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ABSTRACT

The boson calculus has been used extensively in the study
of the unitary groups U(n) as a means of constructing explicitly
all irreducible unitary representations. However, the boson
calculus in this form cannot be applied directly to the subgroups
Sp(n) and 0(n):; our aim is to develop the boson calculus in a
form which is immediately applicable to all the classical groups.

The U(n) representation space is constructed from tensors,
which in the restriction to Sp(n) and O(n) rust be traceless if
the representations are to be irreducible. Instead of the usuel

boson operators we introduce "modified boson operators" e.g vhich
8 za.B =0

Pa P 14

(summation), where p is the metric for Sp(n) or O(n). With these

satisfy in particular the traceless condition p

operators, vwhich behave as vectors under Sp(n) or o(n), we are
gble to construct manifestly traceless tensors (multivectors) of
arbitrary symmetry. Furthermore, all objects to be studied may be
defined in terms of these operators. In genersl, we find that the
modi fied boson calculus which we develop has, for Sp(n) and O(n),
e domain of applicetion which not only includes that of ordinary
boson operators, but is considerasbly larger.

We are now able to construct simply the irreducible spaces
which cerry all representations of Sp(n) and O(n). We calculete
maeximal and semi-maximal basis states, and all states in symmetric
tensor representations of O(n) and Sp(n), end also general states
for arbitrary tensor representations of 0(3), 0(k). The 0(3)
states appear as monomials and the O(4) states as Jaeobi poly-

nomials in modified boson operators.



In the application to Sp(n) we encounter the problem of
state-lsbelling. We restrict our attention to Sp(L4), although
keeping in mind the general problem, and we seek a8 solution using
the perameters sppearing in the branching theorem for Sp(4) res-
tricted to Sp(2). We utilize modified boson operators in the
construction of the non-orthogonal Weyl states, and carry out a
suitsble Gram-Schmidt orthogonalization to obtain explicitly the
orthogonal basis states. Although in principle the extra label-
1ing operator which is required may be found from these states,
its form will necessarily be complicated. It is found that a
satisfactory solution to the state-labelling problem, exhibiting
the structure end simplicity which is apparent for U(n) and 0(n),
does not exist.

We carry out a further development of the boson calculus for
0(n) to ensble the explicit construction of all spinor (double-
valued) represente.tion’s in spaces of traceless temsors. For the
lower order groups this is done in such a wey as to obtain the
representation space of the covering group, by finding operators
which satisfy the traceless condition, but are different from
modified boson operators. Some of these operators satisfy simple
triple commutetion relations vhich are of interest for both group
theory and field theory.

In order to enable the construction to be mede of all spinor
representations of O(n) in general in a space of traceless tensors,
or equivalently, harmonic homogeneous polynomials, we establish
firstly the relation between the mefhods of the boson calculus
and of Zhelobenko [1] . This latter method wees polynomials over

a homogeneous space defined by a certain triangular subgroup, and



we ghow the two methods cen be directly relsted, BO thet one
construction can be mapped into the other. Zhelobenko's formalism
includes the spinor representations in a naturel way, and we show
how to tranfer to the boson caslculus so as to retain this con-
struction; this is achieved ultimately by finding realizsations

of the Lie algebra of O(n) which are new. Results are written

out explicitly for 0(3).

[1] D. P. Zhelobenko, Russ. Math. Surv. XVII, 1 (1962).



STATEMENT

This thesis contaeins no materiel which hes been accepted for
the award of any other degree, and to the best of my knowledge and
belief, contains no material previously published or written by

another person except where due reference iz made in the text.

Max Adolph Lohe



ACKNOWLEDGEMENTS

The research reported in this thesis was carried out during the
years 1970-T3 in the Department of Mathematical Physics; University
of Adelaide, under the supervision of Professor C. A. Hurst.

It is a pleasure to thank Professor Hurst for his unfailing
interest, and for the privilege of frequent and productive dis-
cussions. Much of the material reported here, some of which has
or will be published (J. Math. Phys. 12, 1882 (1971); J. Math.
Phys. December 1973), is the result of joint investigations with
Professor Hurst.

I wish to thank the other members of the Department for their
interest, also Mrs. B. J. McDonald for her expert typing, and the

Commonweslth Government for the support of a Postgraduate Award.



J:f"“v.

CHAPTER 1

INTRODUCTION

§1. Historicel Account

The theory of group representations is well established as
being of central importance in several branches of physics, parti-
cularly elementary particle physics and nuclear end atomic physics.
This wes already clear in the initial investigations of the gquantum
theory of anguler momentum, which it was found {1] could be based
on the algebraic results derived from the commutation relations for
sngular momentum J X J = 1 J; these relations are also the defining
relations of the Lie algebra of the groups 0(3) and SU(2), and there-
fore these groups are of fundamental Importance.

The reasons why the representations of groups in genersal are
significant, have been clearly expleined by Dyson [2] as follows:

! (1) stetes of a system which obeys the laws of quantum
mechanics are described as vectors in a vector-space V over
the field of complex numbers.

(2) An atomic system usually has some degree of symmetry,

described by a group G of operations under which the equations

describing the system are invariant.

(3) Each ‘symmetry operation g in G defines & linear trans-~

formation L(g) of the vector space V into itgelf, and the

transformations L(g) constitute a representation of G.

(4) The character of s state, so far as the physical proper-

ties connected with G are concerned, is completely speclified

by the irreducible representation of G within the (irreducible)

subspace Vi to which the state belongs.
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(5) States of the system occur in multiplets, the stetes

within & multiplet having the same energy and transforming

into each other under the operations of G. The number of

states in s multiplet is equal to the dimension of the

corresponding irreducible representation of G. "

Let us consider as an example of such a system the 3-dimensional
harmonic oscillator. The Hamiltonian energy for a single particle is

H=% 7] (p? + x2) ,
3 J J

where we have chosen units such that the mess, frequency, and h are
unity. x = (x1,%2,x3) end p = (p1,p2 ,p3) denote the position and
lineay momentum of the particle end satisfy [xi .pJ] = i Gij , with
other commutators being zero. The equations of motion of the
particle are p:I = 5CJ, I"j = - xJ and are invarient under 0(3). The
states of the oscillator are grouped in multiplets with dimensions
1,3,5,.., the states in the multiplet 22+1 having angular momentum
equal to &. However, the true invariance group of the system i1s u(3),

for 1f we let

_ 1 _
8y = 5 (x:j i pj) (1)

then the equations of motion are é.J =1 aJ, which are invariant under
all complex unitary transformations of the 3- component vector a.
More generally, the invariance group of the n-dimensional hermonic
oscillator is known ([ 3] ,[4]) to be U(n); using this knowledge the
gstructure of the state space can be revealed, in particular all
perticle states can be classified [sl.

If we define also

a,6 =

1 B
; /2_(xj+ipj), (1)



the adjoint of a,, then the essential Hamiltonian msy be written as
H= Z ay S.i , and the eigenvectors provide a basis for en irredu-
cible representation of U(3). As Dirac has shown ([6] §3k4), the
elgenvectors mey be written es polynomials P(a) in the operstors
8y s acting on the state |0> of lowest energy satisfying Ei |0> =0,
Operator wave functions of this form were used by Fock [ 7], and so
the space is known as a Fock space.

From the commutation relations of x and p we find that &, a.i
satisfy[a ,al =38 » Loy

J iJ 8y
in terms of which the problem has been formulated, are simply boson

a,] = 0, showing that the operators,

operstors, and eigenvectors of H are homogeneous polynomials in ai
acting on |O>. In this way boson operators provide an irreducible
representation space of U(3), whilst appearing initially in the
context of the simple harmonic oscillator.

The formelism of second quentisation of & system of n identi-
cal particles is closely connected to the boson realization of the
harmonic oscillator, ss Dirac has described ([6], §60). The states
in e system of n identicel particles are symmetric and are labelled

th

|n1,n2,..ni,..>, where n, is the nunber of particles in the i

i
state, and n = Z n,. These particles are known as bosons because
the corresponding statistics were first studied by Bose [ 8] (and elso

Einstein [9] ). We define the opersator .8‘1 by
-ai Inl,nz,..ni,..> = /Ei |n1,n2..,ni -1,..>
end also the adjoint a,, for which

ay |n1 ,nz,..n ﬁ +1 |n1,n2,..n + 1,..> .

The following commutation relations of these operators, which ennihi-

late and create particles, may be verified:



[81,83] = 613 i [ai,anl =0 = [ai,ej] , 80 that boson operators

have again appeared. The operator N, = aiEi is known es the number

i
operstor for the state i because it has eigenveaelues n; and the
states |n1,n2 ce Dy ..> may then be regarded as basis vectors in

the representation for which all N, are diagonal.

Iet us also consider a system composed of several l-dimensional
hermonic oscillators, each of which is described using a boson opera-
tor and its adjoint. We obtein a general state vector by ellowing
the boson operators for each oscillator to act on the vacuum |0> i
The state |0>, the "stenderd ket" for the Fock representation of the
assembly of oseillators, is the product of the vacuum states for
each oscillator. The state corresponding to n bosons is
8"l 8,2 ., aJnJ lo> with n = np + .. + n,. This state mey be
regarded also as the symmetrizetion of en arbitrary state in en
sssembly of bosons, which means thaet the dynemicel system consisting
of an assembly of bosons is equivalent to the dynamicel system con-
sisting of a set of oscillaetors. In this wey the boson realization
of the sirple harmonic osecillator is of fundemental importance for
systems of identical particles, and consequently for the theory of
radiation. The normalized state in the system with occupation

numbers nj, no is
n n
ay ! ey 2 |0

Vo ! nat
where n = n; + np , an expression which appears also in the repre-
sentation theory of SU(2).
We have now seen how boson operators acting in a Fock space
appear naturally in the discussion of physical systems. These

systems may also be invariant under group transformations, and the

boson states then provide a representation space on which the group



scts. This method of constructing representetion epeces, which is
known ss the boson calculus, has appeared in this wey es & powerful
tool for the study of group representations in an explicit form.

As Biedenharn has emphasized ([10] ,[11] ) the representation
theory of Lie groups in general hes received several classic treat-
ments, but which are not as explicit and constructive as the physicist
requires. The boson calculus uses the classic methods of Weyl ([12],
[13]) in the form of the explicit realization of boson operators. In
this formalism the functions of the representation space, end the
operators which act on this space such as the group generators, are
all expressed in terms of boson operators. It is then possible to
carry out direct and explicit calculetions, permitting the computation
of matrix elements of generastors and tensor operators in general, and
ensbling a thorough investigation of the properties of the group under
consideration.

The connection between boson operators eppearing in a physicel
system and group representations weas first revealed by Jordan {14
in & discussion of the relationship between the linear group and an
n-particle system. Using the method of second quantisation of the

system, boson operators ai were introduced and Jorden then constructed

B, = akaz (2)
which were shown to satisfy [Ekz’EJm] B 6” Ekm - Bkm E,jﬂ, , the
commutation relations of the Lie algebra of GL(n). This analysis was
carried out for fermions also, so that here we have the beginnings
of the boson and Pfermion calculus.

We shall regard the boson calculug in e wider sense as the con-
struction of representations in spaces of homogeneous polynomials of

complex variebles. A purely operator construction can then be carried
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out simultaneously dy regerding eech varisble z, 88 & boson operator

ay, with adjoint '5,1 = -8—2-; . The relation of these isomorphic methods
has been clarified by Bargmenn [ 15] , as will be discussed later. In
this wider view the boson calculus may be considered to have origina-
ted earlier than the work of Jordan. As explained in Chapter 2, the
boson calculus is a realizstion of a space of tensors on which the
group acts, and such & realization was described previously by Weyl
[13]. FElements of GL(n) act on a vector x = (x1,X2, .. xn) from
which quadratic and higher order forms can be constructed, and Weyl
pointed out ([13] p.124) that these forms themselves constitute a
representation space of tensors on which the group acts. By intro-
ducing additional arbitrary vectors y, z, etc., arbitrary tensors can
be comstructed. Weyl described [12] how to reduce this space using
the symmetric group, and this investigation was published already

in 1925 [ 16] , including O(n) and Sp(n) es well as GL(n). Already,

then, the tensors constituting the "substratum' of the representetion

f

f1 x2f2 .o xn n ., and these are

space have appeared ss monomials x)
later to be known as Weyl states. For sU(2) these normalized mono-

1x
mials teke the form x(m) = %—“— (1 +k=2),1-k=2n) where E,
i1 k!

n are vector components.

As we have mentioned, Jorden subsequently introduced the opere-
tor formalism but it wes not until Schwinger [17] carried out a
thorough analysis with sbstract boson operators that the full capabl-
1ities of the boson calculus were realized. Schwinger introduced
boson operstors a;, g; (and their adjoints) and all other objects to
studied were defined in terms of the 8y . The physical reasons moti-
vating this approach are those which we have mentioned in generel,

that angular momentum in quantum mechanics can be regarded as a
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superposition of an sssenbly of elementery *spins™ with engular
momentum J = %. Such an assembly may be regarded as a Bose-Einstein
system which mey be discussed using second quentisation, whereby
boson operators are introduced. The besis states appear as

L4m L~
ap ey o>

Ao + m)t(a ~ m)!

and the generators are expressed as in the realization (2). Using
this formalism Schwinger was sble to present a very complete account
of sngular momentum and SU(2), deriving maetrix elements end relevant
properties for both finite and infinltesimal group elements, together
with an sccount of the addition of two, three end four engular
momente snd of the theory of temsor operators. The methods used by
Schwinger are of such power because all objects to be studied can be
introduced in the explicit realization of boson operetors, which
themselves are easily manipuleted.

Bargmenn [ 15] hes reviewed the theory of anguler momentum in a
formulation which is isomorphic to Schwinger's operator method.
Irreducible representations of SU(2) are obtained by considering
homogeneous polynomials in two complex varisbles, defined in a
Hilbert space, and the standard methods of eanalysis are availsble st
each step. In the viewpoint which we adopt Bargmenn's method is not
distinguished from that of the boson calculus, 80 that a boson
operator ey and the variable Zg are treated interchangeably saccording
to what 1s most convenient.

The work of Jordan, and in particular Schwinger, has led to
extensive research on the development and application of the boson
calculus (e.g. [18]1,019]1). Dirac {20 carried out independent work

using a method suggested to him by Fock's quantum theory of the
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harmonic oscillator; representations of the rotation and Lorentz
groups were constructed in the space of coefficients of a power
series in the varigbles Ei’ i =1, .. L4 These varisbles, called
"expansors", are easily transformed to the components X, of a four-
vector, which can be regarded as boson variebles, so that Dirac
independently encountered the boson celculus.

Considerable development of the boson calculus, in the
generalisation to higher order unitaery groups, has been carried out
by Moshinsky ([ 21} ,[22] ,i23]1). The motivation here has again been
the study of the harmoniec oscillator, and boson operators have
appesred as in (1). Results are cbtained concerning the form of the
polynomial bases, in a completely group theoretical context (24 ,
[25] ), in particular the state of highest weight becomes of prime
importance. For an irreducible representation this state 1s unique
([ 26] p.37) end so its explicit knowledge for arbitrary representa~
tions of U(n) is an important advance. With the expressions for
lowering operators known [27] , it is now possible to calculate arbi-
trary Gelfand basis states.

A complete and general account of the boson caleulus was glven
by Baird end Biedenharn [ 10] , in which the full power of the integral
approach against the infinitesimel wmethods was demonstrated. Here
the boson calculus is revealed as a realization of the tensor spaces
employed by Weyl, and the expansion of the Gelfand states in terms
of the Weyl tensors is carried out explicitly for U(2) and SU(3).
Full use is made of the Young tableaux which define the symmetry of
the basis tensors, even to the extent of associating with the Young
pattern e measure, or normalization of the state, by means of an

explicit algorithm involving hook lengths. With such techniques an



explicit derivetion of matrix elements of the U{n) generators
becomes possible, to give the results which had been stated previously
by Gelfand and Zetlin [28].

Since the time of this work, one development of the boson calcu-
lus has been concerned with the explicit form of the basis states
([29) M 30] ,[31]) end the relevant combinatoriel structure ([32),[331).
Another development has occurred es part of a general program con-
cerning the investigation of tensor operators in the unitary groups.
In vhat is termed the Racsh-Wigner engular momentum calculus ([ 34],
[11]), it 1s required to investigate the following: reduction of
drect products and Wigner coefficients of the group; irreducible
tensor operators and Wigner-Eckart theorem; Racsh coefficients of
the group. The role of the boson celculus in this program has been
explained by Louck [ 34] , and hes been used ([ 351 ,136] ,I37]) for the
explicit calculation of Wigner coefficlents, in a method which is a
generalization of Wigner's original calculation [ 38].

Other modern work involving the boson calculus has concerned
the epplication to nuclear structure ([ 35] Vol. II, p.340) and to the
n-dimensional harmonic oscillator [5] , and also to problems of state-
lebelling [ 39] . Generslly, where explicit group theoretical results
are required the boson celculus formalism provides the most power-

ful method of investigation.

§2. The Need for a Further Development of the Boson Calculus

Tt is noticesble that the boson celculus has been developed soO
as to apply primarily to the unitery groups. 0(n) and Sp(n) are sub-
groups of U(n) end therefore many properties of U(n) apply also to
0(n) and Sp(n). Tt is of considersble interest to have available an

explicit boson celculus for O(n) end Sp(n) which incorporates
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particularly those properties which result from the extre structure
which O(n) and Sp(n) possess through leaving invarient a certain
quadratic form. The interest in O(n) and Sp(n), for physics, stems
from the fact thet these groups are ss rich in structure as U(n),
end therefore frequently sppear es symmetry groups of physical systems.
This 1s particularly true for O(n), whereas Sp(n) has been somewhat
neglected. The importance for physics of 0(3), which is locally
isomorphic to SU(2) and Sp(2), is well known. O(L) eppears as the
symmetry group of the bound state problem for the hydrogen atom,
under a Coulomb potentiel ([ 40} ,[41)). SO(5), which is locally
isomorphic to Sp(4), has been studied by Hecht [ 42] with a view to
applications in nuclear spectroscopy end elsewhere, but our methods
will simplify much of his work. Another study [43] of S0(5) arises
from the description of nuclei states with the S5~dimensional har-
monic oscillator. The symplectic group Sp(2)+k4) has eppeared [ k]
in the classification of shell model steates, and the further develop-
ment of this work [ 18] has revealed the presence of another Sp(l4)
group. In his study of complex spectra, Racah [ 45] showed how both
the genersl orthogonal and symplectic groups could be used in the
theory of seniority, leading also to further developments on sym-
plectic symmetry [ 46] .

From the methematical point of view a boson calculus for 0(n)
end Sp(n) is of interest as an explicit construction of all uwmitary
irreducible representations. Together with SU(n), 0(n) and Sp(n)
constitute the classical groups, and with the exceptiongel groups
meke up all the semi-simple compact Lie groups. Because of these
properties, the knowledge of the group gtructure is certain to be
of consequence for mathematical interest alone. For example, basis

states would be speciel functions which could be studlied using group
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theoretical properties, as has been done by Miller [47], Telman [u8],
and Vilenkin [49]. 1In general it iz expected that a sulteble boson
calculus would ensble an investigation of O(n) and Sp(n) in the way
that has been done for U(n) with consequent applications in both
methematicel and physical arees of interest.

As we heve mentioned, O(n) and Sp(n) are subgroups of U(n), so
that the boson calculus for U(n) cen epply to 0(n) and Sp(n) by con-
gsidering & suitable irreducible subspace of the U(n) representation
space. As will be explained, we need to carry out a restriction from
the space of tensors of certain symmetry to the subspace of traceless
tensors, or in the equivalent viewpolnt, we need to consider the har-~
monic subspace of homogeneous polynomiels. This regtriction is well
known for 0(3), where the basis states become the spherical harmonic
functions, or equivalently, symmetric traceless tensors ({50}, p.397).
Symmetric representations of O(n) have been studied [51] where the
besis states are regarded as polynomials in boson operators, acting
on & vecuum state, end similer calculations have been done for general
representations of Sp(L) [52]. States of highest weight have been
found for 0(n) [53], together with lowering operators ([54) ,[55]1), so
thet it is possible to calculate erbitrary basis states. It would
seem from this that the boson celculus spplies to O(n) and Sp(n) in
the seme way &8 it does to U(n), simply by considering o(n) and Sp(n)
as subgroups of U(n).

However, there are some clesr and definite deficiencies in this
approach vhich are spparent already for 0(3). Firstly, the basis
states for 0(3) are very complicated by comparison with the monomi al
basis states of SU(2), although SU(2) is of compersble complexity to

0(3); secondly, the basis states are not menifestly harmonic i.e.
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the representetion space is not irreducible in en obvriocus way, end is
not manifestly invariant under the operators on the space. Connected
with these deficiencies is the fact that, although for U(n) Weyl
states can be written down from the Young tebleau by inspection as
monomials, the seme cennot be done for O(n) and Sp(n) i.e. the trace-
less tensors of the space are not determined in en obvious way from
each Young tebleau, and there are no monomials which could be regarded
as the traceless Weyl tensors.

