membership function

iy = max(iy,' (), By’ (Vs Wy’ ()se Wy'(y))  forye Y (5.29)
5.11 Graphical Techniques of Inference

The following graphical procedure (Figure 5-6) illustrates analysis of two rules and can
be easily extended and will hold for fuzzy rule-bases with any number of antecedents
and consequent. Here the symbols A;; and A, refer to the first and second fuzzy
antecedents of the first rule, respectively, and the symbol B, refers to the fuzzy
consequent of the second rule; the symbols A,; and Ay, refer to the first and second
fuzzy antecedents of the first rule respectively, and the symbol B, refers to the fuzzy
consequent of the second rule; The minimum membership value for the antecedent
propagates through to the consequent and truncates the membership function for the
consequent of the rule. This graphical inference is done for each rule. Then the
truncated membership functions for each rule are aggregated using the graphical
equivalent of equation (5.27) for conjunction rules or equation for (5.29) disjunctive
rules. In the following figure rules are disjunctive, so the aggregation operation max
results in an aggregated membership function comprised of outer envelop of the
individual truncated membership forms from each rule.
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Figure 5-6: Graphical mamdani inference method.
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e Advantages of Fuzzy set theory

1. One of the advantages of a fuzzy system based on such a fuzzy rule its
comprehensibility. That is human users can easily understand each fuzzy if-then
rule because its antecedent and consequent parts are represented by linguistic
values. Fuzzy rules are also called linguistic rules, because they represent the way in
which people usually formulate their knowledge about a given process. Fuzzy set
techniques has low information and time complexity.

2. PFuzzy set techniques seem to be good solution for some of the problems that arise
due to lexical imprecision.

3. Fuzzy set techniques are quite flexible

¢ Disadvantages of Fuzzy set theory

1. It is not always clear how to construct reasonable membership functions.
2. The choice of appropriate definitions for the operators can be problematic.

5.12 Conclusion

In this chapter, the basic concepts and notation of fuzzy sets are presented. A hybrid
leaming methodology that integrates fuzzy systems and genetic algorithms presented in
chapter 9.

The basic aims of fuzzy logic is to provide a computational framework for
knowledge representation and inference in an environment of uncertainty and
imprecision. In such environments, fuzzy logic is effective when the solutions need not
be precise and/or it is acceptable for a conclusion to have a dispositional rather than
categorical validity. The importance of fuzzy logic derives from the fact that there are
many real-world applications, which fit these conditions, especially in the realm of
knowledge-based systems for the decision-making. In short, conventional methods are
good for simpler problems, while fuzzy systems are suitable for complex problems or
applications that involve human descriptive or intuitive thinking.
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Chapter 6

Experimental Evaluation and Comparison

6.1 Introduction

An important application area of pattern recognition is medical diagnosis. Statistical
pattern classification is particularly useful in cases where data measurements of
disparate types are present, and there is no theoretical guidance on how to combine the
quantities.

The advent of integrated information management system in health care is paving
the way for efficient implementation and fielding of systems for computer-based
medical decision support. Decision making under uncertainty is often fraught with great
difficulty when the data on which the decision is based are imprecise and poorly linked
to predict outcome. Clinical diagnosis is an example of such a setting because multiple,
often unrelated, discase states can present with similar or identical historical,
symptomalogic, and clinical data.

Heart disease is common cause of death in human and difficult to diagnose
accurately. In this chapter, the use of multilayer perceptron trained with
backpropagation was applied to the diagnosis of coronary artery disease disease. Other
neural network classifiers were also tested on the data such as Modular network (MN),
Radial basis function (RBF), Reinforcement learning (RL). Several variations of these
classifers were tested on the same data. An attempt is made to formulate the neural
network training criteria.

Currently, two most popular methods are those based on Bayes’ theorem, where
the relative likelihood of different diagnoses is computed from individual items of
patient information; and expert system, which seek to mimic a clinicians reasoning
process by encapsulating the knowledge that clinicians apply in a set of rules. A
considerable number of methodologies such as discriminant analysis, logistic
regression, recursive partition analysis and so forth have been developed in attempts to
improve on the diagnostic accuracy of physicians in identifying the presence or absence
of the disease. Previous approaches to diagnostics problems have been based on tree
structured rule-based, statistical probability calculations, linear pattern matching. These
clinical decision-making methods are based on a highly structured set of rules or
statistical probability prediction that are dependent on the accuracy of input data. They
suffered from slow response time and failure under missing information. Artificial
neural networks perform non-linear statistical analysis and they can tolerate a
considerable amount of imprecise and incomplete input data.

Neural networks are a good approach for solving diagnostic problems given the
property that small variations in the input pattern such as inaccuracy, noise or any other
reason do not result in misclassification.
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6.2 ANNSs applied to Coronary artery disease

The original database contained 920 records, each consisting of 76 attributes. All
published experiments, however, use only 14 of these attributes. One of the attributes
associated with each patient, an integer x € [0...4], counts the number of major vessels
whose diameter has reduced by more than 50%. For classification, the objective is to
use the 13 independent attributes to predict the absence (x=0) or presence (1<x<4) of
the disease.

e The data set

This data set has the following interesting characteristics:

=  Some attributes are missing in some records:

=  67.5% of records have at least one missing value, and 14.7% of the input attribute
values are absent.

» It comes from four independent medical institutions. The database is often known
as the Cleveland data set, as this portion of the data has no missing attributes and
consequently has often been used on its own by the machine learning community.

» The records contain a mixture of real-valued, Boolean and enumerated values. A
description of each variable is shown in Table 6.1.

Table 6-1: Description of the 13 predictor variables from the coronary artery disease data set;
variable types are (R)eal, (E)numerated, (B)oolean.

Var. | Name Type | Range

1 age R 28-77

2 sex B 0-1

3 chest pain type E typical angina, atypical
angina, non-anginal pain,
asymptomatic

4 resting blood pressure R 80-200

5 cholestoral R 0-603

6 fasting blood sugar > 120 mg/dl B 0-1

7 resting electrocardiographic results E normal, abnormality,
hypertrophy

8 maximum heart rate achieved R 60-202

9 exercise induce angina B 0-1

10 ST depression induced by exercise | R -2.6...6.2

relative to rest

11 slope of the peak exercise ST segment | E upsloping, flat, downsloping

12 ca R 0-3

13 thal E normal, fixed defect, reversible
defect
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6.3 Knowledge Representation by Neural Networks for Diagnostics

There were two main types of MLP networks: networks designed to classify all five
possible diagnostic classes and networks designed to recognize a single diagnostic class.
The non-linear multilayer perceptron trained with backpropagation was applied with 13
inputs, 1 layer of 50 hidden units and 1 output neuron. The input clinical variables are 8
symbolic and 6 numeric. The training parameters of learning rate and momentum were
set at 0.1 and 0.9 respectively. The network was trained by dividing the available data
into a training set and a test set. The output produced by the neural network was then
compared to the documented output.

Thus in order to use the given training set with back-propagation it is essential for
it to be pre-processed so that the components of input and output vectors are represented
as activation levels. Some of the attributes are non-numeric (symbolic) and some are
numeric. These attributes can be easily normalised between 0 and 1. To deal with
symbolic attributes such as type of chest pain, it is necessary to map each value of each
attribute into a unique integer, beginning with zero and working upwards. A better way
is to map these values of the symbolic attributes into sparce binary vectors, i.e. binary
vectors that have only one bit set. Applied to the third attribute (chest pain type) from
the training set (which has 4 different values) this would give us the mapping as
follows:

typical atypical non-anginal asymptomatic

angina angina  pain

l l l d
(1 0 0 0]
0 1 0 0
0 0 1 0
|0 0 0 1

Once we have mapped specific values into such binary vectors, we can turn an
input into a satisfactory activation vector by simply normalising the numeric attribute
values and replacing the symbolic attribute values with their given binary sequence.
Having derived usable training set, we should decide what architecture we are going to
use. The number of input units and output units is fixed by the form of the input and
output vectors in the derived training set. The input vectors contain 13 components
while the output vectors contains just one. Thus the network must have 13 input units
and one output unit.

The following is a brief summary of the attributes used in the database.
#1 is the age in years;
#2 is the patient’s sex:

value O: female;
value 1: male;
#3 is the chest pain type:
value 1: typical angina;
value 2: atypical angina;
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value 3: non-anginal pain;

value 4: asymptomatic;
#4 is the resting blood pressure (in mm Hg on admission to the hospital);
#5 is the serum cholesterol in mg/dl;
#6 give an indication for fasting blood sugar:

value O: < 120 mg/dl;
value 1: > 120 mg/dl;
#7 give a classification for the resting electrocardiographic results:
value O: normal;
value 1: having ST-T wave abnormality (T wave inversions
and/or ST elevation or depression of > 0.05 mV);
value 2: showing probable or definite left ventricular

hypertrophy by Estes’ criteria;
#8 is the maximum heart rate achieved during exercising;
#9 indicates whether exercise induced angina:
value O: no;
value 1: yes;
#10 is the ST depression induced by exercise relative to rest;
#11 is the type of slope of the peak exercise ST segment:

value 1: upsloping;
value 2: flat;
value 3: downsloping;

#12 is the number of major vessels (0-3) colored by fluoroscopy;
#13 thal; not further explained:

value 3: normal;
value 6: fixed defect;
value 7: reversible defect; _
#14 is the predicted attribute: diagnosis of heart disease (angiographic disease status):
value O: no heart disease;

values 1, 2, 3, and 4: heart disease.

In a few instances an attribute value was missing. They are distinguished with the value
-1.

The Back-propagation algorithm was used to a train feed forward MLP type
neural networks. After presenting one training example to the 13 network inputs (this is
the feedforward part), the error at the output is calculated by subtracting the desired
output from the actual network output and taking the square of the difference. The
errors for all examples in the training set are then added together and their sum is back
propagated through the network, adjusting the weights of the connections between the
processing elements of the network. Using a gradient descent learning algorithm the
network error should decrease towards a minimum. The processing elements pass the
sum of their inputs through a sigmoid function, limiting the neuron output between zero
and one.

Several settings were used for the training set, for the learning period, and for the
various network architectures in this study. To see how much influence the amount of
processing elements in the hidden layer would have, experiments with both 20 and 50
units in the hidden layer were conducted.

Also the number of output units was varied; networks with just one, with two, and
with five outputs were used. The networks with five outputs were trained with data
containing five target categories: one category for “no heart disease” and four others for
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different grades of “heart disease presence”. The networks with two outputs were
trained with data containing only two categories: “absence” versus “presence”. And the
networks with just one output were trained in two ways: using five categories and two
categories. In the first case the five categories {0,1,2,3,4} were scaled to values between
zero and one {0.00, 0.25, 0.50, 0.75, 1.00}, as the network output is limited between
those two values. In the second case the network output should be low for one category
(“absence”) and high for the other (“presence”).

The networks were trained with three different training sets. First, the full
database of 303 examples was used as training set for the learning of the networks, and
the performance of the networks was tested with the same set, as there were no other
data to measure the performance with. Second, the original database was split into a
training set part with 253 examples used for training, and a testing set part with 50
instances used for measuring the network performance. The reason for this is that one
cannot test the ability of a neural network to generalise if one uses the same set of data
for both training and testing. If a network performs as well on a different testing set as
on its training set, then the network learned to generalise well. If however a network
performs much worse on a testing set in comparison with its performance on the data set
with which it was trained, then the network did not learn to generalise well enough. This
happens for example if the number of hidden neurons is too large and the learning
period was too long. Third, a training set of 202 examples for the learning of the
networks, and a testing set of 101 examples to measure their performances were used.
Both sets together form the full original data set again because a testing set that contains
only 50 examples is quite small. Because it is not always very clear when the learning
of a network should be stopped, three learning periods of 5000 epochs each per network
were used. After each learning period, the network was tested.

Even if the output error during learning of a network is still decreasing, this does
not necessarily mean that the performance of that network is still improving. The
network output error might be decreasing, but the number of misclassifications could be
increasing. This depends on the way the error is calculated and on the definition of
misclassification that is used in that particular case. Further, the number of
misclassifications might be decreasing when testing with the same data set as which the
network was trained with, whilst at the same time the number of misclassifications
could be increasing when using a different data set for testing the network performance.

¢ Output Representation

A total of 72 experiments were performed. Each network was used to perform three
experiments: The number of neural networks used to make a diagnosis on possible heart
disease patients is 24. Each network in three experiments per network were examined:
first after 5,000 epochs of learning, then after 10,000 epochs, and finally after a total of
15,000 epochs. Twelve networks had 20 processing elements in their single hidden
layers, and the other twelve had 50 hidden neurons each. Six networks had a single
output each and were trained for classifying in five classes: {0.00, 0.25, 0.50, 0.75, and
1.00}. Six other networks also had a single input, but they were trained for classifying
in only two classes: {0.0, 1.0}. Six networks had two output units each, and they had to
learn to classify in two classes also: {10, 01}. Finally, there were six networks with five
outputs each, learning to classify in five classes again: {10000, 01000, 00100, 00010,
and 00001}. For every type of network (different number of hidden units, different
number of output units, different number of classes to learn) three neural networks,
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were trained with different sizes of training sets and testing sets: 303+0, 253450, and
202+101

The output class is either healthy (class 0) or with heart disease (class 1). The
target values for the output were coded as O for confirmed normal and 1 for confirmed
abnormal. The testing of the network was achieved by using the weights derived in the
training set and applying the new pattern to the network to which it has not been
exposed. The network was tested on 50 patients. All network training was done in a
supervised fashion, which means that the inputs and desired outputs were known during
the training process. Patients were selected from the Cleveland Clinic Foundation.

6.4 Simulation Resuits

The accuracy of each network was found by counting the number of misclassifications,
using only two categories: “no heart disease present” and “heart disease present”. The
number of misclassifications divided by the total number of instances in the testing data
set, subtracted from 100 per cent, gives the actual accuracy.

Misclassifications appear in two ways: a false alarm occurs when the neural
network detects a heart disease whilst the patient in question does not have a heart
disease; a missed detection occurs when the network fails to detect the patient’s heart
disease. The full results of the experiments are presented at the end of this chapter.

The best performing network from these experiments was a network with 50
processing elements in its hidden layer, and with a single output that learned with two
classes and 202 examples. After 5,000 epochs of learning a testing set of 101 examples
was tested, and it showed an accuracy of 87.1 %. The following Table 6-2 summarises
these results.

Table 6-2: Best results for different network properties and learn/test methods

Tested with — Train set (303 | Test set (50 ex.) | Testset (101
ex.) ex.)
Property | epochs | score | epochs | score | epochs | score
20 hidden units 15,000 85.8 5,000 84.0 | 5,000 84.2
50 hidden units 10,000 85.8 5,000 84.0 | 4,000 87.1
1 output, 5 classes | 15,000 84.5 5,000 84.0 5,000 84.2
1 output, 2 classes | 10,000 85.8 5,000 84.0 | 4,000 87.1
2 outputs, 2 classes | 10,000 84.8 5,000 82.0 10,000 | 83.2
5 outputs, 5 classes | 10,000 84.5 5,000 82.0 | 15,000 | 83.2

NN N B RN =

From this table it can be seen that the performance increased after 5,000 learning
epochs, if one would only look at the results on the training set. Looking at the results if
the networks are tested with a test set that is different from the training set, shows that
the real performance almost never increased after 5,000 learning epochs. Further we see
a minor indication that a larger number of hidden neurons causes slightly better results.

If we look at the number of outputs and classes, notice that the best number of
outputs seems to be just one, and that learning for two classes gives better results than
learning for five classes.

It is obvious from this study that the present practice of choosing manually the
architecture of the neural network is not only time consuming but also it does not give
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the optimum performance. Evolutionary computing techniques can provide a solution to
this problem.

6.5 The Stopping Criterion

In order to prevent overtraining, when to stop training the network is examined. If the
network is overtrained, it loses its ability to generalise; this means that the network
performance is significantly worse when new data is fed to the network, (data that was
not used for training), instead of the data in the training set.

A solution to prevent overtraining is so-called cross-validation. This means that during
training the network error is not only calculated for the training data, but also for an
independent test data set, which has the same statistical properties as the train data set.
After every n epochs the network parameters are written to a file, so that afterwards we
can retrieve the network that had a minimal error on the test data. In Figure 6-1 and 6-2
two examples can be seen. These figures shows the error graphs of two different
networks.

Both the error graph for the training data and the one for the testing data are
shown. One can easily see that, although the error is still decreasing for the training
data, the error for the testing data slowly increases after it reached its minimum. The
network configuration with the best generalising behaviour is the one that was saved
when the test error was minimal.

stop learning
here

0.4

P . training set
0.3 test set ==

error

nr. of epochs (x 500)

Figure 6-1: When to stop learning (13-50-1 network, training set 202 examples, test set 101
examples)
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Figure 6-2: When to stop learning (13-50-1 network, training set 202 examples, test set 101
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examples)

Performance of other Statistical Methods reported in the literature

Table 6-3 shows performance of other statistical methods reported in the literature.
Comparison of percent correct classification of recognition on the test set using various

Neural networks are shown in Table 6-4.

Table 6-3: Performance of other statistical methods reported in the literature.

Methods % Correct  Classification
1 |4 74.8
2 | NT Growth 77
3 | CLASSIT Clustering 78.9

Best of the neural networks from experiments:

87.1% accuracy.

Table 6-4: Comparison of percent correct classification of recognition on the test set
using various Neural networks.

Network | Learning | Transfer # of # of # of % correct
Rule function | Input | Hidden | Outputs | classification
PEs PEs PEs
1 | MLP Delta Sigmoid | 13 50 1 87.1
2 | MN Delta Sigmoid | 13 5 1 82.82
3 | RBF NormCum | Gaussian | 13 5 il 75
4 |RL DRS Sigmoid | 13 5 1 82.81
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6.7 The Dual Spiral Problem

In this problem, the points of the 2 classes are on spirals in each other. We have
experimented with 1 and 1.5 loops of the spiral round the center. One class is called “0”
and the other is called “1”. On each loop,each class has equidistant 100 points, so 200
examples with 1 loop and 300 with 1.5 loops. All the networks start with the same
random weights. Globel learning were used.

1.7

T .class 0

T "'i:i;s51

1.7

class 0.

