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ABSTRACT

This thesis presents in detaill two methods for
the systematic study of the structure of light
nuclei. Part I begins with a critical review of
other work so that our study may be gseen in its
correct perspective. Chapter two contains a com-
plete orthogonal classification of the S-state wave-
functions which are present in the ground states of
the triton and the alpha particle, and is followed
by our treatment of the Schrodinger equations of the
three- and four-nucleon systems. Including spin
explicitly in the nuclear model of Green, we have
solved these eguations exactly. The results that
accrue from this improvement to Green's model,
although interesting in themselves, are only meaning-
ful for shallow and long-~iranged Gaussiasn potentials
gso these investigations have perforce been limited

to the nuclei in the 1ls shell.

In part 2, a velocity dependent potential of
¢xponential form, which gives the correct deuteron
binding energy and good fits to the two-body
scattering data, is determined. By using this inter-

action, the binding cnergiles of the trinucleon and



the alpha particle are evaluated through a
variational-type calculation. The parameters of

the trial functions which include short-range two-
body correlations, are cbtained by fitting the
r.mes, radius and the form factor of each nucleus.
The quality of these wavefunctions is also tested
by the expectation values of a number of operators
in the three- and four-body systems. From our
results we are able 1to conclude that the soft-=core
nucleon-~nucleon interaction is more than adequate

as a substitute for the repulsive hard core poten-
tials suggested by high-energy two-body scattering
data. It is also obvious that product wavefunctions
of analytic form are sulfficiently flexible and give
good representations of the true eigenfunctions.
Other possible conclusions are that the S' state in
the triton is unlikely to be present with more than
145% probability in the ground state, the Serber and
Biel force mixtures are favoured in nuclear photo-
disintegration calculations and the sum~rules of

Bethe and Levinger are essentially correct.

We conclude with a brief report of the applica-
tion of our methods to the alpha particle model of
'2¢ and tc the trineutron and suggestions for further

work,
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CHAPTER 1. INTRODUCTION

The study of systems involving few nucleons
has played an important role in the history of
nuclear physics. In this field of work the deter-
mination of the nucleon=nucleon interaction has held
the most interest. As carly as 1933 Wigner(1) showed
on comparing the binding energies of hydrogen and
helium isotopes +that nuclear forces should have a
short-range and great strength within that range.
In 1935 Thomas(z) found that the nuclear interaction
cannot have zero range; the binding energy of the
triton goes to infinity if the range of the two-body
force tends to zero. All these features of nuclear
forces had been revealed from the study of the few
nucleon systems long before reliable nucleon-nucleon

scattering measurements could be performed.

The continued absence of a fundamental theory
of nuclear forces has led to attempts to describe
the nucleon-nucleon interaction in terms of a poten-
tial, a concept borrowed from classical physics and
atomic quantum theory. Unfortunately a proliferation

of' such phenomenological potentials exists and since




the two-nucleon system at present does not provide
sufficient criteria to select the unique potential,
the known properties of the nuclei next in complexity
to the deuteron have once again been suggested as
possible tests in the selection of such a true inter-
nucleon force., If and when such a satisfactory des-
cription of the two-nucleon interaction is attained
from the large amount of experimental data still

being collected, an important adjunct to investigation
of systems containing three, four and more nucleons
would be the estimation of the presence and importance

of parity-dependent and many-nucleon forcese.

In the study of the light nuclei the essential
problem is the solution of the Schrodinger equation
for the system of interacting particles of approxi-
mately equal mass. On the basis of the two=-nucleon
interaction model, the general Schrodinger equation
cannot be solved analyticaelly if a phenomenological
potential consistent with most two-body data is used.
A direct numerical calculation appears beyond reach of
the fastest computers today so one must resort to a
number of obvious approximations. One simplification

is the reduction of the complete few-nucleon wave=-



function to more tractable form. In their centre-

of -mass coordinates, the triton wave equation is a
partial differential equation in six indepondent
variables whilst the alpha particle wave equation

has nine such variables. A systematic classification
of the angular wave-functions present in the ground
states of the two nuclei based on the absolute and
auxiliary quantum numbers of these states was proposed

by Derrick and Blatt(B), Cohen and Willis(4'6)

(7)

Beamn . Such a classification has reduced the triton

and

problem to 16 coupled differential equations in three
variables and the alpha particle wave equations to 32
coupled equations in six variables. No further simpli-
fication is possible. However there is some evidence
to suggest that only a small number of the classified
states are important and the others can be summarily
dropped from consideration without fear that their
absence will affect the conclusions of any calculatione.
Even so the substantially reduced coupled equations

are still difficult to solve explicitly and either of
two popular procedures must be made for any further
progress., The first involves the assumption of an

equivalent interaction operator that is sufficiently



simple so that a streightforward solution follows; the
second retains the complicated form of the two-
nucleon potential and some variational principle

is employed. The advent of faster computers with
large storage capacities will help matters but until
then these two methods will continue to enjoy a

large measure of popularity.

The exact-solution method, which is the less
precticable of the two, has a number of distinct
advantages: it allows an exact solution which exposes
features of the problem not revealed by the varia-
tional method. These features lend Physical insight
into the study of the few=-nucleon systems and may
conceivably be necessary in the variational calcula-
tions. The use of modern phenomenolcgical potentials
which have repulsive cores and non-central components
require detailed and tedious varistional calculations,
The most ambitious work in this sphere has been that

of Blatt and his co-workers(8-12)

but even they have
been forced to admit that their complicated wave-
functions are still not sufficiently flexible to

énsure convergence. It seems that the semi-realistic

bpotentials may not have had their day. Femiliarity



in their use may yield valuable information about
the structure of the trinl functions necessary for
the more sophisticated treatments, which as of now
occupy an inordinate amount of time. Besides, it
appears unlikely that their essential results will
have to be thrown overboard when the elaborate var-
iational calculations are performed because these
simpler phenomenological potentials may resemble
realistic forces in their effects on the main prop-
erties of the light nuclei. The flow of papers on
the few-nucleon systems that was once a trickle is
now a constant stream as the emphasis in research is
shifted from the two-body system to the nuclei after
the deutcron. 1In the next section we present a
summary of some of the major work done by other
authors so as to place our own work in its correct

perspective.

l..s
L]
| Y

Critical Review of Work on the Few-Nucleon

The first full claessification of the angular
momentum-isospin functions which can be present in

the ground state wavefunctions of the three-nucleon



(3)

system was given by Derrick and Blatt « Using
Euler angle wavefunctions, they were able to write
the total wavefunction as a linear superposition of
ten states, each of which had a definite value of
total orbital angular momentum, spin angular momentum
and & definite permutation symmetry. GCohen and
Willismﬁe)and Beam's(7) approach was a systemisation
of' the operator technique used by Gerjuoy and

(13) (14)

Schwinger and Sachs Their method gave

eleven and fourteen orthogonal states respectively

for the triton and alpha particle ground states.
Although there is no completely reliable estimate of
the relative importance of the various states, magnetic
moment measurements indicate the S state of total
spatial symmetry to be predominant. (This is the

only state of any consequence present if the nucleon-
nucleon potential is central and has Majorana and
Wigner exchange character). The next most important

states will be the so-called S' state (the 8 state of

mixed symmetry) and the D states.

Early work on the triton and alpha particle

binding energies were done by Blatt and Weisskopf(15),

(16) (17)

Irving » and Rarita and Present using static



central internucleon potentials which are considered
outmoded nowadays. The binding energies were sensi=-
tive to the shape of the two-nucleon potential; the
more realistic attractive Yukawa and expoential wells
gave rise to overbound nuclei. These variational
calculations were carried out with the help of regular
trial functions which were totally symmetric and which
had a single parameter determined by the Rayleigh-
Ritz variational principle or by fitting the Coulomb
energy of *He. (The latter was evalusted as a first
order perturbation term in the Hamiltonian of 1)

The trial functions were chosen to approximate the
true wavefunctions and their parameters had no direct
connection with the parameters of the nucleon-nucleon
potentials. Subsequently an equivalent two=body

8)

1
method was introduced by Feshbach and Rubinow( and

(19)

Morpurgo in which the essential approximation was
to give the wavefunctions some particular forms.

Thus for the triton, Feshbach and Rubinow assumed the
wavefunction to be dependent on a particular symmetric
combination of the three interparticle separations but

the functional form of the approximate wavefunction

was found by solving a differential equation obtained



from a variational principle formulation of the full
problem. The solution gave the best trial function
for the variable chosen. An improvement to the
method in which the variable could be any linear
combination of the three interparticle distances was
developed recently by Bhaduri et al.(zo). Although
these two-body methods are not restricted to attrac-
tive potentials, their inability to include two=

body correlations is a serious limitation to accuracy

when other interasctions are considered.

Recent high energy two-body scattering data have
suggested the presence of a strong repulsion in the
nuclear force at small interparticle distances. This
repulsion has generally becn represented as an iupenc-
trable hard core in the nucleon-nucleon potential.
Such a hard core presents difficulties when one trics
to solve the Schrodinger equation. In the variational
calculation, the trial function must vanish within
the hard-core radius and in the region just outside
of the core where the potential is required to be
strongly attractive, the wavefunction has to be

chosen with extrene care. Here the absolute values
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of the kinetic and potential energies are orders

of magnitude larger than the total energy and small
defects in the function in this area have a delet-
erious effect on the local total energy. Thus if
the wavefunction fails to be a faithful reproduction
of the exact wavefunction, the upper bound on the
binding energy will be so far away from the eigen-
value as to be of little practical use. The first
successful attempt to include hard core potentials
in a variational calculation of the triton binding

l.(21). Assuming a

energy was made by Ohmura et a
symanetric radial function which was a product of
functions of each interparticle separation, they

were able to evaluate all the expectation values
anaglytically. Their results yielded a core radius

of about 0¢3 fermis, and a value of the Coulomb
energy of ?He that was smaller and nearer to the
expected magnitude than were obtained from the cal-
culations with central potentials. The next major
series of calculations on the three~ and four-nucleon
systems using hard-core potentials were carried out

al.(22~24)

by Tang et « Their analytic functiong

were of product form; each two-particle function
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was found following the proposal of Austern and

(25)

Tano In the region just outside of the core

the function chosen is the solution of a two-body
differential equation where the nucleon-nucleon
potential is used and the energy is a variational
parameter. This function is then matohed onto an
asymptotic function of form suggested by Pappademos(26)
The calculations are essentially numerical and all
integrals arising in the evaluation of the matrix
elements have been determined by Monte Carlo methods.
The 'equivalent two~body method' of Feshbach and
Rubinow can be successfully extendedto handle poten-
tials that contain hard cores. If the trial function
is assumed to be of product form the triton equation
can be cast into a form where the Euler-Lagrange
equations caen be solved iteratively. This method was

28
defined by Delves and Derrick(27), Bodmer and Ali( ),

and Murphy and Rosati(29). Regrettably, the iterative
procedure requires prior knowledge of the energy in

the two~body integro-differential equation; otherwise,
the iterated function misbechaves at large interparticle

separations. Also a considerable amount of computer

time is necessary because of the time-consuming pro-



cedures for numerical differentiation, interpolation
and integration of second order differential equations,
In fact Kok and Wageningen(30’31), in their exhaust-
ive work on the triton problem, believe that it is
perhaps more worthwhile to retain and improve the
Austern-Tano method which under some circumstances

gives the same functions as the 'equivalent two-

body method',

Qualitatively the effect of the hard=-core is to
make the nucleon potential weaker at higher energies
and it is conceivable that one can replace success-
fully the hard‘’core now present in most of the better
nucleon-nucleon potentials, by a velocity dependent

(32,33>_

potential For example, in any scattering

problem a central static potential with hard core can
be transformed by means of a unitary transformation
to a physically equivalent problem containing velocity

(34). en(35), Levinger(36), Rojo
(39)

(40)

dependent forces

al.(37’38)

Gre

ot Herndon et. al, and Lim have
been able to derive velocity dependent potentials of
exponential and Gaussian forms that yield excellent

fits to most two-body data. Calculations involving
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velocity dependent potentials do not have the
unpleasant features present in the hard-core calcu-~
lations. The velocity dependent potential is easier
to handle mathematically; it does not give infinite
matrix elements and it permits the use of the per-
turbation treatment of Euler in solving the nuclear

(39-43)

many-body problem, A number of authors have
investigated the feasibility of introducing the
velocity dependent interaction into the few=-nucleon

problem. Their results have proved most encouraging.,

When non-central components are present in the
nuclear force, states other than the S state assume
some importance and must be included in the calcula-

tions. TFeshbach and Pease(hh’hs),
(46) (47)
s

Abrahan, Cohen

(48)

and Roberts Irving and Mukherjee amongst
others have evaluated the binding energies of the triton
and alpha particle when the nuclear interaction was a
mixture of central-attractive and tensor forces. The
results of these authors are an inprovement on those

of the simple central potentials but are neverthcless
too inconclusives A great disadvantage is that in

these works the central forces are still attractive.

(49-53)

Recently modern phenomenologicsal potentials
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have been constructed which have tensor, spin-orbit,
gquadratic spin-orbit components and hard cores.

Blatt et al..8712)

have performcd elaborate and
tedious variational calculations using these pot-
entials but computational errors, the inherent
difficulty of the problem and the feeling that the
trial functions employed were not sufficiently comp-
lete to ensure convergence, have not allowed them to
draw any precise conclusions about their results.
Their list of beliefs in reference 11, engendered
by their intimate knowledge of the three-nucleon
system include information that has already been

derived from studies with the semi-realistic

potentials.

On the premise that the correct form of the
interaction between nuclear particles is not known

and therefore attempts at investigating interactions

(54)’
(62)

of all types are equally Jjustified, Yamaguchi
Mitra et a1.(55761) 14 Kharchenko and Sitenko
have proposed a completely different approach to the
problem. In their work the local potential is
replaced by a non-local separable potential. Such

a potential, although its use would be considered
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unjustified if only because field theoretical pot-
entials are local, has certain mathematical advant-
ages and besides satisfying the usual requirements
of translational and time reversel invariance also
produces nuclear saturation. It renders the two-
body problem exactly soluble and provides a consid-
erable reduction of the three-nucleon problem to an
effective two-body problem which is easily solved
numerically. Results from using this form of inter-
action have had mixed success. Some experimental
data are closely reproduced butother results have
conflicted violently with variational calculations

(63-66)

and with experiment The trineutron is now
acknowledged to be unbound but the separable calcula-
tions of Mitra and Bhasin éggicate that this nucleus
can be bound by 1 MeV. It would appear that there

is a fundamental difference between the variationsal
calculation and the separable potential approach.

(67)

The work of PFuda has also revealed that some of

(58)

the equations obtained by Bhakar when tensor terms
are included in the potential are in error. This
casts doubts on the numerical results of the Indian

group and maey be responsible for the discrepancies

with experiment. The separable method could still
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be rehabilitated.

In similar spirit to the separable method are

(68)

the exact calculations of Kalos , Baker et. al.(69),
(70) (71) (72)

Banyille , Simonov and Badalyan and Green
The latter two excite more than passing interest.
Simonov's method of six-dimensional angular harmonics
has been tested with a square well central potential.
The results are good and point out that application
of the method to other potentials may be possible.
Green's method is a rigorous quantal treatment of the
many-body problem in which actual two-body potentials
are replaced by oscillator-type potentials, the 4iff-

erence being treated as a perturbation.

Although the ability to yield the experimental
binding energy has always been regarded as the most
significant indication of the flexibility of any
wavefunction, the energy as derived from a variational
calculation cannot be taken as the sole criterion for
felthfulness of the trial function, since there are
uncertainties in the nucleon-nucleon potential. Other
properties of the bound state must be called to test

the quality of the function. These parameters of the



ground state include the r.m.s. radius, the charge
and magnetic form factors, the Coulomb energy, the
photodisintegration cross-~sections, the muon capture

rate and the Panofsky ratio (the ratio of the prob-

abilities of the reaction processes I 4 Aﬁ - 0° 4 A§:1)

Z-1
N4

ties of interest are the '°0 (H, p)!'%0 reaction

and I + Aﬁ <Y 4+ A For the triton other quanti-
cross~-section and the percentage of the various
angular states. The complexity of some of the wave-
functions and potentials used in the variational cal-
culations have seriously hindered their application
to the evaluation of these parameters. Thus the
photodisintegration cross-sections (integrated and
bremsstrahlung-weighted)(73—80), the muon capture

(81-83) (84)

rates and the Panofsky ratios have only
been determined in a small number of calculations.,
The photodisintegration cross-section of the trin-

ucleon can be found explicitly or through the use of

(85). These
(87) .,a

the sum=rules of Bethe and Levinger

(86)

calculations as shown by Fetisov , Gibson

(77)

Lim are sensitive to the forms of the trial
functions and especially their asymptotic behaviour.

The other variables are less sensitive to the trial
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functions and have been given within a few percent
of the experimental vaelues by all reasonable trial

functions.

1.2 __Outline of the Contents

An exact solution of a problem (even if it has
been simplified) has certain advantages. Since the
actual problem is usually insoluble or involves
difficult calculations, the explicit solution serves
as exploratory work to develop a feeling for the
intricacies of the problem. Thus the n-body Schrodinger
equation has been solved exactly by Green using the
assumption of a two-body Gaussian potential to which
is fitted a harmonic oscillator interaction. With
this model it has been possible to study the struct-
ural properties of the light nuclei in detail and
various features of the collective states of nuclei,
which are completely obscured in the independent
particle theories, have been studied without approxi-
mation. The pair distribution function can be deter-
mined for each pair of nucleons and the momentum
distribution can be found for each nucleon. In this

thesis we have made an obvious improvement to the
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model by taking spin into account in a more exact
fashion. The three-nucleon system is again exactly
soluble and although attempts to do the same for the
alpha particle were unsuccessful, an approximation
for the four-nucleon wavefunction did allow for a
solution. The exact wavefunctionsresemble strongly
the Irving functions whilst the approximate solutions
were similar to the polarised Gaussians of Aranoff(aa).
An unexpected result is that values of the binding
energy from the approximate calculation are the same

o8 those obtained from a variaticnal treatment with

the approximate wavefunction as trial function. The
model, although interesting, is nevertheless of
somewhat questionable validity. For meaningful

results the interaction potential has to be shallow

and long-ranged, features which are now rejected in

any reasonable two~-nucleon potentiasl. Of course it

can be argued that the nucleon-nucleon interaction in

the bound state differs from that in the free state

but there is overwhelming evidence to the contrarye.

The second portion of the thesis is a study of
the feasibility of replacing the repulsive core

interaction by a velocity dependent potential in
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investigations of the few-nucleon systems and the
necessary structure for the trial radial functions

(39)

to accommodate such an exchange. Tang and Herndon

(41)

and Lovitch and Rosati have shown that both forms
of interaction give acceptable values of the binding
energies and sizes of the three- and four-nucleon
systems whilst Kopaleishvili and Machabeli(89)found in
I~ and y absorption reactions in 4He that a comparison
with experimental data indicates that the wavefunction
corresponding to the velocity dependent potential
yields a better fit to the data as a whole for all the
considered processes, In the choice of radial func~
tions the elaborate functions of Blatt et al. are
more detailed than is necessary for our purpose so we
limit ourselves to more tractable forms. These forms
suggest themselves from a consideration of the physical
characteristics of the nuclei. Blatt and his co-
workers have found that wavefunctions which yield the
better values of the triton binding energy also give
the better fits to the r.m.s. radius and the fornm
factors. Conversely, it may be expected that a

properly chosen trial function with parameters deter-

mined by fitting the r.m.s. radius and the form factor



will give the more correct binding energy and will be
an adequate representation of the true function. Our
radial functions are selected following such a pro-
cedure and also have the virtue of the right close-in
and asymptotic behaviour.

Our functions and the velocity dependent potential
are tested in the evaluation of other nuclear para-
meters. Our results allow us to come to some conclu-
sions about the role of exchange forces in the nuclear
interaction, the importance of two-body short-range
and asynptotic correlations in the wavefunctions, the
percentage of the S8' state in the triton, the nuclear
sizes, the possible breakdown of charge symmetry in
the nuclear force, and the overall correctness of the
Bethe~Levinger sum=-rules for nuclear photodisintegra-

tion.

In chapter two we present a complete classifi-
cationr of the wavefunctions for the S state of the
triton and the alpha particle for easy reference,
This work is not original but is a concise and clear
presentation of Derrick and Blatt, Cohen and Willis

and Beam's papers,



Chapter three contains the exact and approxi-
mate solutions of the three-nucleon Schrodinger
equation when the two-nucleon interaction is a
spin-dependent centrsl Gaussian and the model of
Green is used. The problem is reduced to one in
relative canonical coordinates which allows for a
simple solution of the coupled differentiel
equations., The approximation in the solution of
the three-body system is also made in chapter four
where we treat the Schrodinger equation of the
alpha particle. As in the triton problem we use
our wavefunctions to evaluate the r.m.s. radius
and the form factor of the nucleus,

8ix and seven

In chepters five/we derive a corrected form of
the velocity dependent potential of Srivastava.
Three trinucleon trial functions are constructed
which are then utilised in the determination of
the binding energy and other properties of the
three-nucleon system.

The alpha particle is considered again in
chapter eight, Trial functions in the 'variational'
calculation with the velocity dependent potential,

do not have product form but are two-parameter



Irving functions. The properties of the four-body
system are studied using these functions.

Chaepter nine contains two applications of
our methods to the alpha particle model of C'2
and the trineutron. We discuss possible treatment
of the quark model of the baryon by both exact and
variational methods,

Our conclusions and discussion of the overall
accomplishments of this thesis are in chapter
ten, Suggestions for further work are considered

also.



CHAPTER 2

ORTHOGONAL CLASSIFICATION OF THE THREE- AND

FOUR-NUCLEON WAVEFUNCTIONS

In attempting to solve a problem involving
several nucleons, one is confronted by various
restrictions on the forms of the wavefunctions
representing the system under consideration.

These restrictions, imposed by the symmetries of
the problem, require that the nuclear wavefunctions
have definite total angular momentum and parity

and must be antisymmetric under the combined inter-
change of spatial, spin and iso-spin coordinates

of any pair of nucleons. For the light nuclei,
Since iso=-spin mixing due to the Coulomb inter-
action is relatively small, the eigenfunctions must
also have definite iso-spin. It follows then that
for an exact treatment of these symmetries, it will
be a great simpliflcation if the many-nucleon wave-
functions can be separated into four parts: a s5pin
part, an iso=-spin part, an orbital angular momentum

part and an internal spatial part. For two nucleons



there is no difficulty in carrying out such a
separation so that summation over spin and iso-spin
leaves relations involving the internal coordinates
only. Thus one finds the well~known singlet and
triplet states of spin or iso-spin with symmetric
and antisymmetric space states, since the depend-
ence cr. each type of coordinate can only be
symmetric or antisymmetric. The construction of

a total wavefunction that satisfies the general-
ised Pauli Principle simply requires multiplica-
tion of three antisymmetric functions or the
multiplica®ion of one antisymmetric and two symme-
tric functions.

L

When the number of nucleons is increased to
three or four, the complication in such a proce-
dure c¢limbs considerably. For example in the
three-nucleon system, we do not deal with only two
types of symmetry but a new symmetry associated
with a two-dimensional representation of the permu-
tation group appears. This symmet»y introduces
more involved ways of forming functions that are

totelly antisymmetric. As the number of nucleons
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rises further, more symmetries are introduced and it
becomes apparent that a systematic approach to the
problem of constructing eigenfunctions of the few-
body systems becomes desirable., TFor this to be
possible, we need to understand the properties of
the symmetric group S

N.

241 The Symmetric Group SN;

The group of all permutations of N particles

is called the symmetric group SN and has N! elements.
Each irreducible representation of this group may be
characterised by a partition [f,fzf,.-..-...fk] of N
into positive integers fi which satisfy

fqy 2 fo 2 5 2 00 2 fk and f9 4+ f5 + £3 4+ ce0 fk = N,
Such a partition is conveniently described by a Young
Tableau consisting of k contiguous rows of squares,
the k-th row containing fk contiguous squares and
such that, looking from top to bottom, no row overjuts
the preceding row. Thus the partition [321] is
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and the total number of irreducible representations

of S corresponds to the number of ways of partit-

N’
ioning N.

The dimension Nk of the irreducible representa-
tion corresponding to the partition [f1f2f3-.c.fk] is

given by the relation

k Y k
N, =N 0O (h, - h, I h, (1)
k i<j=1 1 J 121 T
where
hy =f +k=-n (m=1,2,000.k) (2)

and is in fact equal to the number of ways of numbering-

in the sguares of the partition such that the numerals

increase from left to right and from top to bottom.

For example [21] has dimension Nz = 2 and the two

numbered tableaux are

.|"3i

2|
The procedure for determining the representa-

tion matrices of the interchange operator Pij and the

methods for decomposing the direct product of any

number of representations, are beautifully explained
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(90)

in Hemermesh's book Matrices and rules for
decomposition relevant to the three- and four-
nucleon systems are collected together in Tables

1 and 2.

242 The Triton Wavefunctionsgs

The group Ss has three irreducible representa-
tions: the one~dimensional symmetric S, the two-
dirensional mixed symmetric M3 and the one-dimensional
antisymmetric A. These are represented respectively

by the partitions [3], [21], [111] and the Young

Tableaux
The triton ground state has quantum numbers Jﬂ - %+,
T = 2. Since the three nucleons can have a maximun

spin of %, the most general wavefunction with these
quantum numbers is a linear superposition of 28,4,
2

2P4, 4Pl and *D; functions. As we shall be dealing
2 z 2

exclusively with central forces we shall need the

254 functions only and hence the other states will

L
2



- 28 -

TABLE_ 1.

REPRESENTLATION MATRICES AND PRODUCT

DECOMPOSITION FOR S5

INTERCH/.NGE REPRESENTATION
OPERATOR
(3] [21] [111]
P42 1 -1 0 -1
0 +1
P13 1 E *[22 o
L Y2 _i
) 2
Pz s : 1 % %; -1
V3 =%
2
(3] e [3] = [3]
[3] & [21] = [21]
(3] & [111] = [111]
(21] & [21] = (3] ¢ [21] ¢ [111]
[21] & [111] = [21]
[111] & [111] = [5]
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2o

INTERCHANGE
OPERATOR

Pi2 1

Py 1

(4]
(4]
(4]
[4]
4]
[31]
[31]
[31]
[31]
[22]
[22]
[22]
[211]
[211]
[11411]

B R R PO R PR BER PR PP B R

DECOMPOSITION FOR S,

[4]
[31]
[22]
[211]
[1111]
[31]
[22]
[211]
[1111]
[22]
(2017
[1141]
[211]
[1141]
[1114]

{1

]

REPRESENTATION

[22] [241] [4
-1 0 0O 0 1
0 1 -1 0
1 0 0
z 75 0 0
Y3 _1 ! .
2 2 0 -1
z -%; o 1 0
. 0 0
- %ﬁ -5 0 0 -1
(4]
[31]
[22]
[211]
[1114]

[4] @ [31] ¢ [22] 9 [211]
(311 @ [211]

[31] @ [22] ¢ [211] & [1111]
[211]

(4] & [22] & [1411]

[31Te [211]

[22]

(4] & [31] @ [22] & [211]
L31]

(4]
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be onmitted from this classification.,. With the totsal

orbital angular momentum L equal to zero, the 28

2
functions will have no dependence on the Euler angles

and the orbital angular momentum part of the nuclear
wa efunctions will be & simple constant which can be
dropped. From the exclusion principle, any system

of N spin % particles can have spin functions repre-
sented by Young Tableaux not having more than two
rows. Thus if the spin quantum number is S, the

spin eigenfunction has permutation symmetry described
by the partition [N/2 + S, N/2 - 5]. For the triton
S = & and hence the spin functions must correspond to
the two~dimensional irreducible representation MS.
The two spin functions which are the basis functions

defining this representation are chosen to be

.1

o= 7 (018, = @284)as (3)
2
1

X' = 17; g1 - g3 X (&)

where the components of gj are the Pauli spin matrices
for nucleon je The iso-spin functions span a similar

[21] representation and are defined as for the spin



functions, with iso-spin vectors replacing the spin
vectors. The complete gpin-isospin functions there-
fore span the basis of the direct product of the
representation [21] with itself. From Table 1, these
are the representations [3], [21], [111]. The basis

functions are then

A xllnl - %/ nY (5)
MS }/l n* 4 )(II n! 5 7(/ n - 7(”7.’11 (6)
S %l T)’ + ;»Il.nll (7)

Since the generalised Pauli Principle requires that
the internal spatial functions span an irreducible
representation that is adjoint to the spin-isospin
functions, it follows that the complete S-state of

the triton ground state can be written as

¥(sy) = SIS (8)
where
37 = 9% o (- )y B (9)
of - o yraary o G "+ W« (f"n" =y’ n' Yy (10)
8% - 8%,% (e v+ X"n" )y ? (11)
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The spin-isospin functions are orthogonal in spin-

isospin space so0 @?, @: and §§ must be mutually

orthogonal., The internal functions ws, v, v" and
wa can only be functions of the interparticle dis-

tancese.

2e3 The Jlpha Particle Wavefunctions

The alpha particle ground state has gquantun
numbers J = 0, T = 0, and in the absence of non-
central forces would be pure 'Se. In order to find
a parametrised wavefunction consistent with the
symmetries of the four-nucleon system we need the
properties of the group Ss. The group S; has five
irreducible representations: the one-dimensional
symmetric S, the three-dimensional mixed-symmetric
MS, the two-dimensional mixed M, the three-dimensional
mixed-antisymnmetric MA and the one~dimensional antie-
symmetric Le These are represcented respectively by
the partitions [4], [31], [22], [211], ana [1111].

As with the triton wavefunctions the S-state has no
dependence on the Euler angles i.e. the wavefunctiong

are independent of the orientation in space of the
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tetrahedron made by the six interparticle separations.
The totally antisymmetric wavefunctions will be pro-~-

ducts of spin, iso-spin and spatial parts only.

Since S = 0, the spin functions correspond
to the two-dimensional representation M and are

chosen to be

1l

x! z(a1Bz = @2p1) (a3Bs = @asfs) (12)

xll _:/.-1.9:1 .g—3XI (13)
3

The iso-spin functions span a similar [22] representa-
tion and assume & form identical to that for the spin
functions. The complete spin-isospin functions there-
fore span the basis of the direct product of two [22]
representations. From Table 2 these are the representa-

tions [4], [22], [1141]. The basis functions are then
A X'n' = At (14)
M )(I 77” + -,XII n’ s )Cl 7 - xll.nll (15)
S xl nl + Xllnll

These are identical to those for the triton spin-isospin

functions and suggest that there are only three possible
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180(8 = T = O)functions. These are

U('So) = B3 + 3, + &3 (17)
where
By o= (gt -t )y’ (18)
8, = (M0 g W - (o - )y (19)
25 = (U« nt ) (20)



CHAPTER THREE

AN EXLOTLY SOLUBLE TRITCON MODEL

(72)

In the nuclear model proposed by Green s the
nucleus is considered to be made up of n nucleons
interacting through central-attractive two-hody
potentials. These potentials are assumed to have
Gaussian spatial dependence., For two particles i
and j, an oscillator potential is fitted to the
Gaussian around T3 (the distance variable) equal
to zero and the difference is taken into account by
perturbation theory. This procedure allows one %o
transform themany-nucleon system into normal coordin-
ates which lead to analytic solutions. The validity
of this approach may be questioned in general but
for light nuclei, the effect of the infinite wall of
the potential would not be decisive since the proba-
bility of the distance of two nucleons becoming larger
than the range of true nuclear forces is small. When
one uses this oscillator description, the extent of
the nuclear wavefunction is proportional to Aé which

1

is not so different from the empirial A% dependence

for light nuclei. Besides, when put to the test by
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Green, the method showed that one could achieve a
satisfactory representation of the systematics of
light nuclei. One must of course acknowledge the
defects associated with Green's choice of two
different forms of the nucleon-nucleon potential,
his adoption of scalar spin and the truncation of
the perturbation series but the approach has,
nevertheless, significant advantages, not the least
of which is its simple and systematic prescription
for calculating the structure and energy levels of

all the light nuclei,

An important open question in the study of light
nuclei is whether a single form of nucleon-nucleon
interaction is sufficient to give good fits to the
binding energies of the nuclei in the 1s shell and
beyend. This hypothesis, it appears,can be studied
and clarified through a realistic generalisation of

Green's model in which spin is included explicitly,

3s1 The Triton Equation With Spin

If 1 and 2 denote neutrons I, the radius vector

of the ith nucleon, E the triton binding energy and
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M the nucleon mass (in the discussion below and all
the work that follows we restrict ourselves to the
case of equal nuclear masses), the Schrodinger
equation for the triton is

w3 3

{- —_— 3 v"‘i+ z V(ij)}\ll:E\P (21)

2M i=1 i<j=1
where V(ij), the spin-dependent nuclear potential
between the ith and jth particles, is assumed to be

of the fornm

2) (22)

v(i3) 3

2
Vij exp( U ri

with

V. .
14

Vo (w + bPijB) (23)

and ¥ the total ground state wavefunction. In our

extension of Green's model this equation becomes

K2 n n n n n
{--—— zvi-% A 3 Vi.uzr..z+-2§' ) z
oM i=1 izt ifj=1 *J9 I i=1 i¥j=1

EV , (24)

V,. | exp(-t®r, 2 2r, .2 v
< 1J|:ep(“r:.,])+“rij :l>:}
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where the brackets< > denote an expectation value
computed with the help of ¥ and n = 3. Since we do
not include isobaric spin dependence in our potential,
the total wavefunction ¥ is not given by equation (8)
but nust be antisymmetric only in the two identical

nucleons and is therefore

\pt = wr-},ﬂ + WII 1 (25)

where x’ :unlf” are the two orthogonal spin functions
of the trinucleon given in chapter two; the spatial
functions ¢y’ and y” are analogously, antisymmetric and
symmetric respectively in the neutron coordinates.,
Using equation (25) and the transformation matrices

of the Bartlett interchange operators Pi? listed on
Table 1, then summing over the spin variables, we can
reduce our Schrodinger equation to a peir of coupled
equations in y/ and y* and involving the three inter-
particle distances only. Introducing the Jacobi

vectors

i
[ )]
I
2
nf—~
N
is
n
]
s
N’
-

(26)

fove
[P}
1
2
Wi
Pamy
H
+
)
[\*]
+
in
W
N
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we obtain

r12% 4+ ri3° + Taso = 3(EY + E%)
—riz? 4 2(res? 4+ r23®) = %(E% - £2)
\]T?. (rys% - T,2) T 381 ° &2 (27)

In this new system of generalised coordinates, our

coupled partial dif ferential equations are

it

- — <V21 + V%J v <§1, §_2> + 5“(521 + E,§>‘I" <§.1s §2>
2M

+ 2885 - B (B1y Bo) + 30 EivEe v (B1) Eo)

E GW'(§1, 52) (28)

2

o == (VZ + v2

— (g, 2 ) v (B B ) v 3a(ES 4 &) v (BeoEe)

- 2808 - 8) v (Brs E) ¢ B B B v (B, )
= ey’ (1, E2) (29)

where we have also taken

a = wVou?, B = bVou? and e = E-%
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To solve these equations we use the ansatz

v 4 iy = L(§1 - ;2 )Zf (30)

_ ¢
v'o- iyl T : T (31)

G- ]

Then equations (28) and (29) reduce to

$e2
- = (g o+ T dve v salE )y, .2

Vi

and Va

where ¢ is real.

ﬁ(§1 + iEz)zwz

= €¥4 (32)

- ;ﬁ (Vgi + ng)wz + 3“(%% + B3 V2 + % ﬁ(§1 - i§2)zw’

= €y (33)

and finally

%2

[ e T (v

+ 3a(2% + 88)9 + 2 B[ (24

+

Vat) {[(_5_1 . 152)2]"%¢}

iE, )? ik [(&1 + ig.)? 24

= €¢ (34)



o = (§1 _'-152)2]% (Vgi + vé:) {:[(_E_a - iE, )2]—%¢}

R LGINE- U V(IR L (T

€ (35)

In sinplifying these expressions we introduce the

two three~dimensional complex vectors
z2 = &1 + 1f, and z* = &1 - iE, (36)

Then, since we are only considering the S=gstate of
the triton, ¢ will depend exclusively on the three
scalars z®, z* and z°z* formed from z and z*.

Introducing further the new variables

2 2
Es + E2 = z°2*

o
]

and

<
1

' 1 ]
[(EF - B2)% + 4(B1°E2)% 1% = [222% ]2 (37)
we find, after partial differentiation,
1 - 1
[+ 167 1 7+ 72) {60 + 220 TPo)

‘ (38)
= Lz ,Y, .ZZ* {z—’gb} . U(¢uu + ¢'V'V') + 2V¢uv+3¢u
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and the relation

I T A A I B €

where

% = (zz)% and z¥% = (z*z)% (40)

(The legitimacy of the operator Zz' zz* mayfbe
questioned but it should be realised that its
application is a formal process. At its application
on a function, z and z* may be regarded as independ-

ent quantities in an algebraic sense).

Using these results, we see that our coupled
equations become a single equation in ¢ with indep-
endent variables u and v. This equation is written

as

ok?
el [u(¢uu + ¢vv) + ZV¢u

+ 3¢u] + 30u¢ + % Bve
M

= €¢ (41)

which is obviously satisfied by

¢ = exp(-pu - qv) (42)
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2k® yk? 3
-—(p* + ¢®)= 3 , -—opg=1%

M m

6h2 2 % 1 1
and € = ———p = 3(Eﬁ > [(3“+% £)% + (3a- g B)2]  (43)

8

N

Therefore, written explicitly, the triton binding

energy is

1 1
2 \2 2 é 2\2
oV u* )% 4 (uV pf- S bV _u 2]

=
1
AN
N
hnbf
gl\)
~—
[
M
Py
W
€
<
t
+
N

5 3
+'12‘ Z E < sose > (Ll-l]-)
i=1 i+j=1

whilst the spatial functions are

1
(v+E2 -n?)°

Vo= e-(Pu+qV) (45)
2v
1
(v+n®-g? )%
v = e-(pu+qV) (46)
v
-kZr, .?
which behave like z~u~u-% e ' and y¥ resemble the
EI‘ 2\2
1y

Irving functions (functions which have been found to
be flexible for variastional calculations involving

central potentials of Yukawa and exponential forms)
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and go to zero for large interparticle separations.
They have the welcome feature too of being directly

related to the two-particle interaction.

2,2 PFirst Approximation to the Ground State

Wavefunction

If our nuclear forces are spin-independent, the
triplet and singlet nucleon-nucleon forces nust
accordingly be equal. Then in equation (25) v’ )
should be absent and vy’ should not only be symmetric
in the like nucleons but also totally symmetric in
the three nucleons. Thus a proper first approxima-
tion to the ground state wavefunction would be the
dropping of the term y¢”%’ from Y. Such an approxima-

tion has been tried successfully by Ohmura et. al.(21),

(91) (92)

Efimov and Rosati and Barbi amongst others.
With this reduction in ¢y and, after averaging over
the spin variables, the single Schrodinger equation
from our model becomes

G
- (V2 + 9.2 v+ 3a(Eh + E2)v), + 2 (g - )

= ey (&7)
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(It is interesting to note that this result is
exactly what we would get from neglecting the
'off-diagonal' terms - 3ifE1°E2v1 and 3ifEq *Eav2
and then setting v4 = ¥, in equations (32) and

(33) ).

Equation (47) is completely separable and on

solution gives

- {8

N[~

il 1
[(Guvou® +20Vou®)Z 4 (3uVon? - 2bVou?)?]

3 3
+ % Z Z <.oo.> (48)
i=1 i+j=1
and
1 -
Wla - e"z(a1521 + 8285 ) (19)
where
o = (30Vou® + 2bVou?) (ﬁ?) (50)
and
a2 = (3uVou? - ZoVou?) <3M> (51)
HZ

Equations (44) end (48) are identical expressions

which differ only quantitatively in the expectation



2 L =

5
1 i+%=1

approximation is indeed good this difference can

value term % ig eoeede If our first

be expected to be small. The solution wg is a
polarised Gaussian similar to those of Aranoff and
Percus?ﬂand, like ¢y’ and y¢”, is given directly by
the nucleon-nucleon interaction. It is intriguing
that our approximation, which uses first order
perturbation theory, yields the same results as the
variational calculation using W;f? as trial function.
This can be shown easily. Thus by the variational

teohnique, the triton binding energy is given by

hz

E = ¢ = (Vz. + V2 )> + < V., exp(-u®r,,?)>
var 3 icj=t 19 i3 7a
(52)
compared to the expression
k ( ) 3 ( ( )
E = — (324 + 332 ) + < I (V, . exp(-u?r, 2
2M icg=1 Y 1J
2 2

that follows from equation (48). The kinetic energy
expectation value is evaluated straightforwardly and

is



..}_'_7_

2 . £ -hz

- — (7? e — (2 2
< - (Vg‘ + sz)g o (5 a1+ S az) (54)
whilst
5 2 2 2 2 3 2 .2
<i<§_1viju T > = = 3a< (&% + Ez)g -3 B<(€1-Ez)§
«hz
== — (28 + 2 8) (55)
oM 2 2 ™*
where we have used the formulae
o0 00
/dz =ff (b 1)2 E%EZ ag, g, (56)
d o
(o] I‘(n)
2
and / p2n~1 o~kR® 4R = ;;H (57)

o

Equality with the variational method suggests a
possible means of selecting the nucleon-nucleon pot-
ential for this model. Fixing the force mixture
constants w and b we can determine Vou? through the

requirement of a sensible wavefunotion.