It is clear that the boson calculus for U(n) is not immediately
applicsble to O(n) and Sp(n) and requires a modification in order to
overcome the deficiencies described. The starting point of the develop-
ment required will be to find operators, "modified bosons" 8y which
behave as ordinary bosons in many wsys, ¢.g. they commute and are
vectore under O(n) and Sp(n), but which satisfy in addition

a% + .. arzl = 0 (for O(n)). Tensors constructed as polynomials in &

i
acting on |0> will then be manifestly traceless, since modified boson
operators will operate only within such a space, unlike ordinary
bosons. It is necessary to generalize 8y to several sets a: which can
be used for arbitrary representations of Sp(n) es well as O(n).

With the basic mechanism of the boson calculus set up the develop-
ment tekes place as for U(n), so that Weyl temsors msy be constructed
and orthogonel Gelfand states calculated. Although in principle these
states mey be calculated using ordinary bosons, the simplicity which
modified bosons permit allows the construction of some general stetes,
which had been previously prevented because of the greater complexity
if ordinary bosons are used. It will be shown that there are two
applications where modified boson operators are indispensible, i.e.

ordinery bosons do not permit the discovery of these results at all.
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The first is in establishing the relation of the boson calculus
formalism to en sppnrently completely different and powerful method
used by Zhelobenko [56] , and secondly in the construction of all
spinor representetions of O(n) in harmonic spaces. In general it
will be clear that, for O(n) and Sp(n), the domain of application
of modified bosons not only includes that of ordinary bosons, but

is considersbly larger.

§3. Summary of Thesis

The development of the boson calculus for O(n) and Sp(n) will
be described as follows. In Chapter II we give an account of the
boson calculus end its development for U(n), partly to set the
notation, end partly to indicate how the development for 0({n) and
Sp(n) should be carried out. Meinly however this material serves
88 8 prerequisite for the study of 0(n) =nd Sp(n) because these groups
are subgroups of U(n), and meny properties of U(n) spply elmost
{mmediately to O(n) and Sp(n). We introduce here the direct product
space in vhich are defined the multivectors known as Weyl tensors,
and we give the equivalent description, due to Bargmann, in the spsace
of homogeneous polynomials. The labelling of states, the Gelfand
basis states, end the method of their calculation are also described.

In Chapter 3 we carry out the reduction into the subspaces
which are irreducible under O(n) and Sp(n), involving the eppearance
of traceless tensors and harmonic homogeneous polynomisls. The
coneiderations for both groups can be combined by using a general
metric p i .j; it is for this reason that the development of the boson
celculug for O(n) is also a developrent for Sp(n), and vice versa.

We introduce in Chapter 3 the modified boson operstors which form the

basis of our investigations, both as abstract operators in a Fock
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space, and as differential operators acting on functions of complex
varisbles. We examine their properties, particularly with regard to
the realization of the group generators they provide, end their
properties as vectors. Aslde from group theoretical concepts,
modified bosons are useful in the construction of traceless tensors;
given a multivector we can write down immediately its traceless
part, not just for symmetric multivectors as has been done before
[57] , but quite generally.

In Chepter 4 we apply modified bosons to the task of calcu-
lating basis states for O(n). We show how to obtain Weyl states
quite generally, and we write down the maximel end semi-maximel
states of the Gelfand basis. This leads also to a derivation of
the brenching theorems, which are used as & means of lsbelling the
gtates. We calculate general basis states for 0(2), 0(3) and O(L)
and symmetric basis states for 0{n). In some cases, these are
di fferent , simpler formulations of known results, but the expression
for O(4) basis states es Jacobi polynomials would appear to be new.

In Chapter 5 we use modified bosons in the calculation of
Sp(n) basis states. We are sble to calculate maximal states and
symmetric states of Sp(n), but for the general states we encounter
the problem of state-lsbelling. Sp(n) does not possess a suiteble
subgroup chain, as do U(n) and O(n), which could be used to lsbel
the states completely. For this problem we restrict our attention
to Sp(4) keeping in mind the general case. We show how the basis
states can be labelled using the branching theorems, and we calcu-
late the general Gelfand state by carrying out a suitaeble ortho-
gonalization of the non-orthogonal Weyl states. Our solution to
the problem is therefore on a global scale, utilizing state wvectors,

and it becomes clear that suitable lsbelling operators constructed
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from the group generators are very complicated. From this point
of view no suitsble solution to the problem exists. Our methods
apply also to the well known SU(3) 2 0(3) labelling problem.

In Chapter 6 we examine in detail the triple commutation
relations encountered when first considering modified bosons.

These relations are of interest both for the group theory involved,
end also as & means of defining a new field theory. We show that
the commutator algebra of these relations is isomorphic to the Lie
algebra of 0(n,2), and we find the corresponding representations in
a Fock space. There are also solutions of these triple commutation
relations as double bosons, and these are all classified.

From Chapter T to Chapter 9 we turn our attention to the
construction of the spinor representations of O(n), a construction
not achieved in Chapter 3. We exemine firstly the role of the
covering groups as & meens of cbtaining the spinor representations.
The triple commutation relations of Chapter 6 sppear again in the
study of certain operators which gatisfy the traceless conditioms,
but are different from modified bosons. These operetors provide
& global mapping from O(n) to its covering group, for n = 2, .. 6,
end in particular for n = 5 involve the modified bosons for Sp(h).

In Chepter 8 we demonstrate the relation between the boson
caleulus, for U(n) and also O(n) and Sp(n), end e different method
developed by Zhelobenko. This latter method can be regarded as
being more mathematical in origin compared to the rather more
physical motivetion of the boson caleulus. Zhelobenko has developed
his method to construct all finite dimensional representations of
the complex classical groups, including the spinor representations
for 0(n). The method relies on the exlstence for these groups of

8 Gauss decomposition, and all representations are induced by the



16.

subgroup of diagonel matrices. Zhelobenko's method identifies
clearly the homogeneous spaces in which the representations are
constructed, and by estsblighing the relation with the boson
calculus we reveal the true mathematical crigin of the boson calcu-
lus, in terms of the homogeneous spaces involved.

In Chapter 9 we show how to transfer from the formelism of
Zhelobenko to the boson calculus in a way that is general enough
to retain the construction of all representations of U(n), 0(n)
and Sp(n). As & result we are sble to construct all spinor repre-
sentations of O(n) in harmonic spaces, which for 0(3) amounts to
using a5 a basis the same set of functions, the spherical harmonics,
a8 is used for the tensor representations. The two types of repre-
sentations, single- and double-vaelued, are distinguished by the
di fferent form of the generators; here modified bosons plsy an
importent part.

In conclusion, then, we have completed the prineciple task,
which wes under investigation, the development of a boson calculus
for O(n) and Sp(n) which would ensble the explicit construction of
all unitary representations in manifestly irreducible form. It
remains now to develop these methods further as has been done for
U(n), and to apply the technigues to problems in both mathematics

and physics.
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CHAPTER 2

DEVELOPMENT OF THE BOSON CALCULUS FOR U(n)

§1. Space of Tensors

The boson calculus has been developed fully from its initlal
stages by Biedenharn [10,32,35] and Moshinsky [21,24,25] and co-
workers. The description of the carrier space in terms of tensors
realized with boson operators is es follows.

The fundemental (defining) representation of U(n) has as its
carrier space an n-dimensionel vector space A. The Wigner-Stone
theorem [ 35, Vol. II, p2] shows that we mey construct ell unitary
irreducible representations of a compact matrix group by teking

repeated direct products of the fundamental representation of the

group.

(2

(1) X .., A , the direct

X A(2)

Hence we form B = A
product of A spaces like A. B i1s then the carrier space of tensors
of rank A. B is reducible because the transformetion induced by
the operations of U(n) commute with trensformetions permuting the
A vector spaces among themselves. To see this let T(‘i) = T’iliz..'i)‘

be a tensor of rank A; then the transformation of T under U(n) is
T' = . j €.
(1) = T(p) B(py(a) 1-°

TS =T ¥ : , & ¢ U(n)
1.4,  TP1-.Dy ®p1i1" Bp,1, 8

(surmation over p).

let S ¢ SA s the symmetric group of order A. Then

(5T)(4) = T(1) = T(p) E(p)s(1)

= T5(p) &s(p) 5(1)

(ST) (1) B(p)() °
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where we heve used the feot that +the tensos +vessformetion is bi-
symmetrie. We have shown that B can be reduced into subspaces each
of wvhich is spanned by tensors of the same symmetry. A given sym-
metry 1.e. an element of SA’ corresponds to & Young symmetry pattern
defined by a partition {ml of A. Hence each pattern uniquely denotes
an irreducible subspace of B. Each Young tebleau (the Young pattern
filled lexically with the integers denoting the A vector spaces)
defines an operator, the Young symmetrizer whick projects the direct
product space B into the invariant subspace defined by the Young
tableau.

The basis vectors of the irreducible representation of U(n)
are determined in & one to one correspondence with the lexical Young
tableau in which the indices of the Young symmetrizer tebleau heve
been esssigned numericel values (1 to n).

The boson calculus sppears when we realize each sbstract
space A(U) with boson operators, so that the elements of A(c) are

bosons a.i i=1l, .. n which behave as vectors under U(n):

Ve
a” = ag 1i.e. a,g = a,; gpi
where g € U(n) .

These boson operators are defined by the commutation reletions

lag.e) =0 =[&,5)] ,

J

oT
‘513 8 (1)

[E,z,e;]
where 5.; is the destruction operator adjoint to the creation opera-
tor e,: . A tensor in B is now constructed from boson operators
acting on the unique vacuum |0>. The effect of the Young symmetrlzer

acting on these tensors is to introduce the following entisyrmetrié

combinations (symmetric combinations appeer automatically):
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k

] p
a, = I eg(i..1 a e ° {2
11..4, (11..4,) iy "t R (2)

which is the determinant of the k % k matrix Mi,j = a:; . The state

vwhich corresponds to a diagram is called the Weyl state and can now

be written down explicitly; for example the Weyl state with diagrem

is a3 232 |O> .

The abstract generators E of U(n) satisfy

il

[EiJ,Ekz] = GJk By - 850 EkJ . (3)

These generators can be divided into welght generstors, and lowering
and railsing generators. The classification in terms of the genera~-

tors Ea corresponding to root a is

By = Byy
Eei_e‘1 = EiJ s, 1#3=1, ..n. (u)
The Eij cen be realized explicitly with boson operstors as
P =p
Egy =8 8 , (5)

L
which is checked using (1). The hermiticity property Eij = EJ'i

ensures that the representations are unitary. Bosons behave as
vectors under these generators (as previously noted):

g

[EiJ,a§] =8,y 85 - (6)
The Weyl basis is very useful, partly becasuse of its simpli-

city being slways a monomial, and because it can be written down
immediately by inspection from the Young tebleau. However the Weyl
ba3is has the disadvantage that in general it 1s not an orthogonal

basis.
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A lsbelling scheme which refers to orthogonal basis states weas
originated by Gelfand and Zetlin [28] . In this scheme a basis state

|(m)> for U(n) is written

[{(m)> = | m m #iy m (1)

where the mij are non-negative integers satisfying

mi+1,3+1g ™3 = T+l - (8)

The meaning of the m,, is that the numbers (m

13 11° Moy v
highest weight vector of the subgroup U(i) contained in the de-

mn) fornm the

composition U(i + 1) D U(1) x U(i). The inequelities (7) are then
simply a statement of the Weyl branching theorem for U(i + 1) res-
tricted to U(i). These Gelfand basis states are necessarily orthogonal
because of the group theoretic meaning of the mij'
Since the Gelfand labelling enumerates the states correctly, the
Gelfand states can be put into a 1 -~ 1 correspondence with the Weyl
states. The natural correspondence is the following: with the

Gelfand state |(m)> we associate the Weyl state determined by the

Young tableau containing in the kth row m., k's followed by

(M a1 ™ T EHL'S T

1 1l

(mkn ~ ™ n-1)n's s for k = 1, .. A.

Generally we put A = n in order to obtain all representations of U(n).

Teking for exemple U(2), the Gelfand state is

|( ) my2 1Mmp2
m;> =

my1
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and is associated with the Weyl state (dencted with round brackets )

. mii mi2

mlz m22 I l “w 2 . s I ( )
12.. | 7

711

a, 11722 a2m12'm11 m2 o> .

®12
In this caese the Gelfand and Weyl states are the seme, but in general
the Gelfand stete will be a linear combinstion of the Weyl states.

These expensions have been studied extensively for the unitary groups

{10,32,33].

§2. Homogeneous Polynomials

The boson calculus can also be described in the following way,
in which the carrier space is constructed from homogeneous polynomials.

We can define a representation T of U(n) in a function space R,
consisting of functions f defined on n-dimensional complex variables

£, by
Tg £(z) = £(zg) (10)

vhere g € U(n) .
This reducible representation will be irreducible if we restrict f
to lie in the subspace R’L of polynomials homogenecous of degree % in =z

i.e. such that £(iz) = A* £(z) ox equivalently

N £(z) =z %— £(z) = & £(z) .

p

The space R2 1s not large enough to carry all representations
of U(n). We enlarge the space by introducing more varisbles so that
a function £ is defined on a set of variaebles zc, vhere 0 = 1, .. A.
f(z) is now a polynomial homogeneous of degree 2.0 in z(i’ , for

0=1, .. A\, and belongs to the irreducible space
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(2,) (21,22,..%,)

(2,)
Tg is defined in R a by (10), but where z now stands collectively

for An varisables zg.

(2,) (2.)

Given f(z) € R we can obtain a new polynomial in R 8
vhich is of degree & + 1 in 2° , namely zc;_ f(z). This process is
simply that of applying a creation operator a: to an arbitrary state,

hence we make the asssociation

a(i’ B zz (11)
(2.)

Similarly to eech f(z) € R k there corresponds a polynomial of

of degree 4 - 1 in 2°, which is ——a; f(z) . The operator _8_0_ has

azi azi

the effect of a destruction operator (removing a particle) and so we

write
-0 9 P
ai - azo. (11 )
i
The operators z; end —-Q,—r- obey the commutation relations (1) of boson
32
J

operators. In this way we introduce bosons and the method (10) of
constructing representations is an equivalent view of the boson
calculus. The basis states, homogeneous polynomials, can be equally

well regerded as tensors or multivectors constructed from the vectors

g

24 The generators become differential operators

I
E z3 . (12)

9
13 azg

This can be seen either by substituting for (5) with (11), or

by calculeting E,, from (10). In this calculation we put g = 1 + teij

i)

where ey ig sn n x n matrix with elements (eiJ)kR, = 611:639, . Then
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d

By ®®

f(zg) =g
t=0
We have outlined two apparently different weys of obtalning the
U(n) representetions, both involving the boson celculus. Bargmann [ 15}
hes discussed the equivalence of the ebstract operator approach carried
out by Schwinger [ 17] for SU(2), and that using Hilbert spaeces of
homogeneous polynomials. He points out the characteristic differences,

that in the first case the boson operators ag, a.’ and their cormmute-

J
tion relstions are postulated. Other objects to be studied, such as
the basis states (tensors) are defined in terms of these operators with
the emphasis being on the construction of representations using the
infinitesimal generators. In the second case the function space R is
postulated and studied with the methods of analysis, with the repre-
sentations deflned directly on R. The space R with its differential

operators cen be regarded as a realization of the more sbstractly

defined system constructed from bosons.

§3. Scalar Product

By postuleting the operstors ag end their adjoints we have
defined a scalar product. An arbitrary state has the form f(a) |0>
vhere f is a function in the boson operators and |0> is the vacuum

state. The scalar product (f,f”) is then defined as
(£,£°) = <0| £(2) £°(a) |0O> . (13)

Within R we need to define the scelar product so that & = 2,

iz the adjoint of ai = 3-:—— . Bargmann [ 58,59] has studied this space and
i

the scalar product in detail end has defined

() = | Ha) £7(2) G (2) (1)
Cn
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where

-n

dun(z) =1 exp (- z°z) I ax, v,
k

(zk= xk+iyk) )

We then have

3

(£,2,£7) = [—a—z—i- £,£°) es required.

Alternatively, glven a homogeneous polynomial f(z) = ) & z[ bl
h

we mey put
[h]
* - 9
£ (’;,—z') =1 (5
h
[h _ _h By
where h = (hl,..hn) and z =2y ! .. z, - Thenwe define the
complex number
K
(£,£7) = [f (5%) f'(z)J (15)
: z=0

which is easily checked to satisfy all the requirements of a scalar

product.

§h, Beasis States

Having constructed a suitable representation space we now wish
to calculstc the Gelfand basis states, which is done as follows.
Firstly we obtain the state |ma.x.> which is of highest weight ie.,
the state which is an eigenvalue of the weight generators Hi = Eii
in which the eigenvalues, or the weight, take the highest possible
values. This will be the case [26] if E, lmax> = 0 where Ea/are all
the raising generetors of U(n). In an irreducible space |max.> is
unique, by Carten's theorem [26] (see also Zhelobernko [56] pil2 Corr. 2).
The state |max.> is also cyclic, i.e. by epplying the generators E,,
of U(n) we obtain all other states in the space ([56] pl2 Corr. 2). By

applying suitable combinations of the Ei j we reach states which are
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the orthogonal Gelfand stetes. These combina&ions, eelled lowering

end raising operators, have been caleuleted by Nagel and Moshinsky [ 27].
It is not necessary that our space be irreducible initially.

Since U(n) is compact and therefore completely reducible the representa~

tion space can be written as the direct sum of irreducible spaces.

Equivalently the space will contain seversl states of highest weight,

one for each irreducible subspace. We select the most convenient of

these states and obtain the basis vectors spenning the irreducible sub-

space by application of the Ei,j' This is the case when we form the

space R x B*2 x .. R A from which we choose the irreducible subspece

(2)‘) (21,..2)\)
R = R . The Ei.j cannot lead to states outside the space

because the E,, commute with the group invariants, the eigenvalues of

1j

which determine the representation and remain unchanged.

For U(n) the state of highest welight is

| max.> = M% g

m
mp=m2 g, 02703 m o> (16)

1 “* %5 .0n

where my..m ere the representstion lsbels and M the normallzation,
which can be celculated from (13) as hes been done by Biedenhern end
Ciften [32]. To show that (16) is of highest welght we need to show
that

By |max.> = 0 for i < 3 . (17)

To check this it 1s sufficient to show only that

By 441 |max.> = 0 (18)

because E,, can be written as the repeated commutator of E s
13 1,i+1

.o E This is So because Ei 141 corresponds to the

Bivn,ae2 o0 By-1,y
simple root e = &g from which all other roots cen be obtained by

addition. Now (16) belongs to an irreducible space (it is a Weyl gtate),
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and since thewe is only one solution of (IT) in en jrreducible space, by
Cartan's theorem we find that (16) is the required state of highest
weight. By epplying the disgonel generstors H; to (16) we find that
the nunmbers mi, which must satisfy my Z mp 2 .. 2 m 2 0, are not only

the degrees of the polynomial Ima.x.> but are also the actual representa-

tion labels.
An elternative method of finding (16) is to use the fact that the
(2,)
representation space R A carries representations of not Just U(n),

but U(n) % U(n) where the second U(n) group is generated by

B8 = o & , end [E,
P i

5% =0 . 1
o ] (19)

J
The only representations of U{n) x U(n) which the space carries
are those in which the labels of each U(n) group are the same
(mq,. .mn). This is because the invariants formed from EiJ end those from
E*® are the seame when the substitutions (19) and (5) are made (Louck [5]).
This direct product has been denoted U(n) ¥ U(n) [60] , and the two groups
referred to es complimentary [61] .
The method of Moshinsky [24] 1s to note that an arbitrary basis
state of U(n) generated by EiJ can be chosen to be(:f)highest weight in

U(n) generated by B 1., , the polynomials f of R A" can be charac-

terized as the solutions of the equations

=
H
]
&
7Y

oa=1l,...n ,
(20)

£ =0 o <8 .

Moshinsky has solved these pertial differentlal equatioﬁs [21]
and by requiring that f be of highest weight in both U(n) groups has
cbtained (16). This method has been followed also in the treatment
of 0(n) [62] end Sp(n) [631. However as & means of obtaining the state

of highest weight this approach is unnecessarily complicated by
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comparison with thet fivst outlined. We will use the simpler method
to find states of highest welght for O(n) and Sp(n).

Moshinsky [ 24] hes distinguished between his approach (carried
out first by Wigner [ 38] for 0(3)) using homogeneous polynomisls, end
that of Weyl using tensors of definite symmetries. However when we
construct tensors with bosons, with the associations (11) the two
methods become isomorphic. We will regerd the approaches as equivalent
and use the methods of each a&s convenient. This situation will appear
algo for O(n) and Sp(n) e.g. for O(3) the basis states will be regarded
both as symmetric traceless tensors and as harmonlc homogeneous poly-
nomials (sphericel harmonics).

With the state |max.> known we can readily calculate basis states.

