
1..í)
c)

às'ã"

lntel I igent Techn iques

for

the Diagnos¡s of Coronary Artery Disease

Ravi Jain

This thesis submitted for the degree of

Doctor of Philosophy

Departrnent of Applied Mathematics,
The University of Adelaide

South Australiar

(November 1998)

**+r*



Contents

Abstract
Statement of Originality ..............
Acknowledgments.
List of Publications
Glossary of Terminology............

1 Introduction and Overview

Background to the Research...1.1

r.2
t.3
1.4
1.5

1.6

An introduction to Coronary Artery Disease....

Rationale of this Thesis
Artificial Neural Networks, Genetic Algorithms, Fuzzy System

Fuzzy Systems....
Conclusion

1

1

2
4
4
6

7

82 Pattern Recognition

What is pattern recognition?.............
Pattern- Clas sifi cation
Minimum error rate Classification Error
Bayesian Classification ............
Linea¡ Discriminant Functions

Quadric discriminant function ..

Maximum-Likelihood Gaussian Classifier..
The k-Nearest Neighbors Classifier
Difference between Perceptron and Gaussian Classifier

2.t
2.2
2.3
2.4
2.5
2.6
2.7
2.8
to
2.ro

11

12
13

t4
15

t7
20
22
23
24

I

Conclusion



3 Artificial Neural Networks

Introduction...............
Tlpes of Activation Function...
Iæarning Techniques ................
The Perceptron .................
Limitations of Single Layer Perceptron
Multilayer Perceptron (MLP)
Approximate Realization of Continuous Mappings by Neural Network
hie-Miyake's Integral Formula.........
Derivation of Back-propagation Algorithm.
Practical Issues
Conclusion

4 Genetic Algorithms

3.1

3.2
J.J
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.t
4.2
4.3
4.4
4.5
4.6
4.7

5.1

5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

37

.26

.31

17

tl
19

20
2I
22
23
26

34
36

37
38

4T

43

46
47
50
50
52

54
55

Introduction..
Fitness function
Genetic Operators..
Mathematical Foundations of Genetic Algorithms...
Diversity and Convergence
Comparing GA with Back-Propagation
Conclusion

39

44
45

46

465 The FuzzysetTheory

Fuzzy Sets

Fuzzy Set Operations...........
Properties of Fuzzy Sets ..................
Fuzzy Numbers
The Extension Principle .........

The Resolution Principle............
Fuzzy Relational Equations .

Fazzy Rule-B ased Systems and Fuzzy Inference.. ......

Aggregation of Fuzzy Rules.
Graphical Techniques of Inference..
Conclusion

52
53

55

57

t1



6 Experimental Evaluation and Comparison 58

58
59
59
63
64
65
66
7t

72

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

ANNs applied to Coronary artery disease
Knowledge Representation by Neural Networks for Diagnostics.
Simulation Results .

The Stopping Criterion...............
Performance of other Statistical Methods reported in the literature
The Dual Spiral Problem....
Conclusion

7 Experimental Results with Hybrid System

Brief Description of GA software.... 73

Hybridization of Genetic Algorithms with the Back-Propagation Algorithm. ......74
Neural Network Specific Crossover Operator

727.1

7.2
7.3
7.4
7.5
7.6

9.r
9.2
9.3
9.4
9.5
9.6

76

Simulation Results
89
78

90

8.1

8.2
8.3
8.4
8.5

I Experimental results using genet¡c programming

Introduction
The Evolutionary Pre-Processor.............

Results
Conclusion

9 Experimental Results of the Fuzzy'Glassifier System

Outline of the Fuzzy Classifier System
Ftzzy inference for pattern clas sification ............
Fuzzy Classifier System 103

Simulation Results r05
106

Conclusion

Conclusion

90
9l
92
94
98

99

99
100
103

10 General Conclusions and Further Directions of Research 107

10. 1 Conclusions............... 107
10910.2 Implications for Further Research

A Generalized Delta Learning Rule for Multilayer Perceptron 110

Neural Network Learning using Genetic Algorithms 112

I wzy Classifier Systems 127

179

B

c

Bibliography

ru



Table 6-l: Description of the 13 predictor variables from the coronary
artery disease data set; variable types are (R)eal, (E)numerated, @)oolean................59

Table 6-2: Best results for different network properties and learn/test methods ...........63
Table 6-3: Performance of other Statistical Methods reported in the literature.............65
Table 6-4: Comparison of percent correct classification of recognition
on the test set using various Neural networks.......

List of Tables

Table 4-1: Sample Population of l0 strings.......
Table 4-2: Contol parameters required for standard G4....

Table 9-1: GA parameters

Table 9-2: Using bell-shaped membership function (Heart Disease)

39
45

6s

9T

93

Table 7-1: Simulation results for the CAD problem after 500 generations 79

Table 8-1: Contol parameters required for standa¡d GP.............
Table 8-2: Percentage classification elrors for each of the methods used.........

105

105

1V



List of Figures

Figure 1-1: Coronary Artery Disease (adapted from Pathology Illustrated).......................3

Figure l-2: AMyocardial perfusion scan and coronary arteriogram in the presence of a
mild stenosis of the left anterior descending coronary artery (mid portion). .....................3
Figure 1-3: Soft Computing .......................5

Figure 2-l : A pattern recognition system......
Figure 2-2: Conditional probability density functions and a posteriori probablities......
Figure 2-3:Thelinea¡ decision boundary g(x)= g(x) = #x + wo = 0

13

t4
77

18

t9
2l

Figure 2-4: A quadric discriminant machine...... .19

Figure 3-1: A simplified sketch of a biological neuron
Figure 3-2: (a): Sigmoid function. (b): Threshold function. (c): Sign function.
Figure 3-3 : SingleJayer Perceptron
Figure 3-4: Classification with a 3-input perceptron

Figure 3 -5 : Perceptron læarning Algorithm.....
Figure 3-6: The Multi-l,ayer Perceptron architecture.
Figure 3-7 : MLP Learning Algorithm.
Figure 3-8: The error surface and contour

Figure 4-1: The Basic Genetic Algorithm.
Figure 4-2:The roulette wheel
Figure 4-3: Example of l-point,2- point and uniform Crossover..........
Figure 4-4: Example of mutation; bit 3 has been mutated.

Figure 5-1: Membership functions for a crisp set and fiizzy set

Figure 5-2: Union and intersection of fuzzy sets A and B, and complement of
fuzzy set A
Figure 5-3: The ¡r-function
Figure 5-4: The S-function
Figure 5-5: The resolution principle

2t
2t
2t
2t
2l

38
39
40
4r

49
51

52
53

v



Figure 6-l: When to stop learning (13-50-1 network, training sef 202 examples,

test set 101 examples)
Figure 6-2: When to stop learning (13-50-1 network, training set202 examples,

test set 101 examples)............
Figure 6-3: The dual spiral problem
Figure 6-4: log of sum squared error with 4 different combinations of learning

rate and momentum for I 13-5-4-1 network.
Figure 6-5: log of sum squared error with 4 different combinations of learning

rate and momentum for I 13-5-4-1 network.
Figure 6-6: log SSE curves of train and test set with LR = 0.1 and Mom=0.6
(except for B and D, Mom=0.5) for the following networks: At3-7-7-1,

Figure 6-7: Mean square error graph...

Figure 7-1: Flowchart for the GA software SUGAL....
Figure 7-2:Example of the ordering of the weights in a chromosome...

Figure 7-3 : NN-specific crossover operation ........
Figure 7-4:F;xarryle of the difference in potential crossover point......
Figure 7-6: l-point crossover averaged over 25 epochs

Figure 7-7:2-point crossover averaged over 25 epochs......
Figure 7-8: Uniform crossover averaged over 25 epochs......

Figure 7-9: NN-specific 2-point crossover averaged over 25 epochs.........

Figure 7-10: NN-specif,rc uniform crossover averaged over 25 epochs

Figure 7-11: Average of 75 epochs..

Figure 7-I2; Averages over 100 epochs

Figure 7-13: No. of networks with an error within various ran9es...........

64

67

65
66

68
69

67

73
76
76
78
8l
82
83
84
85

86
87
88

Figure 8- 1 : The multi-tree representation ............
Figure 8-2: Decision tree generated by QUEST

..96

..91

101
Figure 9-l: Generalised bell-shaped and triangular membership function.............. 101

Figure 9-2: Ge¡eralised various bell-shaped membership functions.

vl



Abstract

In this thesis, a genetic-programming-based classifier system for the diagnosis of coronary
artery disease is proposed. It maintains good classification and generalisation performance.

Based on genetic programming, a software system called Evolutionary Pre-Processor has

been developed which is a new method for the automatic extraction of non-linear features

for supervised classification. The central engine of Evolutionary Pre-Processor is the genetic

program; each individual in the population represents a pre-processor network and a

standard classificaúon algorithm. The EPP maintains a population of individuals, each of
which consists of an array of features. The features are transformations made up of
functions selected by the user. A fitness value is assigned to each individual, which
quantifies its ability to classify the data. This fitness value is based on the ability of a simple
classifier to correctly classify the data after it has been transformed to the individual's
feature space. Through the repeated application of recombination and mutation operators to
the fitter members of the population, the ability of the individuals to classify the data

gradually improves until a satisfactory point in the optimisation process is reached, and a
solution is obtained.

Recently there has been a rising interest in using artificial intelligent (AI) techniques
in the fietd of medical diagnosis. However, it is noted, that most intelligent techniques have

limitations, and are not universally applicable to all medical diagnosis tasks. Each intelligent
technique has particular computational properties, making them suitable for certain tasks

over others. Integration of domain knowledge into empirical learning is important in
building a useful intelligent system in practical domains since the existing knowledge is not
always perfect and the training data are not always adequate. However, genetic algorithms
(GAs) are robust but not the most successful optimization algorithms for any particular
domain. Hybridizing a GA with algorithms currently in use can produce an algorithm better

than both the GA and the current algorithms. A GA may be crossed with various problem
specific sea¡ch techniques to form a hybrid that exploits the global perspective of the GA
and the convergence of the problem specific technique. In some cases, hybridization entails

employing the representation as well as the optimization techniques already in use in the
domain while tailoring the GA operators to the new representation.

In this connection a hybrid intelligent system is highly desirable. Here two different
hybrid techniques are also presented. In the first approach, fuzzy systems is integrated with
genetic algorithms. In this approach, each fuzzy if-then rule is treated as an individual and

each population consists of certain number of fuzzy if then rules. It can automatically
generate fuzzy if-then rule from training patterns for multi-dimensional for pattern

classifrcation problems. Classifiers in this approach are fuzzy if then rules. In the second

approach genetic algorithms are combined with back-propagation algorithms to enhance the
classification performance. In this approach, a complete set of weights and biases in a neural
network a¡e encoded in a string, which has an associated f,ttness indicating its effectiveness.
Each chromosome completely describes a neural network. To evaluate the fitness of a

chromosome, the weights on the chromosome are assigned to the links in a network of a

given archtecture, the network is then run over the training set of examples and the sum of
the sqaures of the errors is returned from each example.

All approaches were tested on a real-world problem of coronary artery disease data.
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Chapter 1

Introduction and Overview

1.1 Bacþround to the Research

Coronary ñtery disease (CAD) is the most common cause of death in humans. It is a
degenerative disease which is the result of an increase of atheroma in the coronary

artery walls leading to total or partial occlusion. The resulting clinical feature is
Myocardial Infarction and subsequently sudden death. The main risk factors related to
this disease involve age, sex, chest pain ty¡re, resting blood pressure, cholesterol, fasting
blood sugar, resting electroca¡diographic results, maximum hea¡t rate achieved,

exercise induce angina, ST depression induced by exercise relative to rest, slope of the

peak exercise ST segment, smoking, hypertension, Stress etc. This complex

multifactorial disease makes it difficult for clinicians to accurately assess the likelihood
of a cardiac event.

For this reason early detection of coronary artery disease is an important medical
research area. One of the most reliable ways to diagnose coronary artery disease is

cardiac cathenzation, leading to a final diagnosis (Watanabe, 1995). However, it differs
from other method in that it is invasive, it requires a catheter to be inserted into a vein
or artery and manipulated to the heart under radiographic fluoroscopic guidance. It is
performed by a puncture or cut down of the brachial or femoral artery, from which the

hea¡t is approached retrogradely. Since some patients would die of an allergic shock to

the angiographic enhancing agent used, they must be examined beforehand for such

hypersensitivity by an intravenous injection of that agent. There is also the risk of life-
threatening arryrthmia, or irreversible invasion into the coronary arteries or other

structures by the cathetenzation. If a sufficient high diagnostic rate can be assured at

some stage prior to cathetenzation, it will be a very useful addition to the present

medical diagnosis capability. Although accurate, it is costly and time consuming and

there is always an element of risk.
The diagnosis of coronary artery disease is a complex decision making process.

The electrocardiogram (ECG) is the principal diagnostic tool available at present but it
often fails to diagnose the coronary ñtery disease. There is however a standard test that

does give the correct diagnosis of coronary artery disease but this involves the

measurement of enzyme and ECG changes over a period of 24 to 48 hours. This
method offers no help in the early diagnosis of coronary artery disease.

A considerable number of methodologies have been developed to analyze clinical
data collected during patient evaluation in attempts to improve on the diagnostic
accuracy of physicians in identifying coronary artery disease. But none of these

approaches has been able to improve signif,rcantly on clinical data. Conventional
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statistical multivariate analysis methods are used to measure risk on those asymtomatic

patients who, nevertheless, present one, two or more CAD risk factors. Although
statistical methods provide information regarding the likelihood of CAD event through
systematic numerical calculation, it does not take in account the individual, neither
does it provide sophisticated human-like reasoning.

It is obvious that there is a need by which the data available in the clinical setting

can be analyz,ed to yield information that can be utilized to assist the clinician in
making a fast and accurate diagnosis of coronary artery disease. An intelligent approach

using artificial neural networks, genetic algorithms and fuzzy logic can assist the

clinician for this purpose.
The main objective of this resea¡ch is to develop the intelligent techniques in

diagnosing coronary aÍery disease from a given set of patients data. The techniques

developed here include genetic programming in order to evolve optimal subsets of
discriminatory features for robust pattern classification and hybrid learning
methodology that integrates artificial neural networks, genetic algorithms, fitzzy
systems.

1.2 An introduction to Coronary Artery Disease

The term coronary artery disease (CAD) (Figure l-1) refers to degenerative changes in
the coronary circulation. Cardiac muscles fibres need a constant supply of oxygen and

nutrients and any reduction in the coronary circulation produces a corresponding

reduction in the cardiac performance. Such reduced circulatory supply known as

coronary ishemia (is-KE-me-a) usually results from partial or complete blockage of the

coronary arteries. Figure L-2 shows a myocardial perfusion scan and coronary

arteriogram in the presence of a mild stenosis of the left anterior descending coronary

artery.
The usual cause is the formation of fatty deposit, or plaque, in the wall of a

coronary vessel. The plaque, or an associated thrombus, then narrows the passageway

and reduces blood flow. In myocardial infarction (MD or heart attack the coronary

circulation becomes blocked and the ca¡diac muscle cells die from lack of oxygen. The

affected tissue then degenerates, creating a non-functional area known as an infarct.
Heart attacks most often result from severe coronary ar:tery disease. The consequences

depend on the site and nature of the circulatory blockages.

2
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COROñIARY ARTERY DISEASE

COMMON SITES (in order of frcquency) w¡th REGIONAL DfSTRlBUTloNrof 
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Figure 1-1: Coronary Artery Disease (adapted from Pathology Illustrated)

Figure l-2: AMyocardial perfusion scan and coronary arteriogram in the presence of a
mild stenosis of the left anterior descending coronary artery (mid portion).

3



CHAPTER 1. INTRODUCTION AND OVERVIEW

1.3 Rationale of this Thesis

This thesis has the following objectives:

1. A genetic-programming-based classifier system for the diagnosis of coronary artery

disease (Chapter 8).
2. A comparison of genetic programming with various well-known classification

techniques.
3. A concise overview of pattern recognition (Chapter 2).

4. A concise overview of Neural Networks and genetic algorithms (Chapter 3, Chapter

4).
5. Use of multilayer perceptron for the diagnosis of coronary artery disease (Chapter

6).
6. Use of neuro/genetic algorithm for the diagnosis of coronary artery disease (Chapter

7).
7. Use of geneticlfuzzy classifier system for the diagnosis of coronary ætery disease

(Chapter 9).

Furthermore, in the thesis the effects of the input clinical variables for the diagnosis of
coronary ütery disease using neural network, a hybrid of genetic and the back-

propagation algorithms, and fuzzy and genetic algorithms are evaluated. It is shown that

these AI methods give best diagnostic performance than the other methods. It is shown

in this study that neural network appears to place diagnostic importance on certain

clinical variables.
It is obvious from brief literature review that there is not a single technique

which has answer to all the problems. Thus it is useful to integrate various artificial
intelligence based techniques such as, neural networks and genetic algorithms (GAs)

and finzy systems and GAs.

1.4 Artifïcial Neural Networks, Genetic Algorithms,ltzzy System

Artificial neural networks and genetic algorithms are the examples of microscopic

biological models. They originated from modelling of the brain and evolution. ANNs

are a new generation of information processing systems. The main theme of neural

network resea¡ch focuses on modelling of the brain as a parallel computational device

for various computational tasks that were performed poorly by traditional serial

computers. They have a large number of highly interconnected processing nodes that

usually operate in parallel. ANNs, like a human brain, demonstrates the ability to learn,

recall, and generalise from training patterns. The ANNs offer a number of advantages

over the conventional computing techniques such as the ability to learn arbitrary non-

linear input-output mapping directly from training data. They can sensibly interpolate

input patterns that are new to the network. Neural networks can automatically adjust

their connection weights or even network structures. The inherent fault-tolerance

capability of neural network stems from the fact that the large number of connections

provides much redundancy, each node acts independently of all the others, and each

node relies only on local information.
Genetic algorithms (GAs) were developed by John Holland in the 1970s. These

algorithms are general-purpose search algorithms based on the principles of natural

population genetics. The GA maintains a population of strings, each of which

4
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represents a solution to a given problem. Every member of the population is associated

with a certain fitness value, which represents the degree of correctness of that particular

solution. The initial population of strings is randomly chosen, and these strings are

Figure 1-3: Soft Computing

manipulated by the GA using genetic operators to f,rnally arrive at the best solution to

the given problem. The main advantage of a GA is that it is able to manipulate a large

population of strings at the same time, each of which represents a different solution to

the given problem. This way the possibility of the GA getting stuck in local minima is

greatly reduced, because the whole space of possible solutions can be searched

simultaneously. A basic genetic algorithm comprises three genetic operators:

selection,
crossover, and
mutation

Starting from the initial population of strings the GA uses these operators to

calculate successive generations. First, pairs of individuals of the current population are

selected to mate with each other to form the offspring, which then form the next

generation.
Selection is based on the survival of the fittest strategy, but the key idea is to

select the better individuals of the population as in tournament selection, where the

participants compete with each other to stay in the competition. The most commonly

used strategy to select pairs of individuals is the method of roulette-wheel selection, in
which every string is assigned a slot in the wheel sized in proportion to the string's

relative f,rtness. This ensures that highly fit strings have a greater probability to be

selected to form the next generation through crossover and mutation. After selection of
the pairs of parent strings the crossover operator is applied to each of these pairs.

The crossover operator involves the swapping of genetic material (bit-values) between

the two parent strings. In single point crossover a bit position along the two strings is

selected at random and the two parent strings exchange their genetic material as

illustrated below.

Parent A = ã, a2a3a4l arau

ParentB = br b2 b3 b4 I bs b6

The swapping of genetic material between the two parents on either side of the

selected crossover point produces the following offspring:

5
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CHAPTER 1. INTRODUCTON AND OVERVIEW

Offspring A' = 4t az a3 a4l bs b6

Offspring B' = br bzb3b4l a, au

The two individuals (children) resulting from each crossover operation will now
be subjected to the mutation operator in the final step to forming the new generation.

The mutation operator alters one or more bit values at randomly selected locations

in randomly selected strings. Mutation takes place with a certain probability, which in
accordance with it's biological equivalent is usually a very low probability. The

mutation operator enhances the ability of the GA to frnd a near optimal solution to a
given problem by maintaining a sufficient level of genetic variety in the population,

which is needed to make sure that the entire solution space is used in the search for the

best solution.

1.5 Flzzy Systems

The fuzzy logic was developed by Lotfi Zadeh (1965) to provide approximate but an

effective means of describing the behavior of the systems that are not easy to tackle

mathematically. Zadeh stated that as the complexity of the system increases, our ability
to make precise and yet significant statements about its behavior diminishes until a

th¡eshold is reached beyond which precision and relevance become almost mutually

exclusive characteristics. Attempts to automate various types of activities including

diagnosing a patient have been impeded by the gap between the way human reasons

and the way computers are programmed. Thus the fuzzy logic is a step towards

automation. Inspite of many advantages, fuzzy logic has few problems. These are, for
example, the lack of design procedure for determining membership function and the

lack of design adaptability for possible changes in the reasoning environment. The use

of artificial neural networks in designing the membership function reduces system

development time and the cost and increases the performance of the system.

Traditionally, the users set the structure of a feed-forward neural network a priori. The

type of the structure used may perhaps be based on some knowledge of the medical

diagnostic problem but usually the neural network structure is found by the trial and

error method. kr many cases the structure is a fully connected feed forward neural

network and the users might try to vary the number of neurons in the hidden layers.

Such a network structure is then trained using a suitable learning algorithm to generate

an optimal set of weights while the structure is taken for granted or chosen from limited

domain. The method of trial and error is not only time consuming but may not generate

an optimal structure. It is possible to use genetic algorithm in the automatic generation

of neural network structure and optimise its weights.

1.6 Outline of this Thesis

The thesis contains the following chapters.

The work begins in Chapter 2 with an introduction to pattern recognition. The

classification methods used for the experimental work are described. Difference

between Perceptron and Gaussian classifiers also presented.

Chapter 3 presents a detail description of single layer perceptron, and multilayer
perceptron (MLP). In this chapter limitations of perceptron, learning techniques and

mathematics of MLP, are highlighted.

6



CHAPTER 1. INTRODUCTION AND OVERVIEW

Chapter 4 is an introduction to the genetic algorithms (GAs). In this chapter

mathematical foundation of genetic algorithm, genetic operations etc. a¡e described and

compared it with the gradient descent algorithm.
Chapter 5 describes the fuzzy set theory. It presents principal concepts and

mathematical notions of fazzy set theory, fuzzy set operations, properties of fuzzy sets,

etc. The purpose of this chapter is to build the sound theoretical background which is
necessary to design fuzzy systems. This chapter forms a basis for Chapter 9.

Chapter 6 presents experiments and results of MLP. This chapter begins with a
description of the data sets used to test the algorithm. h this chapter an attempt has

been made to formulate the neural network training criteria in medical diagnosis. Also,

the results are compared with various neural networks such as modular networks, radial
basis function, reinforcement learning.

Chapter 7 describes the experimental results of hybrid system. kr this chapter, the
training of MLP by the GA optimization method is presented. It involves the

optimization of connection weights of MLP architecture for solving a specified

mapping of an input data set to output data set. AIso, it is compared with the back-
propagation algorithm. Experimental results are presented using 1-point crossover, 2-
point crossover, uniform crossover, NN-specifrc 2-point crossover, and NN-specif,rc

uniform crossover.
Chapter 8 presents the experimental results of genetic programming. Five simple

statistical classification techniques are used, and the results are compared.

Chapter 9 presents the experimental results of genetic-algorithm-based fiizzy
classifier system. Here each lazzy if-then rule was treated as an individual. The fitness

value of each fuzzy if-then was determined by the numbers of correctly and wrongly

classified training patterns by that rule.
In Chapter 10 the conclusions are presented about the overall research topic,

followed by implications for the larger field of research. This chapter ends with
suggestions for future research.

Finally, there are three appendices. Appendix A contains the generalised delta

rule for Multilayer Perceptron. Appendix B contains neural network learning using

GAs. Appendix C contains codes for the design of fuzzylgenetic classifiers respectively.

1.7 Conclusion

This chapter has presented an overview of this thesis. It has established that CAD is a
major problem. The present methods of diagnosis have been described and problems

with them identified. It also presents brief introduction to artificial neural networks,

fuzzy systems and hybrid intelligent techniques. These methods outperform the present

methods of diagnosis in several important ways. The background of the research

problem was introduced and the basic methodology used for the research was

described.

7



Chapter 2

Pattern Recognition

2.', What is pattern recognition?

Pattern recognition can be defined as a process of identifying structure in data by
comparisons to known structure; the known structure is developed through methods of
classification. For example, a child learns to distinguish the visual patterns of mother'
and father, the aural patterns of speech and music. A mathematician detects patterns in
mathematics. By finding structure, we can classify the data according to similar
patterns, attributes, features, and other characteristics. Any object or pattern that has to
be classified must posses a number of discriminatory features. The first step in any
recognition process, performed either by a machine or by a human being, is to choose

candidate discriminatory features and evaluate them for their usefulness. Feature

selection in pattern recognition involves the derivation of salient features from the raw
input data in order to reduce the amount of data used for classification and

simultaneously provide enhanced discriminatory power. The number of features needed

to successfully perfoÍn a given classification task depends on the discriminatory
qualities of the selected features. The input to a pattern recognition machine is a set of N
measurements and the output is the classification. We represent the input by N
dimensional vector x, called a pattern vector, with its components being N
measurements. The classification at the output depends on the input vector x. Different
input observations should be assigned to the same class if they have similar features and

to different features if they have dissimilar features. The data used to design a pattern

recognition system are usually divided into two categoriesi training data and test data.

Discriminant functions are the basis for the majority of pattern recognition problems.

Pattern classification techniques fall into two categories.

l. Parametric
2. Non-parametric

A parametric approach to pattern classification defines discriminant function by a

class of probabilities densities def,rned by a relatively small number of parameters. In
fact, all parametric methods in both pattern classification and feature selection assume

that each pattern class arises from a multivariate Gaussian distribution, where the
parameters are the mean and covariances.

Numeric techniques include deterministic and statistical measures. These can be
considered as measures made on geometric pattern space. In the statistical approach to
numerical pattern recognition each input observation is represented as a multi-
dimensional data vector. Statistical pattern recognition systems rest on mathematical
models.

Non-numeric techniques are those that include the domain of symbolic processing
that is dealt with by such methods as fuzzy sets.
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2.2 Pattern Glassification

Any objectlpattem that has to be recognised or classified must possess a number of
discriminatory properties or features. The first step in any recognition process,

performed either by a machine or by a human being, is to choose candidate

discriminatory properties or features and evaluate them for their usefulness. Feature

selection in pattern recognition involves the derivation of silent features from the raw
input data in order to reduce the amount of data used for classification and

simultaneously provide enhanced discriminatory power. The number of features needed

to successfully perfonn a given classification task depends on the discriminatory
qualities of the selected features.

The traditional form of a pattern classifier is shown in Figure 2-1. T\e original
data measurements are fed into the pre-processor xi which outputs features y¡. These

features a¡e then fed to the classifier, which ouþuts a class label ci. For the training

samples with known class labels c¡, the difference between .t'*d ct and are used to train
the classifier. For novel samples, 

"t' 
ir th" predictor for the class of that sample.

Measurement
vector

Class label

Figure 2-l: Apattern recognition system

2.3 Minimum error rate Classification Error

In classif,rcation problems, each state of nature is usually associated with a different one

of the c classes and the action cr1 is usually interpreted as the decision that the true state

of nature is oi. If action cri is taken and the true state of nature is co¡ then the decision is

correct if i=j, and an error if i+j. The job of the classifier is to find an optimal decision

that will minimize the average probability of error i.e. risk or elror rate. A loss function
so called symmetrical or zero-one loss function assigns no loss to a correct decision, and

assigns a unit loss to any effor. Thus all errors are equally costly. The risk
corresponding to this loss function is precisely the average probability of error, since the
conditional risk is

R(cr,lx) = >:, î.(a, 
lco, )P(co,lx)

= I¡*,P(ro,lx)

= t - p(corlx)
(2.r)

where

ì.1ø,lro,) = i, j = 1,...,c.
0

I
i=j
i+j

(2.2)

and P(cUlx) is the conditional probability that action oû is correct. The Bayes decision
rule to minimize risk calls for selecting the action that minimizes the conditional risk.

9

ClassifierFeature extractor
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Thus to minimize the average probability of error we should select the i that møximizes

the a posteriori probability P(roilx). In other words,þr minimum error rate:

Decideo¡ P(c¡ilx) >P(cl¡lx) V j +i.

2.4 Bayesian Classification

The Bayesian approach is an analytical method and is very powerful and widely used.

Under this approach the problem is posed in probabilistic terms and all the probabilities
and distributions are assumed to be known (Duda and Hart, 1973). The advantages of
this approach are that it is theoretically well-founded empirically well-proven and

involves procedural mechanisms whereby new problems can be systematically solved.

It relies on the basic statistical theory of probabilities and conditional probabilities.

p(xlco1¡

p(xlo>z)

Figure 2-2: Conditional probability density functions and a posteriori probabilities.

The pivotal mathematical tool for this analysis is Bayes RuIe;

Ê
ct

oti
È

xx

where

p(x) = Ii, nf* I g )P(co, )

(2.3)

(2.4)

Bayes rule shows by observing the value of x changes the a priori probability P(co¡) to

the a posteriori probability P(ol|x). For example, if we have an observation x for which
P(ro1lx) is grêater than P(cozlx), we would normally decide that the true state of nature is

or. Similarly, if P(rozlx) is greater than P(co1lx) we would decide to choose coz. For x, the

probability of error is defined as follow.

P(error lx) =
(2.s)

We can minimize the probability of error by deciding cor for the same value of x if
P(rorlx) > P(ozlx) and orz if P(rozlx) > P(ollx). The average probability of error is given
by

10

P(co,(x))

P(olr(x))

if we decide co,

if we decide ro,

P(r¡rlx)

P(rozlx)
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P(error,x) dx
(2.6)

P(error, x)p(x) dx

Figure 2-2 shows the difference between p(xkor) and p(xlolz) and the variations of
P(co¡lx) with x. Iæt P(oj) be the a priori probabiliti¿s and p(xko¡) be the state-
conditional probability density function for x, the probability density function for x
given that the state of nature is to¡.

To summarise, the overall Bayesian approach for minimising error rate is to
estimate or hypothesise the priors and the conditional class densities, then invert these to
obtain the posteriors. For a new x, the posterior with maximum value corresponds to the
Bayes optimal class. The freedom in choice of learning algorithms is in the way the
conditional probability density functions are formed. Some coÍrmon methods are

discussed here.

2.5 Linear Discriminant Functions

A linear discriminant function divides the feature space by a h1'pe¡plane decision
surface. The orientation of the surface is determined by the normal vector w, and the
location of the surface is determined by the threshold weight wo. The discriminant
function g(x) is proportional to the signed distance from x to the hyperplane, with g(x) >
0 when x is on the positive side, and g(x) < 0 when x is on the negative side.

A discriminant function that is linear combination of the components of x can be
written as

g(x) = wtx + ws, (2.1)

where w is called the weight vector and wo the threshold weight. A two category linear
classif,rer implements the following decision rule: Decide {rlr if g(x) > 0 and cùz if g(x) <
0.