3¢3 The remess Radius and Related Quantities

The rem.s. radius, the body form factor and other



- 48 -

physical properties of the trinucleon are sensitive
to the form and parameters chosen for the ground
state wavefunction., As observed in the previous
section we can deternine the depth and range of

the nucleon-nucleon force uniquely by requiring
that our wavefunctions describe correctly the body
form factor of the nuclear system considered and
yield agreement with the experimentally-observed
values of the r.mes. radius and the binding energy.
The simplicity of W; makes analytic evaluation of

these important quantities easy. If we write

1, 2 and 3 (58)

i3
>
it
N M
/7]
-
>
]

-J%’ \]12- Jjg (59)

the expectation values of the operators appearing in
our calculations can be obtained without difficulty

by using the results



N
2
< exp(-p®r;®)3 = (1 + i ) (60)
) ’ (61)
<r, 2 > e e 1
1] a 2“,,2
ij
1 2a, .
< m——> = ——d (62)
r,, ? ne
1j
- 2
- = Z ., = S,
where a4 Ve (Slx SJK) /ax (63)

(These relations have been derived from the integrals

in the appendix). We see that

_ 2
Aqyp 2 = - (64)
a2
- 3 1 a4 +38.2
a4 3 2 = + = ' (65)
2a4 2a, 2a489
_ 3 1 a1+ 3az
Ao 3 2 = + = - (66)
284 28, 2a4 82

The r.mes. radius of matter distribution is defined

as
3 3
2 1 1 2 1 2
=<z I (r, - [gE&s)P¥>=<3 I r, 2>
M/ Cle 34 1 5 N 9 icjuq H A

(67)



and is therefore

» 1 2 a¢+3as 29+84
%one = 2 (5 ¢ aa) Cme (68)

If we assume that the *He ground state has the same
wavefunction as the triton (1 and 2 are protons and

3 is the neutron) the Coulomb energy is

e? \ 2as\7
< -I‘-q-; g' = € (—1-1—“- (69)

The body form factor is the Fourier transform of the

nucleon density distribution so

. .2
/lv’alz eXP<-1_g'\!3 §1>d'r

89 +2az
exp(- % quz) = exp(- %qz -—'—=——> (70)

284 a3

Fo(a®)

i

The structure of the nucleus can also be described

by the pair distribution function defined by

13 j"'lz G(r - )b (r - )dT/N (71)

where N is the normaglisation constant

N = flvx’al2 6(x; - rlar (72)
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With our solution w%, we have

g;5(rs5) = ('(*I‘E'ﬁ exp(-e, * r, .?) (73)
g12(Tya) = (S% ? exp(- ;i ra%) (74)
sontern) = [(CL) 4 )] ome(- 22 v o

/28.1 asz
SR (ew €
- 1 2

When our exact solutions are employed, the corres-

l..\
et

ponding results can in all probability be expressed
in algebraic form but we have preferred to evaluate
themn numerically. e simplify the calculations by

making the transformation first suggested by Irving.
a9 = Rcos ® , & =R sin © (77)
The volume element d4dr is
dr = E3%3 d8sa¥; dcosp = R°cos®0sin®6 dRdBdcosg (78)

since the Jacobian is Ry and ¢ is the angle contained
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by the two vectors., Integrals over R are obtained
explicitly so we are left with straightforward two-
dimensional integrals over © and ¢. These are
evaluated using Miller's quadrature formula (6D) in

reference (93).

3.4 Results and Discussion

The approximation given by eguations (49) - (51)
is uszd to determine the nucleon-nucleon potential
for our model calculations. A variety of special
values is assumed for the interaoction constants Vg
and 4° whilst w and b are taken to be 0.8 and 0.2
respectively since scattering data suggest that g the
singlet to triplet ratio is equal to 0.6. The best

values of our constants arefound to be

These values secure a least squares fit to the experi-
mental three-body form factor (see Table 3) and yield
a binding energy of 8.48 eV on the basis of the fore-
going theory. In Table 4 we list the results obtain-
able from our exact and approximate solutions to the

three~body Schrodinger equaticn together with the



TABLE 3.

s e e o —

BODY FORM FACTOR OF THE THREE-NUCLEON SYSTEM

2 2 2 2
q Fo(a®) Po(d*) Fo(d®)
Experimental From Okamgto From Using
values ffom and Lucas(®4) i s
Collard 95) Wax,
1.0 0.642 0s6L45 0.656
2.0 0.418 0.416 0.430
3.0 0,298 0.268 0.282
40 0,206 0173 0.181
5.0 0,141 0.112 0.7121
6.0 0,100 0.072 0.080
TABLE 4.
CALCULATED AND OBSERVED B.E., Rr . AND
COULOMB ENERGY
Method Binding Energy r.mn.s. Radius GCoulomb
Energy
(yeV) (fm) (MeV)
Approximate 848 1464 0.677
EXaGt 8.75 1065 00661
Variational 8016 1062 00708
(Okamoto's)
Experimental 848 1.70 0,764
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experimental values and the results of a variational
calculation using a totally symmetric Gaussian. (Our
calculations are model calculations and as such should

really be compared with other theoretical approaches).

Whilst the r.m.s. radius and the Coulomb energy
are in reasonable agreement the binding energy given
by the exact and approximate forms of our model is as
much as half an MeV better than the result yielded by
(9u)

realistic Gaussian. This confirms the

(88)

Okamoto's
finding of Aranoff that polarised Gaussians can
yield better results than the unpolarised functions.
This is not unexpected since it can be seen that

using a totally symmetric spatial function corresponds
to considering only the dominant S state of the triton.
On the other hand our exact and approximate wave-
functions can be expressed as the sum of such an S
statey, a state 8' of mixed spatial symmetry together
with an admixture of the state with L=0 and isospin

T = % « However for calculations which are prelimin-
ary in neture, the S state is still a good approxima-

tion as the polarisation is not large; in fact the

ratio %‘ is nearly 0.9. The parameters mij-z which
1 .



determine the pair distributions have values:

Caz 2 = 54734k £m? (80)
a13-2 - 323-2 = 5-229 fmz
and 8y = 0.3954 fm 2 , a; = 0.3487 fm 2 (81)

It is obvious then that the approximation on which the
theory is based i.es the replacement of the Gaussian
by an oscillator well and the treatment of the differ-
ence as a perturbation, is well justified, since

every palr of nucleons is separated by a distance well
within the range in which the approximation is a good
one., As might be expected, the particles furthest
apart are the two neutrons but even these are not too

far up the slopes of their common potential well.,

The most undesirable aspect of the model is the
value of u® suggested in equation (79). The restric-
tion on Vou#? demanded by our requirement that the
wavefunction reproduces the salient physical features
of the three-nucleon system leads to a nucleon-nucleon
potential well that is broader and shallower than is
suggested by two-body scattering data. Our potential

has no repulsive core and it may be that a well,
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somewhat too broad, is needed to compensate for this
defect. It may conceivably indicate also that the
free nucleon-nucleon interaction differs from that

in the bound state.
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CHAPTER FOUR

THE ALPHA PARTICLE PROBLEM

The satisfaﬁtory results of our investigation
into the trinucleon in the last chapter suggest the
rossible extension of the method to the other nucleus
in the 1ls shell. Green's model is & general one for
all the light nuclei so our success with the three-
nucleon system poses the logical question of whether
the incorporation of spin ihto the four=-nucleon pro=-
blem will also lead to exact results, and the subsid-
iary one of whether the method has the ability to
provide a complete set of 1ls shell calculations with
the single two-body potential., The purpose of this

chapter is to study these questions,

4e1 The Binding Energy of “He

The Schrodinger equation of the alpha particle,
when we neglect the Coulomb interaction, is equation
(24) with n equal to four. The ground state wavew
function ¥% is required to be antisymmetric under the

combined interchange of spatial and spin coordinates
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of the like nucleons. Since the total spin of the
alpha particle is zero the two spin functions bel ong-
ing to the system are f’ and.}” given explicitly by
equations (12) and (13), where we have assumed 1 and
2 to be neutrons and 3 and 4 to be protons. Thus Wa

is
24
¥ = ¢ x_ll + Wﬂ)(_l (82)

where ¥/ and y”, the spatial functions, have a similar
symmetry property to X/ and ¥”. The transformation
properties of the spin interchange operators Pij#are
given by the representation matrices of the two-
dimensional irreducible representation listed on

Table 2. Using these and summing over spin, we reduce
our four~body Schrodinger equation to a pair of
coupled ecuations. If we use the convenient: - trans-

formaetion of our coordinates
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s = I,
n; = VI S S—

V2
(83)

1
De = 2(Z1 + 2 + Is + Ze)
our coupled equations are, in the new set of coordinates,

h? i = H ' |
= == (240,000, 2 e ha(n andand Ve B (nd 4n-2nd
oM 1 N2 N3
+ 20312 .05%= e¥'(8L)
fi2 . | = 1 = ‘- ,
= = (249, 240 2 s ba(nfandend W= B (nd an-2nd )"
oM 1 M2 73
+ 2'/'37,7_2.7_).3’7‘”: e ¥'(85)

We have been unable to solve these expressions exactly
but the approximation of chapter three can be equally

well applied here. Thus assuming
‘Pa . \(f”f’ (86)

we derive the single partial differential equation

2 = e won
B @I s halndentand et - 6 (nd end-znd )y
LR
2M
= ey’ (87)

which is solved by separation of variables.
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The solution is easy to write down

W "

= €
N
(-2-15)3(131 + b2 + bj)

(mww2+2mhﬁ)<§g

hz

]

(bwVou® = bVou?) (gy)
hz

Properties of “He

As with our treatment of the triton, we let

oo

(4502 303,14 ) =(x4 +Iz2 +T3+T4 ) /5

We then

L
= X
i=1

T

L Tpor M=t B

nof-

use the results

"12‘(b17721 + band + bsn%)

= b%

3 and &4

nj=

Nl-"

Nj=

N

(88)

(89)

(90)

(91)

(92)

(93)



<exp(-p*r, 2)>

(1 N -5—4>— 2 (9%)

i aijz
i 3
< rij > = "'—-'-‘2-

2a, (95)

1 20, .
< =—— > = ——+d (96)

o ?

1]
where
a .-2 = z T- . T.

tle -)\1:4_ ( i J}\)z/b)\ (97)

to determine explicitly the expectation values of the

four-nucleon operators. We have

“;;-2 = g% (98)
T T 31brb§i (97)
Big- - = ;T + é: (100)
%3 =£;'+~;‘2' (101)
s (102)
azs 2 = f% (103)
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The physical properties of interest are those already
considered in the last chapter. Thus the r.mes.

radius for this system is

: <] g (r Lna)s = < o g r.2 >
= T L - 2 A4 = .
Telle Se ll- i=1 1 i<j_1 1J
2 (. . 2
=5 37+t (104)

The expressions for the other quantities are as

follows:

2 2ba\Z
- () (105

and the body form factor

w0 ol ol e 2
ol - 2]
D] o

The alpha particle pair distribution functions are
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g1z (r12) = (—a'>2 exp(-— - r12>
2ar 2
( - ) b1 b2 2 b1b2
813\ \I'y3 = ( —————i)z xp(- e r13>
™ (b, (b +bz )
bibz \ 3 by by
gra (r14) = (“"'"'-———>2 exp(- e r13>
m (b +b, ) (by +bz )
bibe \ 2 by b2
g23(ras) = (_______{)2 exp(- r2%>
ﬂ-(b1 +b2 ) (b1 +b2 )
b1 b2 2 b1 bg .
82 4 (rz 4 ) ] - —a—ar >2 exp<-. ——— Ty, 4)
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&34 (ru )

1}
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| o
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ke? Results and Discussion

The internucleon potential obtained in the

(107)

(108)

(109)

(110)

(111)

(112)

three~body calculations is applied to the evaluation

of the physical properties of the alpha particle.,

In tables 5 and 6 we record the body forn factors,

the binding energies, the r.m.s. radius and the

Coulomb energies derived from our calculations,
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those of a variational calculation with a siaple
Gaussian and the experimental data. From these
tables it can be seen that the fit to the experi-
mental form factor is poor; the r.m.s. radius and
the Coulomb energy values are just reasonable.

-—

The values of the parameters aij are

-2 - 2 2
Xyp = Q34 ° z =————=fm = 4+798 fm? (113)
0-4168
_ _ - _ 1 1 fm?
@y3 ® = q44 2 = @p3 2 = Gps 2 = ( + )
04168 0°4565

4590 fm? (114)

They show that the like particles are again separ-
ated by larger distances than are unlike particles.
These distances are all smaller than those in the
triton which is in agreement with the more compact
structure of the alpha particle., The improvement in
the binding energy from our calculstions parallels
that in the triton, but the four-nucleon system is
8till underbound. The latest electron scattering

(98)

éxperiments indicate an r.m.s8. radius of 1.50C £m,.

for the alpha particle and the simple Gaussian which
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TABLE 5

B

BODY FORM FACTOR OF THE_FOUR-NUCLEON SYSTEM

P ——

2 2 2
q Fo(e*) Fp(a*)
(From ,4-
Hofstadter(97)
Repellln%9 )) (Varlatlonal)
1.0 703 0. 714
2.0 0.490 0.512
3.0 0. 340 0.366
L.0 0.234 0.262
5.0 0.160 0.187
6.0 0.110 0.134
TABLE 6
CALCULATED AND OBSERVED B.E., R
AND COULOMB ENERGY
Method Binding T,MeSe
energy Radius
(MeV% (fm)
Approximate 23.10 162
Variational 19.51 1.42
Experimental 28.3 1.5@

(From using

”%/)

 0.646

I'elle Se

0.417
0.270
0.174
0,113
0.073

L T ——

Coulomhb
energy
(MeV)
0.740

0-858



& 66 =

gives this also yields a binding encrgy identical to

ours viz. 23.10 MeV. These results differ from those
usually obtained by other authors who have worked
with central potentials. They have found in their
calculations that any potential which gives the
experimental binding energy of the triton invariably
yields an overbound alpha particle. This fact has
been ascribed to the non-saturating character of the
attractive potentials and the omission of non-
central forces. It appears then that our shallow
and longer-ranged potential can be attributed to the
necessity to compensate for non-saturation. However,
although these arguments are interesting, they do

not remove the deficiencies in the potential and
although our results for the triton and the alpha
particle are satisfactory it does not seem worthwhile
extending these calculations to nuclei beyond the ls

shell.,
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PART 2

CHAPTER FIVE

SHORT-RANGE CORRELATIONS AND THE TRINUCLEON

Although the exact method discussed in the first
part of the thesis is attractive, it is still unden-
iable that the most practicable method for treating
" the N-body Schrodinger equation is the variational
method. Thusg, if we assume a phenomenological point
of view and choose a nuclear potential composed only
of two-body forces that are approximately consistent
with two-nucleon scattering data up to a few hundred
MeV, give the correct deuteron binding energy and
have the proper saturation character, the variational
calculation is probably the only useful and general
method for solving the N-nucleon problem. In this
chapter and the following three, we develop a flexible
but consistent method for the approximate solution of
the three and four-nucleon systems. The method is of
some generality and is one in which we systematically
use our physical intuition to include every effect that
might help determine the character of the nuclear wave-
function and then quantitatively test and improve the
approximate wavefunction that our intuition has led us

to.
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5¢1 The Nucleon-Nucleon Interaction

In recent years a number of realistic interaction
potentials have been obtained which fit all the two-
nucleon data at low and intermediste energies, Whilst
these forces have been employed for the treatment of
some nuclear systems, it remains true that calculations
with them are difficult and lengthy, snd it appears
that it will be & long time before any can be carried
out for the more complex spectra without greatly over-
simplifying the dynamical situation. In the meantime,
and before the advent of technigues for handling the
more sophisticated forces, a great deal of work must
still be done using simplified forms of two-body pot-
entials. These potentials are chosen to contain a
number of parameters which are fitted to nuclear datsa
and to have no singular features so as to make it
possible to apply perturbation theory. The approach
uging these semi-realistic potentials is capable of
providing insight into the dynamics of nuclei and the
structure of nuclear states. To Jjustify such an
approach, it igs of course not sufficient to know that
a more realistic treatment would be prohibitively com=-

plicated; there must be reasons to believe that the
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simplified model reproduces the main qualitative
features of the problem. These reasons can be
found in the two related facts that
a) the dynamical features are insensitive to
the detailed form of the two-nucleon interaction,
. and
b) the semi-realistic forces, in spite of their
different appearance, may closely resemble rea-
listic forces in their effect on the main
properties of low-lying states.
These facts are borne out for example by the
calculations of Blatt and Delves(11) N Barrett(99%
Gupta, Bhakar and Mitra(6o) and Qkamoto and

(94)

Lucas There are some properties of the nuclear
forces which must be common to all the phenomenologi-
cal potentials., The interaction must be short-ranged,
strongly attractive over most of this range and
extremely repulsive at very short interparticle sep=-
arations. The necessity to describe this repulsion
has led to the extensive use of the hard core at small
distances. Unfortunately these hard cores do nct lend

themselves readily to perturbation calculations in

nuclear matter and non-singular velocity-dependent
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potentials have been suggested as possible sub-
stitutes. Recently it has been found that one can
reproduce the experimentally deduced nucleon=-
nucleon phase shifts with a number of veloocity-
dependent potentials and that one can simulcte

the effect of the hard core with such forces. We
have therefore selected a velocity-dependent pot-
ential to describe the two-particle interaction,

The two=-body potential is taken to be of the form

(r..)

¥ .pB . H N
_ b
V(r;;) = WPy #PP/ahPyoamPy ) (V) 4 ops o (o g

ij

+ V

vel.dep.(rij) (115)

where w,b,h,m are the exchange force constants and

PW., P?., Pg. and PM. the usual interchange operators.
i ij ij iJ
Here (V)statio(rij) is given by

static(rij) = X tatio

(V) (Vo)

exp(-2r; ;/; )

(116)

static

where the ratio of the triplet static potential to
the singlet static potential

W 4+ b 4+ h 4+ 1
X = = - (117)

static o w e o o q
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(r..)

vel.dep. i

(118)

(r..) = (v))

vel.dep. 1] 8’vel.depe.

(v)

(2, ) + (V)

(v.) (r..) = [(vo)

s‘vel.dep. i vel.dep.

i

/2] (8w (x, )

1J

+ “s(rij)bij] (119)

(Ve)er.dep. Fij) = [Xvel.(v°)ve1.dep/2] [Pij wy 2y 5)
" wt(rij)Pij] (120)
with
w(r,,) = exp (-2 *9/51) (121)

1iJ

(The subscripts s and t refer to the singlet and triplet
states, respectively). The effective nuclear potential

is selected to be of exponential form in both the 'S and
S states because the ground states of the few-nucleon

sy stems are better descriled by exponentisl wavefunctions.

The singlet-even interaction is taken to be v; in Rojo's

(38)

thesis and has the values

= =100 MeV, 1/

- ~1
ﬁ = 00625 fm

(V°)static 5

(122)
(Vo )

L ~1
vel.dep, = 529k MeV, QVS = 1.40 fm
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This gives a reasonably good fit to the singlet
scattering length and effective range (as = 232 and
r o= 3,06 fms. a3 against the experimental -23.69 and
2.82 fms. respectively), and to the 'S and 'D phase
shifts up to 340 MeV laboratory energy of the incident
proton in p-p scattering. The parameters of the tri-
plet potential are determined by fitting the binding
energy of the deuteron and Breit's S phase shifts at
Elab = 270 MeV. Our procedure for evaluating B%
(40&).

X , and X follows that of Srivastava
static vel,

assume =+ to be 1.0 £n~' and teking a three-parameter

By

trial function of form exp(- xr) - z exp(~ yr) for the

We

deuteron wavefunction, we calculate the values of x,y
and z which give a binding energy of 3.49 MeV with
Srivastava's triplet even potential (this result was

(%1)

obtained by Lovitch and Rosati through a direst
humerical evaluation of the Schrodinger equation).
With our triel function the expression for the binding

energy of the deuteron is given by

B.E.(D) = N_Z{BE(x,x) + zBE(x,y) + zBE(y,x) + zzBE(y,y)}

(123)
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where
BE(a,f) = KE(&,8) + VSTAT(a,8) + VVEL(a,s)
KE(a,8) = / |: mar {—"—+—'——} :lla-ﬂr dr
r dr
fp B B
(=) "l o
2m (a4 )3 (248 )2
vSTaT(a,0) = LE‘“r {vstatic(r)}e'ﬁr:l yir® dr
(Vs ) I
static static (oc.g.ﬁﬁ/ﬁ’ s)
2m 2
VVEL(a,8) = <- Ez-> X, (Vo) ) [Kn< B Py
KE a 2/
+ < + ﬁls’ ﬁ):,
f n -tx _e-tx . t? x? t8x"
X e dx = === nd { 1+txy == 4 000 4 e
M < 2! n!

and the normalisation constant N?2 is

2z z2

(22)°  (xa3)® <zy>’]

)

(124)

(125)

(126)

(127)

(128)

(129)
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With our values of x,y and z (x = 0.16, ¥ = 1.00 and
z = 1.0), we plot the sets of X totio 204 X, which
give the true deuteron binding energy against those
of Srivastava which fit the >3 phase shifts at Elab =
270 MeV., These phase shifts are derived using the

Born Approximation and are given explicitly by

[o.0]
- - 3 2 2
tan 5, = k]o[ge(kr)] U_pp 1 ar (130)

1 v . (r) [w (r)]?
Ugpp = =777 [Ekzw(r) » -2REELS - ]} (131)

1 4+ 2w(r) 1.5 142w (r)

With our expressions for V (r) and w(r) and sub-

static

stituting for the Bessel function j, (kr), we get

© [sin? (kr)]e™ 25T 100 X_, ..o
tan 80 = = l;.kael f Z5n dr + -
*do 1 + hX q.° 41.5k
0 [sinz (kr)]e-1.25r
. d
[o 14y X . e=°T i
vel,
16 X 2 X [sinz(kr)]e-#r
g — __vel.[ e dr (132)
k o (1-4 X, 01.© )2

el.
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The point of intersection of the two curves (see Fig, 1)

yields the correct set of force constants Xstatic

and Xv e« These are

el.

= 1.52 and XV - 0.l|-15

Xstatic el.

A seocond quadratically velocity dependent potential

that will be used in our investigations is the Herndon-

(39)

Tang Gaussian potential, which has the form
V(z,p) = Vo exp(-ar®) + pPwoexp(-Br®) + woexp(-pr®)p® (133)
The triplet parameters eare

Vo = =111.5 MeV, a = 0.65 fm 2, w, 37.323 MeV

and f 2.2 fm 2 (134)

{]

whilst the singlet parameters aze

Vo = =34.8 HeV, @ = 0.35 fm 2, Wwo = 37+323 MeV

and B 2.2 fm 2 (135)

Tt is pertinent to point out that there are two inter-

pretations of p in the velocity dependent potentials.

(40a, 79)

Srivastava's calculations are based on

the assumption that for the three body system p is in
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each instance the momentum conjugate to the inter-
particle separations, ry, T and rs (to be referred

to as case 1). Lovitch and Rosati, however, interpret
p to be the momentum canonically conjugate to the two-
particle relative coordinstes in the center-of-mass
frames of the particles taken two et a time as if the
third one did not exist (case 2). Although we believe
Lovitch and Rosati's interpretation to be the correct
one, we nevertheless, use both in our three-body
calculations so as to derive a quantitative compeaerison

of the two.

The third potential in this thesis is the Rarita-

(17)

Present potential which is

w B
V(rij) - vt(rij) = =123.3 exp(~1.156 rij) {wpij +bPij
H M
g hPij g gPij } (136)
Vs(rij) = th(rij) (137)

(where g, the ratio of thé singlet even to triplet
even potentials is 0.6, and the subscripts s and t

refler to singlet and triplet respectively).
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Hhe2 The Trinucleon Wavefunction

To obtain the trinucleon binding energy, we
solve the Schrodinger equation of the system by sa
form of variational calculation., The selection of
the trial functions is,in the final analysis, a trial
and error process. In order to contain the errors, we
formulate our trial functions through a flexible but
consistent methecd, in which we allow our physical
intuition to help us determine the character of the
nuclear wavefunctions., Two important physical features
must be borne in mind in the determination of the form
of the wavefunctions: the effects of the Pauli Exclu-

(P.E.P.)

gslon Principle in systems of nuclear dimen-

sions and the nature of the nuclear force.

The P.E.P. and the symmetries of the three-nucleon
system predict a total of ten states present in the
ground state of the triton. However it is expected
that only a small number contribute to any appreciable
extent. Thus from measurements of the magnetic noment s,

the capture of neutrons by deuterium and various
other evidence, including variational calculations of
the binding energy, we believe these states to be the

predominant S-state @f, which is completely symmetric
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under spatial exchange of the nucleons, together with
small admixturcs of the S-state of mixed symmetry
(the so-called & state) @: and the D states (which we

label collectively by D).

Tor central forces, the only state of any conse-
quence in binding energy calculations is the S-state
gnd in our work, the ground state of the three-nucleon
system with J:T:% is approximated by the spatially

symmetric S-state, @F (see equations3 , 4 and 9).

The ls shell nuclei have fairly large binding
energies and are relatively compact structures. These
physical properties suggest the component nucleons of
these nuclel spend a consideraeble amount of time well
within the range of their mutual nuclear forces. Such
a physical situation ceompounded with our use of the
velocity dependent potential which is repulsive at
small interparticle separations, is indicative of the
importance of short-range two-body correlations between
the nucleons for these light nuclei. Our spatial wave-
function ws is therefore taken to be a product of two=-
particle exponentials, each suitably modified by a

two-body correlation function.,.
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3
V’S = .H- g(ri,]) f<rij) (138)
1< J

where g(rij) and f(rij) are chosen to have one of the

forms

n
1

(1) g(rij) exp(-arijz), f(rij) t-c exp(-br, ) (139)

PR . Val ey - hf
(13) 6(ry,) = exp(=et 1), £(x, ) = 1=0 exp(-¥ [z, ]

i
- 140
(111) g(rlJ) = lI‘lJl 2 exp(—a’l Irijl)’ ( 4 )
f(rij) = 1-0"6XP('b"|rij|) (141)

These functions have considerable flexibility and are
capable of giving a good representation of the principal
features of the bound system with short-range forces.
They manif'est the correct‘close-in and asymptotic behav-
iour, especially functions (ii) and (iii), and are still
tractable enough to allow analytic evaluation of all the
guantities of interest in the trinucleon. The parameters
a,b,c,a ,V ,¢ ,a' , P’ and ¢’ are obtained by fitting

the body form factor Ty (q®) given by
2 S|z . 2
Fo(e) = [IvF1* exp(ig.d B) ar (142)

and the r.m.s. radius Rr.m.s. given by



frimes. S /stlz{%l:Z(r%+r§)-r§—]} o %,[lwslzrﬁ ar (143)

where R

%y -5(x2 + %3), vy, T2, rs arec the inter-

particle separations and 4dr = 8ir* ryr; rzdrqydr, drs.

These integrals and the others which arise in our
three-body calculations are taken over the domain con-
sistentwith the triangular inequalities ry 4 r, > rs,
ry + rszs 2 1, and r; + rx 2 vy and are given in the
appendix. Our fitting procedures are expected to
produce good wavefunctions. Blatt and his co-workers
have found that potentials that yield the better bind-
ing energy in a variational calculation also give
wavefunctions which yield the better fits to the form
factor and the rem.s. radius. Conversely, we can con-
fidently expect that satisfactory binding energy values
and wavefunctions can be obtained by fitting our wave-
forms to these quantities. -The experimental values of

F, (¢ ) selected are those of Levinger and Srivastava(1oo)

(94)

and Okamoto and Lucas » wWhilst the r.m.s. radius is
taken to be 1,66 fm., for (i) to facilitate comparison
with the results of reference 94yand 1.70 fn. for (ii)

and (iii). TFor the Gaussian, the parameters b and ¢



are varied from 0.2 to 6.0 fm 2

and 0 to 1.0 res-
pectively, with & = 0.058, 0.062, 0.066 and 0.070 fm 2,
The best fit to R, and Fi(?) (sce Fig. 2 and
Table 7) is given by a = 0.062 fm 2, b = 1.938 fn 2

and ¢ = Ouhk. For (ii) the parameters b and ¢ are
varied from 0.5 to 6.0 fu ' and O. to 1.0 respectively,
with & = 0.36, 0.38, 0.40 and 0.42 fn '. The best

fit to the selected R and Fy(q®) is given by

.m.s.
a.’ . OOI-I-O fm-1 3 bl = 1.60 fm—1 and 0' H Oo)-l-o FOI".
(iii), P’ and o' are varied from 0.5 to 6.0 fm '

and 0.20 to 0.35 fm ' respectively with ¢’/ fixed at
1.0. Good fits to R - and F4(¢®) are obtained

with &’ = 0.275 fm ', W’/ = 1.525 fn ' and ¢’ = 1.0.

Table 7 Overleaf ...
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TABLE 7

THE FORM FACTOR OF THE TRINUCLEON ASSUMING A PURE S-STATE (Fy (q®))

OBSERVED CALCULATED

3-parameter

2 oL %) 1s P) Hard Core °) expongns (1) (ii) (1ii)
- tial )

2) O.45 fm  0.50 fn

.0 0.645 0.639 0.645 0.633 0.563 0.630 0.636 0.644
.0 0.420 0.442 0.438 0.423 0.337 0.395 0.L2) 0.439
.0 0.300 0.282 0.307 0.293 0.211 0.246 0.293 0.312
.0 0.210 0.193 0.220 0.207 0.138 0.151 0.208 0.228
.0 0.14k 0.125 0.160 04449 0.091 0.092 0.152 0,170
.0 0.103 0.091 0.118 C.7iL7 0.063 0.055 0.113 0.129
.0 0.087 0.078 . 0. C3 0.055 0.099
.0 0.041 0.029 0.029 0.018 0.065 0.078

9h)

From the analysis of Okamoto and Lucas

Calculated from the two sets of experimental form factors obtained by Levinger
and Srivastava 199)
From the work of Tangand HerndonzA) with repulsive-core potentials., The figures
refer to the core radii.

From Levinger and Srivastava's calculatiocns with a three-parameter exponential
wavefunction,
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5¢3 Triton Binding Energy and Coulomb Energy of >He

With our ground state wavefunction, we can write the

binding energy of the triton as

T(‘l’ssws) + V(V/S’V’S)
3 = l’.
E(*H) TR (134)

where the expectation values

~52 4% BE ¢ * BE 3¢ * JE
T($,€) = = /{ﬁ"( + + >
‘ dry 9Or, 0r, oOrs drs 9rs
-hz
+ = [t(123) + (231) + t(312>]]dr (145)
M
V($:8) = [9% 13V pp (e, )]e ar (146)
" N(g,E) =f¢*a ar (147)
TItTYTL g ar gt o
with t(ijk) = < + > (148)
Lr.r, or. Or, dr. Or,
1 J 1 J J 1

end

Verr(Tys) =2 [vt(rij) * vs(rij):' (129)
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For functions of the product type

v = £(rez) f(rys) £(r.s) (150)

the expectation value of the kinetic energy operator

may be written in the simple form

2 2 S . S

s s k Vs S 2 ov
(v oy ) = — E o
M et cyecl 9rs rs Ors

ri+r2 -rs a2y S
} - -] ar
2r4r; dr40r,
3h? 2
_ 2 [ [f’ (r3))2 = £(rs)e" (r;) = — £ (rs)e <r:>]
2M s
£2 (rq )2 (r, )ar (151)

The two interpretations of p alluded to earlier in the
chapter result only in a dif ference in the expectation
value of the velocity-dependent part of the potential

energy. The expression obtained by Srivastava becomes
s sy 3 « ) 2
Vvel.dep.(w ) = 2 /;s [(V°)ve1.dep.} {[p’z ws(r3)

+ ws(rs)lﬁz] + X [P%awt(rz) + w.t(r3)

vel,

p3z ] }ws ar  (152)
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where
02 2 9
piz = = ( + = (153)
9r3 rs 9rs

while that of Lovitch and Rosati is

Vvel.dep.(wsws) B g / {[weff(r3)+ % W gpp (T1)4 % Wopp(r2)]

ts(gsfz)g%f%géfz}dr (154)

where

du Nz u 9% (rsu)
Yare(x) = 0 (2) ¢ wy()  ta(e) = (o) - — = (155)

To evaluate the Coulomb energy of *He, we assume for
this nucleus the same ground state wavefunction as in
H and use the potential V;;(r) of Schneider and
Thaler(101), which takes account of the finite nucleon

size. Thus
C.E. = C(Ws,\[/s) (156)
with
g e? ¢
C(g,8) = /¢* {;'; [1-6—3'3 r3(0.582r3—2,776) _e'2.97r3

(0.644rs+3e639) ] ]g ar (157)



- 86 -

A direct comparison between C.E. and t he binding energy

difference of the mirror nuclei *H and ’He may provide
important information about the existence of charge

asymmetry of nuclear forces.

5.4 The Photodisintegration Cross-Sections of *H and

*He

P

The investigation of the static characteristics of
3H and *He is by no means sufficient for establishing
the complicated nature of the wavefunction and our
choice of interaction., Nuclear reactions involving
the three-nucleon system must be studied to furnish
complementary information. An important source of such
information about the structure and interactions of the
nucleons i1s the nuclear photoeffect. Unfortunately the
calEulation of the differential and total cross-sections
of different photonuclear processes requires an intimate
knowledge of the wavefunctions of the initial and final
states of the system, which are known poorly. The sit-
uation is partially obviated if the cross-sections are
summed over all possible excited states, using closure
for the matrix elements, so that our results will depend

only on the ground state. Two guantities are of
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interest here, the bremsstrahlung-weighted cross-
section and the integrated cross-section. General
expressions for these cross~sections have been derived
by Levinger and Bethe(85) and Rustgi and Levinger(102)
on the basis of the sum-rules of Thomas, Reiche and
Kuhn. The bremsstrahlung-weighted cross-section N

is defined as

o =[ G—(gl aw (158)

where o(W) is the electric dipole absorption cross-
section, when we neglect retardation of the nucleus
and average over all orientations of the nucleus and

W is the photon energy. If the sptial part of the

ground state wavefunction is totally symmetric, oy is
simply related to the r.mes. radius through the
expression
o, = ¥ 1° -(f--mI\ER2 (159)
b fic Awi TeloeSe

Thus to determine Gb(zHe), we need only multiply our
mean square radius by the constant in equation (159).
As we have used a spatially symmetric wavefunction,

R is also the charge radius for point nucleons,
A 4 L L]
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(75) (74),

a fact not realised by Srivastava and Rustgi
who have equated it to the true charge radius. It is
obvious that %y does not depend on the character of
the nucleon-nucleon forces but is determined solely
by the properties of the wavefunction of the ground

stata of the system,

The integrated photodisintegration cross-section

o]

o, , = / o(w)aw (160)

int
(o]

can be written as

on? e?h )
(o2 = [ == by by +<Z‘. f >
Lai ( Mc > [( & o T nooon static
5 f > :] (161)
+
( = O vel.dep.

where Zn fon is the summed oscillator strength, and T,
static and vel. dep. refer to the contributions of the
kinetic energy, the static potential and the velocity
dependent part of the potential. If we assume g
spatially constant electric field along the z~axis

M

bA f =-'—“‘/\[IS*
S +2 [[o,p_1, Dz]wsdr (162)
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where the operator 0 is

h?

3
o e V;, 2 (MP?. * bPE' * hP?, + mpg')vstatic(ri'
oM i i< dJ J J J J
: )
or X
i< velesdeps = 1ij
and
N Z
= == ¥ ——'2 1
D, = 3 LP e T 2, %, (163)
On explicit evaluation,
N2 z? NZ
z £ = e 7 — N = e 16
( . on)T v Z + e - (164)

B o
o %
(2, £o0) statio = ~ (;;)UW l:zizjr?i.j(v)static(rij)

(mpf:.fj + hP}in) ] wsdr} (165)

1
L. 8 *
-(anon)vel.dep._ 9-hg (Vo)vel.dep. {fw [ws(rij) + Xvel.

0y (r, ) } o | (166)

In equation (165), i and j denote protons and neutrons,.

respectively,.



In the derivation of these relations we have used

the property that

U
[[ziszij, zizi], N ]

M
[zizj(zj-zi)Pij’ Zizi]

M

= zizj(zj-zi)2 P s (167)

-, )2 _ 1 .
(zJ z, )% = 3 5y (168)
DZ = % Zy3 + % Zp 3 (169)

and

[[r%; 0 (rs )eo (r1)P8a, 23], ] = - W u(r,) (170)

Application of the Thomas-Reiche-Kuhn sum-rules has
eliminated the terms in w and b from (Z_f ) i

n on’static
since the corresponding Wigner and Bartlett operators
commute with the space coordinates. The expectation

value of the Heisenberg operator with our S-state wave-

function 1is
<P.. > = % <P..> "' (171)

Since

) o e [¥, o (r, )]

static' i iJ static
savioTiy) = T

(172)



our expression for Gint finally reduces to

L% e h M(m+2h)
e = Tt [ S ey e T
int 3Mo (w+m)hz eff static

vel.dep.

i M
2 Py ar + 2 — (Vo)
ij i 3 $2

[P oy o) e %y wy ey )] e | G72)

He5H HResults and Discussion

Qur results are shown in Figure 1 and Tables 7
to 9. It is obvious that the best overall fit to
Fi(g?) is given by (ii). The fitting procedure has
been slightly biased . in favour of a good fit at
small q2 and although a rigid adhercence to & least
squares fit may improve the results for (i) and (ii),
the experimental results at high momentum transfer are
not known accurately énough to warrant it., Our corre-
lated Gaussian gives élmost the same values of F,(q?),
—— and the Coulomb energy as the soft core wave-
(92)

function of Ckamoto and Lucas » This suggests

little difference between their triagl function and ourse.
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TABLE

92 -

8

T

THE BINDING ENERGY,

COULOMB

ENERGY

RADIUS OF THE THREE-NUCLEON SYSTEM

Wave- Potential
function
Uncorrelated Herndon-Tang
Gaussian =) Case 2
Best Herndon-Tang
Variational
Case Ab) Case 2
Herndon-Tang
Case B Case 2
Herndon-Tang
(1) Case 2
Uncorrelated Srivastava
Exponential 0) Case 1
Three- Srivastava
parameter
Exponential ) Case 1
Best Srivastava
Variationeal
Case A b) Case 2
Srivastava
Case B Case 2
(ii) Srivastava

Case 1

B.E.
(*n)

(MeV)

2.50

7.623

8.240

3430

10.903

11.201

9.30

C.E. C.E. T.MeSs
(point) (finite) radius
(MeV) (Mev)  (fm)
0.708 0.66 1.62
0.771 1.63
0'717 1-67
0.67 0.62 1.66

0.597

0.663 1.92
0.748 1465
0.706 1.69
0.74 0.69 170

Table cont'd ..

e s 09



TABLE 8 Cont'd.

Srivastava
(ii) Case 2 10.20 0.7% 0.69 1.70
Qur potential
(ii) Case 1 592 0.74 0.69 170
Our potential
(ii) Case 2 6.76 0.74 0.69 1.70
(ii) Rarita-Present 7.20 0.74 0.69 1.70
Best Varia- Rarita=Present
tional
Case Ad) 7.69 0.81 1.68
Case B Rarita-Present 795 0.75 1.70
Our Potential
(iii) Case 2 3.53 0.76 0.72 1,70
(1i1) Rarita-Present 6.20 0.76 0.72 1.70
Hard-core
0.45fm e) Tang-Herndon 742 0.69 1.68
0.50fm e) Tang-Herndon 7.05 0.67 1.72
Experimental 8.49 0.764 {.66
(<13 >§)
1.70
(r_(*H))
1.87
(r, (°He))

) fThis is the simple Gaussian of reference 9.
Calculations from reference 41.

c) Evaluated by Srivastavahoa) using an identical form to
our velocity dependent potential but with X tatio
1.84 and Xel. = 0.55, S

Calculgtions from reference 92,

e) From the paper of Tang and Herndonzh). The figures
refer to the corc radii of the repulsive-core
potentials used by then.,
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TABLE 9

o e e

PHOTODISINTEGRATION CROSS-SECTIONS OF >He

o —a e T L T

. d d d
fuzggion Potential o cint(s) ) Gint(B) ) Uint(RI) )
(mb) (Mev.emb) (Mevemb) (Mev.mb)
Hard-Core Ohmura, 2.29 56.9 60.3 67.0
0.40fm?) et al.
Thrce- Our Potcn- 3.5 56.0 59.6 66.9
paramcter tial
gxponen-
tialb)
(i) OQur Potcn- 2.62 52.0 54.8 60,6
tial
(ii) Our Poten- 2.74 57.8 62.0 70.5
tial
(ii1) Our Potcn- 2.74 62.6 70.5 86.9
tial
Experi~ 2.53+0.19 62+6

mental )

a) Extracted from reference 111,

From thc calculations of Srivastava75) but with our
potcntial parameters,

c) The experimental rcsults of Gorbunov and Spiridonov115).