This has been done for U(2) and SU(3) by Baird and Biedenharn [10] :

for U(2)
la)> = {mi2 mzz\
o o
= MTE g, 22 011722 o,M127HL o>
where

(m11 - mzz)! (mlg -~ mll)!

M=
(m3p + 1)! mpp! (myp =~ mpp + 1)!

and for SU(3)

| my3 mp3 0'\

m Mo 3=I mjq-n
N ayp22 g 023722 o T117T23

mpa m22 =
i / x g, R12-M11 _ M13-M12
/ az 83
8] 823
% oF1(moy = ma3, myy - mi2, mp = Mp3 + 15 o
where N is known. (22)

From the normalized basis states it is possible to calculate the
matrix elements of the group generators, and this has been done for u(2)

and SU(3). It is possible [10] also to calculate matrix elements for
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arbitrery n, snd then the originel results of Gelfand and Zetlin [ 26]
are obtained.

The form of the Gelfend basis states for other unltary groups has
been investigated ([29), [33], [32]). The expressions obtained are of ‘
interest in speciel function theory because of the many properties of
special functions which can be derived from group theory ([ 491, [48],

[47).
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CHAPTER 3

MODIFIED BOSON OPERATORS

§1. p-0rthogonal Groups

The orthogonal group o(n) in n dimensions is defined as the
set of n X n matrices g such that ggt = I. If g acts on & space of
vectors z (denoting a complex or real row n-vector) then we may
equelly well define an orthogonal matrix as one leaving invariant the
quadratic form zzt. More generally we define the get G(n) of
p-orthogonal matrices es those leaving invarisnt the general form
zpzt where p is an n x n nonsingular matrix. These p-orthogonal
matrices g must then satisfy gpgt =p., Ifp is symmetric we obtain
the orthogonal group 0o(n), and if p is entisymmetric we have the
symplectic group Sp(n). In the latter case the requirement that zpzt
be a nondegenerate bilinear form restricts n to even velues. We cen
accommodate both choices for p by choosing the symmetry condition

pyy = Noyy Vhere n = £ 1. Tn sddition ve sssume po¥ = I. We will be
concerned with the compact subgroups of U(n) but our spproach will
still be useful in obtsining finite-dimensional (non-unitary) repre-
sentations for the non-compact groups.

We wish to develop e boson calculus for O{n) and Sp(n). To do
this we approach the problem as for the unitary group U(n) 1.e. we
teke repeated direct products of the n-dimensionel carrier space A
of the defining representation to form the reducible space
B= A(l) X A(z) X .. A(A). The Wigner-Stone theorem ([ 35] Vol. II,
p2) then shows that all irreducible unitary representations of G(n)

can be extracted from B. B is decomposed by application of the Young

symmetrizer which projects B into the subspace defined by the
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corresponding Young tableau. This process is that of decomposing ean
arbitrary tensor into symmetry types as described in Chpt IT, §81.

For U(n) this decomposition is sufficient i.e., the various subspaces
are irreducible. The boson calculus is introduced by realizing each

(o)

space A with boson operators.

§2. Traceless Tensors

For G(n) B must be decomposed further because of the appearance

of the metrie p. From each tensor T11 1 of rank r we may form
-1,

enother tensor of rank r-2 by contraction with p:
T > p T
il.-ir pq_ il.op- oqonir .

Tt was observed by Weyl [ 12] thet the operation of contraction
(taking the trace) of tensors belonging to B commutes with the
p-orthogonal trensformetions. If T~ is the transform of T under G(n)
then

T/, =T - :
1..4, "P1..p, p11y gprir

Contracting, for example over the first two indices, we have

T .
ppq paij.. 1

r
= o1 2, %o1p p2a Gpsis ®p 4, "ra
= "o1..p, (808, - fo. 1,
" Poip2 TP1P2--Pr ®paty " Bp i
= [ppq TPqiauir], ,

We see now that the subspace of tensors of zero trace is
invarient. In order to obtain an irreducible representation spece

we must start from the subspace of traceless tensors and epply the
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Young symmetrizer to obtain traceless tensors of a glven symmetry

type. A tensor T:l i can be decomposed uniquely into a traceless

tensor T° plus & tensor of the form ([50] p392):

(12) (aB)
F,. =p G, Co* . v py o Gy Ty _
i;. .ir i1, "i5. "ir iai'ﬁ i,. 'ia-li'q+1' '18—1184-1' .1r
(______r(r = 1) terms) .
2
Hence the traceless part of a tensor can be written
N = - F . (1)

T A T
il.lir ilu.ir ilooir

Our problem is to project from T to °.

The requirement that a tensor be both traceless and of a given
symmetry is a strong condition end it has been shown ([ 12,50] ) that
traceless tensors of certein symmetries are identically zero, i.e.,
some Young diagrams are not admissible. For O(n) we have that trace-
less tensors corresponding to Young dlsgrams in which the sum of the
lengths of the first two columns exceeds n must be identicelly zero.
For Sp(n) traceless tensors corresponding to Your"zé diegrams in which
there are more than v = t—g rows are ldenticelly zero.

If we realize B with boson operators as before we could attempt
to reduce B by projecting out the traceless part of products of boson
operetors. This is the method previously used for obtaining an irre-
ducible representation space, but one which is unnecessarily compllcated.
The complicetions arise because functions in the representetion space
eppear in the expanded form (1).

A simpler method is to reelize B with operators chosen so that B
is immediately traceless. In this method we realize each space A(U)

with a set of n operators a.g which behave s vectors under p-orthogonal
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transformetions and which commute with each other. An arbitrary

tensor T in B then is the sum of terms such as a.1 ..a}‘ . For
il . .ix i i

A
T to be traceless l.e., o = 0 we require that the

T
pq_ iln-p-oq- 'iA
operators ag should satisfy

o T

a a =0 for arbitr g, T. 2
Poq % % ary @, (2)
Clearly these operators cannot be ordinary boson operators.

The complexity which was present in (1) is now ebsorbed into the

g
operators ai

properties of bosons.

which then, as will be seen, do not have all the simple

Having reslized B as a space of traceless tensors we apply the
Young symmetrizer to project into irreducible subspaces, es before.
In order to see how the operators a‘; may be defined and to reveal
their properties, we consider the problem with the following equivalent

approach.

§3. Harmonic Spaces

Beglnning as for U(n) before we define a representation T of

g € G(n) in the space g by
Tg £(z) = f(zg) vhere f£(z) ¢ R . (3)

We consider initielly only one set of varisbles zi so that the ten-sorg
of the representation space are all symmetric. Hence RR' is the space
of homogeneous polynomials of degree & in z. Now although Rl is
irreducible under unitary transformations it becomes reducible under
transformetions of G(n). The subspace (z.,z)RsL"2 ig inveriant because
Poq %p %q remains invariant under G(n). Let #® dencte the
orthogonal complement of (z,z)RQ""2 in R*. Then if n* ¢ 1 ve have

(¥, (2,2) ££72) = 0 for a11 £*72 ¢ R*™2, where ( , ) denctes the

(z,z) =
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2 o
the scalar product in R (Chpt II §3). Therefore (Vzhn’, £2) = 0

where

fR,—.Z

since the adjoint of zy in RQ' is U . is arbitrary therefore we

: =0, i.e., HR' is characterized as the subspace of Rg' con-

have VZh
sisting of harmonic polynomiels. We can write RQ' as a direct sum

R2.-2

R =i o (z,2) ) (4)

This result has previously been noted by Vilenmkin ([ 49], plhbl),

As (2,2)R%2 is sti1l reducible it is clear that H' is the
irreducible space. we erc sceking. We can see directly that
the space 7' is inverient under G(n) because the operator V2 is
invariant under G(n).

More generelly we need to consider polynomials of seversal sets
of varisbles. We form the space RIL1 X R!L2 e X RZA which then consists
of polynomials homogeneous of degree 20 in zi, for 0 = 1,.. A. The

representation T is defined as before by (3) but now z stends collec-

tively for all varisbles zg. Now the subspace 18

) 21 g -1 8,-1 g
a,gﬂ (222" x..r® «x..R® x..R}
invariant wnder G(n) because (za,zﬂ) = hq z; zg is invariant under
G(n). It () (8)  (21,82,048,)
A A A
h e H = H 3

defined as the orthogonel complement of

21 L
o ' A
IR L
(27\) o« B ot!
then (h , (2%,z2°)f) =0 for all a,8 = 1,..A and for all f e R X
Ly (ZX‘) (9‘;‘)
.. R" . BAs before we find that h satisfies vgﬂ h =0
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2
for o.,8 = 1,..A where Vgg = p 2 = . We mey write the de-
PQ 3% 2z
. P qQ
composition of the space as
2y 2 (2.) A Ly % -1 2,~-1 %
A A o o g A
R Ox..R =K " & Y (z 2R x..R® x..RP x ., RM,
(5)

(2,)
The irreducible space H s with vhich we will carry irreducible

representations of G(n) may be characterized as the space of harmonic
homogeneous polynomials or equivalently &s traceless tensors of definite
symmetry type. This fact has been known and used in most treatments of
0(n) and Sp(n) ([24,48]). Working as for U(n) we write down the state
of highest weight in the harmonic space. This state is cyclic so that
one can generate 8ll the basis states by application of the group
generstors. For 0(3) this leads to the femiliar spherical harmonic
functions ([21] , { 47} Chpt 2). These functions can &lso be regarded as
traceless tensors but because they are constructed with ordinary bosons
they appear in a form unnecessarily complicated.

The state of highest weight for 0(n) has been calculated by
Wong [ 53]. All states for symmetric representations (using only sym-
metric tensors) have been calculated ([51] , [65]). Holman [52] has
calculated basis staetes for Sp(k), but the attermpt to prolect out the
traceless part of tensors is incomplete. Nevertheless the results are
correct because the state of highest welght is chosen correctly. Again,
these calculations are unnecessarily complicated end the structure of

the results is clarified by the use of operators satisfying (2).

§4., Modified Bosons

We need to find operators ag and their adjoints Eg which behave

a.C)' a‘l‘
Pqa p 1

polynomials from these 8y acting on the vacuum |O> we will obtain

a8 vectors under G(n) and which satisfy p = 0. By forming
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traceless tensors or equivelently harmonic polynomials., If

(2.) () (2,) (R1,..2 +1,..2.)

h * eH " we require that a) h * e H B A" ana
(2,) (Ly350.2 =1,..%,)

3.: h i c H N A .

Consider firstly only symmetric representations i.e., !2,2,..1Lx = 0,

- = o9
For U(n) we have 8y = 2z,, 8 = 321 .

we find that the ennihilation operator is unchanged since

For the p-orthogonal groups G(n)

R 12 n* e vt .

h2 * H£+l

Hence we put a, = 3:—- . However z because szihg' 4 0. Now

1 i

from (4) we see that

” h!l. . g,Q,+1 " (z,z)fi-l

i

1 i
where
8R,+1 e HIL+1 and fz—l . Rz-l .
i i
L+1 i %
Clearly 8y is the polynomial we require by applying ay toh i.e.,
2+1 L
g = sah . & must then have the form a; = 2, - (z,z)Ai for some
L 2+1
operator Ai. The requirement aih e H ensbles us to find that
A = 2AV2,(2,2)] o, ——
i e ip azp

(noting that [ V2, ¥2,(2,2)]] = 0 in by,

Hence -1
8y = (1 - (2,2)[V2,(2,2)] \72)21
=z, - (z,2)(m + 20 o 3-3; (6)

together with E‘i = -3—:— (6'). These operators , which have been encountered
i
by Vilenkin ([ 49] plk2), are modified from the ordinary boson operators

end so we cell them "modified boson operators” . We will see they have
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all the properties we require of them. The following commutation

relations are readily checked:

[3;.8,) =0 (7
and hence
[a.i,aJ] =0
and 1
[Ei,adl =6U-pip 8 (%"' N) P1q Eq.

We could define modified bosons by these relstions or by their explicit
realizations (6). We will use either definition as convenient. The
difference in epproach is that discussed earlier (Chap. II, §2)
between the abstract system constructed with bosons and the explicit
realization in a Hilbert space of polynomiels. Now if we define the

unique vacuum by ai |o> = 0 for all i=1,..n then it follows from

7) that a, a, |0> = &,, |0> and then also & a_a_ |0> =0,
() 17 | i3 | 1 °pq %p "o |
From the uniqueness of the vacuum we have p 8 8 |0> =K |0> for

PQ P q
gome constant K. An arbitrary state |2> cen be written as the sum of

products of % creation operators and therefore we have

a a > = K | 2> i.e.
°pa % % | | ’

o) a a =K.

ra P 4
Hence

o a a =K

Pa P qQ
and then

2 a loo=Klo>=0
°pa % %q | |

50 that we must have K =0 1i.e:v,
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Ppq % % = 0

This is the required traceless condition (2). The adjoint relation

P a a = 0 is the harmonic condition on our space as cen be seen

by substituting (6°). TFor symmetric representations (one row in the
Young pattern) we use the operators defined by (7) to obtain states

of irreducible representations of O(n). For Sp(n) (when p is anti-

symmetric) bosons are sufficlent because ppq a..p aq = 0 is sgatisfied

without modificetion.

In order to obtein other representations we require more
varisbles with which to construct tensors of the verious symmetries
and consequently more operators ag, g=1,..A. We require that

(L) ° . (1)

-0 2 o = 2 & =
ay satisfy VaB 8, h 0 and VaB 8 h 0 for

g
B.i,

2,8 = 1,..A. The annihilation operator remains unchanged so that

0wt

a- -
i Bz:

The creation operstor must have the form, using (5)

g
a, = zi - (za,za) A,

9 (o)

8

(0,8 summed)

where AaB(U) is en operator to be determined. We require
(2,)
2 1,9 _ o By . A -
Vyefzi (z7,2") AaB(c)] h 0
i.e.,

[ 92 O 12 (% B
'[Vye’ zg] = [VY€, (z,2)] Aue(°)
provided

[V$€,Aas(o)] =0 . (8)
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Let

_ B
A(A)(Ye)(ue) = [vis, (2%,2°)] . (9)

Then A i & A2 x A2 metrix of operators satisfying the symmetries

Blye)tas) = " Mlev)(o8) = ™ Alye)(Ba) T Aley)(Ba)

We heve now

=—1 2 o
AaB(c) A (A)(GB)(YE) [er’ 241

_ -1 _9_
=S (A)(aB)(oy) °ip 3y
P

where A—l(l) is defined by

-1 ~
A (W) (a8) 2a8)(ot) T §(w) (o)

%(Guosvr o Pursvo) '

(10)

Now

[s)
b (o) = A2 S(py)(or) * F

AV
b 6(av)(O'r) + 2" 6(ua)(ot)] (11)

where

and gatisfies
[v2, P =0

(2.)
within H i . Hence the condition (8) is satisfied.

We now have for our operators, which depend on the number of

rows A,
ad(r) =11 - (2% zB)A"l v2 ] 2°
i ’ (aB)(ye) vye "1
_ .0 _ o0 Byl N
21 = 2020200 0g) o) Pap Gy (12)
P
=0 _ 9
ai c

These operators satisfy

[, &1 =0



and therefore

g Ty _
[ a-i s aj] =0 . (13)
We also hawve
-0 T, _ B
[ag, 2] = 51J - b pip (ac)(TB)pJq Q

where A-l is expressed implicitly in terms of the a's according to

(10) and (11) (noting thet P*¥ = a; a; To verify these relations
we need to calculate

[ ] l

520 (uB)(TY)
i
which is done by using (10):
2, aMa =212, 0.
az" az(7
i i

The relations (13) are the defining relations for our operators
vhen considering A rows. We can show that these modified boson
operators satisfy the required traceless conditions in the following,

way. We define the unique vacuum state by e. |0> 0 for ell i, o.

=0

We have immediately 8 a o> =5 7 |0> &nd then also

i3

af p_ e a' |0> = 0. For this we need to know
1 Ppq %p %q

-1 1
B (o) o> = 2n O (w)(ot) |o>

caleulated from A™F A |0> = I |0> . In the seme way as before, for

one row, we obtain the result that our operators obey the traceless

condition p O T =0 .

pqpq

§5. Determination of A~t

We have defined AL formally by (9) and (10) which are the means
by which we can manlpulate A-l. However the appearance of negative
powers of operators requires some explanation and to do this we need

o know A™L explicitly. This A2 x A2 matrix of operators is
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complieated even for A = 2. We have in this case (putting p = I):

N -1 -
[ai,a.J] =61J -ai(la—‘+N) e,
- I, ~ ai(% + 7)1y 9‘]1133 - P(%+ )l EJ] »  (1h)
[5,,8,0 = - e, - b, G+ M7'r 075, - PG+ W)™ &)
where
- ail) » by = eig)
and
Q=n+N+M-QE+ M]-lP—P(-%+N)_1Q
and

N=pll, M=p22, p=pPl2, q=p2!,

The expressions for [Ei ,bJ] end [5.i ,bJ] are readily deduced from (1L).

We will find thaet fortunately it will not be necessary to know
the explicit form of A_l in calculations of basis states. Our method
of calculating these states is to apply suiteble lowering operators,
which are functions of the generators, to the state of highest weight
|max.>. Modified bosons are vectors under the group generators, as
will be shown, and so properties of Aml ere not needed in the process
of applying lowering operstors. Furthermore modified bosons sppear
In the state of highest weight in such a wey that the contribution of
terms involving 2~Y cencel out (to be shown). However properties of
a~1 may need to be known in calculating normalizations when the commu-
tation relations are involved.

Let us outline a recursive method for the calculation of A-l.
The method is to form the space H(Q)‘) by a means other than decom-
posing R'Ql1 X .. RE a8 was done eamrlier. Suppose we have already

(2,_,)

formed H with modified bosons a(i’(k - 1) 1i.e., we have formed

e space which is irreducible when A - 1 rows are consldered in the
(“x) (21,9,2..2)‘)

Young pattern. We now form H H by decomposing
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(2, .) 2
H )‘-lexas

) 2. -1

(R‘A) A_ (9)1..2'(!-1,. .R’k—l )\

2 U (a%(2-1), a'(1)) H x H
o=1

H

Hence a.g( A) has the form

o2(A) = aJ(A-1) - (a%(1-1),8" (A-1))A (1,0)

foro =1, .. .
Here a is summed from 1 to A - 1, and we have defined a?_(k-—l) = ag(l),
and Aa is to be determined. We require that ag()\) satisfy

(21) (“x) (lx)
0 for h e H , for oo = 1,..A - 1 (the condition

2 g
Vi ai(x) h

(2
(A) h

X

B 0 holds already for a,8 < A and for a = 8 = A by

construction). Hence we require

[72,, a](-1)] = (7%, (a°(r-1), 2t (A-1))14

provided
[VAB, Al =0.

Let
Ry = [Bg» (2700-1), (=11,

a8 A-1 x A-1 matrix of operators. Then

A, = n( o8) [VXB, ay 9(x-1)1

where
1 =6
(YB) ( a) yo o
Hence
ag (1) = af(-1) - (a%(A-1), a*(r- 1))9( aa) [Tae® & 7(x-1)

[1- (%(0-1), a}(A-1))af5gy V2l 81 (a-1) .

This expression involves A—l(A—l) where it appears in a.c;_(x-l). By
comparison with (12), which involves A~(2) , Wa can obtain a recur-

sive expression for A—l(l), in terms of A-l()\—l).
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Let us carry out this process explicitly for A = 2 {putting o = I).
We have two sete of modified bosons a.i(l) = ail.(l), bi(l) = a%(l) for
one row each. We form H(h,ﬂ,z) from HY! and HY2:

W1 o pb2 = g(21022) ¢ (a(1) p(2)) B x B2
Now a‘i’(z) = ag(l) - (a(1),5(1)) A(i,0) must satisfy

v, & (2) nlt1:22) oo |

Let
2
=n+N+M-Q(%+M)-1P—P(%+N)-1Q
where
N=P11, M=P22, P=P12, Q=P21
and

PW = u(l) 9 - zu ?
P az\’ P az"
P P

in H(Q'l’g'z) . Putting 0 = 1, we have

)

ax

[V%:a, a, (1)1 = == = P(3 + N]'l :

9y 2

vhere

= zil) = z§_2) .

*

9 yi
The requirement [V%Zs Au] = 0 is now easily seen to be satisfied.

We have now

8y(2) = (1) - (a(1), DAV (= - PG+ U

with
(a(1) (1)) = (xg) - (x,0)(n + 207 - (y,¥)(n + 2077P .

Also

- 2(z%,28 7 (2) =

8. (2) = x
: (aB)(1y) 2z}

i

By comparison we find thet the independent components of A_1(2)

-1
are (remembering that A(l)_l(ll)(ll) = 1]-;- ('2—’ +N)):
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A(2)_1(11)(11) =1 G+ ) [1 roa e B+w)” ]
5(2)-1(11)(12) =-p G+ ) R

M2 (1py(11) = - Fale G

A(2)—1(12)(12) = )119-1

s gy =k BT RO R G Ul
A(2>-1(22)(12) - % (%+ M)—-l pal.