Thus, x is assigned to cor if the inner product wtx exceeds the threshold -wo. If g(x) - 0,

x can be assigned to either class.
The equation g(x) = 0 defines the decision surface that separates points assigned

to ror from points assigned to oz. When g(x) is linear, this decision surface is a

hyperplane. If x1 and xz are both on the decision surface, then

wtxt+wg =wtxz+wo
(2.8)

or wt(xr-xz)=0,

so that w is normal to any vector lying in the hyperplane. In general the hyperplane

divides the feature space into two halfspaces, the decision region Rr for ol and the
decision region R1. Since g(x) > 0 if x is in Rr, it follows that the normal vector w
points into Rr.

The discriminant function g(x) gives an algebraic measure of the distance from x
to the hyperplane.

P(enor¡ = j

-fJ

w

lFit
x=xp+r

11

(2.e)
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where xp is the normal projection of x onto H, and r is the desired algebraic distance,

positive if x is on the positive side and negative if x is on the negative side. Then g(xo)

=0,

g(x) = wtxl + wo = rllwll, (2.10)

An illustration of these results are given in Figure 2-3.

wo*

g<0
g>0

g=0

Figure 2-3:Tltelinear decision boundary g(x) = #x + wo = 0

2.6 Quadric discriminant function

A quadric discriminant function has the form

g,(x) =>l=,*¡*?.>i=,'X=j*rwjr.xjXr +>|wjXj *wu*, Q.lr)

Any machine, which employs quadric discriminant function, is called a quadric
machine (see Figure 2-4). Aquadric discriminant function has (d+1Xd+2)12 parameters

or weights consisting of

d weights as coefficients of xj2 terms wjj
d weights as coefficients of x¡ terms w¡

d(d-l) weights coefficients of x¡ x¡ terms, ktj wjr
I weight which is not a coefficient w¿+r

Equation (2.11) can be put into matrix form after making the following definitions. I-et

the matrix ¡ = [a¡rJ have the following components given by

g(x)

ll*ll

âii = wii
a¡y=Vzwiu

j=1'""d
j,k=1,...,d,j+k

t2



CHAPTER 2. PATTERN RECOGMTION

br

b2

Let the column vector B = have components given byb¡ = wj, j = 1, . . ., d.

bd

Let the scalar C = w¿*r. Then

g(X)=x'¡,x+XtB+c (2.12)

where X is a column vector and Xt denotes the transpose of X. The term X'¡¡f is
called a quad.ric form.11a11 the eigenvalues of A are positive, the quadric form is never
negative for any vector X and equal to zrro only for

)(=

0

lVhen these conditions are met both the matrix A and the quadric from are called
positive definite.If A has one or more of its eigenvalues equal to zero and all the others
positive, then the quadratic form will never be negative, and it and A a¡e called positive
semidefi,níte.

ft = xr2

e(x)

+1

Figure 24: A quadric discriminant machine
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2.7 Maximum-LikelihoodGaussianGlassifier

A single-layer perceptron and the maximum-likelihood Gaussian classifier are both
examples of linear classifiers. The decisions regions formed by perceptron are similar to
those the maximum-likelihood Gaussian classifier which assume inputs are uncorrelated
and distributions for different classes differ in mean values.
The maximum-likelihood Gaussian Classifier minimizes the average probability of
classification error. This minimizatton is independent of the overlap between the
underlying Gaussian distributions of the two classes.

The maximum-likelihood method is a classical parameter-estimation method that
views the parameters as quantities whose values are fixed but unknown. The best

estimate is defined to be the one that maximizes the probability of obtaining the
samples. The observation vector x is described in terms of mean vector p and

covariance matrix C which are defined by, respectively.

F = Elxl (2.13)
and

c = E[(x - pXx -p)r) Q.t4)

where E is the expected value. Assuming that the vector x is Gaussian-distributed, the
joint-probability density function of the element of x as follows.

(2.rs)

where det C is the determinant of the covariance matrix C, the matrix C-l is the inverse
of C, and p is the dimension of the vector x.

Suppose that the vector x has a mean vector the value of which depends on

whether it belongs to class or or class {¿, and a covariance matrix that is the same for
both classes. Furthermore we may assume that the classes cùr and olz have equal
probability and the samples of both classes are correlated, so that the covariance matrix
C is non-diagonal, and it is non-singular. Then the joint-probability density function of
the input vector x can be expressed as follow:

1 l+1*-P¡rc-rt*-¡r¡l
"f(x) = 

eny (ù"tc)%t' 
' I

h /(xlq ¡ -]l¡rç2n> -|ra"rc) - jx'c-'x + p,'c-'* - jp,'c-'p,

Taking the natural logarithm of both sides of (2.16), and expanding terms, we get

(2.16)

(2.17)

(2.18)
1 p,tc-tp,l¡ (x) = p,tC-t*
2

l4
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For i=1, 2.

Hence a logJikelihood for class I can be defined as follows:

/, (x) = p,tC-'* - 1U,t"-tU,.¡

Similarly a log-likelihood for class 2 can be defined as follows:

12(x) = pr'C-'* -f,wr'c-tu,,

Hence subtracting equation (2.20) from (2.19)

(2.te)

(2.2o)

(2.21)

(2.22)

l=líx)-IzG)

1

= (Fr -lrr)tC-tx (p,tc-tp, -prtc-tpr)
2

which is linearly related to the input vector x. Rewriting the above equation

/=û'x-ô Q.23)

= >i=, û,x, - ô (2.24)

where û is the m.ascimum-likelihood estimatel of the known parameter vector Û , defined
bY 

û = c-r(p, -[rz) (2.2s)

and 0 is a constant threshold defined by

(2.26)

Neither the perceptron nor the maximum-likelihood Gaussian classifier is appropriate
when classes can not be separated by a hyperplane.

2.8 The k-Nearest Neighbors Classifier

Nea¡est neighbor classification (Cover and Hart, 1967) is one of the most well-known
classification methods. The k-nearest neighbors performs vote on the class of a new

sample based on the classes of the k nearest training samples. The k-nearest neighbors
(k-Ì.[N) algorithm attempts to improve upon the previous rule. It determines the k-
nearest training samples to the test sample being classif,ted, and uses these samples to
vote on the class label of the test sample. I-et n training patterns be denoted as x' 1I¡, i =
7,2, ... n¡, l=1, 2, ..., C, where n¡ is the number of training patterns from class {D¡,

I The maximum-tikelihood estimate of w is, that value û , which maximizes/(x/w)

15
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X"=, n, = n, and C is the total number of categories. Let IÇ(k,n) be the number of

patterns from class co/ among the k-nea¡est neighbors of pattern x. The nearest neighbors

are computed from the n-training pattems. The k-NN decision rule õ(x) is defined as

õ(x)=q if K¡(k,n) > Ki(k,n) for j*i (2.27)

The Euclidean distance metric is commonly used to calculate the k-nearest neighbors.
Let D(x,x') denote the Euclidean distance between two patterns vectors, x and x', then

D(x, xi ) = >;, 1x, - x])' = -2M(x, *'¡ + )1 , 
*,'

where
(2.28)

M(x, xi) = >;' *,*, - å>L ft;f ,

and d is the number of features. M(xrx') as the matching score between the test patterns

x and the training pattern x'. So finding the minimum Euclidean distance is equivalent to
finding the maximum matching score.

2.9 Difference between Perceptron and Gaussian Classifier

The single layer perceptron is capable of classifying linearþ separable patterns. The
Gaussian distributions of the two patterns in the maximumJikelihood Gaussian

classifier do certainly overlap each other and therefore not exactly separable; the extent

of the overlap is determined by the mean vectors and covariance matrices.

The perceptron convergence algorithm is non-pa¡ametric in the sense that it makes no
assumptions concerning the form of underlying distributions; it operates by
concentrating on errors that occur where the distributions overlap. On the other hand,

the maximumlikelihood Gaussian classifier is parametric; it is based on the assumption
that the underlying distributions are Gaussian.

The perceptron convergence algorithm is both adaptive and simple to implement;
its storage requirement is confined to the set of synaptic weights and threshold. In
contrast, the design of the maximum-likelihood Gaussian classifier is fixed; it can be
made adaptive, but at the expense of increased storage requirement and more complex
computations.

2.1O Gonclusion

This chapter has presented an introduction to pattern recognition and a comprehensive
overview of supervised classification. Bayesian classification, linear and quadratic

discriminate functions, maximum likelihood Gaussian classifiers and the K-nearest
neighbours classifier have been discussed. Material presented later in this thesis refers

back to this chapter.

T6



Chapter 3

Artificial Neural Networks

3.1 Introduction

The human brain is a highly complex nonlinear information processing system. Parallel
processing at all levels of information processing is of major importance to intelligent
systems. The recognition of patterns of sensory input is one of the functions of the

brain. The question often asked is how do we perceive and recognize faces, objects and

scenes. Even in those cases where only noisy representations exist, we a.re still able to
make some inference as to what the pattern represents. Much of the research is
motivated by the desire to understand and build parallel neural net classifiers inspired
by biological neural networks.

Artificial neural networks have been applied successfully to a variety of tasks.

These tasks include pattern recognition, classification, learning and decision making. A
neural network derives its computing power through, its massively parallel-distributed
structure and its ability to learn and therefore generalize. These two information-
processing capabilities make it possible for neural networks to solve complex problems.

All knowledge in ANNs is encoded in weights. One possible reason for the good

performance of these networks is that the non-linear statistical analysis of the data

performed tolerates a considerable amount of imprecise and incomplete input data.

Current applications can be viewed as falling into two broad categories. In one class of
applications, neural models are used as modelling tools to simulate various
neurobiological phenomena. In the second class of applications, neural models are used

as computational tools to perform specific information processing tasks.

Both categories use the same basic building blocks, but the final structures and

measures of performance are tailored to the end use. For example, neural models have

been used for diagnostic problem solving. In a diagnostic problem one is given certain

manifestations such as symptoms, signs, and laboratory test abnormalities and must
determine the disease causing those findings. Each input node typically represents a

different manifestation and each output node represents a different disorder.
By contrast, a neuroscientist may regard back propagation of error as biologically

unlikely and could regard the feedforwa¡d structure of the multilayer perceptron as

being too limited as a model for biological systems. Such a researcher may choose to
use a more biologically oriented paradigm, which is able to model specific aspects of
biological systems. Thus, although it is possible to define the field of neural networks in
terms of systems of parallel non-linear interconnected processing elements, it must be
borne in mind that, within the field, there is a very wide variety of approaches and an
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intending user will need to carefully assess the most appropriate for the task in hand.
There is at present no universally "best" paradigm.

The ability of a neural network to perform or learn a certain task or function very
much depends on the properties of the neurons used, the network architecture and the
rules for modifying structure or information within the network.

Biologically Inspired Neural Networksa

The elementary nerve cell, called a neuron, is the fundamental building block of the

biological neural network. A neuron is built up of three parts: the cell body, the
dendrites, and the axon as shown in Figure 3-1. The body of the cell contains the

nucleus of the neuron and carries out the biochemical transformation necessary to
synthesis enzymes and other molecules necessary to the life of the neuron. Each neuron

has a hairlike structure of dendrites around it. They branch out into a tree-like from
around the cell body. The dendrites are the principal receptors of the neuron and serve

to connect its incoming signals. The biological neuron is a complex cell that
incorporates both biological and signal processing characteristics.

.. cell
ç/? ¿o¿,!

I

', dendni tes
taxons

of
ceI

t
I 5

äxon hillock

axon

¡

sgnSÞse

eft
'quante'

ol neunotFansuitten

Figure 3-1: A simplified sketch of a biological neuron

A number of abstract mathematical models have been proposed to capture varying
levels of neuronal complexity. The McCulloch-Pitts, (1943) neuron, a summation-

threshold device, is perhaps the simplest and most generally used. The sigmoid function
is by far the most common form of activation function used in the construction of
neural networks. Any function that is monotonically increasing and continuous can be

used as an activation function in neuron modelling.

18
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3.2 Types of Activation Function

The input-output cha¡acteristics of the more general sigmoidal function, threshold
function and Sign function are shown in Figure 3-2.

I f(x)

0
x

(a): Sigrnoid tunction. Í(x) 1*þ

(b): Threshold tunction. f(x) =
+l if x>0

0 if x<0

sgn(x)

I
f(x)

0
x

1

(c): Sign tunction. sgn(x) =
+1if x>0
-1 if x<0

Figure 3-2: (a): Sigmoid function. (b): Threshold function. (c): Sign function.

f(x)
I

x
0

t9
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3.3 Learning Techniques

One of most significant attributes of a neural network is its ability to leam by
interacting with its environment. This is accomplished through a learning rule, by
adjusting the weights of the network to improve the performance measure. læarning
process can be viewed as search in a multidimensional parameter space for a solution,
which gradually optimizes a prespecified objective function.

There a¡e several learning methods such as elror-colrection learning, Hebbian

learning, competitive learning, Boltzmann learning, reinforcement learning.

Supervised Learning Versus Unsupervised Learningo

In supervised learning, each input received from the environment is associated with a

specific desired target pattern. It is also known as learning with a teacher or associative

learning. Usually, the weights are synthesized gradually, and at each step of the learning
process they are updated so that the error between the networks output and a

corresponding desired target is reduced. Examples of supervised learning algorithms

include the least-mean-squ¿ìre algorithm and its generalisation is known as the back-
propagation algorithm. The back-propagation algorithm has emerged as the most

widely used and successful algorithm for the design of MLP. There are two distinct
phases to the operation of the back-propagation learning: the forward phase and the

backward phase. In the forward phase the input signals propagate through the network

layer by layer, eventually producing some response at the output of the network. The

actual response so produced is compared with a desired response, generating error

signals that are then propagated in a backward direction through the network. kt this

backwa¡d phase of operation, the free parameters of the network are adjusted so as to
minimize the sum of squared elrors.

Unsupervised learning involves the clustering or the detection of similarities
among unlabeled patterns of a given training set. The idea here is to optimize some

criterion function defrned in terms of the output activity of the units in the network.

Here the weights and the outputs of the network are usually expected to converge to
representations that capture the statistical regularities of the input data. Once the

network has become tuned to the statistical regularities of the input data, it develops the

ability to form internal representation for encoding features of the input and thereby

new classes automatically. To perform unsupervised learning, for example, we may use

competitive learning rule for a two-layer network, input and competitive layer. In its
simplest form, the network operates in accordance with a winner-takes-all strategy. The
input layer receives the available data. The competitive layer consists of neurons that
compete with each other for the opportunity to respond to features contained in the

input data.
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3.4 The Perceptron

The singleJayer perceptron depicted in Figure 3-3 has a single neuron. The term was

f,rrst used by Frank Rosenblatt (1958). It is the simplest feedforward neural network
structure. The single node computes a weighted sum of the input elements, subtracts a

threshold and passes the result through a hard limiting nonlinearity such that the output
y is either +1 or -1. The decision rule is to respond class A if the output is +1 and class

B if the output is -1. The input-output relationship of the unit is represented by the

inputs xi, output y, connection weight w¡, ârd threshold 0, and as follows:

Y = >:=' w'x' - o (3.1)

The perceptron learns by adjusting its weight. Connection weights wl, w2,...w0 and the

threshold 0 in a perceptron can be fixed or adapted using a number of different
algorithms. First connection weights and the threshold value are initialized to small
random non-zero values. Then a new input with N continuos valued elements a¡e

applied to the input and the output is computed. The equation of the boundary line
depends on the connection weights and the threshold. For analyzing the behaviour of
nets such as the perceptron is to plot a map of the decision regions created in the p-

dimensional space spanned by the input variables X1,X2,...x0. In the case of an

elementary perceptron, there a¡e two decision regions separated by hyperplane defined

by

Il=,*,*,-0=0 (3.2)

These decision regions specify which input values result in class A and which
result in class B response. For the case of two input variables the decision boundary
takes the form of a straight line. A point that lies above the boundary line is assigned to
class A and point that lies below the boundary line is assigned to class B. Connection
weights are adapted only when an error occurs. Such a perceptron is limited to
performing pattern classification with only two classes. The single layer perceptron can

be used with both continuous valued and binary inputs. The externally applied

threshold is denoted by 0. The effect of the threshold is to shift the decision boundary
away from the origin.
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Figure 3-3 : Single-layer Perceptron
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3.5 Limitations of Single Layer Perceptron

Linear separability timits single-layer networks to classification problems in which the

sets of points corresponding to input values can be separated geometrically. For two
input case the separator (decision boundary) is a line.

The perceptron forms two decision regions separated by a hyperplane. Rosenblatt

proved that if the inputs from two classes are separable then the perceptron convergence

procedure converges and positions the decision hyperplane between two classes. This

decision boundary separates all samples from the A and B classes. An example of the

use ofperceptron convergence procedure is presented in Figure 3-4. Circles and crosses

represent samples from class A and B.

Figure 3-4: Classification with a 3-input perceptron.
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1. Initialise weights and thresholds

Define weights w¡¡ to be the weight from input i at time t, and 0 to be the threshold

value in the output node. Set w6to be -0, the bias , and xs to be always 1. Set wi(O) to
small random values, thus initialising all the weights and the threshold.

2. Present input and desired output
Calculate actual output

y(t)= fn (I*,*,(,).,(,t
3. Adapt weights

w, (t + 1)= *, (t)
w,(t+t)= *,(t)+x,(t)
w, (t + 1) = *, (t)- x, (t)

The weights are unchanged if the net makes the correct decision. Also, weights are not

adjusted on input lines which do not contribute to the incorrect response, since each

the value of the in on that line, xl which would be zero.

if correct

if output 0, should be I (class A)

if output l, should be 0 (class B)

ls
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Figure 3-5: Perceptron Learning Algorithm

3.6 Multilayer Perceptron (MLP)

The Rumelhart-Hinton multilayer perceptron is a feed-forward network with an

arbitrary number of layers. A threeJayer perceptron with two layers of hidden unit is
shown in Figure 3-6. The network is organised into layers with an input layer, an output

layer, and hidden layers in between. Usually either one or two hidden layers are used.

Each node in the first layer behaves like a single-layer perceptron and has a high output

only for points on one side of the hlperplane formed by its weights and offset. The
input-output relationship of each unit is represented by the inputs xi, output y,

connection weight w¡, threshold 0, and differentiable function Q as follows:

v = o(Ii' *,*' - e)

It extends the perceptron principle and capabilities in important ways by
including more layers of variable weights and by replacing the hard non-linearity by a
smooth sigmoidal function. A single-layer perceptron forms half-plane decision

regions. A two layer perceptron can form any, possibly unbounded, convex region in
the space spanned by the inputs (Lippmann, 1987). It can generate arbitrarily complex
decision regions. These nets can be trained with back-propagation algorithm (BP) also

known as generalised delta rule.Tlte BP learning procedure, based on the chain rule
and gradient descent, provides one of the most efficient learning techniques in this

respect.
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The back-propagation algorithm uses gradient descent search in the weight space to
minimize the error between the target output and the actual output. There are two
distinct passes of computations. The first pass is referred to as the forwa¡d pass, and the

second one as the backward pass.

In the forwa¡d pass the synaptic weights remain unaltered throughout the

network, and the function signals of the network are computed on a neuron-by-neuron
basis. In the forward phase of computation begins at the first hidden layer by presenting

it with the input vector, and terminates at the output layer by computing the error signal
for each neuron of this layer.

The backward pass, on the other hand, starts at the output layer by passing the

error signals leftward through the network, layer by layer, and recursively computing
the local gradient for each neuron. This recursive process permits the synaptic weights

of the network to undergo changes in accordance with the delta rule of equation (3.I4).
For the presentation of each training example the input pattern is fixed throughout

the process encompassing the forward process followed by the backward process.

The back propagation algorithm, despite it's simplicity and popularity has several

drawbacks. It is slow, and needs thousands of iterations to train a network pertaining to
a simple problem. The algorithm is also dependent on the initial weights, and the values

of momentuil, d and learning rateq.

e = l)ttu - Yo)' (3.3)
Zp

where,
tt = target output of the kth neuron in the output layer

lt = ãctual output of the kth neuron in the output layer

The derivative of the error, with respect to each weight is set proportional to weight

change as:

Âw¡r = -n+ Q.4)
dw¡r

where q is called the learning rate. It is a general practice to accelerate the learning

procedure by introducing a momentum tetm a into the learning equation, as follows:

Âw,*(r + 1) - -n$1t + 1) + aaw,*(t)
dw¡r.

where,
wj* =' weight from thejth unit to the kth unit

There is another form of the weight update rule as given below in (3.6):

Âw,u(t + 1) = -(1- cr)n¡ffi(t + 1) + craw,*(t)

(3.s)

(3.6)

The factor (l- a) is included so the learning rate does not need to be stepped down as

the constant a is increased.
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X1

X3

First
Hidden
l-ayet

X2

xn

Input Second
Hidden
I.ayer

Output
LayerI-ayer

Figure 3-6: The Multi-Layer Perceptron architecture.
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3.7 Approximate Realization of Continuous Mappings by Neural Network

I-et Q(x) be a non-constant, bounded and monotonically increasing continuous function.
I-et Kbe a compact subset (bounded closed subset) of Rn and /(x,r...,Xn) be a real

valued continuous function on K. Then for an arbitrary e > 0, there exists an integer N
and real constants c¡, 0i (i = 1, ..., N), w¡ (i = 1, ..., N, j = 1, ..., N), such that

f = (*, r...: Xn ) = IL ",0 
(Io, *u*, - e, )

satisfies **..*l¡(*rr...:xn)-7(-,:...:xnìt.. In other words, for an arbitrary € > 0,

there exists a three-layer network whose output functions for the hidden layer are Q(x),
whose output functions for input and output layers are linear and which has an input-

output function F(*,,..., x, ) such that

-u*.,*l¡(*r,...,xn )- 7G,,...r xn ì t= .

We start with kie-Miyake's theorem to prove it.

Irie-Miyake's Integral Formula

I-et ry(x) e LrlR¡, that is, let ry(x) be absolutely integrable and ,f(*,,...,x^)eIJ(R').
Iæt V(6) and F(w,,...,wo)be Fourier transforms of \r(x) and /(x,,...,xn) respectively.

If V(1) * 0, then

-f (*,,..., *n ) = f t" *El=, *,*, - *, ) ¿õil F(w,, ..., wn ¡e('*o)dwodw, ... d*n.

This formula clearly asserts that if we set

I-,o (*,,..., Xn )

=n" n[r.t>:,*,*, -*o
I

(2n)"\¡(1)
F(w,. ..., wn ¡e(i*o)dwo dw,...d*,.

Then

mllt-,^(x,,...,*")- -f (*r,X2,...,xnìlu = o

kie and Miyake (1988) asserted that a three-layer network can represent arbitrary
function with an infinite number of computational units. h this formula w0 corresponds

to threshold, wi corresponds to connection weights and y(x) corresponds to the output
function of the units. However, the sigmoid function does not satisfy the condition of
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this formula that ry(x) be absolutely integrable and so the formula does not directly give
therealization of the theorem of functions by networks.

Lemma 1

I-et Q(x) be a nonconstant, bounded and monotonically increasing continuous function.

For cr > 0, if we set
g(x)=Q(x+a)-0(x-o),

Then g(x) e LrqR¡, that is ,

f lsc.l dx < -
Furthermore, for some ô > 0, if we set

Bo(x) = 0(*/ô + cr) - Q(x/õ - ø),

then the result of Fourier transform GlÊ) of g6(x) ate= I is non-zero.

Proof: Iæt ls(x) < Ml. For L > M,

Ilþt.|¿* = J' g(*) dx

rL+c
= J-r*"o(x) dx

pL-q

- J-'-"0{*) d*
.L+û,

= Jr-"Q(x) d*

r-L+o
- J-r-"0{*) dx < 4aIVI

Therefore,

lim [- lef*I dx < -
- J-æ'L+oo

We show that for some õ > 0, Gll) + 0. If the assertion does not hold, then for any

õ>0,

f ff W xlõ + a) - M ,lõ - a) )e-ûdx=o

By the change of the va¡iable,

fCOf*+o)-0(x-cr)¡e-i*ôdx=0 foranyô>0

Taking the complex conjugate of the equation (3.7)
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J]tOf*+ct)-0(x-a))ei*ôdx=0 forany ô>0 (3.8)

Since the Fourier transform Gr(É) of g,(x) = 0(x + cr) - 0(x - cr), e l-t(n) is continuous,

so from (3.7) and (3.8), Gr(e) is identically zero. Therefore,

0(x+a)-Q(x-o)=0

This is a contradiction because Q(x) is not a constant. This lemma holds for

Q(x) which is locally summable.

Lemma 2

[,et Ai > 0 (i = 1,...m), K be a compact bounded closed subset of Rn and h(x1,...x',
tr,...tJ be a continuous function on [-Ar, Ar] x...x[-A', Al x K'

Then the function defined by the integral

H(t¡ = fi, "' ffif*,,..., X-, t 1,...,t^) fu ,... d*.

can be approximated uniformly on K by the Riemann sum

H (t) =N

2At"'2A^,sN 
- I

- 

^.Lr-Nm 
' '"kl ...k -41,(

N
..,-A

m

k .24,mm
N

, tl,... tn
m

In other words, for an arbitrary € > 0, there exists a natural number Ns such that N à
No,

ma* lnqt; - H* (t)l <e .

Proof: The function h(x,t) is continuous on the compact set

[-A,,4,]*...x[-A-,4-]xK, so h(x,t) is uniformly continuous. Therefore for any

e > 0, we can take the integer Ne such that if N > Ns and

24,
N

Ai (i = 1,..., m) then
N

lr,*,,..., 
X-, t 1,...,,") - r[- o, * s4',...,-A* - 

Sþ,,,,... r" 
J

€

2A1...21^^
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This proves lemma 2.

Step 1: Becauseflx) (x = xl, . . ., xn) )is a continuous function on a compact set K of
P,/(*) can be extended to be a continuous function on P with compact support.

If we operate the mollif,rerl po* on/(x), po*fx), is C- -function with compact support.

Furthermore, po*¡x¡+fx) (ct++O) uniformly on Rn Therefore we suppose/(x) is a C-
-function with compact support to prove the above theorem. By the Paley-Wiener

theorem (Yosida 1968), the Fourier transform F(w) (w = wr, . . . wJ of flx) is real

analytic and, for any integer N, there exists a constant C¡ such that

lrf*ll < c,- (r * l*l) 
. (3.e)

In particular, F(w) e Lr n l-'(ff)

We definell(xr, . . ., xn), L.¡.(xr, . . ., xJ and J¡(x1, . . ., Xn) as follows:

Io(x,,...,xn )= J:...nv[=,*,*, - *o
I

F(w,, ...,wn ¡e(i*o)dwodw, ...dwn. (3.10)
(2æ)"V(1)

I-,o(x,,...,x")= Il. n[fllt>l=,*,*, - *,)ofuF(w,, ..., wn¡e('*o)dwo

Jo (x,,...,xn ) = ohf:Ji tr*,, ..., *' ¡rftti=rxiwi)¿1*, ...dwn.

dw,...dwn

(3.1 1)

(3.14)

(3.r2)

where V(x) e Lr is defined by

V(x) = M rl}+u.)-( xf õ-c-),

for some cr and ô so that y(x) satisfies I-emma 1.

The following equality is the essential part of the proof of I-M integral formula

I-,o(x,,...,x")=Jo(*,,...,*n) (3.13)

and this is derived from

J]" *(>:, *, *, - *o Þtt*o)dwo = 
"(r>i='*'*' 

).y11¡

Using the estimate of F(w) we can prove

I The operator po* is called a mollifier
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lim Jo(x,,...,xn)= -f(*,,...,*")
A+-

uniformly on Rn. Therefore

lim I-,o(x,,...,x^ )=.f (*,,...,*" )
A+-

uniformly on Rn. That is we can state that for any € > 0, there exits A > 0 such that

T*f lt-,^ (*,,...,*n )-,r(*,,'..,*,1 * i 0)

Step 2: We will approximate t,e by f,rnite integrals on K. For any € > 0, fix A which
satisfres (l).

For A'> 0, set

ro.,o (x,,..., x 
" 

) = Ji. n [f .+,t>l=, *, *, - *, Frfu F(w,, . .., w n ;e('*o)dwo dw,...dwn

(+)
-o*lIo,,o (*r,.'.,xn )-I-,o(*,,'..,*" ì* ã

Using the following equation

fi,*(>=, -, *, - *o þ"*o'o*o

= !Ì,.î'i-1¡¡e(-o)dt'e( 

rL "'*' )

the fact F(x) e L1 and compactness of [-4, A]n x K we can take A so that

lfi,*(>:, 
X 

¡ 
w i - *o þ"*o'd* o - ; v(I,=, xi wi - * o þ"*" a*o 

I

=ffili[Fr.ro.

We will show that, for any e > 0, we can take A'> 0 so that

on K. Therefore

lIo,,o 
(x,,..., *" )- I-,o (*,,...,* 

" ì 
I e

max "'J],þr*la* ' 
e

'.|l" 
"J]"|"(x)ldx+1

Step 3: From (T) and (t) we can say that for any € > 0, there exits A, A'> 0 such that

30
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-*l.f (*,,.'.,*n)- Io,,o(x,,...,x"1t. (*)

that is to sayflx) can be approximated by the finite integral In,,e(x) uniformly on K. The

integrand of Ia,,¡(x) can be replaced by the real part and is continuous on [-A', A']
x...x[-A A] x K, so by Iæmma 2 , I¡,,¡(x) can be approximated by the Riemann sum

uniformly on K.
Since

v[=,*,*, - *o)= Q(!i=,*,*'7ô- *o * 
")- Q[i,*,*,7ô- *o -a)

A threeJayer network can represent the Riemann sum. Therefore flx) can be

represented approximately by the three-layer networks.

3.8 Derivation of Back-propagation Algorithm

The back-propagation algorithm provides an approximation to the trajectory in weight
space computed by the method of steepest descent.

Let Ee is the error function for pattern p, to¡ represents the target output for pattern

p on node j, whilest op¡ represents the actual output at the node. w¡ is the weight from
node i to node j. We begin by defining the cost function as the instantaneous sum of
squared difference between the actual output and the desired output is:

(3.1s)

The activation of each unit j, for pattern p, can be written as the weighted sum, as in the
single layer perceptron.

netPj )w,,ooi

", = -l?(tn -oo,)Ê

ð*u âneto, Awtj

(3.16)

The output from each unit j is the threshold function f¡ acting on the weighted sum. In
the multilayer perceptron, it is usually the sigmoid function, although it can be any
continuously differentiable monotonic function.

on,=f(netn¡) Q.l7)

By chain Rule, we can write,

ðEn ðEo âneto,
(3.18)

Looking at the second term in (3.18) and (3.16)
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and so (3.18) becomes

ðneto, 
= ð

ðw ðw )wo:onn
ijkU

- s a*j-,",

? a*- -o*

= opi (3'19)

ðw,,
Since - 

" Kr - 0 except when k = i when it equals l. We can def,tne change in error as a
,wij

function of the change in the net inputs to a unit as

- 
ðEo

âneto,
ôo¡

âEo

Aw
= ôo¡oni

ðEo âon

ðon, àneto,

(3.20)

(3.21)

(3.23)

(3.2s)

U

Decreasing the value of En therefore means making the weight changes proportional to

õoroo,, i.e.