The letters S, B and RI refer to Serber, Biel, Roscnfeld
and Inglis force mixturese.
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However, an advantagc with our modified Gaussian is
that it is perhaps moré tractable for binding energy
calculations. The triton binding encrgy obtained
using Herndon and Tang's velocity dependent potential
is much smaller than that of case A and case B of
Lovitch and Rosati's 'best' variational calculation.
This may be attributed to the poor fit to Fy(g?®) for
large momentum transfers with (i). Besides, the
Gaussian form is known to be unsuitable for asymptotic
regions, and this is partially confirmed by the small-
ness of Uint(zHe)' From these considcrations, it
appears the corrclatced Gaussian function falls short
as a realistic trinucleon wavefunction. It would

seem thcrefore that Okamoto and Lucas's 'accurate'

estimate of C.E. is subject to doubt.

For the truc exponential wavefunction (ii), wec
can expect the results to be more trustworthy. The
cxperimental form factor is fitted well at all valucs
of ¢* and it exhibits the correcct asymptotic behaviour
(the asymptotic form of (iii), exp(—urij)/rij% with
U= [ M (B.E.(’H) - B.E.(D)) ; s 1s suggested by

3h®
the work of Pappademos and it is encouraging to note
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that (ii) is almost identical to (iii) for oy
greater than 5 fm.). Also our results for the
binding energy are sufficiently close to Lovitch

and Rosati's to encourage us to believe that our
trial function (ii) is near to the best obtained
variationally. Using our velocity dependent poten-—
tial, we find B.E.(’H) to be very reasonable
(especially if a direct comparison is made with

. the hard-core calculations of Tang and Herndoﬁ).
Together with the excellent agreement between our
Gint and experiment the suggestion is that our
potential is quite accurate. The two interpreta-
tions of p lead to a small quantitative differecnce
(less than 1 Mev) in the calculated values of the
binding energy, so it can be concluded that the dis-
crepancy between Srivastava and Lovitch and Rosati's
binding energy recsults is almost wholly attributable
to the poor trial function used by Srivastava. Gint
is little affected by our use of Srivastava's inter-

pretation of p since the velocity dependent part of

our potential contributes almost negligibly.
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Although function (iii) has thc right asymptotic
propertics, it yiclds a low B.E. value and must be
inadequate for small interparticlc separations.

The velocity dependent potential has only a soft

repulsive core and i1t may be that our wavefunction
should not vanish for zero interparticle distances;
Lovitch and Rosati's variational functions and (ii)

remain finite for rij cqual to zero,
Sunmarising, we record that:

1) Our cxponential veclocity dependent poten-
tial yields results equivalent to a hard-core
potential.

2) When a moft repulsive internucleon force is
assumed, short~range two-body correlstions are
essential in binding energy calculations,.

3) Our fitting procedures for obtaining trial
functions for the trinucleon provide realistic
wavefunctions if a suitable spatial form is
selected at the outset.

L4) The Lovitch-Rosati and Srivastava inter-
pretations of p, the momentum vector in the

velocity dependent interaction, result in only a
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small quantitative difference in the calculated
binding cnergies and little or no difference in
theintegratdlphotodisintegration cross—=sections,
5) The photodisintegration cross-section is
sensitive to the tail of the ground state wave-
function, which cxplains the almost negligible
contribution of thec velocity dependent part of
the nuclear force, and the small value of O nt
for the Gaussian.

6) The Serber and Biel force mixtures are
favoured in Tt calculations,

7) Since our correlated exponential function
provides good fits to F;(qz) and Gint simultan-
eously, the charge distribution in the trinucleon
s measured by high energy clectron scattering is
the same as that which gives rise to electric
dipole absorption,

8) Our evaluation of the Coulomb energy of ’*He,
taken with those of other authors, indicatcsthat
C.E. is less than the binding energy difference
in the two three-nucleon systems and that charge
asymmetry may be present to the order of 0.1 MeV
(Okamoto and Lucas's estimate of 0.13 MeV may be

slightly too large).



9) Our calculations can be profitably

extended to other light nuclei.
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CHAPTER SIX

THE & STATE IN THE TRINUCLEON

Two important tools for extracting information
about the structurec of the three-nucleon system are
the high-energy scattering of electrons by *H and
3He(95) and the muon capture rate of 3He(81’82).
Considerable data exists for these evperiments and
a satisfactory theoretical analysis of these reaction
processes should yield a clearer picture of the
detailed structure of the ground state of the tri-

(60,82,87,100,103-105) have

nucleon. Many sauthors
made estimates of the relative probabilities of the
various states expected to be present in the ground
state by fitting such experimental data. Unfortunately
these estimaotes span a large range; for example the

probability of the 8! state P assumes values from

Sl’
0.5 to L.Ch. Lately two groups have come to agree

among themselves on the magnitude of PS" Thus Schiff
and his co-workers take PS,to be 2% while Mitra et

a1, (60) (100) (112)

Levinger and Srivastava and Davies

have obtained a value of about 1%. Both sets of
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investigations possess shortcomings however; the
variational calculations of Schiff's group are
obscured by their use of simple wavefunctions that
do not exhibit the correct asymptotic as well as
close~in behaviour for the three-particle system
while the separable non-local method of Mitra gives

b;_’f»d}‘ng wnergy
rise to values of the trineutron¥and the Coulomb

(63-66,94)

energy of “He which are inconsistent Witﬁ
the general variational method a:d with experiment,

As some of the expectation values of operators in

the trinucleon are extremely sensitive to the form

of the wavefunction assumed, these doubts on the
accuracy of the results of both groups do not allow

us to make any firm conclusions about the actual prob-
abilities of the states. In this chapter we report a

(83),

careful estimate of PS’ assuming for simplicity
that only the S and & states are present in the
ground state. Insofar as it can affect our conclu-

sions the D state is also considered gqualitatively.
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6.1 The Trinucleon Wavefunction

From chapter two, our ground state wavefunction

is approximated by
w(zs%) = O (174)

where ws is function (ii) in chapter five and ¢’ and

v” take the forms

v o= _;-:; lg(12,3) + g(13,2) - 2g(23,1)] (175)
1
v’ = —— [g(12,3) - g(13,2)] (176)
V2
with
g(ij,k) = Bg(ik)g(k)n(ij) (177)
and
g(ij) = exp(—arij), @ = 0.37 fm !
(178)
h(ij) = oxp(-ﬁrij)

The two mixcd symmetry functions of the 8 state are
assumed to have simple exponential form as it is unlikely
that experimental data are sensitive to the interior
forms of the 8 state functions. In fact correlations

are indirectly introduced into these functions since
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the most significant contributions of ¢/ and v’
result from the overlap of the 8 state components
with the correlated S state. The results of Gibson(87)

(126)

and Okamoto and Lucas alsc support the neglect of
correlations in ¢/ and y¢”. The value assumed for «
stems from form factor and binding energy fits with

unmodified exponentials for ws. In tenms of the

is

functions g(ij,k), Py

Py = 2 f[gz(m,z) - 8(12,3)g(13,2)] ar (179)

which becomes

11 13
, [1 (20)% (a4 )? (5 @*+28% 4+ == af) :l
P — -

g = (180)

(8% +50848%) (2 a + 3 p)°

if we normalise g(ij,k) to unity. Thus having fiz: 1
the value of a, we can d ctermine p from the magnitude

1
of P, ; B is the product of (PS,)2 and the normalisa-

SI
tion constant of the g(ij,k). Our wavefunction ws is

1
normalised to unity and is then multiplied by (Ps)z.

6.4, Charge Form Factors

The experimental data on the elastic scattering
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of electrons from *H and *He can be analysed in terms
of the electric charge form factors by means of the
Rosenbluth equation for spin % systems. The basic
formulae, which take into account the charge and

the spin 3? the nuclei, have been used to express
Fch(BH)EﬁFch(sHe) as functions of the four-momentum
transfer gq. Using non-relativistic kinematics and
the impulse approximation, we obtain the relevant
charge form factors as the three-dimensional Fourier
transforms of the expectation values of the nuclear
charge density. If we assume that the three nucleons

contribute without mutual interference or distortion,

the charge density operator is
(zor.) = Z|3(1ar, ) (zer Yad(1=r, )R (rer.) | (181)
PorBaZyl = 2| BTy, Wop Ly Jvellory )0y (2mxy

The 7's are isospin matrices and the quantities
fih(E-Ei) and fzh(z-ai) are the nucleon spatial dis-
tributions of the charge densities about the centres
of the nucleons, or alternatively, they may be thought
of as the three-~dimensional Fourier transforms of the
normalised nucleon electromagnetic form factors. The

Fourier transform is therefore
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ZFCh = ]/exp(i _q.z)\ll* pc(z,zi)\l’ d’r d3ri (182)

The integration over r is performed by changing var-
iables from r to r-r. which causes the nucleon form
factors to appear as multiplying factors. The isospin

sums are carried out by means of Table 1 and evaluating

the integrals involving exp(i E'Ei)’ we get the expres-

sions
2F_, (*He) = (F2h+2F£h)F1 + (FD +F0 )P, (183)
3 p n P n
Fch( H) = (Fch+2Fch)F1 + (Fch-Fch)F2 (184)
where
Fy = Fy(g®) (185)
Fo = ;‘ Fz (@®)
and
Fi(q®) = flwslzexp(i geXs) ar (187)
1 8
Fo (%) = ;%'/[eXP(i gexy)-exp(d 3-5:):k g(12,3) ar
(188)

x5 is the distance from the centre of mass of the

trinucleon %o the nucleon i. The evaluation of
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these integrals is easily accomplished with the help

of the universal function

F(qz) = /exp(—a1r1—a2r2-a3r3)exp(i 3-51)1’11‘21‘3 drqydr, drs
1024 ajazas [—A(kq) 2
- f[—-—-— 1n {C(k,)xD(k,)} g rm——
I [, LB (k4 ) E (k1)
1
+ == | dk, (189)
26 (k4 )
with
k3
;&.(k1) = .
(k3403)% (23 4had-205- & o )7
B(k ) R !i k (21{2 h_az - 2“2 - l_h 2)2
1 = 3 gK4 1 + 3 1 9 q
PR LR LS ...
Ky + af +%q2 +%qk1
(190)
£, hk21+ha§+£§'qz+%qk1
Dk =
W+ bod 4 § @ -%qln
E(i) = (W + 403 + § @)% = (2 gxy)?
clk) = (F + & - & ) - (% aki)®
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The derivation of this function is given explicitly
in the appendix. Our computed values of F,(qz) and
Fo (g®) for various square monentun transfer 2 can be

conpared directly with the experimental quantities

[2Fch(3He) + Fch(3H)]/[3FP

n
ch * 3Fch]

and

3He n b -+ 3 n b
[Fch( i )(2Fch+Fch) Fch( H)(F°h+2F°h)]/[3(F2h)2-3(F2h)2]

respectively. The first checks on the validity of ws
as a flexible function while the second determines the

correct magnitude of Pg .

6.3 Muon Capture Rate

In thc reaction *He + u - “H + v, the recoil
*H is easily identifiecd by its unique energy, 1.9 MeV.
The capture rate has been carefully measured and two

observed capture rates are (accurate to 3%)

1485 + 4O _ (Ref. 81)

A = sec (191)
E 1468 + 14O (Ref. 82)

1+
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If we consider *He to be an agglomerate of three
nuclecns which may capture a muon as if they were
free, neglect relativistic terms as a first approxi-
mation and assume the V=-A theory for weak inter-
actions, the capture rate for the transition *He to

>H can be shown to be (see ref. 106)

o tan)® L 137

L 1 [Zm‘u:’ vz{ﬂjdi Zj Z

1
2 2 2 2 2 o
X {GVI/HI + 63l[al® « (62 - 26.6,) [z }

with

2M
- ) |2
G, = & + By) ——
L f v M oM
. [v] ( \
s — (B -8, =8, -8, + &
P oM P ki v M T
(193)
/1 = <¥s_ | ; exp[~i v. ] ¢ (x.) T( )Iw o>
- H . Ut=i
i=1
.G”— <¥s_| ; expl-1 vex.] ¢ (x.) T(-) o I'W; >
= = Bap o = =*=i7 Put=i/ Ti 241 Ve
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where |v| is the neutrino energy (taken to be 102.5
MeV), L |v| is the unit vector in the direction of

the emitted neutrino, M the nucleon mass, M3H the
triton mass, m, the reduced mass of the muon and
¢u(5i) the muon wavefunction. In obtaining the

above expression for the capture rate, one has to
average over the initial muon polarisation and nuclear
orientation and sum over the final neutrino polarisa-
tion and nuclear orientation. ¢“(§i) is very close

to 1.0 over nuclear dimensions and as an approximation

is assumed to have that value in our calculationse.

Using the relations

5 .
<W3Hli_1exp[-i Z'Ei] Oil W3H6>= 3<W3H|exp[-i Z'zi]oilW3He>
(194)
where 0, is 1 or o,, and
i -1
o 4 2 9 dv 2
f‘“l"“f£=3/—*|fz (195)
|2| ly_l |_v_|

which follow since our transition does not lead to any
change in the total spin and parity, and introducing

the Gamow-Teller constant I'? = Gi + % (G;-szGA) we
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find that the expression for the capture rate becones

e (2;)3 I:Zm,u]s 1 Lk _2_[ E%_ Z Z

137d Il{v'l vl msy= 3% may = +%
\'SH
(196)
! 2 j 2
s L[l e el
Rewriting
2 2 2 .
ng + 2lfg+ + 2'[9__ (197)
where
g, =zl +ig) » g =7z(g -1ig) (198)

and evaluating the spin summation explicitly, we

reduce Ay to

1 Zmy —3 v 9
i i 2o 2 2 2 2
Ay = l: _‘ T3 |:G-V T o4+ 2 TPFY :l (199)

(21'1)3 137 1 4 —=—
M3H
where
2 s . s 1 ]
Fp = = 5 Pg<v lexp[-1i voxs 1lv™> - 3 Py (<v' |exp[-1i vexs]
L
v/ > + <v”lexp[- 1 vexs]|v">) - P JPSPS, (200)
2

L
8 . .
<y |9XP[‘1 Z~§1] v > - V% JPSPS,<WSIGXP[-1 2-21]IW">
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and

s 2

¥ = 3

s . s 1
a7 PS<W Iexp[-l g._:gq]lw > 4+ -3- PS’ <y! |

exp[—i Z'E']IWI> - — PS,<w’|exp[—i 2.51]|w”>
V'3
- % Py <¥ |expl-i voxe ][> (201)
These expectation values are easily obtained by

using F(qg?).

Golt Results and Discussion

Our function (ii) has been shown in the last
chapter to be the best of the correlated functions
used and gives an excellent fit to the body form
factowFs (q®). It also yields good agreement with
the static properties of the trinucleon and appears
to be a good representation of the three-body system.
OQur use of these exponential wavefunctions, suitably
modified by short-range correlations, should therefore
give an improved estimate of PS’ over that of Gibson
and Mitra. We havc checked Fz(qz) against experi-
ment for three values of PS" These curves are plotted
in Fig. 3. It is worthwhile mentioning here that for

our calculated Fz(qz) to be positive i.e¢. in agreement
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with experiment, f nust be larger than a., This
means that the amplitude of the S and 8 states
must have opposite signs, a situation which occurs
in the variational calculations of Delves and

1) (109)

Blatt (1 and Davies too. From Fig. 3 it 1is

plainly obvious that the experimental data of

Collard et al.(95) is given by Pg, equal to 2%,
This agrees completely with the estimate of Boryso-
(124)

wicz and Dabrowski from a binding energy calcu-
lation of the triton using non-local potentialswith
hard shell repulsicn. It is also in substantial
agreemnent with the PS’ inferred from the work of

(92).

Rosati and Barbi In their notation case 4 and
case B correspond to taking the ground states of the
trinucleon as pure S and S plus & respectively.,

The values of the Coulomb energy for point protons
from their variational calculations with hard-core
potentials are smaller in the case of B. Iun fact
C.E.(B) are always lowcr than the values of C.E.(n)
by 6-7%, irrespective of the core radius. This is
the effect of the S8 interference, as discussed by
Okamoto(125). In their calculations, Okamoto and

(126)

Lucas found this reduction to be 4=5% for P

SI
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equal to 1.2%, and a sinple argument suggests that

Rosati and Barbi's P nust be 2-2.5%. That Okamoto

g
and Lucas do not obtain such a value of Po nust be
ascribed to their 'poor!' trial function, poor at

least in comparison with the 'best' variational func-
tions of Rosati and Barbi. Our estimate of Ps’ as

with that of Borysowicz and Rosati, ha’ not included
the effect of the D state. For F,(q®), it is known
from the work of Gibson(105) that the D=-D contribution
increases the values obtained fron assuming an S plus
3 state only, at small momentum transfer g. Since
there are no cross—-terms between the S and D states in
F,(g®) we can use Gibson's result as a reasonable
estimate of the contributilon of the D states Therefore
assuming PD to be about 6-8% (suggested by references
11 and 109), the increment in F, (q?) due to the pres-
cnce of the D state will be of the order of 0,01 for

Q2 less than 4.0 fn 2, This will spoil the fit for

Ps’ equal to 2% but correspondingly will improve that
for the other two values of Ps" On this evidence,

we can quite safely conclude that the values of F, (q%)

derived from our correlated exponential suggest theat

- “f
Ps,ls near 1.5%.
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Using the second set of form factor coupling

constants from reference 127

e}
n

- 1.39£
GV = 1.02&%

- 0.596@-

@
un

= 1,415 x 107 4° erg,cn’

AR

we have calculated Ay for the same three values of

P, -

Our Rescarch 10093 145 1, 5% 2. 0%

1464 1446 14354 1420

Experimental

Ref ., 81 1485

1+

L0
Ref. 82 14,68

1+

40

On comparison with the experimental values

guoted by Rood and Pascual and Pascual, it is clear
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that for our theoretical estimates of Ay to agree
with experiment, P_, cannot be more than 1.5%, in
complete accord with the findings of F, (g2 ). This
statement may be open to question since relativistic

(128)

corrections will tend to increasc Ay. However

this is more than offsct by the inclusion of the D
state which will decrease it(82). Uncertainties in
the coupling constants are present of course but on
latest evidence, large variations away from the set
we have used are most unlikely. In spite of the
approxinations made in our calculations, all these

considerations suggcest that Ps’ cannot be large and

should probably be less than 1.5%.

Our analyscs support thc calculations of Davies
who found in his extensive work on the binding energy

of thc three-nucleon system that P, is about 1.2%.
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CHAPTER SEVEN

THE PANOFSKY RATIO, R.M.S. RADII OF *H¢ AND °H

AND ' 0(’H,p) '®0(g.s.) REACTION

In the last two chapters we have made concerted
efforts to establish the ground state wavefunctions
of the trinucleon and the nucleon-nucleon interaction.
It is reasonable as the next step in our investigation
of the properties of the three-body system to discuss
and explain other data using our results. Three quanti=-
ties of interest are considered here. These are the
Panofsky ratio for *He (recently determinedby
Zaimidoroga et al$1o7)), the charge radii difference
between e and “H and the absolute value of. the |

differential cross-section for the '¢0(*H,p)'®0(g.s.)

reaction.,.

7.1 The Panofsky Ratio for °He

The Panofsky ratio for “He P3He is the ratio of

the transition probabilities of the processes:

0" 4+ *He = ®H + 0° and 017 + He = “H 4+ y
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(84)

The theoretical analysis of Struminsky is based
on the assumption that the I-meson capture is con-
sidered in terms of the impulse approximation and
that the ground state wavefunctions of the tri-
nucleons can be approximated by the S state., Then

if we follow Struminsky the I -meson capture inter-

action Hamiltonians are

3
Hpo = 2 .2 8(£ - £i)Li (202)
1:1
and
Y ) (o, o) )
H =-—— 5 &(r - r, o. e)T. (203
Y VW oi=1 Tt Tt =1

where T is the spati>1l coordinate of the ith nucleon,
r the I -meson coordinate, W the y quantum energy, e
the unit vector of the y guantum polnrisation, gi and
L; are the spin and isospin matrices, and a and b

are constants, The ratio az/bz is easily expressed

in terms of the Panokky ratio for hydrogen which has

been measured with great accuracy by Cocconi et al.(108).
Ifter computing the matrix elements, we can reduce PsHe
to

S S (204)

He
F3 (0.47)
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where Fy 1s the form factor function, and k the

kinematic factor is

3
Wy (s + W) Eay (mpo+l)” My
k = == . (205)
W (M o+ W) EH(mHO+M3H) M
. . kv
where mpo is the I'-meson mass, Esy = 4L.06 is the

kinetic energy of *H and Ho, E 53 MeV is the

-
kinetic energy of the neutron and Ho in the reaction
01" 4 po>n+0°, W=135.80 MeV is the y guantum
energy “n the process I’ + He » *H + v (q® = 0.47
corresponds to this energy) and Wy = 129.46 MeV is the

Y gquantum cnergy in the process n + P+ n+ ¥Ye The

experinmental values of the two Panofsky ratios are

Py

1l

-
.

Ul
(SN
1+
o
D)

(@]
N

(206"

+
O
L]

-
ee]

P3. = 2028 T

He (207)

while our calculations with function (ii) of chapter

five yield

Psg, = 246 (208)

We note that although our theoretical P3He is somewhat

larger than the experimentally determined value, there
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is nevertheless no disagreement. Our computations
have been carried out in the impulse approximation
which is probably unsuitable for small g2, and

besides, further work is necessary to pinpoint the

true experimental magnitude of PzHe'

72 The Charge Radii of *He and °H

The experimental work of the group at Stanford
on the elastic scattering of electrons from®>He and ’q
has revealed a difference in the electromagnetic form
factors of the two nuclei and hence a difference in
the charge radii. The observed charge form factors
have been explained by the inclusion of the & state
in the last chapter., In this section we seek to

account for the size difference in the charge root

nean squarc radius. If we write the complete wave-

function of *H a® egn. (174), the rem.s. radius is

RCH) = 3 [rCs [ 20z, )0 oC8) ar (209)

z 1

where the sunmation is taken over all the protons.
The spin-isospin summation reduces the expression for

R2 (*H) to
ol 2
2 (H) = §

S Iy - 5 (T +.1s) (210)
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where
3
I —[15 (= r2 ) (1!/52 + 2 o4 v'2Y) ar (211)
i< o
Tz = / %-(r%2+ ris - rg;) WSW' ar (212)
' 1
o= V5 v § (et - xh) ar - 1 (213)

Similarly the mean square charge radius of *He is

given by

R (*Hie) = 5 Ti + 5 (Lo + Is) (214)

\O

The integrals I4, I, and Is are evaluated with the
help of the appendix and our calculated values of the

charge radii are tabulated on Table 11.

TABLE 11

e e —

R.M.S5. CHARGE RADIUS OF >He AND °H

Py
0% 1% 145% 2% Exptg95)

Rc(zHe) 1.70 14753  1.767 1.783 1.87 + 0,05
(fm.)

RC(3H) 1,70 1.636 1.627 1.618 1,70 + 0.05
(fm.)
AR 0.0 0117  0.140 0.164  0.17

(f;.)
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It is obvious from the Table that our computed
charge radii are close to those obtained from the
experimental form factors, and that a 204 § state
probability in the trinucleon ground state reprod-
uces the observed radius difference, Davies(12’1o9)
has shown however that the presence of 8.9% probability
of the D state, which is not unreasonable, increases
the size disagreement by 20%. Since our calculations
have been done without including the D state, a
correction for its presence in the ground state of
the trinucleon indicates that the experimental ARc can
be explained by a value of PS’ which is slightly less
than 1.5%. This concurs with our calculations in
chapter six. It should be noted that the D state
contributions arise from D=-D interference so that
although our ws differs from Davies's, we can still
use his D state estimate as a satisfactory approxima-

tion for our calculationse.

7¢3 The Absolute Cross-Scctions of the 16O(3H,p)

180(5.5.)7 Reaction

The mechanism of the(’H,p) reactions was first

studied by Rook and Mitra(11o), who were able to
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calculate the angular distributions of the outgoing
protons 1in the process through the Distorted Wave

Born Approximation. The absolute value of the diff-
erential cross-section of the 16O(sH,p)1eO(g.s.)
reaction was subsequently found by Mathur and Rook(111)
to depend sensitively on the structure of the triton
and the two-body nuclear forces responsible for the
reaction. Their calculations were made using the
hard-core exponential wavefunction and interaction
potentials of Ohmura et a1521), the parameters of the
triton optical potential that gave the best fit with
the experimental angular distribution, and wavefunc-
tions for the initial and final states of the oxygen
nuclei that were based on the Saxon-Woods potential,
If we allow for the approximations that were assumed,
Mathur and Rook's results are in substantial agreement
with experiment. The velocity dependent potential is
in many respects similar to the hard-core so we report
here the evaluation of the differential cross-section

of the stripping reaction using our correlated expon-

ential wavefunction and our velocity dependent potential.

In the notation of Mathur and Rook, the differential
cross-section of the stripping process A(a,b)B in the

Distorted Wave Born Approximation is given by
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do n on k
-2 D |y (215)
an (onh? )2 k_

—

where m and my are the r educed masses of the incident
and outgoing particles a and b and Ea and Kb are their
momenta. It is understood that the right hand side of
equation (215) is to be summed on the final magnetic

quantumn numbers and averaged over the initial magnetic

guantun numbers.

The matrix element M for the process is given by
ar | (=) ¢y (+)
M = J]dz%/dzb N (&b,zb) <B,b|V]|4,a> u, (Ea’ﬁa) (216)

Here za and Eb are the relative coordinates of a and b

with respect to the target and the residual nuclei
respectively, and J the Jacobian of the transformation
to these relative coordinates from the natural co-

A and r

s Where x 1s the particle trans-
x/ bx

ordinates r

ferred in the reaction. From simple geometry one

obtains
pees (@ = Ba) (
Ly = Pe——== (r - 2L 217)
XA X(A+a) a a =b
Ba L
e m—mmeun— = s 0y
px = (z, - 5 z,) L
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J = [ i (219)

X(A+a)

where the letters refer to the masses of the corres-
ponding particles. The factor <B,b|V|A,a> is the
matrix element of the interaction causing the strip-
ping, taken between the internal. states of the
colliding pairs; it plays the role of an effective
interaction causing the transition between the

elastic scattering states Ua and Ub' After some mani-

pulation, Mathur and Rook have succeeded in reducing

M to

M=gM, (220)

where the factor g is a constant which depends on the
strength of the interaction and the structure of the
particles a and b and MZr is the usual 'zero range'
DWBA result. Consequently the value of the differen-
tial cross-section obtained from a zero range calcula-
tion need only be multiplied by a factor g2 to give the

absolute value,

For (BH,p) reactions and specifically for the

' 0(*H,p)'%0{g.5.) reaction
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sCH) = 6Cte) = 4 (% panio * DV apanso (0e)

- -
+ 4Vvel.dep.(r12)_‘xi:ws'w';FT (221)

if we assume that the transferred spin is zero, and

T = 1. We compute g and thus the maxinum cross-
section (corresponding to the first peak in the
angular di stribution) of the '¢0(’H,p)'%0(g.s.)
reaction with 10 leV tritons using the optical para-
neters of Mathur and Rook. Table 12 shows the calcu-
lated values of g?, the maxinum cross-section, and
other three-body quantities obtained by us together
with the relevant hard-core results of Mathur and

Rook and the experimental values.

TABLE 12

' 0(°H,p)'%0(g.5.) REACTION CROSS-SECTION

Refer- Core B.E.(’H) C.E. R, g? Max.
ence  Radius (Point X-secte
nuoleon)

(fm) (MeV) (Mev) (fm)(MeV® .fn®) (mb/sr)
Mathur- 0.40 752 0746 1.74 5044 10° 52,2
Rook
This work = 6.76 0.74% 1.70 40.2 108 .7
(0% &)
This work = - - 1.63(%H)
(1.5% s ) 32.9 10° 3he1
1.77(3He)
1.70(°H) B
Experi= = Bel9 0.764 1.87(He) 25 +37)
mental

®) From reference 129,
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We find that results close to those of the hard-
core are obtained when we use our soft-core wave-
functions and potentials. This serves to confirm
what we had discovered in our work in the last two
chapters, namely that thec effects of the hard-core
and the soft repulsive core are very similar. The
absolute cross-section of the '®*0(’H,p)'®0(g.s.)
reaction 1is reasonably well explained by the DWBA and
our correlated exponential functions and velocity
dependent potentials. We have extended the calcula-
tions of Mathur and Rook by including the &' state
in the ground state of the trinucleon. The improve-
nent in the magnitude of the maxinum cross-section is
in the right direction; inclusion of the & state
reduces the value of g. The presence of the D state
would further complement this decrease in g. QA rough
estimate where we assume an 8% D state, indicates that
g2 (from 100% S)is diminished by nearly 307 thus indica-
ting a maximum cross-section of about 29 mb/sr. Since
the approximations of Mathur and Rook give an over-
estimate, our results will then be in very good corres-
pondence with the experimental results. Thié line of

argument suggests conclusively that P is near 1.5%.

Sl
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CHAPTER EIGHT

THE _VELOCITY-DEPENDENT POTENTIAL AND *He

(== ==t TS e Phet ) m——

Caleulations on the binding energy of the alpha
particle are usually carried out with four types of
wave functions. There are the Gaussian, Gunn-Irving,
exponential and hard-core wavefunctions which, in the
ground stete, involve only the six internucleon dis-
tances, For the first two types, when hard-core pot-
entials are not involved, all the relevant matrix
elements for two-body foroces can be evaluated in closed
form by a transformation of the coordinates of the four
nuoleonss. With the exponential and hard-core funotions
however, these integrals have only been computed by the
Monte=Carlo method of six-dimensionsal numerical inte-
gration. Although the latter integrals can be reduced
to three-dimensional form, a considerable amount of
computer time will still be needed to evaluate a poss-
ible 4096 such three-dimensional integrations for the
expectation value of each operator. In this work(76)
therefore, we have overlooked the use of correlated

exponential wavefunctions for the ground state of the

alpha particle and have instead teken a two-parameter
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Irving wavefunction as a reliable substitute. This
function is expected to be inadequate for our
velooity-dependent potentiael in binding energy calcu-
lations if only on the basis of the work of the pre-
vious chapters where short-range two-body correlations
were found to be necessary. It should, nevertheless,
give a fair estimate of the ecorrect binding energy,
and in calculations which do not depend oritically on
the close=in behaviour of the wavefunction, results
that are very near those obtainable from a correlated

function,

8.1 Binding Energy Formulae and Wavefunction of *He

We approximate the ground state of “He by the

predominant spatially symmetric 'S, state i.e. Q? of

0
eqn. (17) with

R { b. 3 ; z bl 3 ; £
v = exp | - r? - Xp -
l: 1( i< j=1 lj) :l l: 2< i<:j=1rij> ]},

by < bg (222)

If we use the transformation of eqn. (83) and the

expressions
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; S |
O kb (nianiand)® . 30
f j f e ninzn% dnsdn,dns = ————- (223)
3 212'b9
o] (o] (o} c
dr = dnsdnzdns = ninin% (4)’an,dn, dns (224)

(16)

from Irving's work, the normalisation constant N

is given by

28 1 il 2 -
N2 - ..3.;1.:. ;}- + ;E - (E__;:EE}?_' (225)
2
The parameters by and b, are found by the method of
chapter five, which allows us to have a trial function
thet is at least good at large interparticle distances,
Thus by and b, are evaluated by fitting the form factor

of “He given by our wavefunction

(@) 34 N2 16 s 1 16 5 1
= 26 [ 164 29 1} 16 + 23% by

b 4 b2

to that obtained from the expression
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F (4 e
() = on ' He) (227)
P (n) + P, (p)

In this calculation, the charge form factor Fch(4He)

is taken from the experimental work of Frosch et 1.(112)

(97)

and Repellin et al. « Tor the neutron and proton

(113)

charge form factors, we use the values of De Vries
et al. and Janssens et al.(114). At the time this work
was carried out there was uncertainty about the correct
value of the r.mes., radius of the alpha particle so
three values of Rr.m.s. were selected. These are 1,40,
1e45 and 1.50 fm,

The expression for the r.m.s. radius is

13504 N2
2 e o e e et - | A _____, —
Rr.m.s. = XY b:'+ b 1+b"j “] (228)

since

, 3 * 4514
/exp [-Zbc ( 2 rij) ] n% dr = *:—:1 (229)
i< j=1 2°b
c

The binding energy is found from
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E = <T> 4+ <V>_, Lo+ <V>ve1.dep. (230)
where
12 . 3h2 04 N® 1 1 2 byby —
- e 2 2 QU s e Ml B S
<T> = o <Vn1+Vn2+Vn3> = > n bﬂ + b; By 4B QJ
5
(231)
o4 (Vy) ..8!m* N2
£
<V> iatio © -6(V°)eff<exp(-ksr12)> = - ef
(Vaky)®
' b4+b,
x [F(b1,k ) + F(by,k ) = 2F<— s k > ]
8 S 5 s
(232)
and
643°+698% +308+5
Fla,k ) = (233)
8408° (148 )°
22 «a
B i m— (234)
k

The velocity-dependent contribution is

<V 3(Vo )

n

[G'(b1’b1,k’ ) + G’(bz 3Dz ¥’ )
S S

>vel.dep. vel.depe

(Vo)

G(by,bz ok ) = G(bz ek )] + 3X

vel vel,dep.

x [6(by,bi,k, ) + G(bz,ba k) = G(by,bp Kk, )

1

G(bs ,b11,) ] (235)
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where
S y - ' - i
G(y,6,k) = - j [4 2nE (nG+na+n3) ' - 68(n3+n24nd) 2

' 3 ' 1
+ 2803 (M 4nZ4n%) 2 + K2 42V2 kéns (n24+n2end ) 2

vV 2k ' 1
- _——.J X exp {-hy(nﬁ+n§+n§)2 - f2kﬂ3}
ns

dn, dn, dns (237)

and can be evaluated explicitly. The full derivation of
these relations and other useful integrals are presented

in the appendix,

8.2 Photodisintegration Cross=Sectio d_Coulomb

AT Lo

_Energy of “He
The bremsstrahlung-weighted cross-section Gb(4He)
is given by equation (459) whilst in the derivation of

the integrated cross-section Gint(aHe)’ the term D,z in

the determination of the summed oscillator strength is

D, = 2(212 + 234) (238)
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When we use the general two-body force given by equation
(115) and evaluate Zfon explicitly, the expression for

. becomes
int e

on% e? h m
i = i o == BN o (T) . (r,.)
int Mo A 3h2 ml J iJ static’ 1]

H
(hPij + mP )>:

where i and j stand for protons and neutrons respec-

tively. The velocity-dependent contribution to Oint

!
has been absorbed into the term L (W =N if V
1% A vel.depe

is absent). When we apply our ground state wavefunc-

tion and the analysis of Srivastava and Jain(79),
. reduces to
int
on® e K
Sint ~ “ﬂ;:_—‘:1 + (V")vel.dep.(<w(r'2)> + Xvel.<wt(r’2)>)
4M(mesh) S o=
- --'-;'r;-;—-—— <(V)Stati0(r12) T'ya >_| (2)4-0)

The Coulomb energy of the alpha particle is given by
the expression

Il

———— 4%n,d%n2 4%n 5 (2%1)
vans
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which on transformation to the R, 6, and ¢ coordinates,

is easily evaluated and reduces to

7:0% e? N? 1 1 2
VIS R PR - 242
SPEC ERTIY: (b‘*EiDBJ (22)

2

We are of course assuming point protons; it is unnec-
essary to consider the Schneider-Thaler potential for
finite nucleons as there are no experimental values of

C.E. to compare with,

8.3 Numerical Results and Discussion

The parameters by and b, are varied from 0,50 to
1,40 fm ' and 0.52 to 5.0 fm ' respectively. 1In
Table 13 we record the three sets of parameters together
with the binding energies obtained using the Rarita-
Present and our own velocity-dependent potentials. Our

(16)

values are compared with those of Irving , Borysowicz

(43)

and Zielinska and the hard-core results of Tang and
Herndon. Fige. 4 and Table 14 show the close fits to
the experimental body form factor given by the three

wavefunctions. It is obvious from Table 15 that the

disagreement between the experimental measurements by
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TABLE 15

THE BINDING ENERGY, COULOMB ENERGY AND THE R.M.S.

Wave~—
function
by (fm~ ')
(1) 0.99
(i1)

(iii) 0.95
(iv)
(v) 0.9
(vi)
Irv 0. 92
B-2 0.69

RADIUS OF “He

Parameters

bz(fm_1)

Ye.MeSe
Radius

(fm)

1.40

1e45

1450

1.29
1.72

T-H Hard-core (0.50fm) 1.48

Potential

Rarita-
Present

Our
Potential

R-P

Our
Potential

R-P

Our
Potential

R-P
Herndon-
Tang
Tang=
Herndon

19.14

29.67
20,38

28.72
21.40

31,90
17.00

26.85

CIEI
(1eV)

0.910

0.881

0,849

1.00
0.749



E(g)

K 7-0,'1_5) ~ Hevadon ' ana;’js)ﬁ

¢ Frosch . Janssens a-ﬂg{j;Sa"s
A -E’epef/r’f, - Janssens a;«::x;.g,f;'_; _
U Function (i) (&7 74 TR . 2/ 26 #)

Il Funchiod () (oi#E R,

'-'—VFL/”CT(Oﬂ (V) (w;'ffé, ;f; Fed

FiG. 4
.\ - .
g\ N
.
\“\
S
% e
\'6"\.\‘\\"
o
g ) "“'-»‘..:‘-.._4____“‘
N =4
x S HM“\\\_‘_
N
% o= '---..__:" =

I

5 = 45 )]

= [2 50fm )




- 136 =

TABLE 1k

THE BODY FORM FACTOR OF THE ALPHA PARTICLE

Experimental Calculated
Hard-
core
a b c ] s
q? T-H) F-J°) R-J) (i) (iii) (v) (0.5¢fm)
1.0 0.703 0.690 0.725 0.710 0.692 0.702
1.5 04590 0.569 0.591
2.0 0,490 0.471 0.532 0.511 0.487 0.499
2.5 0.409 O 454

3.0 0.340 0.335 0.387 0.395 0.373 0.348 0.357
5.0 04160 0.149 0,170 0.225 0,206 0.185 0,184

6.0 0.110 0,099 0.113 0.172 0.155 0.137 04131

a) The analysis by Tang and Herndon of data collected
by Frosch and De Vries.

b) The results of Frosch and Janssens.

®) The results of Repellin and Janssens.
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TABEB; 15

s e

C,LLCULATED o, VLALUES OF “fHe
int

Reference RN Gint(s) Uint(B) o_in'l:(I) o—:i.nt(R)

(mb) (Mevemb) (MeV.mb)(MeV.mb)(Mev.mb)

Rustgi-Levinger 0.8 89.0 - - L
Rustgi-Mukherjee 2,70 83.2 - 97 .1 96,0
Srivastava=Jain 2,40 103.3 113,0 132.7 132.7

(corrected to
our potential)

Srivastava-Jain 2.40 1050 - 127.0  127.0
(i) ' 2.51 94.9 103.9 121.9 121.9
(ii) 102.4  112.1 131.8 131.8
CEED) 2.69 94.5 103.5 121.3 121.3
(iv) 1015 111.1 130.4 130.4
(v) 2.89 9L4.1 102.9 120.5 120.5
(vi) 100.4 109.8 128.9 128.9

Gorbunov- 2.40 95 + 7

Spridinov

(experimental) +0.15
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(115)

Gorbunov and Spiridonov of the integrated photo-

disintegration cross-section and the theoretical work

(78)

of Rustgi and Mukherjee and Srivastave and Jain
cannot be attributed to the failure of the sum-rules

of Levinger and Bethe but to the particular choices of
interaction potentials and “He ground state wavefunctions.,
Qur calcul gted values of S taken with those from our
three-body calculations suggest that the Serber and Biel
exchange mixtures are favoured over the Inglis and
Rosenfeld. The good agreement with the experimental

data indicates that S is sensitive to the asymptotic

t
beheviour of the wavefunction only, thus confirming the
results obtained in our trinucleon calculations and
showing that although our trial functions do not have

the correct close-in structure they are still able to
provide adequate descriptions of the ground state of

the alpha particle in all other regions of configurational
spacea It is now known that the r.m.s. radius of *He is
about 1.50 fm instead of the 1.42 fm suggested by old
electron scattering data, which is not surprising since
our fit to the body form factor with r.m.s. radius

150 fm is the best of tthe three curves plotted. The

binding energy for the velocity-dependent potential and
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Gint with Rr.m.s. equal to 1.50 fm are also better
than those obtained using the other two values of

the radiuses Our velocity-dependent potential yields
a s8lightly underbound alpha particle, but this result
should properly be ascribed to our interpretation of p
and the large value of ws for small interparticle
separations. In this area, short-range correlations
between pairs of nucleons must be included so as to
mirror the repulsive character of our potential,

(43)

Borysowicz and Zielinska's work and our experience
with the trinucleon are suggestive of the importance

of such correlagtions for improving the values of the
binding energy. Our success in these investigations
makes it obvious that the properties of the three-

and four=nucleon systems can be adequately explained
with the one form of the nucleon-nucleon interaction.
It is also obvious that our study of the alpha-particle

ratifies the general conclusions arrived at in our own

work of the last three chapters.,
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CHAPTER NINE

APPLICATIONS TO OTHER LIGHT NUCLETI

The procedures for determining the wavefunctions
of the very light nuclei *H and “He developed in the
preceding chapters can be extended and applied to
other light nuclei. Since our facility in these calcu~
lations is mainly with the three-body system, nuclei
which offer themselves for consideration are genuine
three-nucleon systems or are those that can be reduced
to three-particle models. In this chapter we turn our
attention to the trineutron, the alpha-particle model

of '2C and the quark model of the baryon,

9.1 The Trineutron

Early in 1965, Adjacic et al.(116) reported the
possible existence of a bound state of three neutrons
with about 1 MeV binding energy. This startling
announcement that there was a stable nucleus °n, appar-
ent through the observation of a peak in the proton
di stribution in the reaction *H(n,p)3n, led Mitra and

(63)

Bhasin to carry out an analysis of the trineutron

with noh-local separable potentials., Their calculations
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indicated that such a state was likely as the forces
required to bind the three neutrons together were
much less than those that gave a good fit to the *p
phase shifts in nucleon-nucleon scattering. So far
there has been no experimental support for the con-
clusions of J,djacic et al, and Mitra and Bhasin; as
well, two variational calculations have also dis-
credited the work of the latter. It is interesting
to note that our exact calculations can offer us an
explicit solution of an apprcximate trineutron wave-
equation., The results obtainable are strongly in

favour of an unbound “n.