With the explicit form of A_l known we can see how to interpret
the inverse operstors which appear in the formal expressions. For
A = 1 there is no problem because the operator N is replaced by a non-
negative number so that (g— + N] =t is Ia.lways well defined. For A = 2

we need to understand the meaning of oL, Ve have

-1

PQ \ (219,2)
1 (Ry.80) _ (. < ) nY
2" h ‘(n+“1+“2"2l+22-1 %+21-1

r gy - Lo ‘(n + 27 + Ro - 2) -1
= |_n R PIE P - . PQ] h(ﬂ'ls”'z).
St -1 (%+9,2-1)(§-+9,1-1)

We expand this inverse as en infinite series to obtain the form

9'1 h(Q'I'sQ'Z) = z Cm (PQ)m h(‘Q‘lﬁ’LZ) (15)
m

for some coefficient C . Now (PQ)™ 1s a differentisl operator acting
on h(p“l’g'z) which is of finite degree. As a consequence for m large
enough the differentiasl opereators give no contribution, so that an
infinite series of differential operators with convergence problems
does not in fact eppear in (15), end o~L ig well defined. For arbi-
trary A we need to wmderstand the meaning of Q-l(uB) and this can be

done in the seme way as for a T,
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Generally A-l has en explicit form which is too complicated to
be useful and in most cases we will be able to derive the necessary
properties from the definitions (9) end (10).

Modified bosons ensble us to write down traceless tensors which
appear in a simple form, but the complexity of equation (1) has been

sbsorbed into the structure of A—l where it is more essily handled.

§6. Scalar Product

(2,)
We have chosen the scalar product in H in such a way that
the adjoint of ag is 'a_.c;. The scalar product is defined as
(h,h”) = <0| n(a) n*(a) 0> (16)
(2,)
where h, h” ¢ H are functions of modified bosons. When substi-
tuting for &0 with the realizations (12) we find that the scalar
2.) - (g)
product in H A is simply that for R 2 (see Chapt. II, §3) res-
(2,) (2,)
tricted to H & . Considered as a scalar product in R we have

g .. By, —1 ) .
(b, a; b)) = (b, [zi - 2072077 0y (oy)P1p ;‘;‘] h’)

-

3 Y —1 2 I »
= (12— _ V4 |h,h
([3 c T 2Pip % % (aB)(o) aBJ )
23
- (9_ . 2 =
= ( 7 hsh ) because vaB h=0
92
i
=0 B
= (&; h,h ) .
1 (2,)
Here we have used the fact that A is hermitean in R ; ()
2
A

Hence we may eveluate (h,h”) in two ways. If h, h” e H
then h,h” may be written as functions of a.g (modified bosons) and

(h,h”) is determined from (16) using the commutation relstions (13).

Alternastively we mey regard h,h” as ﬂmc‘bior;s not of ag but zi and
(2
evaluete (h,h”) as a scalar product in R using the commutation

relations of ordinary bosons. This entails writing h(a) as a different,
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generally more complicsted function f{z), a problem which we consider

next .

§7. Construction of Traceless Tensors

Using modified bosons we can write down thetraceless part of a
tensor constructed from elementary vectors z. Let f(zi) denote such
a tensor, then the traceless part of f(zg) is f(ag) where ag are -
modified bosons, This may be seen if we write down f(ag) using the

realization (12). In expanding

oy _ g , 0 By,-1 i.
fley) = £(z; ~ 2(27,27)8 7 ay(gy)Pip azv)

P
we find the leading term to be f(zg). Clearly we have expressed a

tensor f(zg) as a sum of & traceless tensor f(ag) plus a remainder,

ss in the form (1).
(2,)

A

If f(z) e H gso that £(z) is slready a traceless tensor then

f(a) is the same tensor but expressed with ag vhich satisfy the trace-

less conditions. These extra conditions ensble us to express £(z)
in a simpler form. For example the spherical harmonics are [ 65]
+m, . kK f-m-2k
. (— Z] - iZz)k m(zl - iZQ_) Z32' m

Y, (z) =} (17)
i k 221‘*“‘ (k + m)! ¥!(% ~m - 2k)!

(z real).

Now Yzm(Z) = ng(a) where the a's are modified bosons satisfying
2 2
a% + a; + a3 = 0 (here Pyy = 613)' Hence (17) is equal to

(_ a - iaz)k+m (8.1 - iaz)k aaﬂ:—m—Qk

k 22k+m (k + m)'k!(2- m - 2k)!

o>

o« (- a) - iaé)m 8;32'—m |0> .

which is & much simpler expression, end is manifestly e harmonic

polynomial (traceless tensor).
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In the reverse process we may obtain from f{( a) the corresponding
traceless tensor h(z) ss a function of z by substituting for ai and

expanding the result as ebove, so that

f(a.(;) o> = f(zg - 2(za,zB)A-1 2 = h(zg) .

(aB)(ov)?ip | ¥
P

Of course h(zZ) = h(a.g) and by using the traceless conditionms

oy _ o

Given a homogeneous polynomial f(zg) we can project into the
harmonic subspace to obtain a harmonic polynomial f(ag). It is use-
ful to know explicitly such a harmonic proJector operator, i.e., to

know an operator H such that
Oy _ o
f(ai) H f(zi) .

In the case of symmetric tensors, such sn operator has been found by

Vilenkin [L49]. For a metric p this has the form

v () ¢ ow - 2 - b)Y
k 25 k! (n+ 2y - )t

H (z,2)% ¥ (18)

For tensors of other symmetries it is much more difficult to write

down H. Such an H could be regarded as origlnating from the expression
g _ o
8y = L z:l

where

= - By -1
B=1- R ) (o) e

H is the result of moving the operators L to the left of & polynomial

in &2, end will in general be of a complicated form.

i’

However we can write down H for the case A = 2, when p 1s anti-

symmetric:
- (-)m(n+N+M-m-2! 2m
H= X mﬂn + N+ M- 2)1 ) (xsy)mVIZ (19)
m L]
where
N =Pl M=p22 x= z(l), y = 2(2) .
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Using H we can write down & tensor in terms of bosons rather than
modified bosons, which is useful for the evaluation of the scalar
product, as described in §6. This will be done in finding normaliza~

tions of Sp(l4) basis states.

§8, Properties of Modified Bosons

Modified bosons ag do not eppear explicitly in the basis states
(except for ¢ = 1) because the application of the Young symmetrizer

meens tbat only the antisymmetric combinations e (Chapt. 1T,

ilonik
Eq. (2)) appear. The traceless condition imposes the following

relations on these tensors:

e a =0 . (20)
°pa 1. 40 10,0

This follows by expanding according to Eq. (II.2), when the factor
ppq a; ai (for some o,B) appears in each term which is then zero. In
the same way we can also show

=0, (21)
°pa "paiy..i,

This relation is non-trivial only when p is antisymmetric.

Modified bosons possess several properties which ensble them
to be used equally well ss bosons in some aspects, besides satisfy-
ing in asddition the traceless condition. We find that the group
generators cen be realized in terms of modified bosons. Since G(n)
is a subgroup of U(n) (or GL(n) as appliceble) the generators GiJ

mey be written as & linear combinstion of the generators EiJ of U(n):

G (22)

= E - E
13 = Pip “pg T " Pyp Tpi
= E - B
Pip ®p3 - ppJ pi

=-nGJi'
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The commutation relstions are

(G450l = Pyy Cyp * Pps Gy * Ppy Gt ¥ Pt Gpy - (23)

The realization of the Gij is

o =0 o <0
G,, = a_ &, - a_ 8 - 24
13 “Pip % % T Ppy o 1 (24)

This expression can be obtained from the representation Tg defined
G*

37 7 Pip P3q pa
the representations are unitary. We can verify that G1 satisfies

J
(23) by using the commutation relations (13). However this is more

by (3). The hermiticity property G; ensures that

easily seen with the explicit substitution of (12) in (2L) when we

find that only the boson parts of the a0 contribute:

1
~1 i) 3 3
G,, = (za - 2(z8,zY)A * P —-—) (p —_— - . T
13 P (By)(ae) pa 4. ¢’ Vip 32? J 227
=p za i— -p za —_—
ip p azg‘ PP azg

because

a7t [n p D p - ] =0
(By)(ae) pq ' ip 85€ 3z pq P 52€ 32%
a J q 1

Hence in the expression (2L4) the a's mey be regarded as either ordi-
nary or modified bosons.
We may also show, as we required in initial considerations, that

o]
the a:l are vectors under Gi’j'

g - ag _ (e
[Gygom] = Sy Pip®p ~ Six Ppy %

let us check this using (13):

oy _ S ag=0 O o =0 @
[Gij ’ak] = Dip a'p [ad ’ak] e pPJ ap [B'i ’ak]
o g
S3x Pip % 7 ik Ppy %p

a B8 a g, -1 -y
- Moy, 85 Pyq 8 = Ppy % P1q % (Ba)(ov) ke Or



49.

and the last term is zero.

We see that both modified and ordinary bosons behave in the
same way under G(n). In this wey the complexity of a~1 does not
affect the properties of a.:. This fact is of importance in calcula.-'
ting besis states.

The representation space carries representations not only of

G(n) but also of U(A). We find that the polarization operators

) Y =v

P"" =8 8 (25)
P P 2

satisfy the U()) commutation relations:

[Pu\) ’PO'T] - 6\)0’ PUT _ 61.11.' P0'\’

as is verified by substituting for (12):

U=V u_9 a  By,-1 2
= — - 2 \)
% 3 = % v 7 22T T ag) (un) Ty
P

S
P a3z
P
(2,)
because V2 =0 in H .
yv

Also we find [PW ’Gi,j] = 0 go that in fact we can obtain represente-
tions of G(n) x U(A). This result is in analogy with the case for
ordinery bosons where the space carries representations of U(n) x
U(n) imbedded in U(n2).

The two fgroups G{n) end U(A) are complementary [61] 1.e., the
only representations of each which esppear are those with the same
representation lsbels (ml,..m}\). This fact is proved in Chpt. IV but
we can see why it is so for a simple case 0(3) x U(1). The invarient

for 0(3) is p = 2(z,2)92 - 2N(N + 1) and the invarient

o G G
s pg pPr aqs
for U(1) is N, where N = 7 -E%- . Since V2 = 0 we see that each
D
inveriant operstor specifies a label which must be the same for the

two groups.
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The question arises as to whether we can find e space which
carries irreducible represantations of G(n) % G(n) where the two
groups are complementary. This could be done by restricting the

(2,)
space to the subspace of homogeneous polynomials h . satisfying

further
22 (%)
Poa 7 o0 ® =
Bzi Bzd
2 (2,)
(in addition to p —-%———E-h A2 9) .
Pq 02 qu

In this way we can choose spaces to carry any one of the following:
0(n) x 0(n), Sp(n) x Sp(n), Sp(n) x O(n). This would lead to

enother modification of the a. so thet they satisfy the traceless

1
condition with respect to the upper indices, i.e., ppq a? asl = 0.

These operators are of further complexity which is unnecessary, as
our interest is primarily in G(n) and not G(n) x G(n) and so this

modification need not be considered.

§9, Cholce of p

For O(n) it is usual to put Pyy = 8, In this form it is

3
possible to understand a geometrical picture of rotations, for then
the inverient (z,z) has the form r2 = z3 + .. + zrzl vhere the z, ere
Cartesian coordinates which are real. Hence in this cholce of p the
compact O(n) is also real. There is also the advantage that the chain
of subgroups O(n) D 0(n-1) .. D 0(2) are easily selected.

The disadvantage of putting p = I is that the generators
= -1 G,, are not in immediate Cartan stendard form. Wong [ 5]

iJ i)

hes listed the linear combinations of the JiJ which are in the Cartan

form. These linear combinations also appear in the structure of the

J

basis states which then involve linear combinatlons of the vectors 8y .
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For example when n=3 the vector components which eppear are the

spherical components :}- (a; * 1 ay), a3.
2

This awkwardness cen be avoided by choosing p = o where

oij = 61’n+1—-;]' In this case the generators Ki,j = Gi,j are in Cartan

form, and the clessification in terms of the generators Ea corres-

ponding to the root a is as follows:

H, =

i Kn+l—i,i 1i=1,..v

Eopreq = Knt1-qunt1p ° Poep-eq = Fpq

Eep-eQ = Kh+1—p,q (26)

where p,q = 1,..v and v = [-27]

end E__ = K

In addition for O0(2v+1l) we have Eep . v Soe1,p°

- K2v+2-—p S+l
forp=1,..v.
With this metric the spherical and Cartesian vector components

are the same, with & consequent simplificetion in the appearance of

basis states. For n=3 the vector components in spherical coordinates

are
z] = = e:l¢ s8ind
V2
Zp = r cosé (27)
z23 = = ebi¢ siné
V2

vhich for this choice of metric are complex. On a global scale the
cholce p = 0 allows a Gauss decomposition [56] (for the complex group).
We will use both metrics p = 0 or p = I as convenient.
In the case of Sp{n) we will put p = ¢
where /, 0 -1 \.\
E= ! 1 0 \

I
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The generators Sij = Gid are then in Carten form classified as follows:
Hi = 321’21_1 i=1,..v
E2ép =% Sopop E-zep =-% 8pp-1,2p-1 (28)
Eep+eq = S2p2q : E-—ep—eq =~ Spp-1,29-1
Eep-caq = Szp 29-1  p,a = 1,..v

and

<

=[%) is the rank.

Another useful cholce is p (2 —g) where o is a v x v matrix

as sbove. In this case we can carry out a Gauss decomposition [ 56] .
The condition that g € G(n) satisfies gpgt = p is a weeker con-

dition when p is antisymmetric than for p symmetric. As a consequence

modified bosons for Sp(n) have a simpler form than for O(n), for a

given number of rows. Hence for one row bosons are sufficient for

Sp(n) since epq ap a.q = 0 is satisfied trivially. For two rows, as
would be required for Sp(l4), we use modified boson operators a8y = e.il) )
2

bi = a.i ) defined by

[a,,b,] =€, D n+M 1e, &

1°7] ip p Ja q

- _ -1 =

[ai,aJ] = Gij - €4p LS (n + N) €1q b, (29)

- _ -1

[bi’bjl 61.1 €4y & (n + N) €14 %

- _ -1

[bi’a’fj] =€ 8 (n + N) €49 g

where N = 8 E’n + bp Bp (total number operator). These operetors
a_=0= a1y + agy, (from (21)).

satis € =
ty Pa Ppa

§10. Further Properties of Modified Bosons

The expression for symmetric modified bosons i.e., when A=1,

may be written in the following wey:
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L _ (. (z,2) 3y %
8 b= (2 - n+ 28 - 2 Pip oz h

. _ypted D _-n-2042 2 (30)
n+2£-2pip8zp

vhere hY ¢ HR', (z,2z) = r2, and we may teke p to be symmetric. It

follows then that

n
+ =
)m h!Z, « P 22+2m~2 (pi? 83 \ 1 hR' ) (31)

z /7 n+28~-2
P r

( ay
§ we have

P13 7 °13

A Coml a3y
(a.i)m '0> « r (-5? T

Hence for n=3,

This expression sppears in the theory of multipoles [66] ; in
connection with & linear distribution of charge. The potential of a

point charge of mth order is

i p(m) (<)® % 1

m lUme m! nr
3z

¢

(m)

where p is a multipole of o order, and the total potential is

o=1 o,
n
From (30) we see that & convenient expression for a; can be

found by renormalizing in the following way:
We put ai+ai(£21-+1\1-1)

with Ei‘ unchanged, or alternatively, in order that the scalar

product be unchanged,

. 3
8 *> a,i(-g— + N - 1)
E+F‘-+N-1}%E (32)
i 2 s
These renormalized modified bosons satisfy the following triple
commutation relations:

[B‘i’a,j] =0 = [E.i,a.J]

[ay.05.0,]

(33)

= 8y By " By Byt Sy By
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These relations can serve as en salternative definition for symmetric
modified bosons, but cannot be generalized to include multiple sets
of operators. The operators defined by (33) are discussed more fully
in Chapter 6.

In our construction of representations we have used essentially
boson operators. However there exists also a fermion calculus [6T1
in which basis states are constructed from fermion operators. The
disadvantage of this epproach is that to construct a sufficient
number of basis states it is necessary that a large number of fermions
be introduced. It is possible to extend this fermion calculus to
O0(n) and Sp(n) by constructing, with the methods used sbove, modified
fermions satisfying the traceless condition. This can also be done

for parafermions and parebosons.
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CHAPTER b

BASIS STATES FOR O(n)

81, State Labelling and Branching Theorem

We have seen how in modified bosons we have & simple way to
construct irreducible carrier spaces for representations of O(n).
In this chapter we calculate basis functions in both the non-
orthogonal Weyl basis and the orthogonel Gelfand basis.

The first problem in this calculation is the method of lebel-
ling the basis states. TFor 0(n) this problem is easily solved

because the chain of subgroups
o(2) € 0o(3) .. € 0o(n-1) € O(n) (1)

provide sufficlent lsbels. From the infinitesimal viewpoint this
is to say that the comuting hermitean invariants of the groups in
the chain (1) are sufficient in number to provide state labels from
their eigenvalues. This was shown by Gelfand and Tsetlin [68] with
the independent invariants being listed. The problem has also been
examined by Raceh [26] and Louck [ 34,69] and suiteble invariants
investigated by Bracken and Green [ 70,T1]

An immediate solution to the problem of state labelling is given
by the branching theorem which was stated by Gelfand end Tsetlin [68] .
The representations of O(n) may be labelled by numbers mp,..m which
are simultaneously integers or semi-integers (i.e. half odd integers)
end satisfy

m>m>..2mn >0 for O(2v+1) (2)

and
m>my > .. 2 ?m\,i for 0(2v)
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vhere v = [—g] . The brenching theorem may be stated as follows: On
restricting the representation of 0(2v+l) with labels (my, . m\,) to
o(2v), the representations (aj, ... qv) of 0(2v) sppear just once each

SuCh that
m > } m > > > m } > - m . 3
1 = q.l 2 QZ .. v q\) v ( )

On restricting the representation of .0(2v) with lebels (my, ». mv) to
0(2v-1), the representations (pl"'pv-l) of 0(2v-1) eppear Just once
each such that

mPpPm>p .. > > In] . (37)

The numbers qi, Py are simultaneously ell integers or semi-integers
according as the m, aere integers or semi-integers.

We cen now lsbel basis states in the irreducible representation
space R of O(n). Suppose it is known how to do this for o(n-1).
Under O{n-1) the space R breeks up into a direct sum of subspaces
{irreducible under O0(n-1); within each of these subspaces it is
possible to select a basis with a known lebelling. By taking all of
these bases together we obtein basis states in R. By induction then
we obtein a labelling using the subgroup chain (1) and involving the

brenching theorems (3). The Gelfand pattern for 0(n) then has the

form
Doy+1l,1  Tov+l,2 ¥ Tov+1,v
Dov,1 Tov,2 . Moy ,v
Toy-1,1  Tov-1,2 Toy=1,v-1
m21.

for 0(2v+1) and the same for O(2v), except without the lebels

m2v+l,:l' The restrictions on the mij are simply those given by the

branching theorem (3). 1In this chepter the m,, will be integers only.
These basis states were introduced by Gelfand and Tsetlin [686]
and have been explained by Pang end Hecht [55] , and also described

by Zhelobenko [ 56] .
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§2. Weyl States

The group theoretic meaning of the mi.j ensures that the basis
is orthogonal, but the system of numbers used in the lebelling cen
also be used to ennumerate the non-orthogonal Weyl states. The
adventage of the Weyl states is that, using modified bosons, they
are monomials and may be written down from the Young tebleau of the
representation by inspection.

Consider for example n=3. The Gelfand state takes the form
121'1> where - 2 € m < 2. Here 2 i8 a non-negative integer lsbelling

the representsation of 0(3) and m is the label of the 0(2) subgroup.

The general Young tebleau with one row associated with this Gelfand

state is < '3

IR 2

iy
)

which is filled with the modified bosons a; and aj;. The Weyl states

then teke the form (denoted with round brackets):

Y= el o

This expression covers also the case when nm is negative since the

2
traceless condition reads (for p = o) 2aja3 + ap = 0 s0 that

m - - +
a] a.%m|0>°=a3ma%m 0> .

For O(L4) the Celfand state is

\

m mp
|(m)> = |2 > with my < 2 < m
m
The Young tebleau for two rows is N - L
1 .. .. 3.
2 .
’ i
corresponding to mp
m
L = aT_mz ag-m a.?l_g' a1z 2 jo> .

m
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This holds for m 2 my = 0, and for my = |m| = 0:

m L my

=) - o) m
1.. |2 .. I3 .. =a%m2 a3m12a23mzma12 | o>

2 .. I3 ..

mo
which holds for all negetive values of m by using the following

equations derived from III (20) (for p = o):

aj2813 = 0 = ajsazy = 813824
. 2

ajpasgy = - 823

ayé3 = - 82834 .

Similar Weyl states can be written down for my < 0.