Ao*,i - qôn ooi Q.22)

Vy'e can now find \¡ for each of the unit. Using (3.6) and the chain rule, we can write

õot

Consider the second term, and from (3.9),

(3.24)

Consider now the first term in (3.15). From (3.7), we can differentiate En with respect

to op¡, giving

= ¡r:("eto,)

4
ðoo,

-(,,, - on¡)

Thus
õr, = f i(""t,, Xto¡ - oo¡ ) (3.26)

This is useful for the output units, since the target and output are both available but not
for the hidden units, since their targets are not known. So if unit j is not an output unit,
we can write, by chain rule again. that
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k

ðEo

ðoo,

ðEo ànetor

ðnetn* ðoo,

=s-ðEo a s= !ãn"i- a"r+witoPi

= -)ôoo*,
k

õ0,= fi(nerrr[ôon*,*

(3.27)

(3.28)

(3.2e)
k

This equation represents the change in the error function with respect to the weights in
the network. This provides a method for changing the error function so as to reduce the

eror. The function is proportional to the errors ùn in subsequent units, so the error has

to be calculated in the output unit first and then passed back through the net to the
earlier units to allow them to alter their connection weights. Equation (3.26) and (3.29)
together define the weight adjustment of output neuron of MLP.

The computation of the local gradient for each neuron of MLP requires

knowledge of the derivative of the activation function. Differentiability is only
requirement that an activation function would have to satisfy. The sigmoid function is
most commonly used as a non-linea¡ continuously differentiable nonlinear activation
function. Hyperbolic tangent is another example of sigmoidal nonlinearity. The
derivative is simple function of the outputs. Given the output of unit, oo¡ is given by

oo, = f (net)=

the derivative with respect to that unit, f'(net), is given by

f (net) =
¡"-knet

* 
"-kuet

=k f (netll- ¡Ø"t))

=koo,(1-oo¡)
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1. hitialise weights and thresholds. Set all weights and thresholds to small random
values

2. Present input x,, x2,...xp and desired output

3. Calculate actual output
Each layer Calculates

vr, = r(I;*'*'*,)
and passes that as input to the next layer. The final layer outputs value on¡

4. Adapt weights

Starting from the output layer, and working backwards.

*u (t + 1) = *r (t)+ îôpiopr

wi¡ reprosonts the weights from node i to node j at time t, r1 is a learning rate, and \¡ is
an error term for pattern p on node j.
For output units

õ0, = koo,(1 - oor Xto: - oo¡ )

For hidden units

õn = koo, (l - oo¡ D ôo*w jo
k

where the sum is over the k nodes in the layer above node j.

CHAPTER 3. ARTIFICIAL NEURAL NETIù/ORKS

Figure 3-7: MLP læarning Algorithm

3.9 Practical Issues

There are several practical considerations that must be addressed to successfully use the
MLP.

Local Optimaa

In practice it is highly unlikely that the error function will contain a single optimum;
rather the function that is being optimised will tend to be very rough and noisy, and

dotted with local optima (Widrow and l-ehr, 1990). Since back-propagation training is
a gradient descent method, convergence to a local optimum is final and the network
becomes trapped at this suboptimal point. Therefore two networks with the same

architecture can often achieve the same goal using different sets of weighs. It is sensible

to train the network several times, starting with different initial weights for each

training instance. For each training run, the weight vector may start in a different basin
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of attraction, and hopefully the basin of the global optimum will eventually be

encountered. Figure 3-8 shows error surface with a contour plot underneath. Error
surface calculates enors for a neuron with a raîge of possible weight and bias values.

Notice the low error point near the middle, and the two valleys leading away from it.

Figure 3-8: The error surface and contour

One method for escaping small local optima is the use of a momentum term in training,
although this adaptive step-size update method was explicitly developed to speed up
training. Momentum allows the step-size parameter to adapt to the local landscape: in
regions where successive updates involve gradients with the same sign, the weight
update increases in magnitude, metaphorically gaining momentum. In the case where

gradients change sign on successive updates, the weight vector has overshot a local
minimum and the weight update magnitude decreases to fit in the smaller basin. For an

appropriately chosen ctr, the weight vector can overshoot and thus escape relatively
small local optima.

a Architecture

The first decision that must be made is the choice of architecture. If too, many hidden
neurons are used, the network tends to over-fit the data; if too few, the network may
under-fit since it does not posses enough free parameters to perform the mapping. In
addition, the number of layers may make a difference to the performance of the MLP.
V/e could go as far as to allow arbitrary forward connections ¿ìmong the neurons. These

factors depend on the underlying complexity of the data which is generally unknown,
so far near-optimal results a search must be made over the set of possible architectures.
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There is a significant amount of research into the use of evolutionary algorithms for this
purpose, the different methods varying in the extent of the search. For instance, genetic

algorithms have been used to find the best neural connections for a fixed number of
hidden nodes, while more extreme approaches have used genetic programming to find
the number of hidden layers, hidden nodes, and the interconnections between them.

3.10 Conclusion

This chapter has presented an overview of the perceptron and MLP. A brief review of
the biological inspiration for neural networks has been given. The relative merits of
supervised and unsupervised learning have been discusssed. The single layer perceptron

has been described and its limitation to input values which can be seperated

geometrically has been identified. Generalisations to a multilayer perceptron in order to
remove this limitation has been outlined and the mathematical theory of MLP with
practical issues has been presented.
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Chapter 4

Genetic Algorithms

4.1 lntroduction

The Genetic Atgorithm (GA) were introduced by John Holland (Holland 1995, first
published 1975), and a seminal treatment has been given by Goldberg (Goldberg,

1939). Genetic algorithms like neural networks are a biologically motivated paradigm

based on natural selection and genetics. They are based on the genetic processes of
biological organisms. These algorithms represent the complex structure of a problem by
a simple code of bit strings, which mimic the genes in a chromosome. Over many

generations natural populations evolve according to the principles of natural selection

and Species. GA's work with a population of individuals each representing a possible

solution to a given problem. Each individual is assigned a fitness score according to
how good a solution to the problem it is. The technique is robust and can deal with a

wide range of problems. In his recent book, David Goldberg describes genetic

algorithms '... search algorithms based on the mechanics of natural selection and

natural genetics (resulting in) a search algorithm with some of the innovative flair of
human search.'
Genetic algorithms differ from traditional search algorithms as follows.

1. GAs work with a coding of the parameter set, not the parameters themselves.

2. GAs sea¡ch from a population of points, not from a single point.

3. GAs use pay-off ( objective function ) information, not derivatives or other auxiliary
knowledge.

4. GAs use probabilistic transition rules, not deterministic rules.

The parameters of a problem are usually coded into a string of binary features

analogous with chromosomes in biology. This coding is done by the user of the GA.

The GA itself has no knowledge at all of the meaning of the coded string. If the

problem has more than one the string contains multiple sub-strings or genes, one for
each of the parameters. Each coded string represents a possible solution to the problem.

The GA works by manipulating a population of such possible coded solutions in a

reproduction process driven by a number of genetic operators.

During the reproduction process, nerw solutions a¡e created by selecting and

recombining existing solutions based on pay-off information(often called fitness) using

the genetic operators. The process can be compared with natural selection and the

Darryinian theory of evolution in biology: fit organisms are more likely to stay alive and

reproduce than non-fit organisms. The basic outline of a genetic algorithm is as

follows:



/*Genetic Algorithm*/

BEGIN
Generate initial population
Determine fitness of each individual

WHILE NOT finished DO
Begin

FOR population size DO
BEGIN

Select two individuals from old generation for mating
Recombine the two individuals to give two offspring
Determine fitness of the two offspring
Insert offspring in new generation

END
IF population has converged THEN

Finished = TRUE
END

END

CHAPTER 4. GENETIC ALGORITHMS

Figure 4-1: The Basic Genetic Algorithm

4.2 Fitness function

The fitness function reflects the ability of the individual which that chromosomes
represents. For each problem, a fitness function has to be solved. For a particular
chromosome, the f,rtness function calculates a single numerical fitness or figure of
merit. In genetic terms, the set of parameters represented by a particular chromosome is
referred to as a genotype. The genotype contains the information required to construct
an organism which is referred to as the phenotype. The fitness of an individual depends

on the performance of the phenotype. The fitness of a string (or solution) can be

evaluated in many different ways. If the problem, for example, is finding the root of a
mathematical function, the fitness can be the inverse of the square of the function value

of the proposed solution. If the problem is finding an optimal neural net, the fitness
could be the inverse of the convergence time and zero if the network couldn't learn the
problem. It could also be the inverse of the error at the output nodes. The GA is not
aware of the meaning of the fitness value, just the value itself. This implies that the GA
can't use any auxiliary knowledge about the problem. Starting with a population of
random strings, each new population (generated by means of reproduction) is based

upon (and replaces) the previous generation. This should, in time, lead to a higher
overall fitness, and thus to better solutions to the original problem.

The four most commonly used genetic operators used are selection, crossover,
inversion and mutation. V/ith each of these of the operators, only random number
generating, string copying and changing of bits are involved. Crossover, mutation and

inversion a¡e all applied with a certain probability: for each application of an operator it
must be decided whether to apply the operator or not. Selection alone is usually not
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enough for the GA to work, so, one or more of the other genetic operators have to be

applied to the selected string. Table 4-1 shows sample population of 10 strings.

Table 4-1: Sample Population of 10 strings

Fitness Bitstrine Fitness Bitstrine
1 1 1111111111 6 5 1 101 1 10101

2 2 1100001000 7 5 0001100010

3 5 0000000001 8 6 1000000001

4 J 1111111000 9 7 0000100010

5 4 0001000100 10 9 1 100010r01

4.3 Genetic Operators

o Selection

Selection is used to choose strings from the population for reproduction. On each

generation parents are selected to produce new children. The selection of parents is

biased by fitness, so that fit parents produce more children and very unf,rt solutions

produce no children. This is known as selection. Tlte genes of good solutions thus

begin to proliferate through the population. The chance of selection as a parent is
proportionate to chromosomes normalised fitness. kr parallel with the natural selection

mechanism, strings or solutions with a high f,rtness are more likely to be selected than

less fit strings. The two selection methods applied in this research are described

respectively by Goldberg and Whitley. The roulette wheel is shown inFigve 4-2.

9

Figure 4-2:T\e roulette wheel.

With roulette wheel selection, strings are selected with a probability
proportional to their fitness. Another method is called rank based selection, where the

chance of being selected is defined as a linear function of the rank of an individual in
the population. The population must remain sorted by fitness for this method to work.
One advantage of rank based selection is that it does not need the fitness scaling

necessary with other methods, to prevent high fitness strings from dominating the

population, which may result in a premature convergence into a non-optimal solution.

5
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a Crossover

The crossover operator involves the swapping of genetic material (bit-values) between

the two parent strings. Having selected two parents, their chromosomes are recombined

by means of crossover. The crossover operator creates new members for the population

by combining different parts from two-selected parent strings. First a number of
crossover points are chosen at random. A new string is created by using alternate parts

of the parent strings. The following various crossover techniques are supported often

involving more than one cut point.

one-point crossover: here two chromosomes are joined at a single point and swap

ends.

two-point crossover: here two chromosomes are joined at two points and swap the

middle section between the two.
uniform crossover: kr this the two randomly swap any number of genes that is they are

completely reshuffled.

n-point crossoyer: here the user specifies how many crossover points should be used

in this version. Figure 4-3 shows the various crossover methods.

One-point Crossover

Pa¡ent I
Offspring

Parent 2

Two-point Crossover

oo@@o@

rÐ

Uniform Crossover

Figure 4-3: Example of l-point, 2- point and uniform Crossover.
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o Mutation

Mutation is possibly the simplest of the genetic operators. It randomly flips bits in the

string from 0 to 1 or from I to 0. The purpose of this string mutation is to improve the

algorithm by introducing new solutions not present in the population and by protecting

the algorithm against accidental, irrecoverable loss of (valuable) information due for
example, to unfortunate crossovers. An example of mutation is shown Figure 4-4.

In order to keep the algorithm from becoming a simple random search, mutation
rate has to be low, so it doesn't interfere too much with crossover and inversion. There

are some applications however, where selection and mutation are enough for the GA to
function.

Figure 4-4:Example of mutation; bit 3 has been mutated.

4.4 Mathematical Foundations of Genetic Agorithms

o The Building Block Hypothesis

Holland introduced the schema Theorem, which is often viewed as the fundamental

theoretical foundation of genetic algorithms. It can be applied to chromosomes that are

fixed length strings only.
A schema is a template describing a subset of strings with similarities at certain

string positions. If we take for example a population of binary strings, schemata for
these strings are string themselves, consisting of 0's, l's and * symbols. The * (wild

card symbol) matches either a 0 or a 1. A schema matches a particular string if at every

position a 1 in the string and a 0 matches a 0 in the string. If we take strings of length 8
(binary representation of the numbers 0 to 255) the schema 1*0001*1 matches four
strings: 10000100, 10000110, 11000100 and 11000110.

I-et us take a look at the number of schemata involved in a population of n strings

of length /. If each string is built from k symbols (k=2 for binary strings), these are

(k+1)¡ different schemata (because each of the 1 positions can be one of k symbols, or

an asterisk). So, for our example, there are 256 (28) different strings, but there are

(2+1)8= 6561 different schemata. Also a string of length 8 belongs to 28 different
schemata because each position may take on its actual value or a wild card symbol. For

string of length / , this number is 2t. So, for a population of size n, the population

contains somewhere between 2t and n.2' schemata. So even moderately sized

populations contain a lot of information about important similarities. By using

schemata in the genetic search, the amount of information can be much larger than by
looking at the strings only. Each schema can be assigned a fitness. This is the average

fitness of the members in the population corresponding to that particular schema. 'We

will denote this average fitness with fs. The defining length of a schema, is the distance

between the first and the last fixed bits in the schema (non-wild card). Schemata
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provide a means for combining attributes, and for analysing their contribution to
performance through the population. The order of a schema is the number of non-wild
symbols it contains. Looking at the defining length, we note that crossover has a
tendency to cut schema of long defining length when the crossover points are chosen

uniformly at random: for example, the schema l**xx{<10 has a higher chance of being

cut than *****lQt( (617 or 86Vo vs. ll7 or l4%o)

A lower bound on the crossover survival probability ps for a schema with

defining length delta can be expressed with the following formula (for crossover with
one crossover point ):

p ¿ 1- 3-, (+.r)'s I-l'c

where ps is the probability with which crossover will occur, delta is the defining length

of the schema, and / is the length of the schema. The formula contains an inequality

sign instead of equality sign because even when the schema is cut it can survive if the

crossover results in a string that still contains the schema. New strings with the schema

can also come into existence.

We can also calculate the effect of selection on the number of schemata. 'When

we have m(t) examples of a particular schema at time t in our population, rwe can

expect

m(t+l) = m(t)n+ ø.2)

Ir,
i=1

examples at time t+l where n is the population size , fs the average fitness of the strings
n

representing the schema and )t, ttre total fitness of the population. If we rewrite the
i=l

formula using

lou, (¿ ¡)

for the average fitness of the whole population, it becomes

m(t +L) = m(t)
f. (+ +)

= I irnrl

favg

Or: a particular schema grows as the ratio of the average fitness of the schema and the

average fitness of the population. So schemata with fitness values above the average

population fitness have a higher chance ofbeing reproduced and receive an increasing

(exponential) number of samples in the new population. This is carried out for each

schema in the population in parallel.
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Because mutation has only a very small effect on the number of schemata mutation rate

is usually chosen very low), the combine effect of selection and crossover can be

expressed with the following formula, which is the result of combining (4.1) and (4.2):

Implicit parallelism

m(t + 1) (¿.s)

So a particular schema grows or decays depending upon a multiplication factor.

With both selection and crossover the factor depends upon whether the schema's fitness

is above or below the population's average fitness and on the length of the schema.

Especially, schemata with high fitness and short defining length are propagated

exponentially throughout the population. Those short schemata are called building
blocks. Crossover directs the genetic search towards finding building blocks (or partial
solutions) and also combines them into better overall solutions. Inversion also

facilitates the formation of building blocks. Complex problems often consist of multiple
parameters which are coded by different genes on the chromosome. With these multiple
parameter problems however, complex relations may exist between different
parameters. 'When defining the coding of such a problem, related genes should be

positioned close together. When not much is known about the relations between the

parameters, inversion can be used as an automatic reordering operator.

o

a

The exponential propagation of high fit, small size schemata goes on in parallel,

without any more special bookkeeping or memory than a population of n strings.

Goldberg presents a more precise count of how many schemata are processed usefully
in each generation.

Epistasis

Epistasis is the interaction between different genes in a chromosome. It is the extent to
which the contribution of fitness of one gene depends on the values of other genes. The

degree of interaction will be different for each gene in a chromosome. A small change

to one gene makes a change in resultant chromosome fitness. The resultant change may

vary according to the values of other genes.

4.5 Diversity and Convergence

Although convergence to the optimal solution is often used as a measure for an

algorithms performance, this criterion has been rejected by Holland (Holland, 1995)

according to the argument that even enumerative search converges under this criterion.
Rather, the best solution must be found in a reasonable time. Convergence in the

genetic algorithms typically refers to the situation that the population becomes

homogeneous, containing M copies of the same individual. Further search points can

not be reached through crossover, since crossing over identical string results in
identical offspring , and the very low mutation rate is the only chance of introducing
new genetic material. One hopes that the algorithm has converged upon the optimal
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solution; if not, the only recourse is to start the algorithm with a different initial
population.

Under this definition of convergence, the diversity of genetic structures in the
population is expected to decrease as evolution progresses. Due to the geometric rate at

which highly fit individuals propagate into future generations, the GA can converge too
quickly without having explored enough of the search space to encounter a global or
near global optimum. This phenomenon is called premnture convergence. In the

presence of bit mutation, premature convergence is stagnation in the search for an

undetermined amount of time.
The way to stop the GA from converging prematurely is to promote diversity in

the population. There are several ways to achieve this:

. Use a high mutation rate.

' Disallow genetic duplicates in the population, where two individuals are genotypic

duplicates if they are exactly the same. Note the distinction ftom phenotypic

duplicates, which are individuals with different strings resulting in the same

behaviour.
r Use selection pressure.
. Use a population model that promotes diversity'

A gene is said to have converged when 95Vo of the population sha¡e the same value.

The population is said to have converged when all of the genes have converged. Once

the population has converged, the ability of the GA to continue to search for better

solutions is effectively eliminated. A problem with GAs is that the genes from a few

comparatively highly frt individuals may rapidly come to dominate the population,

causing it to converge on a local maxima.

4.6 Comparing GA with Back-Propagation

Back-propagation and genetic algorithms are two techniques for optimization and

leaming, each with its own strengths and weaknesses. The back-propagation learning

algorithm is a well-known training method for feedforward neural networks. Back-
propagation is a method for calculating the gradient of the error with respect to the

weights for a given input by propagating error backward through the network. It
generally uses a least-squares optimality criterion. It can f,rnd a good set of weights and

biases in a reasonable amount of time and sensitive to parameters such as learning rate

and momentum. Successful though it is, the algorithm does have some shortcomings.

Since it is gradient descent method it has as a tendency to get stuck in local minima of
the error surface and thus not find the global minima. Also, it can not handle

discontinuous node transfer functions because to compute a gradient requires

differentiability.
The basic difference between back-propagation and GA based training

mechanisms is that, unlike BP, GA does not make use of local knowledge of the

parameter space. Genetic algorithms are good at exploring alarge and complex space to
find values close to the global optimum. Back-propagation works well on simple
training problems. However, as the complexity increases the performance of back-
propagation falls off rapidly. The problem of GAs is that they are inherently slow and

takes a long time to converge. A hybrid of genetic and back-propagation algorithms
which should always find the correct global minima without getting stuck at local
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minima. A hybrid training algorithm making use of both GA and BP methods may thus

be very useful.
Genetic algorithms should not have the same problem with scaling as back-

propagation because they generally improve the current best candidate monotonically.
They do this by keeping the current best individual as part of their population while
they search for better candidates. Secondly, they have the ability to escape local
minima. The mutation and crossover operators can step from a valley across a hill to
an even lower valley in the energy function landscape. Control parameters required for
standa¡d GA are shown inTable 4-2.

Table 4-2: Control parameters required for standard GA

population size
max. number of generations

probability of crossover

orobabilitv of mutation
orobabilitv of reproduction
selection scheme

fitness scaling scheme

elitist stratesy

4.7 Conclusion

This chapter has presented a brief introduction to genetic algorithms and their

mathematical foundations. The fitness function has been introduced and the effects of
genetic operators have been considered. Detailed discussion of the four most common

operators: selection, crossover, inversion and mutation has been entered into.

Description of the mathematical foundations of genetic algorithms has included the

building block hypothesis, implicit parallelism and epistasis. Diversity and convergence

issues have been considered. Comparison with back-propagation is also presented. A
hybrid learning methodology that integrates genetic algorithms and neural networks is
presented in chapter 7.
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Chapter 5

The Fuzzy set Theory

5.1 lntroduction

Fuzzy sets were first introduced by Zadeh in 1965 for handling uncertain and imprecise

knowledge in real world applications. It provides effective tools to handle and

manipulate imprecise and noisy data. Fuzzy sets can be considered as a generalisation

of classical set theory. A classical set (crisp) is normally defined as a collection of
elements or objects which can be finite, countable, or overcountable. Each single

element can either belongs to or does not belong to the set. Such a classical set can be

described in different ways: one can either enumerate the elements that belong to the set

describe the set analytically, for instance, by stating conditions for membership or

define the member elements by using the characteristic function, in which 1 indicates

membership and 0 indicates non-membership.

po (*) =
1 if and only if x e A

if and onlyif x e A0

The boundary of the set A is rigid and sharp. On the other hand a fiizzy set is a

collection of distinct elements with a varying degree of relevance. For a fizzy set, the

cha¡acteristic function allows various degrees of membership for elements of a given

set. In fizzy set, the transition from membership to non-membership function is gradual

rather than abrupt. The degree of membership usually denoted by the Greek letter p.

The utility of fuzzy sets lies in their ability to model the uncertain or ambiguous data so

often encountered in real life.

5.2 Fuzzy Sets

A fiizzy set is completely characterized by an ordered set of pairs, the first element of
which denotes the element and the second the degree of membership.

A = {{x, Fo(x), x= x} (5.1)

po(x) is called the membership function or grade of membership funcúon. (Sometime

it is also referred as the degree of compatibility or degree of truth) of x in A which maps

X to the membership space M. When M contains only the two points 0 and 1, A is non-
fiizzy and po(x)is identical to the characteristic function of a non-fuzzy-set. The set
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{0,1 } is called a valuation set. If the valuation set is allowed to be the real interval [0,1],
A is called afazzy set. The closer the value of po(x) is to 1, the more x belongs to A.

Clearly, A is a subset of X that has no sharp boundary. The range of the membership

function is a subset of the non-negative real numbers whose supremum is finite.
Elements with a zero degree of membership are not normally not listed. A fuzzy set is

solely represented by stating its membership function. Membership functions for a crisp
set and fuzzy set are shown Figure 5-1.

1

p

1

0567x0567x

Figure 5-1: Membership functions for a crisp set and ftzzy set.

If X is a finite set {x,,x2,...xn}afuzzy set on X is expressed as

^ Fr(x,) . po (x")
n=-T T-

xl xn

po(x¡)

i=l xi
(s.2)

(s.3)

when x is not finite

mo (x)
A J X

5.3 Fuzzy Set Operations

Union and Intersection of Fuzzy sets

VxeX, ¡ro,"(x) = max(po(x), p"(x)
VxeX, F[o^"(x) = min(Fro(x), p"(x)
Vx e X, Fto (x) = 1- tto (*)

(s.4)

Union and intersection of fuzzy sets A and B, and complement of fiizzy set A are

shown in Figure 5-2.
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A B

0 2 6 x

![¡, ,n(x)

0 6 x

[r^n(x)

0

lLr(x)

Figure 5-2: Union and intersection of fazzy sets A and B,
and complement of fazzy set A.

Two luzzy sets A and B are said to be equal (A=B)

Vxe X,pr(x)=ps(x)
o Cardinality

For a hnite fuzzy set A the cardinality lAl is defrned as

Inl= )ur(x)
xeX

. The support of fuzzy set

The support of. fuzzy set A is the ordinary subset of X

Supp A= {V x e X, pr(x) > ps(x)}

The elements of x such that þ¡(x) = 0.5 are the crossover points of A.
The height of A is

4

2 4

2 4 6x

(s.s)

(s.6)

(s.7)

hgt (A) = sup
xeX

pn(x)

48

(5.8)



CHAPTER 5. TI{E FVZZY SET TIIEORY

That is, the least upper bound of Fr (x) . A is said to be normalized if and only if
3xe X

Fr(x) = I

hgt(A) = 1

Vx e X, Þo.," (x) =

Vx e X, ¡ro,", (x) = dn(po (*), p" (*))
o (x),-*(P (xPs

(5.e)

(5.10)

(s.1r)

(s.12)

where [ro," (x) and pr,"s (x) are membership functions of AUB and AnB respectively

Inclusion of fuzzy seta

o cr-level set

The crisp set of elements that belongs to the fuzzy set A at least to the degree a is called

crlevel set.

A is said to be included in B(AsB) if and only if

Vxe X,[h(x)Sps(x)

4o={xeX lpo(*)>o}

,{o={ *eX I pr(x) > cr }

is called strong ø-level set or cr,-cut.

a Normal Fuzzy set

A fuzzy set with a membership function that has a grade unity or 1 is called normal

fuzzy set.

Convexity

Convexity conditions are defined with reference to the membership function rather than

the support of afiizzy set. A fazzy set is convex if

po[À*, +(1-À)x, > min(þn(x,),lro(*r)], x,,x, €X t e[o,t] (s.13)

Alternatively afazzy set is convex if all cr-level sets are convex.
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5.4 Properties of Fuzzy Sets

(l) The algebraic sum C = A + B is defined as

C = {x,Fo-"(*) I xe X}
where

po*"(x) = fuo(x) +pr(x) -po(x)p"(*)Ì

(2) The bounded sum C = A@B is defined as

C = {*,po*"(x)lx.X}
where

por"(x) = min{l, Fo (x)+p" (x)}

(3) The bounded difference C = A-B is defined as

C = {*, po-"(x) lx . X}
where

po-"(x) = ma,r{0, Fo (x)+p" (x)-1}

(4) The algebraic product of fuzzy sets C = A.B is defined as

C = {*, po (x).F" (x) lx = X}

if x<B
ifx>B

(s.14)

(s.1s)

(5.16)

(s.r7)

5.5 Fuzzy Numbers

A convex and normalized finzy set for which each cr-level set is a closed interval is

called a fazzy number. Tlte n-function and the S-function are the two commonly known

examples of fiizzy numbers. The n-function and S-function are shown in Figure 5-3 and

Figure 5-4 respectively.

The æ-function is defined as follows

t(x, a, p)
S(x; Þ - ü,p)
1-S(x;p,Þ+cr)

I

r*[* %]
2n(x; cr, p)

50
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0.5

0

I

(b) The S-function is defined as follows

S(x,cr, p)

cx-0 ü cr+p

Figure 5-3: The æ-function.

if x<cr

ifs<x<

x

c[+p
2

.+s*<F
ifx>pI

1

0.5

ü, a+þ12 p

Figure 5-4: The S-function

x

5l
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5.6 The Extension Principle

One of the most important tools of fuzzy set theory introduced by Zadeh is the

extension principle which allows the generalisation of crisp mathematical concepts to

the fuzzy set and extends point-to-point mappings to mappings for fuzzy sets. I-et X be

a Cartesian product of universes, X = Xr x X2 x... X X.

andA,,. .A,berftzzy setsin X, X XrX ... X X. respectively.

The Cartesian product of 4,, , A, defined by

min( [rr, (x, ), . . . , po, (x, ))
4,,. .. A, = J*,r*rx...xX, (xr,...xr)

,.. x X, toauniverseYsuchthatLetfbe a mapping from X = X, x Xz x

Y=,f(x1,...,x.)

The extension principle allows us to induce from r finzy sets Ai a fuzzy set B on Y
through/such that

p"(y) = sup min(po,(x,),...,po,(x,)) (s.2r)

y =.,¡Ê(x,...,x.)

ps(y)=oif/11y¡=q

wherefl(y) = O is the inverse image of y. ps$) is the greatest among the membership

values of the reaJizations of y using r-tuples. Zadeh usually writes the above equation

AS

(s.20)

(s.22)B = ,f (4,,...4,) = I*,,*,*...,.r,
min( [rn, (x, ), . . . , po. 1x. ))

f (xr,...x,)

where sup operation is implicit.

5.7 The Resolution PrinciPle

l€t A be a fizzy set in the universe of discourse U. Then the membership function of A
can be expressed in terms of the characteristic functions of its c[-cuts according to

þo(x) = ,op.lonFo,(x)l vxe u,
oe(o,tl
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where n denotes the min operation and po" (x) is the characteristic function of the crisp

set Ao.

po" (x) =
1 if and only if x e A*
0 otherwise

Proof: Let v denote the max operation. Since þo(x) ) cr we have,

,op [o^[r^"(x)]= sup [o^p^"(*)] t sup [o^p^"(*)]
o.(o,rl ae(o,pit*ll ceGn(*),ll

lcrn1] v [ano]sup
oeGn(*),tl

sup
ce(0,¡rr(x)]

sup
ce(O,pr(x) ]

= Fo(x)

cr,

The Resolution Principles states that the fuzzy set A can be expressed as in terms of its

c[-cuts without resorting to the membership function. Conversely, afazzy set A can also

be decomposed into øA., and it can be expressed as the union of these cI,Ao, c[,c (0,1].

The following relational equation so called the resolution principle. Figure 5-5

illustrates the concept of decomposition of fuzzy set.

aeAO.Q

CrrAC[l

Figure 5-5: Decomposition of afiizzy set.

5.8 Fuzzy Relational Equations

a Composition of fazzy relations

I-et Q be a fuzzy relation from X to Y and let R be a fiizzy relation from Y to Z we
define R o Q, a fuzzy relation from X to Zby

AD

c[r

Acr.z

Acrr
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Fn"q (A, c) = sup bo {e, B) ¡ p* (B, c)J
BqY

when A is a fiizzy subset of X the sup-min composition of R with A yielding

B=RoA

which is a fuzzy subset of Y defined by

m*"o(y) - sup [-itr(po(x),[r* (*, y)] Vy e Y
xeX

m*"o(y) = y [ro(*)vþ*(x,y)J Vye Y

(s.23)

(s.24)

(s.2s)

5.9 Fuzzy Rule-Based Systems and Fuzzy lnference

A fnzzy system is characterized by a set of linguistic statements based on expert

knowledge. The expert knowledge is usually in the form of "if-then" rules which are

easily implemented by fuzzy conditional statements in fuzzy logic. In fazzy logic and

approximate reasoning, there are two important luzzy implications inference rules

named the generalised modus ponens (GMP) and the generalised modus tollens
(GMÐ:

premise 1: xis A
premise 2: if x is Athen y is B.
consequence: yis B

premise 1: y is B
premise 2: if x is A then y is B.
consequence: x is A

where A, A', and B, B' a¡e fvzy sets or relations also known as fuzzy predicates.