... class 1

Figure 6-3: The dual spiral problem
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Figure 6-4: log of sum squared error with 4 different combinations of learning rate and
momentum for 1 13-54-1 network.
1 =(LR:0.01,Mom =0.9),
2 =(LR:0.02 , Mom = 0.8),
3 = (LR:0.02 , Mom = 0.8),
4 =(LR:0.1 , Mom = 0.6),
5 =(LR:0.02 , Mom = 0.8),
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Figure 6-5: log of sum squared error with 4 different combinations of learning rate and
momentum for 1 13-54-1 network.
4 = (LR:0.1,Mom = 0.6),
5= (LR:0.1 , Mom =0.5),
6 = (LR:0.1 , Mom =0.3),
7 =((R:0.1 ,Mom=0.1),
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Figure 6-6: log SSE curves of train and test set with LR = 0.1 and Mom=0.6 (except for B and
D, Mom=0.5) for the following networks: A 13-7-7-1, B: 13-5-7-1,C=13-5-4-1, D: 13-5-2-1,
E=13-3-5-1,F=13-5-1
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Figure 6-7: Mean square error graph
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Network structure Training & testing parameters % accuracy after #
epochs
1 # #hidden | #output | #classes | train test set | 5,000 10,000 15,000
inputs set
2 13 50 1 5 303 303 81.5 84.2 84.5
3 13 50 1 5 253 253 82.6 85.8 86.6
50 84.0 84.0 82.0
4 13 50 1 5 202 202 85.1 87.1 87.1
101 84.2 84.2 84.2
5 13 20 1 5 303 303 82.8 83.5 84.2
6 13 20 1 5 253 253 82.6 85.8 86.2
50 82.0 82.0 82.0
7 13 20 1 5 202 202 85.6 87.1 87.6
101 80.2 83.2 84.2
8 13 50 1 2 303 303 83.2 85.8 85.8
9 13 50 1 2 253 253 83.8 874 87.0
50 84.0 84.0 84.0
10 13 50 1 2 202 202 86.1 88.1 88.6
101 85.2 83.2 83.2
11 13 20 1 2 303 303 83.5 84.8 85.8
12 13 20 1 2 253 253 84.6 86.6 87.0
50 84.0 82.0 84.0
13 13 20 1 2 202 202 85.2 87.6 88.6
101 84.2 84.2 83.2
14 13 50 2 2 303 303 82.8 84.8 84.2
15 13 50 2 2 202 202 83.7 85.6 86.1
101 80.2 81.2 80.2
16 13 20 2 2 303 303 83.5 84.2 84.8
17 13 20 2 2 253 253 83.8 87.0 85.4
50 82.0 78.0 80.0
18 13 20 2 2 202 202 83.7 85.1 86.1
101 81.2 83.2 82.2
19 13 50 5 5 303 303 81.2 84.5 83.8
20 13 50 5 5 253 253 83.4 854 85.0
50 82.0 80.0 80.0
21 13 50 5 5 202 202 82.7 87.1 86.1
101 81.2 80.2 83.2
22 13 20 5 5 303 303 82.8 84.2 83.8
23 13 20 5 5 253 253 83.0 85.0 85.0
50 78.0 76.0 80.0
24 13 20 5 5 202 202 85.1 85.6 85.6
101 75.2 80.2 82.2
25 13 400 1 2 202 202 90.1 (after
101 82.2 50,000 epochs)
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6.8 Conclusion

In this chapter the use of artificial neural networks in a real-world diagnosis problem of
coronary artery disease was examined. Performance comparison with various neural
networks such as modular networks, radial basis function, reinforcement learning have
been made. Also, an attempt is made to formulate the neural network training criteria in
medical diagnosis. It is a usual practice to stop the training of a neural network as soon
as the training of the neural network error reaches to a specified value. It is shown that
the present approach is not reasonable and does not give accurate results. The approach
presented in this chapter can save valuable training time.

Different input and output representations are derived and performance under
each is analysed. From the results of experiments, the following conclusions can be
drawn. First, we can see that the ability to classify correctly decreases slowly with the
increase in the number of output neurons. Secondly, the number of classes for which the
network is trained is best set to two, if the performance after learning is determined
concerning only two categories as well. Thirdly, the numbers of hidden neurons in the
simulations do not seem to make much difference, regarding the results, although the
experiments with 50 hidden neurons instead of 20 gave slightly better results. Finally, if
we compare at the accuracy of the simulated neural networks with performance of other
statistical methods reported in the literature we see quite a large difference in favour of
the neural networks.
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Chapter 7

Experimental Results with Hybrid System

7.1 Introduction

This chapter presents a hybrid learning methodology that integrates genetic algorithms
(GAs) and the back-propagation algorithms (BP), which should always find the correct
global minima without getting stuck at local minima. In the hybrid learning algorithm
back-propagation can be used as the training method with genetic algorithms used to
escape from local optima. Thus making use of both genetic algorithms and back-
propagation.

The back-propagation algorithm is a well-known method of training MLP
networks. It involves a search in the weight space for the optimum weights, which
minimise the error between the target output and the actual output of the network. This
method is simple and easy to implement. However, it is dependent on several
parameters, such as the learning rate and a momentum term. It is also sensitive to local
minima. Since it is gradient descent method it has a tendency to get stuck in local
minima of the error surface. None of these single methods has an answer for all the
optimisation problems.

The genetic algorithm is incorporated in the back-propagation algorithm to find
the best set of weights for mapping the input data to the output data. The performance of
genetic algorithms does not depend on parameters such as the learning rate or
momentum. Genetic algorithm is well suited to optimise functions having a large
number of variables. Due to their ability to search the entire solution space
simultaneously, GAs offer a low possibility of getting stuck at local minima.

One of the drawbacks of genetic algorithms is that as they get closer to the
solution, the speed of convergence decreases. The genetic/back-propagation algorithm
optimises the network's weights using a genetic algorithm. However, to overcome the
slow convergence of the genetic algorithm in the final stage of the optimisation process,
a switch can be made to the back-propagation algorithm as soon as the genetic
algorithm has located a near optimal weight configuration. The final convergence to the
optimal solution can be performed using the back-propagation algorithm. This way one
can exploit the strong points of both the genetic algorithm (GA), and the back-
propagation algorithm (BP). All experiments were performed on a real world-data set of
coronary artery disease. A detailed description of data set is already given in Chapter 6.

Various versions of the this method are presented and experimental results show
that GA-BP algorithms are as fast as the back-propagation algorithm and do not get
stuck in local minima. It involves the optimisation of the connection weights of the
MLP architecture for solving a specified mapping of an input data set to the output data
set. The weight optimisation was achieved using the well-known gradient-descent
method and a genetic algorithm.
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7.2

The GA software used was a genetic algorithm C-library called ‘SUGAL’ (v1.0),
developed by A. Hunter at the University of Sunderland, England, and it was running on

Brief Description of GA software

Create initial
random population

Evaluate fitness of each member

|

Is the stopping criterion

satisfied ?

Mo
x

If re-evaluation flag is on re-
evaluate fitness of each member

.
v N

For number of candidatesdo

v

Select two candidates using
selection mechanism

3

Perform crossover on candidates
with probability p,

v

Perform mutation on candidates
with probability p,,

r

Evaluate candidates

I

Insert candidates into population
using replacement mechanism

|

Figure 7-1: Flowchart for the GA software SUGAL

IBM 686. The basic working of SUGAL is illustrated in the flowchart of Figure 7-1.
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In the course of a generation firstly pairs of individuals that serve as candidates to
be included in the next generation are chosen using the selection mechanism. In the
standard GA the number of candidates equals the population size; the candidates replace
i.e. the complete population. An exception to this is when elitism is used. With elitism
the number of candidates is equal to the population size minus one. As usual crossover
is performed on the pair of candidates with probability p.. With probability py,

mutation is performed right after this. The candidates are then evaluated and they are
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inserted back into the population using the replacement mechanism. In the standard GA
the replacement mechanism is such that the candidates always replace the individuals in
the population. This is known as unconditional replacement. SUGAL offers extra
replacement strategies identical to the ones used in a steady-state genetic algorithm
(SSGA); i.e. conditional/unconditional and ranked/unranked replacement. The standard
GA can be transformed into a SSGA by decreasing the number of candidates to only
one (or two).

The SUGAL software was changed regarding the implementation of the crossover
operator. The standard procedure was chosen: a single chromosome is subject to
mutation with probability pp,. This probabilistic implementation of the mutation

operator where every chromosome has to undergo a ‘test’ to determine whether or not it
should be mutated makes the program quite slow. A sequential version of the mutation
operator done at the end of a generation where the number of chromosomes to be
mutated is equal to integer value of the expected number of mutations would be much
faster. Various replacement mechanisms however require that the chromosomes are
evaluated before the replacement takes place (and evaluation, of course, must take place
after the mutations are made).

A second change was made concerning the selection of the pair of candidates. In
SUGAL it was possible for a single individual to be chosen both as the father and as the
mother. In such a case the offspring are simply exact copies of the parent no matter
what kind of crossover takes place. This has the effect of lowering the effective
crossover rate and in populations with one superfit individual it could easily lead to
premature convergence. The code was changed so that the father and mother
chromosome could not be one and the same.

A special option in SUGAL is re-evaluation. If the re-evaluation flag is set each
individual is re-evaluated at the start of a generation. This can serve a purpose if the
evaluation is dependent on the state of the system or its non-stationary environment or if
it the evaluation contains stochastic elements. In many static optimisation problems the
fitness of an individual is deterministically dependent on the individual and re-
evaluation will serve no purpose.

7.3 Hybridization of Genetic Algorithms with the Back-Propagation
Algorithm

Genetic algorithms have been used to search the weight space of a MLP network
without the use of any gradient information. In this technique, a complete set of weights
is coded in a binary or real number string, which has an associated fitness indicating its
effectiveness. Starting with a random population of such strings, successive generations
are constructed using genetic operators to construct new strings out of old ones such that
fit strings are more likely to survive and to participate in crossover operations.

Due to the fact that SUGAL makes it very easy to perform multiple runs and keep
a record of several statistical parameters, it was chosen to use this program for the back-
propagation runs. So just like using the genetic algorithm, each neural network is
retained by storing its weights on a chromosome. The number of runs is set as the
population size, e.g. if a neural network had to be trained by the back-propagation ten
times, each time with random initial weight values, the population size would be set to
ten. All weights of each chromosome are randomly initialised in a uniform range
between ‘-1’ and ‘+1°, as is common for the back-propagation initialisations. By
uniformly selecting the two ‘parent’-chromosomes, each chromosome would be
selected only once to produce ‘offspring’. Of course, in this case ‘offspring’ refers to a
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‘parent’ neural network, which has been trained for a number of additional epochs.
Since fitness normalisation is useless, this is set to ‘direct’ so as not to waste any time
with useless computations. SUGAL always selects two parents (as is natural for a
genetic algorithm), which are then passed to the routine performing crossover. Since of
course crossover must not be performed in this case, the crossover rate p. is set to 0,
effectively preventing the two neural networks from being mixed. The actual back-
propagation training has been programmed in a new mutation routine, called ‘BPlearn’,
which has been added to the usual mutation routines. By setting the mutation rate p,, to
1.0 per chromosome, it has been made certain that this mutation routine was then called
upon exactly once for each chromosome, before inserting them in the new population.
This replacement is done ‘uniform’ and ‘unconditional’, which assures that the newly
trained networks do not have to compete with other networks for a place in the new
pool. Of course, ‘elitism’ has been turned off, since this would not only prevent one
network from being trained for one generation, but also upset the order of the pool by
leaving one parent unselected for training and insertion in the next pool, which would
then be lost forever. Lastly, in order to reduce the overhead of the algorithm, it was
chosen that the mutation operator ‘BPlearn’ would learn the networks for fifty epochs
before inserting it in the new pool, rendering one generation in SUGAL equal to fifty
back-propagation epochs. It can be seen that this way, SUGAL performs an effective
simultaneous back-propagation learning algorithm for any number of networks and for
any number of epochs, while collecting statistical information as the minimum and
mean network error and, for instance, their standard deviation. Out of an initial random
pool of networks, all networks are picked (two at a time), which are then trained
individually and inserted into the pool of the next generation. This is repeated until the
desired number of generations (and thus epochs) has been reached. By inspecting the
pool, the exact network error of each individual network can be obtained, giving vital
information about the diversity of the final results.

=  Coding

The coding is chosen to be real-valued. A single chromosome represents all the weights
in the neural network (including the bias weights), where a single real-valued gene
corresponds to one weight-value. The order in which the weights are represented in the
chromosome string is quite ambiguous. The nodes in the network are numbered from
‘0’ starting at the bias-unit, then the input units, the hidden neurons and finally the
output neurons. Even though the input units and the bias unit are not really neurons at
all, they will be referred to as such as is common practice. The network architecture is
not restricted to a classic fully connected layer-model. However, the hidden neurons are
numbered in such a way that neurons with a higher index are ‘higher’ up in the
hierarchy of the network; i.e. neurons can only have outgoing connections to neurons
with a higher index. The indices of the weights represent the order in which they appear
in the chromosome. Incoming weights to a certain neuron are grouped together in the
chromosome representation. Example of the ordering of the weights in a chromosome is
shown in Figure 7-2.
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Qutput

Figure 7-2: Example of the ordering of the weights in a chromosome.
7.4 Neural Network Specific Crossover Operator

In genetic algorithms, the crossover operator plays an important role. It is a very critical
operator, without which there simply would not be any ‘real’ genetic algorithms since it
is the only possible form of exchange of information between the chromosomes of a
population. In general, two very important factors have to be recognised when dealing
with crossover: NN-specific crossover operation is shown in Figure 7-3.

Parent network A: Child network A"

Figure 7-3: NN-specific crossover operation.

»  Constructive Crossover Operator

Crossover is needed to combine partial information from several chromosomes into one
superior solution. It combines lower order building blocks into new, higher order
building blocks. This effect of crossover is essential to the functioning of the algorithm,
and looks at crossover as a constructive operator.
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= Disruptive Crossover Operator

Crossover can also very easily disrupt the building blocks. This way, crossover is seen
as a disruptive operator, whose effect must be limited as much as possible. These two
‘functions’ of crossover form a certain contradiction, often resulting in a trade-off. This
can for instance be done by either choosing multi-point (or uniform) crossover with a
low crossover rate, or 2-point crossover with a higher crossover rate.

In genetic algorithms, a further difficulty arises, as the weights are very much
dependant on each other. In other words, setting one weight to a better value could have
no effect whatsoever unless the other weights of that particular neuron are also set to
their appropriate values and making it possible for the neuron to make an effective
separation of its input space (in other words: forming a useful hyperplane). Furthermore,
this important relation between weights belonging to the same neuron also makes it very
unlikely that selecting some weights from one chromosome and the other weights from
another chromosome would result in successful neuron operation. This ‘intra-crossing’
of neurons has already been limited by the manner in which the cell-weights are coded
onto the chromosomes, locating all weights of a neuron next to each other. However, by
eliminating all possibilities of selecting a crossover point within such a weight-group,
this could be taken a step further: it would be absolutely eliminated.

The NN-specific crossover operator determines the potential crossover points (as
shown in Figure 7-4), which lie in between the weight groups of the various neuron
cells. Then, it selects which of these points will actually be used for crossover. With this
neural network specific crossover operator, previously evolved neurons can no longer
be disrupted by crossover, whereas the various neurons from the available chromosomes
can still be freely combined by this same operator. A uniform NN-specific crossover
operator would select more points for this than for instance a 2-point NN-specific
crossover operator. When the crossover operation is actually performed, two child
chromosomes will be generated representing networks A’ and B’, which consist of
neuron cells taken as a whole from the parental networks.

This new crossover operator has the disadvantage that with the potential crossover
points within a neuron’s weight group, also the possibility of forming new useful
hyperplanes by crossover has been eliminated. However, it is expected that the
advantages outweigh this disadvantage, experiments indicate that the dominant search
method is genetic hill climbing, where the mutation operator is used to optimise the
various weights or hyperplanes. This way, the mutation and crossover operators would
gracefully work together, with mutation optimising the various neurons and crossover
subsequently recombining them into better networks.
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Figure 7-4: Example of the difference in potential crossover point

The neural network used to classify this data was a fully connected feed-forward neural
network, with thirteen input neurons, ten hidden neurons and one output neuron.
Including the standard neuron thresholds, the genetic algorithm requires chromosomes
with 151 genes.

7.5 Simulation Results

For this reasonably complex problem, various settings for the learning rate 1 and the
momentum rate p are used: M =0.5 with no momentum (U = 0), n=0.5 with
momentum W =0.5,1=0.1 with p = 0.0, and finally n = 0.1 with L =0.5. For each of
these settings 100 runs are performed, during which the networks are trained for 12,500
epochs.

It appears that the best results by far were obtained using the fourth setting (n =
0.1, u = 0.5): an average network error of 0.44 and 74% of the runs reaching a perfect
classification of the whole training set. The worst run from the batch using this
particular setting got stuck at an error of 2.51.

The first setting (n = 0.5, p = 0) produced only one perfect classification out of
the 100 runs performed. Addition of a momentum parameter (L = 5) gave no
improvement. The results for the other settings show that the learning rate n is set too
high in the first two cases, making it almost impossible for the back-propagation
algorithm to find solutions with low network errors. When we compare these results
with those obtained by the genetic algorithm, the conclusion must be drawn that the
back-propagation definitely outperforms the genetic algorithm again if the right settings
for the learning rate m and momentum rate W are used. The best solution found by the
genetic algorithm still had a network error of 0.891 (NN-specific uniform crossover),
after a comparable amount of training.

Again, 12500 training epochs are calculated for each of the performed 100 runs.
Surprisingly, it seemed to be extremely difficult for the back-propagation algorithm to
obtain a 100% perfect classification rate, since only one run has succeeded in doing so
(this run can be seen as ‘best’ run in the graph). The average network error reached a
value of 4.0 after about 2000 training epochs, after which it very gradually descends to a
final value of 3.75 after the full 12500 steps. Figure 7-9 shows how the training errors of
the various networks are spread out. It appears that 69% of the networks has a final
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error between 2 and 5, and 18 networks perform even worse than that, with errors
ranging up to 10.4.

It seems that this real-life medical problem is very hard for the back-propagation
to optimise, given the fact that only one run out of a hundred could find a perfect
solution, whereas the others seemed to have got stuck in a local minimum. This points
towards a very complex error surface with a very high probability of the algorithm
getting stuck before reaching a more global optimum.