§3. Stete of Highest Weight

Our method of calculeting the Gelfand basis state is to apply
certain lowering operators to the state of highest weight as explained
in IT §4. Suitable lowering operators for O(n) have been calculated
by Pang and Hecht [55] and Wong [54) . These Gelfand states will be
linear combilnations of the Weyl states.

Since our spece is irreducible there is only one state of
highest weight |max.>, and this 1is gpecified by the lebels (mjp,.. .mv)
of the representation. The explicit expressions for |max.> are

(putting p = I):

_;5 my =My Mo =M3y m\’
|ma.x.> =M “ A Ay . A12 v l0> (h)

where M is the normalization, and where we have defined

o_ o

A ial i=1,..v,

1 - %41 T T %i
end the antisymmetric combinations A,,  are defined as in II (2).
We see that for this expression to be meaningful all the my i=1,..v

must be non negative integers satisfying (2). As indicated earlier,
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we obtain with this construction only the tensor or integer repre-
sentations and the mi cennot be half integers. There is the possli-

bility for O(2v) that m, cen teke negetive values and in this case

we have
- +m L ti]
5 my=m2 a1y v Yy 4
|max.> = M7 4 v Bpl v Aoy o> (4)
where
o 1 i\)-l = iv
A Te Ay .. A A
1.4, (i ..iv) v-1 v
and
=0 o g
Ay = a5 v 1y

The weight of the state (4), (4°) is given by

J2a,2a-1 |max.> = m, | max.> o= 1,..v (5)
where
JiJ =~ 1 Gi,j
We have
o o
[J2(x,2o.—l’ A:l] = g By
and
=05 = - =g
[J2a,20t—1’ Av] Gva Av
so that
= P
[954 0a-1° P12..d = P12..q s 9
=0 qQ <o
end
K n
[900,20-1° P12, =~ Ao,y 27V
= 2{12' v S

Eq. (5) then follows.
The states (4), (4°) are of highest weight because they are

annihilated by all the raising generetors:
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D§+l |ma.x.> =0 p=1,..v-1

A:)’-l | mex.> = 0 for 0(2v) (6)
v

Epoel |max.> = 0 for 0(2v+1)

where
v=1l _Vv
DI;))+1’ A\) ? E2\>+1
are raising generators of 0(2v) and 0(2v+1) corresponding to the

simple roots, as defined by Wong [54 . We have

¢ A

g
[D§+1’ Ayl i-1 p “i-1

(=0 for 1 = 1)

and
-0
[D§+1’ Av] g
so that
[D§+1’ A12..q] =4 Q= 1,
end
{D§>+1’ Klz..v]" -
Also
v=l 0y _
so thsat
v-1 _
[A\) ’ A12..q] g
end
v-1l =0y _ o
[A\: > A\J] == Eym
so that
v=1
[A\) i 12..v] S
Also
v o
[Eppez> &1 =0 -

Eq. (6) now follows.

We have shown that (L), (4°) are solutions of (6) with weights
given by (5), end since our space is irreducible they are the only
solutions by Carten's theorem, and are therefore the required states

of highest weight.
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Tt is useful to know the form of |mex,> when p = o, because of

its simple appearsance:

| 2, WM M7 v
mex.> = M © aj a1z e Bys 0> . (1)
For 0(2v) there is also the case m < 0:

T m, 1, T .
|max.> = 1% & © 8. .v-1 8o ye1 vy 107 (T7)

Tt is possible to see now more clearly why the two cases arise for
o(2v). It would seem at first that several states of highest weight
could be formed, namely

mj-mp

m =1 m +M -
_ v-2" v- e PR
|max.> = &)

1
© 890, .v-2 892, .v-1

P p-m
X 85, v 12, ,v-1 v+l vo>

where p is not uniquely determined. This state is snnihileted by all
raising generators, and belongs to the irreducible space labelled with
the numbers (ml,..mv) as is checked by application of H, (11T (25)).
However it follows easily from ITI (20) that &, 85 | 1 43 = 0>
so thet either p = 0 or p = m , leading to the two possibilities (7)
end (7°).

We have shown that for n = 2y the space reduces into the sum of
two irreducible spaces determined by the two states (T7), (7°). These
two spaces are irreducible only under the proper orthogonal group
S0(n), end the representations are known as mirror conjugate repre-
gsentations [56] . Under the full orthogonal group the two mirror
conjugate representetions combine to give a single irreducible
representation ([ 12] Chapt. V). For example if

N,

11 Y

R o
o
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then g € O(n) with det g = - 1, and g permutes the coordinate axes
with the numbers v and v + 1. Hence under g (7) and (7’) are inter-
changed.

(7) and (7°) are Weyl states which correspond to Young diagrams
of no more than v rows. However it is possible to have other dlagrams
for which the sum of the lengths of the first two colums is not
greater than n. These other diagrams are known as associate diagrams
([12,50] ) and under SO(n) give representations which are equivalent
to those determined by (7) and (7°). Under the full orthogonal
group however, representations corresponding to associate diagrams
are non-equivalent because of the different trensformation properties
of basis tensors under reflections. This will be examined more fully
for 0(3).

An importent property of the states of highest weight ((s),
(47) or (7), (77)) is that the modified bosons appearing there may be
regarded ss ordinery bosons. Teking (T7), (7°) for exemple, and using

the explicit reslization for a.g

g_ g o By,~-1 3
a; =25 = (25,2700 70y (ay) oz
n+l-i
we have
L § _ 0o T
a; & |0>--z:l zJ

J
becsuse here 1, € v so that n + 1 - 1 > v . It follows then by
induction that a.g 2> = zf; |2> where |2> is a state composed of
modified bosons a.® such that J € v. Alternatively we could show

J
in e more sbstract way theat

(3, aé]:|2> =8y, §9T |e> .

This result explains why previous authors [2L,53] have been

able to construct states of highest weight adequately with ordinary
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bosons. Such states f(z) belong to the harmonic space so that

£(z) = f(a), where f(a) is |max.> expressed with modified bosons.
This result cen be seen as deriving from the fact that the state
of highest weight is determined completely by the condition that it
be annihilated by the raising generators, and the generators can be
regarded as composed of bosons or equally well modified bosons
(shown in III, §8).

Since the complicated A"l expression does not appear in |ma.x.>
our tesk of normelizing this state is greatly simplified. The normali-
zation M-;é is calculated from M = <m9.x.| mex.> by using the boson
commutation relstions. This problem has been solved already in the
context of U(n). From the Young tabhleau essociated with (7, (17)
we can write down immediately the normelization in terms of hook
lengths using known algorithms [ 32] .

Tn the form (7), (7 ) |max.> is the same as the state of highest
welght for U(v) (see TI (16)). This is expected in view of the fact
that our spece carries represenmtations of O(n) x U(v). We cen now
show easily that the groups O(n), U(v) are complementary when the
generators Gy, P*"Y have the form ITI (24) and III (25). We need to
show that the representation space of 0(n) x U(v) carries representa-
tions in which the lsbels of each group are the same (m ,..mv).

Now the representation space of O(n) x U(v) is the space H of hermonic

homogeneous polynomlels in the variables zi, i=1,..n, 0 =1,..v .
m ) (my,..m )

This space is lerger than H = H V' which carries irreducible

representations of 0(n), because we have not yet applied the Young
symmetrizer. H is reducible under either U(v), or 0(n); for example,
(m)

all states in H V CH are states of highest weight for U(y). However

H is irreducible under U(v) x O(n). This is because the space
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my mo mv
@=R X R .. XR" is irreducible under U(v) x U(n) ([5]) and the

and the restriction to the subspace H of harmonic polynomials ensures
thet H is irreducible under U(v) x O(n). Hence H contains only one
state which is of highest weight in both U(v) and O(n); this state
is (7) as is verified by applying all raising generators of

U(v) x 0(n). Now finally by applying the weight generators Pii,

G 1-d 1 i{=1,.,.v, we find that both U(v) and O(n) have the seme
representation labels (mp,. .mv).

In this procf we have found it unnecessary to carry out
explicit calculations with the invariants, but have introduced the
representation labels through the state of highest weight. Comple-'
mentary groups have been utilized by other authors [62,63] to calculate
states of highest weight for O(n), and Sp(n). However because the
restriction to the harmonic subspace has not been carried out, the
groups complementary to O(n) and Sp(n) are non-compact end thus with-
out the simpler properties of U(v). The calculations ([54,63]) to
obtein the state of highest welght are unnecessarily complicated by

comparison with our method, when we have teken advantage of the fact

that the harmonic subspace is irreducible.

sk, SEMI-MAXIMAL STATE

The semi-maximal state |s.m.> is a Gelfand basis state which

is meximal in the immediate subgroup O(n-1). The Gelfand pattern is

|s.m.> = |m .. m,_, o,
211 ° 0 QI R/
Vel for 0(2v+1)  (8)
21 Rv—l
2

with m > 87 2 .. & _

> > -
ool > m, > L m, (a1l integers) and



65.

‘s.m.> = |mp .. m 4 mv\
Pl e Rg for 0(2v) (87)

with my > 292 .. 0 ;2 lmvl (a1l integers).
Tn the cholce of metric p = I, the O(n-1) subgroup is chosen
to be that which leaves invariant the vector component_'\zla.;. For
o = o we choose the 0(2v) subgroup of O(2v+1) as thaf which leaves
invarient af)ﬂ, and the 0(2v-1) subgroup of 0(2v) as that which
leaves invariant a: + a,: +1
Let us consider the reduction O(2v+1l) to 0(2v). The explicit
form of |s.m‘> is determined by the requirement that it be annihilated
by the reising generators of 0(2v), and that it be an elgenvector of
the diagonal generators Hi with eigenvalue Q’i’ i =1,..v. Hence in
forming the expression for |s.m.>,~we may use polynomisls not only in
81> 8125 ++ 895 o as was used for lmax.>, but elso in 8410
811 ** P10yl il since a:_"_l is invariaent under O(2v).
Therefore we have that |s.m.> is 8 linear combination of poly-

nomiels of the form

ry r9 r\) 81 3] 8

AY]
8] 812 -+ 8 o g B4 0t f12,v-1 vl

Because each term must be a polynomial homogeneous of degree m in &7

J J

we have

my - mp ry + 831
mp - m3g = Ty + 8y

m =Yr +8 .
v v v

Each term is already an eigenvector of Hi and in order that |s.m.> be

an eigenvector with eigenvalue &, we have (noting that

T —
[Hi’ a.J] = 61,1 a.J
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rp + .. + 83+ .. 8 L2

.

r = .
v v

We have 2v independent equations for 2v unknowns, end the solution is

i i i
ry li - Mg i=1,..v
(with moq = 0)
Hence
R my-%3 Lo-m3 mp—L2
s.m>=M ° gy 8,41 a1z 89041
% =%
X .. 8 a o> . (9)

12..v 12, .v=-1 v+l

From III (20) it is essily deduced that

2

2a1..v—1v a1..\)-1 v+2 K ald.v-l.v+l =0

and using this we masy rewrite (9) as

-;é Ql—mz -2 m +2

a v v Vv
ls.m> =" g ve Bas Gyl ph2 P2, .v-1 vl o> .
(9°)

We require that all exponents be non-negetive integers, snd this
leads to the restriction of %, to those values (8) given ebove. We
have in fact proved the branching theorenm (2 ) for 0(2v+l) restricted
to 0(2v). The representation space for O(n) is reducible under 0(n-1)
and we heve found the explicit reduction by identifying the states
|s.m.> of highest weight in O(n-1).

In the reduction 0(2v) to 0(2v-1) |s.m.> is formed from poly-

nomials in aj, 8312, - as before, with also &, + a

812..v w1’

+
By * Blyp1e tr B1pL -2 v T 81 .u-2 velt DB TBCEOT Byp gy

alQ..v-l v+l need not be included because a12..v a12..v_1 V1 =0,

nly

o!
so thatAalz " contributes (for o, > 0). We find in the same way that
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-;é Q—mz 7 m1—2.1 lz—ma , )mz—ﬂ,z
g.m> =M ° g1 (a + av+1) 215 (8, * Bus1
£ -m m m
v v v-1-2v v
X 810, ,v-1 (85 yooy * 81, .9-2 v+l N
(10)

which holds for m, > 0. Again we have proved the branching theorem
/.
(87).
The normelization M = <s.m.|s.m.> cennot be calculated as easily

as for the state of highest weight. Methods of calculation include the

following: we could use the commutation relations for the a.;

would be difficult in general because the properties of A_l would be

, which

required; we could expand the modified bosons with the help of the
projection operator H described in IIT §7, and then use the commuta~
tion relstions of ordinary bosons. A third method would be to use the
normalized lowering operé:tors of Wong [54] to reach |s.m.> from |max.>;
we will find this method the most practicel for n > L.

It should be noted that, unlike the situation for |mex.> modified
bosons are essential in this construction of |s.m.>. The corresponding
expression with ordinary bosons would be much more complicated and

could not in general be written down immedi ately.

§5. Basis States

The general state for 0(2) is also the state of highest weight

and is labelled by one number m. We heve (putting p = o) end using

(1), (77): .

1
lm> = — |o> m=0

Ym!

=l
a2

= o> mwm<o0 , mintegral .  (11)
V- m!

The traceless condition reads asjap, = 0. We can change to poler co-

ordinates by putting
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r i6 r -io®
2y = —¢€ sy 29 = —¢€
V2 V2
50 that r? = 2z 122, and then |m> < eime. The exponentiel function

in connection with 0(2) has been studied by Vilenkin([ L9] Chpt. II).
In the restriction to SO(2) we have all the single-valued representa-
tions, but for 0(2) there is also the representation in which the

Young tebleau has the form \: , to which corresponds the state vector

819 |0> of scalar angular momentum.
The genceral state for 0(3) is also the semi-maximel state, i.e.,

is of highest weight in 0(2). Hence using (9)

| ~35 =
l;} =M ° alm azg' - |O> (12)

where - 2 € m < %. Negative values for m are included by using

2ajaz + 852 = 0, so that the minimum state is

l%} = M-';é a.39' |O> .

X

The generators are
J, = K30
J_ =Ky (13)
J =Kg3; .

The value of M can be found by using the commutation relations of the

ai, or alternatively using

3 li) = [(2-m+ 1)+ m)* l;_i\/ :

We find
g-m (L - m)! (R + m)! g!
(22)!

M=2

L]

The general state (12) is necessarily an operator form of the solid

gpherical harmonic functions. This can be seen directly by putting

e, o2 -1 a2
8 =2z, - T (3 + 2N) in dzp
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where r? = 2z1z3 + zzz. The expansion of azz'—m is carried out most

easily with the projection operator H (III (18)):

2 -
|m> « H Zlm Zzz o

()28 - 2x - 1)1 2

k 2kk! (& = m - 2k)!

m 2k L-m~-2k
r Z2

o

- 23
S T = I (14)

2

where Cfm is a Gegenbsuer polynomial. Ancther expression for f!'l\
can be written by putting

L _ 1 243 a4 1 .8
82 b = -39y 1 7T dz, r2z+1h

where hg' € HQ' is of degree % (see III, §10). We have then

) ¢r22+1zm(d)9’—m 1
m 1 4z, LomtL

We can transform to the more familiar spherical polar coordinates by

putting s
21 = = e1¢ siné
/2
Zy = T coSH (15)
z3 = = e-i¢ sinod
V2
and then

a

2 2
|m> r Y, (6,0) .

The expression (12) for the state is much simpler than that for
the spherical hermonics in the usual expended form. One could treat
the state of highest weight as consisting of bosons and by applying

(J-)Q.—m

obtain the expended expression (14). However in this context
modified bosons have all the simple properties of bosons while satis-
fying further the traceless condition. It is a simple metter to

switch from (14) to (12) by simply regerding the z, as modified bosons
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8y and putting 28383 + a22 = 0, as explained in III, §7. The difference
in complexity between (12) and (14) is that difference which appears
between the decomposition of a tensor into a traceless part and a
remainder (III, §2), and the composition of a tensor with modified
bosons, which is manifestly traceless.

The basis state (12) corresponds to a Young tableau of one row,
50 that only symmetric traceless tensors appear. It is also permis-
sible to have Young tebleaus with two and three rows. The corres-

ponding basis functions are

fr'l> * g8y alm_l azg..m lo> . (16)

If we calculate this state by applying J_R'_m to the state of highest
weight (which is &35 al'q'-l |0>) then we need to use the relations
ajays + 8p812 = 0 . In (16) takes integral values with & # 1. The
state for £ = 0 is the triple scalar product £123 |0>. For the full
orthogonal group 0(3) these basis states carry new representations since
the tensors (12) are polar but the tensors (16) are axial.

As was described in III, §2 traceless tensors are zero when, in
the corresponding Young pettern the sum of the lengths of the first two
colums is greater than three. We can see this explicitly in the

following relations derived from the traceless condition:

854 %% = 0= aj23% = 8y 8123 T 844 8123
in'] KL = 19293 .
In the choice of metric p = I (12) takes a slightly different

form:

f;x> = ME (o - 1 8)" 83" ™ |05, (17)

and the change to spherical polars is made by putting
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zy = r 8in6 cos¢
zo = r 8inb sing
zZ3 = r cosb .

For O(L) the state of highest weight is (for p = I):

m mp

o
my = M 2:) 472 21, o> m Z O
nj
o+
where " 21702 (my + 1)! mp! (my - mp)!

is calculated according to the algorithm given in [32]. The semi-

maximal state is (§4):

m m
2\ M(R'] ™% 4,42 20,72 o> . (18)

In order to find the normalization we need to apply the normalized

lowering operstor given by Wong [54] . This operator is .

L o= (K Joy +1J_J43)(27p + 1) + % J_2K_

where
Jt=J3211J31 ,K1_=J|+211J41.
Now
mp  mp\ _ ;5 m my
L '3 > o iﬂ,-l /
A ] 2-1 /
where

N o=20(28 + 1)(m - & + 1)(m + 2 + 1)(2 + mp)(2 - mp) .

Applying (L_)ml’“ to |mex.> we obtain (18) with

(m1 + 1) mp! (my - 2)! (o - mz)! (2 + mz)!

Ry _ ,284me-my
M() =& (22 + 1) (m + mp)! (my - mp + 1)!

In this calculation we rust use in particular

(8.1 -1i &2)(8.12 + 8.3|+) =1 (a3 + 1 8.4)A12- (19)
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The generel state of the Gelfand besis is now obtained by lowering
m from its highest value £ to a general value m, by applying J_”"m to

(18). One obtains Jacobi polynomials:

mp My ~s a3
(R (m+my ym=mjp )
. - M(m] Pypm i (i aq)
m
) @M1 A T2 4 T2 (o5 (20)
where
g =
pPIHIRTE (1 41)f mp?t (mp-2)! (R-mp)! (R4mp)! (L4mp+l)!
u(*) = :
m) T T (2041) (my*my) ! (my-m +1)! (24m)} (2-m)! »
1 1-H82

The essiest way to show that (20) is the correct expression is to apply

J+ and show

m . m
¥ ‘9,1 m2\= [(2 - m)(2 +m = 1)]';5 \121 2\
/ m+l /

/

This is done with the help of the formula

4

2 {o+1 ,B"‘l)(x)

(a,8) .
P (x) =%(a+B8+n+1) P .
for positive and negative a,B. Negative values of o,B are interpreted

with the formula
0 2,00 = CHEFY rT W

n-a

a3

Tt should be noted that elthough the argument of Pn(“’B) is (i '&u)

this expression is symbolic end no inverse of ay appears explicitly.
In the Gelfand pattern m may take negative values, and the negative
exponents of Aj which mey sppeer are’ interpreted with the relation (19)

and
i Ap(ap + agy) = Apky

(21)
B1pByp = - (a1p + eay)? .
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Hence for example if m € - my

m m a
21 N (-)f2 ,2m M(IL)-;E P(-m—-m2 ,Mo=1n) ( 3 )
. el L4m i ay
+ - ] - -
¢ o 5P 12 o

For symmetric representations we put my = O and then the general state

(20) is expressed in terms of Gegenbauer polynomials:

m O N - a3
D) (e -1 e MR () e (22)
m

This could also be deduced immedistely from (14). The connection
between syrmetric representstions of 0(n) and Gegenbauer polynomials
has been previously noted by Vilenkin ([ 149] , Chpt IX).

From the general state one can find the matrix elements of Ju3:

m; ™My
9, =
m

Iy 3

(24m +1) (2-m+1) (my=1) (my+2+2) (L~mp+1) (R+mp+1) % my  mp
i 1
(20+41)(20+3)(2+1)2 m
n(my+1)my |mp mp
* 2 (1)
(#m) (8om) (1 =241) (my+241) (2-mp) (#m) | * |1 )
- 1 2-1
(22+1)(22-1)22 J n

which is the required result [T72]. This celculation is carried out by
means of the standard differentiation formulas end recurrence relations
for Jacobi polynomials [ 73].