The most likely quantum assignments (LSJT) for
the trineutron in descending order of preference are
(1 % % g), (1 % % %), (O % % %) and (2 % % %). However
these states should be near together in the energy
level scheme; in fact Mitra and Bhasin found that the
S-state should be nearly as bound as the P-states,
and this may be the only valid conclusion one can make
from their work. It appears then that the determina-
tion of the S-state binding energy with a plausible

local potential should offer a clear indication of the

actual binding energy of the trineutron. We cannot
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asgume the spin-dependent potential of chapter three
sincc this would give to *n the binding energy of the
triton.,. We must tske as the two-nucleon interaction

the isospin generalisation of equation (23). Thus

B H M
Vij = = Vol(w + bPij + hPij + mPij) (243)

where the force constants are given by w = 0.4,

b = 01, h = 0,1 and m = O¢k. For the S-state of the
triton the two internucleon potentials, given in
equations (23) and (243), yield the same effective
interaction. For the configuration (O % % g) the
totally antisymmetric wavefunction describing the

system is
vCn) = (WX + ') In® (254

where v/ and y”, and ¥’ and X’ have symmetries defined
in chapter two; nsis a completely symmetric isospin

function, It follows then that

(245)

o
.
&
i
1
e

and

&
1
g
Y
]
1
)
d
&

(246)
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whence

Vis ¥ o= <Vol(u-h) + (b-m) PC,] ¥ (247)

Substituting (244) and (247) into the Schrodinger
equation for the trineutron, we derive coupled differ-
ential equations identical to those for the triton

in chapter three. Here
@« = (w=h) , B = (b-m) (248)

We can then carry out the solution of these equations

exactly as in chapter three.

The calculated binding energy is 20,9 MeV above
that of the ground state of the triton. It suggests
that the more favoured P-states should be unbound by
between 8 to 10 MeV which is in substantial agreement
with the variational calculation of Okamoto and Daviesth).
There are too many approximations involved in our cal-
culations, however, for us tc be able to claim this
circumstance as a signal achievement of our method
but we are, nevertheless, certain that it confirms that

any local potential that yields the correct binding

energy of the triton should give an unbound trirceutron,
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9,2 Three-.lpha Model of '2¢C

The cluster model of the nucleus, which has had
a long history of success, is based on the intuitive
observation that nucleons in a large nucleus exhibit
a loose but effective correlation. The correlation,
where there exists an enhanced probability of finding
four nucleons cloge together and with properly aligned
spins and igsospins, is termed an a-cluster. This
weakly correlated substructure should not be naively
considered as an a=-particle within the nucleus although
an e xception occurs in configurations where the four
nucleons are somewhat separated from the others, that
is, at the surface, On the other hahd, to assume that
the clusters are rigid entities without any internal
structure and interacting through a potential determined
by a—-a scattering experiments is to reduce the treatment
of the nuclear system to its simplest form. Thus '2C in
this model becomes a bound structure of three spinless
a=-particles for which a non-relativistic theory should
be adequate. The validity of the model may be judged by
the accuracy of its predictions so the encouraging
results of Harrington(117), derived from non-local

separable potentials, indicate that the rigid model
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may reflect some of the physical properties of the
real '2C nucleus. Consequently, we use this model
of '2C as an illustrative example of an application

of our variational methodse.

20 is a closed-shell nucleus whose ground state
has zero spin and no magnetic moments. In accordance
with the Bose statistics of the particles, the total
and therefore the spatial wavefunction of the ground
state must be symmetric in the three particles, which
makes the problem all the more favourable for analysise
The most successful phenomenological a-a potential,
which has been used in the investigations of Bodmer

(28)

on the hypernucleus °Be,, has the form

and Lli N

2
Voo (t) = Vp exp(-u37®) - V, exp(-u3r®) + hi (249)
where
vy = LOOMeV, uo = 0.635fm" V, = 160MeV and Hy = 0.475fm™ *
(250)

Our trial function should allow for the possibility of
strong spatial correlations between the alpha particles.
These correlations are expected to be important as a

consequence of the strong short-range repulsive character
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of the a-a interaction. We assume the symmetric spat-
ial function to be of the form of the correlated
Gaussian used in chapter five. The two most reliabdble
measured physical constants of the t2 g ground state
are the remes. radius and the binding energy relative
to the three a break-up threshhold. The latest

(118)

expcrimental data of Engfer and Turck indicate

that the radius is 2.42 fm, while the binding energy

is =127 MeV from the most recent tables of nuclear
masses. (The energy of Coulomb repulsion among the
alphas is determined from the formula for a uniform
spherical charge distribution, EC(AZ) = 0,584

Z(Z-1)A-% ¥eV. This gives a value of Ec(‘zc) - 3Ec(4He)
= Bl MeV for the Coulomb energy of repulsion of the -
a's). The experimental value of the r.m.s. radius corr-
esponds to an inter-alpha separation of about 4.2 fm
which is considerably larger than twice the r.m.s.
radius of the alpha particle. As there is little over-
lap between the alpha particles, it seems unnecessary

to introduce any distortisn of the wavefunction. In

our radial function we have taken ¢ equal to 1.0 while

a and b, found from a fit to the r.m.s. radius and the

binding energy, were 0.072 and 0.1015 fm ? respectively.



To test the model and the wavefunction, we evaluate
the form factor and Coulomb energy of '2C. The body

form factor is obtained from the expression

F(q®) = 2z ° <y | ZP exp(i ger) |v> (251)

where Ep indicates summation over the Z protons and
the vectors r their locations. In this model the

expression reduces simply to
P () =f vy exp (i % g ) dr (252)

which is easily evalusated, since p, is the distance
from one a~particle to the c.m. of the other two and
the relation now resembles that for the trinucleon.
The Coulomb energy is derived as in the calculations
of chapter five., Fig. 5 shows our calculated form
factor together with the experimental data of Crannell

et al.(119).

There is 1little resemblance between the
experimental and theoretical form factors although a
projudiced eye may detect a correspondence in the

behaviour of the two curves for small momentum trans-

fers, The first predicted diffraction minimum occurs

not far from the experimentally detérmined one but



 CHARGE FoRM FACToR oF €
TR |p | CRAWNELL ‘¢t ok.
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there 1s no suggestion of a second minimum below

12 fm 2 in the work of Crannell. Our Coulomb energy
is 4.65 }¥eV compared with the expected 5.44 MeV. If
we are optimistic, we can say that our results are
only moderaztely acceptable but this by no means
suggests that the model is unrealistic. The Gaussian
waveform can obviously be improved by removal of the
restriction on the value of c¢c. However, until a
satisfactory three body model of '2C is attained it
appears that the wide acceptance of the alpha particle

model in hypernuclear calculations should be reappraised.

243 _The Non-Relativistic Quark Model

S

Ever since the gquark model of baryons and mesons

(120)

was proposed by Gell-Mann and independently by

Zweig(121)

s few topics in elementary particle and
high energy physics have generated as much interest
as the prospect of explaining phenomena in these
fields through the use of these mysterious objects.
Irrespective of their physical existence, the guarks
heve had a surprising degree of success, but they

have thrown up a number of problems as well., We have

neither the space nor the competence to discuss in
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great detail all the achievements and consequences
of the static quark model. In its essentials,
therefore, the main assumptions of the model are

a) that there is a basic triplet of quarks, whose

guantum numbers are

for the p quark § = 28 s B = N , and Y = = »
3 3 3
- 1 1

for the n quark 9 = —g-, B = 3 s and Y = 3
-8 1 =2

for the M quark @ = EEE B = 3 s and Y = j;,

b) that the anti-quarks are denoted by f, n and f,
and have quantum numbers opposite those for the

corresponding gquark,

c) that the quarks have nearly equal and large masses
(MQ > 10 GeV),
a) thaet in the same way that nuclei are composed of a

fixed number of nucleons, elementary particle states
observed are interpreted as composite systems of

guarks and anti-quarks.

This model by itself predicts, in simple fashion,
a large number of SU(6) results such as the retio of
the proton-neutron magnetic moments, the w-¢ mixing

angle, the Schwinger quadratic mass formula and the
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hadron level classification scheme. Other more
sophisticated SU(6) results like the electromagnetic
decay of vector mesons and the high energy elastic
scattering of mesons and baryons follow from very

gsimple assumptions on the gquark model,

It would appear then, in view of these impres-
sive successes, that the next stage of the theory
would be the direct comparison with experiment of
results which depend on the dynamical features
allotted to the model. In this respect, an important
question concerns the precise role and form of the
gquark=gquark interaction. Present evidence suggests
that the Q-Q potential is spin and unitary spin
independent and that if it is smooth and very deep
the motions of the bound quarks are non-relativistic.
Thus the Schrodinger equation could conceivably des-
cribe accurately the quark motions. Even if the
functional relationship between the energy and the
potential is not that which is characteristic of the
Schrodinger equation, it is expected that the descrip-
tion of the internal motions of the quark system by

the Schrodinger equation could still give the correct
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level ordering.

In the quark model of the baryon, the baryonic
states are considered to be bound states of three
quarks. The low-lying states are known to corres-
pond to the 56 representation of SU(G) consisting
of the (%+) octet and the (%+) decuplet. With the
natural assumption of Fermi stetistics for the
guarks, the spatial wavefunctions are required to
be antisymmetric under the interchange of any two
quark coordinates. This development is unwelcome

and although Mitra and Majumdar<122), and Kreps and

(123)

de Swart have argued that Fermi statistics need
not be abandoned from nucleon form factor calcula-
tions, it may be more attractive and perhaps more
advisable that quarks obey parastatistics. If these
parastatistics are of order three, the three-quark
wavefunctions will be totally symmetric. In fact

with other modifications of the simple quark model

other symmetries may even be used to accommodate Qé.

Qur interest in the problem arises from the dis-
cussions in the last two paragraphs, namely that the

Schrodinger equation could be the operative relation
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for the internal quark motions and that symmetric

and mixed symmetric wavefunctions of three particles
occur naturally as ground state configurations in

the quark model of the baryon. We are hopeful that
our exact and variagtional methods for the nuclear
problem can be transferred with minimal alteration to
the investigation of the systematicsof the baryon
statess We have conducted a pilot calculation with
the 3-3 force taken as & spin-dependent Gaussian of
depth 10 GeV and rangs 0.1 fm., Our results indicate
a small binding energy for the representative three-
quark system which leads to a 'baryon mass' that is
an order of magnitude too large. In a small way this
is encouraging as, in spite of the obvious simplicity
of the model and the defects in our exact calculation,

the results are still sensible,
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CHAPTER TEN

CONCLUS ION

In detailing the main conclusions to be drawn
from this study of the three~ and four-nucleon
systems, we are struck by one significant feature
common to both methods. Our exact and variational
calculations allow agreement with experiment that is
good cnough to warrant continued work with two=body
forces alone. The introduction of many-body forces
appears unnecessary for work of duch accuracy although
it would be erroneous to conclude from this evidence
that these forces are absent altogether from complex
nuclear systems. The two-body interaction model of
the 1light nuclei has therefore sufficient physical
recality to permit us to dcerive these general con-

clusionse.

We have succeeded in placing Green's model of the
nucleus on a firmer foundation by the introduction of
spin into the nucleon-nucleon potential. Our exact
calculations produce wavefunctions which possess

functional forms resembling those used successfully
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by Aranoff and Irving end which are directly obtain-
able from the assumed nuclear potential. The physi-
cal features of the trinucleon are accurately repro-
duced but the propertiecs of the alpha particle as
given by the model are deficient. The major drawback
of the method and one that puts a stop to any ideas
for extending the calculations to other nuclear
systems is the complete reliance on shallow and
long-ranged potentials for reasonable accuracy. It
appears the nethcds of the model may be better used

elsewhere.

Our variational calculations have had more
success. It is evident from the work in chapters
five to eight that the veclocity dependent potential
is equivalent in most respects to the hard-core inter-
action, and in view of the advantages it brings with
its use, could be a reliable substitute for the latter
in the modern potentials. The validity of our expon~-
ential velocity dependent potential seems confirmed
g0 it can be employed in a fuller determination of
the propertiés of the four-, five-~ and six-nuclecn
systems. Our product form wavefunctions with short-

range two-body correlations are good and versatile



representations of the ground state wavefunctions

of the trinucleon. The corrclations are essential
especially when velocity dependent potentials or
other soft-core interactions are assumed to des-
cribe the two=-particle interaction. Our calcula-
tions suggest that charge asymmetry is present to
the order of 0.1 MeV in the trinucleon. The &

state of the trinucleon is likely to be present in
the ground state but its percentage probability is
almost certainly less than 1.5%. Our analysis of
the photodisintegration cross-sections of the three-
and four-nucleon systens indicate that the Levinger-

Bethe sum~rules are ccrrect and that Gin depends

t
sensitively on the asymptotic behaviour of the wave-
function. It is also apparent that the Serber and
Biel force mixtures are favoured in Gint calculations.

That we are able to fit form factors and Gint values
simultaneously is highly suggestive of the similarity
of the charge distributions in electron scattering

and electric dipole absorption.

The application of our methods to other light
nuclel indicates that the trineutron is unbound sand
serves to caution against too ready scceptance of

the rigid &l pha particle nodel.
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The work in this thcesis can be improved in a
number of ways without having to resort to intract-
able numerical methods. The proper variational cal-
culation can be introduced using our velocity depend-
ent potential or an improvement of it. The singlet
potential can be altered to give a better fit to the
scattering length and effcctive range while the res-
triction on the rangesof the triplet static and velocity
dependent potentialscan be removed. As the & state may
be important in the trinucleon calculations it can be
introduced into the method explicitly or by removing
the symmetric form of the spatial function. For comn-
plete acceptability of some of our rcsults the D states
will have to be considered quantitatively and the product
forn wavefunction must bec used for the alpha particle

calculations.,.

In retrospcct, we are convinced that the main
achievenent of this research has becen the demonstration
of the equivalence in nuclear structure calculations for
the light nuclei of two seemingly different potentiaels
which fit the two=-nucleon data. If this result is true
in all nuclear systems, then it suggests that too much
time and effort should not be unnecessarily wasted in
frenzied attempts to determine a uniguc two-body inter-

action,



APPENDIX

Evaluation of Integrals

As is usual in quantum=-mechanical calculations,
one of the unwelcome tasks is the calculation of
integrals. However, for the functions which we
have used in this thesis, all the integrals that
arise can be evaluated explicitly. It is our purpose
to collect here the three- and four~nucleon integrals
and the methods for treating them that have not been

included in the text,

A. For the Three-Nucleon System

The integrals which we encounter are of the

form
/f(ri) g(r.) h(ryz) dvy dv, (41)

where functions f and g are spherically symmetric, A
simple method for carrying out the integration is to
transform such an integral over s product of functions
to a product of integrals. To do this we first con-
sider ff(r)F(R) dv where the notation is indicated in

Figs Als We get dir ectly



a («F{xe.d.)
Fla. Al
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dv = r® sin 6 d6 d¢ dr

R?2 - a%® 4+ r? - 2ar cos ©
/f(r) F(R) dv = / f(r) r?dr fjsin 9 de.L 2Hd¢ F(R)
= < -~ ) /;f( Jr 4 /|a_r] F(R)RAR
= ( %? > {[af(r)rdr fairF(R)Rdr
+ f”f(r)rdr /:t: F(R)R4R }' (a2)

a
For the more complicated integral (x1), we get from
the correspondence ry=--=-a, rp,---r, Tryp---R (see Fig,

42) and formula (A2)

[f(r,) g(r,) h(ry,) dvidv, = /f(r1)dv1fg(r2)h(r12) av,

o ° ry+T2 : =
= /f(r,)dm ——] g(r, )r, dr, f h(riz)rizdry,
£ “o |r,=r, |

1=T2
00 00 ry+T2
= 8n2 [f(r1)r1dr1 [ g(rz )re dr, h(r“?)r12
5 o |r1-r2|

d.r12

(a3)



The final form of the integral expresses the condi-
tion referred to as the 'triangular inequality'.
Using this formula, we can write the integration

over all space of the function G(ry,r,,riz)

oo 00 _I‘1+I‘2 .
/G(r1,r2,r1g)dr = 80?2 / r1dr1/ rp dr; G(r,yraT12 )
& & lr1‘rz|
rizdrs, (£4)

It is sometimes convenient, as with exponential func~-
tions, to transform our natural coordinates to the

perimetric coordinates

E = T14T2-Ti2 ry = =(E+n)
N = r{=rg+T1z ieee r, = 5(E+v) (45)
V = =I44T2+0712 Ty = %(n+v)

The volume element drydrsdry, then becomes

dry dI‘g dri, = d.E, dn dv

Fi

and relabelling ry, as rs, ris a3 rp, and rps as Iy

(the interparticle separations), we find

f@(r1,r2,r3)dr = %; f”dzijdn[jdv(a+n)(a+v)(n+v)G(a,n,v)

(a6)



-

160 ~

Another transformation, which is useful with Gaussian

functions, is

I=X - X
L = x4 - (% + 53) (A7)
l1e€a I's = ryg = |e_+';—£I, Yo = Y433 = I[_)_-%'E‘_I, 'y = sz =0T

so that

dr = d°r a3p

and

jG(r1,r2,r3)dT - ]]G(r,,rz,rg) d’rd?p (A8)

where each rectangular component of p and r ranges from

0 t0 oo

Gaussian Functions

(1) TFor the potential energy evaluation and normalisa-

S

tion of any general Gaussian we need the integral
Gy = /exp(-a,r%-azrg-asrﬁ) a’pda’r

If we express each of the factors in the integral in

terms of its Fourier transform



dL"ka1 d3ka2 d3ka3d3p a’r

Integrating over p and ¥ to obtain 8 functions in the
three k variables and then integrating over these, we
are left with

HJ

Gy = E7A (A9)

(eq0z + Gpas + agas)

G4 can also be derived by transforming the integrand

to e and r coordinates. We then use

oo

. 3

/—;-.exp (-80% -20p . 2-Bz?) °pa’r = - (4B-C?)
(o]

-3

(ii) In the evaluation of the r.m.s. radius we use

2 3
G, = ]exp(-a1r,-a2r§—a,r%)r%d’pd r
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which is easily derived from &y by differentiating it

with respect to asx

9 In m°(ay + @)
Gp = = ==— = % 5/"2— (;"1.10)
das (a1az + azas + agas

(iii)The form factor integral for the general Gaussian

is

Gs = /exp(—a1r%-a2r§—a;r%)eXp(i%Q.g)dr
Where g is the momentunm transfer.

By transforming to the (p,r) coordinates, we obtain

Gz = /exp(—apz-brz-og.£+i % q.g)d’pd’r

/
+ 3%,

1 — ) .
where a = Qp4+%zy, b = Aq45 é;”and C = Q3=0s+ This is

L

simplified by completing the square and integrating

over the components of r.

2

I 3/ 2 c 2
Gs = (= exp(-ap? 4 —— pZ4ifg.p)d?p
D el

To evaluate this we resort to the spherical coordinates

(130).

of Sommerfeld The corresponding rectangular



coordinstes are

= cos ©
ﬂx 1Y
p.. =p sin © cos
- ¢
p_=p 8in 6 sin ¢

Each of the components ranges from - wo to + 0, P
renges from 0 to oy, © from 0 to II and ¢ from ~I to

+lle The volume el ement becomes

d’p = p% sin © dpdd da¢

If we choose the px axis along the direction of the
vector g, so that g.p = gpcosb, then the ¢ integration

can be performed, leaving

3, 00 I
/1 ‘é c? 2
Gy = KE> /‘exp [—(a - Z;)pz}Dde/ exp(igqpcose>2nsin6d6
o : ()

From Magnus and Oberhettinger(131)

I v 1 1
2 P(LAZ)P(Q)P(2v+n)
/ exp(iZcos6)CZ(cose)sinzvede = =g
o n! T(2v)
Tyen?)
v

where CZ(t) are the Gegenbauer functions and Cg(t) = 1;
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J (z) are Bessel functions. Thus
v4n

11 1
P
f exp(i%qpoose) 5in6do = <:E> Jl(% Q)
z

0

Finally, using the formuls

% ‘ ) hd b2
/ exp(-aztz)tv+ Jv(bt)dt B m——— exp(— m->
o (2a2) La?

Re v > -1, Re &% > 0

We get

(£11)

8n’ Q% (Lo +0p +03)
Gz = - exp{~

' 3
{4(“1“2+“aa3+a1“3)} 4 36 (oty ap +0p Ax40q Qs)

(iv) The integral required for the Coulomb energy

calculations is

Ga

[exp(-d,r% - ayr: - asri) (£L> ar
3

0\ 7 1
= <a1+a2> (r12)

L(oy ap +0p dz40tqas)
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(v) The kinetic energy function T(¢,g) where

2 2
exp(~asri-a,r2~a3r3) and

©-
il

1.2 1.2 1.2
exp(—a1r1-a2r2-a3r3)

oy
"

is obtained by straightforward differentiation and use
of formula (A10)

317 h2 — :
T(¢’E) = T [ }4 2a1a1(a2+a;+a3+a§)
M
©

=5

+ Z (“1+a-})(“a af oty o) )} { Z (a.1+a:)(az+0¢: )}A

c
(a13)
v
where ZJ denotes sum over cyclic permutation,

]

Exponential Functions

(i) The corresponding potential energy and normalisation

integral is, in the perimetric coordinates

2

Ey & %—-- /:odgfdn[:odv(gm) (E+v) (n+v) E(E,n,v)

where
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E(E,n,v) = 8exp{— zl (E+n)- gi (E+v )~ Si (n+v) ]

{(E*n)(ﬁ+v)(n+v)}-1= exp(-a?r,—azrz—asrg)
(r1r2r3)-1

Therefore

Ey = 2H2/ ag exp{-%(“1+“z)€l[ dn exp[—%(a1+a3)n}
o e
00 _
j dv exp{-%(az+“3)v
o
1612
ot et - (A1)

(@02 ) (ap4a3) (o1403)

More general formulae containing powers of ry, r, and
rs are easily derived by taking partial derivatives
of both sides with respect to the paramcters ay, a,

and a3z, If we use the notation

[e0} o0 : .
e .
[k £ m] = 8H2] Ty exp(-aqrq)drqf rf exp(-azrz)drz
o o
Ti1+Ts
rY exp(~asrs)drs

|r1-r2|
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then

16m°
[000] =Ey = ~ : e e —
(a1+a2)(a2+a3)(a1+a3)

By differentiating this k times with respect to a;, &
limes with respect to @, and m times with respect to

as, We get a general expression for [k ¢ m |

k £ m P+aq\ /k-p+r ,€-q+m=-1
[k ¢ m] = 160%ktein! & I % < >< )( >
p=0 =0 r=0 q r m=r
-(p+q+1) - (k4r41-p)
x (aq4as ) (as+as
-(e+n41-q=r) (815)
(ag +as)

(ii) The formulae we use in our calculstions for the

r.mese radius and the Coulomb energy for the inverse

square root and true expoentials are

(a1+a2)(a1+a2+a;) + (a,+a3)(a2+a3)

E, = [110] = 32m2
(061+‘x2)3 (a2+a3)2 (ag405)?

(£16)
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S, (ay+az ) (agras)+2(aisaz ) (@z +as5) (2 4a3)

{<a.+a2> oz 45 ) (a,+a3>}’

E3=[111 ]:61{.1-.[2

(a17)
30112 (2as+aq4+0, )2 . '
Susloogis (24+02 ) {L(az+a3)(a1+“3)}3 ) {(“2+“3)(11+“5)}2]
(r18)
Ba=[113]-610" {(a,+a;)Z(a:fai;S:;q+as)z

12 X ay
C

(ay+az )? (az +a3)® (ay+as)®

9(2as+0q 40y ) 3

(ag40z ) (az +a3)* (ay40a5)* +(a1+“2)3(a2+“3)4(a1+a9

3 3(3a1+3az+2a3) }

(21403 ) (g 405 ) (1 403 )* (@yas )® (g 405 )> (s 43 )’

(119)

(iii) For the body form factor, we have the integral

. -1
B = /exp(-a,r,-azrz-a3r3+1§q.g) (ryrors) d%pd3r
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We carry the integration out by expressing each of the
factors in the integrand in terms of its Fourier trans-

form. By using

- - -1
r 1exp(—ar) = (2n?) 1/(k;+a2) exp(iga.g) d3ka

. =N i
2 -3 2 2 2 2 2 2 .
B = [(an0)7 {0 4h) (5, ed) ( 0ed) | ome| 2y, 2

wiro

+ ik (o-%r) + ik o(p+%r) + 1
-y = Q=

3 3, 33
q.e_}d ka1d kazd ka;

apd’r

By integrating over p and r and subsequently over ka
= - 2

and k we obtain
Us

Be - ef [ {(15&1-133)2+a:} {(.lsa1+133>2+a%} {<k';'1+aé )} ]"dzkg,

The integration is performed over the magnitude of ka s
=4

first, by residues and then over the angle between ka
=G4

and g. The calculation is lengthy and yields the

expression

. 8n? _q (k0% +af +303)
E6 = {tan I: ]

Q(2¢? +af +a3-2a7) as (a2 -a%)



_1;(')2_

- Q(4Q2*3“§+“%) -1 Q(Q2+a§}“%) -
- tan [ :|+ tan |: '

ap (o -a5) a (QF +oz - af)

B - 2Qxy _ Q(Q2+a§+aﬁ) _ 19a, -
1 S 1 1 -
- tan | —————m——— + tan -tan ttes b it
Q® +a3 ~af a3 (Q® +a5-af Q% +a5-af
(£20)
where Q = %

(iv) The body form factor for the true exponential wave-

function can be obtained by dif ferentiating E¢ explicitly

kg
1

/GXP(-“1r1-azrz-“3r3+i%g.g)d3pd3r

The labour involved is, however, substantial. We have
consequently evalusted Iy by a different method. This
solution was developed with a different definition of
the Fourier transform and to maintain consistency with
the expression given in our papers we have decided not
to alter the form of the transform. Thus

r 1exp(-ur) = (2112)—1 / (kZ+u2)-1 exp (-iku.r) d’ku



- 171 -

and By , after integration over p, r, and two of the
k's in Bs (remembering that with our definition of
the Fourier transform, E¢ differs from Es in (iii)),
is given by

9° . T N-1
Er = =32 mree—— ](k%+“%)-1{(%§1-1¥_1)2 + hai}

306180(280(3

(g _kl)z 2 -1 I
33 =1 + a3 d- o |

= 2'%q, 0, ax f[[

k5 sinbdk, dedg¢

i . B : :
(15 +05 )2 (Be® 44k ~Salcs 000 +haf )2 (F° 415 ~Faks 0086 423)
. 00 A1
2”Iloc1a2 oc;,f ]
o -1
k% dk, dx
(15 +a ) (ba? wha Sl xehad )P (Fe? 41k -Fakeen a3 )?
whecre
X = cos 9§
If I_=2-9-+q2+4k%+4a§



I
G=-§q2+k%+a23
L
and D = - 3 gk, then

dx

B = 2''Naqga, a3/ A B

Since

1 dx -1 1 2 ‘a+xl-
= 5 + x) o log | === j
f_1 (a+x)? (c+x)2 (a=-2) <a+x C+ (a=c)’ © cex |

B; reduces to

; o .2 ; - . _ ,
13 k'-1 a4 o2 2 2 L4 o 4
Br = 2" MayQp 05| ==svemmrme— | 2k§ 40 a5 =205 —9-q } l:— -3-qk1 (zkﬁ

o (k5+0%)®

" ' -1 k%+a2+£tq?|-&qk1
+ a3 -2a5- %-_qz )J loge|:< i Dol >

]
k5 +o5 439 -'ltqk1

9 5

-1

I. » 4 8 . . '
43 +hof +59° ~Zak1
< \ 2T9 g..._aq} 2{ (4%% + 402 +%q2 )2 - (%qln )2}

45 4 had +‘L9"'C12 .,.qu, g

2 2k 4 =1
+ ’12‘{ (k%+a§+§q2 )2 - (“3‘qk1 )2} } (421)

(v) For the determination of the Coulomb Energy and

kinetic energy of the inverse square root exponential
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function, we use

co [ . o0 . . I'q4 422

Ee =f exp(=ayry)dry f exp (=0, 1y )dr, .exp-(—a;r;)t;1dr3
© & Ir, =TIy I
. . 8n2
i /das Ty = e o et i if ay = 0o
az (ap +as) (822)
"161]2 Oy 403
= — : ' log 5 |-—-=——— if aq 1= as
(@ +04 )(“z ~aq ) Qp +0x
o0 . . o0 . . I'y4 Ts
. A _2
Eo =[ exp(-a,r,)dm/ exp(-azx-g)drz .exp(-a3r3)(r3) drs
) 0 II‘1- I‘zl

, 8n2
= - /da; Bg = = === log e(a2+a3) if ay = ap (AZ})

16112 ,
= : [(a,.,.a,) 1oge(a,+a3)-(a2+a3)1oge(a2+a3)}
(“2 +aq ) (ap -ay )

if oy =|= ap

(vi) The evaluation of the kinetic energy expectation

value of the true exponential requires the function

T(¢,E).
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If ¢ = exp(-a1rﬂ - Op Ty = a;r;) and
£ = exp(=ajr, - ajr, - azrs)
then
hz
T(¢,E) = == (“1“:+“z“;+“3a;)l(a1+a:,a2+a;,a3+a;)
M
hz
-~ (azad + asay) 7 (ap+a3, az+ad, aj+aj)
M
bt 1 1 1 1 1
+ TH (“3“1 + 0qas) J (‘xs+0¢3, Cg40q, %p + 05 )
2 1 1 1 1 1
+ m (“1“2 + “2‘11) J (a,+oc1, Qg +0p g “3+“3) (1'124)
where
s
I(a’ﬁsY) is ——
812
and

T(a,B,y) = 16[(a®487)y* + (a®48%) (4y*+0By)
+(a48) (hy* +708y? ) + ¥y + 3a°B%y + 1008y ]

« [(aeB)® (Bay)* (aay)* ]

B. Integrals for the Alpha Particle

With our choice of wavefunctions, all the integrals
appearing in the four-nucleon system are exactly evalusted

by transformation to the n coordim tes,
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Gaussian Functions

(i) Our genereal normaglisation integral

2 2
/exp(—a,rﬁg—br%3-or14-dr23-er§4-fr§4)dr
becomes

fexP("a‘lTI% =611 72 -yns —57723-67_7_1 eN3=9N2 oN 3 Ya’nid’n,d’ns

in our transformed coordinatese. Noting tht
g, = B~
Ot.xz +B'x= (-fa_ +-‘q£_) _-—2'-—
i i i
o, La.
1 1
we find

% 83 | -
2 .

04 /exp(—ﬂ;2+ *—; = yn§-5n§—¢gz.Qs)d3n}d3n2d3n3
Loy

G-a.1

with ay = ¢y, (4 = FnN, + €ns , and finally

2

' - ﬁz € o ‘ .
2 i
Gar = (et /e"l’"”“"’%“ e = 1% (8-—)a%n}a%n) a0
Lo, La

2
where Q3 = Yy = %E s B2 = ¢23 - ﬁ€23/
2a

Ga4 then reduces to
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5

9 2 2

oar = 1% 4 [[(hey5) (- £) - (2appe) (29 49) :
(B1)

(11) The remes. radius calculation needs

Gag = /(Bin%+3211.Q;+Bsﬂ§+34n§+BsQ1oﬂ3+3622023)
x exp(=ayng =B 101 N2 -YNs -0n%-€n1 eN3-¢Nz o73)
a*n1d%n. 803
6 2
=] = L B, s~ T, (31, 2 9 oo 8.6) (B2)
. i %a,
i=1 i
where a1 = 24 84 = 5
ag = B as = €
az = V ag = ¢

(1ii) The body form factor integral with the Gaussian

function is evaluated using the Gegenbauer-functions-

method of (A11). Our most general integral is
Gas = /exp[igi oN1+1gz ez +igsens~aing-aing-a3n3]a’n d’n, a%ns

We define the 9~dimensional vector R such that its first

three components are equal to a4y times the rectangular
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components of 7n1, the next three are equal to a times

the components of 7, and the last three are a; times

the components of 7ns.

Q7 se 90

192293

Then Gas =

coordinates

X4

X2

1i

WO o N wm W

X3 =

Xs =

X5 =

Xe =

X =

Xe

1}

Xg =

Each

R

=<}

of the X's range from = o to 4 o, R ranges

cos@
3in6
sind
8inb
5inb
sinb
8inb
81inb

81ind

: _1
-— a1

-1

(agapa5) 3 /exp(i Q.R - R?)4A°R

If we use Sommerfeld's expansion,

are

cos ¢1
sing,
sing,
sin¢ﬁ
sin¢ﬁ
sing 4
sing,

sing,

(q1)

(as),,

cos¢g
sing,
sing,
sing,
sing,
sing,

Sin¢g

We al so define Q such that

X,¥s27

INEK

cos¢a
sings
sings
sings
sings

sin¢3

49536

co 8¢4
singg
sing,
sing,

sin¢4

o

= a2—1(Q2)

cosps
sings
sin¢5

sin¢5

cosge
singe

singe

X9Ys2

our rectangular

cospy

sings

from

0 to o, 6, b4, 2, $3, b4, $5 and ¢¢ range from 0 to I

and ¢7

ranges from =[I to II,

element is

The 9=dimensi onal volume
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d°R = R®sin’ 0s5in®d,sin’¢, sin*¢ssin’d, sin? ¢s sinde

dRA0d¢4dp, Adpsdd, dPs dge ddr

11 o . 2'P+2 r(P)
But sin ede — N

o P or(®h) r(®/2)

I : iy
Hence | sinP6,a0,/sin® '6,d6, .../ sind a6 | 4o
P P p+1
o o LI
148
_an*)
= B
P(1+2)

We choose the x4y axis along the direction of the vector
9, 80 B4R = QR cos © and after the ¢ integrationsare
mnade,
oo I
nd

Gas = (aqa,as) > (3 ) j / exp (10Rcos®-R2 )R®sin’ 6ARA6
O (o}

The @ ihtegration can be done by the method of (411),

I %

3.2 I

N+

(QRr)

J
. . /e
exp(iQRcosb)sin’ 640 = =
° (qr)"2

Evaluation of the R integral then gives

/2

Gas = (aaaaa;)_s(ﬂs exp (- %i) (83)
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where
. i\ 2 Q2 \ 2 qz\2
HONONG

Irving Wavefunctions

(i) The normalisation of our Irving functions are

carried out with the help of

]
a5 3
I = feX.p {:-har(nhn%m%)z}d”n,d n.d%ns

which is
e ‘ H % 3 A "
Iy = /exp [-lpar(nﬁmimﬁ) }(MI) (ninzns)®ansdnz dns ,

after integrating over the angles.
To evaluete Iy, we use the further transformation
ny = Rsin® cosp, mz = R sinb sing, s = R cosb
The Jacobian is easily found and the volume element
dBn;d3n;d3n; = (411)® R®sin®6cos®8sin®gcos? dRAOAP
E O n/, n, o

Iy = / sinsecoszedS/‘ sin2¢cosz¢d¢/ (LH)BRBexp(-uarR)dR
(0} fo} o -
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But II
4 2n-1
- Tl=
(0050)2m ! (sinb)
o
and
[o.e]
n
n
f R exp(-kR)AR = ~—=—
0 K
so, after some manipulation

I, = (41)?

(ii) The computation of the

is greatly simplified if we

T (n) T (n)

oT (m4+n)

body form factor integral

use the methods of (411)

and (B3), i.e. introduce the 9-dimensional integral R

The most general integral we require is

I, /eXP {-(aﬁnﬁ+a§n§+a§n§)

1
2+ig1-11+igzrﬂz+133023}

d3771 dsle a’ns

Introducing R and defining Q as in (B3) and integrating

over 6 and ¢, we derive

[o0]

I» = (ay “-z “.3 )-3<%:‘>[

o

exp(-R)3.2 7 it J (ar)q %

9
R/2 dRr

2
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But
i bt 2&(2b)”r(v+%)
/ exp(-at)Jv(bt)t at = ST TR T,
o (a +b ) 7 I'[—z_
s0
. 3.212’1-[4
I, = (agapaz) ? == (B5)
(140%)°
where
. Qa2 dz\ 2 q3\2
HORGRNE

(iii) By methods similar to (BL), we can evaluate

s o
e = /exp{-har(n%+n§+n§)2}(nz)z a°nqa*nad’ns

which we use in our r.Mmes., radius calculations,.

. 451-14
Is = "“';"“""'1"‘;" (BG)
2 .

(iv) For the Coulomb energy calculations we employ

: 2 . .
. 1) e
Ty = jexp{-#ar(n%+n§+n§)2}-—— an,d°n.a%ns
el “vons
7‘; '_ 4 e?
= ey 5
2% 302

(B7)
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(v) In the evaluation of the kinetic energy values,

the following integral arises

|

e | |
Is = = == ¢(V;1+V2 +V7273)€ a°n48%n,d°ns

2M ups
where _
1-
b = exp | -2, (rhantnd)?]
and :
1
E = exp {-2“L(ﬂ%+ﬂ§+ﬂ%)2}

2

Since V;: <§__ + % §:>, we find after explicit differ=-
du? d

entigtion

h? 1 St
Is = = 55 [exp -@a£+2aé)(n%+n§+n§)2} {ha}2-16a;(n%+n§+n%)

a’n,d3n,4%n;

A transformation to the R,0,¢ coordinates and a simple
integration reveals
ye 30 2" (apat)

Is = (B8)
M (20 _+2a!)°
r =

(vi) For the static potential energy terms we come
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across the integral
> S ! 1_ £
Ie = /eXP {-Mr(n%n%m@)z} exp (~kv2ns) d%n,d%p,da%ns
This becomes

I = (4n)3/exp {-(LarR+kf2Rcos6)}R°sinsecoszesin2¢cosz¢
dRd6 d¢
Integrating explicitly over R and ¢ we obtain

I
A 8!sin°Bcos?26 4db 3

Is = (4“)3/ = / sin?¢ cos?4 g
o (kar+f2k cost)? J
11
e I 81s5in®06c0s26046
= ().;n)’/ (?Z)
o (Aar+f2k cosb)®
2vV2ap
If we let u = cos® and & = --Em=
w14 81 ;1w (1-u2)?
I = === | e du
Vox)? J o (84m)°
1 up(1_u2)qdu
The general integral / = , can be evaluated
o] (a+u)

by ussing the formula
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wt g Wit (=a)® (geu )RR
['EZIZYH ’ L:[m-s.)' I (menmar) ]

When m-n-s+1 = 0, the corresponding term in the square

brackets is

m:(_a)m—n+1

(m=n+1)!(n-1)?