When comparing these results with those obtained by the genetic algorithms, it
can be concluded that, for this problem, the genetic version outperforms the back-
propagation. The NN-specific crossover types got an average final network error of 2.91
and 3.13 (p. = 1.0), the back-propagation obtained an average of 3.75 after a roughly
comparable amount of calculations. Of course, these results were obtained with the
back-propagation algorithms without momentum, but it still shows that genetic
algorithms can actually get good and competitive results. The genetic algorithms do
take a lot of time, about 250 to 300 generations, before they get near a network error of
around 4, compared to 2000 training epochs for the BP-algorithm, which is comparable
to only 80 GA-generations. But the probability of getting stuck in a local optimum is
much smaller than for the back-propagation, since the mutation operator provides a
powerful tool to escape these traps again. This could lead to a situation as is observed
here, where back-propagation initially takes a strong lead, but further down the track
often finds itself stuck, whereas the genetic algorithm can continue in slowly but
steadily decreasing the network error. A necessity for this typical situation is a certain
type of error surface, which makes it hard for the back-propagation to find a solution.

In order to see if the use of a momentum parameter in the back-propagation
routine would give an improvement, ten runs were performed, again for 12500 epochs,
with the learning rate € set to 0.1 and the momentum L set to 0.9. Indeed, this resulted in
a better performance, with two out of ten runs reaching a perfect solution, with a final
network error of around 0.0015. Three runs ended with an error between 1 and 2,
another three with an error between 2 and 3, and finally two runs ended with an error
between 3 and 4. The total average training error was 1.71, which is undoubtedly better
than both the back-propagation without momentum and the genetic algorithms. An
average training error of 3.0 was already reached after as little as 200 epochs, and the
best run reached a perfect classification rate within 150 training steps. Again, this shows
that the back-propagation can be extremely fast, if it is lucky enough to begin with a
good initial starting point.

Again, every setting is run 25 times, each time with different random
initialisations. The network errors of the best chromosome of each generation are
accumulated, averaged and plotted. The results obtained by the various crossover
operators after the S00 generations are presented in Table 7-1.

Table 7-1: Simulation results for the CAD problem after 500 generations.

Average of the runs Geometric Mean of the runs
Crossover type p.=0.6 P.=0.8 p.=10 p.=0.6 p.=0.38 p.=1.0
1-point 3.616 3.683 3.279 3.501 3.581 3.133
2-point 4.116 3.750 3.404 4.028 3.582 3.213
Uniform 4.077 3.812 3.492 3.950 3.613 3.307
NN-2-point 3.555 3.279 2.907 3.345 3.089 2.702
NN-uniform 3.276 3.205 3.129 3.147 2.950 2.902
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Again, the resulting network errors indicate that many of the runs did not reach a perfect
classification of all the input vectors. In contrast to the previous problem, this time the
geometric mean values are also not reduced below values of around three to four. And
although the graphs indicate that the genetic algorithms keep on reducing the network
error, such perfect solutions are not likely to be found within many generations to come.
In fact, the lowest network errors found by each crossover type in all its runs are 1.001
for 1-point crossover, 0.962 for 2-point crossover, 1.000 for uniform crossover, 0.891
for NN-specific uniform crossover and finally 0.998 for NN-specific 2-point crossover.
These values are almost equal, but almost certainly still not low enough to guarantee a
100 % classification. It can be estimated with reasonable accuracy that, after 500
generations, on average 3 training vectors is still misclassified, which equals a correct
classification rate of 97.5 %.

The simulation results improve as the crossover rate increases from 0.6 to 1.0.
Strangely enough, 1-point crossover performs best for the classic versions. For the NN-
specific types, the uniform version performs better for p.=0.6, equal results are
obtained for p. = 0.8 and the 2-point version performs better for the highest crossover
rate. This means that for the first time uniform NN-specific crossover does not always
give the best results. Again, it is clear that the NN-specific operators outperform the
normal crossover operators, although the difference is not very great.
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Figure 7-5: 1-point crossover averaged over 25 epochs
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Figure 7-6: 2-point crossover averaged over 25 epochs
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Figure 7-7: Uniform crossover averaged over 25 epochs
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Figure 7-8: NN-specific 2-point crossover averaged over 25 epochs
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Figure 7-9: NN-specific uniform crossover averaged over 25 epochs
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Figure 7-10: Average of 75 epochs
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Figure 7-11: Averages over 100 epochs
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Figure 7-12: No. of networks with an error within various ranges
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7.6 Conclusion

In this chapter it is shown that genetic algorithms can be used to optimise network
weights. The main advantage of using GAs for the training of MLP is that they can find
global minima without getting stuck at local minima. The basic difference between BP
and GA based training mechanisms is that, unlike BP, GA does not make use of local
knowledge of the parameter space. Experiments indicate that the genetic version
definitely outperforms the back-propagation if the learning rate and momentum are
chosen correctly. Several experiments have been carried out on a coronary artery
disease data set with various crossover operators, 1 point, 2 point, and NN uniform, NN
2 point on this data set. The lowest network errors found by each crossover type in all
its runs are 1.001 for 1-point crossover, 0.962 for 2-point crossover, 1.000 for uniform
crossover, 0.891 for NN-specific uniform crossover and finally 0.998 for NN-specific 2-
point crossover. It has been found that, after 500 generations, on average 3 training
vectors were misclassified, which equals a correct classification rate of 97.5 %.
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Chapter 8

Experimental results using genetic programming

8.1 Introduction

In this chapter the performance of the Evolutionary Pre-Processor (EPP), a
genetic-programming-based feature classifier is examined. Genetic programming
(GP) is analogous to a genetic algorithm, except that the structures undergoing
adaptation are trees rather than strings. The trees are hierarchical representations
of computer programs or functional expressions. The internal nodes are functions
that present their output to their parent node, and take the outputs of their child
nodes as arguments. The leaf nodes are terminals which are the inputs to the
program. The output of the program is taken from the root (top) node. The set of
functions and terminals are defined by the user, and are specific to the problem.
Functions can have side effects such as altering the state of memory. In order to
apply GP to a problem, there are five things that must be specified by the user
(Koza, 1992b):
1. the set of terminals
2. the set of functions
3. the fitness measure
4. the parameters for controlling the run, and
5. the method for designating the result and the criterion for terminating a run
The Evolutionary Pre-Processor, is an automatic non-parametric method for
the extraction of non-linear features. Using genetic programming, the
Evolutionary Pre-Processor evolves networks of different non-linear functions,
which preprocess the data to improve the discriminatory performance of a
classifier. The performance of each approach for test patterns, that is the
generalisation ability of each approach is evaluated by cross validation techniques.
Simulation results are compared with the performance of various classification
methods such as k-Nearest Neighours (knn), hyperplane, linear perceptron and
Gaussian Maximum Likelihood. All experiments were performed on a real world-
data set of coronary artery disease. The results are compared to those of several
other classification methods on the same problem. Control parameters required for
standard GP are shown Table 8-1.
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Table 8-1: Control parameters required for standard GP.

population size

max. number of generations

probability of crossover

probability of mutation

probability of reproduction

probability of choosing internal points for crossover
selection scheme

fitness scaling scheme

. max. depth of trees created during a run
10. max. depth initial random trees

11. method for generating initial population
12. elitist strategy

0 |o0|N3|on 1 1 1o =

8.2 The Evolutionary Pre-Processor

The Evolutionary Pre-Processor is a new method for the automatic extraction of
non-linear features for supervised -classification. The central engine of
Evolutionary Pre-Processor is the genetic program; each individual in the
population represents a pre-processor network and a standard classification
algorithm. Based on genetic programming the Evolutionary Pre-Processor
maintains a population of individuals, each of which consists of an array of
features. The features are transformations made up of functions selected by the
user. A fitness value is assigned to each individual which quantifies its ability to
classify the data. This fitness value is based on the ability of a simple classifier to
correctly classify the data after it has been transformed to the individual's feature
space. Through the repeated application of recombination and mutation operators
to the fitter members of the population, the ability of the individuals to classify the
data gradually improves until a satisfactory point in the optimisation process is
reached, and a solution is obtained.

The Evolutionary Pre-Processor performs a search over combinations of
different, complementary components to solve a classification problem. The
Evolutionary Pre-Processor non-linearly transforms the original data
measurements to a set of features, which are then passed to the specified
classification algorithm. Each individual can therefore be considered as a pattern
classifier. The objective of evolution is to improve the classification accuracy of
the individuals on the training data.

Using genetic programming, Evolutionary Pre-Processor:

e automatically selects the number of features to extract.
uses non-linear pre-processing functions which are appropriate for the
problem.

e performs feature selection by determining which of the original measurements
are useful for classification.

e searches for the most appropriate classification algorithm from among a given
set.

e evolves the size and structure of the pre-processing network.
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Some of the main differences from standard genetic programming are:

strong typing: the mutation and random creation of individuals is constrained
such that the output type of each terminal or function matches the argument type
of its parent. The three types used in Evolutionary Pre-Processor are real,
enumerated and Boolean.

dynamic trial allocation: the computational complexity of Evolutionary Pre-
Processor is enormous: each data element must be processed for each individual,
for each generation, for each run. To reduce computation time, only a subset of
the training samples are used to evaluate fitness. The critical number of samples
needed to determine the rank of each individual with statistical confidence is
determined through the Rational Allocation of Trials (RAT).

genetic operators: the current view in evolutionary computation is that no single
genetic operator is optimal for every problem. Therefore Evolutionary Pre-
Processor uses crossover and up to seven mutation operators which are applied
probabilistically. Each individual contains a vector of operator probabilities so
that they can be evolved along with the population. The operators function at two
levels: crossover occurs at a high level, such that the function trees are treated as
indivisible genes, whereas mutation occurs at the low level, operating on the
individual features.

local optimisation: genetic programming is notoriously bad at evolving numerical
constants. Evolutionary Pre-Processor includes a local optimisation step during
which the constants in each individual are optimised. The real-valued constants
are modified using a simplex algorithm, while enumerated constants are
manipulated using simple hill-climbing.

Experiments

The methods applied in the experiments are:

Evolutionary Pre-Processor: the following functions set was used: {+, -, X, /, =,
<, If-then-else, And, Or, Not}.

Multi-layer Perceptron (MLP): trained using the RPROP algorithm. Thirty-two
different architectures were examined and that with the lowest validation set error
was selected as the best.

Quest: this is a decision tree algorithm based on the FACT method which makes
an un-biased selection of variables when forming. The default parameter values
were used, with univariate splits and cross-validation pruning.

k-Nearest Neighbours (kNN): the training samples nearest to the incoming
sample decide its class by majority vote.

Gaussian Maximum likelihood (ML): a Gaussian distribution is assumed for

each class, and a separate mean and covariance matrix is estimated for each class,
resulting in quadratic decision boundaries.
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Linear Perceptron (GLIM): the feature space is segmented by hyper-planes
which are trained using an error-correcting.

Parallelepiped (PPD): the extents of the samples belonging to each class are
calculated in each dimension to establish a bounding box around each class. A
new sample is classified according to the parallelepiped it lies in; if it lies in more
than one or outside all the boxes, the box with the nearest centre is chosen.

Minimum-Distance-to-Means (MDTM): the new sample is assigned to the class
with the closest mean.

Evolutionary Pre-Processor and the MLP are both stochastic algorithms; the rest
are deterministic. The kNN algorithm has a hyper-parameter which was selected
by minimisation of the validation set classification error over the range k =1...50.
The most important aspect of a classifier is its ability to generalise: that is, to
accurately predict the class of a previously unseen object. In order to test
generalisation, the data were partitioned into three sets of samples: the training set,
the validation set and the test set. Both the training and validation sets were used
to derive the final classifier, while the test set was put aside to obtain a statistically
independent estimate of classification error. Some of the classification methods
have a model-selection step. The training set was used by the classifier to learn
the model parameters, while the validation set was used to select the best model.
For those methods which yield only a single model, the training and validation
sets were merged to form a single training set. A partition of 50 training, 25
validation and 25 test (460 training samples, 260 validation, 260 test) was used in
all experiments.

Table 8-2: Percentage classification errors for each of the methods used.

Classification Error EPP MLP | Quest | kNN ML | GLIM| PPD | MDTM

training 19.13 | 18.04 - 17.97 | 17.97 | 35.51 | 43.62 | 40.34
Heart_1 | validation | 18.70 | 16.09 | 22.32 - - - - -
test 21.74 | 18.70 | 19.36 | 19.13 | 19.13 | 53.04 | 47.83 | 45.65

Heart_2 training 22.39 | 20.00 - 18.12 | 18.12 | 35.07 | 49.71 | 41.16
validation | 15.65 | 13.04 | 22.65

test 23.48 | 19.13 | 23.56 | 17.83 | 17.83 | 26.96 | 5391 | 41.74

Heart_3 training 17.17 | 2435 - 16.09 | 16.09 | 35.80 | 51.30 | 41.74
validation | 16.52 | 16.09 | 23.29 - - - -
test 16.96 | 20.00 [ 26.71 | 20.87 | 20.87 | 39.13 | 52.17 | 39.57

There are several sources of variation, which were addressed in the experiments:

Partition of the data: often the number of samples available for classification is
sufficiently small that the results are significantly affected by the partitioning of
the data into the training, validation and test sets. Results are presented for three
random partitions of the data set, referred to as heart_1, heart_ 2 and heart_3.
Although permuted and partitioned randomly, the samples were selected in such a
way that the population class proportions were preserved within each data subset.
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Permutation of the data: some methods, such as the MLP, are sensitive to the
ordering of samples in the training set. This is dealt with by the multiple partitions
of the data.

Random Initial Conditions: Evolutionary Pre-Processor and the MLP both rely
on random initial conditions. Each was run 10 times on the three permutations of
the data for more reliable results. In each case, the run which yielded the
minimum validation set error was chosen as the best run to obtain the result.
Missing attributes were dealt with in the following way: for real-valued variables,
a missing value was replaced with the out-of-range value -9; for enumerated
variables, an extra enumeration value was added called ““missing".

8.3 Results

Table 8.1 shows the training, validation and test set classification errors as a
percentage of that set for each of the three permutations of the data set. The test
set error is the most important, since it gives a statistically independent estimate of
the error rate of the classifier. For the ML, GLIM, PPD and MDTM classifiers
there is no model selection mechanism and therefore no validation set error. Since
Quest uses 10-fold cross-validation, it does not have a training set error. The
Evolutionary Pre-Processor training set error can be deceptive because it is based
only on a subset of the training data which is selected according to the RAT
algorithm.

The results show that the simple classifiers kNN, GLIM, PPD and MDTM
performed poorly in all cases. The ML algorithm, also a fairly straight-forward
method, performed surprisingly well. It appears the quadratic decision boundaries
were fortuitously appropriate for this data set, since the presence of discrete data
nullifies the assumption of normally-distributed data. The accuracies of the
Evolutionary Pre-Processor, MLP, Quest and ML algorithms were all generally
good, except for the poor performance of Quest on the third permutation. The
MLP and ML classifiers had the most robust performance over the three
permutations, but no algorithm had superior performance over all permutations.

There are other criteria for comparing the classifiers, such as computation

time and understandability of results. The simpler methods ML, Perceptron, PPD
and MDTM took on the order of seconds to complete their task. Quest is about
one order of magnitude slower, but still quite fast. Evolutionary and the MLP
took about three orders of magnitude longer than the simpler methods.
Figure 8-1 shows the solutions generated by Evolutionary Pre-Processor and
Quest for heart_2. The other methods were not considered to yield any intuitively
interpretable information about the problem. The trees generated by Evolutionary
Pre-Processor shown in represent parse trees for functional expressions: each
internal node is a function which takes its child nodes as arguments and retums the
result to its parent.

Figure 8-2 show the decision tree obtained by Quest; when true, the
splitting conditions indicate that the left branch be traversed. Both Evolutionary
Pre-Processor and Quest yield possibly useful information about the problem
domain, and both indicate which of the attributes are useful for discrimination
purposes. Evolutionary Pre-Processor has the advantage that it is able to generate
more flexible rules than Quest, but they are generally more difficult to interpret
since the features are then passed to a classifier.
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Genetic programming usually results in spurious subtrees which do not contribute
to overall fitness but have hitch-hiked along with fitter portions of code. These
unhelpful nodes make the results more difficult to interpret, and can be
misleading. There were nevertheless some superficial similarities between the
features generated by Evolutionary Pre-Processor for the three permutations of the
data, such as the prevalence of the feature X3 = asymptomatic, and the association
between X10 and X8, X4 and X1. The trees generated by Quest seem more
consistent between the different permutations, although the tree for heart_3 is
somewhat disappointing, containing only one split. There are few similarities
between the results of Evolutionary Pre-Processor and Quest on heart_2, other
than the use of X3. It is interesting that X6 was not used by Evolutionary Pre-
Processor but was used by Quest, and that Evolutionary Pre-Processor used some
variables which were not required by Quest.
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Figure 8-1: The multi-tree representation.
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Figure 8-2: Decision Tree Generated By Quest.
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8.4 Conclusion

The Evolutionary Pre-Processor has been tested with a coronary artery disease
data problem and compared with seven other classification methods. While the
simpler half of the methods performed poorly, the Evolutionary Pre-Processor
maintained relatively good accuracy while providing interpretable results. The
Quest algorithm also provides interpretable results which seem easier to
understand than those of Evolutionary Pre-Processor, but was more sensitive to
the permutation of the data. Given the amount of missing data and the relatively
small number of records available, it is difficult to come to any conclusions about
the underlying mechanics of the problem. Resampling methods such as the
bootstrap could provide more reliable models of the data. In parting, the reader
should note that any comparison between algorithms is only relevant for the data
used, and should not be generalised to other problem domains.
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Chapter 9

Experimental Results of the Fuzzy-Classifier System

9.1 Introduction

In this chapter the fuzzy classifier systems that can automatically generate fuzzy rules
from training patterns is used for pattern classification problems. Classifiers in this
approach are fuzzy if-then rules. It can also find a compact rule set by attaching large
fitness values to such fuzzy rules that can correctly classify many training patterns. That
is only those fuzzy if then rules with large fitness values are selected to construct a
compact fuzzy system with high classification performance.

Here each fuzzy if-then rule was treated as an individual. The fitness value of
each fuzzy if-then was determined by the numbers of correctly and wrongly classified
training patterns by that rule. It is shown that fuzzy rules outperformed ordinary fuzzy
rules. The classification power of on real world data of coronary artery disease is shown
by computer simulation.