The fiizzy implication inference is based on the compositional rule of inference for
approximate reasoning suggested by Zadeh.

Every rule has a weight, which is a number between 0, and 1 and this is applied
to the number given by the antecedent. It involves 2 distinct parts. First evaluating the
antecedent, which in turn involves fazzifying the input and applying any necessary

fizzy operators and second applying that result to the consequent known as

implication. If the premise is true, then the conclusion is true (for 2-valued or binary
Iogic) In the case of fuzzy statement if the antecedent is true to some degree of
membership then the consequent is also true to that same degree

A fi,tzzy inference is the powerful tool as a modeling method for complex and

imprecise systems. The fuzzy inference is also a very suitable method to represent the

knowledge of human experience. However, the fiizzy inference does not possess

essentially the learning mechanisms or algorithms in it. We can acquire the knowledge
for the objective systems in the form of fuzzy inference rules form the given data.
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5.10 Aggregation of Fuzzy Rules

Most rule-based systems involve many rules. The process of obtaining the overall
consequent from the individual consequent contributed by each rule in the rule-base is

known as aggregation of rules. In determining an aggegation strategy, two simple
extreme cases exit.

(l) Conjunctive system of rules: In the case of a conjunctive system of rules that must

be jointly satisfied, the rules are connected by "and" connectives. In this case the

aggregation output y is found by the fuzzy intersection of all individual rule
consequent

(2) Disjunctive system of rules: For the case of a disjunctive system of rules where the

satisfaction of at least one rule is required, the rules are connected by the "or"
connectives. In this case the aggregated output is found by the fizzy union of all
individual rule contributions, as

y = yl n y2n y'n...n y'

which is defined by the membership function

py = min(pyt(y), t r'(y), Fy3(y),... pr cvll for y e Y

y = yl r: y2u y'u...u y'

which is defined by the membership function

Fv = max(þvt(y), Urtg), t r'(y),... t¡.y'(y)) for y e Y

5.11 Graphical Techniques of lnference

(s.26)

(s.21)

(5.28)

(s.2e)

The following graphical procedure (Figure 5-6) illustrates analysis of two rules and can

be easily extended and will hold for fuzzy rule-bases with any number of antecedents

and consequent. Here the symbols All and A12 refer to the first and second fazzy
antecedents of the first rule, respectively, and the symbol B1 refers to the fuzzy
consequent of the second rule; the symbols 4,21 and A92 refer to the first and second

fuzzy antecedents of the first rule respectively, and the symbol B2 refers to the fuzzy

consequent of the second rule; The minimum membership value for the antecedent

propagates through to the consequent and truncates the membership function for the

consequent of the rule. This graphical inference is done for each rule. Then the

truncated membership functions for each rule are aggregated using the graphical

equivalent of equation (5.27) for conjunction rules or equation for (5.29) disjunctive
rules. In the following figure rules are disjunctive, so the aggregation operation max

results in an aggregated membership function comprised of outer envelop of the

individual truncated membership forms from each rule.
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Rule 1

u

X1

Rule 2

tl

X1

tr
tt

X2

X2

tr

v

tl

v

tl

v

Figure 5-6: Graphical mamdani inference method.
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a Advantages of Fuzzy set theory

1. One of the advantages of a fiizzy system based on such a fuzzy rule its
comprehensibility. That is human users can easily understand each tuzzy if-then

rule because its antecedent and consequent parts are represented by linguistic
values. Fuzzy rules are also called linguistic rules, because they represent the way in
which people usually formulate their knowledge about a given process. Fuzzy set

techniques has low information and time complexity.
2. Fuzzy set techniques seem to be good solution for some of the problems that arise

due to lexical imprecision.
3. Fuzzy set techniques are quite flexible

Disadvantages of I'azzy set theorYa

1. It is not always clear how to construct reasonable membership functions.

2. The choice of appropriate definitions for the operators can be problematic.

5.12 Conclusion

In this chapter, the basic concepts and notation of. fuzzy sets are presented. A hybrid
learning methodology that integrates finzy systems and genetic algorithms presented in

chapter 9.
The basic aims of fuzzy logic is to provide a computational framework for

knowledge representation and inference in an environment of uncertainty and

imprecision. In such environments, ltzzy logic is effective when the solutions need not

be precise and./or it is acceptable for a conclusion to have a dispositional rather than

categorical validity. The importance of fuzzy logic derives from the fact that there are

many real-world applications, which frt these conditions, especially in the realm of
knowledge-based systems for the decision-making. In short, conventional methods are

good for simpler problems, while fiizzy systems are suitable for complex problems or

applications that involve human descriptive or intuitive thinking.
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Ghapter 6

Experimental Evaluation and Comparison

6.1 lntroduction

An impofant application area of pattern recognition is medical diagnosis. Statistical
pattem classification is particularly useful in cases where data measurements of
disparate t]?es are present, and there is no theoretical guidance on how to combine the
quantities.

The advent of integrated information management system in health care is paving
the way for efficient implementation and fielding of systems for computer-based

medical decision support. Decision making under uncertainty is often fraught with great

difficuþ when the data on which the decision is based are imprecise and poorly linked
to predict outcome. Clinical diagnosis is an example of such a setting because multiple,
often unrelated, disease states can present with similar or identical historical,
symptomalogic, and clinical data.

Heart disease is common cause of death in human and difficult to diagnose

accurately. kr this chapter, the use of multilayer perceptron trained with
bacþropagation was applied to the diagnosis of coronary ñtery disease disease. Other
neural network classifiers were also tested on the data such as Modular network (MN),
Radial basis function (RBF), Reinforcement learning (RL). Several variations of these

classifers were tested on the same data. An attempt is made to formulate the neural

network training criteria.
Currently, two most popular methods are those based on Bayes' theorem, where

the relative likelihood of different diagnoses is computed from individual items of
patient information; and expert system, which seek to mimic a clinicians reasoning
process by encapsulating the knowledge that clinicians apply in a set of rules. A
considerable number of methodologies such as discriminant analysis, logistic
regression, recursive partition analysis and so forth have been developed in attempts to
improve on the diagnostic accuracy of physicians in identifying the presence or absence

of the disease. Previous approaches to diagnostics problems have been based on tree

structured rule-based, statistical probability calculations, linear pattern matching. These
clinical decision-making methods are based on a highly structured set of rules or
statistical probability prediction that are dependent on the accuracy of input data. They
suffered from slow response time and failure under missing information. Atificial
neural networks perform non-linear statistical analysis and they can tolerate a

considerable amount of imprecise and incomplete input data.

Neural networks are a good approach for solving diagnostic problems given the
property that small variations in the input pattern such as inaccuracy, noise or any other
reason do not result in misclassification.



CIIAPTER 6. ÐGERMENTAL EVALUATION AND COMPARISON

6.2 ANNs applied to Coronary artery disease

The original database contained 92O re*ords, each consisting of 76 attributes. All
published experiments, however, use only 14 of these attributes. One of the attributes

associated with each patient, an integer x e [0...4], counts the number of major vessels

whose diameter has reduced by more than 50Vo. For classification, the objective is to
use the 13 independent attributes to predict the absence (x=0) or presence (1<x<4) of
the disease.

. The data set

This data set has the following interesting characteristics:
. Some attributes are missing in some records:
. 67.57o of records have at least one missing value, and l4.7%o of the input attribute

values a¡e absent.

' It comes from four independent medical institutions. The database is often known

as the Cleveland data set, as this portion of the data has no missing attributes and

consequently has often been used on its own by the machine learning community.
r The records contain a mixture of real-valued, Boolean and enumerated values. A

description of each variable is shown in Table 6.1.

Table 6-1: Description of the 13 predictor variables from the coronary artery disease data set;

va¡iable types are (R)eal, (E)numerated, (B)oolean.

Va¡ Name Type Range

1 age R 28-77

2 sex B 0-1

3 chest pain type E typical angina,
angina, non-anginal
asymptomatic

atypical
pain,

4 restins blood oressure R 80-200

5 cholestoral R 0-603

6 fasting blood sugar > 120 mgldl B 0-1

7 resting electrocardiographic results E normal,
hyDertroDhv

abnormality

8 maximum heart rate achieved R 60-202

9 exercise induce angina B 0-1

10 ST depression induced by exercise
relative to rest

R 26 62

11 s'lope of the Deak exercise ST segment E upsloping, flat, downsloping

t2 ca R 0-3

13 thal E normal, fixed defect, reversible
defect
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6.3 Knowledge Representation by Neural Networks for Diagnostics

There were two main types of MLP networks: networks designed to classify all five
possible diagnostic classes and networks designed to recognize a single diagnostic class.

The nonlinea¡ multilayer perceptron trained with backpropagation was applied with 13

inputs, I layer of 50 hidden units and I output neuron. The input clinical variables a¡e 8

symbolic and 6 numeric. The training parameters of learning rate and momentum were

set at 0.1 and 0.9 respectively. The network was trained by dividing the available data

into a training set and a test set. The ouþut produced by the neural network was then

compared to the documented ouþut.
Thus in order to use the given training set with back-propagation it is essential for

it to be pre-processed so that the components of input and output vectors are represented

as activation levels. Some of the attributes are non-numeric (symbolic) and some are

numeric. These attributes can be easily normalised between 0 and 1. To deal with
symbolic attributes such as type of chest pain, it is necessary to map each value of each

attribute into a unique integer, beginning with zero and working upwards. A better way
is to map these values of the symbolic attributes into sparce binary vectors, i.e. binary
vectors that have only one bit set. Applied to the third attribute (chest pain type) from
the training set (which has 4 different values) this would give us the mapping as

follows:

typical

angina

J

atypical non - anginal asymptornatic

angina pain

IJJ
0

0

0

I

0

0

1

0

0

L

0

0

1

0

0

0

Once we have mapped specific values into such binary vectors, we can turn an

input into a satisfactory activation vector by simply normalising the numeric attribute

values and replacing the symbolic attribute values with their given binary sequence.

Having derived usable training set, we should decide what architecture we are going to
use. The number of input units and output units is fixed by the form of the input and

output vectors in the derived training set. The input vectors contain 13 components

while the ouþut vectors contains just one. Thus the network must have 13 input units

and one ouþut unit.

The following is a brief summaly of the attributes used in the database.

#1 is the age in ye¿ìrs;

#2 is the patient's sex:
value 0: female;
value 1: male;

#3 is the chest pain type:
value l: typical angina;
value2: atypical angina;
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value 3: non-anginal pain;
value 4: asymptomatic;

#4 is the resting blood pressure (in mm Hg on admission to the hospital);
#5 is the serum cholesterol in mg/dl;
#6 give an indication for fasting blood sugar:

value 0: < 120 mg/dl;
value 1: > 120 mg/dl;

#7 give a classification for the resting electrocardiographic results:
value 0: normal;
value 1: having ST-T wave abnormality (T wave inversions

and"/or ST elevation or depression of > 0.05 mV);
value 2: showing probable or definite left ventricular

hypertrophy by Estes' criteria;
#8 is the maximum heart rate achieved during exercising;
#9 indicates whether exercise induced angina:

value 0: no;
value 1: yes;

#10 is the ST depression induced by exercise relative to rest;
#11 is the tlpe of slope of the peak exercise ST segment:

value 1: upsloping;
value2: flat;
value 3: downsloping;

#12 is the number of major vessels (0-3) colored by fluoroscopy;
#13 thal; not fuither explained:

value 3: normal;
value 6: fixed defect;
value 7: reversible defect;

#14 is the predicted attribute: diagnosis of heart disease (angiographic disease status):
value 0: no heart disease;

values I, 2, 3, and 4: heart disease.

In a few instances an attribute value was missing.They are distinguished with the value
-1.

The Back-propagation algorithm was used to a train feed forward MLP t5rpe

neural networks. After presenting one training example to the 13 network inputs (this is
the feedforward part), the error at the ouþut is calculated by subtracting the desired
output from the actual network output and taking the square of the difference. The
errors for all examples in the training set are then added together and their sum is back
propagated through the network, adjusting the weights of the connections between the
processing elements of the network. Using a gradient descent learning algorithm the
network error should decrease towards a minimum. The processing elements pass the
sum of their inputs through a sigmoid function, limiting the neuron output between zero
and one.

Several settings were used for the training set, for the learning period, and for the
various network architectures in this study. To see how much influence the amount of
processing elements in the hidden layer would have, experiments with both 20 and 50
units in the hidden layer were conducted.

Also the number of output units was varied; networks with just one, with two, and
with five ouþuts were used. The networks with five outputs were trained with data
containing five target categories: one category for "no heart disease" and four others for
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different grades of "heart disease presence". The networks with two ouþuts rwere

trained with data containing only two categories: "absence" versus 'þresence". And the

networks with just one output were trained in two ways: using five categories and two
categories. In the first case the five categories {0,I,2,3,4I were scaled to values between
zero and one {0.00, 0.25, 0.50, 0.75, 1.00}, as the network output is limited between

those two values. In the second case the network output should be low for one category
("absence") and high for the other ("presence").

The networks were trained with three different training sets. First, the full
database of 303 examples was used as training set for the learning of the networks, and

the performance of the networks was tested with the same set, as there were no other
data to measure the performance with. Second, the original database was split into a

training set part with 253 examples used for training, and a testing set paÍ with 50

instances used for measuring the network performance. The reason for this is that one

cannot test the ability of a neural network to generalise if one uses the same set of data

for both training and testing. If a network performs as well on a different testing set as

on its training set, then the network learned to generalise well. If however a network
performs much worse on a testing set in comparison with its performance on the data set

with which it was trained, then the network did not learn to generalise well enough. This
happens for example if the number of hidden neurons is too large and the learning
period was too long. Third, a training set of 202 exarrryles for the learning of the

networks, and a testing set of 101 examples to measure their perfonnances were used.

Both sets together form the full original data set again because a testing set that contains

only 50 examples is quite small. Because it is not always very clear when the learning
of a network should be stopped, three learning periods of 5000 epochs each per network
were used. After each learning period, the network was tested.

Even if the output error during learning of a network is still decreasing, this does

not necessarily mean that the performance of that network is still improving. The
network output error might be decreasing, but the number of misclassifications could be
increasing. This depends on the way the error is calculated and on the definition of
misclassif,rcation that is used in that particular case. Further, the number of
misclassifications might be decreasing when testing with the same data set as which the

network was trained with, whilst at the same time the number of misclassifications
could be increasing when using a different data set for testing the network performance.

Output Representationa

A total of 72 experiments were performed. Each network was used to perform three
experiments: The number of neural networks used to make a diagnosis on possible heart
disease patients is 24. Each network in three experiments per network were examined:
first after 5,000 epochs of learning, then after 10,000 epochs, and finally after a total of
15,000 epochs. Twelve networks had 20 processing elements in their single hidden
layers, and the other twelve had 50 hidden neurons each. Six networks had a single
output each and were trained for classifying in five classes: {0.00, 0.25, 0.50, 0.75, and

1.00Ì. Six other networks also had a single input, but they were trained for classifying
in only two classes: {0.0, 1.0}. Six networks had two output units each, and they had to
learn to classify in two classes also: { 10, 01}. Finally, there were six networks with five
outputs each, learning to classify in five classes again: { 10000, 01000, 00100, 00010,
and 00001). For every type of network (different number of hidden units, different
number of ouþut units, different number of classes to learn) three neural networks,
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were trained with different sizes of training sets and testing sets: 303+0, 253+50, and

2O2+l0I
The output class is either healthy (class 0) or with heart disease (class 1). The

target values for the ouþut were coded as 0 for confirmed normal and I for conf,irmed
abnormal. The testing of the network was achieved by using the weights derived in the
training set and applying the new pattern to the network to which it has not been

exposed. The network was tested on 50 patients. All network training was done in a

supervised fashion, which means that the inputs and desired outputs were known during
the training process. Patients were selected from the Cleveland Clinic Foundation.

6.4 Simulation Results

The accuracy of each network was found by counting the number of misclassifications,
using only two categories: "no heart disease present" and "heart disease present". The
number of misclassifications divided by the total number of instances in the testing data

set, subtracted from 100 per cent, gives the actual accuracy.

Misclassifications appear in two ways: a false alarm occurs when the neural
network detects a heart disease whilst the patient in question does not have a heart
disease; a missed detection occurs when the network fails to detect the patient's heart
disease. The full results of the experiments are presented at the end of this chapter.

The best performing network from these experiments twas a network with 50
processing elements in its hidden layer, and with a single output that learned with two
classes and 2O2 examples. After 5,000 epochs of learning a testing set of 101 examples

was tested, and it showed an accuracy of 87.1 Vo.T}.te following Table 6-2 summarises

these results.

Table 6-2: Best results for different network properties and learn/test methods

Tested with + Train set (303
ex.)

Test set (50 ex.) Test set (101
ex.)

I Property J epochs score epochs score epochs score

2 20 hidden units 15,000 85.8 5,000 84.0 5,000 84.2

3 50 hidden units 10,000 85.8 5,000 84.0 4,000 87.1

4 1 output.5 classes 15,000 84.5 5,000 84.0 5,000 84.2

5 1 output,2 classes 10,000 85.8 5,000 84.0 4,000 87.1

6 2 outputs,2 classes 10,000 84.8 5.000 82.0 10,000 83.2

7 5 outputs,5 classes 10,000 84.5 5,000 82.0 15,000 83.2

From this table it can be seen that the performance increased after 5,000 learning
epochs, if one would only look at the results on the training set. Looking at the results if
the networks are tested with a test set that is different from the training set, shows that
the real performance almost never increased after 5,000 learning epochs. Further we see

a minor indication that a larger number of hidden neurons causes slightly better results.
If we look at the number of ouþuts and classes, notice that the best number of

outputs seems to be just one, and that leaming for two classes gives better results than
learning for five classes.

It is obvious from this study that the present practice of choosing manually the
architecture of the neural network is not only time consuming but also it does not give
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the optimum performance. Evolutionary computing techniques can provide a solution to
this problem.

6.5 The Stopping Criterion

In order to prevent overtraining, when to stop training the network is examined. If the

network is overtrained, it loses its ability to generalise; this means that the network
performance is significantly worse when new data is fed to the network, (data that was

not used for training), instead of the data in the training set.

A solution to prevent overtraining is so-called cross-validation. This means that during
training the network error is not only calculated for the training data, but also for an

independent test data set, which has the same statistical properties as the train data set.

After every n epochs the network parameters are written to a file, so that afterwards we

can retrieve the network that had a minimal elror on the test data. In Figure 6-l and 6-2

two examples can be seen. These figures shows the error graphs of two different
networks.

Both the error graph for the training data and the one for the testing data are

shown. One can easily see that, although the error is still decreasing for the training
data, the error for the testing data slowly increases after it reached its minimum. The

network configuration with the best generalising behaviour is the one that was saved

when the test error was minimal.

stop leaming
here

0.4

0.3

training set

-test 

set

\"..-.. v

0 10 20

nr. of epochs (x 500)

30 40

Figure 6-l: When to stop learning (13-50-l network, training set202 examples, test set 101

examples)

o
(¡)

o.2

0.1

0
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stop learning
here

o.4

0.3

o.2

0.1

0 10 30 40

Figure 6-2: When to stop learning (13-50-1 network, training set202 examples, test set 101

examples)

6.6 Performance of other Statistical Methods reported in the Iiterature

Table 6-3 shows performance of other statistical methods reported in the literature.
Comparison of percent correct classification of recognition on the test set using various
Neural networks are shown in Table 6-4.

Table 6-3: Performance of other statistical methods reported in the literature.

Methods ToConect Classif,ication

1

2

3

C4 74.8

NT Growth 77

CLASSIT Clustering 78.9

Best of the neural networks from experiments: 87 .lVo accuracy.

Table 6-4: Compa¡ison of percent correct classification of recognition on the test set

using va¡ious Neural networks.

o
o

0
20

nr. of epochs (x500)

training set

-test 

set

\

Network Learning
Rule

Transfer
function

#of
Input
PEs

#of
Hidden

PEs

#of
Outputs

PEs

Vo COtle-,Ct

classification

1 MLP Delta Sigmoid 13 50 1 87.1

2 MN Delta Siemoid 13 5 1 82.82

3 RBF NormCum Gaussian 13 5 1 75

4 RL DRS Siemoid T3 5 1 82.81
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6.7 The Dual Spiral Problem

In this problem, the points of the 2 classes are on spirals in each other. V/e have
experimented with 1 and 1.5 loops of the spiral round the center. One class is called "0"
and the other is called "1". On each loop,each class has equidistant 100 points, so 200

examples with I loop and 300 with 1.5 loops. All the networks start with the same

random weights. Globel learning were used.

!.7

-L.?

1.7

-L.?
r.7 -L.?

Figure 6-3: The dual spiral problem

class 1

cl¿ss 0

-L.? L.?

' gfass 0

!:
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Figure 6-4: Iog of sum squared error with 4 different combinations of leaming rate and

momentum for I 13-54-1 network.
1=(LR:0.01,Mom-0.9),
!, = (LR:0.02 , Mom= 0.8),
l=(LR:0.02,Mom-0.8),
{=(LR:0.1 ,Mom-0.6),
J =(LR:0.02 , Mom - 0.8),
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Figure 6-5: log of sum squared error with 4 different combinations of learning rate and

momentum for I 13-54-1 network.
{ = (LR:0.1,Mom = 0.6),
J= (LR:O.1 , Mom - 0.5),
S=(LR:O.1 ,Mom-0.3),
l=(LR:O.1 ,Mom=0.1),
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Figure 6-7: Mean square error graph
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Network structure Training & testing parameters Eo accwacy after#
epochs

I #
inputs

#hidden #output #classes t¡ain
set

test set 5,000 10,000 15,000

2 13 50 I 5 303 303 81.5 84.2 84.5

3 T3 50 1 5 253 253
50

82.6
84.0

85.8
84.0

86.6
82.0

4 t3 50 I 5 202 202
101

85.1
84.2

87.1
84.2

87.1

84.2

5 t3 20 1 5 303 303 82.8 83.5 84.2

6 13 20 1 5 253 253
50

82.6
82.0

8s.8
82.0

86.2
82.0

7 t3 20 I 5 202 202
101

85.6
80.2

87.1
83.2

87.6
84.2

8 13 50 1 2 303 303 83.2 85.8 85.8

9 t3 50 1 2 253 253
50

83.8
84.0

87.4
84.0

87.0
84.0

10 t3 50 1 2 202 202
101

86.1
85.2

88.1
83.2

88.6
83.2

11 L3 20 1 ) 303 303 83.5 84.8 85.8

12 13 20 1 2 253 253
50

84.6
84.0

86.6
82.0

87.0
84.0

T3 13 20 I a 202 202
101

85.2
84.2

87.6
84.2

88.6
83.2

74 1,3 50 2 2 303 303 82.8 84.8 84.2

15 13 50 ) 2 202 202
101

83.7
80.2

85.6
81.2

86.1
80.2

T6 13 20 ) 1 303 303 83.5 84.2 84.8

t7 t3 20 2 2 253 253
50

83.8
82.0

87.0
78.0

85.4
80.0

18 13 20 2 ) 202 202
101

83.7
8t.2

85.1
83.2

86.1
82.2

t9 13 50 5 5 303 303 81.2 84.5 83.8

20 t3 50 5 5 253 253
50

83.4
82.0

85.4
80.0

85.0
80.0

2T 13 50 5 5 202 202
101

82.7
81.2

87.1
80.2

86.1
83.2

22 13 20 5 5 303 303 82.8 84.2 83.8

23 13 20 5 5 253 253
50

83.0
78.0

85.0
76.0

85.0
80.0

24 l3 20 5 5 202 202
101

85.1
75.2

85.6
80.2

85.6
'82.2

25 T3 400 1
,) 202 202

10r
90.1
82.2

(after
s0,000 epochs)
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6.8 Gonclusion

In this chapter the use of artificial neural networks in a real-world diagnosis problem of
coronary ñtery disease was examined. Perfonnance comparison with various neural
networks such as modular networks, radial basis function, reinforcement learning have
been made. Also, an attempt is made to formulate the neural network training criteria in
medical diagnosis. It is a usual practice to stop the training of a neural network as soon
as the training of the neural network error reaches to a specified value. It is shown that
the present approach is not reasonable and does not give accurate results. The approach
presented in this chapter can save valuable training time.

Different input and output representations are derived and performance under
each is analysed. From the results of experiments, the following conclusions can be
drawn. First, we can see that the ability to classify correctly decreases slowly with the
increase in the number of output neurons. Secondly, the number of classes for which the
network is trained is best set to two, if the performance after learning is determined
concerning only two categories as well. Thirdly, the numbers of hidden neurons in the
simulations do not seem to make much difference, regarding the results, although the
experiments with 50 hidden neurons instead of 2O gave slightly better results. Finally, if
we compa¡e at the accuracy of the simulated neural networks with performance of other
statistical methods reported in the literature we see quite a large difference in favour of
the neural networks.
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Chapter 7

Experimental Results with Hybrid System

7.1 lntroduction

This chapter presents a hybrid learning methodology that integrates genetic algorithms
(GAs) and the back-propagation algorithms (BP), which should always find the correct
global minima without getting stuck at local minima. In the hybrid learning algorithm
back-propagation can be used as the training method with genetic algorithms used to
escape from local optima. Thus making use of both genetic algorithms and back-
propagation.

The back-propagation algorithm is a well-known method of training MLP
networks. It involves a search in the weight space for the optimum weights, which
minimise the error between the target output and the actual output of the network. This
method is simple and easy to implement. However, it is dependent on several

parameters, such as the learning rate and a momentum term. It is also sensitive to local
minima. Since it is gradient descent method it has a tendency to get stuck in local
minima of the error surface. None of these single methods has an ansrwer for all the
optimisation problems.

The genetic algorithm is incorporated in the back-propagation algorithm to f,rnd

the best set of weights for mapping the input data to the ouþut data. The performance of
genetic algorithms does not depend on parameters such as the learning rate or
momentum. Genetic algorithm is well suited to optimise functions having a large

number of variables. Due to their ability to search the entire solution space

simultaneously, GAs offer a low possibility of getting stuck at local minima.
One of the drawbacks of genetic algorithms is that as they get closer to the

solution, the speed of convergence decreases. The genetic/back-propagation algorithm
optimises the network's weights using a genetic algorithm. However, to overcome the
slow convergence of the genetic algorithm in the final stage of the optimisation process,

a switch can be made to the back-propagation algorithm as soon as the genetic

algorithm has located a near optimal weight configuration. The final convergence to the
optimal solution can be performed using the back-propagation algorithm. This way one

can exploit the strong points of both the genetic algorithm (GA), and the back-
propagation algorithm (BP). All experiments were performed on a real world-data set of
coronary artery disease. A detailed description of data set is already given in Chapter 6.

Various versions of the this method are presented and experimental results show
that GA-BP algorithms are as fast as the back-propagation algorithm and do not get

stuck in local minima. It involves the optimisation of the connection weights of the
MLP architecture for solving a specified mapping of an input data set to the output data
set. The weight optimisation was achieved using the well-known gradient-descent
method and a genetic algorithm.
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7.2 Brief Description of GA software

Figure 7-1: Flowchart for the GA software SUGAL

The GA software used was a genetic algorithm CJibrary called 'SUGAL' (v1.0),
developed by A. Hunter at the University of Sunderland, England, and it was running on
IBM 686. The basic working of SUGAL is illustrated in the flowchart of Figure 7-1.

In the course of a generation firstly pairs of individuals that serve as candidates to
be included in the next generation are chosen using the selection mechanism. In the
standa¡d GA the number of candidates equals the population size; the candidates replace
i.e. the complete population. An exception to this is when elitism is used. With elitism
the number of candidates is equal to the population size minus one. As usual crossover
is performed on the pair of candidates with probability pç. With probabllity p¡n,

mutation is performed right after this. The candidates are then evaluated and they are

Stop

Create initial
random population

Evâluale fitness of each member

ls the stopping cr¡terion
sat¡sfied ?

lf re-evaluat¡on flag ¡s on re-
êvaluate fitness of each member

For number of candidatesdo

Select two candidates us¡ng
selection mechanism

Perform crossover on candidates
with probab¡lity pc

Perform mutation on cand¡dates
w¡th probability p-

Evaluate cand¡dates

lnsert cand¡dates into populat¡on
using replacement mechan¡sm
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inserted back into the population using the replacement mechanism. In the standard GA
the replacement mechanism is such that the candidates always replace the individuals in
the population. This is known as unconditional replacement. SUGAL offers extra
replacement strategies identical to the ones used in a steady-state genetic algorithm
(SSGA); i.e. conditional/unconditional and ranked/unranked replacement. The standard
GA can be tra¡rsformed into a SSGA by decreasing the number of candidates to only
one (or two).

The SUGAL software was changed regarding the implementation of the crossover
operator. The standard procedure was chosen: a single chromosome is subject to
mutation with probability pv¡. Tltis probabilistic implementation of the mutation

operator where every chromosome has to undergo a 'test' to determine whether or not it
should be mutated makes the program quite slow. A sequential version of the mutation
operator done at the end of a generation where the number of chromosomes to be
mutated is equal to integer value of the expected number of mutations would be much
faster. Va¡ious replacement mechanisms however require that the chromosomes are

evaluated before the replacement takes place (and evaluation, of course, must take place
after the mutations are made).

A second change was made concerning the selection of the pair of candidates. In
SUGAL it was possible for a single individual to be chosen both as the father and as the
mother. In such a case the offspring are simply exact copies of the parent no matter
what kind of crossover takes place. This has the effect of lowering the effective
crossover rate and in populations with one superfit individual it could easily lead to
premature convergence. The code was changed so that the father and mother
ch¡omosome could not be one and the same

A special option in SUGAL is re-evaluation. If the re-evaluation flag is set each
individual is re-evaluated at the start of a generation. This can serve a purpose if the
evaluation is dependent on the state of the system or its non-stationary environment or if
it the evaluation contains stochastic elements. In many static optimisation problems the
fitness of an individual is deterministically dependent on the individual and re-
evaluation will serve no purpose.

7.3 Hybridization of Genetic Agorithms w¡th the Back-Propagat¡on
Algorithm

Genetic algorithms have been used to search the weight space of a MLP network
without the use of any gradient information. h this technique, a complete set of weights
is coded in a binary or real number string, which has an associated fitness indicating its
effectiveness. Starting with a random population of such strings, successive generations
are constructed using genetic operators to construct new strings out of old ones such that
fit strings are more likely to survive and to participate in crossover operations.

Due to the fact that SUGAL makes it very easy to perform multiple runs and keep
a record of several statistical parameters, it was chosen to use this program for the back-
propagation runs. So just like using the genetic algorithm, each neural network is
retained by storing its weights on a chromosome. The number of runs is set as the
population size, e.g. if a neural network had to be trained by the back-propagation ten
times, each time with random initial weight values, the population size would be set to
ten. All weights of each chromosome are randomly initialised in a uniform range
between '-1' and '+1', as is common for the back-propagation initialisations. By
uniformly selecting the two 'parent'-chromosomes, each chromosome would be
selected only once to produce 'offspring'. Of course, in this case 'offspring' refers to a
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'parent' neural network, which has been trained for a number of additional epochs.