Log, | (asu)]

A simple expression for the general integral is

obtained for the special case, r-p-2q = 3. Then

'1up(1-u2)q ap-r+1 g+1 -1\ ®
------- e o), o)
o (a+u) (as1)Pra* °
=0
where 8
s 'z
2q q.' —\ (&> (-1)
CS S D e —— — Z/
s!(q+2-58)! | <p+q+2-s+26>
t=b q+2-58

ni
n!(n-m)!
(This expression was first derived by Abraham et al.,

(46)

but there is a small error in Cs in their paper). The

integral in u from Is satisfies the condition r-p-2q = 3



- 185 -

and using the formula above, we find

(B9)

LI* 8! 648746982 4+30845
x I i

) (Vax)® 8406°% (148)¢

(vii) Other integrals which we encounter when we

attempt to evaluate the photodisintegration and

velocity dependent potential values include a couple

which satisfy the condition referred to in (B9). These

are
o ' l - ‘
I = /exp {-har(n%+n§+n§)2}exp(-f2kn3)(nz) 1d3n1d3n2d3n3
4 2y 1 1-0u2 )2
= .IEE__.,_' / E_( _____ )_ - du
(vak)® Jo (8 4+ u)®
4
o [356’ £ 478 4 258 4 5] (510)
(Var)® 210 8% (148)°
and
D -1- '
Is = /exp{-har(n%+n§+n§)Z}GXP(-f2kn:)(n3)2d3n1d’n2d3n3

Wit 408 1 ut (1-u?)?
T (o)t /o (84u)'
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LI% 10! 326 4 2582 L 88 + 1
|: ] (311)

) (Vor)'! 1260 8° (148)¢

In these calculations, we require too

. ) _ )
Ty = /exp[-har(nhni +n%)2}exp(-wf2kns)(n%+n§+n§) !

a*>nya’nydns

]

wnt 71 /1 u® (1-u" )*

4% 73 ~88% 4+ 58 4+ 1- ey
- B12
(V2k)® |:105 55(1+5)5J

- oy . »
Iio= /eXPt-har(ﬂ%+n§+n%)z}exp(-fzkns)(n;)z(n%+n§+n§)

d3771 d3ﬂ2 d’n;

e du (B13)

1 ’ ' V =3
s fexef b, (3ot ens)FJexs (<v2rns ) tns )2 gt ang ant) 2
’nyd®ny d’ns;

TS 8

) (Vak)®

[—

o (6+u)a

R hn‘» 7: 1 u4 (1 _uz )2
/ du (B14)



and

I42

/exp{-uar(n%m:m%)Z}exp(-fzkm)nz(nm:m;) :

a’n4a3p,d°n;

du . (B15)

404 81 u® (1-u® )2
(‘/-21{)9 /O (6+u)9



C COMPUTER PROGRAMS USED IN THE EVALUATION OF THE PHYSICAL

PROPERTIES OF THE LIGHT NUCLEI

THESE PROGRAMS ARF WRITTFN IN FORTRAN LANGUAGE AND FOR CONVENIENCE

ARE BUILD-UPS OF MANY SMALLER ONESe. THE VARIABLES USED ARE SELF

EXPLANATORY BUT WHFRFE CONFUSTON MAY ARISE WE HAVE TNCLUDED OUR

COMMENTSe TO PREVENT REPETITION WE HAVE INCLUDED FUNCTIONS ONLY

IN THE FIRST PROGRAMS IN WHICH THEY APPEAR. SUBSEQUENT PROGRAMS

USING SUCH FUNCTIONS DO NOT CONTAIN THEM
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20

21

22

12
11

13

41

40

PROGRAM FOR DERIVING THE GAUSSIAN CENTRAL POTENTIALIN CHAPTER 13
OUR PARAMETERS VO AND MU ARE OBTAINFD BY FITTING THE BINDING
ENERGY AND THE FORM FACTOR
PROGRAM EXTRI(INPUT«OUTPUT)

DIMENSION FF(8)

VOMU=0.8

ASQ=5e4%VYOMU/ 4147

A=SQRT(ASOD)

R=SORT(2e1/2.7) %A
E=41.47%3.0%(A+B) /240

ANORM=AT (A/3403A/3e04A/3e0+0s5%(R=A))
VO=1740 ,

AMU=YOMU/VO
F1=AT(A/3e04A/3e03A/3e040a5%(RB~A)+AMU)
F1=F1/ANORM
F2=AT(A/3e¢04A/3e04+AMUsA/3eN+De5%(B=A))
F2=F2/ANORM
FuzAR(A/3e04A/3e03A/3e0+0+5%(B=~A))
F4=F4/ANORM
F5=AS(A/3e04A/3e03A/3e0+0e5%(B~A))
FS8=F5/ANORM

BE=E-0eB8%VO* (F1+F2+4F2)=048%VOMU* (F44+F54+F5)+042%VO*F1+04¢2#VOMUXF 4

10 e5%0 e 2¥VO*(F2+F2) 0o 5%0 e 2% VOMU* (F5+F5)
PRINT 204F1sF25F4,4F5
FORMAT(4F15.8)

PRINT 21+E+BE
FORMAT(2F1548)

PRINT 22.VOsAMU
FORMAT(2F15.8)

A=A/3.0

B=R/3.0

DO 11 1=1.8
FFIII=EXP(=I%*(4e0%B+240%A)/(36e60%(2,0%A%¥B+A*A)))
PRINT 12+FF (1)
FORMAT(F1548)

CONTINUE
RADSQ=240%(3,0%(A+B)—0.75#(A+A) ) / (9, 0% (2., 0%AXB+A%A))
RAD=SQRT (RADSQ)
PRINT13+RAD
FORMAT(F1548)

A=A%¥3,0

BR=R%3 40

VO=V0+0e5

IF(V0eGTe22e0) GO TO 41
GO To 39

VOMU=vYOMU+041
IF(VOMUGGTele3) GO TO 40
GO To 1

STOP
END

FUNCTION AT (AL1.AL2+AL3)
PI=3.14159
AT=P1/(8e0%(ALI*¥AL2+ALI*AL3+AL2*AL3 ) %*SQRT(ALL*¥AL2+ALI*AL3+AL2*AL 3)
1)
RE TURN
FND
FUNCTTION AR(AL1AL?+AL3)
PI=3,14159
AR=3 ,0O%PIX(ALLI+AL?2) /(160X (ALL*¥AL2+ALLI*AL3+AL2*¥AL3)%%2,5)
RE TURN



END

FUNCTION AS(AL1+AL2+AL3)

P1=3.14159
AS=3.0%PT*(AL2+AL3) /(16«0%(ALL*¥AL 2+ALI*¥AL3+AL2¥AL3)¥%2,45)
RE TURN

END
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PROGRAM TRIONUINPUT.OUTPUT)

TRITON AND TRINEUTRON RINDING ENERGIES BY OUR FXACT METHODS
THE INTEGRALS ARE COMPUTED USING MILLERS QUADRATURE FORMULA
DIMENSIONA(1T7s17)sB(17617)sC(17617)eD(1T7a17)sE(17417)4F (174170431},
1G(17017)aH(1717)sP(17)9QU17917)aRE1I7)6S(17417 ) eT(1T7417)4Ut17417)
2X017427)0Y(175127) s VALUE(31)sPQ(17517)¢HL(17)4H2(1T7)sUA(LTa17),
3UB(17.17)

REAL MUAL

REAL Mu

READ8BO +WeBEE s VO sMUIsN

PRINT80 +WeBEEsVOsMUWN

THE VALUE ASSUMED FOR N FIXES THE MESH SIZE
FORMAT(4F1065,110)

IF (VO) 40440465

PLANCK=1,0543

EQPT=1.0

AM=1,670%2=2.0/(N=1)$SCONST=14602

PLANCK=2 ¢ O¥PLLANCK*PLANCK

AMCON=AM®*CONST .

TEM1=(3s0%W+1e5%*BFE ) *VOEMUXMY
TEM2=(3.0%W=1e5%¥BEE ) #VO*MU*ML)
EPSP=10+0%{SQRT(TEM1 ) +SQRT(TEM2) )*SQRT(PLANCK /AMCON)
PEE=EPSP*AMCON/(2,0%PLANCK*100)
EPSQ=100%(SQRT(TEM1)=SQRT(TEM2) ) %*¥SQRT(PLANCK/AMCON)
QUE=EPSQ*AMCON/(2,0%#100%PLANCK)

P1=8s0%36141592%#3,14159?2

D035 I=1N

D035 J=1sN

HI(I)=((I=-(N+1,0)/2e0)%724+1.0)

H2 (J)=(J=(N+1e0)/2.0)%7
P{I)=PI*H1(I)*HI(T)*SORT(1e0~HI(I)*H1(1)/4.0)/440
RIT)I={(0e5*HL (I} *¥H1(TI)=1e0)
SITo)=(HLIT)*HYI(T)#H2 (JI*¥H2(J) % (1eO=-HL(T)%¥H1(T)/4e0))
QUEI s J)=SORTI(RITI#R(TI)I+S(TJ))
TCIeJ)=0eS5+HL(II%HI(T)/440-0eB866*¥HL(TIXH2(J) *
1SQRT(10«H1I(T)#H1(T)/0,0)

UCT o U)=0eS5+HLI(TI*H1(1)/4e040e866%¥HL(T1)*¥H2(J)*
1SQRT(1,0-H1(T)*#H1(1)/4,0)

UA(TI 4 J)=0e5%R(TI+0QeB5*%(T(T1sJ)=~U(14J))
UB(T4J)=0e5%R(T)=0e5*%(T(IaJ)=U(I4J))

PO(IsJ)=(2.0#%PEE+2. 0%QUE*Q(19J))

ACYT s ) =P(T1)*¥(Q(IsJI+R(I))

B(To)=P(I)*(Q(IyJ)=R(1))

C(leJ)=P(T)I*#SQRTI(S(I+J))
D(TeaJ)=PQIT+J)*¥PQ(T+J)*¥Q(I4J)%*Q(I4J)
E(IaJ)=(1e0=-R(T})/(PQIIZJI*PQIIsJ)*PQ(T4J)*Q{T4J)%¥Q(T4J))
G(Ioe)=(POUT s J)+MUXMU*¥ (1 40-R(T))I*¥%*2%Q(14J)*¥Q(T4J)

HIT e ) =(PQIT o J)+MURMURT (T4 J) ) ¥X2#Q(T 4 J)*#Q (T o J)

X(T e )=(PQ(ToJ) +MUXMURUTT 4« J) I %X2%0( T4 J)%Q (T4 J)
Y(ToJ)Y=PQ(I s )¥PQ(T4J)%¥PQ(T s J)%QIT4J)*Q(TsJ)
FIlseJel)=0e25%A(T14J)/D(1,4J)

F(T14J42)=0e25%B(T14J)/D(T4J)

F(1eJe3)120625%C(1J)/D(1,4J)

FIToJed)=MUXMUKO ¢S5*¥A(T,J)*FE(14J)
FlIoJdett)sF(I,Js4)/(EQPT*EQPT)
FITaJde5)=MUXMURO o S*¥B (T4 J)#E(T oJ)
FIl4Je5)=F(1,4J55)/(EQPT*EQPT)
FUTaJsb)aMURMURQB%CI T, J)*¥E(T10J) /160
FlleJsb6)=F(I4Js6)/(EQPT*EQPT)

FUTaJa7)=0e25%A(1,J)/G(1,J)



8 F(l4Je8)=0e25%B(1,J)%1.0/G(1sJ)

9 F(I4Js9)=0e25%CIT43J)/G(I,4J)

10 FUTI4Jel0)=0625%A(T1,sJ)/H(T4+J)

11 F(T0J011)=0e25%#B(TsJ)/H(TsJ)

12 FUT4J612)1=0e25#C(T14J)/H(T4J)

13 FUIeJel3)=0e25%A(TsJ)/X(1eJ)

14 F(laJelda)=0e25%B(T1sJ)/X(TeJ)

15 FUT14J615)=0e25%C(1oJ)/X(TsJ)

16 FUTeJelb6)=MURMUX0 SHA(T ¢ I *T(1sJ)/(Y(14J))
FlToeJelb6)=F(T1sJsl6)/(EQPT*FQPT)

17 FUI oJal7)=MUXMUR0 S%¥R (T4 ) *T(TeJ)/(Y(TaJ))
F(ToeJel7)=F(14Je17)/(EQPT*¥EQPT)

18 FUTeJelB)=MUMUR0B¥C (14 J)%T(IsJ)/(Y(TIaJ))
FUIeJelB8)=F(TeJalB)/{FOPTHFQPT)

19 F(T14Je19)=MUXMU*0,E*A(T4J)%U(1sJ)/CY(T4J))
F(I4Je19)=F(14J319)/(EQPT*EQPT)

20 FUT 4Je20)=MURMUX0S*¥B{T o) *ULTsJ) /(Y {Tsd))
F(TsJe20)=F(15J420)/(FQPT*FQOPT)

21 FUT4Je21)=MUXMUX0,S#C(TsJ)%U(TsJ)I/(Y(TsJ))
F(TeJe21)=F(TeJe21)/(FQPTH*EQPT)

22 F(1eJe22)={Q(TsJ)~RIIIIXHLI(IIH¥HI(T) /(PQIT 4+ J)*SQRTIPQ(I4J)/3e142)%
10(T o) *Q(T 6 J)#32,0%1 4414)

23 FUT1eJe22)=(Q(IoJ)+R{III#HL(IIX¥HI(I) /(PQIT«J)X¥SQRT(PQ(IsJ)/36142)%
1Q(T eI *Q(14J)*32,0%1,414)

24 FUT1eJs24)=SQRT(Q(TIsJ)+UA(T 4 ) ) *¥U(T s ) *¥P(1)*¥0.5%#SQRTIQ(I4J)=R(1))
/(XTI oIV ¥(PQ(TsJ)+MUXMUXU(T s J)))

25 F(T1eJs25)=SORT(Q(TsJ)=UAIT 4 ))¥U(T 4 J)%P(TI*05%SQRTI(Q(TIsJI+R(1))
17 (X(T4J)*¥(PO(TIJ)+MUXMURU(T 4 J)))

26 FU10Je26)=SARTIO(TI s ) +UB(I4J))IAT(I4II#P (1) *0,5%#SQRT(Q(TI+J)~R(1))
1/7(H(T I ¥ (PQ(I s J)+MUMUXT(T4J)))

27 FUI1eJe2T7)=SQORTIQ(TsJ)=UB(I s )I*¥T(I4J)*¥P(T1)*0,5%#SQRT(Q(T+J)+R(I))
1/ (HIToJY%IPQIT s J)+MUXMUXT (T 9J) ) )

28 FUI6Je28)=SQRT(QIT sJ)=UA(TI 4 H¥U(T4J)*P(T)*¥0e5%SQRT(Q(T14J)-R(1))
1/7(X(T4J)*(PQ(IsJ)+MUXMURXU(T »J) ))

29 FU19Je29)=SORT(Q(TsJ)+UALTSI)I*¥U(T4J)*¥P(T)I%#0,5%SORT(Q(I+JI+R(1))
1/7(X (T oY ¥(PQ(T s J)+MUNMIRY(T o J) ) )

30 FII4Je30)=SORT(Q(TsJ)=UR(IsJ))*T(I ¢ J)#P(I)*0e5#SQRT(Q(T4J)=R(I})
1/7(H(T ) H*(PQ(T o J)+MUXMUIEXT (T 4J)))

31 F(IoJo31)=SORT(O(I’J)+UB(I’J))*T(IqJ)*P(I)*0-5*SORT(O(10J)+R(I))
1/7(HIT o)X (PQIT s JY+MUXMUXT (T 5J)))

35 CONTINUE
DO50 K=1+31
VALUE (K) =0
NM1=N-1
NMD =N=2
DO 100 1=24NM1,2

100 VALUE(K)SVALUE(K)4F (141 sK)+F(TaNsK)

DO101 J=2+NM1,s?2

DN102 1=2.NM1

102 VALUE(K)=VALUE(K)+2e0%F(TsJsK)

101 VALUF(K)Y=VALUF(K)+F(19JeK)+F(NoJeK)

DO 103 J=34NM2,2

DO103 1=24NM1,y2

103 VALUE(K)=VALUE(K)+2 e 0¥F (T s JsK)

50 CONTINUE

WOO=VOXW* (VALUE (4)+VALUE(5)+VALUE (7)+VALUE(8)+VALUE(10)+VALUE(11)+

1VALUE(13)+VALUE (14)+VALUE (16)+VALUE(17)+VALUE (19)+VALUE(20))
Z00=VO*BEE* (VALUE(8)+VALUE (5)+VALUE(12)%1732+VALUE(18)%14732~
IVALUE(7)=VALUE(4)+0«5% (VALUE(11)+VALUE(14)+VALUE(17)+VALUE(20))

2-0.5%(VALUE(10)+VALUE (13)+VALUE(16)+VALUE(19))



3=VALUE (15)%]1 ,732=VALUF (2] )%1.,732)
YOO=VALUE (1)+VALUE(2)
QOOR (24 0% (VALUE(16)+VALUE(17)+VALUE(19)+VALUE(20) )=
1(VALUE (4)+VALUE(S5))) /(9. 0%MU%MU)
RAD=SQRT(QOO/YO0O0)
BE=145*¥FPSP=({WO0+200) /Y00
FESQ=1.437
COEN=) ¢437%#80.0%(VALUE (22)+VALUE(23)) /Y00
PRINT604BE ¢ COEN

60
61

40

FORMAT(2E20410)
PRINT 61+ RAD
FORMAT(F6e4)

GO To 70

STOP

END



-

THE DEUTERON FUNCTION OF CHAPTER FIVE
DETERMINATION OF THE WAVEFUNCTION PARAMETERS s XSTAT AND XVEL
PROGRAM DEU(INPUT ,OUTPUT)
Pl =3.141592
40 READ 414AsBsC
PRINT 414A4BsC
41 FORMAT(F6e44F5.33F301)
IF(AelLTe0el) GO TO 60
=-C
C 1S ALWAYS TAKEN TO BE 1.0
D=2.0
E=1625
ANORM=PI*(1e0/ (26 0%A) *¥%3+(CHC)/(2.0%B)#%3+(2.,0%C)/ (A+B)%*%3)
AKE=41 e4TXPI*045% (1 «O/A+(CXC)/B+H{8s0%C)/(A+B)=(840%C* (A¥XA+B*B) )/
1(A+B) #%3)
PRINT 3+ANORMyAKE
3 FORMAT(2F1546)
XVEL=0,3
9 VOVEL=82.94%XVEL
VVEL==VOVEL*4eO¥PI*( (2,0% (A+D)# %242 ,0XA%A) /(2 s OXA+D) #%3
1~260/(260%A+D ) +2  OXCH (AX¥A+R¥B+ (B+D) #¥2+ (A+D) *%2) / (A+B+D) *%3
D=l oOXC/(A+BHD) = (2 ORCHC /(2 OXB+D) I+ (2 OXCHC )% ( (B+D) % *2+B*B) /
3(2.0%#B+D) ¥%#3)
PRINT 44VVEL
4 FORMAT(F1546)
XSTAT=1.0
10 VOSTAT=100s0%#XSTAT
VSTAT==VOSTAT*PI%(1e0/(A+E/2e0)%%3+(2,0%C) /( (A+B+E) /2.0) %#%3+
1(C*¥C)/(B+E/2.0) %%3)
PRINT 54VSTAT
5 FORMAT(F1546)
BE= (AKE+VVEL+VSTAT) /ANORM
PRINT 6+ BE
6 FORMAT(F1045)
XSTAT=XSTAT+0.1
IF(XSTAT=245)10410,11
11 XVEL=XVEL+0,.1
IF(XVEL=0eB)949 44
OUR RESULTS ARF GIVEN IN FIGURE 1
60 STOP
END



CALCULATIONS WITH THE CORRELATED GAUSSIAN FUNCTION OF CHAPTER 5
PROGRAM ROSGAU(INPUT ¢OUTPUT)
DIMENSION FF(1341),Q(13)
COMMON P1
N=1
READ 24A4BoC
2 FORMAT(2F6eb49F341)
PRINT 2+A4BWC
IF (A) 40440,3
3 AB=A+B
A=A+A
R=R+R
PI=3,14159
=~C
c1=C
C2=C*C
C3=C2%*C
C4=C3*C
C5=C4*C
C6=CH*C
ANORM=AT (AsAsA)+3,0%CO%AT(AsAsB)+6e OXCL1*¥AT (AGA3AR)I+3 4ORCLH*¥AT (B4R A
1)4+CH*¥AT(BsBsBI+6 . O%CEHRAT (B 4RyAB)I+12  OXCO*AT (ABSARGA) +12, O C4*AT (
2AB AR 4B ) +8 4 O#C3XAT (ARSARLARI+124O%CARAT (AWRLAR)
DO 21 1=1413
Q(1)=1
FFOTAN)IZF(AsAsAQ(TI) I 4CO2¥F (AgAsBsQ(T)I+2.0%C1I*¥F(AJALARLQI(T))
142 e OXC2*F (AeBsAsQUTI) )42 0O%CLXF (AR IR sQII) ) +4,0XCIXF(ARIARIQ(T)) +
24 0%¥C1*¥F (AWABIAVQ(I) V44 0%C3*¥F (AVAB SR 4QUT 1) +8,O%XC2%F (A4ABWARSQ(T))
3+CH¥F (BaBaBaQII) ) +CL4%*¥F(RsBoAsQ(I))+2,0%CE5%#F (R yBoABsQ (1)) +4.0%C3 %
LF(BaARGASQII) V442 0%CEXF(R1ABsB Q1)) +8s0%C4XF (BR4ABWABRQ(1))
5+8e 0%C3%F (ARBSABWARSQ(I) ) +4,0%¥C2¥F (AR GAB¢A4Q( 1) )+440%C4*F (ABLAB,R,
6Q(1))
FF(IsN)=FF{IsN)/(ANORM%XB,0%PI*P1)
FFITN)I=FF (T oNI*FF (T 4N)
PRINT6s FF(TI4N)Q(I)
6 FORMAT(2F15410)
21 CONTINUE
11 AR?23=D2 0% (A2 (AsAsA)+CORAD (AsAsB)I+2.0%CL1*¥A2(AsAsAR)I+2 ,0%C2*#A2 (A4R
15A) 42 O¥CU*A2(AsBaB)+4 qURC3%A2(A+BIAB)I+4,0%C1*¥A2 (AsABsA) +4.0%C3%
2A2(AAP B )+8.0%C2¥A2 (A3 ARAB)I+CHEHXA2 (B 4B oB)+C4*¥A2 (BsRsA)+2 ,0%C5%
3A2 (BeBsAR )V +4 0% C3¥A2 (Rs ARG A +4 e O¥CEXAD (BRI AR JRI+BO%CLXA2 (B4 ARJAR)
L+8,0%CA¥A2 (ABSARSAR) +4 ,0%C2%A2 (AR SAR A +4 4 0%*CHXA2 (AB4AB4B)) /9,40
RADS=1.5%AR23/ANORM
RAD=SQRT(RADS)
PRINT 201+ RAD
201 FORMATI(F1565)
RADM=ABS(RAD=-1,66)
‘IF(RADMeGT+0.005) GO TO 1
ACF=14437%#(AL(AASA)+2 ,OXCO%AT (AsAsRI+44O%CI%AT(AWALAR)I+C4%AY (AR
19B)+440%C3 %A1 (AR sAB) +4 4 O%C2%A1 (AsABAB)I+CA*¥A1(BsReBRI+2,0%#C4%*A1
2(BeByA)+40O%HCERAL (BB AR +CO2%#AY (ByAgA)+4,0%C3%¥AL (R 4AsABR) +4.0%CU*
FA1(RGARVAR) 48, N*CA%A] (AP JARGAR) +8,0%CO%A1 (AR JARGA)+R OXC4%AL (AR,
LAB3BI+2 4 O*C1 %A1 (AR AGA ) +4 e O*¥C3XAT (ARGAIB)I 42, 0%CEXAL (AR IR 4R) )
ACE=ACE/ANORM
PRINT 202+ ACE
202 FORMAT(F1045)
36 READ 37+.VO+AMUSWOLBETA
37 FORMAT(4F743)
69 AL=A+AMU
RE=B+AMU

—



66

ABG=AR+AMU
AAT=(A/2¢0-R/2,0) %*%2

AATI=A/240+R /2,0

VSTAT==VO* (AT (AL sAsA)+2OXC2%AT (AL ¢AeB)+4e0%CI*¥AT (AL +sAJAB)+440%
1C3#AT (AL ¢+BsAB)+C4*¥AT (AL R sB)I+4e OXC2#AT (AL ABIABI+C2*AT (BEsAJA)
242 4 O*CLURAT (BEsAsB)I+4,0%C3HAT (BESAgARI+4eU¥CE5*AT (BE 4B o AR +CH*AT (
3BE +BoB)+4 e O¥C4*¥AT (BEsARWABI+24O%C1I*AT (ABGsAsA) +440XC3*AT (ABGsAWR)
448 O%C2RAT (ABGsAsAB)+R O%CH*AT (ARG4RIAB)I+2,0%#CH5*AT {ABG+RB,4R)
5+8,0%C3#AT (ABG,AR4AB) )

VSTAT=VSTAT/ANORM

VSTAT=-VSTAT

VSAR12==VO* (A4 (AL sAsA) 42 OXC2#AL (AL A WB)+4 0% CI*AL (AL WAWABY+C 4%
1AG (AL 4B eBI+4 DXCE%AL (AL 4P s AB)I+4 4 OXCOXAL (AL s ARSARI+C2XAL(BFsAsA)
D242 OXCLUX¥AL(PEsAsB )44 ¢ ORCI¥AL(BEsAsAR)IH+CEXAL(RF 3B oR) +4 ., 0%C5%A4 (RE
3R ARV +4 4 O¥CL¥AL(BEGAP s AR 42 0O%*¥C1*¥A4L (ARG A4 A)+4,0%¥C3%¥A4 (ARG AHB)
448 e OXC2HAL(ABGsAsB)+2e0%CEXAL(ABRGIB4BI+8.0*¥CL4*¥A4 (ARG «B¢AB)+8.0%
5C3#A4{ARG,ARSAR))

VSAR1I?2=VSAR12/ANORM

VSAR12==VSAR12/41 .47

PRINT 66 :V/SAR12+VSTAT

FORMAT(2F158)

AVO=ABS (VD)

IF(AVO«LE«22.,0) GO TO 139

BL1=B+BETA

ABR1=AB+RETA

WOOO=WO* (AT (ALL sAsA)+2 ¢O#C2¥AT (AL L14sABI+4e0XCIH*AT(ALLsAWAB) +4,0%
1C3%*AT (ALY +BsAB)+C4*¥AT (ALL B sB)I+40#C2*#AT(ALL+ARsAB)I+C2*AT (BLLsAS
AV 42 0#CU¥AT (BLYLoASB) +40*C3%AT (RL13AsAB) +4 ., 0%CHXAT (BL14BsAB)+CE®
FAT(BLL1eBoB)+4ORCLXAT(RLL11ARsAB) +2 O#CI1#AT (AR 3 A0A) +4.0%C3%AT (AR,
LASR)I+8OKCOHAT(ARL1 A AR +8,0%C4*AT (AR1+B¢AB)+2,0%#C5%¥AT (AR14RsRB)
5+8.,0%C3%#AI (ABl,ABAB))

WOOO=WwO00 /ANORM

VROSTI=WOX (34 O¥AXAT (A A ALL)+6eOXCI*AATI*AT (A WA, ARTI I +3,0%XRHC 2%
1AT(AGASRLI ) +Ee OXARCO2¥AT(AIRIALYI ) +12,0%AATTI*C3*AT(AWRIAR]L 1 +6O%R%
2CL¥AT (AsBsBLLII+12,0%AKCI*AT(AsABIALY I +24,0%C2%AATI*AT(AWABAB])
3412 OFCAB¥AT(AWAB9BL1)+3 0% CH4*¥AXAT (BoBoALL1)+120%CS*AATT*AT
4(BaBaABL1)+3,ORCOERRAAT (R R 4BLI)+12sO0%C3*¥AXAT (B3 9AB WAL L1 ) +24,0%C4*
SAATI*AT(BsARJABL ) +12O%CS*BXAT(BsARyRL1)I+12. 0*#A*¥C2#*AT(ARGARWALL)
6424 ¢ OHRCAXAATTHAT (ARWARSARII+12.0O%C4*R¥AT(ARGARGBL1)=4,0%C1*
TAAT#A2 (AsAsABL) =16 OXCOHAATHA2 (AsARZAR1 ) =B, OXCA¥AATH#A2(A+R4ABL)
8=16e 0#CAXAAT#AD2 (AR GARGART V=1 R e DHCH¥AATHAD (AR JR4ARY V=4 ,O%CHE*
OAAT#AD (R4RyARLY)

VROS1=VROS]1/ANORM

VROS2=WO¥ (3¢ OX¥A¥AT (A4ALL sA)+30%C2¥RXAT(AVALLYBI+9,0%¥AXCI*AT(
TAALL s ARI+3O*RHCI¥AT (Ao ALY s ABI+6 OXCIH¥AXAT (A3ARL A} +12,0*C3*AA
2TT*AT (AsAR14B)I+12 O%CO2¥AATTI*AT(AWABT1 4AR)I+3,0#CO%*AXAT (A4yBL1+A)
B4+6 e OFCHXAAT I HAT (AsBLYIIBI+(RH+AATT I HCA*G OXAT (ABSALT +B)+12,0%C2#AATT
LH¥AT (AR GALT sAR)+(AATTHA)I¥E qOXCA¥AT (ASRLL4AR) 412, OXCORAXAT (ARABL1,A)
54120 OXC4H¥R¥AT (AR SART ¢RI +24,0%C3XAATT*AT (AR GAR]1 4AR)+(R+AATTI%#2,0)
6%6 e OXCERAT (ABSBLYIsRI+1 2. 0%CHRAATT*AT (AR JRL14ARI+3,0#C2*¥AXAT (BaALL
TAI+30#CLHH¥BHAT(BIALL 4RI +6 e N*CEH*BXAT (ReAB14B)+12ONCA*AATI*AT (B, AR]
BsAB)+3 O CHEABHAT (BsBL]Y sR) =44 O¥CLH¥AATHA2(AWALL sAB) =8 OXC2#AAT*A2
O(ASART s AR ) =4 (DX CA¥AATH*AD{ASBL19AR) =B, O¥C2*¥AATHA2 (ARGAL14AR))

VROST7=WO* (=166 0#*CIHAAT*¥A2 (AR SABL +AB) =8 OXC4*AAT*A2 (AB+BL1+AB)

14 0¥C3#AAT*A2(BsALLIAB) =8, O%CA*AAT#A2(B4AB1 sAB) =4 O*¥CH*AAT *
2A2 (R«RL1sARY )

VROS2=VRNDS2+VROS7

VROS2=VROS2/ANORM

VROS3==3 ¢ N*¥BETA*¥WOOO

AL=AL1



NN

63

64

39

61

62

40

BE=BL1

ABG=AR1

VSAR21==VO* (A4 (AL s AsA)+2 qO%¥COXAL (AL oA eB)+4,0%XCI1*AL (AL vAJAB)+C4*
JAL (AL sBaRI+4 0%CARAL (AL sBoABRY+4 e OXCO*®AL (AL s ARJARIY+C2%#A4(BEsALA)
2426 0% CU¥AL (BEsAsB) 44 O%CA*¥AL(BFEsAs AR +CHHAL(RE 3B sR)+4 4 O*¥C5%*A4L (RE 4
3BsAB)+4 4 0% CL*AL (BEs AR AR) 42, OXC1*#AL (ABGsAsA)+4,0%C3%A4 (ABGsAB)
4+ 84 OHC2*¥AL(ABGIAsB)+2 4 0%¥CEXAL (ABGsB,B)+84 0%CH¥AL(ABGeB+AR)+8,4 0%
5C3%A4(ABGsAByAB))

VROS4=2  O*BETAXBETA#WO*YSAR21/ (=VO)

VROS4=VROS4/ANORM

VRDS3=VROS3+VROS4

VVEL=3 s 0% (VROS1+0,5%VR0OS52)=3,0%VROS3

PRINT 63sVVEL

FORMAT(F1l548)

WO00=W000 /41 .47

PRINT 644+ WOOO

FORMAT(F1046)

GO To 36

A=A/240

B=B/2.0

AKEST (A AsAsAsAsAI+3 OKC2XT(AsA9sBsA A BI+3,0*¥Ca*¥T(AsB¢BsAB4B)
1+CH*T(BsBaBoBsBsBI+BOXCIHT (A AsAIALAWBI+12.0%C2%¥T(AAIAGAIRHB)
248 0%C3¥TIAVAIAIBIRIBI+12eN*¥CAHT(AIRIAIAIB B3I +6.,0%#CE*T(B4B4,89B,8,
AA)+12.0%#C4%*T(BsBsBysBsAsA)

AKE=AKE/ANORM

PRINT 61 +VSTAT,AKE4VROS1+VROS25sVROS34V0O

FORMAT(6F1265)

PRINT 62s¢ Ae«BRsC

FORMAT(3F10.5)

GO TO 1

THE BeEe OF THF TRITON 1S ORTAINED RY ADDING 3/2 THE AVERAGE
VALUES OF VSTAT AND VVEL TO THE Ke.E,

THE CONTRIBUTIONS OF THE STATIC AND VELOCITY DEPENDENT PARTS OF

THE POTENTIAL TO THE INTEGRATED CROSS-SECTION IS GIVEN BY THE

AVERAGE OF THE TWO VALUES OF VSAR12 AND WOOO

STOP

END

FUNCTION AI(CsDWE)

COMMON P1

A1=PI/((CHD+D*E+E*CI%SORT(CHD+DXE+E*CI*8,0)

RE TURN

END

FUNCTION F(XeYsZsQUE)

COMMON P1

FI=QUEX(X+Y+4,0%7)

FIT=4 0% (XHY+YRZHXHZ)

FegeOXPIHPIXPINEXP(—FI/{(9s0*%FII))/(FTII*SQRTI(FIT))

RE TURN

END

FUNCTION T(AQsBOsCOIDOSEDIFO)

COMMON P1

ADO=A0+DO

BOO=RO+EO

COO=CO+FO

T1=A0*DO* (BOO+CO0D)*¥2,0

T2=BO*EQO* (AOO+CO0 ) *2,0

T3=CO%FN* ( AOD+BOOI*#2,0

T4=A00*(BOXFO+CO*FEQ)

T5=BOO* (AQ*FO+CO*DO)

T6=COO*¥( AO*EO+BO*DO)



T7=A00%RO0+A00*¥CO0+BOO*COO
T=340%41 4 7TH(T1+T24+TR34+T4+TS+TE)*¥PI/ (TTX¥TT7T*SQRT(T7)%860)
RETURN
END
FUNCTTION A1(C1sD1,F1)
COMMON P1
All=40%(D1I*EL+CL¥D1+C1*E]L)
Al12=SORT(D1+El)
Al=SQORT(PI)/(A11l%A12)
RETURN 7
END
FUNCTION A2(C2,D2,€2)
COMMON P1
A21=2C2#¥D24+D2%F2+E2%*C2
A22EC24D2 Lla
T A3, 0%PT*A22/(16,0%A21*%A21%SQRT(A21))
RE TURN
END
FUNCTION A4{(C4 D4 sE4L)
COMMON P1
AL41=Co*Do+D4RELFEL*CYH
A42=D4+E4
AL4z=3,0%PTI*A42/(16.0%AL1*A4)1%*SQRT(A41))
T TTRETORN T T T = i e
END



N

—

17

55
21
11

201

202
40

CALCULATIONS WITH THE CORRELATED EXPONENTIAL FUNCTION (2) OF CHAP.
5

PROGRAM TRION(INPUTsOUTPUT)

COMMON AQ

READ2 +AsBsC

FORMAT(F6e4sF5,39F3e1)

IF(ALLE«Ds1) GO TO 40

AB=A+R

A=A+A

B=RB+B

PI1=3,14159

C=-C

Cl=C

Cc2=sC*C

C3=2C2*C

C4=C3%C

Ch=C4*C

C6=C5%C

ANORM=AT (A AsA)+3 O*C2#AT (AsA4B)I+6 e OKCI#AT (A GASAR)+3 40X CLH*¥AT (R 4Ry A
1)+COHXAT(BeRsRI+6, O¥CEXAT (RyRyAB) +12 ,0%C2*HAT (AR JARGA)+12, O*CLH*AT (
2AB s AR sR)I+8 s O#C3*AT (ARSARGAR)+12.OXC3*AT (AsRHAR)

PO 21 1=1,10

AQ=1

FF=FT(AsAsA)I+2, 0%#COXFT (AR sAY+440%CI%FT(AsAVAB)I+C4*FI(ARLB)
1+4.O*C3*FI(AngAB)+4.0*C2*FI(A,ABQAR)+CZ*FI(B;AQA)+2.O*C4*
IET(BeAsBI+4eOXCI*HFI(R4AsAB)I+CORFT (B 4B sBI+4,0%CE5%*¥FTI(BsRyAR)
B+ f OHCLHAFT (B ABsAB)I+2 ¢ OXCLI#FI(ABsAWA)+44U%C3#FT (ABsAWB)
44+8 0XC2¥F T (ABsAsAR)I+20%CS5#FT(ABJRsB)I+840UXCH#FT (ABSR4AR)+8.0%C3
5#F1 (AR +ABsAR)

FF=FF/(8,0#PI#PI*xANORM)

PRINT 55+FF

FORMAT(F1046)

CONTINUE

AR?23=2 ¢O0% (A2 (AsAsA)+C2%A2 (AsAsB)+2e OXCIHA2(AsALAR)I+2,0%C2%A2 (A 4R
1 sA)+2 ¢ OXCH¥A2(AsBsB)+4 ¢OXC3*¥A2(AWBsAB)I+4 e OXCI*A2 (A4AR A +4.0%C3 %
IA2(A¢ARSRI+8,0%C2HA2(AsARJARI+CHXAZ (BB aBI+CL4H¥A2(R4R4AI+2,0%CH*
AA2 (BaRsABI+4 0% C3#A2 (RoAR 4 A +40 OXCEXA2 (R4 AR 4B ) +8 0% C4*¥A2 (ByAB4AR)
L4+840XCANAP (AR AR S AR) +4 OXCIO¥A2(ARSARA)+4 4 0*Ca4xA2(ARVARWR) ) /940
RADS=1.5#AR23/ANORM

RAD=SQRT(RADS)

PRINT 2014RAD

FORMAT(F1545)

RADM=ABS(RAD-1,70)

IF(RADMeGTe0.005) GO TO 1

ACE=Z1e43T7*{ALIAIAsAI+2 OXCO2¥AL(AWAIR)I+4,0%CI¥AL(AJASARI+C4%*AL (AR
19B)+4 e O%C3%¥AL (AR sAR) +4 . 0%¥CO%AT (AsARJABI+CHX¥AL (BB sRI+2,0%¥C4H*A]
2(BeBoA)+440#C5%A1 (R yRyARI+C2#AL(BsAgA)+4,0%¥C3*AL(RIAIAR) +4,0%Cl*
AT (RsABsAR)I+80%¥C3%#A] (AR AR AR +B8,0#C2%*A1 (AR JARWA)+R 0% C4L*AT (AR,
LABB)I+2e0%¥C1%A1 (ARSAGA) +4 e OHC3¥AL (ARAWB)+2,0%C5#A1 (ARB4R) )
ACFE=ACE/AMORM

PRINT 2024+ ACE

FORMAT(F1045)

STOP

END

FUNCTION AI(CsDE}

A11=8,0%C*(C+D)* (C+E)

Al2=8.0#D*(D+E)*(D+C)

ATI3=8O#EX(E+C)Y*(E4+D)

Al4=160%(C+D)I*(D+E) ¥ (E+C)

AISsS((CH+DIX(D+EIV*(F+C) ) **3



AI=(AT1+AI2+AI3+AT4) /AL5
RETURN
END
FUNCTTON Al(C1l,D1,4F1)
All=4 0% (DI1+E1)*¥(C1+D1+F1)
Al2=4,0%(C1+D1L)*(C1+E1)
A13=(D1+E1)%%#3,0%(C1+DY1)#3%2,0% (C1+E1)*%¥2,0
Al=(A11+A12)/A13
RETURN
FEND
FUNCTION A2(C24D24E?)
A21=9660% (C2+D2+E2) / ((D2+E2)%#%5 4 0% (C2+E2) *¥%2,0%(C2+D2 ) #*¥2.0)
A22=066 0% (C2+D2+FE2) /((C2+E2) %%5, 0% (C2+D2) %%2 (0% (D2+E2 ) %32 40)
A23=T72 0% (24 0%¥FE2+D2+C2) /((D24E2) ##4 JOX(C2+F2) *¥%4,0%(C2+D2))
A24=2440%1 40/ ((D2+F2)%%4 0% (C2+E2)# (C2+D2)%%3,0)
A25=24.0/ ((D2+E2)#(C2+F2) *¥%4,0%(C2+D2) #%3,0)
A26=24 0% (340#D2+30%C 2426 0%FE2) /{(DI2+E2)#(F2+C2)*(C24+D2) ) *¥%3,0
A2=A21+A22+A23+A24+A25+A26
RE TURN
END
FUNCTION FI(AsB+C)
COMMON AQ
THE UNIVERSAL FUNCTION FI IS EVALUATED USING STMPSONS RULE
4 N=60
V=0
VI=0
NM1=N=1
NM2=N=2
DO 105 I=1NM1,2
105 V=V+X(A«B+sCeIsAQ)
DO 106 I=24NM2,2
106 VI=VI+X(A+BaCsrIsAQ)
H=0,05 .
FI=(H*(4a0%V4+2,0%VI+X(AWRICHNIAQ))/360)%3414159%A%¥RXC*83192
RE TURNM
END
FUNCTION X(CsDsEsT,4G)
N=60
AQ=G
AQS=SQRT (AQ)
ASQ=C*C
RSQ=D*D
CSQ=E+E
M=20
Al=1
SQI=(AI/M)*(ALI/M)
F1=SQI/(SQI+BSQ)#*p
F2=140/(2e0%#SQT+440%¥ASQ-2e0%CSQA=4+e0%AQ/Fe0) *%2
FA= (4 40%AQSHAT* (240%SOT+4e0%ASQ-20#CSQ=4e0%¥A0/940))/(340%M)
Fa=(SQI+CSQ+4.0%¥A0/ 94 0=L o O*ANSHK¥AT /(340%¥M) ) 7 (SQT+CSQ+40%¥AQ/940
144 O¥AQS*¥AL /(3,0%M))
FE=(4e0%¥SQAT+4eN¥ASQ+4 6 0%AQ/Fe0+84D*AQSHAT
1/(3e0%M) ) /(4 .0%SQT+40%¥ASQ+460%AQ/940=8e0*¥AQS*¥AT/ (3,0%M) )
FO=(4e0%#SQI+440*ASQ+4e0¥AQ/9.0) ¥*%2
F7=(8e0%AQS*AT/(3,0%M) ) %*%x2
F8=(SQI+CSO+4,0%¥AN/0,0) *x*2
FO=({4.0%AQS*AT/ (3 O*¥M) ) *%2
Y=SQRT(F6/FT7)~SQRT(F8/F9)
Y=ABS(Y)
IF(YelLTe004) GO TO 11