Recently several Neural-Network-Based and Genetic-Algorithms-Based
classifiers have been proposed for generating fuzzy if-then rule for pattern classification
problems. Uebele (1995) have proposed a Neural-Network-Based fuzzy classifier. In
this classifier separation hyperplanes for classes are extracted from a trained neural
network. Then for each class, shifting these hyperplanes in parallel using the training
data set for the classes approximates convex existence regions in the input space. These
studies not only claim that these classifiers are superior then NN classifier but also
timesaving. For example, Shigeo and Lan (1995) extracted fuzzy if then rules directly
from numerical data. In their method rules were extracted from numerical data by
recursively resolving overlaps between classes. Shigeo, (1997) have then proposed a
fuzzy classifier with ellipsoidal regions, which has a learning capability. In this
classifier each class is divided into several clusters. Then for each cluster a fuzzy rule
with an ellipsoidal region around a cluster center is defined. Then the center and the
covariance matrix of the ellipsoidal region for the cluster are calculated. Ishibuchi et al.,
(1995) proposed a generation method of fuzzy classification rules. This method is based
on (1) fuzzy partition of a pattern space into fuzzy subspaces and (2) Identification of
fuzzy rule for each fuzzy subspace. Fuzzy logic has gained increased attention to solve
real problems, in recent years. It provides decision-making capabilities in the presence
of uncertainty and imprecision. Watanabke et al., (1994) used fuzzy discrimination
analysis for diagnosis of valvular heart disease. Cios et al., (1991) used an image
processing technique based on fuzzy set theory for diagnosing coronary artery stenosis.
They have reported a rate of true positive diagnosis of 81% while maintaining a rate of
false positive diagnosis at the low level of 10%. Their results of the experiments are
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very promising. In this classifier each fuzzy if-then rule is treated as an individual that
is as a classifier and each population consists of a certain number of fuzzy if-then rules.
In this chapter method a genetic-algorithm-based fuzzy method is used which
provides robust performance of fuzzy rules. In this method each fuzzy if-then rule is
coded as an individual which is a classifier. The fitness value of each fuzzy if-then rule
was determined by the numbers of correctly and incorrectly classified training patterns
by that rule. This method consists of the following steps. Fuzzy partition of a pattern
space into fuzzy subspaces and identification of fuzzy rule for each fuzzy subspace.

9.2 Outline of the Fuzzy Classifier System

/*Fuzzy Classifier System */

Generate an initial population of fuzzy if-then Rules
Learning of fuzzy if-then Rules in the Current population
Determine fitness value of each fuzzy if then rule in the current population

Generate new fuzzy if then rule by genetic operations for the next population

e W N

Termination test. If the algorithm is not terminated steps 2 to 5 are repeated

> |x-af
p: = max 4§l - P ,0r,1=1,2,...,P

1

B

where, 9.1)
P _ 1-1 .
Qo P 1’ i=1.2,..,P

p _ _1
pr = P -1

In this procedure the pattern space is partitioned into P fuzzy subsets and
determination of fuzzy partition L, depends on the desirable rate of correctly classified
patterns. The performance of fuzzy classification system based on fuzzy if then rules
entirely depend on the choice of a fuzzy partition. Therefore the choice of a fuzzy
partition is very important. In this method the fuzzy rules corresponding to various
fuzzy partitions are simultaneously utilised in fuzzy inference. Each fuzzy subset is
defined by the symmetric triangle-shaped membership function. Figure 9-1 shows
generalised bell-shaped and triangular membership function. Generalised various bell-
shaped membership functions are shown in Figure 9-2.

Though we can use other types of membership functions for example, trapezoid-
shaped. The simplest is the triangular membership function, which is a collection of
three points. The following symmetric triangle-shaped membership function
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-1 U
input 2 ftrimf 3

Figure 9-2: Generalised various bell-shaped membership functions.
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In this membership function o is the center where the grade of membership function is
equal to 1 and P is the spread of membership function.

(1) Generation of fuzzy rules

Fuzzy rule based classification method consists of the two procedures: a fuzzy rule
generation procedure and a classification procedure. Suppose that @ patterns & p=1.2,
... , @ are given as the training pattern in the pattern space [0,1]* from M classes. That
is &, belongs to one of the M classes: Q; €, ..., Q. In this method the pattern space
is divided into given number of classes to generate fuzzy rules. Each axis of the pattern
space is evenly partitioned into fuzzy subsets and each pattern belongs to one of the
given classes. It is important to determine appropriate fuzzy partitions of pattern space
since the performance of the derived fuzzy rules is affected by the fuzzy partition. The
following fuzzy rule for 2-group classification problem with grade of certainty is used.
First find sum of the product of membership value of each pattern in each class, that is,

P P P
Ve, = pg t”n@lp)“iz@zp)- i Epp) t=1,2,., M 9.2)

g

Find the class &, which satisfy the following condition. If there are two or more
classes take the maximum value then no fuzzy rule will be generated.

'Y&x = Max[YE.‘I”YQZ""”Yﬁm] (9.3)

If two or more classes take the maximum value, the consequent of the rule can not
be determined uniquely.
The grade of certainty of the fuzzy rule is determined as follows.

. Voo~ (9.4)
GCy = ™
télyit
where, 9.5)
-
T pE M1

This method can be used for generating initial fuzzy if-then rules in the fuzzy
classifier system. The learning algorithm of the fuzzy classifier system can adjust the
grade of certainty. In this method, the consequent is determined as the class which has
the larger sum of membership value to the IF part of the fuzzy rule. The grade of
certainty takes a value in the interval (0,1].
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9.3 Fuzzy inference for pattern classification

Calculate fort=1, 2, ..., M,

_ P P
\Pgt = Max [uil(glp)uiz(glp)- T
L,j=1,...,P,P=23,...,L]
Find the class Qx
‘I’éx = Max[‘I’l,‘I’ e

P P P _ o
in(gnp).Gcij |.Gcij = Qf;

o ‘I’QM 1
(9.6)

where,

ot
y = 2y =t
otz QxM-1

Find class that has the maximum value. If two or more classes take the maximum
value then the classification of a pattern is rejected.

9.4 Fuzzy Classifier System

e Generation of an Initial Population

An initial population (the number of fuzzy if-then rules) of fuzzy if-then rules are
generated by the rule generation procedure. Antecedent fuzzy sets of each fuzzy if then
rule are randomly selected from the fuzzy sets.

e Learning of Fuzzy if-then rules

Each of the given training patterns is classified by the fuzzy if-then rules in the current
population and that a training pattern is classified by the fuzzy if-then rule that satisfies
the following relation.

P P P P _
u'11(8"1p)'”i2(&1p)' ”in(gnp)'GCij B -

P P P P
Max [y By )i By ) by 6 )-GC

When a training pattern is correctly classified by the fuzzy if-then rule the grade
of certainty of that rule is increased as follows.
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P_ P _ AP
GC,; =GCp; +m1-GC;) (9.8)

where 1; is a positive learning rate for increasing the grade of certainty. On the other
hand when a pattern is misclassified by the fuzzy if-then rule the grade of certainty of
that rule is decreased as follows.

P _ ~nrP _ p
Gcij = Gcij n2'GCij (9.9)
where 1, is a positive learning rate for decreasing the grade of certainty. This
learning method is iterated in each generation.
¢ Fitness Evaluation
The fitness value of each fuzzy if-then rule is defined by
FR;)) = Wy NCPR) - Wnvp(R) (9.10)
where Ncp(RJ) is the number of correctly classified training patterns by rule Rj,
Nmp(Rj) is the number of misclassified training patterns by Rj, and Wycpt Wiwp are
positive weights. The fitness value of each rule is calculated in each generation.
e Selection
A pair of fuzzy if-then rules is selected from the current population to generate new
fuzzy if-then rules for the next population. Each fuzzy if-then rule in the current
populations is selected by the following selection probability.
fitness(R ;) — fitness ;, S)
PRR;) =
2 {ﬁtness(Rk) — fitness (S)}

Ry €S

9.11)

o Crossover

From each of the selected pairs of fuzzy if-then rules, the uniform crossover for the
antecedent fuzzy sets generates two fuzzy if-then rules. The consequent class and the
grade of certainty of each of the generated fuzzy if-then rules are determined by the rule
generation procedure. That is only the antecedent fuzzy sets are mated.
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e Mutation

Each antecedent fuzzy set of the generated fuzzy if-then rules by the crossover
operation is randomly replaced with a different fuzzy set with the mutation probability.
The consequent class and the grade of certainty of the mutated fuzzy if-then rule are
determined by the rule generation procedure.

e Replacement

A certain proportion of fuzzy if-then rules in the current population is replaced with
new fuzzy if-then rules generated by the crossover and mutation operations.

e Termination test

The total number of generations for terminating the execution of fuzzy classifier system
is used.

9.5 Simulation Results

The training set consists of 43 patterns of class 1 and 57 patterns of class 2. The testing
set has 47 patterns of class 1 and 53 patterns in class 2. The output class is either
healthy (class 0) or with heart disease (class 1). GA parameters are shown in Table 9-1.
Simulation results are presented in Table 9-2.

Table 9-1: GA parameters.

Population size 100
Replacement proportion 0.2
Mutation probability 0.1
Learning Rates n,=0.001 mn,=0.1
Number of iterations 100
Weights WNCP =1 Wnme = 5
Stopping Condition 100

Table 9-2: Using bell-shaped membership function

# of patterns Classification error Reject rate
# Training 100 90% 10% 0.0%
Patterns
# Testing 100 89% 11% 0.0%
Patterns
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9.6 Conclusion

In this chapter the applicability of fuzzy classifier system is demonstrated by
application to real-world pattern classification problem of Coronary Artery Disease. It is
shown that this classifier could find a set of fuzzy if then rules with higher
classification performance. Each fuzzy if-then rule was treated as an individual. The
fitness value of each fuzzy if-then was determined by the numbers of correctly and
wrongly classified training patterns by that rule.

One of the most significant advantages of these fuzzy rule based systems is their
comprehensibility that is human users can easily understand these fuzzy if then rule
because they are generally expressed as linguistic values. Fuzzy rule based
classification methods, which generate fuzzy rules from numerical data, can be viewed
as a knowledge acquisition tool for classification problems.
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Chapter 10

General Conclusions and Further Directions of
Research

10.1 Conclusions

A primary objective of this study is to assess the performance of computer programs in
diagnosing CAD on the basis of clinical data. The diagnosis of CAD is complex
decision making process. Therefore there is an obvious need for a clinical decision aid
for accurate diagnosis based on enormous amount of existing knowledge. In cases
where the difference between normal and abnormal is not clear, such as in the early
detection of disease we have to deal with ambiguous information. Medical diagnosis
involves making judgements about a patient’s illness using specialist knowledge. The
observations of symptoms includes results of tests, direct observation of the main
complaint, various signs from the patient himself, and the patient’s medical history.
The results of this study demonstrates how computer programs can assist clinicians in
the medical decision of diagnosing CAD. For a computer-based diagnostic aid to be of
value it must be statistically valid, diagnostically accurate and its use must enhance the
clinician’s diagnostic performance. As with all clinical decision aids though, the true
performance of the system can only be assessed by a formal clinical trial.

A genetic-programming-based feature classifier is proposed. Genetic-based
machine learning systems use genetic search as their primary discovery heuristic. The
most common genetic-based machine learning architecture is called classifier system
which learns syntactically simple string IF-THEN rules so called classifiers to guide
its performance in an arbitrary environment. The combined use of fuzzy logic and
genetic algorithms and neural networks and genetic algorithms is also demonstrated.

The reader is provided with an introduction to pattern recognition in and a
comprehensive overview of supervised classification.

Chapter 3 presentes an overview of the perceptron and MLP. In this chapter,
learning techniques, limitations of perceptron, mathematical theory of MLP with
practical issues are presented.

Chapter 4 focuses on the genetic algorithms and their mathematical foundations.

Chapter 5 deals with basic concepts of fuzzy set theory. Fuzzy sets are
introduced to establish a mathematical framework to deal with problems in which the
source of imprecision is the absence of sharply defined criteria for defining class
membership.

Chapter 6 presents simulation results of neural networks. In this chapter an
attempt has been made to formulate the neural network training criteria in medical
diagnosis of CAD. Also, results are compared with various neural networks such as
modular networks, radial basis function, reinforcement learning and backpropagation.
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Chapter 7 describes the experimental results of hybrid system. In this chapter, the
training of multiple layer perceptron by the GA optimization method is presented.
Also, it is compared with the backpropagation algorithm. Experimental results are
presented using 1-point crossover, 2-point crossover, uniform crossover, NN-specific
2-point crossover, and NN-specific uniform crossover.

Chapter 8 presents the experimental results of genetic programming. The
Evolutionary Pre-Processor has been applied and compared with seven other
classification methods.

Chapter 9 presents the experimental results of fuzzy classifier system combined
with genetic algorithms. Here each fuzzy if-then rule was treated as an individual. The
fitness value of each fuzzy if-then was determined by the numbers of correctly and
wrongly classified training patterns by that rule.

All experiments are carried on the diagnosis of coronary artery disease, a real-
world pattern classification problem.

The application of fuzzy sets to the field of artificial intelligence has given rise
to a considerable number of possible techniques of interest in many disciplines. Fuzzy
numbers, fuzzy algebra, fuggy logic inference, and fuzzy relations are well
establilshed and have been used extensively in various fields of industry. A survey of
methodologies into which fuzzy concepts have been incorporated includes fuzzy
regression models, statistical decision making using fuzzy probablity and fuzzy
entropy, fuzzy quantification theory, fuzzy mathematical programming, evaluation
using fuzzy measures, diagnosis using fuzzy relations, fuzzy control and inference,
multistage decision making using fuzzy dynamics programming, fuzzy databases and
information retrieval using fuzzyfication functions and fuzzy expert systems.
Conventional methods are good for simpler problems, while fuzzy systems are suitable
for complex problems or applications that involve human descriptive or intuitive
thinking. Fuzzy logic is also useful in understanding and simplifying the processing
when the system behavior requires a complicated mathematical model. There are no
generally accepted strict laws expressed in precise mathematics form as in hard
disciplines such as physics. This kind of soft discipline provides ideal areas of
application of fuzzy methods. Hence to enable a system to tackle real-life situations in
a manner more like humans. The essential part of fuzzy system is fuzzy sets and fuzzy
logic.

Fuzzy systems based on fuzzy if-then rules are successfully applied to various
control problems such as truck backing, broom balancing and so forth. Fuzzy systems
approaches also allow us to represent descriptive or qualitative expressions such as
“definite” or “probable” and these are easily incorporated with symbolic statements.
These expressions and representations are more natural than mathematical equations
for many human judgement rules and statements. Fuzzy systems base their decisions
on inputs in the form of linguistic variables. The variables are tested with a small
number of IF-Then rules, which produce one or more responses depending on which
rules were asserted. The response of each rule is weighted according to the confidence
or degree of membership of its inputs. If the knowledge about the system behavior is
described in approximate form or heuristic rules, then fuzzy system is suitable. Fuzzy
systems lack capabilities of learning and no memory. This is why hybrid systems,
particularly, GA/fuzzy systems, are becoming popular for certain applications. The
fundamental concept of such hybrid systems is to complement each others
weaknesses, thus creating new approaches to solve problems. One of the most
significant differences between control problems and classification problems is the
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dimensionality of inputs. While control problems usually involve only a few inputs,
real-world pattern classification problems often involve several attributes.

10.2 Implications for Further Research

In the context of fuzzy system design uncertainties are represented by membership
functions design and by their individual properties. The geometrical shape of a
membership function is the characterization of uncertainty in the corresponding fuzzy
variable. The triangle and the trapezoid are the two geometric shapes commonly used
to represent uncertainties. Therefore a high level of detail in shape design must be
considered as a conceptual error.

Determining or tuning good membership functions and fuzzy rules is not always
easy. Even after extensive testing, it is difficult to say how many membership
functions are really required. The shape of the membership function can not be formed
arbitrarily because arbitrary design can produce unpredictable results in the basic
fuzzy inference algorithm. The design challenge is to employ a reasonable level of
detail when forming membership functions so that the basic fuzzy inference algorithm
behaves as expected. The shape effects will be examined in more detail useful for
design.

Genetic algorithms are particularly well suited for tuning the membership
functions in terms of placing them in the universe of discourse. GAs can be used to
compute membership functions. Given some functional mapping for a system, same
membership functions and their shapes are assumed for the various fuzzy variables
defined for a problem. These membership functions are than coded as bit strings that
are then concatenated. An evaluation (fitness) function is used to evaluate the fitness
of each set of membership functions (parameter that define the functional mapping).
Properly configured genetic algorithm/fuzzy architectures search the complete
universe of discourse and find adequate solutions according to the fitness function.
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Appendix A

Generalised Delta Learning Rule for MLP

Learning is a relatively permanent change in behavior brought about by experience. In artificial neural
networks the following general learning rule is adopted: The weight vector increases in proportion to the
product of input and learning signal. The back-propagation algorithm allows to extract input/output
mapping knowledge within multilayer networks. In the course of learning the synaptic weights as well as
the thresholds are adjusted so that the current least mean-square error is reduced until all mapping
examples from the training set are learned within an acceptable overall error. The delta learning rule is
only valid for continuous activation functions and in the supervised training mode.