Since fitness normalisation is useless, this is set to 'direct' so as not to waste any time
with useless computations. SUGAL always selects two parents (as is natural for a

genetic algorithm), which are then passed to the routine performing crossover. Since of
course crossover must not be performed in this case, the crossover rate pc is set to 0,

effectively preventing the two neural networks from being mixed. The actual back-
propagation training has been programmed in a new mutation routine, called 'BPlearn',
which has been added to the usual mutation routines. By setting the mutation rate pmto
1.0 per chromosome, it has been made certain that this mutation routine was then called
upon exactly once for each chromosome, before inserting them in the new population.

This replacement is done 'uniform' and 'unconditional', which assures that the newly
trained networks do not have to compete with other networks for a place in the new
pool. Of course, 'elitism' has been turned off, since this would not only prevent one

network from being trained for one generation, but also upset the order of the pool by
leaving one parent unselected for training and insertion in the next pool, which would
then be lost forever. Lastly, in order to reduce the overhead of the algorithm, it was

chosen that the mutation operator 'BPlearn' would learn the networks for frfty epochs

before inserting it in the new pool, rendering one generation in SUGAL equal to fifty
back-propagation epochs. It can be seen that this way, SUGAL performs an effective

simultaneous back-propagation learning algorithm for any number of networks and for
any number of epochs, while collecting statistical information as the minimum and

mean network error and, for instance, their standa¡d deviation. Out of an initial random

pool of networks, all networks are picked (two at a time), which are then trained

individually and inserted into the pool of the next generation. This is repeated until the

desired number of generations (and thus epochs) has been reached. By inspecting the

pool, the exact network error of each individual network can be obtained, giving vital
information about the diversity of the final results.

Coding

The coding is chosen to be real-valued. A single chromosome represents all the weights

in the neural network (including the bias weights), where a single real-valued gene

corresponds to one weight-value. The order in which the weights are represented in the

chromosome string is quite ambiguous. The nodes in the network are numbered from
'0' starting at the bias-unit, then the input units, the hidden neurons and finally the

output neurons. Even though the input units and the bias unit are not really neurons at

all, they will be referred to as such as is common practice. The network architecture is

not restricted to a classic fully connected layer-model. However, the hidden neurons are

numbered in such a way that neurons with a higher index are 'higher' up in the

hierarchy of the network; i.e. neurons can only have outgoing connections to neurons

with a higher index. The indices of the weights represent the order in which they appear

in the chromosome. Incoming weights to a certain neuron are grouped together in the

ch¡omosome representation. Example of the ordering of the weights in a chromosome is

shown in Figure 7-2.

!
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Figure 7-2:Exarrryle of the ordering of the weights in a chromosome.

7.4 Neural Network Specific Crossover Operator

In genetic algorithms, the crossover operator plays an important role. It is a very critical
operator, without which there simply would not be any 'real' genetic algorithms since it
is the only possible form of exchange of information between the chromosomes of a

population. In general, two very important factors have to be recognised when dealing
with crossover: NN-specif,rc crossover operation is shown in Figure 7-3.

Parent network A: Child network A

xt

x2

Parent network B:

Yr xl Yr

x2

Child network B':

Yz

Yr

!z

xl Yr xl

x2

Figure 7-3: NN-specific crossover operation.

Constructive Crossover Operator

Crossover is needed to combine partial information from several chromosomes into one
superior solution. It combines lower order building blocks into new, higher order
building blocks. This effect of crossover is essential to the functioning of the algorithm,
and looks at crossover as a constructive operator.

x2
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Disruptive Crossover OperatorI

Crossover can also very easily disrupt the building blocks. This way, crossover is seen

as a disruptive operator, whose effect must be limited as much as possible. These two
'functions' of crossover form a certain contradiction, often resulting in a trade-off. This
can for instance be done by either choosing multi-point (or uniform) crossover with a
low crossover rate, or 2-point crossover with a higher crossover rate.

In genetic algorithms, a further difficulty arises, as the weights are very much
dependant on each other. In other words, setting one weight to a better value could have
no effect whatsoever unless the other weights of that particular neuron are also set to
their appropriate values and making it possible for the neuron to make an effective
separation of its input space (in other words: forming a useful hyperplane). Furthermore,
this important relation between weights belonging to the same neuron also makes it very
unlikely that selecting some weights from one chromosome and the other weights from
another chromosome would result in successful neuron operation. This 'intra-crossing'
of neurons has already been limited by the manner in which the cell-weights are coded
onto the chromosomes, locating all weights of a neuron next to each other. However, by
eliminating all possibilities of selecting a crossover point within such a weight-group,
this could be taken a step further: it would be absolutely eliminated.

The NN-specific crossover operator determines the potential crossover points (as

shown in Figure 7-4), which lie in between the weight groups of the various neuron
cells. Then, it selects which of these points will actually be used for crossover. With this
neural network specific crossover operator, previously evolved neurons can no longer
be disrupted by crossover, whereas the various neurons from the available chromosomes
can still be freely combined by this same operator. A uniform NN-specific crossover
operator would select more points for this than for instance a 2-point NN-specific
crossover operator. 'When the crossover operation is actually performed, two child
chromosomes will be generated representing networks A' and B', which consist of
neuron cells taken as a whole from the parental networks.

This new crossover operator has the disadvantage that with the potential crossover
points within a neuron's weight group, also the possibility of forming new useful
hyperplanes by crossover has been eliminated. However, it is expected that the
advantages outweigh this disadvantage, experiments indicate that the dominant search

method is genetic hill climbing, where the mutation operator is used to optimise the
various weights or hl,perplanes. This way, the mutation and crossover operators would
gracefully work together, with mutation optimising the various neurons and crossover
subsequently recombining them into better networks.
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:1)
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potential crossover points for the classic operators
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Cell2 Cell 3

1 1

potential crossover points for the NN-specific operators

Figure 7 - :Example of the difference in potential crossover point

The neural network used to classify this data was a fully connected feed-forward neural
network, with thirteen input neurons, ten hidden neurons and one output neuron.
Including the standard neuron thresholds, the genetic algorithm requires chromosomes
with 151 genes.

7.5 Simulation Results

For this reasonably complex problem, various settings for the learning rate q and the

momentum rate p are used: I = 0.5 with no momentum (p = 0), rl = 0.5 with
momentum F=0.5,î=0.1 with ¡r=0.0, and finallyl=0.1 with F=0.5. Foreach of
these settings 100 runs a.re performed, during which the networks are trained for 12,500

epochs.
It appears that the best results by far were obtained using the fourth setting (q -

0.1, F = 0.5): an average network error of 0.44 andT4Vo of the runs reaching a perfect
classification of the whole training set. The worst run from the batch using this
particular setting got stuck at an error of 2.5I.

The first setting (rl = 0.5, F = 0) produced only one perfect classification out of
the 100 runs performed. Addition of a momentum parameter (tt = S) gave no

improvement. The results for the other settings show that the learning rate Tl is set too
high in the first two cases, making it almost impossible for the back-propagation
algorithm to find solutions with low network errors. When we compare these results
with those obtained by the genetic algorithm, the conclusion must be drawn that the
back-propagation definitely outperforms the genetic algorithm again if the right settings

for the learning rate î and momentum rate p are used. The best solution found by the
genetic algorithm still had a network error of 0.891 (NN-specif,rc uniform crossover),
after a comparable amount of training.

Again, 12500 training epochs are calculated for each of the performed 100 runs.
Surprisingly, it seemed to be extremely difficult for the back-propagation algorithm to
obtain a lOÙVo perfect classification rate, since only one run has succeeded in doing so
(this run can be seen as 'best' run in the graph). The average network error reached a

value of 4.0 after about 2000 training epochs, after which it very gradually descends to a
final value o13.75 after the full 12500 steps. Figure 7-9 shows how the training errors of
the various networks are spread out. It appears that 69Vo of the networks has a final

78



CHAPTER 7. ÐGERMENTAL RESIJLTS WITH HYBRID SYSTEM

error between 2 and 5, and 18 networks perform even worse than that, with errors
ranging up to 10.4.

It seems that this real-life medical problem is very hard for the back-propagation
to optimise, given the fact that only one run out of a hundred could find a perfect
solution, whereas the others seemed to have got stuck in a local minimum. This points
towards a very complex error surface with a very high probability of the algorithm
getting stuck before reaching a more global optimum.

When comparing these results with those obtained by the genetic algorithms, it
can be concluded that, for this problem, the genetic version outperforms the back-
propagation. The NN-specific crossover tlpes got an average final network error of 2.91
and 3.13 (p"= 1.0), theback-propagation obtained an average of 3.75 after a roughly
comparable amount of calculations. Of course, these results were obtained with the
back-propagation algorithms without momentum, but it still shows that genetic
algorithms can actually get good and competitive results. The genetic algorithms do
take a lot of time, about250 to 300 generations, before they get near a network error of
around 4, compared to 2000 training epochs for the BP-algorithm, which is comparable
to only 80 GA-generations. But the probability of getting stuck in a local optimum is
much smaller than for the back-propagation, since the mutation operator provides a

powerfrrl tool to escape these traps again. This could lead to a situation as is observed
here, where back-propagation initially takes a strong lead, but fuither down the track
often finds itself stuck, whereas the genetic algorithm can continue in slowly but
steadily decreasing the network error. A necessity for this typical situation is a certain
type of error surface, which makes it hard for the back-propagation to find a solution.

In order to see if the use of a momentum parameter in the back-propagation
routine would give an improvement, ten runs were performed, again for 12500 epochs,

with the learning rate t set to 0.1 and the momentum p set to 0.9. Indeed, this resulted in
a better performance, with two out of ten runs reaching a perfect solution, with a final
network error of around 0.0015. Three runs ended with an error between 1 and 2,

another three with an error between 2 and 3, and frnally two runs ended with an error
between 3 and 4. The total average training error was 1.71, which is undoubtedly better
than both the back-propagation without momentum and the genetic algorithms. An
average training error of 3.0 was already reached after as little as 200 epochs, and the
best run reached a perfect classification rate within 150 training steps. Again, this shows
that the back-propagation can be extremely fast, if it is lucky enough to begin with a

good initial starting point.
Again, every setting is run 25 times, each time with different random

initialisations. The network enors of the best chromosome of each generation are

accumulated, averaged and plotted. The results obtained by the various crossover
operators after the 500 generations are presented in Table 7-1.

Table 7-1: Simulation results for the CAD problem after 500 generations.

Average of the runs Geometric Mean of the runs

Crossover type P" = 0'6 P" = 0.8 P" = 1'0 P" = 0.6 P" = 0.8 P. = 1'0

1-point
2-point
Uniform
NN-2-point
NN-uniform

3.6t6
4.rt6
4.077
3.555
3.276

3.683
3.750
3.8t2
3.279
3.205

3.279
3.404
3.492
2.907
3.I29

3.501
4.028
3.950
3.345
3.t47

3.581
3.582
3.613
3.089
2.950

3.t33
3.213
3.307
2.702
2.902
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Again, the resulting network errors indicate that many of the runs did not reach a perfect
classification of all the input vectors. In contrast to the previous problem, this time the
geometric mean values are also not reduced below values of a¡ound three to four. And
although the graphs indicate that the genetic algorithms keep on reducing the network
etror, such perfect solutions are not likely to be found within many generations to come.

In fact, the lowest network errors found by each crossover type in all its runs are 1.001

for 1-point crossover, 0.962 for 2-point crossover, 1.000 for uniform crossover, 0.891

for NN-specific uniform crossover and finally 0.998 for NN-specific 2-point crossover.

These values are almost equal, but almost certainly still not low enough to guarantee a

I00 Vo classification. It can be estimated with reasonable accuracy that, after 500
generations, on average 3 training vectors is still misclassified, which equals a correct

classification rate of 97.5 Vo.

The simulation results improve as the crossover rate increases from 0.6 to 1.0.

Strangely enough, l-point crossover performs best for the classic versions. For the NN-
specific types, the uniform version performs better for p" = 0.6, equal results are

obtained for pr= 0.8 and the 2-point version performs better for the highest crossover

rate. This means that for the first time uniform NN-specif,rc crossover does not always

give the best results. Again, it is clear that the NN-specif,rc operators ouþerform the

normal crossover operators, although the difference is not very great.
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Figure 7-5: 1-point crossover averaged over 25 epochs
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Figure 7 -6: Z-point crossover averaged ov er 25 epochs
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Figure 7-7: Uniform crossover averaged over 25 epochs
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Figure 7-8: NN-specific 2-point crossover averaged over 25 epochs
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Figure 7-9: NN-specific uniform crossover averaged over 25 epochs
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Figure 7-10: Average of 75 epochs
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Figure 7-1 1: Averages over 100 epochs
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7.6 Conclusion

In this chapter it is shown that genetic algorithms can be used to optimise network
weights. The main advantage of using GAs for the training of MLP is that they can find
global minima without getting stuck at local minima. The basic difference between BP
and GA based training mechanisms is that, unlike BP, GA does not make use of local
knowledge of the parameter space. Experiments indicate that the genetic version

defrnitely outperforms the back-propagation if the learning rate and momentum ate

chosen correctly. Several experiments have been carried out on a coronary artery

disease data set with various crossover operators, 1 point, 2 point, and NN uniform, NN
2 point on this data set. The lowest network effors found by each crossover type in all
its runs a¡e 1.001 for l-point crossover, 0.962 for 2-point crossover, 1.000 for uniform
crossover, 0.891 for NN-specific uniform crossover and finally 0.998 for NN-speciftc 2-

point crossover. It has been found that, after 500 generations, on average 3 training
vectors were misclassified, which equals a conect classification rate of 97.5 Vo.
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Chapter 8

Experimental results using genetic programming

8.1 lntroduction

In this chapter the performance of the Evolutionary Pre-Processor (EPP), a

genetic-programming-based feature classifier is examined. Genetic programming
(GP) is analogous to a genetic algorithm, except that the structures undergoing
adaptation are trees rather than strings. The trees are hierarchical representations

of computer programs or functional expressions. The internal nodes are functions
that present their output to their parent node, and take the outputs of their child
nodes as arguments. The leaf nodes are terminals which a¡e the inputs to the

program. The output of the program is taken from the root (top) node. The set of
functions and terminals are defined by the user, and are specific to the problem.

Functions can have side effects such as altering the state of memory. In order to
apply GP to a problem, there are five things that must be specified by the user

(Koza, 1992b):
1. the set of terminals
2. the set of functions
3. the fitness measure
4. the parameters for controlling the run, and

5. the method for designating the result and the criterion for terminating a run
The Evolutionary Pre-Processor, is an automatic non-parametric method for

the extraction of non-linear features. Using genetic programming, the

Evolutionary Pre-Processor evolves networks of different non-linear functions,
which preprocess the data to improve the discriminatory performance of a

classifier. The performance of each approach for test patterns, that is the

generalisation ability of each approach is evaluated by cross validation techniques.

Simulation results are compared with the performance of various classification
methods such as k-Nearest Neighours (knn), hyperplane, linea¡ perceptron and

Gaussian Murimum Likelihood. All experiments were performed on a real world-
data set of corona.ry artery disease. The results are compared to those of several

other classification methods on the same problem. Control parameters required for
standard GP are shown Table 8-1.



l. DoDulation size
2. max. number of generations

3. probability of crossover
4. probability of mutation
5. probability of reDroduction
6. probability of choosing internal points for crossover

7. selection scheme
8. fitness scaling scheme

9. ma¡t. depth of trees created during a run

10. max. depth initial random trees

11. method for qeneratine initial population

12. elitist strategy

CHAPTER 8. E>(PERMENTAL RESULTS USING GENETIC PROGRAMMNG

Table 8-1: Control parameters required for standard GP

8.2 TheEvolutionaryPre'Processor

The Evolutionary Pre-Processor is a new method for the automatic extraction of
non-linear features for supervised classification. The central engine of
Evolutionary Pre-Processor is the genetic program; each individual in the
population represents a pre-processor network and a standard classification
algorithm. Based on genetic programming the Evolutionary Pre-Processor

maintains a population of individuals, each of which consists of an array of
features. The features a¡e transformations made up of functions selected by the
user. A fitness value is assigned to each individual which quantifies its ability to
classify the data. This fitness value is based on the ability of a simple classifier to
correctly classify the data after it has been transformed to the individual's feature

space. Through the repeated application of recombination and mutation operators

to the fitter members of the population, the ability of the individuals to classify the
data gradually improves until a satisfactory point in the optimisation process is
reached, and a solution is obtained.

The Evolutionary Pre-Processor performs a sea¡ch over combinations of
different, complementary components to solve a classification problem. The
Evolutionary Pre-Processor nonJinearly transforms the original data
measurements to a set of features, which are then passed to the specified
classification algorithm. Each individual can therefore be considered as a pattern

classifier. The objective of evolution is to improve the classification accuracy of
the individuals on the training data.

Using genetic programming, Evolutionary Pre-Processor:
o automatically selects the number of features to extract.
. uses non-linear pre-processing functions which are appropriate for the

problem.
o performs feature selection by determining which of the original measurements

are useful for classification.
o searches for the most appropriate classification algorithm from among a given

set.
o evolves the size and structure of the pre-processing network.
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Some of the main differences from standard genetic programming are:

strong typing: the mutation and random creation of individuals is constrained

such that the output type of each terminal or function matches the argument type
of its parent. The three types used in Evolutionary Pre-Processor are real,

enumerated and Boolean.

dynamic trial allocation: the computational complexity of Evolutionary Pre-

Processor is enormous: each data element must be processed for each individual,
for each generation, for each run. To reduce computation time, only a subset of
the training samples are used to evaluate fitness. The critical number of samples

needed to determine the rank of each individual with statistical confidence is

determined through the Rational Allocation of Trials (RAÐ.

genetic operators: the current view in evolutionary computation is that no single
genetic operator is optimal for every problem. Therefore Evolutionary Pre-

Processor uses crossover and up to seven mutation operators which are applied

probabilistically. Each individual contains a vector of operator probabilities so

that they can be evolved along with the population. The operators function at two
levels: crossover occurs at a high level, such that the function trees are treated as

indivisible genes, whereas mutation occurs at the low level, operating on the

individual features.

local optÍmisation: genetic programming is notoriously bad at evolving numerical
constants. Evolutionary Pre-Processor includes a local optimisation step during
which the constants in each individual are optimised. The real-valued constants

are modifred using a simplex algorithm, while enumerated constants are

manipulated using simple hill-climbing.

Experiments

The methods applied in the experiments are:

Evolutionary Pre-Processor: the following functions set was used: {+, -, X, l, =,
<,If-then-else, And, Or, Not).

Multi-layer Perceptron (MLP): trained using the RPROP algorithm. Thirty-two
different architectures were examined and that with the lowest validation set error
was selected as the best.

Quest: this is a decision tree algorithm based on the FACT method which makes

an un-biased selection of va¡iables when forming. The default parameter values

were used, with univariate splits and cross-validation pruning.

k-Nearest NeÍghbours (kNN): the training samples nearest to the incoming
sample decide its class by majority vote.

Gaussian Maximum likelihood (ML): a Gaussian distribution is assumed for
each class, and a separate mean and covariance matrix is estimated for each class,

resulting in quadratic decision boundaries.
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Linear Perceptron (GLIM): the feature space is segmented by hyper-planes
which are trained using an error-correcting.

Parallelepiped (PPD): the extents of the samples belonging to each class are

calculated in each dimension to establish a bounding box around each class. A
new sample is classified according to the parallelepiped it lies in; if it lies in more
than one or outside all the boxes, the box with the nearest centre is chosen.

Minimum-Distance-to-Means (MDTM): the new sample is assigned to the class

with the closest mean.

Evolutionary Pre-Processor and the MLP are both stochastic algorithms; the rest
are deterministic. The kNN algorithm has a hyper-parameter which was selected

by minimisation of the validation set classif,rcation error over the range k = I ...50.
The most important aspect of a classifier is its ability to generalise: that is, to
accurately predict the class of a previously unseen object. In order to test
generalisation, the data were partitioned into three sets of samples: the training set,

the validation set and the test set. Both the training and validation sets were used
to derive the final classifier, while the test set was put aside to obtain a statistically
independent estimate of classification error. Some of the classification methods

have a model-selection step. The training set was used by the classif,rer to learn

the model parameters, while the validation set was used to select the best model.

For those methods which yield only a single model, the training and validation
sets were merged to form a single training set. A partition of 50 training, 25

validation and25 test (460 training samples,260 validation,260 test) was used in
all experiments.

Table 8-2: Percentage classification enors for each of the methods used.

There are several sources of variation, which were addressed in the experiments:

Partition of the data: often the number of samples available for classification is

sufficiently small that the results are significantly affected by the partitioning of
the data into the training, validation and test sets. Results a¡e presented for three

random partitions of the data set, referred to as heart-t, heart-), and hea:t-3.
Although permuted and partitioned randomly, the samples were selected in such a
way that the population class proportions were preserved within each data subset.

Classification Enor EPP MLP Ouest KNN ML GLIM PPD MDTM

Heaf 1

trainins 19.13 18.04 17.97 77.97 35.51 43.62 40.34

validation 18.70 16.09 22.32
test 2t;74 18.70 t9.36 t9.t3 t9.r3 53.04 47.83 45.65

Heart 2 trainine 22.39 20.00 18.t2 t8.t2 35.07 49.71 4r.16
validation 15.65 t3.04 22.65

test 23.48 19.t3 23.56 t7.83 17.83 26.96 53.91 41.74

Heaf 3 trainins 17.17 24.35 r6.09 16.09 35.80 51.30 4r.74
validation t6.52 16.09 23.29

test t6.96 20.00 26.7r 20.87 20.87 39.r3 52.17 39.57
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Permutation of the data: some methods, such as the MLP, are sensitive to the

ordering of samples in the training set. This is dealt with by the multiple partitions

of the data.

Random Initial Conditions: Evolutionary Pre-Processor and the MLP both rely
on random initial conditions. Each was run l0 times on the three permutations of
the data for more reliable results. In each case, the run which yielded the

minimum validation set error was chosen as the best run to obtain the result.

Missing attributes were dealt with in the following way: for real-valued variables,

a missing value was replaced with the out-of-range value -9; for enumerated

variables, an extra enumeration value was added called "missing".

8.3 Results

Table 8.1 shows the training, validation and test set classification errors as a

percentage of that set for each of the th¡ee permutations of the data set. The test

set error is the most important, since it gives a statistically independent estimate of
the error rate of the classifier. For the ML, GLM, PPD and MDTM classifiers

there is no model selection mechanism and therefore no validation set error. Since

Quest uses lO-fold cross-validation, it does not have a training set error. The

Evolutionary Pre-Processor training set elror can be deceptive because it is based

only on a subset of the training data which is selected according to the RAT
algorithm.

The results show that the simple classifiers kNN, GLM, PPD and MDTM
performed poorly in all cases. The ML algorithm, also a fairly straight-forward
method, performed surprisingly well. It appears the quadratic decision boundaries

were fortuitously appropriate for this data set, since the presence of discrete data

nullifies the assumption of normally-distributed data. The accuracies of the

Evolutionary Pre-Processor, MLP, Quest and ML algorithms were all generally

good, except for the poor performance of Quest on the third permutation. The

MLP and ML classifiers had the most robust performance over the three

permutations, but no algorithm had superior performance over all permutations.

There are other criteria for comparing the classifiers, such as computation
time and understandability of results. The simpler methods ML, Perceptron, PPD

and MDTM took on the order of seconds to complete their task. Quest is about

one order of magnitude slower, but still quite fast. Evolutionary and the MLP
took about three orders of magnitude longer than the simpler methods.

Figure 8-1 shows the solutions generated by Evolutionary Pre-Processor and

Quest for heart_2. The other methods were not considered to yield any intuitively
interpretable information about the problem. The trees generated by Evolutionary
Pre-Processor shown in represent parse trees for functional expressions: each

internal node is a function which takes its child nodes as arguments and retums the

result to its parent.
Figure 8-2 show the decision tree obtained by Quest; when true, the

splitting conditions indicate that the left branch be traversed. Both Evolutionary
Pre-Processor and Quest yield possibly useful information about the problem

domain, and both indicate which of the attributes are useful for discrimination
purposes. Evolutionary Pre-Processor has the advantage that it is able to generate

more flexible rules than Quest, but they are generally more difficult to interpret
since the features a¡e then passed to a classifier.
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Genetic programming usually results in spurious subtrees which do not contribute
to overall fitness but have hitch-hiked along with fitter portions of code. These

unhelpful nodes make the results more difficult to interpret, and can be
misleading. There were nevertheless some superficial similarities between the
features generated by Evolutionary Pre-Processor for the three permutations of the
data, such as the prevalence of the feature X3 = asymptomatic, and the association
between XlO and X8, X4 and Xl. The trees generated by Quest seem more
consistent between the different permutations, although the tree for heart-3 is
somewhat disappointing, containing only one split. There are few similarities
between the results of Evolutionary Pre-Processor and Quest on heart-2, other
than the use of X3. It is interesting that X6 was not used by Evolutionary Pre-

Processor but was used by Quest, and that Evolutionary Pre-Processor used some
variables which were not required by Quest.
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Figure 8-1: The multi-tree representation.
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8.4 Gonclusion

The Evolutionary Pre-Processor has been tested with a coronary artery disease

data problem and compared with seven other classification methods. While the
simpler half of the methods performed poorly, the Evolutionary Pre-Processor

maintained relatively good accuracy while providing interpretable results. The

Quest algorithm also provides interpretable results which seem easier to
understand than those of Evolutionary Pre-Processor, but was more sensitive to
the permutation of the data. Given the amount of missing data and the relatively
small number of records available, it is difficult to come to any conclusions about
the underlying mechanics of the problem. Resampling methods such as the

bootstrap could provide more reliable models of the data. In parting, the reader

should note that any comparison between algorithms is only relevant for the data

used, and should not be generalised to other problem domains.
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Ghapter 9

Experimental Results of the Fuzzy-Classifier System

9.1 lntroduction

In this chapter the fazzy classifier systems that can automatically generate fuzzy rules
from training patterns is used for pattern classification problems. Classifiers in this
approach are fuzzy if-then rules. It can also find a compact rule set by attaching large
fitness values to such fuzzy rules that can correctly classify many training patterns. That
is only those fuzzy if then rules with large fitness values are selected to construct a

compact fuzzy system with high classification performance.
Here each fuzzy if+hen rule was treated as an individual. The fitness value of

each flzzy if+hen was determined by the numbers of correctly and wrongly classified
training patterns by that rule. It is shown that fazzy rules outperformed ordinary fizzy
rules. The classification power of on real world data of coronary artery disease is shown
by computer simulation.

Recently several Neural-Network-Based and Genetic-Algorithms-Based
classifiers have been proposed for generating ñtzzy if-then rule for pattern classification
problems. Uebele (1995) have proposed a Neural-Network-Based fiizzy classif,rer. In
this classifier separation hyperplanes for classes are extracted from a trained neural
network. Then for each class, shifting these hype¡planes in parallel using the training
data set for the classes approximates convex existence regions in the input space. These

studies not only claim that these classifiers are superior then NN classifier but also

timesaving. For example, Shigeo and Lan (1995) extracted fazzy if then rules directþ
from numerical data. In their method rules were extracted from numerical data by
recursively resolving overlaps between classes. Shigeo, (1997) have then proposed a
fuzzy classifier with ellipsoidal regions, which has a learning capability. In this
classifier each class is divided into several clusters. Then for each cluster a luzzy rule
with an ellipsoidal region around a cluster center is defined. Then the center and the
covariance matrix of the ellipsoidal region for the cluster are calculated. Ishibuchi et al.,
(1995) proposed a generation method of fuzzy classification rules. This method is based

on (1) fuzzy partition of a pattern space ínto fuzzy subspaces and (2) Identification of
fuzzy rule for each fazzy subspace. Ftzzy logic has gained increased attention to solve
real problems, in recent years. It provides decision-making capabilities in the presence

of uncertainty and imprecision. 'Watanabke et al., (1994) used fuzzy discrimination
analysis for diagnosis of valvula¡ heaf disease. Cios et al., (1991) used an image
processing technique based on fuzzy set theory for diagnosing coronary artery stenosis.
They have reported a rate of true positive diagnosis of SlVo while maintaining a rate of
false positive diagnosis at the low level of lÙVo. T\eir results of the experiments are
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very promising. In this classifier each fitzzy if-then rule is treated as an individual that
is as a classifier and each population consists of a certain number of fiizzy if-then rules.

h this chapter method a genetic-algorithm-based fazzy method is used which
provides robust performance of fuzzy rules. In this method each fuzzy if-then rule is
coded as an individual which is a classifier. The fitness value of each fuzzy if+hen rule
was determined by the numbers of correctly and incorrectly classified training patterns

by that rule. This method consists of the following steps. Fuzzy partition of a pattern

space into fuzzy subspaces and identification of fuzzy rule for eachfuzzy subspace.

9.2 Outline of the Fuzzy Classifier System

l*Fuzzy Classifier System */

1. Generate an initial population ollttzy if-then Rules

2. Learning oÍfiizzy if-then Rules in the Current population

3. Determine fitness value of eachfuøy if then rule in the current population

4. Generate new fiiz,zy if then rule by genetic operations for the next population

5. Termination test.If the algorithm is not terminated steps 2 to 5 are repeated

P
tl = maxI

where, (e.l)
P
ic[

i -l
P -1 , i=t,2,...,P

P I
p P-l

kr this procedure the pattern space is partitioned into P fuzzy subsets and

determination of fuzzy partition L, depends on the desirable rate of correctly classified
patterns. The performance of fazzy classification system based on fuzzy if then rules

entirely depend on the choice of. a luzzy partition. Therefore the choice of. a fiizzy
partition is very important. In this method the fazzy rules corresponding to various
fazzy partitions a¡e simultaneously utilised in fuzzy inference. Each fiizzy subset is
defined by the symmetric triangle-shaped membership function. Figure 9-1 shows

generalised bell-shaped and triangular membership function. Generalised va¡ious bell-
shaped membership functions are shown in Figure 9-2.

Though we can use other types of membership functions for example, trapezoid-
shaped. The simplest is the triangular membership function, which is a collection of
three points. The following symmetric triangle-shaped membership function
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Figure 9-l: Generalised bell-shaped and triangular membership function.

Figure 9-2: Generalised various bell-shaped membership functions.
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In this membership function cr is the center where the grade of membership function is

equal to 1 and p is the spread of membership function.

(1) Generation of firzy rules

Ftzzy rule based classification method consists of the two procedures: a finzy rale
generation procedure and a classification procedure. Suppose that Õ patterns Ep, P=1,2,
... , Õ are given as the training pattern in the pattern space [0,1]2 from M classes. That

is (o belongs to one of the M classes: Qr, Ç22, ..., Ou. In this method the pattern space

is divided into given number of classes to generate fazzy rules. Each axis of the pattern

space is evenly partitioned into fuzzy subsets and each pattern belongs to one of the

given classes. It is important to determine appropriate fuzzy partitions of pattern space

since the performance of the derived fuzzy rules is affected by the fuzzy partition. The

following luzzy rule for 2-group classification problem with grade of certainty is used.