11

51

—

X=F1¥F2# (ALOG(F4#FB) /F342 60/ (F6=F7)+0,5/(F8~-F9))

RE TURN

H1SQ=F7*F9

H2==SQRT(F&/F7)

H3==SQRT(F8/F9)

XA==1e0/(360%(H3+1,0)%%3)

XB==160/(3 0% (H3=-1,0)%%3)

DO 51 J=2.15

XJd=J

IM1=J-=1

JA?2=J+2
XA=XA+(XJ/JAZ2) ¥ (—=10) %¥# IR (H2=H3 ) ¥%IML/(H3+1,0)#¥JA2
XB=XB+(XJ/IA2 ) ¥ (=1, 0) ¥% J# (H2=H3 ) #%# M1 /(H3=1,0)#%JA?
CONTINUE

X=F1#(XA=XB)/(4,0%H150)

RETURN

END

THE BeEe AND PHOTODISINTEGRATION COMPUTATIONS
SRIVASTAVA'S VFLOCITY DEPENDFNT CALCULATIONS FNOR B FeWITH EXP § C
READ 2+.VO+AMU WO sRFTA

FORMAT(4F 743)

IF (VD) 4044046

READ 7+ AsBC

FORMAT(F6e4sFBe39F3al)

IF (A) 14145

AL1=A4RETA

BL1=R+RETA

AR1=AR+RETA

ALO=(0 5*A+RETA) ¥%2460

BLO=(0 «5%¥R+RETA)¥%2 40

AAA=AT (A AsALLY X (ALO+(A%A) /440)

AAAB==AT (AsAsARL) #(ALO+R2LO+ (A*A+R¥B) /440) *(=C1)
AAB=AT(AsAWBLLY*(BLO+(R%R) /4,40) ®¥C2

ABAZAT (AsRGALL)I*(2.0%AL 0+ (A%*A)/2.0) *C?2

ABAB==AT (AsRARL)*# (24 O# (ALO+RLO) +(AXA+B*R) /2.0 *¥(=C3)
ABR=AT(AWRBLL)I*¥(2,0%RLN+(R%*R)/2,0) *C4

AABA==AT (AsABALL)* (4 OXALO+A*A) *(~Cl)

AARBAR=AT (AsABSABL ) ¥ (44 0¥ (ALO+BLO )+ (A*XA+AXR*¥B/A)) *#C2
AABRB==AT (AsARBLL1)*(4.0%RLO+B*B) *(=C3)

RBA=AT (B +R4ALL)*¥(ALO+(A*¥A) /440) *C4

RRAR==AT (R4R4ARL) * (ALO+RLO+(AXA+R*R) /4,0) #(=CH)
BRBR=AT(B+R¢BLL)*(BLO+(R*R)/440) *C6

BARA==AT (R4ARSAL 1 I#*¥ (44 ORALO+A*A) *(C3%(=1.0))
BARAR=AT (B4 ARSAR1 I * (44 0% (ALO+BLO)+A*A+B*R) *C4
BARB=—=AT (P s AByRBL1)* (4 O*¥RLO+RBR*R) ®(-CH)

ABABA=AT (ABsABsAL1) ¥ (4 4O*ALO+A*A) *#C2

ABARAR==AT (AR AR3ARL ) # (4 ,0% (ALO+RLO)+AXA+R*R) *(-C3)
ABABR=AT (ARB+AR,RL1) * (4, 0%RLO+B*RB) *¥(C4)

AAAL==A1 (AsALALL)*(2.0%SORT(ALO) +A)
AAABLI=A1(AsA,ARL)*2,0%(SORT(ALO)+SORT(BLO) +AR) ¥(=~Cl)
AARI==A1 (AsA4BL1II*¥(2,0#SORT(RLO)+R) *C2
ABA1==AY1(A+B,ALY) ¥ (4., 0%¥SQRT(ALO) +2N¥A) *C2
ABAB1=A1(AsBsABL) ¥4 4O* (SORT(ALO)+SQRTI(BLO)+AB) *(=C3)
ABBLl==Al (AsBsBL1)*¥(4.0%¥SQRT(RLO)+240%R) *C4

AABATI=A1 (A+ABSALL)*(B8.0%SQRT(ALOI+4,0%A) #(=C1)



300

31

AARAR1=-A1(AABsAR1 ) %8 ,0# (SQRT(ALO)+SQRT(BLO)+AB) *C.2

AARBBI=A1(AsABsBLL1)I*(B.0O%*SQRT(BLO)+4,0%B) *(=C3)
BBA1==A1(BsBsALL) *(2,0%¥SQRT(ALO)+A) *C4
BBAB1=A1(B+BsABL)*¥2. 0% (SQRT(ALO)+SQRT (BLO)+AR) *(=C5)
BBB1=-A1(BsRsBLYI)*¥(2.0%¥SQRT(BLO)I+R) *Ch
BARA1=A1(RB+ABsALL)*(8.0%*SQRT(ALO)+4,0%A) *(=C3)
BABAB1=—A1(R,AB+AR1 ) #B8,U* (SQRT(ALO)+SQRT(BLO)+ABR) *C4
BABB1=A1(BsAB»BL1)*(8.0%¥SQRT(BLO)+4,0%B) ¥(~=CS5)
ARARALE=A1 (AR SAR AL 1) ¥ (B O*¥SORT(ALD) +4,0%A) *C2
ABARAR1I=A1(AB AR ARL I *¥8. 0% (SQRT(ALNI+SQRT(RLO)I4AR) #(-C3)
ARABRI==A1 (ARIABRJRL 1) *(R,O0%SQRT(RLO)+4,0%R) *C4

VVEL =AAA+AAAB+AAR+ARA+ARARFARBR+AARA+AARAR+AARR+RRALRRAR
1+BRB+RARA+RARAR+ARARA+ARARAR+ARARRIRARR
2+AAAT+AAART+AARTI +ARAT+ARPARTI+ARRI+AARAT+AARART +AARQ ) +RAAT4+RAAR] 4
2BRR]1 +RARA] +RARARI +RARPI+ARARATI+ARARARI+ARARRY

VVEL=VVEL /ANORM

VVEL==VVEL*WO

VSAR12==VO¥ (AL { AL sAsA)+2 0% CO¥AL (AL JABI+4,0%C1¥A4 (AL AAB)+C4*
1A4 (AL sBaB)l+4, 0%C3%A4L (AL +BsAB)+4 e OXCO*AL (AL s AR WAB)+C2%¥A4(BEVALA)
242 ¢ OHCLHL¥AL (BEsAsB)I+4,0%#C3#AL (BEyASARI+CE¥AL (BFE 4B 4B ) +4,0%CH#AL (RE
BB AB) +4 6 0¥ CH¥AL(BFE s ARJAR)I+2 qO*CL1*¥AL(ABGsAsA)+4U%C3XAL (ABGsA9B)
448 o O¥C2¥AL (ABGo AgR)I+2OHCS*AL(ABGsByRI+8,0%#CH#A4 (ABGeRsAR)+84 O
5C3*¥A4 (ARG ARLAB) )

VSAR12=VSAR12/ANNRM

VSAR12=VSAR12/41 447

WOOO=WOR* (AT (ALLsAsA)+2 O%CO2*¥AT (ALY s AWB)I+4 e OXCIXAT(ALLsAWABY+4 40
1C3*AT(ALLoRsAB)+C4*¥AT (AL1 eBsR)I+4,0%#C2#AT (AL 1 +ABSAB)I+C2¥AT (BL1sA,
2A)V 42, 0%C4%¥AT (BLL1sAsB)+4.0%C3¥AT(BLL,AAR) +4.0%#CH5%AT(BLL1WByAR)I+CH*
FAT(BLLoR aB)+4.0%C4¥AT (BL1sARSABR)I+24 0¥ CI*¥AT(ABYL AsA)+40O*¥C3#AT (AR,
GACR)+8,0*¥COHAT (AR s A4 AR)+8,0%CLU*¥AT(AR1+sRIARI+2,0%¥CE5%AT(AR1sR,sR}
5+8,0%#C3%AT(AB14AR,AR))

wWo00=wo00 /ANORM

WOOO=WwO000/41 47

A=A/240

B=B/2 .0
AKE=T(AsAsAsAsAsAI+30%CO2*¥T(AsAIBIAGABRI+3,0*¥C4*¥T(AJB+BsAB4B)
1+CA%¥T(RIBsRIBsBsRI+6e0#¥CIX¥T(AIAIAIASZABI+12, 0%C2%T(AAJALAWBRHR)
248 e OXCAXT(AsAs AR sRyRI+12eN*¥CAXT (AR IAIAIBIBI+6e0%CS#T(BaBeBsBsPR s
BA)V+120OKCLRT(R,PRyR4ByA,A)

AKE=AKE /ANORM

PRINT 7+sAsRC

PRINT300+sVOsAMUsVSTAT o VVEL s AKEsWOSBETA
FORMAT(FT7e34F6629F9e¢39F15633F18639F9434F7e2)

PRINT 31+VSAR12+WO00

FORMAT(F9e44Fl2e4)

THE EXPECTATION VALUES OF THE POTENTIAL OPERATORS IN THE
TRITON ARE GIVEN BY 3 TIMES THE EFFFCTIVE VALUFS

THE VSTATIC AND VVEL CONTRIBUTIONS TO THE INTEGRATED CROSS-SECTION
ARE THEIR EFFECTIVE VALUES

GO TO 6

FUNCTION T(AOsBOsCOsDPOSENFO)
ADO=A0+DO :

BOO=B0O+EO

C0o0=C0+FO



~N

T1=241.47% (AOXDO+RO*EO+CO*F0) *¥AT (ADD 4BO0CO0O)
T2=10437% (BOXFO+CO*EN) *AJ{BOOCONsADO)

T3=10437% (COXDO+AO*FN) *AJ(COOsACOsBNN)
T4210437%(AOXEO+BO*DO)Y¥AJ(AOOBO0,CON)
T=T1+T2+T3+T4

RE TURN

END

FUNCTION AJ(B1lsB2,sR3)
TJ1=16.0%(R1*B1*R1+RI%¥RI*RD ) ¥A3 ¥R
TJ2=16.0%(B1*B1+B2%¥B2 )% (4.0*B3*B3*B3+R1*B2*R3)
TJ3216.0%(B1+B2) % (4 0*¥R3%BAXRIXPB3+7, UXRI*RI*R3#R3)
TJ4=R3#R3I*BI¥B3*¥A3+3 ,0%R] #¥R1*¥R2¥R2%¥R3+10,0*R]1 ¥R #R3*R3I*R3
TJ4=TJ4%1660
TUS=(R14B2) #%3, 0% (R2+R3) # %4, 0% (B3+B1 ) #%4,0

AJ= (TJL+TJ2+TJI3+TJ4) /TI5

RE TURN

END

ROSATI'S VELe DEPTe CALCULATIONS

PROGRAM ROSATI(INPUTOUTPUT)

READ 2 +VO+AMUSWOSBETA

FORMAT(4F T7e3)

IF (VD) 4044046

READ 74 AWRC

FORMAT(F6 el sF563sF361)

PRINT 7+A+BoC

IF (A) 14145

AB=A+R

AR1=AR+RETA

A=A+A

AL1=A+BETA

R=R+R

RL1=R+BETA

"=—C

Cl=C

C2=C*C

C3=C2%C

C4=C3*%C

C5=Ca*C

Ce=Cu*C

ANORM=AT (LA GASAY+B3,0%C2%AT(AsAIBI+6 e N¥CI*¥AT (A WA JARI+3OXCH4H*AT(R,RLA
1)+CHHAT(BIRsBI+6D%CEXAT (ReRyAB) +12 , 0% C2*¥AT (AB3ARAY+12,0%#C4*AT(
2AR VAR 4B +8sO%C3#¥AT(ARSARGAR)+12 C*¥C3*AT (A4R4AR)
AAT=(A/2e0-RB/2,0)#%2

AATI=(A/2.0+B/2.0)

X==-C1*AAl

VROSI=WO* (X*AT(AsAgART I +2 e NXXH¥C2HAT (A4BABI)I+4,0¥C1*X*¥AT (A4ABJARL)
144 ¢ O%XHCAFAT (Bo ARG AR I +C4XXRAT (B 4B ysARL I +4 0% *¥C2*AT (AR4ZARLAB1)
IHFAXAT (A As ALY +2 ¢ DH¥ARCOXAT (A 9B s AL LY +4 o OXAXCTHAT (AWARGALL Y +4 (O¥A¥
B3C3#AL (R4 AP GALL) +A*C4*¥AL (P sBs ALY ) +4 e NHAXC2%¥AY (ABsARGALL)I+2 O¥AATI
LUXCIXAT(AIAIARLY +4, 0XC3XAATTXAT (AR AR ) +4 ¢ D¥AATTIHC2¥AT (A9 ARJARY)
S4+4 ¢ OXAAT I ¥ C4¥AT(BsABJ AR I+2 s O*AATI*CH*¥AL(BR 4B yABL)+8,0¥AAT I #C3%
6A1 (AR sAB s AR1)+R*¥C2¥A1 (A sAsRLI)+2 O*R*¥CL4H¥AT (A WByBLYI)I+4,0%RXC3 %A1 (
TASABRBLI) +4 e OXR¥CS¥AT (P4 AByRLLI)I+R¥CEX¥AT(BaR R ) +4O¥R¥CLH*¥AL (A
8P +AB4RL1) )

VR0OS1=VROS1/ANCRM

VROS2=WO* (X#AT(AsALYL sAR)4+X%C2*¥AT (AsBLIWAR)I+2,0%X#C1*¥AT (A4AB1sAR)



aNeNe)
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1T4+XRCO¥AT (RO ALY S ARV X% CAXAT (RYBL1 AR +2 ,O%X%CAXAT (R4ARL 4AR)

2424 O%XKCI*AT(ARSALLIAB)I+2 6 D% X¥C3*¥AT (ARSBLL AR 44 O%X*C2*¥AT(AB
AART s AB)Y+A¥AT (AsALT s A)+AXCO¥AT (ASRLYL s AI+24OXAXCTI*AL (AGART 4A) +AHRC?
L¥AT(RGALYI sA) +ARCL¥AT(RsRL1I 9 AI+2 e ORAXCI¥AT(BGARTsA)+2 4 OXARXCL*AL(
BAR ¢ AL1 s A +26 OKC3*¥ARAT (AR GBL19A)I+4, OXAXC2# A1 (AR, AR 4A)+2 4 OHCLHAATT*
6A1(AALT sAB)I 42, 0%¥C3*AATTI*A1(AWBL1sAR)+4e0XC2XAATTI*A1(AJABLAB)
T4+2 e OXCAXAAT I *AT (B oAL1s AR+ 2, 0#CO*RAATIHAL (B 4BL1 AR +4 o OXCH4HAATT %
BA1(RsAR1 s AR +4 O COXAATTI*AT (ARSALLIAR)+4,0XCLXAATTI*AL(ARGRLLsAR)
0+8,0%CIHAATI*A) (ARSAR) yARI+BAC2¥AL(AJALL«RI+B¥C4XAL(AWBL1B))
VROSE=WO* (24 0%¥C3¥B*¥A1(A+AR1»RI+BXCLHX¥AT(BIAL1+BI+B*#Co*¥A1(R+BL14R)
142 6 OXR#¥CHEXA] (BoART ¢RI 4D OXRYCARAL (ARGALL s RIHD OHRXCEXAL (AR GRLLWR)
P+4 JOXR¥ECLHUXAT (ABART 4R )

VR0OS2=VROS2+VROS6

VROS?2=VRNAS? /ANORM

VROSZ=WOH*BETA¥ (AL (AeAsALL)+2s0%C1*¥A1(A+AGABLI+C2%¥A1(A+A4BL1)

142 ORC2¥AT (ASRIALTI)+C3#4 0%AT (AsR3ARL)I+2,0%C4*A1L(AsR4BLY)

244 qO*¥CLI#AL (ASABIAL 1) +B.O%CO*¥AL(A AR GARL ) +4.0%C3%¥AL(AWARWRLI)
B3+CH¥AT(RBsBIALL)+CBEX2,0%¥AT(RIR4ARLI+CHE*¥AL(R IR IBLI ) +440*¥C3*¥AL (B,
GAB G ALY +B e O*C4¥AL (Bo ARSAR] V44 o OXCBH¥AL (BaABGRLIV+4,0%C2*A1 (ARYARSAL
51)+8.0%C3%¥AL (AB+ARSARYI I +4 e NXCHXAL(ABWABWBLL))
VROS4==WO*BETA*BETA*¥0 5% (AT(ALLsAsA)+20%C2%AT (AL1sAsBR)+440%C1%
1AT(ALL1oA+sAB) +4e 0% C3*AT (ALl sRsAB)+C4*AT(ALL 4R 4BI+4s0%C2*¥AT(ALL AR,
IAB)+C2¥AT(BLL1sAA) 42, 0%C4¥AT(BLLvAIB)I+460%C3*¥AT(BL1aAIABR)+4,0#CHH
BAT(BL1+BsABR)+CH*¥AT(BL1 R 4B +4e0%Ca4*¥AT (BL19AB AR +240%CI*AT(ABL WA
UA) 44 O*C3H¥AT (ARl s AsR) 48, 0%C2%AT (ABLAsAB) +8,0%C4*¥AT(AR14B4+AR)

642 s 0% CHX¥AT (ARL 4R sR)I+8.O*CB*AT(ARL3ARB,AB))

VROS3=VROS2+VROS4

VR0OS3=VROS3/ANORM

PRINT 250,VROS1+sVROS2sVROS3

FORMAT(F8e342F1243)

VROS=VROS1+VROS3+0+5%*VRNOS2

PRINT 251. VROS

FORMAT(F10e6)

THE VELOCITY DFEPENDENT CONTRIBUTION TO THE Be.Ee OF THE TRITON
USING ROSATI S INTERPRETATION OF P 1S 3 TIMES THE AVERAGE OF THE
VALUES OF VROS

GO TO 6
STOP
END



CALCULATIONS WITH THE EXPONENTIAL FUNCTION (3) IN CHAPTER 5
PROGRAM TRION(INPUTsOUTPUT) ‘
DIMENSION FF(B)sQ(8)+s05(8)
READ 1.A )
1 FORMAT(F6.4)
61 B=0.7
3 AB=A+B
C=140
A=A+A
R=R+R
==C
Cl=C
C2=C1*C
C3=C2%C
C4=C3%C
C5=C4%C
Co6=CH%C
5 ANORM=AT (AsAsA)+3,0%C2*AT(AsAsB)I+6a0XCLI*¥AT (AsASABI+3,0%C4E¥AT (B B4A
1)4+CH*AT(BsB BRI+ O*CEHAT(R4yByAB)+12,0#C2%AT (AB3AB A +12 OXCHHAT(
2ABs AR GBI+ 0%C3¥AT (ARSARGAR)+12.0%C3*AT (AR 4AR)

11 AR23=2,0% (A2 (A As AV +CO¥AD (AsAaB )42 OHCIH¥A2(AWASAR)I 42 ,0%CO2*A2 (AR
1sA)+2e0%¥CU*¥A2(ABsB)+4 ORC3¥A2(A+BIAB)+4e OHCI¥A2 (AsAB WA +40%C3 %
2A2(AVABsBI+8,0O%CO2¥A2 (A AR GAB)+CE¥A2 (BaBaR)+CAH4XA2 (B4R yA)I+2 0% 5%
3A2(RIRIAB)I+4 0%C3*A2 (R sAR AN +4e0XCEXRAD(RIARRI+8OXCL¥A2 (B yAB AR
448 OHC3*A2 (AB AR YAR) +4 (0% COXA2 (AR ARZAI+4, 0% CLXA2 (ARWARWB)) /9,40

RADS=15%#AR23/ANORM

IFIRADS«LTe0s0) GO TO 51

RAD=SQRT(RADS)

PRINT 201+RAD

201 FORMATI(F1545)

RADM=ABS(RAD~-1,70)

IF{RADM+GTe0s005) GO TO 51

PO 21 1=148

TI=1

QS(I1)=SQRT(TI1)/3,

IF(2.0%¥QS(T)#QS(T)+A*A+A*A=2,0%B%B,FQR.040000) G0 TO 51

[IF(2,0%QS(T)*#QS(T)+AR*AR+ARXAR=2 ,0#R*¥R,EQ.0, 000} GO TO 51

IF(2,0%QS(II*¥0S{T)1+A#A+AXA-2 JO*¥AR*¥ARFQe0.000) GO TO 51

IF(2.0%QS(I)*QS(T)+A%A+B¥R-2 ,0%¥B*¥B4FQ.0.000) GO TO 51

IF(240%QS(T)#QS(T)+A*¥A+R¥B=20*¥AR*#AREQ.04000) GO TO 51

IF(2.0%¥QS(I)*QS{T)+ARA+AR#AR=-2. O%¥ABXABEQ«0,000) GO TO 51

IF(2.0%QS(I)*QS(T)4B*¥R+A¥A-2,0%¥B*¥R4FN.0+000) GO TO 51

IF(2,0%¥QS(1)#QS(T)+AR¥AP+A#A«2 4 O*¥B¥*¥R FQe0000) GO TO 51

IF(2.0%QS(T)*QS(TI+AR¥AR+B*#R=2,0%#B*¥RFQR«0.000) GO TO 51

FF{I)=FT(AWAsASQS(T))+CO*FT(ASAIRHIQSITI)II+2,0%CI*¥FI(AsASARWQSI(1))
1426 O#C2#FI(AsBsAsQSIT))I+2e0HCURFT (AR sBaQS{I)I+4s0%C3%FI(AsBsAR,
2QS( 1) )44 ¢OXCL*FI(ASARSAQS( T ) +4,0%C3%FI(AWARsBsQS(T))+8,0%C2
3AFT (AsABsABWQS( 1) I+CE*¥FTI(BsBsBsQS{1I)+CA4XFTI(RyB4AIQSII))I+20%C5%
4F T(B4BsABsQS(I) ) +4.0#CA%FI(RyABAsQS(I) 1 +4, O%CEHFT(R4ARWBQS(I))
54+8e 0% CLHXF T (BsABsARSQS(T )} I +8,0%¥C3*FT1 (AR WABsARVOS(T) ) +4,0%C2*F 1 (
6ABsARsASQSII))+4 4 O#CL4*FI({ARsABsBQS(T))

FF(I)=FF(I1)/ANORM

PRINT 99.FF (1)

99 FORMAT(F1046)

21 CONTINUE

51 B=B/2.,0

A=A/240

B=R+0.02%

IF(BsLE43.CO) GO TO 3
41 A=A+0,005
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IF(AcLE«0+29) GO TO 61

STOP )

END

FUNCTION AI(AsB+C)

AT=240/( (A+BY#*(B+CI*(C+A))

RETURN

END

FUNCTION A2(AsBsC)

A2=240% (=240%1 40/ (CHRD+R¥CHAXCHAHRB) % %242 4 0% (2 4 NXCHA+R)I*¥%2 / (CHC+R
1 #CH+ARCH+HA¥B) ®#%3) 7/ (A+B)

RE TURN

END

FUMCTION FI(A3B.CyD)

IF(AEQeB) 1,42

NAl1=1.571

QB1=1.571

GO TO 3

QAL=ATAN(D* (44 OXDHD+A*A+TNXRHB) /(R* (A¥A=BH*B) ) )
QB1=ATANI(D*(4.0%D*D+3 (O*XAXA+R*B) / (A% (A*¥A=B*R)}))
IF(D*D+AXA~C#*#CeEQ N 000} 445

QA2=16571

QA3=1.571

GO TN 6
“QA2=ATAN(D*(D¥D+AXA+C*C ) / (AX(D¥D+AXA=CHC) ) )
QA3=ATAN( 2 0%¥D*C/ (N*¥D+A*A=C*C) )
IF(D*¥DN4+R*¥R=C*¥C.EQ.0.000)748

QB2=1+571

OB3=14571

GO TO 9

QBR2=ATAN(D* (D¥D+R#B+C*C) / (BX(D*D+B*B=C*C) ))
QR3=ATAN( 2 0#D%C/ (D*D+RXR=CHC) )
FI=(QA1+QA2+0B2-QR1-QR3-QA3)/(D* (2, 0*¥D¥D+A*A+B*B=2 ,O*C*(C) )
RETURN

END

THE BINDING ENERGY 1S EVALUATED USING ROSATI S INTERPRETATION OF P
PROGRAM TRIBE(INPUTOUTPUT)
READ ls AsBaC
AB=A+R
C=1.0
A=A+A
R=R+R
==C
Cl=C
C2=C1*C
C3=C2%*C
C4=C3%C
Co=C4*C
C6=C5*C
ANORM=AT (AsA gAY +3OXCOXAT (A AR+ OXCTHAT (A A AR )43 OXCHURAT(B,,R, A
1)4+CHEXAT (B 4B sBI+6 DXCERAT{RyRyABI+17 (OXC2¥AT (ABAB A +12, 0XC4UXAT (
PARBJAR 4B +8 ¢ OX¥C3*AT (ARSARGAR)I+1260%*C3%AT (A9RsAB)
ACE=1e43T7H#{AL(AAsAI+2 JOHCO¥AL(AGAIR)+4eOXCLI%AI(AAWABI+C4*A) (AR
1oB)+4 6 O*¥C3#AL (A 4B gAB ) +4 6 OXC2H*AT (AJABJABI+CEX¥AL (B4R 4B )I+2 0%C4*A]
2(BsBosA)+440%¥CH%A1(ReBReARI+C2%¥A1(RIAJAI+ 4o O%¥C3#A1(R4AAR) +4 0% oy
3A1(Bs AR GARI+8,O%CA%AT (ARGJARZ AR +R,0%C2*A1(ABsARWA)+8,0%C4#A1 (AR,
LUAB eBI+2e 0% C1#AL (AR GAGA)I+4 e N*C3¥AL (AR GAWB)I +2,O*%C5*¥AL1 (AR 4R 4R) )
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39

ACE=ACE/ANORM

PRINT 202+ ACE

FORMAT(F1045)

VO=0e5%(1e0+1652)%100460

AMU=1.25

AlLL=A+AMU)

BE=B+AMU

ABG=AB+AMU)

VSTAT==VO*{AT (AL sAsA) 42 0%CO#AT (AL s A BRI +440%CL#AT (AL sAsAR ) +4 4 0%
1C3*AT (AL sB o ARY+CLH*AT (AL 4R sB)+4 e O0%#C2%AT(ALIARAR)+CP2XAT(BE+AGA)
242 dO*CL*AT (REsABI+4O¥C3*¥AT (BE 9 AsARI+4 s OXCE5#AT (RE4RAR)+CH*AT(
BREsR4R)+4 ¢ ONCHUXAT (RE s ARWAR)I 42 OXCI*AT (ARG AsA)+40%C3#*AT (ABGsA4R)
44+8 6 OXCO2HAT (ARG A9 AR) + 8 U%CH*AT (ARGsBR s ABI+2. 0*CE*AT (ABGaB4R)
5+8.0%C3%AT (ABGsABJAB) )

VSTAT=VSTAT/ANORM

VSTAT=3,0%VSTAT

WO=82e94/2 0

RRE=2.80

AU=A+BBE

RU=B+RBE

ABU=AB+BBE

AE=AU

ABE=ARU

BE=BU

Wi=(({A=R)%%#2/4,0)%¥(AT(ARUsAsA)+AT (ARU B sBI+4,0%AT(ARU4AR4AB)
1426 O¥AT(ARUGASR) =4, OXAT(ABLIs AsAR ) =4 ,OXAT(ARU 4By AR))

W1i=WI+A* (AL (AU AsATH+AT(AUSRIBI+4,0¥AL (AUSARIAR)I+2,0%A1 (AUSALR)
1=4e0%¥A1 (AU ASAR) =4 ,0%AY (AUsRsAR))

W1=W1+B* (AL (BUsAsAI+AT(RUIRIR)I+4,0%A1 (BUSABIAB)+240#A1(BUWIALB)
1=4,0%¥A1(BUsAsAB)=4,0%A1(RU4RsAB))

W1=W1=260%AR% (AL (ARUA sAI+AT(ARU R aBR)+4 e0%#AT LARUGARGAR)+2 0%A1 (A
1BUsAsR) =4 s O%AL (ARG A4 AR =4 ,O*XAT (ARULR 4ABR) )

W1=W1+0eS#¥ (A5 (AUsAsAI+AS(AUSBRIBI+4 DHAS(AUSARSABI+2 4 0%AS (AlJ,A4R)
1=4 s 0XAS(AUsAsAR) =4 e 0¥ AS(AlJyRy»AB) )

Wlz=Wl=(A5 (ABJsAsA)I+AS({ARUsRIR)+40#AB(ARUGAR ¢ARI+2s0#A5(ARU A WB)
1-4e0%¥AB(ARUAIABR) =4 0¥A5(ABUsBsAR))

W1z=W1+0e5%¥(AS(BUsAsA)+AS(BUsRsB)4+4e O%AS(3BUARsAB)I 42, 0%A5 (RUJ,A4R)
14 0%¥AS(BUsAsAB) =44 0% A (RUsRsAR) )

W2=((A=B)#%2/4,0)% (AT (ARJAUSA)+AT (AR WRURI+40%AT (AR ARU4AB)

142 e DO*FAT (AR SAUSR) =4 O¥AT (AR AUAB) =4, OXAT ( AR4BLI,ABR))

W2=Wo2+A* (A1 (AsAUSAI+AT(ARUR)I+4,0%A1 (AJARUAR)+2,0%A1 (A AU LB)
1=4e0%A1T(AJAULAR) =44, 0%AY(AsRULAR))

W2=W24+B# (A1 (BsAUsA}+AT(RsBRUIB)I+4,0*A1(B4ABUARI+2,0%A1(B4AlJ+B)
1=4.0%¥A1 (B4 AUGAR) =4.0%A1(R4RUJsAB))

W2=WP2=2 ¢ N*AR® (AL (AR AU A)+AT (AR B¢ )+460%A1 (ARGARUSAR)I+2 40%A1 (A
1B AUGR) =4 0%AL (AR sAUsAR I ~=4,0%A1 (ABsRUAB) )

W2=W24+0e 5% {AG(AIAUSA)+AS(AGRUIB)I+4 e O*¥AS({AgARU9AB)I+2 . 0%#A5 (AsAUR)
1-4 e 0%A5(AsAUSABR) =44 0%¥A5 (A+BUSAB) )

W2=Wo~(AS (AR AUSA)+AB (AR LBIIsB)+4 0*A5 (AB AR sAR)I+2, 0%¥A5 (AR s AU LR)
1-4.0%¥A5 (AR s AUsAB) =4, O¥AS { ABsRUAR))

W2=W2+0 5% (AS(RsAUSA)+AS(BsRUBI+4e0%¥A5 (B4 ARUsAR)I+2,0%A5 (R4 AUWR)
1=4,0%¥A5(BsAUsAB) ~40%¥A5(BsBUsAB))

WD=AT(AE s AaA)+2 e O%C2#*AT(AE s A9 B ) +4 O%C1I*AT (AE s A9 AB) +4 ,0%*
1C3%¥AT(AE sB s AB )+ CA4¥AT (AF 4R aR)+40 OXC2XAT(AE sAR AR +C2*AT (RE WA 4A)
2+2 e OXCUXAT (BEsAB)+4,C#C3¥AT (REs A9y AR I +4OXCE*¥AT (REWRIAR)+CH*AT(
BBE s BeR)+4  O%CHUXAT (REWARIAB)I+2 0% C1¥AT (ABE s AsA)+40%C3*¥AT (ABFEsALR)
4+8 ¢ OXC2HAT (ABE 3 As AR +B,OHCHXAT{ARFE 4R s AB)+2 4 OXCEXAT ( ABF 4R 4R)
54+8.0%C3%AT (ABE,AB,AR)

WS=A1T(AE s A AV 4+2 e OXC2HAT(AE g AsB)+40%C1*¥AY(AE yAJAR)+C4%AL (AE 4B 4R
1+4 e O¥C3¥ATLAF sBs ARV +4 4 OXC2#AL (AEJABJAR)+CHE*AL (RE +B 4B I +2 s 0*¥C4*A1 (RE
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<31

29ReA)+4,0%CE*AL (RESRIAR)I+C2*¥AL(BESAZA)I+440%C3%AL(RE 4AWAR)
B+4 o OXCL4XA] (BE s ABSAR) +8 O%¥C3¥A1(AREJARWAR) 48, 0% C2*¥A1 (ARE AR WA +8,0%
UCL4¥*A) (ABE AR SBYI+2,0%CI1*¥A] (ARFsAsA)+440%¥CA*A] (AREsAsR)I+2,0#CH*A](
SABE B ¢B)

Wl=W1%*¥WO*3e0/ANORM

W2=W2%1 4 53#W0/ANORM

WD=1,5%WO*BRE*BRE*WD / ANORM

WS==3 ¢ O¥WOXBBE*WS/ANORM

VVEL=Wl+W2=-WD-WS
AKF=((A=B)#%2/4 40) % (AT (ARWASA)+AT (AR 4R 4B +4,0%AT (AR, ARGAR)

142 OXAT (ARG AR =4, O¥AT(ARVAIAR)I =4 OXAT(ARJRLAR))

AKF=AKE+A¥ (AL (A A A +AT (A SRIR)I+4 0¥AT LAJARGARI 42, 0%A1 (A4A4R)
1-4.0%¥AY (AVAGABY =4 ,0%AY (AR AR} )

AKE=AKE+B*¥ (A1{RsAsAI+AT(RIRsRI+4LNO¥AT(RGARGARYI D (OXAL (R4A4R)
1=4,0%AL(BsAsAB) =4, 0%A1(R,R4AR))

AKE=AKE =2 0% AR® (A1 (AR JAGAI+AL (AB B RI+4,0%¥A1 (ARVAB AR +2 ,0%AL (A
1B sAR)I—440%A1 (AR sAsAR)~4,0%A1(ARB+AR))

AKE=AKF+046%# (AS(AsAsAI+AR(AsRIB)+44D¥AS(AJARLAR)I+2,0%*¥A5(AsA4R)
1=-400%A5(AsAsAB) =4, 0¥AS5(AB4AR))

AKE=AKFE =~ (AG(ABs AsA)+AS (AR B B +4 e N%#AB (AR AR AB)+2 ,0%A5 (AR 4A (B)
1=4 e DO¥AS(ARGAZAR)Y =4, 0%¥AS(ARZRH4AR) )

AKF=AKE+0 e 5% (AS(RsAs AV +AB(RyR 4B ) +4 e N¥AG(R4AR yAR)+2 4, O%¥AB (R 4A 4R
144 0%AS (B AsAR)Y =4 ,0%A5 (R B, AB))

AKE=AKE*1 ,5%41,47

AKE=AKE /ANORM

BE=AKE+VSTAT

PRINT 41 +VSTAT eW1leW2sWD WS

FORMAT(5F1446)

PRINT 42 +BE +VVFL

FORMAT(2F2046)

WO=WO*0e415

BBE=2,0

IF(WOelLTel0e0) GO TO 40

GO TO 39

THE BINDING ENERGY IS GIVEN BY THE SUM OF BE AND THE TWO VALUES OF
VVEL

STOP

END

FUNCTION Al(AsB.C)

IF(B=CeEQ.0.000) GO TO 31

Al==2 0% (ALOG(A+C)~ALOG(A+B) )/ ((B+C)*(B=C))
RETURN

Al=2.0/((B+CY#(A+R))

RE TURN

END

FUNCTION A5(AsB+C)

IF(B-CeEQe0.000) GO TO 5

AS5=2 0% ((CH+AYHALOG(CHA)=(RB+AY*ALOG(RB+A)) /((B+C)*({R~C))
RE TURN

AS==2 O0%*ALOG(A+8) /(B+C)

RE TURN

END

THE PHOTODISINTEGRATION CROSS=SECTION
PROGRAM SIGIN(INPUTOUTPUT)



1 RFAD 14 AsRWC
3 AR=A+BR

C=140

A=A+A

R=R+R

C=-C

Cl=C

C2=C1#%C

C3=C2%*C

C4=C3%C

CoE=C4%(C
C6=CH*C
& ANORM=AT (AsAsA)+3,0%C2XAT(AsAsBI+66DXCIXAT(AWASAB)I+3,0%¥C4*AT(BIRHA
1)4+CEXAT(RBsPRyB)+6e DXCEXAT(RByRyABI+12 ,0%C2#AT(ABSAR ¢A)Y+126 O*CH*AT(
P2ABsARsR)I+84 0*¥C3IHAT (ARGARGAR)+12 OKC3*AT (AWR4AB)
V0=152,0
AMU=1425
372 AL=A+AMU

BE=B+AMU '

ABG=AR+AMU ;

VSAR12==VO*¥ (A2 (AL sA+sA)+2 0% CO¥A2 (AL 4 AsB)I+4 4 0¥C1*¥A2 (AL s AsAR) +C 4
1A2 (AL sBaR)I+440XCAX¥A2 (AL sReARI+4 4 OXCORAZ (AL VAR SARI+CO#A2(RE4A4A)
242 OHCLU¥A2(RF s AsR)+4 0%C3*¥A2 (BEsAs ARV +CEHE* A2 (BRE 4R 4B 1+4 4 0*CHE*¥A2 (RE
AR AR +4 ¢ 0¥ CL4HAD (RE G ARGAR)I 42N C1H¥A2 (ARG AsA)+4,0%C3HA2 (ARG 4AWR)
L+B OXCO2H¥AD (ARG A 4RI +2 4 O¥CE#AD (ARG IR 4RI+ B, O¥CHH*A2 (ARGeR sAR)I+8,4 0%
SCA*¥AD (ARG ARLAR))

VSAR12=VSAR12/ANDRPM

VSAR12=VSAR12/4]1 447

PRINT 31 +VSAR12

31 FORMATI(F1545)
BETA=2,.80
WO0=82¢94

121 AL1=A+BETA

RL1=R+RFTA

AB1=AR+RETA

WOOO=WO* (AT (ALLsAsAY+2.0%C2¥AT(ALLsAR)+440%C1%#AT(ALLvAWAR) +4 0%
1C3#AT(ALL sBsABYHCHHAT (ALTsRsRY+4 4O*¥C2*¥AT(ALL sARWAR)+C2%AT(RLL4A,
2AV+2O#CLH¥AT (BL1sAsB)+40%C3*¥AT(BL1sAWAB) +4 O*CO*AT(BL14RAB)+CH*
AT (BL1sBaB)+440%¥CL¥AT (RL1sABsAB)I+2s0%CI*¥AT(AB13AsA)+4.0%C3%*AT (AR1
LAGR)+8 s ORCOHAT (APLsAGAR)I+8, OXCAHRAT (AR 4R ARI+2,0%CHEXAT(ARLIRHR)
54+8,0#C3*¥AT1(ABLl,ARsAR))

WOOO=WOO0 /ANORM

WOOO=WOND /41 447

PRINT 122+W0O00

122 FORMATI(F1548)

IF(BFETA«LTe2.10) GO TO 40

BETA=2,.0

WO=O.415*82.94

Go To 121

THE STATIC CONTRIRUTION TO SIG-IN IS GIVEN BY VSAR12 BUT THE VEL.
DEPs PART IS THE SUM OF THE TWwO WOOO S

40 STOP
END



—
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THE COULOMB ENERGY FOR FINITE NU;LEQNS USING OUR CORRELATED

EXPONENTIAL FUNCTION i C

PROGRAM COUL{ INPUT»OUTPUT)

CORRECTIONS TO THE COULOMB ENERGY FROM ASSUMING A FINITE
NUCLEON

READ 2+AsRsC

FORMATI(Fbed sF5e635sF361)

IF(A)Y40440473

AB=A+R

A=A+A

B=B+R

==C

Cl=C

C2=C*C

C3=C2*C

C4=C3*%C

C5=C4u*%C

C6=Ch*C

READ 7+ AMU

FORMAT(F543)

IF(AMU)1e146

ACE=1,.0

D=A+AMU

E=sB+AMU

X=AB+AMU : T u
ACEEZ1e437% (A1 (DsAsA)+2,0%CO2%¥AL(DAsRI+40#CTIHAT(DsAJARI+C4L4XAL(DWR
19B)+4 4, 0%C3HAL(DIBIAB ) +40%¥C2%¥AL (DsABsAB)I+CHE*AL(EsBsR)I+2.0%C4%*A]
2(FeBsA)+4e ORCEX¥AL(FsRBgAR)+CP2#AL (E9sAgA)+4oO*¥C3*ALIEsAsAR) +4 0% Cl
3A1(FEsABsAB)I+80%¥C3%AT(XsAB s AB)+B 0¥ C2%AL (X s AR A)+840#C4HAL (X
GAB 4B 42, 0#C1%¥AL (X sAsA)+4 0XC3H¥AL (X4 A4B)I+2.0%C5%A1 (X 4B yB))
ACE=ACE /ANORM

IF(AMUGEQe34360) ACE=ACEX*2.776

IF(AMUEQe26970) ACE=ACE*3,639

THE CORRECTION DUE TO THE TERMS IN R-1 IS GIVEN BY THE DIFFERENCE
BETWEEN ACE(AMU=2.97) AND ACE(AMU=3,36)

PRINT 10+AsBsCosAMULACF

FORMAT(Fb6eb4sF5e390F3el9F5e34FT7064)

GO TO 8

STOP

END

PROGRAM TRION(INPUT.OUTPUT)
READ2 +V0O +« AMU
FORMAT(2F543)