The gradient descent formula is given by

oE

Aw.. = —-nT— forjandi = 1,2, ..., 1 (A1)

n ow ..

ji

3E o  Onet;)
B X (A2)
awji a(netj) awji
Therefore we may express the weight adjustments as

where Syj is the error signal term of the hidden layer having output y. This error signal term is produced
by the j'th neuron of the hidden layer, where j=1,2, .., 7. The error signal term is equal to

: }
d(net j)

for j=1,2,...,J (A4

In contrast to the output layer neurons' excitation net;, which affected the k'th neuron output only,
the net; contributes now to every error component in the error sum containing K terms in

2
1 K ( ) : . :
Ekél dpk - Opk fork = 1,2,...,K, for a specific pattern p. The error signal term Byj at the node j

can be computed as follows:
E j

Syj - gj“a(netj) e
where
= —a—(l S @, - foet (y))z] (A6)
ay j dy j 2 k=1 K k
and the second term of (5) is equal to
ayj = f{’(net.) (A7)
9(net j) J

Calculations of (A.6) result in
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Calculation of the derivative of equation (8) yields
oJE § d(net i)
— = - d, — o, ) fnet
9 k21 i ™ o) Flnetye) 9
This equation can be simplified as
JoE
- 28 LWy
. ok " kj
dy i

Combining (7) and (10) results in rearranging ay i expressed in (5) to the form

ayj = f(netj) Zaokwkj fOl‘_] = 1, 2, . J
The weight adjustment (3) in the hidden layer now becomes
K - »
iji = nf’(netj)xikEISOkwkj forj =1,2,..,Jandi =12, ..,1

This equation is known as generalized delta learning rule.
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Appendix B

Learning of the weights of MLP using GA

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>

#include "sugal.h"

#define NREPOCHS 1

#define MAXILAYERS 5

#define MAXTRSETS 500

#define TOLERANCE 0.4

#define CONFIGFILE "nnlearn5.cfg"
#define OUTPUTFILE "nnlearn5.out"

int Evaluate(SuChromosome *chrom, double *fitness);

void PrintBestChromosome();

int Initialisation(void);

double CalcError(SuChromosome *chrom);

void GetWeightsFromChromosome(SuChromosome *chrom);

void GetWeightsFromString(unsigned char *string);

void SetWeightsToString(unsigned char *string);

void GetlLastStepsFromString(unsigned char *string);

void SetLastStepsToString(unsigned char *string);

void CalcOutput(int TrSetIndex);

double Activation(double sum);

void InputData(void);

void AllocMemory(void);

void FreeMemory(void);

void ReadTrainingSet(void);

void MyExit(char *ErrtMsg);

void MyCrossover1(SuChromosome *p1, SuChromosome *p2, SuChromosome *c1, SuChromosome
*c2);

void MyCrossover2(SuChromosome *p1, SuChromosome *p2, SuChromosome *c1, SuChromosome
*c2);

void BPMutation(unsigned char *string, int offset);

void BPMomentum(unsigned char *string, int offset);

void BPHybrid(unsigned char *string, int offset);

void SuWrite AugmentedChromosome( SuAugmentedChromosome *aug_chrom );

char NNFile[80], TRFile[80];

FILE *fp;
int LearningType;

112



int AllocMem = FALSE;

int NumLayers;

int NumCellsfMAXLAYERS];

int NumWeightsf MAXL AYERS];

int TotalNumWeights;

int XPoints[50];

int NrInputs, NrOutputs;

double *CellWeightsf MAXLAYERS];
double *DeltaWeightsf MAXLAYERS];
double *LastStep[MAXLAYERS];
double *CellOutputs[MAXL AYERS];
double TotWeights{20]; /* not fit for multi-layered networks!! */

int NumTrSets;
double **Trlnputs;
double **TrOutputs;

void PrintBestChromosome()
{

char msg[50];

sprintf( msg, "Best : ");

SuQutput( msg );

SuWrite AugmentedChromosome( suThePool->best );
}

void MyCrossover1(SuChromosome *p1, SuChromosome *p2, SuChromosome *c1, SuChromosome
*c2)
/* Special crossover routine, gives uniform crossover, but only between cell-units

(a cell-unit is the group of weights of all the inputs of one neuron) */

{

int i, j, which_way;

for (i=1; i < (XPoints[0]+2); i++ )

{
which_way = SuRandBit();
if (which_way)
for (j= XPoints(i]; j<XPoints[i+1]; j++)
SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p1->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string, j));
}
else
for (j= XPoints[i]; j<XPoints[i+1]; j++)
SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p2->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p1->string, j));
}
}
}

void MyCrossover2(SuChromosome *p1, SuChromosome *p2, SuChromosome *c1, SuChromosome
*c2)
/* Special crossover routine, gives 2-point crossover, but only between cell-units
(a cell-unit is the group of weights of all the inputs of one neuron) */
{

int j;
int x_point1 = 2 + SuRandIntUpTo(XPoints[0]); /* 2 <= x_point] <= XPoints[0]+1 */
int x_point2 = 2 + SuRandIntUpTo(XPoints[0]); /*,, x_point2 . */
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int temp;

/* Swap over the crossover points if not in the right order */
if ( x_pointl > x_point2 )

{
temp = x_pointl;
x_pointl = x_point2;
Xx_point2 = temp;

}

/* Copy starts */
for (j=XPoints[1]; j<XPoints[x_point1]; j++)

SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p1->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string, j));

}

/* Copy middles */
for (j=XPoints[x_point1]; j<XPoints[x_point2]; j++)

SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p2->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p1->string, j));

}

/* Copy ends */
for (j=XPoints[x_point2]; j<XPoints[XPoints[0]+2]; j++)

SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p1->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string, j));

}
}

void MyCrossover3(SuChromosome *p1, SuChromosome *p2, SuChromosome *c1, SuChromosome
*c2)
/* Special crossover 2 routine, gives uniform crossover, but only between cell-units

(a cell-unit is the group of weights of all the inputs of one neuron)

also sees the weight of its connection to the next cell as part of this cell-unit */

{

int i, j, which_way, parentstart, parent;

parentstart = XPoints[ (XPoints[0]+2-NrOutputs) ];
for (i=1; i < (XPoints[0]+2-NrOutputs); i++)

{
which_way = SuRandBit();
if (which_way)
{
for (j= XPoints[i]; j<XPoints[i+1]; j++)
{
SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p1->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string, j));
}
for (j=0; j<NrOutputs; j++)
{
parent = parentstart + i + (j * (1 + NumCells[1]));
SuSetNativeDouble(c1->string, parent, SuGetNativeDouble(pl->string,
parent));
SuSetNativeDouble(c2->string, parent, SuGetNativeDouble(p2->string,
parent));
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parent));

parent));

}

}
else
{
for (j= XPoints[i]; j<XPoints[i+1]; j++)
SuSetNativeDouble(c1->string, j, SuGetNativeDouble(p2->string, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p1->string, j));
)
for (j=0; j<NrOutputs; j++)
{
parent = parentstart + i + (j * (1 + NumCells[11));
SuSetNativeDouble(c 1->string, parent, SuGetNativeDouble(p2->string,
SuSetNativeDouble(c2->string, parent, SuGetNativeDouble(pl->string,
}
}

void BPHybrid( unsigned char *string, int offset )

{

int ,j,k,1, place, WeightOffset;

double Error, IncError, tempoutput, CellFactor;
double eta, OldError;

int h=0;

char buf[30];

if (LearningType == 0)
eta=0.1;
else

if (LearningType = 1)
eta=0.5;
else
eta=1.0;
}

GetWeightsFromString(string);
Error = 10000.0; /* initial 'very high' value */

/* learning algorithm */
do /* learn for x epochs, until Error doesn't increase anymore */

{
/* initialise stuff for each epoch */
- OldError = Error;
Error =0.0;
for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
DeltaWeights[i][j] = 0.0;
for (i=0;i<NumTrSets;i++) /* for every training vector */
CalcOutput(i);
for (j=0;j<NumCells[2];j++) /* for every output neuron */
{
WeightOffset = j * (NumCells[1] + 1);
tempoutput = CellOutputs[2][j];
/*=y3 */
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IncError = TrOutputs(i][j] - tempoutput; [F=t3-y3 ¥
Error += (IncError * IncError);
CellFactor = IncError * (tempoutput * (1.0 - tempoutput));

/* calculate weight changes of the output neuron */
DeltaWeights[2][WeightOffset] += CellFactor;
for (k=0;k<NumCells[1];k++) /* for every weight of this output

neuron */
DeltaWeights[2][WeightOffset+k+1] += CellFactor *
CellOutputs[1]{k];
/* calculate weight changes of the hidden neurons */
place =0;
for (k=0;k<NumCells[1];k++) /* for every hidden neuron */
{

tempoutput = CellOutputs[1][k] * (1.0 - CellOutputs[1][k]);
/*=yl1(1-yl) */

DeltaWeights[1][place++] += CellFactor *
CellWeights[2][WeightOffset + k + 1] * tempoutput;

for (1=0;1<NumCells[0];1++) /* for every weight of this
hidden neuron */

DeltaWeights[1][place++] += CellFactor *
CellWeights[2][WeightOffset + k + 1} * tempoutput * CellOutputs[O][1];
}
}
}

/* update cell weights after each learning step */
if (Error < OldError)
{
h++;
for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
CellWeights[i][j] += eta * DeltaWeights[i]{j];
}
} while ((Error < OldError) && (h<100));
sprintf(buf,"%d, ",h);

SuQutput(buf);
SetWeightsToString(string);
}
void BPMutation( unsigned char *string, int offset )
{
int h,i,j,k,1, place, WeightOffset;
double Error, IncError, tempoutput, CellFactor;
double eta;
if (LearningType == 0)
eta = 5.0/ NumTrSets;
/* eta=2.0;
else
{
if (LearningType = 1)
eta=0.5;
else
eta=1.0;
}
*/ else

eta = LearningType / 100.0;
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GetWeightsFromString(string);

/* learning algorithm */

for (h=0;h<NREPOCHS;h++) /* learn for NREPOCHS epochs */

{

/* initialise stuff for each epoch */

Error =0.0;

for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)

DeltaWeights[i][j] = 0.0;

for (i=0;i<NumTrSets;i++) /* for every training vector */

CalcOutput(i);
for (j=0;j<NumCells[2];j++) /* for every output neuron */

{

[*=y3*

neuron */

CellOutputs[1][K];

F=yl(i-yl) ¥/

WeightOffset = j * (NumCells[1] + 1);
tempoutput = CellOutputs[2][j];

IncError = TrOutputs[i][j] - tempoutput; /¥=t3-y3 %/
Error += (IncError * IncError);
CellFactor = IncError * (tempoutput * (1.0 - tempoutput));

/* calculate weight changes of the output neuron */
DeltaWeights[2][WeightOffset] += CellFactor;
for (k=0;k<NumCells[1];k++) /* for every weight of this output

DeltaWeights[2][WeightOffset+k+1] += CellFactor *

/* calculate weight changes of the hidden neurons */
place = 0;
for (k=0;k<NumCells[1];k++) /* for every hidden neuron */

{
tempoutput = CellOutputs[1][k] * (1.0 - CellOutputs[1][k]);

DeltaWeights[1][place++] += CellFactor *

CellWeights[2][WeightOffset + k + 1] * tempoutput;

hidden neuron */

for (1=0;l<NumCells[0];1++) /* for every weight of this

DeltaWeights[1][place++] += CellFactor *

CellWeights[2][WeightOffset + k + 1] * tempoutput * CellOutputs[O][1];

}

}
}

}

/* update cell weights after each learning step */
for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)

}

CellWeights[i][j] += eta * DeltaWeights[i](j];

SetWeightsToString(string);

void BPMomentum(unsigned char *string, int offset)

{

int h,i,j,k,l, place, WeightOffset;
double Error, IncError, tempoutput, CellFactor, next_step;

double eta, momentum,;
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if (LearningType = 0)

{ eta = 0.5; momentum = 0.5; }

else

if (LearningType == 1)

{ eta = 0.1; momentum = 0.9; }
else
{ eta = 0.3; momentum = 0.5; }

}

GetWeightsFromString(string);
GetLastStepsFromString(string);

/* learning algorithm */

for (h=0;h<NREPOCHS;h++) /* learn for NREPOCHS epochs */

{

/* initialise helpstuff */

Error = 0.0;

for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)

DeltaWeights[il[j] = 0.0;

for (i=0;i<NumTrSets;i++) /* for every training vector */

CalcOutput(i);
for (j=0;j<NumCells[2];j++) /* for every output neuron */

{

[*=y3*

neuron */

CellOutputs[1][k];

/% = yl(1-y1) ¥/

WeightOffset = j * (NumCells[1] + 1);
tempoutput = CellOutputs[2][j];

IncError = TrOutputs[i][j] - tempoutput; ¥ =13-y3 %
Error += (IncError * IncError);
CellFactor = IncError * (tempoutput * (1.0 - tempoutput));

/* calculate weight changes of the output neuron */
DeltaWeights[2][ WeightOffset] += CellFactor;
for (k=0;k<NumCelis[1];k++) /* for every weight of this output

DeltaWeights[2][ WeightOffset+k+1] += CellFactor *

/* calculate weight changes of the hidden neurons */
place = 0;
for (k=0;k<NumCells[1];k++) /* for every hidden neuron */

{
tempoutput = CellOutputs[1]{k] * (1.0 - CellOutputs[1][k]);

DeltaWeights[ 1][place++] += CellFactor *

CellWeights[2][WeightOffset + k + 1] * tempoutput;

hidden neuron */

for (1=0;1<NumCells[0];l++) /* for every weight of this

DeltaWeights[1][place+-+] += CellFactor *

CellWeights[2][WeightOffset + k + 1] * tempoutput * CellOutputs[O][1];

}

}

/* after each epoch: update cell weights */
for (i=1;i<NumLayers;i++)
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for (j=0;j<NumWeights[i];j++)

{
next_step = (eta * DeltaWeights[i][j]) + (momentum * LastStep[i]{j]);
LastStep[il[j] = next_step;
CellWeights[i][j] += next_step;

}

}

SetWeightsToString(string);
SetLastStepsToString(string);

int Evaluate(SuChromosome *chrom, double *fitness)
/* Evaluates chromosome (assigns it a fitness value) */

{

}

suNNTotalRuns++;
*fitness = CalcError(chrom);
return O;

double CalcError(SuChromosome *chrom)
/* Calculates total network error on the training set */

{

int i,j,NumlIncorrect;
double Error = 0.0, IncError;
char string[100];

GetWeightsFromChromosome(chrom);
/* compare calculations with TrOutputs */

NumlIncorrect = 0;
for (i=0;i<NumTrSets;i++)

{
CalcOutput(i);
for (j=0;j<NrOutputs;j++)
{
IncError = CellOutputs[NumLayers-1][j] - TrOutputs[i][j];
Error += (IncError * IncError);
Numlncorrect += (fabs(CellOutputs[NumLayers-1][j] -
TrOutputs[i]{j]) >= TOLERANCE);
}
}
if (NumIncorrect=—=0) && (suNNSolutionFound==0) && (suNNStopWhenLearned==1))
{
sprintf(string,
"1st perfect network found after %d evaluations (Gen %d, Err = %If)\n",
suNNTotalRuns,suGeneration,Error);
SuOutput(string);
suNNSolutionFound = 1;
}
if (Error < suNNBestError)
{

/* remember the error of the best network of this generation */
suNNBestError = Error;
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suNNBestPercCorrect = 100.0 - (100.0 * (float) NumlIncorrect) / (float)
(NrOutputs*NumTrSets);
}

return Error;

}

void CalcOutput(int TrSetIndex)
/* Calculates the network output on one training sample */
{

int i,j,k;

double sum;

int index;

/* 1st layer: output = input */
for (i=0;i<NrInputs;i++)
CellOutputs[0][i] = TrInputs[TrSetIndex](i];

/* other layers: output = sigmoid(weights x inputs) */
for (i=1;i<NumLayers;i++)
{
index = 0;
for (j=0;j<NumCells[i};j++)
{
sum = CellWeights[i][index++];
for (k=0;k<NumCells[i-1];k++)
sum += CellWeights[i][index++] * CellOutputs[i-1][K];
CellOutputs[i][j] = Activation(sum);

}

double Activation(double sum)
/* Calculate sigmoid transfer function of the neurons*/

{
/* prevent overflow */
if (sum < -30.0) return 0.0;
if (sum > 30.0) return 1.0;
return (1.0/(1.0+exp(-sum)));
}

void GetWeightsFromChromosome(SuChromosome *chrom)
/* Extracts weights from chromosome and stores them in CellWeights[][]
Optionally regroups the cells according to 'importance’ */
{
int i,j,k=0;
int index1,index2;
double dummy;
static int SortType=0;

for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
CellWeights[i][j} = SuGetNativeDouble(chrom->string,k++);

/* If required, sort cells according to 'importance' */
/* not fit for multi-layered networks yet!! */
if(suNNRegroupCells)

/* Clear old TotWeights[] (='importance’) */
for (j=0;j<NumCells[1];j++)
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TotWeights[j] = 0.0;

/* Calculate new TotWeights[] */
for (i=0;i<NrOutputs;i++)

{
k = (NumCells[1] + 1) *i+ 1;
for (j=0;j<NumCells[1];j++)
TotWeights[j] += fabs(CellWeights[2]{k+i]);
}

/* sort cells according to importance */
if ((suNNRegroupCells == 1) Il ((suNNRegroupCells = 2) && (SortType = 0)))

/* sort in descending order */
for (i=0;i<NumCells{1]-1;i++)
for (j=i+1;j<NumCells[1];j++)
if(TotWeights[i] < TotWeights[j])
{
/* exchange cells */
dummy = TotWeights[i];
TotWeights[i] = TotWeights[j];
TotWeights[j] = dummy;

index1 = (Nrlnputs + 1) * i;

index2 = (NrInputs + 1) * j;

for (k=0;k<=NrInputs;k++)

{
dummy = CellWeights[1][index1 + k];
CellWeights[1][index1 + k] =

CellWeights[1][index2 + k];

CellWeights[1][index2 + k] = dummy;

}
for (k=0;k<NrOutputs;k++)
{
index1 = NumCells[1] + 1) *k + 1;
dummy = CellWeights[2][index1 + i;
CellWeights[2][index] +i] =
CellWeights[2][index1 + j];
CellWeights[2][index1 + j] = dummy;
}
}
else {} /* do nothing */
SortType = 1;
}
else if ((suNNRegroupCells == 2) && (SortType == 1))
{
/* sort in ascending order */
for (i=0;i<NumCells[1]-1;i++)
for (j=i+1;j<NumCells[1];j++)
if(TotWeights[i] > TotWeights[j])
{
/* exchange cells */
dummy = TotWeights[i];
TotWeights[i] = TotWeights[j];
TotWeights[j] = dummy;

index1 = (NrInputs + 1) *i;
index2 = (Nrlnputs + 1) * j;
for (k=0;k<=NrInputs;k++)
{
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dummy = CellWeights[1][index1 +kJ;

CellWeights[1][index1 + k] =
CellWeights[1][index2 + K];

CellWeights[1][index2 + k] = dummy;

}
for (k=0;k<NrOutputs;k++)

{
index1 = NumCells[1] + 1) *k + 1;
dummy = CellWeights[2][index1 + i];
CellWeights[2][index1 + i] =
CellWeights[2][index1 + j];
CellWeights[2][index1 + j] = dummy;
}
else {} /* do nothing */
SortType = 0;
}
/* Store sorted setup back in chromosome */
k=0;

for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
SuSetNativeDouble(chrom->string k++,CellWeights[i][j]);