First fînd sum of the product of membership value of each pattern in each class, that is,

^t
(e.2)

Find the class Ç* which satisfy the following condition. If there are two or more

classes take the maximum value then no fiizzy rule will be generated.

(e.3)

n.>q,ulr(€1nl'u¡P2 
G2)' Pl"(€np)' t=t' 2' "'' M\t

T€* tlaxlT (l,T q2,...,T E^)

If two or more classes take the maximum value, the consequent of the rule can not

be determined uniquely.
The grade of certainty of the fuzzy rule is determined as follows.

'l
(e.4)

GC K
U

It
where, (9.5)

Tts€t
' - *4*M-1

This method can be used for generating initial fuzzy if-then rules in the finzy
classifier system. The learning algorithm of the fuzzy classifier system can adjust the

grade of certainty. hr this method, the consequent is determined as the class which has

the larger sum of membership value to the IF part of the fuzzy rule. The grade of
certainty takes a value in the interval (0,1].

(x

t- T

t02
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9.3 Fuzzy inference for pattern classification

Calculatefort = I, 2, .. ., M,

yÇ¿, = Mær tu,lr6rnl.rrf,cBrnl plr(€nn).ccl I .o"iÏ - et;

i,j = l, . . ., P, P=2,3,.. .,L]
Find the class O

x
*É* = Max [Yl, Y2,. . ., Yç¿M].

Y
Grad

where,

(e.6)

(x
M
Sruo.'at

t=l

Y

Find class that has the maximum value. If two or more classes take the maximum

value then the classification of a pattern is rejected.

9.4 Fuzzy Classifier System

a Generation of an Initial Population

An initial population (the number of fizzy if-then rules) of fuzzy if-then rules are

generated by the rule generation procedure. Antecedent fazzy sets of each fiizzy if then

rule are randomly selected from the fuzzy sets.

o Learning of luzzy if-then rules

Each of the given training patterns is classified by the fuzzy if+hen rules in the current
population and that a training pattern is classified by the fiuzy if-then rule that satisfies
the following relation.

(e.7)

\v
s 'ç)t

,r, i.r* ct - tl

tvtax tpl {Êrn).rrlr(Êlp). rrå(6,,n).ccl

When a training pattern is correctly classified by the fizzy if-then rule the grade

of certainty of that rule is increased as follows.

ij
pl,,(e"e) GCIrrl. rErnl.rr'¡rerr,
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GC!. =GCf. +n.0-GCfI]U.I'U

ccl =GCl -n^.Gcltlu'¿tJ

) (e.8)

(e.e)

where r11 is a positive leaming rate for increasing the grade of certainty. On the other

hand when a pattern is misclassified by the fuzzy if+hen rule the grade of certainty of
that rule is decreased as follows.

where Tl2 is a positive learning rate for decreasing the grade of certainty. This
learning method is iterated in each generation.

a tr'itness Evaluation

The fitness value of each fuzzy if+hen rule is defined by

F(Rj) = WNcp.NCP(Rj) - W¡¡r'¡p(&) (9.10)

where Ncp(RJ) is the number of correctly classified training patterns by rule Rj,
Nup(Rj) is the number of misclassified training patterns by Rj, and W¡çp* 'W¡yp 

âre

positive weights. The fitness value of each rule is calculated in each generation.

o Selection

A pair of fuzzy if+hen rules is selected from the current population to generate new

frtzzy if-then rules for the next population. Each fuzzy if-then rule in the current
populations is selected by the following selection probability.

(e.11)

R¡ €S

o Crossover

From each of the selected pairs of. fuzzy if-then rules, the uniform crossover for the

antecedent luzzy sets generates two fazzy if-then rules. The consequent class and the
grade of certainty of each of the generated fuzzy if-then rules are determined by the rule
generation procedure. That is only the antecedent finzy sets are mated. .

fitness(R,) - fitness* (S)
rt r\. ,r1^¡,/ - >
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a Mutation

Each antecedent fazzy set of the generated fuzzy if-then rules by the crossover

operation is randomly replaced with a different fiuzy set with the mutation probability.
The consequent class and the grade of certainty of the mutated fuzzy if-then rule are

determined by the rule generation procedure.

a Replacement

A certain proportion of fiizzy if-then rules in the current population is replaced with
new fuzzy if-then rules generated by the crossover and mutation operations.

a Termination test

The total number of generations for terminating the execution of fuzzy classifier system

is used.

9.5 Simulation Results

The training set consists of 43 patterns of class 1 and 57 patterns of class 2. The testing

set has 47 patterns of class I and 53 patterns in class 2. T\e output class is either

healthy (class 0) or with heart disease (class 1). GA parameters are shown in Table 9-1.

Simulation results are presented in Table 9-2.

Table 9-1: GA parameters.

Population size 100

Replacement DroDortion 0.2

Mutation probability 0.1

læarning Rates îr = 0.001 îz = 0.1

Number of iterations 100

Weights W¡¡p=1 Wxrurc -5
Stopping Condition 100

Table 9-2: Using bell-shaped membership function

# of oatterns Classifrcation error Reiect rate
# Training
Patterns

100 9O7o lOVo 0.07o

# Testing
Patterns

100 897o lTVo 0.07o
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9.6 Gonclusion

h this chapter the applicability of fizzy classifier system is demonstrated by
application to real-world pattern classification problem of Coronary Artery Disease. It is
shown that this classifier could find a set of fuzzy if then rules with higher

classification performance. Each fuzzy if+hen rule was treated as an individual. The

fitness value of each fuzzy if-then was determined by the numbers of correctly and

wrongly classified training patterns by that rule.

One of the most significant advantages of these fazzy rule based systems is their

comprehensibility that is human users can easily understand these fuzzy if then rule

because they a.re generally expressed as linguistic values. Frtzzy rule based

classification methods, which generate fizzy rules from numerical data, can be viewed

as a knowledge acquisition tool for classification problems.
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Chapter 10

General Gonclusions and Further Directions of
Research

10.1 Gonclusions

A primary objective of this study is to assess the performance of computer programs in
diagnosing CAD on the basis of clinical data. The diagnosis of CAD is complex

decision making process. Therefore there is an obvious need for a clinical decision aid

for accurate diagnosis based on enonnous amount of existing knowledge. In cases

where the difference between normal and abnormal is not clear, such as in the early

detection of disease we have to deal with ambiguous information. Medical diagnosis

involves making judgements about a patient's illness using specialist knowledge. The

observations of symptoms includes results of tests, direct observation of the main

complaint, various signs from the patient himself, and the patient's medical history.

The results of this study demonstrates how computer programs can assist clinicians in
the medical decision of diagnosing CAD. For a computer-based diagnostic aid to be of
value it must be statistically valid, diagnostically accurate and its use must enhance the

clinician's diagnostic performance. As with all clinical decision aids though, the true
performance of the system can only be assessed by a formal clinical trial.

A genetic-programming-based feature classifier is proposed. Genetic-based

machine learning systems use genetic search as their primary discovery heuristic. The

most common genetic-based machine learning architecture is called classifier system

which learns syntactically simple string IF-TI{EN rules so called classifiers to guide

its performance in an arbitrary environment. The combined use of fuzzy logic and

genetic algorithms and neural networks and genetic algorithms is also demonstrated.

The reader is provided with an introduction to pattern recognition in and a

comprehensive overview of supervised classification.
Chapter 3 presentes an overview of the perceptron and MLP. In this chapter,

leaming techniques, limitations of perceptron, mathematical theory of MLP with
practical issues are presented.

Chapter 4 focuses on the genetic algorithms and their mathematical foundations.

Chapter 5 deals with basic concepts of fiizzy set theory. Fuzzy sets are

introduced to establish a mathematical framework to deal with problems in which the

source of imprecision is the absence of sharply defined criteria for defining class

membership.
Chapter 6 presents simulation results of neural networks. kr this chapter an

attempt has been made to formulate the neural network training criteria in medical
diagnosis of CAD. Also, results are compared with various neural networks such as

modular networks, radial basis function, reinforcement learning and backpropagation.



CHAPTER 10. CONCLUSIONS

Chapter 7 describes the experimental results of hybrid system. h this chapter, the

training of multiple layer perceptron by the GA optimization method is presented.

Also, it is compared with the backpropagation algorithm. Experimental results are

presented using l-point crossover, 2-point crossover, uniform crossover, NN-specific
2-point crossover, and NN-specif,rc uniform crossover.

Chapter 8 presents the experimental results of genetic programming. The

Evolutionary Pre-Processor has been applied and compared with seven other
classification methods.

Chapter 9 presents the experimental results of fuizy classifier system combined
with genetic algorithms. Here eachfuzzy if-then rule was treated as an individual. The

fitness value of each fazzy if+hen was determined by the numbers of correctly and

wrongly classified training patterns by that rule.

All experiments are ca:ried on the diagnosis of coronary artery disease, a real-

world pattern classification problem.
The application of flzzy sets to the field of artificial intelligence has given rise

to a considerable number of possible techniques of interest in many disciplines.Fuzzy
numbers, fuzzy algebra, fuggy logic inference, and fuzzy relations are well
estabtilshed and have been used extensively in various fields of industry. A survey of
methodologies into which fiizzy concepts have been incorporated includes frtzzy
regression models, statistical decision making using fuzzy probablity and fuzzy
entropy, fuzzy quantification theory, fazzy mathematical programming, evaluation

using fivzy measures, diagnosis using fazzy relations, fazzy control and inference,

multistage decision making using fazzy dynamics programming, fiizzy databases and

information retrieval using fuzzyfrcation functions and fuzzy expert systems.

Conventional methods are good for simpler problems, while fuzzy systems are suitable

for complex problems or applications that involve human descriptive or intuitive
thinking. Fuzzy logic is also useful in understanding and simplifying the processing

when the system behavior requires a complicated mathematical model. There are no

generally accepted strict laws expressed in precise mathematics form as in hard

disciplines such as physics. This kind of soft discipline provides ideal areas of
application of fuzzy methods. Hence to enable a system to tackle real-life situations in
a manner more like humans. The essential part of. fuzzy system is fizzy sets and fuzzy
logic.

Fuzzy systems based on luzzy if-then rules are successfully applied to various

control problems such as truck backing, broom balancing and so forth. Fuzzy systems

approaches also allow us to represent descriptive or qualitative expressions such as

"definite" or "probable" and these are easily incorporated with symbolic statements.

These expressions and representations are more natural than mathematical equations

for many human judgement rules and statements. Flzzy systems base their decisions

on inputs in the form of linguistic variables. The variables a¡e tested with a small

number of IF-Then rules, which produce one or more responses depending on which
rules were asserted. The response of each rule is weighted according to the confidence

or degree of membership of its inputs. If the knowledge about the system behavior is
described in approximate form or heuristic rules, then fuzzy system is suitable. Fuz.zy

systems lack capabilities of learning and no memory. This is why hybrid systems,

particularly, GNfizzy systems, are becoming popular for certain applications. The

fundamental concept of such hybrid systems is to complement each others

weaknesses, thus creating new approaches to solve problems. One of the most

significant differences between control problems and classifrcation problems is the
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dimensionality of inputs. While control problems usually involve only a few inputs,

real-world pattern classification problems often involve several attributes.

1O.2 lmplications for Further Research

In the context of fuzzy system design uncertainties are represented by membership

functions design and by their individual properties. The geometrical shape of a

membership function is the charactenzation of uncertainty in the corresponding fazzy
variable. The triangle and the trapezoid are the two geometric shapes commonly used

to represent uncertainties. Therefore a high level of detail in shape design must be

considered as a conceptual error.

Determining or tuning good membership functions and fuzzy rules is not always

easy. Even after extensive testing, it is diffrcult to say how many membership

functions are really required. The shape of the membership function can not be formed

arbitrarily because arbitrary design can produce unpredictable results in the basic

fuzzy inference algorithm. The design challenge is to employ a reasonable level of
detail when forming membership functions so that the basic fuzzy inference algorithm

behaves as expected. The shape effects will be examined in more detail useful for
design.

Genetic algorithms are particularly well suited for tuning the membership

functions in terms of placing them in the universe of discourse. GAs can be used to
compute membership functions. Given some functional mapping for a system, same

membership functions and their shapes are assumed for the various fuzzy variables

defined for a problem. These membership functions are than coded as bit strings that

are then concatenated. An evaluation (f,rtness) function is used to evaluate the fitness

of each set of membership functions (parameter that define the functional mapping).

Properly configured genetic algoithmlluzzy architectures search the complete

universe of discourse and find adequate solutions according to the fitness function.
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Appendix A

Generalised Delta Learning Rule for MLP

Learning is a relatively permanent change in behavior brought about by experience. In artificial neural

networks the following general learning rule is adopted: The weight vector increases in proportion to the

product of input and learning signal. The back-propagation algorithm allows to exftact input/output

mapping knowledge within multilayer networks. In the course of learning the synaptic weights as well as

the thresholds are adjusted so that the current least mean-square error is reduced until all mapping

examples from the training set are lea¡ned within an acceptable overall error. The delta lea¡ning rule is
only valid for continuous activation functions and in the supervised training mode'

Âw

The gradient descent formula is given by

AE
= - rì- forj and i = 1,2,

'* ji
I ( 4.1)

( A.6)

Jl

AE AE ( 4.2)
tujr ð(net¡) ð*jt

Therefore rwe may express the weight adjustments as

Awji =tôyj*i (A'3)

where õ, is the error signal term of the hidden layer having output J. This error signal term is produced

by the j'th neuron of the hidden layer, where j = r,2, "', J' The error signal term is equal to

ôr¡ = + for j=1,2,...,¡ (A'4)
â(net¡)

In congast to the output layer neurons' excitation netr,wlich affected the kth neuron output only,

the net¡ contributes no\ry to every error component in the eÍor sum containing K terms in

;å(ar- - "nnf 
fork= T,2,...,K,foraspecificpatternp.Theerrorsignalterm õr, atthenodej

can be computed as follows:

õ
AE ¿YJ

( A.s)
YJ ârj â(net¡)

where

AE

¿yj rìr(dr. - f(net¡(v))
a

ayj
(:

K 2

and the second term of (5) is equal to

ðtj
= I lnet: )

ð(net¡) J'

Calculations of (4.6) result in
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ü 
= - (dr - "-,tï{r[n"t*tvr[

Calculation of the derivative of equation (8) yields

( A.8)

( A.e)

( 4.10)

( 4.11)

( A.t2)

âE K . ð(net¡)

% 
= - tìr(dt - ot)f(net¡'-n

This equation can be simplified as

aE sç
¿yj "'ok*k¡

Combining (7) and (10) results in rearranging Ù¡ expressed in (5) to the form

ðyj = f(net¡) Iõonwn, for j = 1,2, ..., J

The weight adjustment (3) in the hidden layer now becomes

K
Â*j, - r1f(net¡)*i¡ì1ôot*ti for¡ = I,2,..',Jand i= 1,2,

This equation is known as generalized delta learning rule'

I
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Appendix B

Learning of the weights of MLP using GA

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sEing.h>

#include "sugal.h"

#defrneNREPOCHS 1

#defineMÆGAYERS 5

#defineMAXTRSETS 500
#defrneTOLERANCE 0.4
#define CONFIGFILE "nnlearn5.cfg"
#defi ne OUTPUTFILE "nnlearn5.out "

int Evaluate(SuChromosome *chtom, double *fitness);

void PrintBestChromosomeO ;

int Initialisation(void) ;

double CalcEnor(SuChromosome *chrom);

void GetWeightsFromChromosome(SuChromosome *chrom);

void GetWeightsFromString(unsigned char *string);

void SetWeightsToString(unsigned char *string);

void Getl-astStepsFromString(unsigned char *string);

void SetlastS tepsToString(unsigned char xstring) 
;

void CalcOutput(int TrSetlndex);
double Activation(double sum) ;

void InputData(void);
void AllocMemory(void) ;

void FreeMemory(void);
void ReadTrainingSet(void) ;

void MyExit(char *ErrMsg);

void MyCrossoverl(SuChromosome *p1, SuChromosome xp2, SuChromosome *cl, SuCh¡omosome
*c2);
void MyCrossover2(SuChromosome *p1, SuChromosome xp2, SuChromosome xcl, SuChromosome
*c2);
void BPMutation(unsigned char *string, int offset);
void BPMomentum(unsigned char *string, int offset);
void BPHybrid(unsigned char *string, int offset);
void SuWriteAugmentedChromosome( SuAugmentedChromosome *aug-chrom );

char NNFile [80],TRFile[80] ;

FILE *fp;
int l.earningType;
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int AllocMem - FALSE;

int Numlayers;
int NumCellslMÆúAYERSI ;

int NumWeights [MA)úAYERS] ;

int TotalNumWeights;
int XPoints[sO];
int Nrlnputs, NrOuÞuts;
double xCellWeights IMAXLAYERS] ;

double *DeltaWeights [MÆ(LAYERS] ;

double *LastStep [MÆ(LAYERS] ;

double *CellOutputs IMÆ(LAYERS] ;

double TotV/eights[20]; l* not fit for multi-layered networks!! */

int NumTrSets;
double **Trlnputs;

double *xTrOutputs;

void PrintBestChromosome0

{
cha¡ msg[50];
sprintf( msg, "Best : ");
SuOutput( msg );
SuWriteAugmentedChromosome( suThePool->best ) ;

)

void MyCrossoverl(SuChromosome *pl, SuChromosome xp2, SuChromosome *cl, SuChromosome
*c2)
/* Special crossover routine, gives uniform crossover, but only between cell-units

(a cell-unit is the group of weights of all the inputs of one neuron) */

{
int i, j, which-way;

for ( i=l; i < (XPoints[0]+2); i++ )
{

which-way = SuRandBitO;

if (which-way)
for (= )(Points[i] ; j<)Goints[i+1]; jr+)
{

SuSetNativeDouble(c I ->string, j, SuGetNativeDouble(p 1 ->string, j ));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string, j));

Ì
else

for (= )Gointslil; jdGointsli+l1; jr-r)
{

SuSetNativeDouble(c I ->string, j, SuGetNativeDouble(p2->sting, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p1->string, j));

)

Ì
)

void MyCrossover2(SuChromosome *p1, SuChromosome*p2, SuChromosome *c1, SuChromosome
*c2)

/* Special crossover routine, gives 2-point crossover, but only between cell-units
(acell-unit is the group ofweights ofall the inputs ofone neuron) */

{
intj;
int x-pointl = 2 + SuRandlntUpTo()Qoints[0]); l* 2<= x-pointl <= XPoints[O]+l */
int x-point2 = 2 + SuRandlntUpTo()Goints[0]); /* ,, x-point2 ,, *l
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int temp;

/* Swap over the crossover points if not in the right order */

if ( x¡ointl > x-point2 )
{

temP = x-Pointl;
x-pointl = x-point2;
x-point2 = tempi

Ì

/x Copy starts */
for ( =)ç>6¡nts [ 1 ] ; j <)Goints [x-point I ] ; j++)

{
SuSetNativeDouble(c1->sting, j, SuGetNativeDouble(p1->string' j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string' j )) ;

Ì

/* Copy middles */
for (j =¡ç>q¡¡ts [x-point I ] ; j<XPoints[x-point2] ; j++)

{
SuSetNativeDouble(c 1 ->string, j, SuGetNativeDouble(p2->string' j)) ;

SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p 1 ->string' j));

)

/x Copy ends */
for (-XPointslx-point2l; j<)(Points[)(Points[0]+21 ; j++)

{
SuSetNativeDouble(c l->string, j, SuGetNativeDouble(p l->string' j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->string, j)) ;

)
Ì

void MyCrossover3(SuChromosome *pl, SuChromosome *p2, SuChromosome *c1, SuChromosome
*c2)

/* Special crossover 2 routine, gives uniform crossover, but only between cell-units
(a cell-unit is the group of weights of all the inputs of one neuron)

also sees the weight of its connection to the next cell as part of this cell-unit */

{
int i, j, which-way, parentstart, parent;

parentstârt= XPoints[ ()Points[0]+2-NrOutputs) l;
for ( i=l; i < (XPoints[0]+2-NrOutputs); i++ )
{

which-way = SuRandBit0;

if (which-way)

{
for (= )Gointslil ; j<)Gointsli+11 ; j++)

{
SuSetNativeDouble(c l->string, j, SuGetNativeDouble(pi->sting' j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p2->sEing, j));

l
for (=Q; ¡a¡tOuþuts; j++)
{

parent = parentstårt + i + (j * (1 + NumCells[1]));
SuSetNativeDouble(c 1 ->string, parent, SuGetNativeDouble(pl ->string,

parent));

pafent));
SuSetNativeDouble(c2->string, parent, SuGetNativeDouble(p2->string,
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)
Ì
else

{

parent));

parent));

for (= )Gointslil ; jdGointsli+l1 ; j+r)
{

SuSetNativeDouble(c 1 ->string, j, SuGetNativeDouble(p2->sting, j));
SuSetNativeDouble(c2->string, j, SuGetNativeDouble(p1->sting, j));

)
for (=Q; ¡a¡toutPuts; j++)

{
parent = parentstart + i + ( * (1 + NumCells[1]));
SuSetNativeDouble(c 1 ->string, parent, SuGetNativeDouble(p2->string,

SuSetNativeDouble(c2->string, parent, SuGetNativeDouble(pl ->string,

)
Ì

void BPHybrid( unsigned char xstring, int offset )
{

int ij,k,l, place, WeightOffset;
double Error, IncError, tempoutput, CellFactor;
double eta, OldError;
int h{;
char bufl3Ol;

if (IæarningType: 0)
eta = 0.1;

else

{
if (IæarningTYPe : 1)

eta = 0.5;
else

eta = 1.0;

)

GetWeightsFromStrin g(strin g) ;

Error = 10000.0; /* initial 'very high' value */

/* learning algorithm */
do /* learn for x epochs, until Error doesn't increase anymore */

{
/* initialise stuff for each epoch */- OldEnor = Error;
Error = 0.0;
for (i= I ;i<Numlayers ;i++)

for (i =Q j4¡umWeights [i] j ++)
DeltaWeights[i] [j] = g.g'

for (i=0;i<NumTrSets;i++) /* for every training vector */

{
CalcOutput(i);
for (i=Q¡¡¡umCells[2] j++) /* for every outPut neuron */

{
Weightoffset = j x (NumCells[l] + 1);

tempoutput = CellOutPutsl2l ül ;
l* =y3 *l
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IncEnor = TrOutputsli][i] - tempoutput; l* = t3 - y3 *l
Error += (IncEnor * IncError);
CellFactor = IncEnor * (tempoutput * (1.0 - tempoutput));

/* calculate weight changes ofthe output neuron */
DeltaWeights[2] [WeightOffset] += CellFactor;
for (k=0;kcNumCells[];k++) /* for every weight of this output

neuron */

CellOutputsl1][k];
DeltaWeights [2] [V/eightOffset+k+ 1 ] += CellFactor *

/x calculate weight changes ofthe hidden eurons */

Place = 0;
for (k=0;kcNumCells[1];k++) /* for evel hidden neuron */

{
tempoutput = celloutputst 1 I [k] x ( 1.0 - celloutputs[ 1 ] [k]) ;

l* = yl(l-yl) *l
DeltaWeightsfl][place++] += CellFactor x

CellWeights [2] [WeightOffset + k + 1 ] * tempoutput;
for (l=0;l<NumCells[0];l+r) /* for every weight of this

hidden neuron */
Deltaweights[1][place++] += CellFactor *

CellWeights[2] [WeightOffset + k + 1] * tempoutput * CellOutputs[O] [l] ;

)

Ì
Ì

/x update cell weights after each learning step */

if (Enor < OldEnor)
{

hr-r;
for (i= 1 ;icNumlayers ;i++)

for 0=0 j<NumWeights[i] j++)
Cellù/ei ghts [i] [j ] += eta * DeltaWeiehts [i] U I ;

)

) while ((Enor < OldEnor) && (h<100));
sprintf(buf, "7od, ",h);
SuOutput(buÐ;

SetWeightsToString(string) ;

void BPMutation( unsigned char *string, int offset )
{

int h,ij,k,l, place, WeightOffset;
double Error, IncError, tempoutput, CellFactor;
double eta;

l*

if (IæarningType: 0)
eta=5.0/NumTrSets;
eta=2.0;

else

{
if (LæarningType : 1)

eta = 0.5;
else

eta = l 0;

Ì
*/ else

eta = I-eamingType / 100.0;
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GetWeightsFromString(string) ;

/x learning algorithm */
for (h=0;hcNREPOCHS;h++) /* learn for NREPOCHS epochs */

{
/* initialise stufffor each epoch */
Error = 0.0;
for (i= I ;icNumlayers ;i++)

for (=Q¡¡¡umWeights[i] ir-r)
DeltaWeightslilLil = 0.0;

for (i=0;icNumTrSets;i++) /x for every training vector */

{
CalcOutput(i);
for (=Qja¡umCells[2] j++) /* for every output neuron */

{
WeightOffset - j * (NumCells[l] + 1);

tempoutput = celloutputsl2l Ül ;

lx=y3*l
IncEnor = TrOutputs[i][j] - tempoutput; l* = t3 - y3 xl

Error += (IncError x IncError);
CellFactor = IncEnor * (tempoutput x (1.0 - tempoutput));

/* calculate weight changes ofthe output neuron */

DeltaWeightsl2] [WeightOffset] += CellFactor;
for (k=0;k<NumCells[1];k++) /* for every weight of this output

neuron */

Celloutputsllllkl;
DeltaWeights[2] [WeightOffset+k+ I ] += CellFactor *

/* calculate weight changes ofthe hidden neurons x/

place = 0;
for (k=0;k<NumCells[1];k++) /* for evel hidden neuron */

{
tempoutput = CellOutputs[l] [k] x ( 1.0 - CellOutputsl 1] [k]);

lx = yl(1-y7) *l
DeltaWeights[ l][place++] += CellFactor x

CellWeights[2] lweightoffset + k + 1] * tempoutput;
for (l=0;lcNumCells[0];lr+) /* for every weight of this

hidden neuron */
Delta\ñ/eights[][place++] += CellFactor *

CellV/eights[2] [V/eightOffset + k + 1] * tempoutput * CellOutputs[0] ül ;

)
)

Ì

/x update cell weights after each learning step */
for (i= 1 ;i<Numl-ayers ;i++)

for (=Q¡a¡umWeights[i] j++)
CellWeights[i] [j] += eta * DeltaWeightslil Ul ;

SetWeightsToString(string) ;

void BPMomentum(unsigned cha¡ *string, int offset)

{
int h,ij,k,l, place, WeightOffset;
double Error, IncError, tempoutput, CellFactor, next-step;
double eta, momenfum;
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if (IæarningType: 0)

{ eta = 0.5; momentum = 0.5; }
else

{
if (IæarningTyPe : 1)

{ eta=0.1;momentum=0.9; }
else

{ eta = 0.3; momentum = 0.5; }
)

GetWei ghtsFromString(string) ;

Getl-astStepsFromString( string) ;

/* learning algorithm *i
for (h=0;h<NREFOCHS;h++) /x learn for NREPOCHS epochs */

{
/* initialise helpstuff x/

Error = 0.0;
for (i= I ;i<Numlayers ;i++)

for ( =Q¡a¡qumWeights [i] j ++)
DeltaWeightslilUl = 0.0;

lx =y3 */

for (i=0;i<NumTrSets;i++) /* for every training vector */

{
CalcOutput(i);
for (=Q¡4¡umCells[2] j+) /* for evçry output neuron */

{
WeightOffset = j x (NumCells[1] + 1);

tempoutput = CellOutputst2l Ul ;

neuron */

Celloutputs[1][k];

IncError = TrOutputs[i]ff] - tempoutput; l* =t3 - y3 *l
Error += (IncError * IncError);
CellFactor = IncError * (tempoutput * (1.0 - tempoutpuÐ);

/* calculate weight changes of the output neuron */
DeltaWeights[2] [WeightOffset] += CellFactor;
for (k=0;k<NumCells[1];k++) /* for every weight of this output

DeltaWeightsl2] lWeightOffset+k+ 1 ] += CellFactor *

/x calculate weight changes ofthe hidden neurons */
place = 0;
for (k=0;kcNumCellsl1];k++) /* for every hidden neuron */

{
tempoutput = CellOutputslll tkl x ( 1.0 - CellOutputs[ 1] [k]);

/x = y1(1-y1) */
DeltaWeightsl 1] [place++] += CellFactor *

CellWeights[2][WeightOffset + k + 1] * tempoutput;
for (l=0;l<NumCells[0];l+r) /* for every weight of this

hidden neuron */
DeltaWeights[l][place+ ] += CellFactor *

CellWeights[2] [WeightOffset + k + 1] * tempoutput x CellOutputs[O] [] ;

)

)

Ì

lx after each epoch: update cell weights x/

for (i= 1 ;i<Numlayers ;i++)
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{
for (=Q¡a¡gumWeights[i] j++)
{

next-step = (eta * DeltaWeightstil Ul ) + (momentum * LastStep[i] [j]);
LastSteP[i]Ûl = next-stePi
CellWeights[i] [] += next-step;

)
)

)

SetWeightsToString(string) ;

Setl-astStepsToString(string) ;

)

int Evaluate(SuChromosome *chrom, double xfitness)

/* Evaluates chromosome (assigns it a fitness value) */

{
suNNlotalRuns++;
*fitness = CalcError(chrom);
return 0;

l

double CalcError(SuChromosome *chrom)

/* Calculates total network error on the training set */

{
int ij,Numlncorrect;
double Error = 0.0, IncError;
char string[100];

GetWei ghtsFromChromos ome(chrom) ;

/* compare calculations with TrOutputs */

Numlncorrect = 0;
for (i=0;icNumTrSets;i++)

{
CalcOutput(i);
for ( =0 j <NrOutPuts j ++)

{
IncEnor = CellOutputs [Numlayers- U ti ] - TrOutputs [i] ü I ;

Error += (IncBnor x IncEnor);
Numlncorrecl a= (fabs(CellOutputs [Numlayers- 1 ] [j ] -

TrOutputs[i] [j]) >= TOLERANCE);

if ((Numlnconect:0) && (suNNSolutionFound==0) && (suNNStopWhenlæarned==1))

{
sprintf(string,
"lst perfect network found after 7od evaluations (Gen Vod,En = 7olÐVt",

suNNTotalRuns,suGeneration,Error) ;

SuOutput(string);
suNNSolutionFound = 1;

Ì
if (Error < suNNBestError)

{
/x remember the error of the best network of this generation */
suNNBestError = Error;

Ì
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suNNBestPerccorrect = 100.0 - (100.0 * (float) Numlncorrec0 / (floaÐ

(NrOutputs*NumTrSets) ;

ì

return Error;

void CalcOutput(int TrSetlndex)
/* Calculates the network output on one training sample x/

{
int ij,k;
double sum;
int index;

/x lst layer: output = input */
for (i=0;icNrlnpus ;i++)

CellOutputs[O][i] = TrlnputslTrsetlndexl[i];

/* other layers: output = signoid(weights x inputs) */
for (i= 1 ;i<Numlayers ;i++)
{

index = 0;
for (=Q ja¡r¡mgellslil j t+)
{

sum = CellWeightslillindex++l;
for (k=0;k<NumCells [i- 1 ] ;k++)

sum += CellWeights[i] [index++] * CellOutputsli- 1] [k] ;