IF (VD) 4044046

READ 7+ AsB4+C
FORMAT(F6e44F5e39F3s1)
IF (A) 141458

AB=A+R

A=A+A

B=R+RB

S

Cl=C

C2=C*C
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40

C3=C2%C . : "
Ch=C3%C

C5=C4*C

C6=C5%C

ANORM=AT (AsAgA)+3 O¥C2%AT(AsAsBR)I+8 e NHCIHAT (AsAsAR)I+3 0% C4*¥AT (R 4Ry A
1)+CEX¥AT(RIReB)+6s O%CEXAT (ByRBsAB)+12,0%C2%¥AT (ABJABJA) +124 O*CL4*AT(
SAB G AR 4B)I+8 ¢ O#C3IHAT (ARJARLARI 412 0%C3*AT(A4R4AR)

AL =A+AML)

BE=B+AMU

ABG=AR+AMU

VSTAT==VOX*X (AT (AL sAsA)+2OX¥C2*¥AT (AL s AsB)I+4 e 0 CIXAT (AL s AJAR ) +440%
1C3*AT (AL oBsAB)+C4%AT (AL B aB)+4e O%C2%*AT(AL«ABsABR)+C2#AT(BEsALA)
242 ¢ OXCLXAT (BEsAsBI+4, O%C3*AT(BEsAyAR)+4 0% CH*AT (BEWByARI+CHXAT(
AREsBoB)+4 e ORCL4¥AT (RE s ARGAB)I +240%C1%¥AT (ABGsAsA)+4e0%¥C3*AT (ABRGsALR)
4+8 e OXCO*¥AT (ABGoAsAR) +R 4 O%CL¥AT (ARG RIAR)I+2,0%#CEXAT (ARG4R4R)
5+B8+0%¥C3%AT (ABG4AR4AB))

VSTAT=VSTAT/ANORM

IF(AMUSEQe3¢36) ACE=VSTAT*04582

IF(AMUCEQe2497) ACE=VSTAT*Deb44

ACE=-ACE

PRINT 11+AsBsCeVOsAMUIVSTAT

FORMAT(2Fbe4sFbhel s2F5434F1Ns5)

PRINT 2024ACE

FORMAT(F1045)

THE CONTRIBUTION OF THE TERMS INDEPENDENT OF R IS THE SUM OF THE
VALUES OF ACE

GO TO 6

sSTOP

END

THE AMOUNT TO BE TAKEN OFF THE VALUE OF CeEe IS THE TOTAL SUM
OF THE TWO CORRECTIONS



THE EVALUATION OF RETA IN OUR S PRIME STATE WAVEFUNCTIONS
PROGRAM SDASH(INPUT«OUTPUT)
Az04T4

2 B=0e76

3 P1lu(20%A)#RBR(ALR)HXD2% (5 SHARA+2 ,0%BRB+6 4 5%A%B)
P2=(Be0XAXA+5 4N *AXBHR¥R) % (1 45%A+0,5%B)%%5
Pe2,0%(1.0-P1/P2)

P 1S THE PROBABILITY OF THE S PRIME STATE
PRINTS 4P sAWB

T B FORMAT(F10e62F543)

aNalala

B =B+0.005 L "
IF(B-A.LE.0+40) GO TO 3

NUR RESULTS ARE
1e0 PERCENT Py BETA =0,435
1¢5 PERCENT Py BETA '0.450»
7T T 7240 PERCENT Py BETA =04465%
sSToOP

T END



PROGRAM FOR CHAPTER SIX
EVALUATION OF F2(02) AND THE MUON CAPTURE RATE MATRIX ELEMENTS
PROGRAM CORR ( INPUTsOUTPUT)
COMMON AQ

1 READ 24ARsC

2 FORMAT(3F543)
IF(A.FQe0) GO TO 40
PI=3.14159
AB=A+R
A=A+A
B=B+R
PRINT 144A4B,sC
14 FORMAT(3F10.46)
5 C=-C
Cl=C
C2=C*C
C3=C2%C
Cu=C3%C
C5=C4*C
C6=C5*%C
BP=0.870
3 AP=0,74
THE MOMENTUM TRANSFER IN THE MUON CAPTURE CORRESPONDS TO Q2
FQUAL TO 0427 FM=2
AQ=0.27
ALA=(A+AP) /2.0
BBE=(R+BP) /2.0
ALB=(B+AP) /2.0
BEA=(A+BP) /2.0
BA=(AP+RP) /2.0
ANORMG=( AP+BP )% (AP+BP ) *SQRT(AP+BP ) * AP*SQRT (AP) / (SQRT (B8.0*PI*P1
1% (B O*AP*AP+5,N*AP*¥BP+RP*RP) ) )
FVI1V1=ANORMG*ANORMGH# (FT(AP AP +BP )45, 0%F I (BP4AP AP ) =2, 0%F1 (AP,
1BA+BA)=4eO*¥FT(BASRASAP)) /640
FV1V2=ANORMG*ANORMG* (F T (AP sAPsBP)+2,0%F1(RA4BA,AP)=F1(BP+AP,AP)
1-2.0%FT(AP+BAsBA))/SORT(12.0)
FV2V2=ANORMG*ANORMG* (FT (AP s AP sBP)I+F T (BP4AP4AP) =24 0%F1 (AP +BA,BA)
1)/240
FVIVI=FV1V1%¥B.0*PI*P]
FV1IV2=FV1V2%8.0%PT%P1
FV2V2=FV2V2RRN#PTI#P 1T
PRINT 10+ FVIV14FVIV2,FV2V2
10 FORMAT(3F1246)

5 ANORM=AT(AsAsA)+3,O%C2*¥AT(AsAsB)I+6eO#CI*¥AT(A4A,AB)+340%C4*¥AT(B,BA
1) +CEX¥AT({BsBsB)+66 OXCOH*AT (ByRsAB)+12,0¥C2*¥AT (ABsABsA) +12+0*CA*AT(
IAR s AP +B)+8 e OHCIHAT (ARSARGAR)+12 OXC3*AT(AsRIAR)

ANN=SQRT (84 0%P T *P I *ANORM)
FCOUI=ANN¥ANORMG* (FT (ALALALASRFAY+CI*#FT(ALAJALBWBEA)+CI*FT(ALB,A
TLA+BEA)+C2*¥F T (ALB s ALR 4RFA)+C1#*F 1 (ALAJALAJBRE)+C2*FI(ALA+ALB+BBE)
SACOXFT(ALR+ALASBBE)+C3*FT1(ALR+ALRSBRE))/SQRT(640)
FCOUL=FCOU1+ANN*ANORMG* (FI(RFAsALAWALA)+C1*FT(BEAJALBLALA)+
1C1%*F1 (BBE s ALAsALA)+C2%F 1 (BRESALBALAI+CLI*¥FI(BEAJALAZALRB)+C2*FT(
2BEAsALBsALB)+C2%F 1 (RRF 3ALASALB)+C3*F 1 (BBE4ALBSALB))/SQRT(640)
FCOUL=FCOU1-2+ O *ANN¥ANORMG* (FI(ALA+BEAJALA)+C1*FTI(ALAJBBEJALA)
1+CT1*F T (ALRsRFASALA)+C2#F T (ALRsBBE AL A)+C1*¥FI (ALAWBEAALB)+C2*FT
3(ALA+RBE sALB)+C2%FT(ALRWREAsALB)+C3#FI(ALRVBRF,ALB))/SORT(6.0)
FCOU1=FCOU1/ANN#**?

FCOU2=ANN*ANORMG* (FI(ALAJALAyBEAI+C1*FI(ALASALBBEA)+C1*FI

1 (ALBsALA sREAY+C2*¥ET (ALRGALRSREA)+CI%FT(ALAGALALRBE)+C2*FT (ALAWA
SLBBBE)+C2#F T (ALBsALASRRE)+C3*F 1 (ALRJALBBRE)) /SQRT(240)



20
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40

FCOU2=FCOU2=ANN*ANORMG*(FI1 (BEAsALAWALA)Y+CI#FI1(BEALALBsALA)+C]
1#FT (RBEsALASALAY+C2#F T (RBRESJALBsALA)+CI*FI(BEASALAWALB)I+C2*¥FT(BEA,
AALR s ALB)I+C2*F1(RBFsALASALB)+C3%F T (RREWALRWALR))/SQRT(2.0)

FCOU2=FCOU2/ANN*%2

FCOU1=FCOUL1%*840#*PI%*P]

FCOU2=FCOU2%¥8.O*PI#P ]

PRINT11.FCOUlsFCOU2

D021 I=1410

AQ=1]

F2CI==ANN*¥ANORMG* (FI(BFAALAsALA)=FT (ALAJALAWBEA)I+CI*(FI(BEAYALA
15ALBI+FTI(REALZALBsALA)+FI(RRF4ALAWALA)-FTI(ALAJALBBEA)=FT (ALR
23 ALAGREA)=FT(ALASALAWRRE)I+C2*(FI(RFAJGALBSALR)I+FT(RREJALAWALB)+
3F 1 (BRF +ALBsALAY=F T (ALRJALBsRFEA)~FTI(ALAJALB+BRE)~FI(ALB+ALAWRRE))
44C3%#(F1(BBE+ALB+ALB)-FT(ALBsALBsRBE))) /SQRT(640)

F2C1=6.0*F2CT/ANN#*%2

F2CI=-F2C1

1T SHOULD BE REMEMBRERED THAT BECAUSE BETA IS LARGER THAN ALPHA

THE AMPLITUDE OF THE S PRIME STATE 1S OPPOSITE THAT OF THE S STATE

F2CI=F2CI*8.0%PI#P]

PRINT20.F2CI

FORMAT(F158)

CONTINUE

BP=BP+0.0320

IF(BP.LE+Oe930) GO TO 3

STOP

END



OUR PROGRAM FOR THE ReMsSeRADIUS OF 3H AND 3HE

PROGRAM RADII(INPUTOUTPUT)
READ2+A4B4C

FORMAT(3F5.3)
PRINT2+sAeBsC

IF(A«EQe0) GO TO 40
AB=A+B

A=A+A
B=B+B

PI=3.14159
c=-¢C

Cl=C
C2=C1*C

C3=C2*C
Ca=C3%C

C5=C4*C
C6=CH*C

BP=04870
AP=0e74

ALA={A+AP) /2.0
BBE=(B+BP) /2.0

ALB=(B+AP) /2.0
BEA=(A+BP) /2.0

5 ANORM=AT(AsAsA)+3,0%#C2#*AT (AsAsBI+6eN*¥CI¥AT(AWAJABI+3 0% CLXAT (B4R oA

BA=AP+BP

1)+C6¥AT(BsBaB)I+6e OXCHXAT(BsBsABI+12, 0¥C2*¥AT (AB9sABWA) +12.0%CH%AT (
2AB s AR«B)+B e O#C3*AT (ARsARWARB)+12 OXCIHAT (A«BJAR)

ANORMG=BA*BA*SQRT(BA) ¥AP%*SQRT (AP )/ (SQRT(8s0*PI*P[* (8 s 0%AP*AP+5,0
1*AP#BP+BP*BP ) ))

ANN=SQRT (8 0%PI#PI*ANORM)
RADS=3+0%2e89

AI1=3.0%RADS/2.,0
BA=(AP+RP) /2.0

AT11=ANORMG*ANORMG* (2 O¥A4 (AP s AP +BP ) +A4 (BP AP 4 AP ) =2 0% A4 (BA4BA,
1AP)Y=A4 (AP +BA,BA) ) '

AT11=AT11%8.0%PI*pP]
PRINT 71.AT11

All=AT1+AI11
PRINT 71.AI1

71

PRINT 71 +«ANN
FORMAT(F15.8)

AT2=ANN*¥ANORMG*SQRT(3e0/2¢0) % (AL (BEA+ALAJALA)I+CI*¥AL(BEALJALALALR)
1+C1*¥A4 (BEAWALBSALAI+C2%¥A4 (BEAWALBLALBI+C1#A4 (BBE sALAWALA)

2+C2#A4 (BBREsALASALR)+C2*¥A4(BREVALBSALA)+C3*¥A4(BBEWALBWALR)
3=A4(ALAWALAWBEA)~C1%*A4 (ALASALASBRE)~CI1*A4(ALASALBWBEA)-C2*A4(ALA

4yALBWBBE)—C1¥A4 (ALBsALASREA)~C2%¥A4(ALBsALAWBBE)-C2%#A4 (ALBJALBREA)

5~C3%*A4 (ALB.ALB,BBE))

Al2=A12%8.0%¥PI*P1I
AT2=AT2/(ANN*¥ANN)

PRINT714A12
Al3=A12

H3=2e0%A11/9.0-(ATI2+A13) /9.0
HE=2e0#A11/940+2 0% (AI2+AI13)/9.0

3H=SQRT(H3)
3HE=SQRT(HE)

PRINT 72+ 3H,43HE
FORMAT (2F1548)

BP=BP+0.03
IF(BPeLE«Ue930) GO TO 3

GO TO 1



40 STOP

END
FUNCTION A4(C4,4,D44E4)

ALT1=96 0% (C4+DL4+EL) / ( (CL4+D4L4 ) ®¥S (0¥ (CL+EL ) #¥%#2 ,0%* (DG+EL ) #%2 ,0)
A42=96e 0¥ (CHHDL+EL) / { (CLHHEL ) ¥#5 0% (C4+D4 ) ##2 0% (D4+EL ) #%2 ,0)

AG3=T2e0%(260*C4+DLA+EL ]/ ((CH+DL ) #%4 0% (CH+EL ) %24 ,0%(D4+EG ) )
Aaa=264e0/((Ca+D4) ¥#%40# (CLHHEL) ¥ (DL4+HFEL)I%%3,0)

AG5=24 00/ ((CL+DL) # (CL+EL) %4 0% (DL+EL) %¥3,0)
ALB=24 o 0% (340%D4+3s OXE4+240%Ch) /{ (C4+DL)* (CL+EL) ¥ (DG+EL) ) %%3,0

AbG=A41+AL2+AL3+ALL+AL45+AL6
RE TURN

END




PROGRAM FOR THE COMPUTATION OF G SQUARED AND THE MAXIMUM CROSS-

SECTION IN THE REACTION 160(3HsP)180
PROGRAM OXY(INPUT sOQUTPUT)

A=0e40
B=2+00

C=0e4
AB=A+B

A=A+A
B=B+B

PI=3414159
=-¢

Cl=C
C2=C*C

C3=C2*C
C4=C3%C

Ch=C4*C
C6=CH*C

5

ANORM=AT (AsAyA)+3,0%C2%¥AT (AsAsB)+6e ORCLI*¥AT (AJALABI+3 40%C4*AT (BB A

1)+CO*AT(BsBaBI+6e OX¥COX¥AT (ByBsABI+12,0#C2* AT (AB3ABA)+12.0%CH*AT (

2AB«ABsB)+8e O*¥C3*AT (ABSABLAB)+12eGHC3%*AI (A4BAB)
ANN=SQRT ( ANORM)

A=A/2.0
B=B/2.0

AE=A+1425
RE=B+1+25

G=0e5% (5566 0% (AT (AEIAsAI+2 0%CI*¥AT (AE +AWBI+C1*¥AT (BEWAsA)+C2%A]
1(AE+BsBI+2eO%C2H*AT (BESsAsBI+C3A*AT (BE 4B B ) +4e0%4] o4 7%V (AR 2 +80)

2+4 4 0%17621%V(AsB4s2400)) /ANN
G=G*SQRT (B8« 0*¥PI*PT)

G2=G*G
CSEC=32e5%G2/(31.4%1000000.0)

111

PRINT 111+ G+G2+CSFC
FORMAT(3F20.5)

AP=0e74
BP=090

BA=AP+BP
ANORMG=BA*BA¥SQRT (BA) *AP*SQRT (AP} /( SQRT (B 0PI #P [ % (8 4 QXAP*AP+5,0

1*AP*BP+RP*BP )Y ) )
PRINT 42+ ANORMG s ANORM

42

FORMAT(2F15.8)
AP=AP/ 2.0

BP=BP/ 240
GSP=0e 5*¥ANORMG*SQRT (B« O*¥P I %P1 ) * (556, 0% (A] (BP+1 .25 AP ¢ AP)=AT(

1AP+14254APsBP) ) +4 0% (4] e 4T7¥VS(APsBP 32680)+17e21%VS{AP»BP +280)))
2/SQRT(6.0)

GSP=GSP*SQRT (B« U*¥PI*P )
PRINT 100.GSP

100

FORMAT (F2045)
G=SQRT(0«985)*G-GSP

G2=G*G
CSEC=3245%G2/(314%1000000,0)

112

PRINT 1124GsG25sCSEC
FORMAT(3F20e5)

STOP
END

FUNCTION VIXsYsZ)
C=-O .4

Cl=C
C2=C1*C

CR=(C2%C



V== (2 O¥XH¥X+2 0% X X747 %7 VH (AT (X 4T 4 X oY1 +2 0 QHCIHEAT(XAZ ¢ Xv¥)

1+C2#ATUX+Z oY oY) )= (26 0%¥YHYH+2e0%Y*Z+7%#2 V¥CLIH* (AL (Y+ZeXsX)+2e0
BHCLIH¥AT(YHZ o X s YI+C2HAT (Y47 aY oY) )+ (40X +2e0%7 )% (AL (X+7 ¢XaX)+2e0

HHRCLIHAL (XF+Z o X oY) FC2¥AL(X+Z oYY ) ) H (40 0%¥Y+2e0%2 ) H* (AL1(Y+Z X aX)+206
S50%¥CL*#AL(Y+7 o« XaY)+C2¥AT (Y+Z YY) ) #C]

RE TURN
END

FUNCTION VS(XsYaZ)
VS== (24 0¥YH*Y 424 0%YRZ+7#7 ) ¥ATIVYHT7 o X o ¥ I H {4 oD%V +2 0%7 ) %A1 (Y+T7 « Yo X)

G4+ ( 26 OXHEX+260¥XH2+ZH7 VHAT (X479 X9V )= (4 eCHX+24C%#Z I HAL(X+Z 9X oY)
RE TURN

END




THIS PROGRAM IS USED IN CHAPTER EIGHT
THE COMPLETE CALCULATIONS OF THE PROPERTIES OF THE ALPHA-

PARTICLE USING THE TWO-PARAMETER IRVING FUNCTION
PROGRAM ALPHA(INPUTOUTPUT)

DIMENSION Q(20)+FORM(20)
PI=3414159 °

PI=PI*PI*PI*PI
READ 714 A

71
12

FORMAT(F6e4)
B=A+0.,01

11

A1=3.0%P1/ (64 O¥AX*T)
A2=30%P 1/ (64 0¥B*%9)

A3=6.0%PI /(64 0%( (A+R)/2) ¥%9)
ANORM =Al+AZ2-A3

50

PRINT 50+A4B
FORMAT(2F1045)

RADS=4540%P1%#(140/(512,0%A%%11)4+1,0/(5120%R*¥%11)

1-2.0/(512.0%((A+B)/2)%*%11))

RADS=3 4 0*¥RADS/ ( ANORM*4 .0
RAD=SQRT(RADS)

IF(RADSLT 1439y GO TO 2
IF(RAD«GT«1le51) GO TO 1

RADI=ABS(RAD=1,40)
RAD2=ABS(RAD-1,45)

RAD3=ARS(RAN=14,50)
IF(RAD1sLT«0.0Nn5) GO TO 55

IF(RAD24LT&eN.0N05 ) GO TO 55
IF(RAD3.LTs0.005) 55,1

55

SI1GB=1428%RADS
PRINT 3+RADWSIGRB

FORMAT (2F1045)
DO 21 1=1410

Q(I)=1
FORMUINI=A1/(1a0+(340%Q(I1))/(64eC¥AX%2))%¥%54+A2/(140+(3.0%Q(1))/

1(64e0¥BH*2 ) ) #%5=A3/(1e0+(30%¥Q(1))/(64e0*((A+B)/2)%#%2) ) %%5

FORM(T)=FORM(TI)/ANORM

PRINT 4+.FORM{TI)

4 FORMAT(F1065)

21

CONTINUE -
A AND B ARE DETERMINED RY FITS TO THE RADIUS AND FORM FACTOR

AKE=20eT4%( 340/ (16e0#A%%#T7)+340/(16e0*BHXT) =6 ,0%ARB/ (16e0%((A+B) /2)
1%##9))

AKE=AKE#*P]
AKE=AKE/ANORM

POTL==340%197e328#4e0%PI#56e0%30e40%24e0%¥(VO(A)+VO(B)=2.0%y0
1(CA+R) /2)) /(1.156%1e414)%%9

POTL=POTL /ANORM
BE=AKE+POTL

PRINT 5+AKE+POTL sBE
FORMAT(3F1045)

THE QUANTITIES ENDING IN S REFER TO THE EXPECTATION VALUES
OF THE OPERATORS APPEARING WHEN WE USE QUR VELOCITY DEPENDENT

POTENTIAL
POTLS==360%252,0%4,0%¥PI#56,0%3060%2440% (WO(A)+WO(R) -2 0*WO( (A+B) /2

1)) /(1e414%1425) %%9
POTLS=POTLS/ANORM

AK1=1e414%2480
AK2=1e414%2 400

VVFL=(VNEP (AsAsAK1)+VDFP(RsRsAK1)=VDPEP (AR 4 AK1)=VDFP (R 4A4AK1))
1#82 694+ (VDEP(AsAsAK2 ) +VDFP(RsBsAK2) —VDEP (AR AK2)=VDEP (B 4AaAK2))




2%82«94%0e415
VVEL=VVEL#*3.0/ANORM

BES=AKE+POTLS+VVEL
PRINT61+POTLSsVVELSBES

61 FORMAT(3F15.10)
VSOR==123e33%0e 8% 8, 0¥PI#00,0%56e0%#30s0%24 6 0% (VR(AI+VRI(B) =2 0%VYR

1 ((A+B)/2))/(1eb1l4%141566)%%11
VSQR=VS5QR/ANORM

SGIN=60e0%(1e0~0e5%VSQR¥*¥4e0/(3e0%41447) )
VSQR=VSQR*¥4e0/ (3 0%41447)

PRINT 8. VSQRs SGIN
8 FORMAT(2F1045)

COEN=CO(A)I+CO(B)=2.0%CO( (A+R)/2)
VOSQRS=—12660%#8, 0#PI*900%#5660%3060%24 0% (WRIA)+WR(B)=240%*WR

T ((A+R)/21)/7(1e&s14%1 ,25)%%1]
VSORS=VSQRS/ANORM

VSORV=2e0%4 o N¥P I #56 4 0%304 0% 24« 0% (SO(AI+SO(B)=2,0%¥SO( (A+B)/2) )/
1(2.80%1e414)%%*9

VSQRV=VSQRV+*2 e 0%4 O#P I %56 e 0% 306 0%24 0% U4 15¥ (TO(AI+TO(B)=2.0%TQ
L((A+R) /2) )/ (2eN*]L ota14 ) %%

VSORV=VSQRV/ANORM
SGINS=60e0%(1e0=~0,5%VSORSH*440/(3.0%41447)+VSQRV)

VSORS=VSORE*4 .0/ (3. 0%4147)
PRINT 81 +VSQRSsVSQRV4SGINSSCOEN

8l FORMATI(4F1548)
1 B=B+0.01

GO TO 11
2 A=A+06072

IF(AsLEe«leB) GO TO 12
STOP

END
FUNCTION CO(7)

PI=3e¢14159
CO=L4Q*PI*#4%42,0#2060/ (1 el 4% (4,0%7)%*%8)

RETURN
END

FUNCTION VO(X)
VO1=6440%(24828%X/]1e156)%%3

VO2=69e0% (2e828%X /10156 1%%2
VO23=30,0%(2828%X/10156)

VO4=540
VO5=84060%(2e828%X/1a156)%%6%(1e04+(24828%X)/1e156)%%6

VO=(VO1+V02+V03+V0D4) /VOS5
RETURN

END
FUNCTION WO(X)

WO1=64 0% (2e828%X/1e25)%%3
WO2=269e0% (2e828%X/]1e25)%%2

W03=300%(2e828%X/125)
W04=560

WO5=840e0%(24828%X/1425)#%6%(1e0+(2.828%X)/1.25)%%6
WO={(WO1+W02+WO3+W04) /WQO5

RETURM
END

FUNCTION TO(X)
TO1=64e60%(26828%X/20)%%3

TO2=69e0% (2828%X/20)%*%2
TO3=30e0%(2:828%X/20)

TO[+=5¢O
TOE=R40s 0% (2 828%X/2.0)%%#63%#(160+(2e828%X) /2,0) %5



TO=(TO1+TO2+TO3+T0O4) /TOS5 -
RE TURN

END
FUNCTION VRI(Y)

VR1=140
VR2=8e0%(4e0%Y)/(1elt14%14156)

VRB=25 0% (46 0¥Y/ (1e414%16156))3%%2
VR4=32 0% (4 40%Y/ (1le#1b%]14156))%%3

VRE=1260e0% (40 0%Y /(1a414%1,156))%#%6%(1e0+(4.0%Y)/(1eb414%]1e156))%*%8
VR=(YR1+VR2+VR3+VR4) /VRS

RETURN
END

FUNCTION WR(X)
WR1=1.0

WRZ2=8e0%(4.0%X)/(1leblbu*1e25)
WR3=265e0% (460%X/(1e414%],25))%%2

WR4=32 0¥ (Lo O¥X/ (1ab14%14,25))%%3
WRE=1260e 0% (4o 0%X/(1alt14%1a25) )EXE%(1e0+(4,0%X)/(1eh14%]425))%%8

WR=(WR1+WR2+WR3+WR&4) /WRH
RE TURN

END
FUNCTION S50(X)

SO1=6440%(2.828%X/280) %%73
SO2=69e 0¥ (2+828%X/280)#%2

SO3=30,0%(2R28%X/780)
S04=5.0

SO5=840e0%(2e828%X/2+80)#%6%(1e0+(2,828%X)/2801%%6
SO=(S01+S02+S03+504) /505

RETURN
END

FUNCTION VDEP(XsYsAK)
DIMENSION WM1(50), WHAF(50)s WTHR(50)

THE THREE FUNCTIONS NOT EVALUATED EXPLICITLY ARE INTEGRATED
USING SIMPSONS RULE

AM=0.02
SEV=T*6*5%4 %332

EIG=SEV*8
VA=0,0

VAI=0.0
VB=0,0

VBI=0.0
vC=0,0

VCI=0.0
2=2¢0%X+2 4 0¥Y

ZAK=7/AK
DO 105 I=1+49+2

WMI (I =EIGH(L1eO=( I¥AM ) *%2 ) %¥ 2% ([ #AM) #%4 /(7 HAKFAM*] ) % %9
WHAF (T)=FEIGH (1 O—( I#AM)¥%D) %¥X2K ([ ¥AM ) ¥¥ B/ (Z+AKHAMH*] ) ¥%*9

WTHR(I)=SFVH* (10— ( ITHAM)#¥2 ) #%x2% (T #AM ) ¥¥ 4/ (7 +AKHAMK] ) #%8
VA=VA+WM1 (1)

VR=VB+WHAF (1)
VC=VC+WTHR(I)

105 CONTINUE
DO 106 I1=244892

WMI(T)=SEIG*(1e0=( TH¥AM ) ¥%D )% 2% ([ *¥AM) ¥% 4/ (Z+AK¥AM* ] ) *#%9
WHAF (I)=EIG* (1 O— (I *AM ) ¥3%2) %% 2% ([ #AM)¥¥*3/ (72 +AK XAMK] ) #¥9

WTHRUT)=SEVH# (10— (THAM)#%2 ) %%2% (I XAM ) ¥¥ 4/ (7 +AK#AMH*] ) %8
VAI=VAT+WML(T)

VBI=vRBI+WHAF (1)
VCI=vVCI+WTHR(I)




16 CONTINUE
A= (AM* (4 o O¥VA+2 4 O*VAT) /3.0)

B=(AM¥ (4 ¢ O¥VYB+2 4 O%¥YBI)/3,0)
C=(AM* (4 e 0%VC+2.03%#vCI1)/3,0)

D=SEV*¥ (B8 OHZAK® %245 ,0%7AK+160) / (AK®%8HLIO5#ZAK ¥ #5% (1 o O+7AK ) #%#5)
FE=SEV* (354 0¥7ZAKRK3+4 T4 OX7AK*¥2425 0% Z2AK+560) / {AK¥¥B*2 104 OXZAK ¥ RE*

L(1e0+ZAK) *%5)
F=FIG* (64 0%ZAK*#3+69¢ 0% ZAK%¥%2+30,0%7ZAK+5e0) / (AKH*%9#B84 04 O*ZAK #3%6 %

1({10+ZAK)#%6)
PI=3.14159

PI=PI*PI*P %P1
VDEP==4 ¢ OXPI% (4o ORYRADHA—G o ORYHD+2 e NHYHCH (AKH¥%2/24.0) #F+2 4 O¥AK *Y *B

1=AK*E)
RETURN

END
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Abstract: The relative probability {Pg) of the mined-symmetry S-state (the S’ state) in the ground
state of the trinucleon, is determined by fitting the charge form factors and the muon capturce
rate of the three-particle systenm. The spatial wave functions used in this work are of expo-
nential form with two-body correlations in the predominant totlally symmetric S-state and have
been proved sufficiently flexible in our recent binding energy calculations. Our results indicate
that Pg. cannot exceed 1.5 %.

1. Introduction

New experimental data on the high-energy scattering of electrons by e and
3H [ref. 1)}, and the photodisintegration cross-sections 2) and muon-capture rate
of the thrce-nucleon system **), have led to a number of fresh attempts to explain
the detailed structure of the ground state of the trinucleon 578), Since the three-
particle system is the simplest many-body problem, it presents the best starting point
for the study of general nuclear forces and thercfore its structure has immense sig-
nificance. A classification based on symmetry properties of the three-body configura-
tion *), predicts that there are likely to be fourteen states present in the ground state.
However it is expected that only a small number contribute to any appreciable extent.
Thus from measurements ol the magnetic moments and the capture of neutrons by
deuterium and various other evidence, including variational calculations of the bind-
ing energy, we believe these states to be the predominant S-state, which is completely
symmetric under spatial exchange of the nucleons, together with small admixtures of
the S-state of mixed symmetry (the so-called S' state) and the D-states (which we
label collectively by D). The authors in refs. 2,49 have made estimates of the rela-
tive probabilities of the various states by fitting experimental data using consistent
sets of wave functions. Unfortunately these estimates span a large range; for example
the probability of the S state Ps. assumes vatues from 0.5 to 4.0 %. Lately two groups
have come to agree among themselves on the magnitude of Ps. Thus Schiff and his
co-workers take P to be 2 % while Mitra et al., Levinger and Srivastava and Davies
have obtained a value of about 1 %. Both sets of investigations posscss shortcomings
however; the variational calculations of Schiff’s group arc obscured by their use of
simple wave functions that do not exhibit the correct asymptotic as well as close-in
behaviour for the three-particle system while the scparable non-local potential method

001

of Mitra gives rise to values of the trincutron binding encrgy and the Coulomb encrgy
of *He which are inconsistent with the general variational method and with experi-
ment '?). As some of the expectation values arc extremely sensitive to the form of the
wave function assumed, these doubts on the accuracy of the results of both groups do
not allow us to make any firm conclusions about the actual probabilitics of the states,
hence the motivation for this investigation. Our aim in this work is to obtain a careful
estimate of P, assuming for simplicity that only the S and S’ states are present in the
ground state. Insofar as it can affect our conclusions the D-state is also considered
qualitatively. As shorl-range two-body correlations are known to be fairly important
in three-body calculations 1y we use as trial functions the product-form spatial func-
tions from our recent investigation into the binding energy of the trinucleon. These
are exponential wave functions suitably modified by short-range correlations. Satis-
factory fits to the static properties of the trinucleon make us believe these functions
arc a good representation of the three-body system. Two sets of cxperimental data
are selected to determine Py these are the charge form factors and the muon capture
rate. We have refrained from fitting the inclastic scattering cross section of clectrons
from 2He and the two body photodisintegration cross section of the trinucleon since
uncertainties about the deuteron wave function and the final-state interactions are
likely to cloud the issue.

2.1. THE TRINUCLEON WAVE FUNCTION

Our totally antisymmetric wave function for the ground state of the trinucleon is

¥ = out(Puy—dru), (1)

where the spatial functions u, i1y, and u, take the form

w=A [] fry)s , )

i<j=1

0 = ﬁ [9(12, 3)+9(13, 2)—29(23, 1)],
1
i, = — g(12, 3)—g(13,2)1, 3
N Lo(12,3)—g(13,2)] ©)
with
flry) = exp (—ary)+eexp (= briy), (4)
g(ij, k) = By(ik)g(jk)h(ik), (%)
and

g(if) = exp (—ary), o =037 fm ™1,

h(if) = exp (= Brij)- (6)
The ¢ are the spin-isospin functions listed in Schiff’s paper. The parameters of our
fully symmetric function u arc

a = 0.40 fm ™", b =200fm™ ', ¢ = —0.4, Q)



which were used in our binding-energy calculations and were found to make our trial
function sufliciently flexible. We have not included correlations in the S’ state func-
tions as they are unlikely to be significant [see the discussion on this point in ref. #)].
The value assumced for « stems from form-factor and binding-energy fits with un-
modified exponentials for u [refs. 7 '2)]; Pg, determines f8. Because our trial functions
manifest the corrcct behaviour for small as well as large interparticle separations, we
expect our values of Pg. to be more acceptable than those of refs. °+8).

2.2. CHARGE I'ORM FACTORS

The relevant charge form factors are obtained from the three-dimensional Fourier
transform of the expectation values of the nuclear charge density and are given by
the expressions

2Fa("He) = (Fiu+2FL)F (+(Fa,— Fo)F,,

ch

Fch(3H) = (FhH2Fo)F +(F — FO)F,, (®)

*He), Fo, R), F and Fj are the charge form factors of *He, 3H, the
h h

ch

where I,

ch

proton and the neutron, respectively. In the notation of ref. ),
Fl = ];‘(Si S)Vl_Fl(Ds D):

FZ = F(S, S’)+F2(D> D), (9)
which reduce to
Fy=F(S,8) = Fl((lz),

F, = F(S,S) = 2F,(¢?), (10)
since we do not include D-state contributions. Using our wave functions,
3
P = [exp (a2 TT 20, (1)
i<j=1
) 1 f, :
Flq®) = = i Lexp (g - x)—exp (ig - x)]AB 1] f(r)e(12, 3)dz, (12)
N i<j=1

where the volume element
dv = 82 ryrydrydrydry, 1y = ry, (13)

and x; is the distance between the centre of mass of the trinuclcon and the nuclcon /.
The evaluation of these integrals is casily accomplished with the help of the universal
function ')

o
F(q?) = fcxp (—oyry—oyry—oayrs)exp (ig - x ) ryrydr, drydr,

_ 10240, cyory [ TAA(K,) In {C(k )% D(k )} + S bt a ) (14)
ey i .
T o LB(k)) E(ky)  2G(k)

with
(1) T

Alk,) = s 15
L T TR R Y (15
B(k,) = —4qk,(2k} + 423 — 202 —£42)2, (16)

ki4o?+2q2 -S4k,
C(k1)=;§ e (17)

(Hoitgq +3g9k,
D(k,) = Kitdaiesa +3ak, (15)

R SR P VER P

E(k)) = (4kT+423+30°) —(3qk,)?, (19)
G(ky) = (ki +ai—5q7) —(3qk ). (20)

Our function i gives an excellent fit to F,(¢?) [ref. '")]. In fig. 1, we have plotted the
curves for F,(g?) for three values of Pg. (It is worthwhile mentioning here that for

_— e , ‘
‘ ] ! | —— Gibson's curve I
- H ==~ Pa=2 0%
4 | H s o
0.0¢ /f N P =1.8%
1] ] |
{ s [ | s I - == F51=1.0%
I [ A 1
e AT NG ]
/ ~; ~ |
. il \'\\} ~
004 . . S NN S
/|- ~. ~ \\\\ .
I ~ ~. | |
Faa?) / | S b NS
/ S S N
~ s T ™ " I
el NSNS
T < i
0.02+ R S
|
I — - S— [/ ey [0 i — — _.:l
1.0 5.0 7.0
Q2 (tm32)

Fig. 1. A plot of F.(¢?) against the square momentum transfer ¢2. The solid cunve is that from Gib-
son’s most recent paper [8] whilst the dashed curves arc those of this work for the three values of Pg-.

F,(g?) to be positive i.e. in agreement with experiment, [ must be larger than «; this
means the amplitudes of the S and S states must have opposite signs, which oceurs
in the calculations of Davies too), It is obvious from fig. 1 that the best fit to the cx-
perimental data of Collard er al. is given by Ps. equal to 2 %. However it is known
from the work of Gibson that the D-D contribution increases Fy(¢?) [which is the
quantity X (g?) in ref. 8)] for small momentum transfer q?. Since there are no cross

4



terms between the S and D states in F,(g2) we can use Gibson's result as a reasonable
estimate of the contribution of the D-state. Therefore assuming Py, to be about 6 ¢/
the increment in Fy(g7) due to the presence of the D-state will be of the order of 0.01.
This will spoil the fit for Pg equal to 2 %7 but correspondingly will improve that for
the other two values of Pg.. We feel that we can safely conclude that Py cannot ex-
ceed 1.5 97 on this cvidence. 1t appears that the values of F,(g?) derived from our
correlated functions suggest that P, is near 1.5 9.
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2.3. MUON-CAPTURE RATE

Assuming the V-A theory and neglecting the relativistic effcets, the capture rate
for the reaction

*He+pu™ - *Hv

can be shown to be
1 Zm, \'2 "dy
IR
(271') IVI |V| mig=+t4 mI.=+%%
NC

J\/[J
x {Gf Jl‘ + G2

. . II)
Gy =y ( +9s,
Voo om) S

| Iyl
Gy =ga—(gvtag
A A ( \' \T) 21\[

2

|4 +(G§_ A Gy

bt 1)

il

with

(‘]P qA ‘7v g\ gl)
21\/[ !

3
fl = <IP31i| Z ExXp [_ v xi]q)“(x;)r,(_)llll;“c),

G, = M

fa Ws,| Z exp [—iv - x]o,(x)t oy s,
= (22)
where [v] is the neutrino energy (taken to be 102.505 MeV), v/|v| is the unit vector in
the direction of the emitted neutrino, M the nucleon mass, M3, the triton mass, m,
the reduced mass of the muon and ¢, (x;) the muon wave function. @,(x;) is very close
to 1.0 over nuclear dimensions and in our calculations is assumed to have that value.
Using the relations

3
ol Yexp[—iv:e x]JOWs, > = 3¢¥s, | exp [—iv- xJOi'Ps,,., (23)
i=1

where O;is 1 or o

dvi v J (24)
vl i [v] |\'

and introducing the Gamow-Teller constant
I’ = Gi+4(Gi-2G, Gp) - (25)

our expression for the capture rale becomes

1 Zm, vi o 9 dy
e ] %
(271') 137 1+ J_\'I— 2 l\’l m3g=t4m3 =11

M,

H

+I?

[t

Evaluating this explicitly, A, is

. 3 2
Ay = i [7’”} Y an[Gh r+31‘21“ b (27)
(2n)” L1437 Iv|

H

where
Fg = —3Psulexp [—iv x;Jlud —1Po(Cuyl exp [—iv - x,Ju,>

. 4 o
+uglexp [—iv e x Jluy>)— 3\/—2 \{PSPS‘<”| exp [—iv-xJlu)

4 ‘
—— \/PSPS(MI exp [—iv-x,]uyD, ' (28)
J6 . '
and
Fgr = _*Ps<”| exp [—ivx Jud+3PeCuyl exp [—iv - x, Jlu,d
- 37 PS <”l| Cxp [_’v . xl]l”2>——797PS’<”Z| CXP [_i\' ’ .\'1]1”2); (29)

Using the second set of form factor coupling constants from ref. )

Gy = —1.39¢%

Gy = 1.024%

Gp = —0.59g%

g% = 1.4149%x10™* erg - cm?®

we have calculated A, for the three values of Pg. from sect. 2.2. Our results are dis-
played on table I. On comparison with the experimental values quoted by Rood and
Pascual and Pascual, it is clear that for our theoretical estimates of A, to agree with
experiment, P cannot be more than 1.5 %, in complete accord with the findings of
section 2.2.
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There is, of course, a possibility that this statement is open to question since relati-
vistic corrections will tend '*) to increase A,. However this is more than offset by the
inclusion of the D-state which will decrease it #). In this respect Pg. equal to 2 % will
be discriminated against more than the other two values of Pg.. Uncertaintics in the
coupling constants are present of course but on latest evidence '*), large variations

TABLE

Values of the muon-capture rate of ®He (sec™?!)

This work 1009, S 1%S’ 1.5% 8’ 2.0% S’
1464 1446 1434 1420

Experinental
3 1485 4-40
4 1468 140

away from the set we have used are most unlikely. All these considerations suggest
that we are still entitled to claim that our calculations of A, indicate that Pg. cannot
be larger than 1.5 %.

3. Conclusion

Using {lexible wave functions that include two-body short-range correlations, we
have obtained estimates of the probability of the S’ state in the ground state of the
trinucleon by fitting two scts of experimental data. Our analyses concur and suggest
that Pg is smaller than 1.5 %. It appears that the figure of 2 % estimated by Schifl
and Gibson is too large and leads to substantial disagreement with the form factors
and the muon-capture rate. Our results support the calculations of Davies who found
in his extensive work on the binding energy of the three-nucleon system that P is

1.2%.