}
)
void GetWeightsFromString( unsigned char *string)
{
int 1,j,k=0;
for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
CellWeights[i][j] = SuGetNativeDouble(string,k++);
}
void GetLastStepsFromString( unsigned char *string)
{
int i,j,k=TotalNumWeights;
if (suGeneration==1)
for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
LastStep[i][j] = 0.0;
else
for (i=1;i<NumlLayers;i++)
for (j=0;j<NumWeights[i];j++)
LastStep[i][j] = SuGetNativeDouble(string,k++);
}
void SetWeightsToString( unsigned char *string)
{
int 1,j,k=0;
for (i=1;i<NumLayers;i++)
for (j=0;j<NumWeights[i];j++)
SuSetNativeDouble(string k++,CellWeights{i][j1);
}
void SetLastStepsToString( unsigned char *string)
{
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}

int i,j,k=TotalNumWeights;

for (i=1;i<NumlLayers;i++)
for (j=0;j<NumWeights[i];j++)
SuSetNativeDouble(string,k++,LastStep[il[j]);

int Initialisation(void)

{

}

static int Initialised = FALSE;

/* only first time: initialisation */
if (!Initialised)
{
InputData();
AllocMemory();
ReadTrainingSet();
Initialised = TRUE;
sprintf(suNNString[0],"Parameters: ");

return(0);

void InputData()
/* Sets neural network configuration */

{

FILE *InputFile;
int i,j,ch,index;
char text[80];

if ((InputFile = fopen(CONFIGFILE,"r")) == NULL)
MyExit("Missing configuration file 'nnlearn.cfg™);

/* read name of neural network (.nn) file */

do ch = getc(InputFile); while (ch!="%#);

fgets(NNFile,80,InputFile);

NNFile[strlen(NNFile)-1]=0;

/* read name of training set (.tr) file */

do ch = getc(InputFile); while (ch!="#);

fgets(TRFile,80,InputFile);

TRFile[strlen(TRFile)-1]=0;

fclose(InputFile);

/* read neural network configuration from specified .nn'’ file */
if ((InputFile = fopen(NNFile,"r")) == NULL)
MyEXxit("Missing input ".nn’ file");

/* Learning Type
BPMutation: BPMomentum:
O:eta=0.1,mu=0 O:eta=0.5, mu=0.5
l:eta=05mu=0 1l:eta=0.1, mu=09
2:eta=1.0,mu=0 2:eta=03, mu=0.5 %

do ch = getc(InputFile); while (ch!="");
if (fscanf(InputFile,"%d",&LearningType) == EOF)
MyExit("Premature end of .nn' file (LearningType)");

/* StopWhenLearned
0: don't stop SUGAL
1: stop SUGAL when a network has been found that classifies all training
data correctly (only works when SUGAL is in single run mode) */
do ch = getc(InputFile); while (ch!="");
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used)

/*

if (fscanf(InputFile,"%d",&suNNStopWhenLearned) == EOF)
MyExit("Premature end of ".nn'’ file (StopWhenLearned)");

/* ContinueXRuns (only in combination with StopWhenlLearned)
continues SUGAL for ContinueXRuns generations after a perfect classifying
network has been found (has no effect when StopWhenLearned=0 and/or when
SUGAL is in multiple run mode) */

do ch = getc(InputFile); while (ch!="";

if (fscanf(InputFile,"%d",&suNNContinue) == EOF)
MyExit("Premature end of ".nn’ file (ContinueXRuns)");

/* TextOutput: Affects textoutput to 'nnlearnS.out' file only
0: write nothing to file
1: write everything to file */

do ch = getc(InputFile); while (ch!="");

if (fscanf(InputFile,"%d",&suNNTextOutput) == EOF)
MyExit("Premature end of ".nn' file (TextOutput)");

suNNPrintBest = suNNTextOutput;

/* RegroupCells:
0: Don't regroup cells during evaluation
1: Sort cells according to descending 'importance’ (‘special’ crossover should be

2: Same as 1, but sorted in both ascending & descending orders */
do ch = getc(InputFile); while (ch!="";
if (fscanf(nputFile,"%d",&suNNRegroupCells) == EOF)
MyEXxit("Premature end of ".nn' file (RegroupCells)");
if (!SpecialCrossover) suNNRegroupCells = 0; */

/* nr. of layers, followed by the nr. of cells in each layer
(includes input and output layers) */

do ch = getc(InputFile); while (ch!="");

if (fscanf(InputFile,"%d",&NumLayers) == EOF)
MyExit("Premature end of ".nn’ file (NumLayers)");

if (NumLayers > MAXLAYERS) MyExit("Too many layers");

for (i=0; i<NumLayers; i++)

{
do ch = getc(InputFile); while (ch!="");
if (fscanf(InputFile,"%d",&NumCells[i]) == EOF)
MyExit("Premature end of ".nn' file (NumCells)");
}

/* calculate the nr. of weights and the place of the MyCrossover points */
TotalNumWeights=0;
XPoints[0]=-1;
XPoints[1]=0; /* start of first section */
index=1;
for (i=1; i<NumlLayers; i++)
{
NumWeights[i] = (NumCells[i-1]+1)*NumCells[i];
TotalNumWeights += NumWeights[i];
for (j=0; j<NumCells[i]; j++)

{
XPoints[index+1] = XPoints[index] + NumCells[i-1] + 1;
index++;
}
XPoints[0] += NumCells[i];
}
fclose(InputFile);
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NrInputs = NumCells[0];
NrOutputs = NumCells[NumLayers-1];

if ((suNNOutputFile = fopen( OUTPUTFILE,"w"))==NULL)
{

sprintf( text, "Failed to open output_file [%s]", OUTPUTFILE );
SuWarning( text );

}

void AllocMemory()
/* Allocates memory for neural network calculations */

{

int i;

/* Allocate Memory for cell weights + changes */
for (i=1;i<NumLayers;i++)
{
if ((CellWeights[i] = malloc(NumWeights[i] * sizeof(double)))==NULL)
MyExit("Not enough memory (1)");
if (DeltaWeights[i] = malloc(NumWeights[i] * sizeof(double)))==NULL)
MyExit("Not enough memory (1)");
if ((LastStep[i] = malloc(NumWeights[i] * sizeof(double)))==NULL)
MyExit("Not enough memory (1)");
}

/* Allocate Memory for cell outputs */
for (i=0;i<NumLayers;i++)
if ((CellOutputs[i] = malloc(NumCells[i] * sizeof(double)))==NULL)
MyExit("Not enough memory (1)");

/* Allocate Memory for training sets */

if ((TrInputs = mallocCMAXTRSETS * sizeof(double *)))==NULL)
MyExit("Not enough memory (2)");

if ((TrOutputs = malloc(MAXTRSETS * sizeof(double *)))==NULL)
MyExit("Not enough memory (2)™);

for (i=0;i<MAXTRSETS;i++)

if ((TrInputs[i] = malloc(NrInputs * sizeof(double)))==NULL)
MyExit("Not enough memory (3) ");
if ((TrOutputs[i] = malloc(NrOutputs * sizeof(double)))==NULL)
MyExit("Not enough memory (3) ");
!
AllocMem = TRUE;

}

void FreeMemory()
/* Frees memory allocated by AllocMemory() */

{

int i;

if (AllocMem)
{
for (i=1;i<Numlayers;i++)
{
free(CellWeights(i));
free(DeltaWeights[i]);
free(LastStep[i]);

}
for (i=0;i<NumLayers;i++)
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}

free(CellOutputs[i]);
for (i=0;i<MAXTRSETS;i++)

free(TrInputs[i]);
free(TrOutputs[i});
}
free(TrInputs);
free(TrOutputs);
if (suNNOutputFile)

fprintf(suNNOutputFile, "\nMemory freed, closing file...\n");
fflush(suNNOutputFile);
fclose(suNNOutputFile);

}
AllocMem = FALSE;

void ReadTrainingSet()
/* Reads the training-samples from the "tr' file and stores them in

{

}

the arrays TrInputs[][] and TrOutputs[][] */

int i,trsetnr;
FILE *InputFile;

if ((InputFile = fopen(TRFile,"r")) = NULL)
MyExit("Missing input file nnlearn.tr");
trsetnr = 0;
while ((trsetnr<MAXTRSETS) &&
(fscanf(InputFile," %If" & (TrInputs[trsetnr][0])) != EOF))
{
for (i=1; i<NrInputs; i++)
if (fscanf(InputFile,"%1f",&(Trlnputs|trsetnr][i])) == EOF)
MyExit("Premature end of trainingset file");
for (i=0; i<NrOutputs; i++)
if (fscanf(InputFile," %I1f",&(TrOutputs[trsetnr][i])) == EOF)
MyExit("Premature end of trainingset file");
trsetnr++;
}
fclose(InputFile);
NumTrSets = trsetnr;

void MyExit(char *ErrMsg)
/* Prints error message and exits programme */

{

printf("\n%s\n",ErrMsg);
exit(1);
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Appendix C

Fuzzy Classifier System

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>

typedef struct{
int part;
int posi;
}CONDITION;

typedef struct{

CONDITION *condition; /* antecedent part */

int clss; /* consequent part */

double cf; /* certainty factor */

double fitness; /* fitness ol

int correct; /* correctly classified patterns by this rule */

int wrong; /* wrongly classified patterns by this rule */
}CLASSIFIER;

typedef struct{

double *x; /* attibute value */
int clss; /* class */

int group;

}SAMPLE;

typedef struct{
int N_pop; /* population size */
double P_rep; /* replacement proportion */
double P_mut; /* mutation Probability */
int N_learn; /* learning iteration */
double eta_l; /* eta_l and eta_2 are learning rates */
double eta_2;
double W_ncp; /* the weights in the fitness function */
double W_nmp;
int N_gen; /* number of generations */
char *d_f name; /* data file name */
int seed; /* random seed */
char  shape; /* the shape of membership function */
char *part; /* the number of partitions of each axis */
/* —-the followings are related to sample(training) data-- */
int s_num; /* number of sample */

int s_dim; /* dimension */
int s_cls; /* class */
}PARAMETER;
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typedef struct{

int correct;

int error;

int reject;

int r_disjoin; /* number of disjoin rules */
}PERFORMANCE;

typedef struct{
int total;
int disjoin; /* number of disjoin rules */
H_SET; /* the information of rule set( classifiers ) */

/* */

void usage( void );

void read_parafile( PARAMETER* );

void **alloc_2( int, int, int, int );

void myread( FILE*, char* );

void *alloc_1( int, int );

void free_2( void**, int );

void read_datal( FILE*, PARAMETER¥* );

void read_data2( FILE*, PARAMETER*, SAMPLE* );

void modify_parameter( int, char**, PARAMETER* ),

void decide_consequent( CLASSIFIER*, SAMPLE*, PARAMETER¥, int );
double membership( CONDITION*, double, PARAMETER* );
PERFORMANCE t_evaluate( CLASSIFIER*, SAMPLE*, PARAMETER¥*, int );
PERFORMANCE evaluate( CLASSIFIER*, SAMPLE*, PARAMETER¥*, int );
void learn_cf( CLASSIFIER*, SAMPLE*, PARAMETER¥, int );

I_SET how_many_rules( CLASSIFIER*, PARAMETER¥* );

void preserve_elite( CLASSIFIER*, CLASSIFIER*, PARAMETER* );

void g_o( CLASSIFIER*, PARAMETER* );

void selection( double*, int, int*, int* );

void crossover( CLASSIFIER*, CLASSIFIER*, CLASSIFIER*, CLASSIFIER*, int );
void mutation( CLASSIFIER*, PARAMETER* );

void replace( CLASSIFIER*, CLASSIFIER*, PARAMETER¥, int );

int select_rep( int, int*, CLASSIFIER*, int );

void out_rule( CLASSIFIER*, CLASSIFIER¥*, int, PARAMETER* );

* */

#include"cs.h"
int main( int argc, char **argv )

CLASSIFIER *current, *elite, *eelite;
SAMPLE *smp;

PARAMETER para;

PERFORMANCE *c_perf, *e_perf, *ee_perf;
PERFORMANCE *tc_perf, *te_perf, *tee_perf;
I_SET c_rule, e_rule, ee_rule;

char buf[30], tmp_c;

int i, j, n_gen, cv;

int tmp_i;

double tmp_d_cor, tmp_d_err, tmp_d_rej;
FILE *te_{p,

*tee_fp,
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*tc_1p;

FILE *fp, *e_fp, *ed_1p,
*ee_fp, *eed_Ip,

*c_fp, *c4_fp;

if( (arge >=2 ) && ( *(*(argv+1)+0) =="7") ){
usage();
exit( 1);

}

para.d_f_name = (char*)alloc_1( 20, sizeof(char) );
para.part = (char*)alloc_1( 500, sizeof(char) );
read_parafile( &para );

modify_parameter( argc, argv, &para );

srand( para.seed );

if( Y fp = fopen( para.d_f_name, "it" ) ) ){
fprintf( stderr, "\nCannot Open File (%s)\n", para.d_f_name );
exit(1);
}
read_datal( fp, &para );
smp = (SAMPLE*)alloc_1( para.s_num, sizeof(PARAMETER) );
for(i=0;i< para.s_num ; i++)
(smp+i)->x = (double*)alloc_1( para.s_dim, sizeof(double) );

read_data2( fp, &para, smp );
fclose( fp );

[*==—== Allocation =====*/
current = (CLASSIFIER*)alloc_1( para.N_pop, sizeof(CLASSIFIER) );
for(i=0;i< para.N_pop; i++)
(current+i)->condition = (CONDITION*)alloc_1( para.s_dim, sizeof(CONDITION) );

elite = (CLASSIFIER*)alloc_1( para.N_pop, sizeof(CLASSIFIER) );
for(i=0;i< para.N_pop; i++)
(elite+i)->condition = (CONDITION*)alloc_1( para.s_dim, sizeof(CONDITION) );

eelite = (CLASSIFIER*)alloc_1( para.N_pop, sizeof(CLASSIFIER) );
for(i=0;i< paraN_pop; i++)
(eelite+i)->condition = (CONDITION*)alloc_1( para.s_dim, sizeof(CONDITION) );

tee_perf = (PERFORMANCE*)alloc_1( 10, sizeof PERFORMANCE) );
te_perf = (PERFORMANCE*)alloc_1( 10, sizeofPERFORMANCE) );
tc_perf = (PERFORMANCE#*)alloc_1( 10, sizeof PERFORMANCE) );
e_perf = (PERFORMANCE*)alloc_1( 10, sizecof PERFORMANCE) );
c_perf = (PERFORMANCE®)alloc_1( 10, sizeof PERFORMANCE) );
ee_perf = PERFORMANCE*)alloc_1( 10, sizecof PERFORMANCE) );

for(cv=0;cv< 10; cv+ ){
/*==== Alg()nthm ===*/

/* Initialization of Classifiers */
for(i=0;i< paraN_pop; i++ ){
for(j=0;j < para.s_dim; j++ ){
tmp_c = *(para.part-+j);
tmp_i = rand() % (atoi(&tmp_c)+1);
if( tmp_i ){
((current+i)->condition+j)->part = atoi(&tmp_c);
((current+i)->condition+j)->posi = tmp_i;
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}

else{
((current+i)->condition+j)->part = 1,
((current+i)->condition+j)->posi = 1;
}
}

/* Decision of consequent part */
decide_consequent( current-+i, smp, &para, cv );

(current+i)->correct = 0;
(current+i)->wrong = 0;
(current+i)->fitness = 0.0;

}

/* Preprocedure */
(te_perf+cv)->correct = -100;
(te_perf+cv)->error = 1000,
(te_perf+cv)->reject = 0;

(tee_perf+cv)->correct = -100;
(tee_perf+cv)->error = 1000;
(tee_perf+cv)->reject = 0;

(tc_perf+cv)->correct = -100;
(tc_perf+cv)->error = 1000;
(tc_perf+cv)->reject = 0;

(e_perf+cv)->correct = -100;
(e_perf+cv)->error = 1000;
(e_perf+cv)->reject = 05
e_rule.total = 0;
¢_rule.disjoin = 0;

(ee_perf+cv)->correct = -100;
(ee_perf+cv)->error = 1000;
(ee_perf+cv)->reject = 0;
ee_rule.total = 0;
ee_rule.disjoin = 0;

(c_perf+cv)->correct = -100;
(c_perf+cv)->error = 1000;
(c_perf+cv)->reject = 0;
c_rule.total = 0;
c_rule.disjoin = 0;

sprintf( buf, "train%d.eli", cv );

if( !( e_fp = fopen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( %s )\n", buf );
exit( 1);

}

fprintf( e_fp, "generations, correct rate\n” );

if( !( e4_fp = fopen( "rule.eli", "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( r_reject.eli )\n" );
exit( 1);

fprintf( e4_fp, "generations, reject rate\n" );

sprintf( buf, "train%d.eeli", cv );
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if( ! ee_fp = fopen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( %s )\n", buf ),
exit( 1);

}

fprintf( ee_fp, "generations, correct rate\n" );

if( 1( eed_fp = fopen( "rule.eeli”, "wt" )) )}{
fprintf( stderr, "\nCannot Open File( r_reject.eeli )\n" );
exit( 1);

}

fprintf( eed_£p, "generations, reject rate\n" );

sprintf( buf, "train%d.cur”, cv );

if( !( c_fp = fopen( buf, "wt" ) ) )
fprintf( stderr, "\nCannot Open File( %s )\n", buf );
exit(1);

)

fprintf( c_fp, "generations, correct rate\n" );

if( ¥ c4_fp = fopen( "rule.cur”, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( r_reject.cur )\n" );
exit( 1);

fprintf( c4_fp, "generations, reject rate\n" );

sprintf( buf, "test%d.eli", cv );

if( !( te_fp = fopen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( %s )\n", buf );
exit( 1);

}

fprintf( te_fp, "generations, correct rate\n" );

sprintf( buf, "test%d.eeli", cv );

if( !( tee_fp = fopen( buf, "wt" ) ) N
fprintf( stderr, "nCannot Open File( %s )\n", buf );
exit(1);

}

fprintf( tee_fp, "generations, correct rate\n" );

sprintf( buf, "test%d.cur", cv );

if( X tc_fp = fopen( buf, "wt" )) ){
fprintf( stderr, "\nCannot Open File( %s )\n", buf );
exit( 1),