CellOutputs[i]Ul = Activation(sum);

)

)

)

double Activation(double sum)
/* Calculate sigmoid t¡ansfer function of the neurons*/

{
/* prevent overflow */
if (sum < -30.0) return 0.0;
if (sum> 30.0) return 1.0;

return ( 1.0( l.GrexPGsum))) ;

)

void GetV/eightsFromChromosome(SuChromosome xchrom)

/* Extracts weights from chromosome and stores them in CellV/eights[][]
Optionally regroups the cells according to 'importance' */

{
int ij,k=0;
int indexl,index2;
double dummy;
static int SortTYPe=0;

for (i= 1 ;icNumlayers ;i++)
for (i=Q¡4¡omWeights[i] j ++)

CellWeights[i]Ül = SuGetNativeDouble(chrom->string,k++);

/* Ifrequired, sort cells according to Tmportance' */
/* not fit for multi-layered networks yet!! */

if(suNNRegroupCells)

{
/* Clear old TotWeights¡1 1='¡¡nonance') */
for (=Q¡a¡umCells[ 1 ] j+)

r20



TotWeightsfi] = 0.0;

/* Calculate new TotWeights[] */
for (i=0;icNrOutputs ;i++)
{

ft = (NumCells[l] + 1) x i + 1;

for (=Q¡a¡umCellsl 1 ] i+)
TotWeightsff ] += fabs(CellWeightsl2] [k+j] );

Ì

/* sort cells according to importance */
if ((suNNRegroupCells == 1) ll((suNNRegroupCells :2) && (SortType:0))
{

/* sort in descending order x/

for (i=0;i<NumCells[ 1 ] - 1 ;i++)
for (i=i+ 1 j<NlumCells[ 1 ] j++)

if(TotWeightslil < TotWeightsljl)
{

/* exchange cells */
dummY = TotWei8htslil;
TotWeights[i] = TotweightsUl ;

TotWeightsft] = dummy;

indexl - (Nrlnputs + 1) * i;
index2 = (Nrlnputs + 1) * j;
for (k=0;k<=Nrlnputs ;kr+)
{

dummy - CellWeightsl1][indexl + k] ;

CellWeights[l]lindexl + k] =
CellWeights[ l] lindex2 + k] ;

CellWeights [2] lindex 1 + j] ;

CellWeights[1][index2 + k] = dunnny;

Ì
for (k=0;k<NrOutputs ;kr+)
{

indexl - (NumCellstll + 1) * k + 1;

dummy = CellWeights[2] lindexl + i] ;
CellWeights[2][indexl + i] =

CellWeights[2] [indexl + j] = dummy;

)

)
else {} /* do nothing */

SortTYPe = 1;

Ì
else if ((suNNRegroupCells ==2) && (SofType == 1))

{
/* sort in ascending order */
for (i=0;icNumCellsl 1 ] - 1 ;i++)

for C=i+1 j<Numcells[ 1 ] j++)
if(TotWeightslil > TotWeightsUl)

{
/* exchange cells */
dummY = Totweightslil;
TotWeights[i] = TotWeightsUl ;

TotWeights[j] = dummy;

indexl - (Nrlnputs + 1) * i;
index2 = (Nrlnputs + 1) * j;
for (k=0;k<=Nrlnputs ;k#)
{
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CellWeights[ 1] lindex2 + k] ;

CellWeights[2] [indexl + j] ;

dummy = Cellù/eightsl1][indexl + k] ;

CellWeights[1][indexl + k] =

CellWeights[l]lindex2 + k] = dumny;
Ì
for (k=0;kcNrOutputs ;k+)
{

indexl = (NumCells[l] + l) x k+ 1;

dummy = CellWeightsl2]lindexl + i];
CellWeights[2][indexl + i] =

CellWeights[2][indexl + j] = dummy;

Ì
Ì
else { } /x do nothing */

SortType = 0;

/* Store sorted setup back in chromosome */

k=0;
for (i= 1 ;i<Numlayers ;i++)

for (=9¡4¡gumWeights[i] j++)
SuSetNativeDouble(chrom->string,k++,CellV/eights [i] Ü I ) ;

void GetWeightsFromString( unsigned char *string)

{
int ij,k=0;

for (i= I ;i<Numlayers ;i++)
for ( =Q j 4¡,rmWeights[i] j ++)

CellWeights[i]Ljl = SuGetNativeDouble(sting,k++);

Ì

void Getl¿stStepsFromString( unsigned char *string)

{
int i j,k=TotalNumrWeights ;

if (suGeneration:1)
for (i= 1 ;icNumlayers;i++)

for (=Qjq¡umWeightslil j++)
LaststePlilÚl = 0.0;

else
for (i= 1 ; i<Numlayers ;i++)

for (=Q ja¡umweightslil j++)
LastSteplil U] = SuGetNativeDouble(string,k++);

)

void SetWeightsToString( unsigned char *string)

t
int ij,k=0;

for (i= I ;i<Numlayers;i++)
for (=Q ja¡umWeights[i] j++)

SuSetNativeDouble(string,k++,Ceilrileights til Ul) ;

)

void SetlastStepsloString( unsigned char *string)

{
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int i j,k=TotalNumWeights ;

for (i= I ;icNumlayers ;i++)
for (-0 j<NumWeights [i] j ++)

SuSetNativeDouble(string,k++,I-astStep Ii] U I ) ;

int Initialisation(void)
{

static int Initialised = FALSE;

)

void InputDataQ
/* Sets ner¡ral network configuration */

{
FILE *InputFile;

int ij,ch,index;
char text[8O];

/* only first time: initialisation */
if (llnitialised)

{
InputData0;
AllocMemoryQ;
ReadTrainingSet0;
Initialised = TRUE;
sprintf(suNNString[0],"Parameters: ");

Ì
return(0);

if ((nputFile = fopon(CONFIGFILE,"T")) == NULL)
MyExit("Missing configuration file'nnlearn.cfg"') ;

l* readname of neural network (.nn) file */
do ch = getc(nputFile); while (ch!='#');
fgets(NNFile,S0,InputFile) ;

NNFile[ strlen(NNFile)- 1 ] =0;
/* read name of training set (.tr) file */
do ch = getc(InputFile); while (ch!='#');
fgets(TRFile, 80,InputFile) ;

TRFile [strlen(TRFile)- 1 ]=Q;
fclose(InputFile);

lx read neural network configuration from specified'.nn'file */
if (QnputFile = fopen(NNFile,"r")) == NULL)

MyExit("Missing input'.nn' file");

/* l.earning Type
BPMutation: BPMomentum:
0: eta = 0.1, mu = 0 0: eta = 0.5, mu = 0.5

1: eta = 0.5, mu = 0 1: eta = 0.1, mu = 0.9

2: eta= 1.0, mu = 0 2'. ela= 0.3, mu = 0.5 x/

do ch = getc(InputFile); while (ch!=':');
if (fscanf(nputFile, " 7od",&LearningType) =- EOÐ

MyExit("Premature end of '.nn' file (LearningType)");

/* StopWhenlearned
0: don't stop SUGAL
1: stop SUGAL when a network has been found that classifies all training

data correctly (only works when SUGAL is in single run mode) x/

do ch = getc(InputFile); while (ch!=':r);
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if (fscanf(npußtle," %od",&suNNStopWhenlearned) == EOÐ
MyExit("Premature end of '.nn' file (StopWhenlearned)");

/* ContinueXRuns (only in combination with StopWhenlæarned)
continues SUGAL for ContinueXRuns generations after a perfect classifying
network has been found (has no effect when StopWhenlearned=O and/or when
SUGAL is in multiple run mode) */

do ch = getc(nputFile); while (ch!=':');
if (fscanf(nputFile,"7od",&suNNContinue) == þ69

MyExit("Premature end of '.nn' file (ContinueXRuns)") ;

/* TextOutput: Affects textoutput to 'nnlearn5.out'file only
0: write nothing to file
1: write everything to file */

do ch = getc(InputFile); while (ch!=':');
if (fscanfQnpußile," %od",&suNNTextOutput) : EOÐ

MyExit("Premature end of '.nn' file (TextOutPut)");

suNNPrintBest = suNNTextOutput;

/* RegroupCells:
0: Don't regroup cells during evaluation
1: Sort cells according to descending'importance'('special'crossover should be

2: Same as 1, but sorted in both ascending & descending orders */

do ch = getc(InputFile); while (ch!=':');
if (fscanf(nputFile, " 7od",&suNNRegroupCells) -- EOþ

MyExit("Premature end of '.nn' file (RegroupCells)");

if (lSpecialCrossover) suNNRegroupCells = Oi xl

/* nr. of layers, followed by the m. of cells in each layer
(includes input and output layers) */

do ch = getc(nputFile); while (ch!=':');
if (fscanf (InputFile,"Vod",&Numlayers)==EOÐ

MyExit( "Premature end of '. nn' file (Numlayers) " ) ;

if (Numlayers > MAXLAYERS) MyExit("Too many layers");
for (i=0; icNumlayers; i+r)
{

do ch = getc(nputFile); while (ch!=':');
if (fscanf(nputFile, " 7od",&NumCells [i] ) - EOÐ

MyExit("Premature end of '.nn' file (NumCells) ") ;

Ì

/* calculate the nr. of weights and the place of the MyCrossover points x/

TotalNumWeights=0;
XPoints[O]=-1;
XPoints[1]=0; /x sta¡t of first section */
index=l;
for (i=1; icNumlayers; ir-+)

{
NumWeights [i] = (NumCells [i- 1 ] + I ) 

xNumCells [i] ;
TotalNumWeights += NumWeights[i] ;

for (=6; ¡4¡umCellslil ; jr+)
{

XPoints[index+1] = XPointslindex] + NumCells[i-1] + 1 ;

index++;

)
XPoints[0] += NumCellslil ;

)

used)

l*

fclose(InputFile);

t24



Nrlnputs = NumCells[O] ;

NrOutputs - NumCells[Numlayers-1] ;

if ((suNNOutputFile = fopen( OUTPUTFILE,"w"))==|r[J¡¡¡
{

sprintf( text, "Failed to open output-file [7os]", OUTPUTFILE );
SuWarning( text );

)
)

void AllocMemoryQ
/* Allocates memory for neural network calculations */

{
int i;

void FreeMemory0
/* Frees memory allocated by AllocMemoryQ */

{
int i;

if (AllocMem)

{
for (i= 1 ;i<Numlayers ;i++)
{

free(CellWeights [i] ) ;

free(DeltaWeights Ii] ) ;

free(Laststeplil);
)
for (i=0;i<Numlayers ;i++)

/* Allocate Memory for cell weights + changes */

for (i= I ;icNumlayers;i++)
{

if ((CelfWeights[i] = malloc(NumWeightslil * sizeof(double)))==¡¡¡r¡¡¡
MyExit("Not enough memory (1)");

if ((DeltaWeightsli] = malloc(NumWeights[i] * sizeof(double)))-¡t¡¡1¡¡
MyExit("Not enough memory (1)");

if ((LastStep[i] = malloc(NumWeights[i] * sizeof(double))):NUl.I.)
MyExit("Not enough memory (1)");

)

/* Allocate Memory for cell outputs */

for (i=0;i<Numlayers ;i++)
if ((CetlOutputs [i] = malloc(NumCells [i] * sizeof(double))==NUl.L)

MyExit("Not enough memory (1)");

/* Allocate Memory for training sets */

if ((Trlnputs = malloc(MAXTRSETS * sizeof(double *)))==NULL)

MyExit("Not enough memory (2)");
if ((TrOuþuts = malloc(MAXTRSETS * sizeof(double *)))==NULL)

MyExit("Not enough memory (2)");
for (i=0;i<lvIÆKTRSETS ;i++)
{

if ((Trlnputs[i] = malloc(Nrlnputs * sizeof(double)))==NUl-I-)
MyExit("Not enough memory (3) ");

if ((TrOutputslil = malloc(NrOutputs * sizeof(double)):¡¡¡r¡¡¡
MyExit("Not enough memory (3) ");

)
AllocMem=TRUE;
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free(celloutputs [i] ) ;

for (i=0;i<I\4ÆKlRSETS;i++)

{
free(Trlnputs[i]);
free(TrOutpuslil);

Ì
free(Trlnputs);
free(TrOutputs);
if (suNNOutputFile)

{
fprintf(suNNOutputFile, "\nMemory freed, closing file...\n " ) ;

ffl ush(suNNOutputFile) ;

fclose(suNNoutputFile) ;

)
AllocMem = FALSE;

void ReadTrainingSet0
/* Reads the taining-samples from the '.tr'file and stores them in

the arrays Trlnputsl]U and TrOutputsl][] */

{
int i,trsetnr;
FILE *InputFile;

)

void MyExit(char xErrMs g)

/* Prints elror message and exits programme */

{
printf ( "\n7o s\n ",ErrMs g) ;

exit(1);
)

if ((InputFile = fopen(TRFile,"r")): NULL)
MyExit("Missing input file nnlearn.ü");

trset¡¡ = 0;
while ((trsetnrclvIAXTRSETS) &&

(fscanf(nputFil e," Tolf',&(TrlnPutsltrsetnr] tol)) != EOÐ)

{
for (i=1; icNrlnputs; i++)

if (fscanf(nputEile," Volf',&(Trlnputs[trsetm] til)) : EOÐ
MyExit("Premature end of trainingset file");

for (i=0; icNrOutputs; i++)
if (fscanfGnputFile,"Tolf',&(TrOutputs[tsetû] [il) == EOÐ

MyExit("Premature end of trainingset file");
trsetm++;

)
fclose(InputFile);
NumTrSets = trsetnr;

126



Appendix C

Fuzzy Classif ier System

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>

typedef struct{
int part;
int posi;

)coNDrTroN;

typedef struct{
CONDITION *condition; /* antecedent part *l
int clss; /* consequent part */
double cf; /* certainty factor */
double fitness; /* fitness *l
int correct; /* correctly classified patterns by this rule */
int wrong; /* wrongly classified patterns by this rule */

}CLASSIFIER;

typedef struct{
double *x; /* attibute value */
int clss; /x class */
int g'oupi

}SAMPLE;

typedef struct{
int N-pop; /* population size */
double P-rep; /x replacement proportion */
double P-mut; /* mutation Probabilþ x/

int N-learn; /* learning iteration */

double eta-l; l* eta-l and ela2 are learning rates */
double eta_z;
double W-ncp; /* the weights in the fitness function */

double W-nmp;
int N-gen; /* number of generations */
cha¡ *d-f-name; lx datafile name */
int seed; /* randomseed */
cha¡ shape; /* the shape of membership function */
char *part; /* the number ofpartitions ofeach axis */
/* --the followings a¡e related to sample(training) data- */
int s-num; /* number of sample */
int s-dim; /* dimension */
int s-cls; /* class */

}PARAMETER;
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typedef struct{
int correct;
int error;
int reject;
int r_disjoin; /x number of disjoin rules */

}PERFORMANCE;

typedef struct{
int total;
int disjoin;

)r_SET;

void usage( void );
void read-parafile( PARAMETER* );
void *xalloc-2( int, int, int, int );
void myread( FILE*, charx );
void *alloc-l( int, int );
void free-2( void**, int );
void read-datal( FIT F.*, PARAMETER* );
void read-dat¿( FILE*, PARAMETER*, SAMPLE* );
void modify-parameter( int, chat**, PARAMETER* );
void decide-consequent( CLASSIFIER*, SAI\4PT F.*, PARAMETER*, int );
double membership( CONDHON*, double, PARAMETER* );
PERFORMANCE t-evaluate( CLASSIFIER*, SAMPLE*, PARAN4ETER*, int );
PERFORMANCE evaluate( CLASSIFIER*, SAMPLE*, PARAMETER*, int );
void learn-cf( CL-A,SSIFIER*, SAMPLE*, PARAMETER*, int );
I-SET how-many-rules( CLASSIFIER*, pARAMETER* 

) ;

void preserve-elite( CLASSIFIER*, CLAS SIFIER*, PARAMETER* ) ;

void g-o( CLASSIFIER*, PARAMEGR* );
void selection( double*, int, int*, int* );
void crossover( CLASSIFIER*, CLASSIFIER*, CLASSIFIER*, CLASSIFIER*, int );
void mutation( CLASSIFIER*, PARAMETER* );
void replace( CL-ASSIFIER*, CLASSIFIER*, PARAMETER*, int );
int select-rep( int, int*, CLASSIFIER*, int );
void our_rule( CLASSIFIER*, CLASSIFIER*, int, PARAIUÍETER* );

/* number of disjoin rules */
/* the information of rule set( classifiers ) */

#include"cs.h"

int main( int argc, char **argv )
{
CLASSIFIER xcurrent, *elite, *eelite;

SAMPLE *smp;

PARAMETER para;
PERFORMANCE *"-p"tf, *e-perf, *ee-perf;

PERFORMANCE *tc-perf, *te-perf, *tee-perf;

I-SET c-rule, e-rule, ee-rule;

char buf[30], tmp_c;
int i, j, n3en, cv;
int tmp_i;
double tmp-d-cor, tmp-d-err, tmp-d-rej ;

FIf F xte_fp,
*tee-þ,
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*tc fo:
FILE *fp, *e-þ, *e4-fp,
*ee-fp, *ee4-fp,
*c_fp, *c4-fp;

if( ( argc 7=2) &.& ( *(*(argv+l)+0) =='f'¡ ¡1

usageO;
exit( I );

Ì

para.d-{-name - (char*)allo c -l ( 20, sizeof(char) ) ;

pam.part = (char*)alloc-1( 500, sizeof(char) );
read-parafile( &para );
modify-parameter( argc, argv, &para );

srand( para.seed );

if( !( fp = fopen( para.d-f-name, "'1') ) ){
fprintf( stderr, "\nCannot Open File (Vos)\n", para.d-f-name );
exit( 1 );

)
read-datal( fp, &para );
smp = (SAMPLE*)alloc-1( para.s-num, sizeof@ARAMETER) );
for( i = 0 ; i < para.s-num ; i++ )

(smp+i)->x = (double*) altoc- 1 ( para. s-dim, sizeof(double) ) ;

read-data2(fp, &para, smp );
fclose( fp );

l*=:= AllOCatiOn -:=*f
current = (CLAS SIFIER*)alloc- 1 ( para.N-pop, sizeof(CLASSIFIER) ) ;

for( i = 0 ; i < para.N-pop ; ir+ )
(cunent+i)->condition = (CONDITION*)alloc-1( para.s-dim, sizeof(CONDITIOI$ );

elite = (CLAS SIFIER*)alloc- I ( para.N-pop, sizeof(ClAS SIFIER) ) ;

for( i = 0 ; i < para.N-pop ; ir+ )
(elite+i)->condition = (CONDmON*)alloc-l( para.s-dim, sizeof(CONDITION) );

eelite = (CLAS SIFIER*)alloc- I ( para.N-pop, sizeof(ClAS SIFÍ ER) ) ;

for( i = 0 ; i < para.N-pop ; ir+ )
(eelite+i)->condition = (CONDITION*)alloc-1( para.s-dim, sizeof(CONDITION) );

tee-perf = (PERFORMANCEx)alloc-1 ( 1 0, sizeof@ERFORMANCE) );
te-perf = (PERFORMANCE*)aIIoc-1 ( 1 0, sizeof(PERFORMANCE) ) ;

tc-perf = (PERFORMANCE*)aIIoc-1 ( 1 0, sizeof@ERFORMANCE) ) ;

e-perf = (PEPJORMANCE*)aIIoc-1 ( 10, sizeof(PERFORMANCE) );
c-perf = (PERFORMANCE*)aIIoc-1 ( 10, sizeof@ERFORMANCE) ) ;

ee-perf = (PER¡OnUeNCE*)alloc-l ( 1 0, sizeof(PERFORMANCE) ) ;

for( cv =0 ; cv < 10 ; cvr-r ){
l*=:== Algorithm :=:*l

/* Initialization of Classifiers */
for( i - 0 ; i < para.N-pop ; i+r ){
for(j = 0;j <Para.s-dim;jr+ ){

tmp_c = *(para.part+j);

tmp i = rand0 Vo (atoi(&tmP-c)+1);
if( tmp-i ){

((cunent+i)->condition+j )->part = atoi(&trnp-c) ;

((cunent+i)->condition+j)->posi = tmp-i;
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Ì
else{

((current+i)->condition+j)->part = I ;
((cunent+i)->condition+j)->posi = 1 ;

Ì
)

/* Decisionof consequentpart *l
decide-consequent( current+i, smp, &para, cv );

(cunent+i)->correct = 0;
(current+i)->wrong = Q;

(current+i)->fitness = 0.0;

Ì

/* Preprocedure */
(te-perf+cv)->correct - - 1 00 ;

(te-perf+cv)->eror = 1 000;
(te-perf+cv)->reject = 0;

(tee-perfrcv)->correct - - 1 00 ;

(tee-perfrcv)->elror = 1 000;
(tee-perfrcv)->rej ect = 0;

(tc-perf+cv)->correct - - 1 00;
(tc-perf+cv)->€ror - I 000;
(tc-perf+cv)->reject = 0;

(e-perf+cv)->conect - -100;
(e-perf+cv)->enor - 1000;
(e-perf+cv)->rej ect = 0 ;

e-rule.total = 0;
e-rule.disjoin = 0;

(ee-perf+cv)->correct = - 100;

(ee-perf+cv)->enor = 1000;
(ee-perf+cv)->rej ect = 0;
ee-rule.total = 0;
ee-rule.disjoin = 0;

(c-perf+cv)->colrect = -100;
(c-perf+cv)->elror = 1 000;
(c-perf+cv)->reject = 0 ;

c-rule.total = 0;
c-rule.disjoin = 0;

sprintf( buf, "t¡ain7od.eli", cv );
if( !( e-fp = foPen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File(%os )\n", buf );
exit( 1 );

Ì
fprintf( e-fp, "generations, correct rate\n" );
if( !( ea-Þ = fopen( "rule.eli", "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( r-reject.eli )\n" );
exit( 1);

)
fprintf( e4-þ, "generations, reject rate\n" );

sprintf( buf, "train7od.eeli", cv );
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if( !( ee-fp = fopen( buf, 'wt" ) ) ){
fprint( stderr, "\nCannot Open File(Vos )Vr", buf );
exit( 1);

Ì
fprintf( ee-þ, "generations, correct rate\n" );
if( !( ee4-fp = fopen( "rule.eeli", "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( r-reject.eeli )\n" );
exit( 1);

)
fprintf( eeA-fp, "generations, reject rate\n" );

sprintf( buf, " t¡ainVod.cur", cv );
if( !( c-fp = fopen( bul "wt" ) ) ){
fprintf( stderr, "\nCannot Open File(Vos )\n", buf );
exit( 1 );

Ì
fprintf( c-þ, "generations, correct rate\n" );
if( !( ca-Þ = fopen( "rule.cur", "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( r-reject.cur )\n" );
exit( 1);

)
fprintf( c4-fp, "generations, reject rate\n" );

sprintf( buf, "test7od.eli", cv );
if( !( te-fp = fopen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( %os )\n", buf );
exit( 1 );

Ì
fprintf( te-fp, "generations, correct rate\n" );

sprintf( buf, "test7od.eeli", cv );
if( !( tee-fp = fopen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( 7os )\n", buf );
exit( 1 );

)
fprintf( tee-þ, "generations, correct rate\n" );

sprintf( buf, "test7od.cur", cv );
if( !( tc-fp = fopen( buf, "wt" ) ) ){
fprintf( stderr, "\nCannot Open File( %s )\n", buf );
exit( I );

)
fprintf( tc-fp, "generations, correct rate\n" );

for( n4en = 0 ; n3en < (para.N4en+1) ; n-gen+r ){

for( i = 0 ; i <para.N-pop ; i++ ){
decide_consequent( current+i, smp, &para, cv );
(cunent+i)->correct = 0;
(cunent+i)->wrong = Q;

(cunent+i)->fitness = 0.0;

)

how-many-rules( current, &pa¡a );

F:: Iæarning of Certainty Factor ===:*l
for( i = 0 ; i < para.N-learn ; i++ )
learn-cf( current, smp, &para, cv );
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l*:=: Evaluation ::=*l
*(c_perf+cv) = evaluate( cutrent, smp, &para, cv );
c-rule = how-many-rules( current, &pa¡a );
*(tc-perf+cv) = t-evaluate( current, smP, &para, cv );

ft:=: Elite PreservatiOn :-*/
if( (c-perfrcv)->correct > (e-perf+cv)->conect ){

preserve-elite( curent, elite, &para );
(te-perf+cv)->correct = (tc-perfrcv)->correct;
(te-perf+cv)->error = (tc-perf+cv)->elror;
(te-perf+cv)->reject = (tc-perf+cv)->reject;
(e-perf+cv)->correct - (c-perf+cv)->conect;
(e-perf+cv)->error = (c perf+cv)->error;
(e-perf+cv)->reject = (c-perficv)->reject;
e-rule.total = c-rule.total;
e-rule.disj oin = c-rule.disj oin ;

)

if( ( pa¡a.W-ncp * (c-perfrcv)->correct - para.W-nmp * (c-perf+cv)->error )
>(para.W-ncp*(ee-perf+cv)->correct-para.'W-nmp*(ee-perf+cv)->enor)){

preserve-elite( current, eelite, &pæa );
(tee-perfrcv)->correct = (c-perf+cv)->correct;
(tee-perfrcv)->eror = (tc-perf+cv)->enor;
(tee-perfrcv)->reject = (tc-perf+cv)->reject;
(ee-perf+cv)->correct = (c-perf+cv)->correct;
(ee-perf+cv)->error = (c perf+cv)->error;
(ee-perf+cv)->reject = (c-perf+cv)->reject;
ee-rule.total = c-rule.total;
ee-rule.disjoin = c-rule.disjoin;

Ì

l*:: Output Files =:=*/
fprintf( e_fp, "Vod, Vod, %od,7od\n", n-gen, (e-perf+cv)->correct, (e-perfrcv)->enor, (e-perfrcv)-

>reject );
fflush( e-fp );
fprintf( e4-þ, "Vod, Vod',n" , n Jen, e-rule.total );
fflush( e4_fp);

fprintf( ee_fp, "Vod, %od, %od, Vod\n", n3en, (ee-perf+cv)->correct, (ee-perf+cv)->error, (ee-perf+cv)-

>reject );
fflush( ee-fp );
fprint( ee4 

-fp, 
" 7o d, 7o d\n", n-gen, ee-rule.total ) ;

fflush( ee4-1p);

fprintf( c_îp, "%od, %od, %od, %od\n", n-gen, (c-perf+cv)->corect, (c-perf+cv)->enor, (e-perficv)-
>reject );

fflush( c-fp );
fprintf( c 4 

-fç4 
" Vo d, 7o d\n", n-€en, c-ruIe. total ) ;

fflush( c4-fp );

fprintf( te_fp, "Vod, Vod, Vod, Vod\n", n4en, (te-perf+cv)->correct, (te-perf+cv)->elror, (te-perf+cv)-

>reject );
fflush( te_fp );
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fprintf( tee_fp, "%od, %od, Vod, %od\n", n-gen, (tee-perf+cv)->correct, (tee-perf+cv)->error,

(tee-perfrc v) ->rej ect ) ;

fflush( tee-fp );

fprintf( tc_fp, "%od, Vod, Vod, Vod'vr", nJen, (tc-perf+cv)->correct, (tc-perf+cv)->error, (te-perfrcv)-
>reject );

fflush( tc-fp );

if((n¿en%ol00) == I ¡
out-rule( elite, current, n-gen, &para );

l*:: TerminatiOn fsgf =:=*/
if( n4en: para.N-gen )

break;

l*:: Genetic OperatiOn ==:=*l
Lo( current, &para );

fclose( te-fp );
fclose( tee-fp );
fclose( tc_fp );

fclose( e-Þ );
fclose( ú_fp);
fclose( ee-fp );
fclose( ee4-fp );
fclose( c_fp );
fclose( c4-fp );

if( !( fp = fopen( "trn-eli.res", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( trn-eli.res )Vt" );
exir( I );

)
fprintf( þ, "Vod, Vod, Tod\n" , (e-perfrcv)->correct, (e-perf+cv)->error, (e-perf+cv)->reject );
fflush( fp );
fclose( fp );

if( !( fp = fopen( "trn-cur.res", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( trn-cur.res )\n" );
exit( 1 );

)
fprintf( þ, "Vod,%od, Vod\n", (c-perfrcv)->conect, (c-perf+cv)->error, (c-perf+cv)->reject );
fflush( fp );
fclose( fp );

if( !( fp = fopen( "tes-eli.res", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( tes-eli.res )\n" );
exit( I );

)
fprintf( þ, "flod, flod, Vod\n" , (e-perf+cv)->colrect, (te-perf+cv)->elror, (te-perf+cv)->reject );
fflush( fp );
fclose( fp );

if( !( fp = fopen( "tes-cur.res", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( tes-cur.res )Vt" );
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exit( 1 );
)
fprintf( þ, "Vod, Vod, Tod\n", (tc-perf+cv)->correct, (tc-perf+cv)->elror, (tc-perf+cv)->reject );
fflush( fp );
fclose( fp );

Ì
ft=:== OUpUt ReSUlt :==*l

tmp-d-err = 0.0;
tmp-d-cor = 0.0;
tmp-d-rej = 0.0;
for( cv = 0 ; cv < 10 ; cv++ ){

tfnp-d-err += (doubleXe-perf+cv)->error;
tmp-d-cor += (doubleXe-perf+cv)->correct;
tmp-d-rej += (doubleXe-perf+cv)->reject;

Ì
tmp-d-err /= 10.0;
tmp-d-cor i= 10.0;
tmp-d-rej /- 10.0;
if( !( e-fp =fopen( "result.eli",'at" ) ) ){

fprintf( stderr, "\nCannot Open File( result.eli )\n" );
exit( I );

)
fprintf( e-fp, "ncp = 7o6.4f, elror = 7o6.4f, reject

(tmp-d-cor* 1 0.0)/(double)(rara. s-num*9),
(tmp-d-en* I 0.O)(double)(para.s-num*9),
(tmp-d-rej * I 0.0)/(double)(para.s-numx9), e-rule.total ) ;

fclose( e-Þ );

tmp-d-err = 0.0;
tmp-d-cor = 0.0;
tmp-d-rej = 0.0;
for( cv = 0 ; cv < 10 ; cv++ ){

tmp-d-en a= (double)(e-perfrcv)->error;
tmp-d-cor += (doubleXe-perf+cv)->correct;
tmp-d-rej a= (double)(e-perf+cv)->reject;

Ì
tmp-d-err l- 10.0;
tmp-d-cor /= 10.0;
tmp-d-rej /= 10.0;
if( !( e-fp = fopen( "taining.res", "at" ) ) ){

fprintf( stderr, "\nCannot Open File( result.eli \n" );
exit( I );

Ì
fprintf( e-þ, "ncp = Vo6.4f, error = Vo6.4f, reject

(tmp-d-cor* 10.0)/(double)(para.s-num*9),
(tmp-d-en* I 0.0/(double)(para.s-numx9),
(tmp-d-rej * 