One cen also carry out a similar analysis when mp € 0. The state
of highest weight is
m)

my .
- +my V-
my =M % Alml m2 Ayo 2 |0>
mi




Th,

where
2™17M2(_ mp)t (my + 1)1
M = .
(m; + mp + 1)

Formulas similer to (19) hold, e.g.,
4V
Ar(a1p - a3y) =1 Ay A

and the analysis proceeds in the same way.

Using modified bosons we can calculate simply for O(n) basis
states in symmetric representations, for which mpy = m3 = .. = m, = 0.
This has been done before ([51,65]) using bosons, in which case the
structure of the states is necessarily more complicated.

These basis states are labelled by (n - 1) integers 25, .. 2

where Qi refers to the label of the 0(1) subgroup, representations of

vhich appear according to the branching theorem:

v

A N T P [ P (23)

n n-1

The semi-maximal state |s.m.> = IJLn, L % _.> cen be

n-1° *p-1° a1
written down immediately:

s At -1
ls.m.> = M2 L (a7 - 1 &) {o> (2k)

and by using the commutation relations we find

%
n-1 ' 1 -2\ LYy
2 gt (e -a o) (nde +e 0-3)0 (ne2e ) o-W)N

(n+2e _,-3)1 (n#20 -B)1! s

M

The modified bosons &, appearing in (24) depend on n, but the factors
(a; - i ay) are independent of n because only the boson parts contribute.
Now the generstors of O(n-1) act only on (a; ~ i &) 1-1 pecause e 1is
invarient under O(n-1). The state which is semi-maximal in 0(n-2) is

known, so that

N 2 -2 L =% 2
= n n-1 n-1 "n-2 n-2
Iln’ﬂ'n-l’ln—2 e R > =M% e 8 _1 (ay - 1 8p) | o
vhere the & are modified bosons in n-1 dimensions. Continuing this

n-1
wvay we find
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|zn, Boqs e 22

(25)
where 8y is the modified boson for 0(i), i.e., we have varied the
dimension n on which the modified bosons depend.

The expression (25) has & much simpler appearance than that
previously obtained ([51,65]) and the structure imposed by the sub-
group chain O(n) 2 O(n-1) .. D 0(2) is clearly visible. It is
possible to write these symmetric states using modified bosons for a
constant n dimensions only, but the result does not exhibit the seme

simplicity and structure. For example, for n = 5 we would have

2y 0
m O L ay)% agtt™l 1
. « (g -1 ap) ! Ciny=g (i 85) lo> .

I |
Then we apply J_ , which acts only on (a3 - 1 32)2 . However

812 + 852 + 832 equels not zero, but - ay? - as?, and so (from (14)):
5

2y O
m; O - m Ql—l L+1
3 = (& i ep) m1 - (i 8.5)
B a3 L-m
mtis 2
X Cﬂ.-m ( .‘ (B,|+2 + 8.52) I0> .

1/ aZ + as?

Using the techniques we have described it would be possible
to calculste basis functions for arbitrary representations of o(5),
and the higher order groups. The baesis functions would be complicated
in structure but would be of interest in speciel function theory.
Those functions obtained would be generalizations, probably new, of
Jacobi polynomiels in the same wey that basis functions for SU(4) and
higher orders sre generalizations of the hypergeometric function

(129,33]).
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CHAPTER 5

BASIS STATES AND LABELLING FOR Sp(n)

51. Branching Theorems

We have constructed with modified bosons a space which carries
all irreducible representetions of Sp(n). It is of interest to know
explicitly the form of the orthogonal basis states in this space, for
the calculation of metrix elements and for the study of the special
functions which might arise. Such properties of Sp(n) have received
l1ittle attention in the literature partly because Sp(n) is lacking
in some properties which the other classical groups possess. There

is no symplectic group of odd dimension and so the subgroup chain
Sp(2v) D Sp(2v-2) .. D sp(2) (1)

is not complete es for U(n) and 0(n). As a result there is a problem
in the labelling of basis states because the chain (1) does not pro-
vide a complete set of labels. Sp(2v) is of order v(2v+l) (the
number of generators) and so we need to label uniquely the elements

of a matrix of v(2v+l) parameters. As Racsh [26] end Biedenharn

r - 30
2

addition to the group invariants and the dlagonal generators Hi’

[95] have expleined, it is necessary to find operators in
where r is the order of the group, and 2 is the rank. We need to
provide, therefore, %(v(2v+1l) - 3v) = v - v further labels. Of these
the subgroup chain (1) provides 1 + .. + v - 1= -\21 (v - 1) labels by
means of the subgroup inverients, so that -\2’- (v - 1) operators are
still required to label the basis states. For example, for Sp(2)
(isomorphic to SU(2)) no more lebels are required, but for Sp(k)

one more operator has to be found.
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The maximal subgroup of Sp(2v) is Sp(2v - 2) x Sp(2) end this

group can be inserted in the chain of subgroups
sp(2v) 2 Sp(2v - 2) x sp(2) 2 spl2v - 2) .

However the Sp(2) group provides only one more lebel vhich is still
not sufficient except for Sp(l4). The reduction of Sp(k) with respect
to Sp(2) x Sp(2) has been studied by Holmen [52] and basis states
calculated. The methods employed here can be simplified by the use
of modified bosons, and by imposing the traceless condition which
reads a1, + a3y = 0 for Sp(h) (see IIT (21)). This enebles the basis
states to be put in a simpler form.

In general we will try to solve the problem of state lebelling
in & manner analogous to that for U(n) and O(n), through the branch-
ing theorem. The representations of Sp(2v) are specified by numbers
my,..m which are non-negetive integers such that my 2 my 2 .. # m, > 0.
The reduction Sp(2v) to Sp(2v - 2) was first considered by Zhelobenko
[56] , who gave & statement of the branching theorem: The restriction
of the representation (m;, .. m ) of Sp(2v) to Sp(2v - 2) contains
in its spectrum all representetions (qj, .- qv-l) of Sp(2v - 2) such
that

m>pPm>py>n3>..p 20 >p, >0,

PM2a>p?R>-..p,_,24,,70, (2)

where the indices Q> pJ are all non-negative integers. This theorem
was later proved also by Hegerfeldt [T4] , end results for v = 2,3
given by Whippmen [ 74 . We have considered the reduction Sp(2v)
directly to Sp(2v - 2) rather than through Sp(2v - 2) x Sp(2) the
maximal subgroup, since we are seeking a lebelling similar to that

for U(n) end 0(n).
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Using the branching thecrem Zhelobenko wrote down besis vectors
[(m)> as a "Gelfand” pattern which can be done in the following way
([oul):

mvl . . m\’\,
Py1 o Pyy
(m) = Bye1 1 0 Tyel v-1 (3)
mi1
P11

vwhere the m, satisfy inequalities according to (2). The use

37 Pis
of the branching theorem to write down besis states 1s the same as for
o(n) (IV, §1), except that here the "intermediate" integers Py do not
have any group theoretic significsnce. The PiJ are attached erbitrarily
to representations of Sp(2v - 2) labelled by the same numbers, which
appear more than once and need to be distinguished by different pi.j
lebels. For Sp(L), for example, the representations of Sp(2)
lsbelled & appear in the representation (mj,mp) such that 0 < 2 < m
end with multiplicity (m; - ¢ + 1)(mp + 1) for & > m,, and
(my - mp + 1)(% + 1) for & < my. The labels pyy can be attached
arbitrarily because representations of Sp(2v - 2) with the same labels
are all equivalent. The restriction of Py to the renges given in (2)
ensures that the Sp(2v - 2) representations are counted correctly.
The states (3) can be chosen to be orthogonal with respect to the
lebels Py, o8 well as my g because the reduction Sp(2v) to Sp(2v - 2)
is completely reducible, so that subspaces carrying representations
of Sp(2v - 2) lebelled by the same nunbers can be made orthogonal;
the difference between such subspaces is their Py 3 labels.

Tt follows from the considerations of Zhelcbenko that the states

(3) are also weight vectors, i.e., they are eigenvectors of the

diagonal generators Hp, .. Hv . This is also the case for U(n), but
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not for O(n) where the Gelfand ststes are not weight wvectors. The
eigenvalues of H;, .. H mey be found from the enelysis of Zhelobenko:
T
| (n)> = [2 Lo Lomg - L mj_l’i] [(m)>

By sapproaching the lebelling of stetes through the branching
theorem we have cast the problem in a form very similar to that for
U(n) and 0(n). For Sp(n) however the lebels Ps 4 do not have a group
theoretic meaning because Sp(n) does not contain sultsble subgroups.
It is hoped thet nevertheless the pij share some of the important
properties possessed by the mij :
elgenvelues of certain lebelling operators. This seems reasonsble

in particular that they appear as

considering that, for most properties, Sp(n) is "not quite so simple
as GL(n) and not so complicated as O(n)" (Weyl [ 12] p.229).

In order to reveal the prcperties of the pij labels we will
carry out explicit calculations for Sp(L) with the lsbelling (3).
As will become apparent, this labelling is different from the subgroup
labelling Sp(2) x Sp(2) which solves this particular problem, but
vhich does not generalize sultably. Tirstly however we calculate
quite generally the state of highest weight, and symmetric basis

states.

§2. State of Highest Weight

Since the representation space constructed from modified bosons
is irreducible there is one state of highest weight. This state is
specified by the representation lsbels (m;, .. mv) and so can be
celculated independently of any labelling problems. Our method here

follows clearly that for O(n) (IV, §3). The state of highest weight is

-;é mp-my Mpy~mM3 mv
|ma.x.> =M “ g 813

e B3 oy 107 (1)
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To prove this it is sufficient to show thet |mex.> is annihilated by
all raising generators (listed in III (28)). By sapplying the diasgonal
generstors H1 we deduce that the numbers (ml, .o mv) are not only the h
polynomial degrees, but also the representation lsbels. The require-
ment that the exponents be non-negative integers shows that we have
obtained representations for which mjy 2 mp 2 ., 2 ) 2 0, where the m,
are all integers i.e., we have obtained all representations of Sp(n).

Again es for O(n) it is eesy to see that only the boson parts of
the modified bosons in (4) contribute. As a result the normelization
M is calculsted using boson operator techniques [ 32].

The expression (4) has been used previously for Sp(Y4) by Holman
[52]. Using a different metric the general state of highest weight has
been calculated by Quesne [ 63] using the properties of complementary
groups. However our method provides a more direct solution, without
using the complementary group U(v). The remarks of IV, §3 spply here
also,

We note that (L) is also a Weyl state, corresponding to a Young
diegram of v = ¥n rows which is the maximum allowed (III, §2). We can
write down other Weyl states by using the system of parameters which
appear in the branching theorem, in the same way as we have done for
U(n) and 0(n) (IV, §2). It is a simple matter then to write down a

complete set of non-orthogonal basis states. Taking Sp(l) for example

o] my
P1 P2
2, /
mo/

the general Gelfand state is

vhere all paraweters are non-negative integers and

m 2 py2m>py >0
P12 2% Z 1Dy
L 2nm =20 .
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Here (m;,my) are the Sp(l) lebels end ¢ is the Sp{2) lsbel. The

corresponding Weyl stsate is
m m
P1 P2
2
m

end the explicit expressions are obtained from the Young diagrams:
sl £ p1 m
1 EEL
|3 ..

P2 my

- - Lt - Mo =
= &, 1PL g P17R o) 078 0 P2 4 T27P2 4 P2 o>

(>2my, m=my)

m & P1 my
1.l 2 [3.. & |
EREE

P2 mzw

WPl o P1702 o Wo=l ,  Rm o JBP2 4,P2 o>

a3y a2k

(2 <mp, m=>p3)

m P1 my
1.. 0|2 |3 v |
3 | b |
P2 mp
- - My-f R~ -m __m
= a.,ml P1 &3p1 2 84,727 ayy P2 a23P2 a13 |0>

(2 <my, m<py)

L P11 m
EREE
2 |3 |
P2 ]
= g, 1P aapl-z azm-mz 8232 " e13 T2 a12"2 |0>

(> mp, pp<m<m)
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|1L2 3 |k
l3 [y

P2 mp

m-p o P14 g A2 o T2P2 o P2R g T g,

= ay a2 823

(2 2my, m<py).

Weyl stetes can be written down in a similar wey for all the
symplectic groups. Recently [T5] it was shown how to construct
operators which are polynomials in the group generators end which can
be used to obtain basis states by applicetion to the state of highest
welght. However the states obtailned in this way ere non-orthogonal.
Clearly modified bosons have made these operators obsolete since we
may write down by inspection, without use of lowering operators, the
non-orthogonal but very simple Weyl states. Lowering operators are
useful only when they allow the calculation of the orthogonal Gelfand

states.

§3. Symmetric Basis States

It 1s possible to calculate basis states for O(n) in & symmetric
representation (i.e., for which my = 0 =mg = .. m ) (see IV .23).
The same is true for Sp(2v), where the basis states may be labelled
I(R'v’ Pys o L1 p1) . Here %, refers to the lsbel of the subgroup
Sp(2k), and the nurbers p;, .. p, are defined from the eigenvalues of
the commuting generators Hk’ which have eigenvalues 213k - 2k - R’k-l’
for k = 1, .. v. In this wey the states are adequately lsbelled.

The state of highest weight is |max.> = algv |[0>. The sp(2v)
state which is maximal in Sp(2v-2) 1s ¢ = ISL\’, Pyo &y_qs o0 by g”
and 1s constructed from the ordinary bosons aj, Bry_1® Soy° This
state is then a linear combination of the polynomials a.lp azv-lq azv!_. :

where pt+ g+ r = lv since R’v is the polynomial degree. Also, because
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Hyp=2, ,¥
we have
Q-r=2Pv"Q'v"94_1 9P=2'\)_1'
Therefore
L p. ~R L -~p
_ v=1 v “v-1 AV AV
¥ = e 859-1 25, lo> .

2
The generators of Sp(2v-2) act only on a vﬂl, gso that continuing

es sbove Wwe obtein
|£\” p\)’ [N 2’19 P1>

R -p P -2 2 -p 9'1"P1 Pi
=3 v v v v=1l v-1 Sv-1
N 8o, 85yl 85,0 .o 82 al |0>

where

N= (2 -p) (p, - 8,10t .- (2q - P1)! P1!

§4, Labelling Operators

In order to calculate arbitrary basis states we need to under-
stand the method of lebelling states, and for this reason we carry
out explicit calculations on Sp(4). In the usual approach we try to
find & sufficient number of independent commuting operators whose
elgenvectors then comprise the basis states lebelled by the eigen-
velues. We require that these operators be hermitean in order that
the basis states be orthogonal.

For Sp(Y4) we need to find 6 independent operators. Further-

more these must be chosen so as to speclfy the lebels appearing in
my My
P1 P2 .
R' .
-/

Our problem differs slightly from the usuel state labelling problenm

the Gelfand pattcrn
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in that we are seecking a particular labelling system. For Sp(h)
the lsbelling of states is solved by the reduction
Sp(4) D sp(2) x sp(2) 2 sp(2)

but this solution is not the Gelfend type labelling.

Of the 6 operators required two are the Sp(2) subgroup lebels.

These are
H; = 553 with eigenvalue 2m -~ & ,
and
A2 = A Tr(Sz) = Hl(Hl + 2) - Si11 So2g
with eigenvalue 2(% + 2) .
We have used here the notation (Sz)j"J = Sj‘p Sp.j (summation over p)
where §%. = P 5 with eld = _ ¢, . Therefore Tr(s2) = g sP
J rd i3 P aq

=¢ e S S (summation). (This notation is useful for the
qr p8 Trp Bg

discussion of group invariants end characteristic identities; Bee
[70,711.) H; and A% are hermitean and commute with each other.
There are slso the two group invarients of Sp(l). These invarifmnts
and their eigenvalues have been studied extensively in a general

context ([70,71,76,771) and mey be listed as follows:

C2

3 2y = P Q = o b
35 Tr(S2) %sqsp(p,q 1, )

Hy(Hy + b4) + Hy(Hp + 2) - 817 S22 - S33 Suy

+ 2 841 S32 - 2531542

with eigenvalue
S, = my(m + 4) + mp(mp + 2) ,

Cy

Tr(s4) , with eigenvalue 25, + 6S; (5)

where

Sy = (my +2)% + (mp + 1) - 17 .

Another lebelling operetor is H, = Sy3 with eigenvelue

2pp +2pp - m -my - 2.
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As indicated earlier there remeins one operstor P to be found, which
must be an Sp(2) invarient, hermiteen, end commute with Hp. One

possibility 1s L = - (82)y3 = Syp S31 - Su1 S3z. However, with whet
is a characteristic typical of state-lsbelling problems, this choice

is not unique end there is another independent possibility:

M

- (Sa)ug

Sy2 S11 S32 + Sy1 S22 831

- 841 Saz(Hy + 1) = Sy Sa1(Hy - 1)«
It is straightforward to show that other possibilities depend on the
seven operators we have listed, namely
Hy, Hp, A2, Cz, Cy, L, M (6)

We could choose for example (Sr)qg for r > 3 but then we use the
characteristic identity for Sp(2) ([71)), which reads 82 = 25 + A%,

to express (5¥)y3 in terms of the operators sbove, e.g.,

L - 2\P o2 -
(S )qs Shp(s ) q S 3 (P:q 192)
= - LM - L(AZ - 3)
using
2 - r o _
[A,Sq3] qurs3 3S3q.

Similerly operators such as Sg33 Syy and more generally (8%) 33 (8% )y
also asre nct independent. The invariant of the second Sp(2) group is

Q2 = Hy(H, + 2) - S33 Suy vhich depends on Cp in the following wey:
¢, - R2 = A2 -~ 2L - 2H; .

Therefore by choosing L to be dlagonal we would recover the

Sp(2) x Sp(2) lebelling. In this way the eigenvalues of L are easy

to find. However the Sp(2) x Sp(2) labelling is not the Gelfand

lebelling as we can easily show. Using the notation of Holmen [ 52)
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the states of Sp(h4) D Sp(2) x Sp(2) are written

IJm, Ay Js Ay My, Mp> (1)

where J , A are the Sp(l4) lsbels and J, My and A, M, are the

sp(2) x sp(2) subgroup lebels. In our notation
m1=2Jm,m2=2Am,m=MJ+J, L =27 .
The branching theorems are given by the inequalities:

J - A SJT+AST + A
m m m

m
-J +A €£J-A€J -A (8)
m m m m
- A<
A MA<A
_J<MJ<J,

If the Sp(2) x Sp(2) lebelling is the same as the Gelfand lebelling
the state (7) will be equal to

iy mp
P1 P2
L

m
with
m1=2Jm,m2=2Am, L =27, m=MJ+J.
Now py, pz may be defined as p; = max.(&), p2 = nin.(2) since
po € £ € p;. From (8) we see that both the following inequalities

must be gatisfied:

24

=20+ 2T =20 €27 € 2] + 2A
m m m m

oA - 2] + 27 K2T7<2J_ - 2A + 2A
m m n m

therefore
2A)

p1 = min. (20 + 27 - 20, 2T+ 2R

po = max(2A - 27 +2h , - 20+ 23 2Am) .

This mapping, which is the only one possible, is not acceptable

because here py, pp are dependent, since they do not depend on MA’
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wheress in the Gelfand basis state they are independent labels. 1In
this way we deduce that the Gelfand lsbelling is not the Sp(2) x sp(2)
lebelling and we cannot choose L to be the sixth labelliﬁg operator.

The required operator P will be & function of the operators (6).
There is now the problem as to how the form of P may be determined.

It was found that no method sppeared to exist which led to a sultable
choice of P.

One method tried is the following, end was used by Louck [69]
for obteining O(n) metrix elements. We try to find matrix elements
of a generator in & certain basis by teking repeated commutators with
s lebelling operator to find the selection rules on the corresponding
label. This method depends on being able to express the commutators
in terms of the generator and lebelling operstors. TFor example, we
have

[ A2 of A2 Su2l]l = 38y + 251.,,21\2 + 202 Syz. (9)

By teking matrix elements of both sides we find

m mp m mp
PL P2) gy, (P1 P2 ) =0 wnless £° = & + 1.
m” m

This selection rule is a result of the fact that Sy is a wvector
component under Sp(2). Similar rules hold for the other generators.
In the same way we take commutators using M and L and from these
expressions hope to choose a combination of M and L which ensbles

uws to calculate a commutstor in the form (9). However a sultsble
such combinetion could not be found and so this method fails. These
type of calculetions with repeated commutstors are hindered by the
fact that M is of third order and Cy, which may also be involved, is
of fourth order, leading to complicated expressions. The expanded

expression for Cy is
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Cy = 4S33 MSyy + L(16H, - BAZ + 16 + UM - LL) + 2C, + 16H,
+ M(UL + bCy - MHp? - a2 BH, - 16) + 2Cp2 - 4Gy AZ + LA

+ LOA2 + 20H,?
and the eigenvalue (5) is checked by applying Cy to the state of
highest welght.

Another method tried was to write dowm matrix elements in
the most general possible form and impese the condition on these
elements required to satisfy the commutation reletions. Then by
choosing expressions for P it was hoped this further information
would ellow the equetions to be solved. Again this method was not
success ful.