}

fprintf( tc_fp, "generations, correct rate\n" ),

for( n_gen=0; n_gen < (para.N_gen+1) ; n_gen++ ){

for(i=0;i<para.N_pop ; i++ ){
decide_consequent( current+i, smp, &para, cv );
(current+i)->correct = 0;
(current+i)->wrong = 0;
(current+i)->fitness = 0.0;

}
how_many_rules( current, &para );
[¥=====Learning of Certainty Factor ====%*/

for(i=0;i< para.N_learn ; i++)
learn_cf( current, smp, &para, cv );
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[*¥===== Evaluation =====%/

*(c_perf+cv) = evaluate( current, smp, &para, cv );
¢_rule = how_many_rules( current, &para );
*(tc_perf+cv) = t_evaluate( current, smp, &para, cv );

[*====Elite Preservation =====%/

if( (c_perf+cv)->correct > (e_perf+cv)->correct ){
preserve_elite( current, elite, &para ),
(te_perf+cv)->correct = (tc_perf+cv)->correct;
(te_perf+cv)->error = (tc_perf+cv)->error;
(te_perf+cv)->teject = (tc_perf+cv)->reject;
(e_perf+cv)->correct = (c_perf+cv)->correct;
(e_perf+cv)->error = (c_perf+cv)->error;
(e_perf+cv)->reject = (c_perf+cv)->reject;
e_rule.total = ¢_rule.total;
e_rule.disjoin = c_rule.disjoin;

if( ( para.W_ncp * (c_perf+cv)->correct - para.W_nmp * (c_perf+cv)->error )
> ( para.W_ncp * (ee_perf+cv)->correct - para.W_nmp * (ee_perf+cv)->error ) ){
preserve_elite( current, eclite, &para );
(tee_perf4cv)->correct = (tc_perf+cv)->correct;
(tee_perf+cv)->error = (tc_perf+cv)->error;
(tee_perf+cv)->reject = (tc_perf+cv)->reject;
(ee_perf+cv)->correct = (c_perf+cv)->correct;.
(ee_perf+cv)->error = (c_perf+cv)->error;
(ee_perf+cv)->reject = (c_perf+cv)->reject;
ee_rule.total = c_rule.total;
ee_rule.disjoin = c_rule.disjoin;

[*==== Output Files ====*/

fprintf( e_fp, "%d, %d, %d, %d\n", n_gen, (e_perf+cv)->correct, (e_perf+cv)->error, (e_perf+cv)-
>reject ); .

fflush( e_fp );

fprintf( e4_£p, "%d, %d\n", n_gen, e_rule.total );

fflush( e4_fp );

fprintf( ee_fp, "%d, %d, %d, %d\n", n_gen, (ee_perf+cv)->correct, (ee_perf+cv)->error, (ee_perf+cv)-
>reject );

fflush( ee_fp );

fprintf( ee4_fp, "%d, %d\n", n_gen, ee_rule.total );

fflush( eed_fp );

fprintf( c_fp, "%d, %d, %d, %d\n", n_gen, (c_perf+cv)->correct, (c_perf+cv)->error, (e_perf+cv)-
>reject );

fflush( c_£p );

fprintf( c4_1p, "%d, %d\n", n_gen, c_rule.total );

fflush( c4_fp );

fprintf( te_fp, "%d, %d, %d, %d\n", n_gen, (te_perf+cv)->correct, (te_perf+cv)->error, (te_perf+cv)-
>reject );
fflush( te_fp );
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fprintf( tee_fp, "%d, %d, %d, %d\n", n_gen, (tee_perf+cv)->correct, (tee_perf+cv)->error,
(tee_perf+cv)->reject );
fflush( tee_fp );

fprintf( tc_fp, "%d, %d, %d, %d\n", n_gen, (tc_perf+cv)->correct, (tc_perf+cv)->error, (te_perf+cv)-
>reject );
fflush( tc_fp );

if( (n_gen%100) ==0)
out_rule( elite, current, n_gen, &para );

[*===== Termination Test =====*/
if( n_gen == para.N_gen )

break;
[*===== Genetic Operation ====*/

g o( current, &para );
}

fclose( te_fp );
fclose( tee_fp );
fclose( tc_fp );

fclose(e_fp );
fclose( e4_fp );
fclose( ee_fp );
fclose( ee4_fp );
fclose( c_fp );
fclose( c4_fp );

if( !( fp = fopen( "trn-eli.res”, "at" ) ) )}
fprintf( stderr, "\nCannot Open File( trn-eli.res )\n" );
exit( 1);

fprintf( fp, "%d, %d, %d\n", (e_perf+cv)->correct, (e_perf+cv)->error, (e_perf+cv)->reject );
fflush( fp );
fclose( fp );

if( !( fp = fopen( "trn-cur.res”, "at" ) ) ){
fprintf( stderr, "\nCannot Open File( trn-cur.res )\n" );
exit( 1);
}
fprintf( fp, "%d, %d, %d\n", (c_perf+cv)->correct, (c_perf+cv)->error, (c_perf+cv)->reject );
fflush( fp );
fclose( fp );

if( !( fp = fopen( "tes-eli.res”, "at” ) ) ){
fprintf( stderr, "\nCannot Open File( tes-eli.res )\n" );
exit( 1);

fprintf( fp, "%d, %d, %d\n", (te_perf+cv)->cormrect, (te_perf+cv)->error, (te_perf+cv)->reject );
fflush( fp );
fclose( fp );

if( !( fp = fopen( "tes-cur.res", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( tes-cur.res )\n" );
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exit(1);

}
fprintf( fp, "%d, %d, %d\n", (tc_perf+cv)->correct, (tc_perf+cv)->error, (tc_perf+cv)->reject );

fflush( fp );
fclose( fp );

[*==== Qutput Result =====%*/

tmp_d_err = 0.0;

tmp_d_cor =0.0;

tmp_d_rej = 0.0;

for(cv=0;cv<10;cv++ ){
tmp_d_err += (double)(e_perf+cv)->error;
tmp_d_cor += (double)(e_perf+cv)->correct;
tmp_d_rej += (double)(e_perf+cv)->reject;

}

tmp_d_err /= 10.0;

tmp_d_cor /=10.0;

tmp_d_rej /= 10.0;

if( !( e_fp = fopen( "result.eli", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.eli )\n" );
exit(1);

}

fprintf( e_fp, "ncp = %6.4f, emor = %6.4f, reject = %6.4f, rule

(tmp_d_cor*10.0)/(double)(para.s_num*9),

(tmp_d_err*10.0)/(double)(para.s_num*9),
(tmp_d_rej*10.0)/(double)(para.s_num*9), e_rule.total );

fclose( e_fp );

tmp_d_err = 0.0;
tmp_d_cor =0.0;
tmp_d_rej = 0.0;
for(cv=0;cv<10; cv++ )}{
tmp_d_err += (double)(e_perf+cv)->error;
tmp_d_cor += (double)(e_perf+cv)->correct;
tmp_d_rej += (double)(e_perf+cv)->reject;
}
tmp_d_err /=10.0;
tmp_d_cor /= 10.0;
tmp_d_rej /= 10.0;
if( !( e_fp = fopen( "training.res”, "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.eli )\n" );
exit(1);
}
fprintf( e_fp, "mcp = %64f, emor = %6.4f, reject = %6.4f, rule
(tmp_d_cor*10.0)/(double)(para.s_num*9),
(tmp_d_err*10.0)/(double)(para.s_num*9),
(tmp_d_rej*10.0)/(double)(para.s_num*9), e_rule.total );
fclose( e_fp );

tmp_d_err = 0.0;

tmp_d_cor = 0.0;

tmp_d_rej = 0.0;

for(cv=0;cv<10; cv++ )
tmp_d_err += (double)(ee_perf+cv)->error;
tmp_d_cor += (double)(ee_perf+cv)->correct;
tmp_d_rej += (double)(ee_perf+cv)->reject;
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tmp_d_err /= 10.0;

tmp_d_cor /= 10.0;

tmp_d_rej /= 10.0;

if( !( ee_fp = fopen( "result.eeli”, "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.eeli )\n" );
exit( 1),

}

fprintf( ee_fp, "ncp = %6.4f, ermror = %6.4f, reject = %6.4f, rule

(tmp_d_cor*10.0)/(double)(para.s_num*9),

(tmp_d_err*10.0)/(double)(para.s_num*9),
(tmp_d_rej*10.0)/(double)(para.s_num*9), ee_rule.total );

fclose( ee_fp );

tmp_d_err = 0.0;
tmp_d_cor =0.0;
tmp_d_rej = 0.0;
for(cv=0;cv<10;cv++ )
tmp_d_err += (double)(c_perf+cv)->error;
tmp_d_cor += (double)(c_perf+cv)->correct;
tmp_d_rej += (double)(c_perf+cv)->reject;
}
tmp_d_ert /= 10.0;
tmp_d_cor /= 10.0;
tmp_d_rej /= 10.0;
if( !( c_fp = fopen( "result.cur”, "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.cur )\n" );
exit( 1);
}
fprintf( c_fp, "ncp = %6.4f, emor = %6.4f, reject = %6.4f, rule
(tmp_d_cor*10.0)/(double)(para.s_num*9),
(tmp_d_err*10.0)/(double)(para.s_num*9),
(tmp_d_rej*10.0)/(double)(para.s_num*9), c_rule.total );
fclose( c_fp );

tmp_d_err = 0.0;

tmp_d_cor =0.0;

tmp_d_rej = 0.0;

for(cv=0;cv<10;cv++ )
tmp_d_err += (double)(te_perf+cv)->error;
tmp_d_cor += (double)(te_perf+cv)->correct;
tmp_d_rej += (double)(te_perf+cv)->reject;

}

tmp_d_err /= 10.0;

tmp_d_cor /= 10.0;

tmp_d_rej /= 10.0;

if( !( e_fp = fopen( "result.teli", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.teli )\n" );
exit( 1);

}

%d\n",

%d n’

fprintf( e_fp, "ncp = %6.4f, error = %6.4f, reject = %6.4f\n", (tmp_d_cor*10.0)/(double)para.s_num,

(tmp_d_err*10.0)/(double)para.s_num,
(tmp_d_rej*10.0)/(double)para.s_num );
fclose( e_fp );

tmp_d_err = 0.0;
tmp_d_cor = 0.0;
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tmp_d_rej = 0.0;

for(cv=0;cv<10;cv++ )
tmp_d_err += (double)(te_perf+cv)->error;
tmp_d_cor += (double)(te_perf+cv)->correct;
tmp_d_rej += (double)(te_perf+cv)->reject;

tmp_d_err /=10.0;

tmp_d_cor /= 10.0;

tmp_d_rej /= 10.0;

if( !( e_fp = fopen( "test.res”, "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.teli )\n" );
exit(1);

}

fprintf( e_fp, "ncp = %6.4f, error = %6.4f, reject = %6.4f\n", (tmp_d_cor*10.0)/(double)para.s_num,
(tmp_d_err*10.0)/(double)para.s_num,
(tmp_d_rej*10.0)/(double)para.s_num );

fclose( e_fp );

tmp_d_err = 0.0;
tmp_d_cor = 0.0;
tmp_d_rej = 0.0;
for(cv=0;cv<10;cv++ ){
tmp_d_err += (double)(tee_perf+cv)->error;
tmp_d_cor += (double)(tee_perf+cv)->correct;
tmp_d_rej += (double)(tee_perf+cv)->reject;
}
tmp_d_err /= 10.0;
tmp_d_cor /= 10.0;
tmp_d_rej /= 10.0;
if( !( ee_fp = fopen( "result.teeli", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.teeli )\n" );
exit( 1);
}
fprintf( ee_fp, "ncp = %6.4f, error = %6.4f, reject = %6.4f\n", (tmp_d_cor*10.0)/(double)para.s_num,
(tmp_d_err*10.0)/(double)para.s_num,
(tmp_d_rej*10.0)/(double)para.s_num );
fclose( ee_fp );

tmp_d_err = 0.0;
tmp_d_cor = 0.0;
tmp_d_rej = 0.0;
for(cv=0;cv<10; cv++ )
tmp_d_err += (double)(tc_perf+cv)->error;
tmp_d_cor += (double)(tc_perf+cv)->correct;
tmp_d_rej += (double)(tc_perf+cv)->reject;
}
tmp_d_err /= 10.0;
tmp_d_cor /= 10.0;
tmp_d_rej /=10.0;
if( ! c_fp = fopen( "result.tcur”, "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.tcur )\n" );
exit(1);
}
fprintf( c_fp, "ncp = %6.4f, error = %6.4f, reject = %6.4f\n", (tmp_d_cor*10.0)/(double)para.s_num,
(tmp_d_err*10.0)/(double)para.s_num,
(tmp_d_rej*10.0)/(double)para.s_num ),
fclose( c_fp );
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[*¥===== Termination Procedure =====%/

free( e_perf );

free( c_perf );

free( ee_perf );

free( te_perf );

free( tc_perf );

free( tee_perf );

free( current );

free( elite );

free( eelite );

for(i=0;i< para.s_num ; i++)
free( (smp+i)->x );

free( smp );

free( para.d_f_name );

free( para.part );

return( 0 );

}

#include"cs.h"
/*#define RAND_MAX (2147483647)*/
1* *f

void usage( void )

{
fprintf( stderr, "\n \n" );
fprintf( stderr, " \n" );
fprintf( stderr, " Fuzzy Classifier System \n");
fprintf( stderr, " \n");
fprintf( stderr, " \n" );
fprintf( stderr, " \n" );

fprintf( stderr, "\nOptions..\n" );

fprintf( stderr, "\t1[xxxxx] ... Population size\n" );

fprintf( stderr, "\t2[0.xxx] ... Replacement proportion\n" );

fprintf( stderr, "\t3[0.xxx] ... Mutation probability\n" );

fprintf( stderr, "\t4[xxxxx] ... Learning iteration\n" );

fprintf( stderr, "\t5[0.xxx] ... eta_1( learning rate \n" );

fprintf( stderr, "W6[0.xxx] ... eta_2( learning rate )\n" );

fprintf( stderr, "W7[x.xxx] ... W_ncp( weight of fitness )\n" );
fprintf( stderr, "\t8[x.xxx] ... W_nmp( weight of fitness )\n" );
fprintf( stderr, "\t9[xxxxx] ... the number of generations\n" );
fprintf( stderr, "\tO[fname] ... data file name\n" );

fprintf( stderr, “\ta[xxxxx] ... random seed\n" );

fprintf( stderr, "\tb[t or b]... the shape of membership function\n" );
fprintf( stderr, "\tc[xxx..] ... the number of partitions of each axis\n" );

}
J¥ */

void read_parafile( PARAMETER *pa )
{
FILE *fp;
int i;
int n_para; /* number of parameters */
char **buf;
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n_para = 13;
buf = (char**)alloc_2( n_para, 100, sizeof(char¥), sizeof(char) );

if( !( fp = fopen( "paramtr.dat”, "rt" ) ) ){
fprintf( stderr, "\nCannot Open File( paramtr.dat )\n" );
exit( 1);

}

for(i=0;i<n_para;i++){
myread( fp, *(buf+i) );
myread( fp, *(buf+i) );

}

pa->N_pop = atoi( *(buf+0) );
pa->P_rep = atof( *(buf+1) );
pa->P_mut = atof( *(buf+2) );
pa->N_learn = atoi( *(buf+3) );
pa->eta_1 = atof( *(buf+4) );
pa->eta_2 = atof( *(buf+5) );
pa->W_ncp = atof( *(buf+6) );
pa->W_nmp = atof( *(buf+7) );
pa->N_gen = atoi( *(buf+8) );
strepy( pa->d_f_name, *(buf+9) );
pa->seed = atoi( *(buf+10) );
pa->shape = *(*(buf+11)+0);
strcpy( pa->part, *(buf+12) );

free_2( (void**)buf, n_para );
fclose( fp );

return;

}
/* %/

void read_datal( FILE *fp, PARAMETER *pa )
{

int i, j;

char *buf;

buf = (char*)alloc_1( 100, sizeof(char) );

myread( fp, buf );
myread( fp, buf );
pa->s_num = atoi( buf );
myread( fp, buf);
myread( fp, buf);
pa->s_dim = atoi( buf );
myread( fp, buf );
myread( fp, buf);
pa->s_cls = atoi( buf );

free( buf);

return;

}
* */
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void read_data2( FILE *fp, PARAMETER *pa, SAMPLE *smp )
{

int i, j, flag, r_v, *idx;

long int *num;

char *buf;

FILE *fpout;

idx = (int*)alloc_1( 10, sizeof(int) );
num = (long int*)alloc_1( 10, sizeof(long int) );

for(i=0;i<10;i++){
*(idx+i) = 0;
*(num+i) = pa->s_num/ 10;

}

for(i=0 ;i< (pa->s_num%10) ; i++)
*(num-+i) += 1;

buf = (char*)alloc_1( 100, sizeof(char) );

if( !( fpout = fopen( "testout”, "wt" ) ) }{
fprintf( stderr, "\ncannot open file( testout )\n" );
exit(1);

for(i=0;i< pa->s_num ; i++ ){

(smp+i)->x = (double*)alloc_1( pa->s_dim, sizeof(double) );
for(j=0;j < pa->s_dim ; j4++ ){
myread( fp, buf );
*((smp+i)->x+j) = atof( buf );
fprintf( fpout, "%6.4f, ", *((smp+i)->x+) );
}
fprintf( fpout, "\n" );
myread( {p, buf );
(smp+i)->clss = atoi( buf ) - 1;
flag = 0;
while( flag == 0 ){
r_v=rand() % 10;
if( *(idx+r_v) < *(num+r_v) ){
(smp+i)->group =1_V;
*(idx+r_v) +=1;
flag=1;
}

}
fprintf( fpout, "%d, %d\n", (smp-+)->clss, (smp+i)->group );

fclose( fpout );
free( buf );
free(idx );
free( num );

return;