1 0.0)/(double)(para.s-num*9), e-rule.total ) ;

fclose( e-Þ );

tmp-d-err = 0.0;
tmp-d-cor = 0.0;
tmp-d-rej = 0.Q;

for( cv = 0 ; cv < 10 ; cv++ ){
tmp-d-en += (doubleXee-perf+cv)->enor;
tmp-d-cor += (doubleXee-perf+cv)->correct;
tmp-d-rej a= (double)(ee-perf+cv)->reject;

Vo6.4f , rule Vod\n",

Vo6.4f' rule Vod\n",
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)
tmp-d-err /= 10.0;
tmp-d-cor /= 10.0;
tmp-d-rej /= 10.0;

if( !( ee-fp = fopen( "result.eeli", "at" ) ) ){
fprintf( stdert, "\nCannot Open File( result.eeli )\n" );
exit( 1 );

Ì
fprintf( ee-fp, "ncp = Vo6.4f., elror = Vo6.4f, reject

(tmp-d-cor* 1 0.0)/(double)(para. s-num*9),
(tmp-d-en* I 0.O)/(double)(para.s-num*9),
(tmp-d-rej * 10.0/(double)(para.s-numx9), ee-rule'total );

fclose( ee-fp );

tmp-d-err = 0.0;
tmp-d-cor = 0.0;
tmp-d-rej = 0.Q;

for( cv = 0 ; cv < 10 ; cv++ ){
tmp-d-err += (doubleXc-perfrcv)->error;
tmp-d-cor += (doubleXc-perf+cv)->correct;
tmp-d-rej a= (double)(c-perf+cv)->reject;

Ì
tmp-d-err/= 10.0;
tmp-d-cor /= 10.0;

tmp-d-rej /= 10.0;

if( !( c-fp = fopen( "result.cur", 'at" ) ) ){
fprintf( stderr, "\nCannot OPen File( result.cur )\n" );
exit( 1);

Ì
fprintf( c-fp, "ncp = Vo6.4f, elror = Vo6'4f , reject

(tmp-d-corx 1 0.0)/(double)(para.s-num*9),
(tmp-d-err* I 0.O)/(double)þara.s-num*9),
(tmp-d-rej * I 0.0)/(double)(para.s-num*9), c-rule.total );

fclose( c-fp );

7o6.4f, rule %od\n",

Vo6.4f, rule Vod\n",

tmp_d-err = 0.0;
tmp_d-cor = 0.0;
tmp-d-rej = 0.0;
for( cv = 0 ; cv< 10 ; cv++ ){

tmp-d-err += (doubleXte-perf+cv)->error;
tmp-d-cor += (doubleXte-perf+cv)->correct;
tmp-d-rej += (double)(te-perf+cv)->reject;

Ì
tmp-d-err/= 10.0;
tmp-d-cor /= 10.0;
tmp_d-rej /= 10.0;

if( !( e-fp = fopen( "result.teli", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result'teli )\n" );
exit( 1 );

ì
fprintf( e_fp, "ncp = Vo6.4f, error = Vo6.4f , reject = 7o6.4fln", (tmp-d-cor*10.0)(double)para's-num,

(tmp-d-en* 1 0.0)/(double)para.s-num,
(tmp-d-rej * 

1 0.0/(double)para.s-num );
fclose( e-fp );

tmp-d-err = 0.0;
tmp-d_cor = 0.0;
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tmp-d-rej = 0.Q;

for( cv = 0 ; cv < 10 ; cv++ ){
tmp-d-err += (double)(te-perf+cv)->enor;
tmp-d-cor += (double)(te-perf+cv)->colrect;
tmp-d-rej += (doubleXte-perf+cv)->reject;

)
tmp_d-err /= 10.0;
tmp_d-cor /= 10.0;
tmp-d-rej /= 10.0;

if( !( e-fp = fopen( "test.res", "at" ) ) ){
fprintf( stderr, "\nCannot Open File( result.teli )\n" );
exit( I );

]
fprintf( e_fp, "ncp = Vo6.4f, error = Vo6.4f , reject = 7o6.4flrn", (tmp-d-cor*10.0)/(double)para.s-num,

(tmp-d-en* I 0.0)/(double)para.s-num,
(tmp-d-rej * 10.0/(double)para.s-num );

fclose( e-fp );

tmp-d-err = 0.0;
tmp-d-cor = 0.0;
tmp-d-rej = 0.Q;
for( cv = 0 ; cv < 10 ; cv++ ){

tmp-d-err a= (double)(tee-perfrcv)->elror;
tmp-d-cor a= (double)(tee-perf+cv)->correct;
tmp-d-rej += (doubleXtee-perf+cv)->reject;

Ì
tmp-d-err /= 10.0;
tmp-d-cor /= 10.0;
tmp-d-rej /= 10.0;
if( !( ee-fp = foPen( "result.teeli", "at" ) ) ){

fprintf( stderr, "\nCannot Open File( result.teeli )\n" );
exit( I );

)
fprintf( ee_þ, "ncp = Vo6.4f, error = Vo6.4f , reject = Vo6.4fln", (tmp-d-cor*10.0)/(double)para.s-num,

(tmp-d-en* 1 0.O)/(double)para.s-num,
(tmp-d-rej * I 0.0)/(double)para.s-num );

fclose( ee_fp );

tmp-d-err = 0.0;
tmp-d-cor = 0.0;
tmp-d-rej = 0.Q;

for( cv = 0 ; cv< 10 ; cv++ ){
tmp-d-en += (doubleXtc-perf+cv)->error;
tmp-d-cor += (double)(tc-perf+cv)->correct;
tmp-d-rej += (doubleXtc-perf+cv)->reject;

l
tmp-d-err/= 10.0;
tmp-d-cor /= 10.0;
tmp-d-rej /= 10.0;
if( !( c-fp = fopen( "result.tcur", "at" ) ) ){

fprintf( stderr, "\nCannot Open File( result.tcur )\n" );
exit( 1 );

]
fprintf( c_fp, "ncp = Vo6.4f, error = 7o6.4f , reject = Vo6.4fln" , (tmp-d-cor*10.0)/(double)para.s-num,

(tmp-d-err* 1 0.0)/(double)Para. s-num,
(tmp-d-rej * I 0.0/(double)para.s-num );

fclose( c-Þ );
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l*=:= TerminatiOn PrOcedure :=-*l
free( e-perf );
free( c-perf );
free( ee-perf );
free( te-perf);
free( tc-perf );
free( tee-perf );
free( current );
free( elite );
free( eelite );
for( i - 0 ; i < para.s-num ; i++ )

free( (smp+i)->x );
free( smp );
free( para.d_f-name );
free( para.paf );

return( 0 );
Ì

#include"cs.h"
/*#defrne RAND-MAX (21 47 483 &7 )* I

void usage( void )
{
fprintf( stderr, "\n \n" );
fi¡*fi stderr, "------------------\r')
fprintf( stderr, " Fuzzy Classifier System \tt" );
fprintf( stderr, " \n" );
fprintf( stderr, " \n" );
fprintf( stderr, "------ ----h" );
fprintf( stderr, "\nOptions..\n" );
fprintf( stderr, "\t1[xxxxx] ... Population size\n" );
fprintf( stderr, "\t2[O.xxx] ... Replacement proportion\n" );
fprintf( stderr, "\t3[O.xxx] ... Mutation probability\n" );
fprintf( stderr, "\t4[xxxxx] ... Learning iteration\n" );
fprintf( stderr, "\t5[0.xxx] ... eta-l( learning rate )\n" );
fprintf( stderr, "\t6[0.xxx] ... eta-2( learning rate )\n" );
fprintf( stderr, "\t7[x.xxx] ... W-ncp( weight of fitness )\n" );
fprintf( stderr, "\t8[x.xxx] ... W-*p( weight of fitness )\n" );
fprint( stderr, "\t9[xxxxx] ... the number of generations\n" );
fprintf( stderr, "\tO[fname] ... data file name\n" );
fprintf( stderr, "\ta[xxxxx] ... random seed\n" );
fprintf( stden, "\tb[t or b]... the shape of membership function\n" );
fprintf( stderr, "\tc[xxx..] ... the number of partitions of each a"ris\n" );

)

void read-parafile( PARAMETER *pa )
{
FILE *fp;
int i;
int n-para; /* number of parameters x/

char **buf;

I
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n_para = 13;
6r¡f= (char**)alloc-2( n-para, 100, sizeof(char*), sizeof(cha¡) );

if( !( fp = fopen( "patamtr.dat", "rt" ) ) ){
fprintf( stderr, "\nCannot Open File( paramn.dat )\n" );
exit( 1 );

)

for( i - 0 ; i < n-para ; ir+ ){
myread( fp, x(buf+i) );
myread( fp, *(buf+i) );

Ì

pa->N-pop - atoi( *(buf+O) );
Pa->P-reP = atof( *(buf+l) );
pa->P-mut = atof( *(buf+2) );
pa->N-learn - atoi( *(buf+3) );
pa->eta-l = atof( x(buf+4) )'
pa->eta_2 = atof( *(buf+S) );
pa->W-ncp - atof( *(buf+6) );
pa->W-nmP = atof( *(buf+7) );
pa->Ngen = atoi( *(buf+8) );
strcpy( pa->d-f-name, *(buf+9) );
pa->seed - atoi( *(buf+10) );
pa->shape = x(x(buf+l 1)+0);
strcpy( pa->part, *(buf+12) );

ftee2( (void**)buf, n-pa¡a );
fclose( þ );

return;
]

void read_datal( FILE *fp, PARAMETER *pa )

{
int i, j;
cha¡ *buf;

buf- (char*)alloc-1( 100, sizeof(cha¡) );

myread( þ, buf );
myread( fp, buf );
pa->s_num = atoi( buf );
myread( fp, buf );
myread( þ, buf );
pa->s_dim = atoi( buf );
myread( fp, buf );
myread( þ, buf );
pa->s_cls = atoi( buf );

free( buf );

return;

)

*l

I
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void read-dataz(FllE *fp, PARAMETER xpa, SAMPLE *smp )
{
int i, j, flag, r_v, *idx;
long int *num;

cha¡ *buf;
FILE *fpout;

idx - (int*)alloc-1( 10, sizeof(int) );
num = (long int*)alloc-1( 10, sizeof(long int) );

for(i-0;i<10;i++){
*(idx+i) = Q;
*(num+i) = pa->s-num / 10;

Ì

for( i = 0 ; i < (pa->s-num7ol0) ; ir+ )
*(num+i) += 1;

buf- (char*)alloc-1( 100, sizeof(char) );

if( !( fpout = fopen( "testout", "wt' ) ) ){
fprintf( stderr, "\ncannot open file( testout )\n" );
exit( 1 );

)

for( i = 0 ; i < pa->s-num ; i++ ){

(smp+i)->x = (doublex)alloc-1 ( pa->s-dim, sizeof(double) );
for(j = 0 ; j < pa->s-dim ; j# X

myread( fp, buf );
*((smP+i)->x+j) = atof( buf );

fprintf( þout,"Vo6.4f, ", *((smp+i)->x+j) );
Ì
fprintf( þout, "\n" );
myread( fp, buf );
(smp+i)->clss = atoi( buf ) - 1;

flag = g;

while( flag =- 0 ){
r-v = rand0 7¿ 10;

if( *(idx+r-v) < *(num+r-v) ){
(smP+i)->group = r-v;
*(idx+r-v) += 1;

flag= 1;

l
Ì
fprintf( þolt, " Vod, Vod\n", (smp+i)->clss, (smp+i)->group );

fclose( Þout );
free( buf );
free( idx );
free( num );

return;
)
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void modify-parameter( int ac, char **av, PARAMETER *pa )
{
int i;

for(i=1;icac;i++){
if( *(x(av+i)+O) =='l' ¡

Pa->N-PoP = atoi( *(av+i)+l );
else if( *(*(av+i)+0) =='2' )

pa->P-rep - atof( *(av+i)+l );
else if( *(x(av+i)+O) -='3')

pa->P-mut = atof( *(av+i)+l );
else if( *(*(av+i)+O) --='4')

pa->N-learn - atoi( *(av+i)+l );
else if( *(x(av+i)+O) =='5')

pa->eta-l = atof( *(av+i)+l );
else if( *(*(av+i)+O) =='6' )

pa->eta-p = atof( *(av+i)+l );
else if( *(*(av+i)+O) =='7' )

Pa->W-ncP = atof( *(av+i)+l );
else if( *(*(av+i)+O) =='8')

Pa->W-nmP = atof( *(av+i)+| );
else if( x(*(av+i)+O) =='9')

pa->N-gen = atoi( x(av+i)+1 );
else if( *(*(av+i)+O) =='0')

strcpy( pa->d-f-name, *(av+i)+l );
else if( *(*(av+i)+O) =='a')

pa->seed - atoi( x(av+i)+l );
else if( *(*(av+i)+0) == 'b' )

pa->shape = 
*(*(av+i)+1);

else if( *(*(av+i)+O) -='c')
strcpy( pa->Paf, x(av+i)+l );

Ì

return;

)

void decide-consequent( CLASSIFIER *clfr, SAMPLE *smp, PARAÀ4ETER *pa, int cv )

{
int i, j;
int d-cls; /* decided class */
int flag;
double *beta, ma¡r-b, sum-b;
double tmp-d;

6sta = (double*)alloc-1( pa->s-cls, sizeof(double) );
for( i = 0 ; i < pa->s-cls ; i++ )

x(beta+Ð - 0.0;

for( i = 0 ; i < pa->s-num ; i++ ){
if( (smp+i)->grouP != cv ){
tmp-d= 1.0;
for(j = 0 ; j < Pa->s-dim ; j+ )

tmp-d *= membrship( clfr->condition+j, *((smp+i)->x+j), pa );
*(beta+(smp+i)->clss) += tmp-d;
)

)

sum-b = 0.0;
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for( i - 0 ; i < pa->s-cls ; i++ ){
sum_b a= *(beta+i);

if( i ){
if( max-b < x(beta+i) ){

max-b - *(beta+i);

d-cls = i;
flag= 1;

)
else if( max-b == x(beta+i) )

flag = 9;

Ì
else{

max-b = x(beta+i);

d-cls = i;
flag - 1;

Ì
Ì

if( flag X
/* decided class */
clfr->clss = d-cls;
/* certainty factor *l
tmp-d - ( sum-b - *(beta+d-cls) ) / ( (double)pa->s-cls - 1.0 );
clfr->cf = ( 

*(beørd-cls) - tmp-d ) / sum-b;

)
else{

/* dummy class */
clfr->clss = -1;
clfr->cf = 0.0;

)

free( beta );
retum;

)

PERFORMANCE evaluate( CLASSIFTER *clfr, SAMPLE *smp, PARAMETER xpa, int cv )

{
int i, j, k;
int max index, flag;
double alpha, ma:r-a;
PERFORMAI.ICE result;

result.correct = 0;
result.enor = 0;
result.reject = 0;

for( i - 0 ; i < pa->s-num ; i++ ){
if( (smp+i)->grouP != cv ){
for( j = 0 ; j < Pa->N-PoP ; j++ ){

alpha = (clfr+j)->cf;
for( k = 0 ; k < pa->s-dim ; k++ )

alpha x= membership( (clfr+j)->condition+k, *((smp+i)->x+k), pa );

if(j ){
if( max-a < alpha ){
max_a = alpha;
max_index = j;
flag = 1;
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Ì
else if( ( max-a: alpha ) && ((clfr+max-index)->clss != (clfr+j)->clss ) )
flag - 0;

Ì
else{

m¿ìx_a = alpha;
max_index = j;
flag = 1;

)
)

if( flag && (max-a!=0.0) ){
if( (clfr+max-index)->cls5 -= (smp+i)->clss ) {

/* Correctly Classified */
(clfr+max-index) ->correctr+ ;

(clfr+ma:<-index)->fitness +- pa->W-ncp;
result.corect++;

)
else{

/* Wrongly Classified */
(clfr+max-index) ->wron g++ ;

(clfr+max-index)->fitness -= pa->W-nmp;
result.errorr+;

)

Ì
else{

/x Classification rejected x/

result.rejectr+;
)
Ì

return( result );
)

PERFORMANCE t_evaluate( CLASSIFIER *clfr, SAMPLE xsmp, PARAMETER *pa, int cv )

{
int i, j, k;
int max-index,flag;
double alpha, ma:t-a;
PERFORMANCE result;

result.correct = 0;
result.error = 0;
result.reject = 0;

for( i = 0 ; i < pa->s-num ; i++ ){
if( (smP+i)->gouP == çY ){
for( j - 0 ; j < pa->N-pop ; j++ ){

alpha = (clfr+j)->cf;
for( k - 0 ; k < Pa->s-dim ; k++ )

alpha *= membership( (clfr+j)->condition+k, *((smp+i)->x+k), pa );

if(i ){
if( max-a < alpha ){

mÐ(_a = alpha;
max index = j;
flag= 1;
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Ì
else if( ( ma,r-a: alpha ) && ( (clfr+max-index)->clss != (clfr+j)->clss ) )
flag - 0;

ì
else{

mÐ(-a - alpha;
max index = j;
flag= 1'

)

Ì

if( flag && (ma,x-a!=0.0) ){
if( (clfr+ma:r index)->clss == (smp+i)->clss ){

/* Correctly Classified x/

(clfr+max-index) ->correctr+ ;

(clfr+ma;r-index)->fitness += pa->W-ncp;
result.correct#;

)
else{

/* Wrongly Classified */
(clfr+max-index)->wrong++ ;

(clfr+max-index)->fitness -= pa->W-nmp;
result.error++;

)

)
else{

/x Classification rejected */
result.rejectr+;

return( result );

void learn-cf( CU,SSIFIER *clfr, SAMPLE *smp, PARAMETER *pa, int cv )
{
int i, j, k;
int max index, flag;
double alpha, max-a;

for( i = 0 ; i < pa->s-num ; i++ ){
if( (smp+i)->group != cv ){
for( j = 0 ; j < Pa->N-PoP ; j++ ){' aþha = (clfr+j)->cf;

for( k - 0 ; k < pa->s-dim ; k++ )
alpha *= membership( (clfr+j)->condition+k, *((smp+i)->x+k), pa );

if(i ){
if( max-a < alpha ){
mÐ(-a = alpha;
max_index = j;
flag= 1;

)
else if( ( mæt-a: alpha ) && ( (clfr+max-index)->clss != (clfr+j)->clss ) )
flag - 0;

)
else{
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mzx_a = alpha;
max_index = j;
flag = 1;

)
)

if( flag && (max a!=0.0) X
if( (clfr+max index)->clss == (smp+i)->clss ){

/* Correctly Classified */
(clfr+max-index)->cf = (clfr+max-index)->cf +
pa->eta-l * ( 1.0 - (clfr+ma:t-index)->cf );

)
else{

/x Wrongly Classified */
(clfr+max-index)->cf = (clfr+max-index)->cf -
pa->eta2 * (clfr +max-index)->cf;

)

)
)

)

return;

Ì

I

I-SET how-many-rules( CLASSIFIER *clfr, pARAMETER *pa)

{
int i, j, k, flag;
I_SET result;

result.total = 0;
result.disjoin = 0;
for( i = 0 ; i < pa->N-pop ; i++ ){

if( (clfr+i)->correct ll (clfr+i)->wrong )
result.total++;

Ì

return( result );

for( j = (i+1) ; j < pa->N-pop ; j++ ){
flag - 0;
for( k = 0 ; k < pa->s-dim ; k++ ){

if( (((clfr+i)->condition+k)-)pârt == ((clfr+j)->condition+k)->part) &&
(((clft+i)->condition+k)->posi == ((clfr+j)->condition+k)->posi) )

flag++;
)
if( flag - pa->s-dim ){

flag - 0;
(clfr+i)->cf = 0.0;
break;

Ì
else

flag= 1;

)
if( flae )

result.disjoinr-+;
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void preserve_elite( CTASSIFIER *cur, CLASSIFIER *eli, PARAMETER *pa )
{

int i, j;

for( i - 0 ; i < pa->N-pop ; i++ ){
for( j = 0 ; j < pa->s-dim ; j++ ){

((eli+i)->condition+j)->part = ((cur+i)->condition+j)->part;
((eli+i)'>condition+j)->posi = ((cur+i)->condition+j)->posi;

)
(eli+i)->clss = (cur+i)->clss;
(eli+i)->cf =(cur+i)->cf;
(eli+i)->fitness = (cur+i)->fitness;
(eli+i)->correct - (cur+i)->correct;
(eli+i)->wrong = (cur+i)->\4,rong;

Ì

return;

void po( CLASSIFIER *clfr, PARAMETER xpa )
{
int i;
int pl,p2;
int n-chldn; /* number of children x/

double *fit; /* fitness */
double tmp-d, tmp-d2;

CLASSIFIER *new, dummy;

fit - (double*)alloc-1( pa->N-pop, sizeof(double) );

/* == Normalization of Fitness == */

tmp_d2 = 0.0; /* sum of fitness */
for( i - 0 ; i < pa->N-pop ; i++ ){

tmp-d2 +- (clfr+i)->fitness;
if( i ){

if( tmp-d > (clfr+i)->fitness )
tmp-d - (clfr+i)->fitness ;

)
else

tmp_d = (clfr+i)->fitness ;

Ì
if( (tmp_d2:0,0) ll (tmp-d2: pa->N-pop * tmp-d) ){

for( i = 0 ; i < pa->N-pop ; i++ )
*(fit+i) = l'O I (double)Pa->N-PoP;

)
else{

for( i = 0 ; i < pa->N-pop ; i++ )
*(fit+Ð = ( (clfr+i)->fitness - tmp-d ) / ( tmp-d?- pa->N-pop * tmp-d );

)

/* == Initialization of New Classifiers : */
n_chldn = (inÐ( pa->N_pop * pa->P-rep );
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new = (CLASSIFIER*)alloc-1 ( n-chldn, sizeof(CLASSIFIER) ) ;

for( i -0 ; i < n-chldn ; ir+ )
(new+i)->condition = (CONDITION*)alloc-1( pa->s-dim, sizeof(CONDmON );

dummy.condition = (CONDmON*)alloc- 1 ( pa->s-dim, sizeof(CONDmON ) ;

/* == Genetic Operation == x/

i=0;
while( i < ( n-chldn-l ) ){

selection( fit, pa->N-pop, &pt, &p2);
crossover( clft+pl, clfr+p2, new+i, new+i+I, pa->s-dim );
mutation( new+i, pa );
mutation( new+i+l, pa );
i+=Zi

Ì
if( (n-chldn7o2) ){

selection( fit, pa->N-PoP, &PI, &P2);
crossover( clfr+pl, clft+pZ, new+i, &dummy, pa->s-dim );
mutation( new+i, pa );

)

/* == Replacement: */
replace( clfr, new, pa, n-chldn );

free( frt );
for( i = 0 ; i < n-chldn ; i++ )

free( (new+i)->condition );
free( new );
free( dummy.condition );
return;

)

void selection( double *fit, int pop, int *pl, int *p2 )
{

int i;
doublerv; /* randomvalue */

rv = (double)( rand0Vo327 67 ) I 327 67 .0;

for(i=0;icpop;i++){
rv -- *(fit+i);
if( rv <= 0.0 ){

*Pl = i;
break;

Ì
Ì
if( rv > 0.0 ){

fprintf( stderr, "\nstrange random value( selection In" );
exit( 1 );

Ì
¡y = (double)( randO%o32T 67 ) I 32767 .0;

for(i-0;icpop;i++){
rv -- *(fit+i);
if( rv <= 0.0 ){

*p2= i;
break;

Ì
)
if(rv>0.0X

fprintf( stderr, "\nstrange random value( selection )\n" );
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)

exit( I );
)

return;

void crossover( CLASSIFIER *p1, CLASSIFIER *p2, CLASSIFIER xnl,
CLASSIFIER *n2, int dim )

{
int i;

/*== block change( uniform crossover ) :*/

for(i=0;i<dim;i++){
if((rand)Vo2)){

(nl->condition+i)->part - þ1->condition+i)->pa¡t;
(n1->condition+i)->posi - (p 1 ->condition+i)->posi;
(n2->condition+i)->part = þ2->condition+i)->paf ;

(n2->condition+i)->posi - (p2->condition+i)->posi;

)
else{

(nl ->condition+i)->part = þ2->condition+i)->part;
(n1->condition+i)->posi = (p2->condition+i)->posi;
(n2->condition+i)->part = þ 1 ->condition+i)->part;
(n2->condition+i)->posi = (p1->condition+i)->posi;

Ì
Ì

return;

void mutation( CLASSIFIER *clfr, PARAMETER *pa )
{
int i;
int tmp-i;
char tmp-c;
doublerv; /* randomvalue */

for( i = 0 ; i < pa->s-dim ; i++ X
¡y = (doubleX randO 7o RAND-MÆ( ) / (double)RAND-MAX;

if( rv < pa->P-mut ){
tmp-c = *(pa->part+i);

trnp-i = nnd)7o (atoi(&tmp-c)+1);
if( tmp-i X

(clfr->condition+i)->part = atoi(&tmp-c) ;

(clfr->condition+i)->posi = tmp-i;
Ì
else{

(clfr->condition+i)->Part = 1 ;

(clfr->condition+i)->Posi = 1 ;

Ì
Ì

)

return;
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Ì

void replace( CL-ASSIFIER *clfr, CLASSIFIER *new, PARAMETER *pa, int n-chl )
{

int i, j;
int index;
int xhistory;

history = (int*)alloc-1( n-chl, sizeof(int) );

for( i = 0 ; i < n-chl ; i+t ){
index = select_rep( i, history, clfr, pa->N-pop );

for( j = 0 ; j < pa->s-dim ; j++ ){
((clfr+index)->condition+j)->pa¡t = ((new+i)->condition+j)->part;
((clfr+index)->condition+j)->posi - ((new+i)->condition+j)->posi;

)

Ì

free( history );
return;

I

int select-rep( int num, int *hist, CLASSIFIER *clfr, int pop )
{

int i,j;
int flag;
int resulq /* index */
double min-fit; /* minimum fitness */

min_fit = 100000.0;
for(i=0;icpop;i++){

flag - 1;

for(j=0;j<num;jt+X
if( *(hist+j) -- i x

flag = 9;
break;

Ì
)
if( flag X

if( min-fit > (clfr+i)->fitness ){
min_frt = (clfr +i)->fitness ;

result = i;
Ì

)

)

*(hist+num) = result;

retum( result );

void out_rule( CLASSIFIER *cur, CLASSIFIER *eli, int gen, PARAMETER xpa )
{

)
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int i, j, tmp-i;
FILE *fp-c, *fp-e;

cha¡ xname_c, *name-e;

name-c = (char*)alloc-I(20, sizeof(cha¡) );
name-e = (char*)alloc-I(?-0, sizeof(char) );

tmp i=gen/10;
sprintf( name-c, "rule7od.cur", tmp-i );
sprintf( name-e, "rule7od.eli", tmp-i );
if( !( fp-c = fopen( name-c, "wt" ) ) )
fprintf( stden, "\nCannot Open File( 7os )\n", name-c );
exit( 1 );

Ì
fprintf( þ-c, "antecedent part... , class, cf, learned cf, correct, error, reject\n" );
if( !( fp-e = fopen( name-e, "wt" ) ) ){
fprintf( stden, "\nCannot Open Ftle(Vos )\n", name-e );
exit( 1 );

Ì
fprintf( þ-e, "antecedent part... , class, cf, correct, error, fitness\n" );

for( i = 0 ; i < pa->N-pop ; i++ ){
for(j = 0 ;j < Pa->s-dim ;j** ){
fprintf( fp-c, "Vod, Vod\n" , ((cur+i)->condition+j)->part, ((cur+i)->condition+j)->posi );
fprintf( fp-e, "Vod,%od\n" , ((eli+i)->condition+j)->part, ((eli+i)->condition+j)->posi );

Ì
fprintf( fp-c, " Vod, 7o6.4frn", (cur+i)->clss+1, (cur+i)->cf );
fprintf( fp-e, " %od, 7o6.4f\n", (eli+i)->clss+1, (eli+i)->cf );
fprint( fp_c, "cor = Vod, err = Vod, ftt = 7o6.7fln" , (cur+i)->correct, (cur+i)->wrong, (cur+i)->fitness );
fprintf( fp_e, "cor = %od, eÍ = Vod,fit= 7o6.tfrî", (eli+i)->conect, (eli+i)->wrong, (eli+i)->fitness );

)

fclose( fp-c );
fclose( Þ-e );
free( name-c );
free( name-e );

return;

)

#include"cs.h"

void **alloc-2( int nl, int n2, int sl, int s2 )
{
void **result;
int i;

if( !( result = (void**)calloc( nl, sl ) ) X
fprintf( stderr, "\nlvlemory Allocation Error\n" );
exit( I );

Ì

/
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)

for(i=0;i<nl;i++){
if( !( x(result+i) = ç¿l1ss1 n2, s2)) ){
fprintf( stderr, "\nMemory Allocation Error-2\n" );
exit( I );

)
]

return( result );

void myread( Ftr-E *fp, char *buf )
{
int i, c;

for(i=0;i<100;i++){
c-getc(&);

if( ( c: \n') ll( c ==',') )
break;

*(buf+i) = (char)c;

Ì

if( i: 100 X
fprinú( stderr, "\nlnvalid contents in file\n" );
exit( I );

)
*(buf+i) = \Q';

retum;

)

void free-2( void** obj, int nl )
{
int i;

for(i-0;i<nl ;i++)
free( x(obj+i) );

free( obj );

retum;
)

void *alloc_l( int n, int s )
{
void *result;

if( !( result = calloc( n, s ) ) X
fprintf( stderr, "VrlVlemory Allocation Error\n" );
exit( 1 );

Ì

retum( result );
)
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double membership( CONDHON xcdn, double x, PARAIvIETER *pa )
{
double a, dum-b;
double tmp-d, result;

if( cdn->part: I )
return( 1.0 );

¿ = ( (double)cdn->posi - 1.0 ) / ( (double)cdn->part - 1.0 );

if( pa->shape:'t'){

/* tianglar shape */
dum_b = (double)cdn->part - 1.0;

tmp-d=(x-a);
if( tmp-d >= 0.0 )

result = 1.0 - tmp-d * dum-b;
else

result = 1.0 + tmp-d * dum-b;

if( result <= 0.0 )
result = 0.0;

Ì
else if( pa->shape =='b'){

/* bell shape */
dum-b = 4.0 * log( 2.0 ) * ( (double)cdn->part - 1.0 ¡ x ( (double)cdn->paf - 1.0 );
tmp-d- ( x - a ) * ( x - a) * dum-b;
result = exp( -tmp-d );

Ì

return( result );
)
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- Population size (num. of rules) -
10

- Replacement rate -
0.2

- Probability of mutation --
0.1

- Num. of leamings of certainty factor --
0

- Iæarning rate (eta-l) --
0.001

- Iæarning rate (eta-2) -
0.1

- Weight (in the fitness function) \p-ncp -
1.0
-- V/eight (in the fitness function) w-nmp -
5.0

- Num. of generations --
100
-- Data file name --
CAD.dat
-- random seed --
10

- shape offuzzy sets (tiangle or bell) -
triangle
-- num. of partition of each axis --
5555555555555555555555
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