Part of the problem here is that we are seeking a particular
lebelling scheme and therefore also a particulaer labelling operator.
Without any knowledge of this operator, infinitesimal techniques
sre not effective. TFor example it 1s not possible to calculate lower-
ing operators es has been done for U(n) and O(n). As mentioned
earlier the operators of Mickelsson [75] leed only to non-orthogonal

basis states.

§5. Sp(l Lebelling Parameters

In order to revesl the origin of the laebels py, P2 let us
derive the branching theorem by identifying, as did Zhelobenko [56] ,
the states of highest weight of the subgroup Sp(2).

The irreducible space which carries all representations (my ,mp)
of Sp(L) consists of polynomials homogeneous of degree mp - mp in 8y s
and of degree mp in aij' The subspace, denoted R, which is of
highest weight in Sp(2) consists of polynomials which are ennihilsted

by Sop, the raieing generator of Sp(2). Now [Szz,ai] = 0 except for
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{ = 2. Therefore polynomials in R are constructed from ey, 83, 84,
a13, 81y, B3y (we have [Sp2, ajp]l = 0 also, but ajp = - a3y), and
these varisbles are not connected by any traceless condition.

Now let us ccnsider simultaneously the irreducible space R”
which carries the represenmtetion (mj,my,0) of U(3). This space con-
sists of polynomiels homogeneous of degree my - My in the varisbles
a1, G2, 03 and of degree mp in the varisbles ajz, a13, ®23 Where the
a's sre ordinary bosons (the varisble ajz3 does not sppear because
m3 = 0).

We cen establish a 1 - 1 mapping between the spaces R and R”

by corresponding the varisbles in the following way:
gy <+ a1, a3 > op, &y < asz, 813 <> 012
ayjy +*> 013, a3y +* 023 .
This correspondence determines a mapping between & function f(e) € R
and the corresponding function f(a) € R”. In this mepping weight
vectors are mapped into welght vectors. This is because the effect
of Hy, Hy on the a's is the same as the effect of E11, Ez2 - Eas3

(defined by II.5) on the a's. This is easily seen from the commutea~

tion relastions:

[Hy, a1] = & [Ejn, a3 = o

[Hy, a.3] = 0 [E11, 0l2] =0

{Hy, a4l = O [Eqy, a3] =0

[Hy, &1 = O [E;p - B33, 03] =0

[Hy, a3) = a3 [Egp ~ E3zy o] =+ a2
[Hy, ay] = -&y [Eyp - E33, a3l = - a3 .

The basis states F(a) in R” mey be denoted
my m O
Fla) = |p1 P2
'
where p;, pp are the U(2) subgroup labels, and & the U(1) subgroup

1sbel. From our knowledge of U(3) we mey write
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Ey; Fla) = & Fla)
(EZZ - E33)F(a) = (2p1 + 2py; - mp - My - 2)F(a).

It follows immediately that
H; F(a) = & F(a)

Hy, F(a) = (2p; + 2py = mp - mp =~ 2)F(a) ,

which shows that the representations of Sp(2) appearing in R are
lebelled %. The number of times this representation appears is known
from the branching theorem for U(3) 2 U(2) 2 U(1), and so is deter-
mined by the inequellties

m>p;p>m2pp =0

P1Z % 2 P2

In this way the numbers p;, py appear originally as u(2)
1gbels, but once applied to Sp(k4) are significant only es parameters
which count correctly the multiplicity of the Sp(2) representations.
Using these peremeters we lsbel the states f(a) in R as

m mp
P1 P2
L
)
However it does not follow that the corresponding state £(a) in R

is labelled

m m O
P1 P2 ’
%

or vice versa. This is because although the states £(a) are ortho-
gonal, the states f(o) will not be orthogonel because of the different
commutation relations of the a's. In other words , the states F(a)
corresponding to

my m20

P1 P2
)

Fla) =
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form a non-orthogonal besis in R, and the orthogonnl stetes

my Tp
P1 D2
2
3

are a lineer combination of the states Fla).

If we calculate matrix elements in the besis states F(a) then
the sssumption that these are orthogonal leads to contradictions,
i.e., the matrices do not in fact represent the generators of Sp(l).
A technique for writing down matrix elements of Sp(2v) hes been
deseribed by Gilmore [ 78l . The results for Sp(4) are those obtained
with the sbove assumption and it 1s not difficult to show that the
results are incorrect. If it is desired to write down matrix
elements in s non-orthogonal basis it would be simpler to use the

Veyl states.

§6. Caleulation of Orthogonal Basis States

We have seen how the numbers py, pz have been introduced to
1sbel besis states, but no operators significance hes been esteab-
1ished for these numbers. If we choose a lsbelling operator P then
its eigenfunctions will be linear combinations of the basis states
in the representation space R of highest weight in sp(2). (States
not of highest weight in Sp(2) are easily cbtained by application
of the Sp(2) lowering generator). A set of non-orthogonel basis

atates in R is obtained from the U(3) representation space R”, namely

m my O
P1 P2
%

which are hypergeometric functions (see II. 22) However there is a

Fla) =

much simpler basis in R, the Weyl stetes of highest weight in Sp(2),

which are:
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m; mnp 2 Pll |

P1 P2 1 3 |k {

2 - N

3 31y |

P2 my
f=-m -L my - M=
= gy T2 g P17V g TP 4, T2 P2 g,4P2 0>
(Q, - m2)
and

: % P1 m
I
EREEEN

P2 L)

P1-1m2 uml"Pl L-p2

My =4 )
= a3 8 a1y agy 2 aj3 2 |0

(2 \<m2) )

These Weyl states |(m)) are also weight vectors:

Hy |[(m)) = & |(m))

Hay |(m)) = (2p1 + 2pp - m -mp - %) l(m)) . (10)

The Gelfand states are a linear combination of the Weyl states:

m mp m
- [P1 P2\ o pi v
m)> = = A L . 11)
‘( ) L Z » P1 P32 % (
9; pl ,PZ 2

We now show how to calculate exectly this linear combinetion, i.e.,

to obtain en expliclt expression for the coefficients Apf 5 ° We

do this by firstly obtaining restrictions on the parameters of
surmation, and then by imposing the orthogonality requirements on

the Gelfsnd states. We are in effect carrying out a Gram-Schmidt
orthogonalizaetion of the Weyl states, but only in the one way possible
vhich leads to the Gelfand stetes. The final expression for the co-
efficlents A { p3 involves the inverse of a certain matrix of scalar
products, and by calculating some speclal cases we will see that

these expressions cannot be further simplified.
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In teking the linear combination ( 11) there is no summation
over my, mp which are the group inverients, or over % since we must
nave H; |(m)> = & |(m)> . In addition since

Hy |(m)> = (2py + 2p2 - m - mp-2) | (m)>
we have from (10) thet the sumation over p{, pi is such that

pi + D5 = p1 + P2 (11) cen now be written

mj my
| (m)> = | Aq(g) Pi-q p2tg (12)
4 3

where Aq(R.) depends also on the parameters mj, Iz, P1, P2: The
sumetion over q is further restricted by the requirement that the
jnequality p; = % 2 pp must be satisfied. On the right hand side

of (12) we see that p, + @ € & < p; - q so thet the meximum value of
% is py - min.(q). Similarly min.(2) = pp + min.(q). On the left
hend slde we have max.(2) = p1, min.(2) = pp so that we must have

min.(q) = 0, i.e., ¢ > 0. (12) now becomes

m) Dy mi mp

il P2\ = ¥ & (%) P1-q¢ P2ta (13)
=0 q 2

v 2 )

where the maximum value of q is determined by the inequealities
pr-a2m2p +a
Pr-a2% 2ppta . (1h)
The expression (13) ensbles ug to write down seversl states
explicitly, in particular the following stete which in analogy with
o(n) (IV, §4) we call the semi-maximal stete:
m mz\
gi P2\ = |g.m> = MF 8 P12 o, 17P1 g)5F2 a1 27?2 0> .
1 SO
The orthogonelity of the besis states is assured here because D) is

also the Sp(2) subgroup lsbel. A similar expression can be written
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down quite generslly for the semi-maximal stete of gp{2v):

ls.m> = W% P12 o BI7P1 4, P2

UK} mo-P2
m -p P
v Vv \Y
¥ 893, .2v-3 2v 813, .0v-1 o> .

At this etege we might try to deduce the form of P from the

knowledge that P is diegonal on |s.m.>. Since such en operstor

distinguishes between spaces lebelled by p; end pp we might expect

this to be the required operator. By calculating matrix elements

of the operstors (6) we can show that the following P is diegonal
on |B.m.>, with en eigenvalue that is known but is complicated:
P = oM — 3ML - 3LM + 3L2 - 2L2A2 +hLH,AZ+ 2MH
- 0A2L - 12L + UMAZ + 3H,2 + LH,2A2 - 12H, - 16HpA%. (15)

However this approach fails because from (13) we have that

mp MW

- - - -1 m
P1 M\ o % g, T2 g, P17R g 1PL 4572 0>
%

end P is not dlagonal on this state. This meens thet a function of

the form (13) cannot in general be an eigenfunction of (15). Clearly

it is necessary to choose a more general P which is disgonal on the
state |(m)>.

In order to calculate the coefficients Aq we impose the ortho-
gonality conditions required on the Gelfand basis states. The con-
ditions mey be written
my Ny my mz\
p1-n patn | P1 P2 \ = g
' 2

'3 2

(16)

forn=1, .. p; - %.

Orthogonality between the lsabels mj, 2, % and p; + p2 is already

satisfied because (13) is an eigenvector of Cz, Cy, Hy, Ha. In the
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equations (16) it is not necessary to ccnsider n = 0, because this
would give simply the normalizetion. Ve are in faet carrying out
8 Gram-Schmidt orthogonalization with respect to the semi-meximal
state since, beginning with n = p; - % we ensure that all states

my mp
P1 P2
)
2

are orthogonal to
1 ma

ls.m.> = p1+p2-2

o r e

and then, by puttingn =p; - & -1, p1 ~ & - 2, .. 1, successively
we ensure that
m; myp
P1 P2
2
J'A
is orthogonal to ell other states.
The equations (16) can be greatly simplified by the knowledge

that it is sufficient to require

/ m mg m; mp

[ pym p2*n | P1 P2 ) =g (17)
L 2 %
. R %

i.e., the Gelfand stete is orthogonal to the Weyl states. We note

that
1 o my m2
P1+p2-2\ . |% p1+pz-2\
) /
2 A
so that (16) is equivalent to (17) for n = p; - %. Buppose (16) is

equivalent to (17) forn =p; - &, p1 - ¥ = 1, .. P1 - 2 - k. Now

my my LS| my
< Lek+l p1+p2“-2=k-1 =1 2 pfpz—ﬁ +
lez 2 e e

%
\ % \®
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my Mo

2+k+]l pitpor-f-k-1
2 .
£

(In this expression the Weyl states and corresponding coefficients

for which the inequalities (1) are not satisfied will be zero.)

The first k terms of this expression are salreedy orthogonel to

my m
P1 P2

A
)

by essumption, so that (16) implies that (17) holds for

n=p; ~-4~%~-%k-~1also.
(17).

(17) can be rewritten:

p1-% my my
p1-n DbPoin
) A,(2) g
q=0 2

By induction then (16) is equivalent to

n mp

P1-4 P2tq =0 . (18)
R
% ¥

We may assume that AO(R,) = 1 by bringing out e normalization factor

-
N"2(2), which is determined from <(m)|{(m)> = 1, once A(1 is known.

(18) now consists of p; - & simultaneous equations for the seme

nurber of unknowns, and may be written MA = - K where M is a

P - £ X py -~ & matrix with elements

my my
M = | P10 P2in
ng %
2
and
m mz
Kk = |P1™n P2'n
n 2
)
Hence

Aq(fl)

The normelizetion is given by

m o omp )

pi~a P2td
)
)
my mp
P1 D2
[
2

- IM(2)” ]qp Kp(z) )
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m my mp My

' = 5 p1~r Dpatr P1-q p2ta
N(2) §-=o Ar(z) Aq(IL) B H

q.s 2 2

mi; oo my s
-2
o P1 P2 | P1~q P2tq
= 3 A () & )
q=0 L '3

since from (18) only the term r=0 contributes, for which Ao = 1,

Therefore .
my mp mp mp

N(z) = [ P1 P2 | PL P2 ) g(3) i) K(R)
2 L

The evaluation of Aq and N depends on being able to calculate Mpq(ﬂ,).
This scaler product can be calculated using the commutation relations
(111.28), but only with some difficulty. An easier method is to use
that outlined in III, §T teking adventage of the projection operator
H. The functions in R are homogeneous polynomisls in modified bosons
but msy be written as polynomials in ordinery bosons with the help

of H. A function f in R then tekes the form H f(a,b) vhere
m (=) (m; +m - r+ 2)!

H= z rl(m1+m2+2)i
r=0

Y - - r
(832 + agy)” (a12 + a3y)

and the a's are now ordinary bosons. f does not contain any
operators a, or by (since R is of highest weight in Sp(2)) and so
the terms aj, and ajp, when acting to the right end left respectlvely
give no contribution. In R then H takes the form

B2 (W)(mp + mp + 2 - 1)

-r
ri(m + mp + 2)! B3u 83y -

H=
r=0

We are now sble to calculate any basis state

m} m2

P1 P2
'3

m
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where the U{1) C Sp(2) lebel m is cbtained by applying (S 1)""m to
m; mp \
P1 P2 \
A
2
In order to obtain some idea of the complexity of the co-

efficlents Aq let us calculate the expression for

my na
P1 P2
p1-1
p1-1
vhich is

3 9-4513\ :
-23 =1y = - - ot >
N(;rl) 31P1 mp-1 a3 ay 1Pl &13p2 a“mz P2(1 + ay{py - 1) 8381y /

We need to know

my m | m mp
P1 P2 | P1 P2
b1 Pl
P1 P1

(m1 - pl)!zpz'.z(pl + 1)!(m1 -~ po + 1)!(m2 - pz)!
(my + my + 2)'(m; ~ mp + 1)!

(<) (my +mp + 2 = 2)i(p; - my + )¢

X Z ri{m -~ py -~ r)ipy - r)ilpy - p2 + r+ 1)!
and
m om m) my
P1 P2 | P1-1 p2tl
P1~-1 P1-1
p1-1 P1~1

(p1+my+2) (my-p3+1)! (pa+1) ipa ! (my-py) i1t (mp-pa) !t (my-py)!
= (my+mp+2) ! (my-mp+1):

(my +mp +1-1)(=)(py -mp ~ 1+ x)

)

B ri{m - p1 -~ r)i(p2 - *)i(p; ~ pp + r)!

We find then
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(Pl“'st ~-m+py1, =P2 ;)
- mp-mp-1, p1-pr+l

~My, =Mmi+pi=1t, =Po~1;
“Pz)st(pl 2, =m1*p1-+, =P2 f-)
~m1~lp~2, P1=P2

(p1+my+2) (mp=p7) 3F2

Ay(pp - 1) = ~
(my+my+2) (py

which cannot be simplified further. This result is much more
compliceted then had been expected by analogy with U(n) end 0(n).
It is possible to treat the problem of state lsbelling for U(3)
end O(L4) in the same way as we have done here for Sp(l4), without
uwsing properties of U(2) and 0(3) respcctively. We would carry
out the reductions U(3) 2 U(1) end O(4) D 0(2) directly and then
obtain the required basis states (I1.22 and IV.18) which are much

simpler in form. For example the U(3) basis function to be com-

m m O
Py P2
p1-1

« al];1--m2—l_ 8y a3ml Pl 8,02 6;4727F2 (1 4+

pered with (19) is

my - P2 &1 a23\
) o>
P - 1y ay &13

The cslculation of further coefficients, such as A1(p1 ~ 2),
Ay(p; - 2) shows only thet these are also of similar complexity, end
lecking in the structure we expected.

With the basis states known explicitly, it 1s possible to
calculate metrix elements of the group generstors. It 1s sufficient
to calculate only the matrix elements of one generator, Sy for example,
since all other representation matrices are then determined by com-

mitation. It wes hoped that the following selection rules would

apply: 4py, 8p2 =0, 2 1,1i.e.,

/ mp Wy my mz\
Pl P2 P1 P2 =
2; 832 9 =0
n’ n /
mless p;" =p; or p1 1
p2° =pz or pa 1l
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Calculstions with the besis stetes for special cases show this is
not the cese. The matrix element 18 non-zero for Apys Apy = % 2,
and higher values.

When the representation matrices are determined it is possible
to find the matrix elements of L and M and then cbtain a function of
these operators which is diagonal, and which will be the lsbelling
operstor P. That such ean operator existe is known because the set
of representation matrices form & complete matrix algebra (Weyl
[12] p91l). The disgonal matrix with the required eigenvalues can
then be expressed as a representation dependent function of the

generator representation matrices.

§7. Conclusion

We have lebelled the basis states of Sp(2v) using the branching
theorenm, in the hope that these labels will possess all the proper-
ties we require of them, even though they do not ell heve the sig-
nificance of group invariants. We have approached the problem in
s wey which would also be appliceble to U(n) and O0(n), where the
results are simple with a clear structure. Calculations for sp(h)
however show that corresponding expressions for Sp(2v) are much more
complicated and lacking in structure. The intermediate lebels Py 3
do not possess ell the properties of group invariant lebels soO that,
for example, selection rules for matrix elements are more complicated.
Although lsbelling operstors exist, and are determined in principle
from the orthogonel basis states, their form is complicated to the
point that explicit expressions for them are of no practical use.

In seeking a solution to the state lebelling problem there is
the question of the kind of solution required. For the SU(3) D 0(3)

problem it is necessary to find one lebel which is not e group
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invarient. In the spproach of Bargmann and Moshinsky [23] a label-
ling operator is chosen for its physical significance. Eigenfunctions
are linear combinetions of the known non-orthogonal basis states, and
eigenvalues may then also be calculated in principle. Our situation
is the seme, where we have the non-orthogonal Weyl states end a
labelling operator mey be chosen using L and M. In our csse, ag for
Su(3) D 0(3) also, results are simpler in a non-orthogonal basis

then in an orthogonal basis. Although we have not solved the problem
if it is required thet & lebelling operstor and its elgenvalues be
known explicitly, we have specified the explicit form of a complete
set of orthogonal basis states. A labelling operator is then deter-
mined implicitly.

Our approach is also possible for the well known su(3) 2 0(3)
state lebelling problem. The number q which appears in the branching
theorem without group significsnce cen be used to list the non-
orthogonal basis states [23]. By an orthogonalizetion process we
obtain the required states from which a labelling operator can be
{mplicitly defined. The reduction SU(3) 2 0(3) corresponds to the
reduction of the representation space as described in I11, §3.
Modified bosons can be used within the harmonic subspaces on which
0(3) acts.

In the application of our approach to the SU(3) 2 0(3) problem

we seek to lsbel the states as

mo m \
) s 4 s
=/
where mj, mp ere the SU(3) lebels, £, m the 0(3), 0(2) 1abels, and

q is the extra quantum number appearing in the branching theocrem.

These orthogonal states will be a linear conbinetion of the non~
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orthogonal states listed by Bargmenn end Moshinsky [ 23] , and this
combinetion is found by carrying out & Gram-Schmidt orthogonalization
in the single wey which produces the required stetes, as we have

done for Sp(k). Tt should be noted that in this approsch we seek

e particular lebelling scheme, in which the extre quantum number q
has the simplest possible properties, i.e., q tekes integer velues
between known limits. Other lsbelling gchemes are possible where
the extra lsbel hes less simple properties, but where, on the other
hand, the lsebelling operators mey be less compliceted. The problems
in finding such operators have been explained by Racsh [96] , end are

similar to those we have encountered for Sp(Y).
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CHAPTER 6

TRIPLE COMMUTATION RELATIONS

§1. Definition and Properties of Operators

In the study of the commutation relstions satisfied by modified
bosone (Chpt. III), triple commutation relations of the following

form were encountered:

[a sldaj,ak]] =8, a‘j_djk ai—GiJa.K. (1)
In this chepter we investigate these relations more fully and deter-
mine realizations other than modified boson operastors. Techniques
for enalysing triple commutation relations are known from pare~

statistics [ 791. In fact the parafermi relations,

[3'.19 [a'J:a'k]] =0

[a,%[ad,ak]] =85y B (2)
are simlar to (1) but slightly more complicated because both

relations are trilineer. For dimemsion n = 1 the relations (1)

become

[a,da,e] =~ =2 (3)

which is the same as for parefermions in one dimension except for
the sign, end is identical to a relation studied by Kademova and

Kraev [ 80,81] . These authors generalized (3) to the following:
[ai,[aj,ak]] =0
[8. ’;é[aj’ak]] ="5ijak (h‘)

which is a simple modification of the parafermi relations. The

operators satisfying (L) were introduced ([ 80,81,82] ) as the definition
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of a new parastatistics in field theory, but it has been shown [83]
that a self consistent theory is not possible with such a generaliza-~
tion.