}
[ o7
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void modify_parameter( int ac, char **av, PARAMETER *pa )
{

int i;

for(i=1;i<ac;i++){

if( *(¥(av+i)+0) =='1")

pa->N_pop = atoi( *(av+i)+1 );
else if( *(*(av+i)+0) == "2')

pa->P_rep = atof( *(av+i)}+1);
else if( ¥(*(av+i)+0) =="3")

pa->P_mut = atof( *(av+i)+1 );
else if( *(*(av+i)+0) =='4")

pa->N_learn = atoi( *(av+i)+1 );
else if( *(*(av+i)+0) =="'5")

pa->eta_] = atof( *(av+i)+1);
else if( *(*(av+i)+0) =='6")

pa->eta_2 = atof( *(av+i)+1);
else if( *(*(av+i)+0) =="7")

pa->W_ncp = atof( *(av+i)+1 );
else if( *(*(av+i)+0)=="8")

pa->W_nmp = atof( *(av+i)+1 );
else if( ¥(*(av+)+0)=="9")

pa->N_gen = atoi( *(av+i)+1 );
else if( *(*(av+i)+0) =="'0")

strepy( pa->d_f_name, *(av+i)+1 );
else if( *(*(av+i)+0) =="a')

pa->seed = atoi( *(av+i)+1 );
else if( ¥(*(av+i)+0) =="D')

pa->shape = *(*(av+i)+1);
else if( *(*(av+i)+0) =='c')

strcpy( pa->part, *(av+i)+1);

return;

}
I* */

void decide_consequent( CLASSIFIER *clfr, SAMPLE *smp, PARAMETER *pa, int cv )
{

int 1, j;

int d_cls; /* decided class */

int flag;

double *beta, max_b, sum_b;

double tmp_d;

beta = (double*)alloc_1( pa->s_cls, sizeof(double) );
for(i=0;i< pa->s_cls ; i++)
*(beta+i) = 0.0;

for(i=0;i< pa->s_num; i++ ){
if( (smp+i)->group !=cv ){
tmp_d=1.0;
for(j=0;j<pa->s_dim; j++)
tmp_d *= membership( clfr->condition+j, *((smp+i)->x+j), pa );
*(beta+(smp-+i)->clss) += tmp_d;

}
sum_b = 0.0;
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for(i=0;i<pa->s_cls; i++ ){
sum_b += *(beta+i);
if(i){
if( max_b < *(beta+i) ){
max_b = *(beta+i);

d_cls=1i;
flag=1;
else if( max_b == *(beta+i) )
flag=0;
}
else{
max_b = *(beta+i);
d_cls=i;
flag=1;
}
}
if( flag ){
/* decided class */
clfr->clss = d_cls;
/* certainty factor */
tmp_d = ( sum_b - *(beta+d_cls) ) / ( (double)pa->s_cls - 1.0);
clfr->cf = ( *(beta+d_cls) - tmp_d ) / sum_b;
}
else{
/* dummy class */
clfr->clss =-1;
clfr->cf = 0.0;
}
free( beta );
return;
}
[* %l
PERFORMANCE evaluate( CLASSIFIER *clfr, SAMPLE *smp, PARAMETER *pa, int cv )
{
inti, j, k;

int max_index, flag;
double alpha, max_a;
PERFORMANCE result;

result.correct = 0;
result.error =0;
result.reject =0;

for(i=0;i< pa->s_num ; i++ ){
if( (smp+i)->group = cv ){
for(j=0;j<pa->N_pop ; j++){
alpha = (clfr+j)->cf;
for(k =0; k < pa->s_dim ; k++)
alpha *= membership( (clfr+j)->condition+k, *((smp+i)->x+k), pa )

if(j ){
if( max_a < alpha ){
max_a = alpha;
max_index =j;
flag=1;
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}
else if( ( max_a == alpha ) && ( (clfr+max_index)->clss != (clfr+j)->clss ) )
flag=0;
}
else{
max_a = alpha;
max_index =j;
flag=1;
}

}

if( flag && (max_a!=0.0) ){

if( (clfr+max_index)->clss == (smp+i)->clss ){
/* Correctly Classified */
(clfr+max_index)->correct++;
(clfr+max_index)—>ﬁtness +=pa->W_ncp;
result.correct++;

}

else{
/¥ Wrongly Classified */
(clfr+max_index)->wrong++;
(clfr+max_index)->fitness -= pa->W_nmp;
result.error++;

}
}
else{
/* Classification rejected */
result.reject++;
}
}
}
return( result );
}
* */

PERFORMANCE t_evaluate( CLASSIFIER *clfr, SAMPLE *smp, PARAMETER *pa, int cv )
{

inti, j, k;

int max_index, flag;

double alpha, max_a;

PERFORMANCE result;

result.correct = 0;
result.error =0;
result.reject =0;

for(i=0;i<pa->s_num; i++ ){
if( (smp+i)->group == cv }{
for(j=0;j<pa>N_pop; j++){
alpha = (clfr+j)->cf;
for(k =0; k < pa->s_dim ; k++)
alpha *= membership( (clfr+j)->condition+k, *((smp-+i)->x+k), pa );

()1
if( max_a < alpha ){
max_a = alpha;
max_index = j;
flag=1,
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else if( ( max_a = alpha ) && ( (clfr+max_index)->clss = (clft+j)->clss ) )
flag = 0;
}
else{
max_a = alpha;
max_index = j;
flag=1;
}
}

if( flag && (max_a!=0.0) ){

if( (clfr+max_index)->clss == (smp+i)->clss ){
/* Correctly Classified */
(clfr+max_index)->correct++;
(clfr+max_index)->fitness += pa->W_ncp;
result.correct++;

}

else{
/* Wrongly Classified */
(clfr+max_index)->wrong++;
(clfr+max_index)->fitness -= pa->W_nmp;
result.error++;

}
}
else{
/* Classification rejected */
result.reject++;
}
}
}
return( result );
}
/* */

void learn_cf( CLASSIFIER *clfr, SAMPLE *smp, PARAMETER *pa, int cv )
{

int1, j, k;

int max_index, flag;

double alpha, max_a;

for(i=0 ;i< pa->s_num ; i++ ){
if( (smp+i)->group !=cv }{
for(j=0;j <pa->N_pop ; j++){
- alpha = (cHr+j)->cf;
for(k=0; k < pa->s_dim ; k++)
alpha *= membership( (clfr+j)->condition+k, *((smp-+i)->x-+k), pa );

if(j ){
if( max_a < alpha ){
max_a = alpha;
max_index = j;

flag=1;
}
else if( ( max_a = alpha ) && ( (clfr+max_index)->clss != (clfr+j)->clss ) )
flag=0;
}
else{
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max_a = alpha;
max_index = j;
flag=1;

}
}

if( flag && (max_a!=0.0) ){
if( (clfr+max_index)->clss == (smp-+i)->clss ){
/* Correctly Classified */
(clfr+max_index)->cf = (clfr+max_index)->cf +
pa->eta_1 * (1.0 - (clfr+max_index)->cf );
}
else{
/* Wrongly Classified */
(clfr+max_index)->cf = (clfr+max_index)->cf -
pa->eta_2 * (clfr+max_index)->cf;

}
}
}
}
retumn;
}
/* ®/

I_SET how_many_rules( CLASSIFIER *clfr, PARAMETER *pa)
{

int i, j, k, flag;

I_SET result;

result.total = 0;
result.disjoin = 0;
for(i=0;i< pa->N_pop ; i++ )}{
if( (clfr+i)->correct Il (clfr+i)->wrong )
result.total++;

for(j = (i+1) ; j < pa->N_pop ; j++ ){
flag =0;
for(k=0; k < pa->s_dim ; k++ ){
if( (((clfr+i)->condition+k)->part == ((clfr+j)->condition+k)->part) &&
(((clfr+i)->condition+k)->posi == ((clfr+j)->condition+k)->posi) )
flag++;
}
if( flag == pa->s_dim ){
flag=0;
(clfr+)->cf = 0.0;
break;
}
else
flag=1;
}
if( flag)
result.disjoin++;

}

return( result );
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}
1% */

void preserve_elite{ CLASSIFIER *cur, CLASSIFIER *eli, PARAMETER *pa )
{

int i, j;

for(i=0; i< pa->N_pop ; i++ ){

for(j=0;j<pa->s_dim; j++ ){
((eli+i)->condition+j)->part = ((cur+i)->condition+j)->part;
((eli+i)->condition+j)->posi = ((cur+i)->condition+j)->posi;

)

(eli+i)->clss = (cur+i)->clss;

(eli+i)->cf = (cur+i)->cf;

(eli+i)->fitness = (cur+i)->fitness;

(eli+i)->correct = (cur+i)->correct;

(eli+i)->wrong = (cur+i)->wrong;

}
return;
}
/* */
void g_o( CLASSIFIER *clfr, PARAMETER *pa )
{
int i;
int pl, p2;

int n_chldn; /* number of children */
double *fit; /* fitness */
double tmp_d, tmp_d2;

CLASSIFIER *new, dummy;
fit = (double*)alloc_1( pa->N_pop, sizeof(double) );
/* == Normalization of Fitness == */

tmp_d2 =0.0; /* sum of fitness */
for(i=0;i< pa->N_pop ; i++ ){
tmp_d2 += (clfr+i)->fitness;
if( i)
if( tmp_d > (clfr+i)->fitness )
tmp_d = (clfr+i)->fitness;
}
else
tmp_d = (clfr+i)->fitness;

}
if( (tmp_d2 = 0.0) Il (tmp_d2 == pa->N_pop * tmp_d) ){
for(i=0;i<pa->N_pop;i++)
*(fit+i) = 1.0 / (double)pa->N_pop;

}
else{
for(i=0;i<pa->N_pop; i++)
*(fit+1) = ( (clfr+i)->fitness - tmp_d ) / ( tmp_d2 - pa->N_pop * tmp_d );
}

/* == Initialization of New Classifiers == *
n_chldn = (int)( pa->N_pop * pa->P_rep );
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new = (CLASSIFIER *)alloc_1( n_chidn, sizeof(CLASSIFIER) );
for(i=0;i< n_chldn;i++)

(new+i)->condition = (CONDITION*)alloc_1( pa->s_dim, sizeof(CONDITION) );
dummy.condition = (CONDITION*)alloc_1( pa->s_dim, sizeof(CONDITION) );

/* == Genetic Operation == */
i=0;
while( i < ( n_chldn-1) ){
selection( fit, pa->N_pop, &pl, &p2 );
crossover( clfr+pl, clfr+p2, new+i, new+i+1, pa->s_dim );
mutation( new-+, pa );
mutation( new+i+1, pa );
i+=2;

}

if( (n_chldn%?2) ){
selection( fit, pa->N_pop, &pl, &p2 );
crossover( clfr+pl, clfr+p2, new+i, &dummy, pa->s_dim );
mutation( new+i, pa);

}

/* == Replacement == */
replace( clfr, new, pa, n_chldn );

free( fit );
for(i=0;i<n_chldn;i++)

free( (new+i)->condition );
free( new );
free( dummy.condition );
return;

}
1* */

void selection( double *fit, int pop, int *p1, int *p2 )
{

int i;

double rv; /* random value */

v = (double)( rand()%32767 ) / 32767.0;
for(i=0;1i<pop;i+t+){
rv -= *(fit+i);
if(rv <= 0.0 ){
*pl =i;
break;
}

}

if(rv> 0.0 ){
fprintf( stderr, "\nstrange random value( selection \n" );
exit( 1);

}
rv = (double)( rand()%32767 ) / 32767.0;
for(i=0;i<pop;it+){

rv -= *(fit+i);

if(rv <= 0.0 ){
*p2 =j;
break;
}
}
if( rv > 0.0 ){

fprintf( stderr, "\nstrange random value( selection )\n" );
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exit(1);

return;

}
/% */

void crossover( CLASSIFIER *p1, CLASSIFIER *p2, CLASSIFIER *nl,
CLASSIFIER *n2, int dim )

{
int i;
/*== block change( uniform crossover ) ==*/
for(i=0;i<dim; i++ ){
if( (rand()%2) ){
(nl->condition+i)->part = (pl->condition+i)->part;
(nl1->condition+i)->posi = (p1->condition+i)->posi;
(n2->condition+i)->part = (p2->condition-+i)->part;
(n2->condition+i)->posi = (p2->condition+i)->posi;
}
else{
(n1->condition+i)->part = (p2->condition+i)->part;
(nl->condition+i)->posi = (p2->condition+i)->posi;
(n2->condition-+i)->part = (pl->condition+i)->part;
(n2->condition+i)->posi = (p1->condition+i)->posi;
}
}
return;
}
/* ®/
void mutation( CLASSIFIER *clfr, PARAMETER *pa )
{
int i;
int tmp_i;
char tmp_c;

double rv;  /* random value */

for(i=0;1i< pa->s_dim ; i++ ){
rv = (double)( rand() % RAND_MAX ) / (double)RAND_MAX;
if( rv < pa->P_mut ){

tmp_c = *(pa->part+i);

tmp_i = rand() % (atoi(&tmp_c)+1);

if( tmp_i ){
(clfr->condition+i)->part = atoi(&tmp_c);
(cMr->condition+i)->posi = tmp_i;

}
else{
(clfr->condition+i)->part = 1;
(clfr->condition+i)->posi = 1;
}
}
}
return;
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}
* *

void replace( CLASSIFIER *clfr, CLASSIFIER *new, PARAMETER *pa, int n_chl )
{

inti, j;

int index;

int *history;

history = (int*)alloc_1( n_chl, sizeof(int) );

for(i=0;i<n_chl;i++){
index = select_rep( i, history, clfr, pa->N_pop );

for(j =0 ;j < pa->s_dim ; j++ ){
((clfr+index)->condition+j)->part = ((new-+i)->condition+j)->part;
((clfr+index)->condition+j)->posi = ((new-+i)->condition+j)->posi;

}
}
free( history );
return;
}
I* */
int select_rep( int num, int *hist, CLASSIFIER *clft, int pop )
{
int i, j;
int flag;
int result; /* index */
double min_fit; /* minimum fitness */
min_fit = 100000.0;
for(i=0;i<pop; i++ ){
flag=1;
for(j=0;j <num; j++ ){
if( *(hist+j) ==1){
flag=0;
break;
}
}
if( flag ){
if( min_fit > (clfr+i)->fitness ){
min_fit = (clfr+i)->fitness;
result = 1;
}
}
}
*(hist+num) = result;
return( result );
}
/¥ ®/

void out_rule( CLASSIFIER *cur, CLASSIFIER *elj, int gen, PARAMETER *pa )
{
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int i, j, tmp_i;
FILE *fp_c, *fp_e;
char *name_c, *name_e;

name_c = (char*)alloc_1( 20, sizeof(char) );
name_e = (char*)alloc_1( 20, sizeof(char) );

tmp_i = gen/ 10;

sprintf( name_c, "rule%d.cur”, tmp_i );

sprintf( name_e, "rule%d.eli", tmp_i );

if( )( fp_c = fopen( name_c, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( %s )\n", name_c );
exit(1);

}

fprintf( fp_c, "antecedent part... , class, cf, learned cf, correct, error, reject\n" );

if( ) fp_e = fopen( name_e, "wt" )) ){
fprintf( stderr, "\nCannot Open File( %s Nn", name_e );
exit( 1);

}

fprintf( fp_e, "antecedent part... , class, cf, correct, error, fitness\n" );

for(i=0;i<pa->N_pop ; i++ ){
for(j=0;j < pa->s_dim ; j++ ){
fprintf( fp_c, "%d, %d\n", ((cur+i)->condition+j)->part, ((cur+i)->condition+j)->posi );
fprintf( fp_e, "%d, %d\n", ((eli+i)->condition+j)->part, ((eli+i)->condition+j)->posi );
}
fprintf( fp_c, "%d, %6.4f\n", (cur+i)->clss+1, (cur+i)->cf );
fprintf( fp_e, "%d, %6.4f\n", (eli+i)->Clss+1, (eli+i)->cf );
fprintf( fp_c, "cor = %d, err = %d, fit = %6.1f\n", (cur+i)->correct, (cur+i)->wrong, (cur-+i)->fitness );
fprintf( fp_e, "cor = %d, err = %d, fit = %6.1f\n", (eli+i)->correct, (eli+i)->wrong, (eli+i)->fitness );

}

fclose( fp_c );
fclose( fp_e );
free( name_c );
free( name_e );

return;

}
= */

#include"cs.h"

¥ */

void **alloc_2( int nl, int n2, int si, int s2 )
{

void **result;

int i;

if( !( result = (void**)calloc( nl, s1)) )}
fprintf( stderr, "\nMemory Allocation Error\n" );
exit( 1);

}
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for(i=0;i<nl;i++ ){
if( Y *(result+) = calloc(n2,s2 ) ) ){
fprintf( stderr, "\nMemory Allocation Error_2\n" );
exit( 1);
}
}

return( result );

}
I* */

void myread( FILE *fp, char *buf )
{

inti, c;

for(i=0;i< 100 ;i++){
c=getc(fp);

if((c="n")l(c==""))
break;
*(buf+i) = (char)c;
}

if(1i==100 ){
fprintf( stderr, "\nInvalid contents in file\n" );
exit( 1);

}
*(buf+) ="\0";

return;

}
1* L/

void free_2( void** obj, int nl)
{

int i;

for(i=0;i<nl;i++)
free( *(obj+i) );

free( obj );

return;

}
& */

void *alloc_1(int n, ints)

{

void *result;

if( !( result =calloc(n,s)) ){
fprintf( stderr, "\nMemory Allocation Error\n" );
exit( 1);

}

return( result );

}
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I* */
double membership( CONDITION *cdn, double x, PARAMETER *pa )

double a, dum_b;
double tmp_d, result;

if( cdn->part =1)
return( 1.0);

a = ( (double)cdn->posi - 1.0 ) / ( (double)cdn->part - 1.0 );
if( pa->shape ="'t' ){

/* trianglar shape */
dum_b = (double)cdn->part - 1.0;
tmp_d=(x-a);
if(tmp_d>=0.0)

result = 1.0 - tmp_d * dum_b;
else

result = 1.0 + tmp_d * dum_b;

if( result <=0.0)
result = 0.0;

}
else if( pa->shape == b’ ){

/* bell shape */
dum_b = 4.0 * log( 2.0 ) * ( (double)cdn->part - 1.0 ) * ( (double)cdn->part - 1.0 };
tmp_d=(x-a)*(x-a)*dum_b;
result = exp( -tmp_d );
}

retumn( result );

}
/¥ */
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-- Population size (num. of rules) --

10

-- Replacement rate --

0.2

-- Probability of mutation --

0.1

-- Num. of learnings of certainty factor --
0

-- Learning rate (eta_1) --

0.001

-- Learning rate (eta_2) --

0.1

-- Weight (in the fitness function) w_ncp --
1.0

-- Weight (in the fitness function) w_nmp --
5.0

-- Num. of generations --

100

-- Data file name -

CAD.dat

-- random seed —

10

-- shape of fuzzy sets (triangle or bell) --
triangle

-- num, of partition of each axis --
5555555555555555555555
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