The author wishes to acknowledge the valuable guidance of Professor H. S. Green,
who also offered useful criticism on this manuscript.
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Abstract: The effcet of short-range correlations in the tri-nucleon is considered by cmploying suitable
Yorms for the spatial part of the totally antisymmetric S-state wave function, The parameters
of our trial wave lunctions, which arc of product form with two-particle correlation functions
intraduced to simulate the presence of a soft repulsive core, are obtained by filting the rum.s.
radius and the body form lacter of the three-nuclcon system. Using a modificiation of Sriva-
stava's central velocity-dependent potential, we are able to obtain good agrecement with the
binding energy of 3H and the photodisintegration cross scclion ol 3He, with the exponential
wave forms.

1. Introduction

The fairly large binding energies of the 1s shell nuclei 3H, 3He and *He together
with their relatively compact structures suggest that the component ucleons are most
of the time well within the range of their mutual nuclear forces. Such a physical
situation is indicative of the importance of short-range two-body zorrelations between
the nucleons for these light nuclei. However the effect of such correlations has been
littl> considered until the recent work of Rosati er al. '), Tang ef «l.?), Okamoto
et al. *) and Khanna *). Khanna used as wave forms for the spatial part of the totaily
antisymmetric S-state wave function of the triton, simple two-body Gaussians and
exponentials, which were suitably modified by two-body correlatton functions, to
obtain reasonably good agreement with the experimental cross sections for the ine-
lastic scattering of electrons on 3He. These wave forms have been successfully ex-
ploited by Dalitz and Downs ?), Rajasekaran and Dalitz )y and Murphy and Bod-
mer ) in their analysfs of the light hypernuclei and have been shown to have suf-
ficient flexibility to account for both close- in and asymptotic regions at the same time.
1t seems therefore, that if the two-particle interaction is described by a central velocity-
dependent potential, these trial wave functions will be particularly suitable to rep-
resent the ground state of the bound system. In this work, we evaluate the triton
binding energy and the Coulomb energy and photodisintegration cross sections of
3e using trial functions similar to those of Khanna and an improvement of Sri-
vastava’s %) velocity-dependent potential. The parameters of our produét radial wave
functions are oblained by fitting the body form factor and the r.m.s. radius of the
three-body system.

' 001

J_dncf

I secl. 2, we discuss the trial functions used, whilst in sect. 3, we present the
procedure for evaluating the triplet nucleon-nucteon potential. Seet. 4 contains the
triton binding energy caleulations and seet. 5 an explicit derivation of the photo-

disintegration cross-section cxpressions.

2. Tri-nucleon wave function

The ground state of the three-nucleon system with J = 7 =} is approximated by
the predominant, spatially symmetric S-state wave function ¥, where

']U _ l//S(ZICHAZ”C’), (l)

with

il

; 1
7 (B = Bi)2s s
J2

1t 1
*/(*) (2“15‘2[33*&1/32(13*/3112“3)’ (2)
\j

~
Il

¢ and 2" are the corresponding isospin functions. The totally symnetric spatial wave
function 1, is assumed to have the form
3
o = 11 g(ripf (rip)s s (3)
i<j
where g(r;;) and f(r;;) are chosen to have one of the forms
- ’ ! - -2
(i) g(ry) =cxp(—a ), f(rij) = 1—=c"exp (=b'rj;
(i) g(r,) = exp (—alrgi), ) = 1—cexp (=Dlryl)- (4)
These functions have considerable flexibility and should be capable of giving a good

representation of the principal features of the bound system with short-range forces.
The parameters @', b, ¢’ and a, b, ¢ are obtained by fitting the body form factor Fy

(¢*) given by _
F(q®) = fl//: exp (iq - 2R)87 g ryrydrydrydrs, (5)

where R = x, —1(x,+x;) and r, ry, ry are the interparticle scparations, and the
r.m.s. radius R, is given by

2

R

r.m.s.

= J AR ) -] W 8ty ryrydr drydry. (6)

These integrals and the others which follow are taken over the domain consistent with
the triungular inequalitics ry+ry Z ry, ritry 212 and ry+ry = ry. They can be
evaluated explicitly and are given in the appendix for completeness. The experimental
values of £, (¢?) sclected are those of Levinger Srivastava 2), whilst the r.ms. radius

2 o ' '/zmrl Okamoto and

/_.L{(;r,,l;s »



is taken to be 1.66 fm for the Gaussian ,to facilitate comparison with Okamoto’s ! (

results) and 1.70 fm for the exponential. 1t should be remembered that these are two
independent procedures since the fit to R, . only determine F, (¢%) for very small ¢.

For the Gaussian, the parameters " and ¢ are varied from 0.2 to 6.0 fm~2 and
0 to 1.0, respectively, with ¢” = 0.058, 0.002, 0.066 and 0.070 fm~2. The best fit to

?af R, . and I (q?) (scefig. 1) is given by 2" = 0.062 fm~2, b :'2;9(_)[111_2 and ¢’ =04, .73
For the exponential, the parameters b and ¢ are varied from 0.5 10 6.0 fm ™! and 0

to 1.0, respectively, with a = 0.36, 0.38, 0.40 and 0.42 fm~'. The best fit to the

selected R, .. and Iy (¢?) is given by @ = 0.40 fm™1, b = 2.00.m ' and ¢ = 0.4.
o A {60

1.0y

08 -

=~

06—
i
04~
I
0.2
(o] = 8
Fig. 1. Comparison of theoretical and experimental form factors. Circles are averages of the two

, sets of experimental data analysed by Levinger and Srivastiva Y, triunglcr-i\l.“l:l from the analysis J:‘:N_
/ﬂﬁ of Okamola-Lucas “),/dushcd»cur\'c[obluincd from,(]uussian nn(llconlinlmm curve] pbtained from FI‘S

Iexponcntial .

p—" %
3. The nucleon-nuclcon interaction

For the exponential wave function, the general two-body interaclion is taken to be
? W B ool NE s 5
V(ri) = (WP bP5HPy - m Py Jeeaiel 7))+ Veer.aep (7i): (7N

: w 1 n Al . oa
where w, b, I, ni arc (he exchange force constants and P75, Py, P and /27 the usual

_interchange operators. Here (1)gqe (1) is given by

) = K o (2 ®

lanu{

where (the ratio of the triplet static potcntiﬁl to the Lsilj_g]_f'il static potcntial)h__; Sfag/c(“
o= SAVCLLIEL IR . ©)
-w—b—h4m ‘
(Mser. aep.(rij) = (Voet. dep. +(Mver. aep. (10)
(Vo)vet. dep.(Fif) = [(VO)\cl.dcp./z:l[l)ii""s(rl'j)—l—ws(rij)pizj]a (11)
(Mvet. aep.(rij) = [.’\—vcl.(l/-())vcl.dcp»./z_][pizj wi(ri)+w(r)pil, (12)

with

w(r;;) = exp (-I2r‘-j/[)").
(Subscripts s and t refer to the singlet and triplet states, respectively.) The effective
nucleon-nucleon potential in the triton is hence

I"ycl'f(rij) = _%(1 + A’sluti'c)(VOI)slnlic EXp (_‘2'.1']/.85)+(I/')\cl.dcp.("ij)' (13)
The valucs of the potential parameters assumed by Srivastava were

(Vo)staic = — 100 McV, 1/8, = 0.625 fm ™",

(I/O)\'cl.dcp. . 8294 MCV, l/ﬁ; = 140 flﬂfl, l/ﬁ: =1.0 lﬁl_ﬂ— 1,
X,smlic = 1845 X’\cl. = 0.55. (]4)
"However, his parameters Xy, . and X, calculated from a single parameter deu-

teron trial function have been shown by Lovitch and Rosati ') to give an overbound
deuteron. We, therefore, re-evaluate X, and X, using a three parameter trial
function of the form exp(—xr;;)—z exp(—yry;) for the deuteron. With Srivastava’s
potential, we determine x, ) and z which give a binding energy of 3.49 McV (the result
obtained by Lovitch_{Rosati through a direct numerical evaluation of the two-body
Schroedinger equation). With these values of x, ) and z, we plot the sets of X, e and
X, which give the truc deuteron binding energy against those of Srivastava, which
give the correct 3S phase shifts at £, = 270 MeV (sce fig. 2). The point of intersection
gives our values of X, ;. and X, . Thesc arc

Xye = 152, X0 = 0415, ' (15)

slatic

This potential will be used with our exponential wave function, whilst Tang’s will be
uscd with the Gaussian.

It is pertinent to point out that there are two interpretations of p in the velocity-
dependent potential. Srivastava’s calculations are based on the assumption that for
the three-body system p is in cach instance the momentum conjugate to the inter-
particle separations, ¥, r, and #, (to be referred to as-case 1). Loviteh and Rosuati,
however, interpret p to be the momentum canonically conjugate to the tw o-particle

“relative coordinates in the centre-of-mass (rames of the particles taken two ata time
‘as if the third one did not exist (case 2). Although we believe Lovitch and Rosati’s
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interpretation to be the correct one, we, nevertheless, use both in our exponential
calculations so as to derive a quantitative comparison of the two.

B T T

Xgratic

X yeL

Fig. 2. Plot of Xy against X .. Line I,from our deuteron calculations, line [ from Srivastava’s 8)
: - phasc-shift fit.

4. Triton binding energy and Coulomb encrgy of *He

Following the notation of Dalitz and Downs, we can write the binding energy of the
triton as

ECH) = T W)V ) (16)

N, ¥s)
where
T C(ht o ee* o gt 8¢ d¢T o
(¢, ¢) = —JL(_@- —g+7¢— =y ﬁ é)
Lar Cry Ory ory Or, Cry 0r,
n* .
+ {7 [1(230)+ 1(312) + 1(123)]87°r, ry rydr, drydry (17)
V(o, &) = ’ O*[3Vor(ri)]E8nr ryrsdr drydry, (18)
N, &) = | 6%esnir, vy rydr, drydrs, (19)
with '
2 22 n gk 7 ~ gk <
(ijk) = +rj Tk (Gg’_ % o 0" ig) (20)
drir; or; Or;  Or; @ér

[
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These integrals although complicated are straightforward and are given in the
appendix. The two interpretations of p result only in a difference in the expectation
value of the velocity-dependent part of the potential energy. The expression obtained
by Srivastava becomes

Vroien e 1) = 3 [ U 0B ) sen M LT ) )]

+ Xm.[l)fz Wn("a) + Wl(r.l)p;;'l]}l[/s 87'57"'1 rorsdrydrydry,  (21)

; or 2 0
Ptzz_(' +— 1,

22 -
ary  ry ory

where

while that of LovitchfRosati is

A V\'cl.dcp.(l//si l//s) = 31{[“’1 +_I-J:W2+J-I\V3Jtl((11fl)g§f220§f32}

8ulr, ryrydr, drydry, (22)
where
Out u 8X(ryu)

ll(ll) ={5—)— NI

roory o ory

W = (V()i)\cl.dcp, exXp (_2"i/ﬂ')- (23)

For the Coulomb encrgy of *He, we use the potential of Schneider and Thaler 10y
which takes account of the finite nucleon size. Thus

C.E. = C(Y,, ¥s)s (24)
with :

C(¢, &) = Jc/ﬁ‘ {f—z [t Qe‘3-36'3(0.532;-3 —2.776)

—e72977(0.644r 5 +3.639)]) E8x7ry ryrydr drydry. (25)

. 3 3
5. The cross-sections ¢, and gy, for " and “He

The bremsstrahlung-weighted cross-section gy, for a nuclear ground state wave
function that is fully spatially symmetric is simply related to the r.m.s. radius through
the expression”’

2
Uin =30 — — erms . (26)

Thus to evaluate o, (*He) we need only multiply our mean square radii by the con-
. . . N v e b 3 E
stant in eq. (26). The intcgrated cross section oy, for the photodisintegration of “He,is

_ (2n2ezf1
Gine = |~
Mc

)KZ%JH(ZA&WHK;AJ%MJ, @7)
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1 and

where Y, fo, is the summed oscillator strength, and T, static and vel. dep. refer to the
contributions of the kineti#nergy, the static potential and the velocity-dependent
part of the potential. For *He and using the interpretation of Srivastava 12y

N 2

z
(gfo..)T SR (28)

B (ﬁM_) {{1@*[ 2; ; ";zj( V);(;;lac("ij)

( Z"fOH)smlic = 3f12

(mPY + WP 87%r 1y rydr, dr, dr3} \ (29)
A .
( Z.fdn)vcl. dep. . %( VO)\cI. dcp/.\ {fvlj[)‘,s("ij) + X\'cl. wl(rij)]
8n%r, 1, )'3dr1dr2dr3} . (30)

In eq. (29), i and j denote protons and neutron, respectively. Application of the
Thomas-Reiche-Kuhn sum rules eliminates the terms in w and b in QO nSon)stasic since
the corresponding Wigner and Bartlett operators commute with the space coordi-
nates. The expectation value of the Heisenberg operator with our S-state wave func-
tion is

<Pi5'l> = %<Pi1}1>'
Since

(V)slalic ("ij) = %17 [Vc[f(r[j)]smlici (31)
(w-+m)

our expression for o, reduces to

int —

an’e’h [] _ M(m+-1h)
3Mc (w+m)h?

X}f‘/’?[“k("u)"‘ chl.‘V‘("ij)]‘r//da:’ )
dt = 8n’r ryrydr, dr,dr,, (32)

which diflers from eq. (27) of Srivastava J’“ '?). Using the force mixtures from Las-
kar ') and X, ., we calculate oin(*He) for the Serber and Biel forces (where the
forms of the singlet and triplet static potentials differ as in Tang’s polential, we take
Xswic 1o be equal to 1.67). If case 2 is used instead of case [, 6;(*He) is not gieatly
affected since the velocity-dependent contribution is small. Besides, the dillerence
between Srivastava and Lovitchl’Rosali‘s velocity dependent calculations, is likely
to be at most 15 9, as discussed in the next section.

7
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6. Results and discussion

For the Gaussian wave function, our Coulomb energy results are in agreement
with those of Okamoto-Lucas. This suggests little difference between their trial func-
tion and ours. However, an advantage with our modified Gaussian is that it is per-
haps more tractable for binding energy calculations. The triton binding encrgy ob-
tained with Tang’s potential is much smaller than that of case A and case B of Lovitch-
Rosati. This may be expected since our fit to Fi(g?) is not good for large momentum

TapLE |

The binding encrgy, Coulomb encrgy and the r.m.s. radius of the three-nucleon system

Ref, Wave function Potential B.E. C.E. C.E. r.m.s.
(CH) (point) (finitc)  radius
(MeV)  (MeV) (MeV)  (fm)

modified Gaussian 0.69 0.64 1.66

Okamoto-Lucas 3)

uncorrelated Tang
Gaussian (case 2) 2.50 0.708 0.66 1.62
Lovitch-Rosati 1) case A Tang (casc 2) 7.623 0.771 1.63
casc B Tang (case 2) 8.240 0.717 1.67
present work modificd Gaussian Tang (casc 2) 3.30 0.67 0.62 1.66
modified Srivastava
exponcntial (case 1) 9.30 0.74 0.69 1.70
Srivastava
(case 2) 10.20 0.74 0.69 1.70
Lovitch-Rosati case A Srivastava
(case 2) 10.903 0.748 1.65
casc B Srivastava
(case 2) 11.201 0.706 1.69
Srivastava §) uncorrelated Srivastava
exponential (case 1) 6.08 0.597
three-paramecter Srivastava
exponential (case 1) 717 0.663 1.92
present work modified modified
exponential Srivastava .
(casc 1) 5.92 0.74 0.69 1.70
modified
Srivastava
(case 2) 6.76 0.74 0.69 1.70
experimental 8.48 0.764 1._50(311)
1.§9¢He)

transfers; the Gaussian form is known to be unsuitable for asymptotic regions and
this is partially confirmed by the smallness of g;,,. For the exponential wave function,
We can expect our results to be more accurale. Although the contributions of S’ and
D states at large momentum transfers are likely to alter our theoretical curves for
Fi(¢?), the exponential wave form should still present the better fit. Qur binding

8
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encrgy values for Srivastava’s potential are sulliciently near Lovitch{Rosuli’s to en- lanl

courage us 10 believe that our trial function is close to the best o inad variationally.
The excellent agreement between our gy, and experiment suggests that our velocity-
dependent potential is quite accurate. As a cheek, we calculated g, for *He using
Srivastava’s analysis and our potential parameters. The agicement with experiment
is substantially improved: ¢y, is litUe aflected by our use of Srivastava’s interpreta-
tion 01‘45 because it was found in our binding encrgy calculation that there was only

TABLE 2
ay und g, of *H and ‘He

Nucleus Author T (A7e*h {3 M) Oy Tint Uint
(mb)  (Scrber) (Biel)
(MeVeomb) (MeV-mb)
3He Srivistava 1.038 4-0.724(p1-4- 1) 3.5 56t0
m-Lh
1.038 +0.724{ ——- ) 3.5 53.1 62.2
(-
. : m-3h
(correcied to our potontial) 1,03 »%-0.6-12(~-» ,_) 3.5 36.0 59.6
@-t-m
Nathur ef al. 1.0 40.72 (m-+3ID) 2.83 34.0
m-i-%h .
1.0 072 {—— 2.85 56.2 60.4
)i
. -y h
piesent work (Gaussian) 1.03 4-0.485\ — 2.62 52.0 54.8
W -1
Lo m-%h
(exponential) 1.05 +0.713{ — 274 57.8 62.0
@ -+m
cxperimental 2334 0.19 026
‘He Srivastava-lain 3(1.1304-1.239m -4 2.4 105..0
- L
3 1.]30%-].239(7%-)) 2.4 110.5 121.0
0 —-m
» n--3h
(corrected to our potential) g(l.l 13-1-1.099{ — ~'~) 2.4 103.3 113.0
D)

experimental

asmall quanfitative difference between case 1 and case 2. [t can be concluded that the
discrepancy betwzen Srivastava and Lovitch}Rosati’s binding energy results is almost
wholly altributable to the poor trial function of Srivastava. A comparison of the
results (tables 1 and 2) obtained by the uncorrelated and correlated functions for both
wave forms, indicates the importance of short-range correlations when the two-body
interaction is described by a velocity-dependent potential. The Coulomb energies in
our catculations are nowhere near the difference between the experimental binding
energy of *H and *He. This tends to support the claim of Okamoto that charge asym-
metry must be present to the order ot 0.1 MeV.

9

7. Conclusion

Using radial wave functions of product form with two-body correlations we have
been able to obtain good agreement with the results of other authors. Our calculations
indicate that short-range corrclations are important as their introduction improves
results considerably. Our trial functions, in particular the modified exponential, pro-
vide excellent approximations for (he S-state structure of the tri-nucleon and are
extremely tractable. Work is now in progress using these trial functions to deter-mine
the p-capture rate of *He.

The author is grateful to Professor H. S. Green for encouragement and to Dr. K.
Okamoto for useful discussions whilst the author was at the Universily of New South
Wales. He is grateful to Dr. S. Rosati, whose query on same numerical results in the
original manuscript, led to the detection of an error in the computing programme.

Appendix
The integrals appearing in this paper are presented here for completeness. For the

Gaussian

. 2 2 . —-2,
(0 Jexp (—oyrf—ayrs—asrd)r ryrdr drydr, = n(o oy +o ay+ay o)

(i) fexp (—a it —o,rk—ayr2)r rydr, diydry = (‘>
X (4l ay Foq o s]) 7
(iii) fexp(—a.lrf—«ozz'ri~a3 rar rradr drydry = Ssn(o +a,)
x () oy oy ay Fay )7,
(iv) J.cxp (—ayrt—oyri—ayrd) exp (Zig - R)ry ryrydr dr,dry

. : ]

- q [ 4o, +ay;ta

= n(4[a,aytayay+a,a5]) FTexp (— " [4a, +ay . 3 . )‘
300 ety oty ooy oy o]

(V) 00§ = exp (a1 =} —ayrd),
1.2 1

- 1 .2 2
$=exp(—ayri—ayr;—aird),

T(p¢) = 3n3h? { y 2l tetay ) | 5 (“1‘*_"%1)‘(“52‘551"‘33‘_5)_}
c M ¢ M

X { Z (9‘1 +a:)(“z+“5)}~%,

where ), denotes sum over cyclic permutation.

10



For the exponcntial where I(a, f3, y) is integral (i) above and

(i) fCXP (—oyry—ayry —og "3)”1 raradrydrydry = 8{o (o) +0,) (2, +at3) J(, B,y) = 16[(“3 + 57y’ +(“2+/))2)(4Y3+°‘ﬂ)’)

b gyt oy (et H ery) a3 00 (ot 4 22) + 20 )0 )t 003} + (o B dy* + Tafy) +9° + 357 By + 102y T+ ) B+ ) (= +9)* 17"

x {(ory e (o +oa)(a, +a3)}ﬂ3 = I(a,, a;, «3),

(i) fexp (—ayry—oyry—oyrs)ryrydrydrydry = 4{(oy +ay)(o +op +oy) References
+ (o, oz o o o 4o A-53 o+ \-2 b )2 1) L. Loviich and S. Rosati, Nucl. Phys. B1 (1967) 369;
(ot oa)(orahas){(on Faz) ™ oo o) (o )7 S. Rosati and M. Barbi, Phys. Rev. 147 (1966) 730
(iii) exp (’“’11 r —0‘2"2_0-3"3)"1 r, rgdr dr,dr 2) R. C. Herndon, E. W. Schmid and Y. C. Tang, Nucl. Phys. 42 (1963) 113;
: R Y. C. Tang and R. C. Herndon, Phys. Lett. 18 (1965) 42
. | 12(0r; + o5 +as) 12(0y + oy +a3) 3) K. Okamoto and C. Lucas, Nucl. Phys. B2 {1967) 347
=8 \ = 5 > : 5 5 4) F. Khanna, Nucl. Phys. A97 (1967) 417
(112—|—13) (O{l '*’aB) (a1 +a2) (al +a3) (al +a2) (az ’Fas) 5) B. W. Downs and R. H. Dalitz, Phys. Rev. 114 (1959) 593
: A 6) R. H. Dalitz and G. Rajesekaran, Nucl. Phys. 50 (1964) 450
9(203 + 2, +as) 3 7) J. W. Murphy and A. R. Bodmer, Nucl. Phys. 83 (1966) 673

8) B. K. Srivastava, Nucl. Phys. 67 (1965) 236

- + = e
(o4 03) (o, o) (o o) (0 +aa) ey +as)(o, +a,)° - :
9) J. S. Levinger and B. K. Srivastava, Phys. Rev. 137 (1965) B426

3 3(30r, + 30ty 4-203) 10). R. E. Schneider and R. M. Thaler, Phys. Rev. 137 (1965) B874 _ . A
+ (o £ s (et ), ) + (0 +05) (0, o) 3} , 1) [T K Ling, Phys, Lott. o be publisheds  r———t PO Datvay and H.S . Vaik, Phys. Rev. 156 (1467)
. B 2 Bl 2 1y 0 ) (0 4 o5) (o +0t3) 12) J. S. Levinger, Nuclear photodisintegration (Oxford University Press, New York, 1960) p. 36 1639
. J. S. Levinger and M. L. Rustgi, Phys. Rev. 106 (1957) 607
(iv) fexp (—a,ry—oyry—agri)exp (i3q - R)ryryrydr drydr, 13) B. K. Srivastava, Phys. Rev. 137 (1965) B71

" fl 3 ‘Z# - # 14) V. Laskar, Aun. Phys. 17 (1962) 436
f / / K1 15) V. S. Mathur es al., Phys. Rev. 127 (1962) 1663
2 2,2 2 2 2 4 22 16) V. N. Fetisov et al., Nucl. Phys. 71 (1965) 305
Hs 0 X 4 Y 4] - -
(k1 +0) (2 +dos — 201 =547 17) B. K. Srivastava and S. C. Jain, Phys. Rev. 143 (1966) 797

2, 2, 4 2 4 7.
x [$qk,(2k3 +425— 205 —£¢%)] " In I:(l\; ka;+9q7 3q/»1)
ki+oi+5q°43qk,
y (.4/\'%+41§+ng+-§_(,/<%” - 2 .
a3 +axs 4307~ Sqk )] (4K 4 402+ 807 —(Bak,)]
I
+ = dk,,
2[(kF + o+ 307) — ($ak )]

10242, 0,04

(v) it =exp(—arj—uyry—oyrs),
£ =exp(—air —ayr,—oj rs),

2

. h
T(p, &) = v (ala:+a31§—l—a3a3')](al+c<} Loy, oyt a))

2

h..
’ 4M (ap0y oyl ) (oy oy, oy 4o,y Faf)

h? '
+ o ('131: ‘Falaé)‘](%‘f‘a; Lo o, 0‘2"‘0‘5)
4M
2
i
+ T (ot 23 +o oy Mo+t , oy Fasy, o +al),
1
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Abstract: The integrated cross section a;,, for the photodisintegration of helium ('He) is calculated
by applying the sum rules of Levinger and Bethe and using a two-parameter Irvingwave function.
The two-body interactions are assumed to be that obtained Mrom our modification of the central
velocity-dependent potentizl of Srivastava and the Rarita-Present potential. Our results give
considerably better agreement with the experimental results of Gorburnov and Spiridonov than
do those of other authors and indicate that Serber and Biel force mixtures are more suitable
forius of interaction.

1. Intrsduction

The bremsstrahlung-weighted cross section and the integrated cross scction in the
photodizintegration of *fle have recently been evaluated by Goldhammer and Valk,
Rusigi snd Mukherjee, Srivastava and Jain and Davey and Valk ’=%) by applying
the sum rules of Levinger and Bethe ). The results of these grouss are found to be
unsatisfactory on close comparison with the measurements of Gorbunov and
Spiridonov ©). Tt appears that the disagreement with experiment cannot be attributed
to the failure of the sum rules which have been suceessiul in other applications. Our
view is that the discrepancy must be associated with the particular choices of interac-
tion potentials and *He ground-state wave functions made by these workers, since
the expression for o, depends on both the assumed potential and the ground-
state wave function of the nucleus. The disagrecment probably arises from their
use of either an insufficiently realistic nuclcon-nuclean potential or a simple wave
function whose parameters are obtained via the uncertainties of a variational calcula-
tion. In particular, the modified Irving wave function of Rustgi and Mukherjee is

derived from a variational calculation that leads to an underbound alpha particle,’

whilst the central velocity-dependent potential employed by Srivastava and Jain is
over-attractive. 7) In this work, our purpose is to see if a fairly flexible trial function
whose parameters arc fixed by fitting the body form factor and the r.m.s. radius of
*He together with a moderately realistic nuclcon-nucleon potential (i.e. one that
explains most of the existing two-body data) can resolve the disagreement between
theory and experiment. We also investigate the nature of the exchange forces that are
most suitable for the interactions used.

In séet. 2 we consider the two forms of internucleonic force and the alpha-particle
ground-state wave lunction that are the basis of this work, and in sect. 3 we present

001

Jt

an explicit derivation of the sum-rule formulae for the integrated and bremsstrahlung-

: 3 -4
weighted cross sections of "He.

2. The nucleon-nucleon interaction and the *He ground-state wave function
One of our two choices for the nuclear potential is the Rarita-Present ®) potential,
which takes the form
V(r;) = Vi{riy) = —1233 exp (— LAS6r o+ bPL 4P+ mP Y, )
Vi(ri) = avi(riy), (2)

(where the ratio ¢, of the singlg[stalic to triplet static potentials is 0.6, and the sub-
scripts s and t refer to singlet and triplet, respectively). The second potential is a
modification of the central velocity-dependent potential of Srivastava *)

V(rij) . ((0+ b[),'i + hp:_: + ’”P?})(V)slnlic(’.ij) + chl. dcp.(rij)' (3)

Here (M )gue (ri;) is given by

Vo) — (Yo)qsmnc - (a ?,';f_f) , )

static

Bs :
chl.dcp.(rij) = (I/S)\Cl.de.(’..l‘j)V*_(I/-l)\'Cl.Llc[).(rl'j)) (5)
where _
(VS)\cl.dcp.(rij) - A;(VO)\cl.dc[';.{[)izj U)S(I'ij) >}—. U)s(’.ij)[)izj}’ (6)
(I/l)\cl.dcp.(’.l'f) = %X'\'Cl.( VO)\'cl.dcp.‘{pizj U)l(l.ij)+wl("ij)p|:2j}’ (7)
with
25 )
o) = oxp (= 212). ®)

The values of our potential parameters are

(Vo)swmize = — 100 MeV, e 0.625 fm™ 1,

B
- 1 N
(VO)vcl.dcp. . 8294 MCV, "17 o 140 fm l, E = 10 f]]l 1,
s t .
Xy, = 0415, q = 0.655. . 9)

It is obvious from refs.”~?) that our two potentials satisfy the critecia for a realistic
potential. We approximiate the ground state of *He by the predominant spatially
symmetric 'S, state. Thus our wave function can be written as

P('So) = ('L~ 2" (10)



the neutron and proton charge form factors F, (n), F,(p), we use the values of De

where
x = 3o, Br—o B )03y — 2y B3), Vries ') and Janssens '*). We take three values for the r.m.s. radius given by
7o ol ] ‘ . 33Nt (1 1 2
1= oo - () JEN I {*7** il — (16)
N ) o 21 at  b" {S(a+b)}"
are orthogonal spin functions and {" and {*' the corresponding isospin functions for e e e e e e

the four-nucleon system. The spatially symmetric part of the wave function g is
taken to be the two-patameter Irving wave function %)

¥, = N{exp[~a( X i) ] —exp [—( Z;,ZJ)‘]}, ij=1,2,34 (12)

i<J i<j
where the normalization constant is

' 2201 1
{9 N . {7?'4— E’f .

It \a

7*2* . (13)
(3(a+ )Y
This wave function is expected to be inadequate for the velocity-dependent potenlial
" in binding-cnergy calculations if enly on the basis of our work on the triton 7) where
short-range two-body correlations were found to be necessary. It should nevertheless
give as in *He photodisintegration cross-section calculations, a value of gy, (*He)
{hat is near that obtainable from a correlated function. This follows since it is known

that o,,, depends critically only on the asymptotic behaviour-of the wave function
used, and our procedure for selecting the constants ¢ and b makes Y, good at large
radial distances. Our parameiers @ and b are found by the method of ref. ), which ! - 1
allows us to avoid the uncertainties introduced by the interaction in any variational i |
calculation. This is important as wave functions chosen by variational methods 0[— T A T .
to give the correct binding energy give too concentrated a nucleus ?). Thus ¢ and b q? (fm-2)
' e For - of *He oiv - [t i - ) . i i
arc evalualed by fitting the form factor of *He given by our wave function IFig. 1. Comparison of theoretical and experimiental form factors. Circles}experimcntal data analysed /Tl“/j(.",ﬂ',‘ 1
~ 4 16 54 7» 9 by Tang and Herndon, crosses our analysis with the data of Frosch and Janssens and triangles our i
FB((IZ) - . N2 . analysis with the data of Repellin and Janssens.
20 3¢* (l’o
16+ -
4a’
({,: & TanLe 1
b e n 16 3 2 (164 6 B 1 ( 4 S g The binding encray, Coulomb caergy and the r.m.s. radius of *He
[t - ¢?T;z:-';'?lj 16+ i{[ be Ay ilL!,(a + [)ll /y {—5(04— b)} Wave-function parameters r.m.s. radius Potential B.E. C.LE.
?’-( : ')_'. 4b> a(fm) b(fm™") (fm) (MeV) (MeV)
to that obtained from the cxpression '%) (i) 0.99 1.06 1.40 1) 30.39 0.910
(i) 0.95 1.04 1.45 1) 29.67 0.§81
Ia (4HC) } (iii) 0.91 1.01 1.50 a) 28.72 0.849
. 2 | :
Fo(g®) = - . (15) (iv) . 0.99 1.06 1.40 ) 19.14 0.910
Fo(n)+ Fe(p) ) 0.95 (.04 1.45 v) 20.38 0.881
., . . (i) 0.91 .01 1.50 L) 21.40 0.849
It should be remembered that this fit is for high momentum transfers since the r.m.s.- o -
radius already determines Fy(g?) for small ¢. In this calculation, the charge form factor oy “Rarita-Present
F(*He) is taken from the experimental work of Frosch “),/chcllin 12y and for . By Moditied Srivastava.

JHhand ; 4



0

~c

IE

9

' ” > vy ’ i )
(Tnc curves dre, Frem '7L5,F to boTom,

These are 1.40, 1.45 and 1.50 fm, respectively. From fig. | it is scen that the best
fits between the calculated and experimental values for the body form factor are very
S \mfutmyh he three sets of @ and b are displayed in table 1. As possible checks on
“the accurt acy of our wave functions, we have determined the Coulomb energy and the
*He. The Coulomb energy is obtained from the expression

| 2_4 1 l
C.E. = 7‘7\2” ! {8 T i e (17)
232 la b {$(a+b)}

binding encrgy of

(here we arc assuming point nuclecons).
The binding energy is found from

B.E. = <’r> _|-<V>5lnlic+<V>\cl.dcp.’ (18)
where

<3NP 2ab )
e S M T ol i 19
< 2°M {07 b’ {—‘z—(a»kb)}‘ﬂ (19)
e = ~24 3Ot O+ F( )=2FU(a+6), B}, (20

(\/2/\)
643> +695% 4308+ 5

Fla, k) = 21
(k) 8408°(1 +p)° @)
PN (22)

VerDswie(Ti7) = HVdswue(i) + Vodaic(ri)} = —(Vo)err Xp (—krip)- (23)

The velocity dependent contribution is
3 p

<V>\cl.dcp. :!(Vb)\'cl.dcp.{c((la ('7: k;)+G(b’ b’ k;)——G(a’ b, k:)
—‘G(b, a, k:)} -{_jX\'el.( VO)\'cl.dcp.{G(a: a, k(,)+(’(b’ b’ kt’)
—G(a. b, k)= G(b, a, k))}, (24)

where we have used
Gla,,a,, k) = — J exp [—4a,(u? + 0+ 0?)f - J2Ko] {4a§ o’ o’ +?)7!

—6(1?(11 + o4+ 0?) 420, 0 (W + 0P+ 0?) T K
2K}

+ _2\/§Ka2 o(u® v+ w?) "t ] du dvdw (25)
)
0o,
B
5

e Z{jcc’mj,’nj Dr‘»'-lei'o')EKrm&>'

Lus

and the transformation

u = g(ry+ry— —r)
S

]
Fu— 1), v = \/2 (r,

. 4
o= —(ry—r;), s ’121 = 4(”2’*‘ v+, (26)
\/ i<j

The function G(ay, a,, K) can be evaluated explicitly using the transformations of
[rving. Our results for the binding energy and the Coulomb energy given in table |
clearly show that our trial function has enough flexibility to describe properly the
ground state of the four-body system, especially when the interaction is the Rarita-
Present potential. The slightly underbound alpha particle when we use the velocity-
dependent potential arises from the large value of W, for small interparticle separa-
tions; W, docs not exhibit any correlations between pairs of particles. Wriling i,
in product form with short-range correlations will improve our binding-cnergy calcu-
lations considerably, but the improvement in oy, (*He) is likely to be minimal (see
table 2, where we have included our *He results). This point will be investigated in
more detail when the present calculational programme is extended to include i, in
product form.

7 | ishezs
3. Sum-rule formulae for *Ile /l J/ _ =

The bremsstrahlung-weighted cross section oy, for a nucle }fﬂmuml slate wave
function thst is fully spatially symmetuc]Js related to the rnns, adius through the

expression )
o 7
oy =J (") aw = e (Nﬁ) RZ,. (27)
o \W 3he \A—1 '

Thus to evaluate oy, (*He), we need only multiply our mean square radii by the
constant in eq. (27). In the electric dipole approximation, the integrated cross-section
is defined as

lnl

*® 272927-‘1 . o
G = f o(Wydw = " S four (28)
0 Me n
where the oscillator strength fg, when summed over all states gives
M : .
2 on=— P <L[H, D}, DT>. (29)
n 1 . ]
For “He, i
D = }Z,,+2Z34), (30)

and the nuclear Hamiltonian H is

H = Y T Y V();

l<J

hj=1,23,4 (31)



IABEEye where 7 and j stand for protons and neutrons, respectively, and the term (. ..) is

G A4idaoimeof™hiiciand §EIC evaluated with the complete ground state wave function. The velocity-dependent
Nucleus Ref. O] (drr2eth M) o, Gini(S) o (B) o) 511 (R) contribution has been absorbed into the term N'Z/A (N = N if V, dep. (i) 1S
(mb) (Mcv mb) (MceV-mb) (MeV-mb) (McV - mb) absent). With our ground state wave function and following the analysis of Srivastava
- T - o — === and Jain, o;, reduces to
SHe P
corrected to . 2n%eh
our potential ©)  1.034-0.642 Gu-l-4h) . 3.5 56.0 59.6 66.9 66.9 T = {1+(Io)m dep. K0(r3 ) + X o (r34)>]
(w4-m) ¢
hard core ¥) 1.00.40.720 (n-t-3h) 2.85 56.2 60.4 68.8 68.8 _ 4M(m-+3h)
e T 3 <(V)>l\l|c(’ 3—1—)’ 31> (32)
(e -{-m) 3n
correlated 1.05-1-0.713 (m-+3) 2.74 57.8 62.0 70.5 70.5
exponential ©) (w~+-m) (V)slnlic(rl'j) . (l/vcl'l',)slnlic(rij)/(o)_+ ”1). (33)
experimental 9) 2.53-4 6216
0.19 . It should be noted that (V),..;.(r;;) is pot the average of triplet even and singlet
static Ly o I S
— even static nucleon-nucleon forces as was assumed by Srivastava and Jain, sec cqs.
1He (3) and (10) of ref. ?), but it is in fact the spatial part of the triplet static force.)
N 1 . . . . . .
CO””Clth ll.OI o ( (1.11341.099 g_”.fL/L)) e IG5 ik 1525 132.3 The expectation values are casily evaluated with the appendix of Srivaslava and Jain.
our potentia L .
‘ ) 21,040,635 ({'? /:)I”) 570 - - 96.0 Table 2 shows our results together with those of other authors for the stnpdard Serber,
‘ 20.1240m - h7) -+ 0.0140n-1 1)) Biel, Inglis and Rosenfeld '), for mixtures (where the singlet and triplet spatial forms ,_; Force
£) 2(1.0:L 15T (i 1-3h)) 2.61 107.0 . are different and for the Inglis and Rosenfeld calculations we have assumed g to
hy 3(1.04-0.970(m - h)) 0.8 . 89.0 106.0 106.0 be 0.6
Y ¢ 0.6).
i m—-3h 2.51 94.9 103.9 121.9 121.9
@ (3(1 0--1.032) L,L,,?) ’ - i iscussi
_ (w=+m) 2 4. Results and discussion
(i) . (- 1) 2.69 94.5 103.5 121.3 121.3 , .
2(1.0-+1.022) Em We note from table 2 that our calzulated values of o, are sensitive to the exchange
(i) ( (i )/,)) 2.89 94.1 102.9 120.5 120.5 mixture of the potential and give good agrcement with the experimental data of
31021 000) e .. . . .
201041 009) (o L) Gorbunov and Spiridonov only for the Serber and Biel forces. This suggests that the
(Giv) (q(] L (m- ‘I)) 2.51 102.4 H2.d 131.8 131.8 trial function used in this paper is capable of giving an adequate description of the
i Y (wm) ground state of *He except in a small region of configuration space. Since correlations
| g (—“(l 091 --1.083 - il Uh)) 2.69 1015 LUt B0 JE05S do not influence the g,,, value too much, it is reasonable to expect that the values of
(@-1-m) 0, obtained from our velocity-dependent potential are excellent approximations
' L | 28 2 . . . . .
i ( (10844 1,064) (n :/')) 2.89 1004 109.8 128.9 liGac) to those which would be obtained with correlated functions. Even allowing for the
expertmeital 1 RO 241 95 .7 small increment which our experience with short-range correlations in the trinucleon
0.15 would suggest, (he agreement between calculated and experimental values of oy,
— o : will stitl remain. Although the large uncertainties in the experimental data are as yet
“) Ref 7). M) Ref ). ¢) Ref. 7). 9) Ref®0). ) Refl?). O Ref ). #) Rel . MRel. ™). too great to yield a critical test, it is our belicf that the wethods developed here can
) Present work. ) Ref. %), lead to improved results. Our success in this investigation confirms the conclusion of
I g
. Davey and Valk that it should be possiblc to fit all of the photonuclear cross sections
Using the general two-body force given by eq. (3) and evaluating £, /5, explicitly, /<)_ in the Is shetl with one form of the nucleon-nucleon interaction, i.c. the velocity-
the expression for @, becomes ! Cop Sigen dependent potential with Scrber exchange chavacter. 1t can also be concluded that
in a2 Saeg il SR : 0 D . -
‘ / J within experimental error the charge distributions as measured by high-energy
/ Oin = 2” e’ fo/ - ,{\12 N L ([ Jeaatic (7)) ('”Pi\;‘FhP”)X{v (32) elcc[rou. sc"dllcrin.tvY is the same charge distribution as gives rise to clectiic dipole
M( l A 3h absorption. The introduction of short-range correlations into product form wave
£ !



functions now appears feasible since the integrals encountered can be simplified using : ' s
the recent wechnique of Roberts '8y This is now being investigated.

r. X. LiM
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