The trilinear relations (1) offer a different generalization
of the relations (4). Tt is therefore of interest to study these
operators so as to reveal properties likely to be important in both
field theory and group theory.

Tn addition to (1) we have the conjugate relations

[51,33] =0
and
(g, Moy 3] = oy B = S By = 8y B - (5)
The Jacobi identity requires that
[ay L3y 0 0] = Loyl .8l
which is seen to be satisfled. ILet
Ny

g = ;5[31,8.31 .

Then from (1)

[Ny 4 M) = Sp Ny = Gy Mag = 510 Mot ¥ G1p Ty (6)

By interchanging the indices (13) < (k&) we have

[Ny oMy g) = Sp Moy = Sgp My = Opg Vi ¥ 83 Vi - (1)

Comparing (6) end (7) we obtain

+ N ) (8)

= N
§,. (N .+ NJQ) 623 (‘..ik o

ik 83

so that

NiJ +NJi

0 for 1 # 3

and

Nyg = Ny

Generally therefore Ni 3 + N 31 =246 13 M. The independent operators

M for all i,).

we cen form from &, , a, arcthen

J



105.

e

J =

(n - 1)
13 =% Wy = Nyy) s

5 oporo:bors)

(n+ 1)(n + 2)

end M, 8, 8, e total of 5 operators.
It follows from (6) that
[5y00g) = 30835 Tyg * S50 Taxe = O Tin = S1g Ty

s0 that the operators J 13 are the generators of the Lie algebfa of

0(n). From (1) we see that

['Jij,ekl = 1(5ik 8 - ‘Sgk a,i)

showing that 8, a. behave as vectors under transformetlorsof o(n).

i
We have defined Ji.] for 1, = 1, .. n. In addition let
= 1 a = - i = P
Jn+1,i z(ai + ai) Iy 1 i=1, n,
= iz - -
Tnea,g = 2(e:mJ 8‘3) = Ty e j=1, .. n
and
Tpsptl = 0= 7 el e
with
Inal,n+l = © % Tpeone2

The operators J 14 are a1l hermitean and they satisfy the following:

[3547q) = 10pgy Typ * P5p Tie = Paxc P10~ Pan I i)

ik, =1, .. nt2 ,

where
pij-sij ijJ=1, .. n
= - 613 i, = ntl, n+2
=0 elsevhere.

We have shown that the algebra of the 2n operators defined vy (1),
is isomorphic to the Lie algebra of o(n,2). By comparison the
operators defined by (U4) generate the Lie algebra of 0(2n,1), end

both ceses reduce to 0(2,1) = su(1,1) for n=1.
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Let us find the representations of the commutation relations
(1) in & Fock space, i.e., we find a certain class of representations
of 0(n,2). In this space there is a unique state |0> which cbeys
Ei |0> =0 for i = 1, .. n, and which we call the vacuum state. The
Fock space is then a Hilbert space which is the closure of vectors
of the form P(a) |0> where P is an arbitrary polynomial. In this

space we have from (5)

aiadak|0>=0 for all i ,

so that, because |0> is unique, E,J B lo> = lo> . Now, by

C.jk
applying (6) to the state |0> we find

Syk Cio * S22 %y = Sy Cao * Oyp G
Putting J = k, 1 # J # ¢, we obtain Ciﬂ, =0, fori # %, and putting

k=3, ¢ =1 we obtain Cii = ij = p, & constant. Generally we have

8, 8y lo> = p P |o> (9)
and therefore
p=<0| & & lo>=> o0 ,
and is independent of i.
The representations of the commutation relations (1) in the
Fock space are characterized by the number p, since each space for
a given p is inveriant under a

1
infinite-dimensional since the polynomials P(a) |0> cen be made of

and 3.1. The representations are

arbitrary high degree without venishing, for p > 0. p can be any

non-negative number since

-qa_4q _ yIp+a)
<0| 8y 8y o> = q! —%(5)3— R
which is alwsys non-negative, so that stetes in the Hilbert space

are alwsys well defined. The number p, to which we refer as the

order of the statistics defined by ( 1), tekes continuous values
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wheress for parafermi statistics p can be integrsl only.

We have found & remlizetion of the trilinear commutation
relations using modified bosons (see III.32). This realization
satisfies the further property 'é,qz =0 = an (summetion). However
not ell operators defined by (1) possess this property. From (1)

and (9)
- 2
ay aq |o>

2(p + 2 -m) a |o>

=0 if P = n-2.
Tt follows in the same way as for modified bosons (ITI, §4) that
e.qz = 0 in the Fock space such that p =n - 2; on the other hand
p#n- 2 implies aqz # 0. We note that the realization as modi fled
bosons satisfies p = n - 2. A more general realizstion for arbitrary

p is glven by

= . R i
a,:j pz‘j rdz+zzjzpdz 5
3 P
5 w3
1 dzi

where r? = zqz. The vacuup state becomes the constant 1. For this
case

(3,81 = 6,.(p+ 2V) + 2(z, = - 2, o)

122 13 3 Ty )

where

and we can check (8) directly.

§2. Realizetions as Double Bosons

There asre other realizations of the trilinear commutetion

relations. Let
% ulz + % azz

a) =
ap = ¥lm? - 5 0z (10)
a3 = 1oy 0
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where o1, Gy are ordinary bosons. It is readily checked that the
equations (1) are satisfied for i,j,k = 1,2,3. We can let the
unique boson vecuum state, defined by o |0> = 0 = 5, |0> , be also
the vacuum state of the operators a,, and in this Fock space we find
that p = 1. Now since n=3 we have p = n ~ 2 so that 812 + a22 + a32 =0
as can be checked directly. Thus we have found operators which satisfy
the traceless conditions but are different from modified bosons. The
group theoretical origin of these operators will be exenined in
Chapter 7. It is of interest to find other double boson realizations
of the triple commutation relstions, since these operators offer
en alternative to modlified bosons.

In general we seek realizations in the following form:

- pa
e, = 3 \ ap aq (11)

where Yi is an m X m matrix which we can choose to be symmetric since

. +
the ordinary bosoms a, a, comnute. We require that n < ——-——-m(m2 1)

in order that a;, .. &, be independent.
Now

o a

E} P a

a, = 2
where ;i is the complex con)ugate of Yy and is also the hermiteen

conjugate. The relation [a.i,aJ] = 0 is satisfied identically. We

have also
2 NiJ = [ai,ajl
=% TI‘('YJ vq) * (YJ ?i)pq o Eq (12)
and
= - > pa
[a-i,[ a.j sak]] = - (Yi YJ Yk.) up Cl.q .

We require

vy ¥y Ve ¥ Yy ¥e) =8y e S Yy 7 O Yy (13)
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Therefore
Yy ¥y Yy Yy oo (14)
and so = 5 _
(g Y02 = vy vy - (15)
Now from (8), wing (12) we deduce that
Yy Yy =Yy Yy for all 1,)
end _ _ _
Yy Yy + Yy Yy - 2613 Yy Yy e (16)
In finding representations of the matrices Ve we will choose Yyq ;i’
which is independent of i, to be dlagonal. From (15) Yy 71 has
eigenvalues 0 and 1 end therefore can be represented in block form
a8 = (1 o}
Y1 Y1 T Y o
If the matrices vy, are ell nonsingular then v, ;i = 1 and from (16)
Stralghtforward calculations show that, with the assumption of non—
singularity, (17) is equivalent to (13).

If some of the metrices y, ere singular then v, ;k = (é g)

and from (14) we can write v, in block form:

iy = (ok 0) : (18)
By using (16) ve find thet the matrices I must satisfy (7). We
cen see now that it is not necessary to consider where the Yy are
singuler becsuse from (18) this possibility has elready been accounted
for in (11), by teking smeller values of m.

We need to find symmetric nonsingular matrices satisfying (17).

These equations appear similar to those satisfied by Clifford metrices,
o. 0. +0, 0, =28,,. We can in fact show that all solutions are

i7) J 1 ij
obtained from the Clifford algebra.
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Beginning with yv; we mey write
Y1 =Y * 1vyg
where Y1R and Y11 are real. Then

T e 2 2 _ -
8o thet

[YIR’YlI] =0 .

Therefore Yig» Y11 8r¢ @ psir of commuting symmetric metrices and
80 there exists a resal orthogonal matrix such that YlR; Y11 can be
simulteneously disgonalized. vy; is therefore chosen to be dlagonal,
and v; y1 = 1 requires that the eigenvelues A setisfy I)\I2 = 1. We

can put :19‘j
(Yl)Jk =e Y8y -

Now with
Y2=Y2R+1Y21 »

the condition _ _
Y1 ¥2+v2Y1=0

requires
163 ] -iek
0=e I(YQR)Jk -i (Y2I)jk] + [(Y2k)Jk + i(YeI)Jk] e 4

The real end imaginery parts reduce to the same equation, glving

6.+ cos O
(Yor) iy = - 4 k(y
2173k gin GJ + sin ek 2R

6, + 6
k

co3

) e

i.e.,
6, + 0

k
2 (YZR)jk

il

(YZ)Jk (1 -1 cot

g, + 0
-iei"i"e'—""lg‘ (02)

Jk °

where 0 + 8

(Uz)Jk = (YER)jk/Bin —J—e——li ;

vhich is a real mabrix.
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Now y3 Y2 = 1 implies

8.+ 0 (6 +8.)
_ 1 -1 k
Se=-te _J__Q__P. (OZ)JP & _._P_é.___ (02)pk

(e, - 96,)
= ei —"‘L_—l'{—" (0'22) i.e. 0'22 =1.
2 Jk
Putting
161

Ajk—e Sjk 3
we have now

v1 = A (= )

k§
Yo = = 10 g, AZ

where 0, is an erbitrary real symmetric square root of unity.

By epplying this result to y3 we find that y3 miet have the

form
i 1
y3 = 1A% g3 A? where o03%2 =1.
Now
Y2 Y3 * Y3 Y2 = 0
implies
34 o 1 L ) =1
BP0 BN B 0 F + NigahPh ,hE = 0
i.e. gp03 + 0302 = 0 .
We can see now that in general all solutions of (17) have the
form
yi1 = A
1
Yk=-il\;éckA/2 k> 2

where {o ,0;}‘= 263k

all solutions are determined by the real, symmetric Clifford metrices.

and where Oy is real and symmetric. In this way

The representation properties of Clifford metrices are known [8L4] , and
we find that there exist at most 2v + 1 irreducible matrices of degree
2¥ for v > 1 satisfying the Clifford algebra. For v = 1 for example,

the Clifford metrices are simply the three Pauli matrices:

I I i I v
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Of these only the first two are symmetrie, giving the following v

metrices (where we have put A = 1):

n=0C9 . =0 3 . Ya=((i) 3
and ve have then the realization (10).
This reslizetion is of order p = 1, es indicated earlier. The
order of the general realization (11) 1s found in the following way.

From (12)

'é.i 3y o> = p Gij jo>

% Triyy Yj) o> + (YJ ;i)pq o &q |o>

P lO> E Tr(yi ;i) |O> + aq &q_ 'O> . (19)

Although &, |0> = 0 for all i it does not follow that o, lo> = 0
since the boson Fock space need not be the same as the Fock space
of the operators a;. In the cholce of operators (10) for exemple
the states |[> = @, a; @, 0p © all satisfy & [0> = 0, where ¢ 18
the boson vacuum state. In this way the boson Fock space is
reducible under a5 E.J. We should note however for this example
that the space bullt up from the state a; includes &lso as &, BO
that the vecuum stete is not unique, snd some of the sbove analysis
does not apply.

From (19), using Tr(yi ?i) = m, we obtain p = % + N vhere N is
the number of bosons in the state |0>., In this way the realizations
(11) cen be of order p = %, 1, %, 2 .. . All of these realizations
cen be obtained in the boson Fock space (when N = 0). This space also
hes a unique vacuum and so is our most convenient choice.

The realization (11) will satisfy the traceless condition if
p=n- 2. Now from Boerner [ 84] we find that of the 2v + 1 matrices

of dimension 2V satisfying the Clifford algebra v + 1 are real and
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symmetric. Therefore by including y; we can obteain a maximum nunber

of n = v + 2 matrices satisfying (17).

Nowp = 3 = V"1 5o that if p

require v = V1. , v=1 or v =2, We see thet there is only

n - 2 is to be satisfied we

one other possibility for operators satisfying the traceless con-
dltion. This solution is obtained from the k4 x L4 Clifford matrices
giving the following realization:

a1 = 0109 + a3ty

ay = lajoy - fagoy (20)
a3 = 1ajog + iogay
ay = 0303 = 020y

The group theoretic origin of these operetors will be examined more
closely in Chpt T.

We have shown how to obtain all solutions of the trilinear
relations, as double boson: operators and essentially only two of
these satisfy the traceless condition. We have also recovered the
realizations used by Kraev and Kademova for n = 1, If we takem = 1,
then ¥ = 1 and a=3§a2. Tor m = 2 we can choose Y = (?_ g‘) i.e.,

a = aj0y. Our analysis has revesled meny other possibilitles es well.

The trilinear relations we have found are not inconsistent as
are those of Kraev and Kademova in general. If we define the number
operstor to be

N =33, 8] —};-=M-%
then [N,ak] = 8 and N can be assumed consistently to have a spectrum

of all non-negetive integers. This sssumption is consistent because

we have found reslizstions for which this is true.
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§3. Other Triple Commutation Reletions

The reletions (1) were foumnd from modifled bosons a, by the

gubstitution

1
a, -*a.i(n+21\1-2)2

i

- 3 -
a,i+(n+2N-2) 8y -

The same can be done with ordinary bosons, i.e., we put

(p + I\T);5

a, > 8§
i i

o1

E.J+(p+N)}é g

where 2y are ordinary bosons, N = a.p Ep is the number opersator,
end p 1s any non-negative number. The operators obtained in this

way also satisfy trilinear commutation relations:

[[ai,ﬁj] Al = - Gij 8, - ij ey (21)
[ai,a.J] =0 .

For n = 1 these equations reduce to (3), end so form another
generalization of the statistics considered by Kademovae and Kraev
[80] . The elgebra of the operators satisfying (21) is isomorphic
to the Lie algebra of SU(n,1) ([85]). Reelizations as double bosons
exist, as for (1). It is likely that (21) will be more useful than
(1) es a definition of a new parastatistics, since it is possible,
wnlike (1), to define an individual number operstor, as well as the
total number opersator.

We mention slso that it is possible to obtain trilinear commu-
tation relations involving anti-commutators, by using fermions end

modified fermions.
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CHAPTER T

SPINOR REPRESENTATIONS AND COVERING GROUPS

§1. Problems of Construction

The irreducible representations of 0(n) are lebelled by

numbers mp, .. I, (v = [%]] setisfylng

m2m=>..m =0 for 0(2v + 1)
v

my > My . |mv| for 0(2v) .

In Chpt IV we constructed all the tensor representations, i.e. the
single-valued representations for which m; .. m, are all integers.
However there exist also the spinor representations which are double-
velued and for which the labels are all semi-integers (helf odd
integers). These representaetions do not appear in the previous con-
struction because the labels my are also the polynomial degrees in
a.iJ so that the m, are necessarily integers. This fect haes been over-
locked by Wong [ 53] , who has allowed the 1sbels to be semi-integers
without establishing a meaning for corresponding states.

The splnor representations arise becsuse the group manifold
of SO(n) is doubly connected for n 2 3 (see Weyl [ 12}, Chpt VIII, §12).
Double-valued continuous functions may then be defined, in particular
metrix elements of the representation can be double-valued, end so
there will exist double-valued representations. Now 1t is important
to be able to comstruct these representations because of their
physical importence. For example, some particles have a spin anguler
momentum S which getigfies the commutation relations of o(3),
§ x8 =185 . The eigen-value of 52 is then s(s + 1) and s, the spin

of the particle, labels the representation of S. Many particles are
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known with helf integer spin, such as electrons, protons, neutrons
for which 8 = %. Clearly then the spinor representations cannot be
ignored.

The essiest way to include these representations is to consider
not actually the orthogonel group but its covering group, 88 is the
case for SO(3) covered by SU(2) (see for example Bargmenn [15) ). The
double-valued representations of 0(n) become single-valued representetions
of the covering group, the spin growp Spin (n). This method is effec-
tive only for the low order groups, where the covering group is also
s classical group which is readily handled. The covering groups of
80(n) are SU(2), SU(2) x su(2), sp(k), SU(L), for n = 3, b, 5,6
respectively.

We will see how to carry out s simple mepping from the orthogonal
group to its covering group, including in this way the spinor repre-
gsentations. As this method does not generalize to all orthogonal
groups we seek also a construction independent of the covering group.
Possible approaches are mentioned in this chepter, but a complete
solution, using the same harmonic space as for the tensor represente-

tions, is described in Chpt 9.

§2., Unified Treatment of 0(3) = su(2)

Operators satisfying triple commutation relations of the
following form were studied in Chpt VI:

[ai,aJ] =0

[&1’[53’%” = 04k Pip % " . Sgq 8
where previously we had pij = 61.1 , but here we choose p = 0. One
possible reelization of these operators uses modi fied bosons which
satisfy opq a.p e.q = 0. There are also other realizations satisfying
the traceless condition, such as (for n = 3):
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a] = % 02

ap = JL-uluz (2)
V2

ay = - L 0!.22

vhere o). 0o are ordinary bosons (these operators are the spherical
components of those given in VI 10).

Let
K, , =%cip['éj,ap] —%ojp[ai,ap] 5 (3)
Then Kij generate the Lie algebra of O0(n), and the 8y transform as
vectors. As shown in Chpt. VI, we can construct symmetric representa-
tions of O(n) in the Fock space of the operators defined by (1); the
representation space will be irreducible provided the 8; are of order

p=n-2, so that ¢ 0. For S0(3) we can calculate basis

a a =
ra P aq
states simply, using in particular Ki,j |0> = 0, and that the &y behave
as SO(3) vectors. In general we have

% -
i\/ =M e ™ e o> . (4)

Now if we use the realization of 8, &8 modified bosons we recover the
expression for the spherical harmonics, as was studied in IV §5, and
the generators (3) reduce to the usual form given in IV (13). As
previously indicated, we obtain only the tensor representations, since
the state of highest weight Imax.> = alﬂ' |0> has meaning only for
integral ¢.

Suppose however we substitute for 8y with the reslizstion (2).
Then lmax.> = alez |0> which is well-defined for half integral values
of %. In this way the operators (2) permit the construction of all
spinor representations of SO(3). The general basis state has the
form (from (L4)): ‘i\? = N2 a19‘+m azy'-m |o> eand the generators are

(from (3)):
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K31 = %(a10) - 0pdp) = %(Eyy - Ezp)
Ko1 = l;'uzal = ;L'Ezl (5)
Vo V2
1 - 1
K3p = — ajop =—E;2
/2 V2
where EiJ = aiaj :

It is clear now that we have constructed simply the representation
space for SU(2), end the spinor representetions of S0(3) have
sppeared as single-valued tensor representations of su(2), the cover-
ing group generated by Eij' The operators aj,4y are spinor components
under S0(3).

Tt is usual to carry out the mapping from the orthogonal group
to its covering group on an infinitesimal scale, by identifying
corresponding generators. However (2) provides a mapping on a global
scale since the representation space, on which the group &s e whole
acts, is mepped over by replacing a function f(a) with the corresponding
function g(a) using (2). The global mepping then determines an
infinitesimal mapping of the generators through the common expression
(3). The operators (2) have been encountered before in this context
e.g. Weyl [13] , p146, and Brinkman [ 86] .

We have reveeled now the group theoretic origin of the operators
(2) which appeared in Chpt. VI. The following operators (where a, are

ordinary bosons)

a1 = 0103
8 = U104

(6)
a3 = 0203

ay = — Oa0y
appeared also, essentially as the operators VI (19). They sstisfy

(1), and also the traceless condition ajay + azas = 0. If we calculate
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the generators sccording to (3) then the substitution of modified
bosons gives the usual SO(4) generators Kij’ but the substitution of
(6) gives the generstors of SU(2) x SU(2). The correspondence of the

generators appears as follows (where EiJ = o,a,):

i

%(Kyy + K3p) | %(Ep1 - Eap)

%(Kyy - K32) | %(Eazz - Euy)

Ky3 Ei12 -
K21 E21
Ky2 E3y
K31 Eug

In the same way es for SO(3) we have determined a global mep
from SO(k4) to the covering group 5U(2) x SU(2). In this cese however
the spinor representations do not appear because we have considered
only symmetric representations. We can see now that the existence of
the operators (2) end (6) is due to the existence of a sulteble
covering group, and the fact that such operators do not generalize to
higher n, a8 was found in Chpt. VI, is because the covering groups do

not generalize suitably.

§3. Meppings to Covering Groups

Tt is useful to know explicitly the operators which map the
space carrying only tensor representations of the orthogonal group,
into the representation spece of the covering group. The mappings
mey be found systematically in the following wsay.

Firstly we equate the corresponding generators as in (5) and

(7T); we cen then write down the states of highest weight in terms of
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the same set of lebels. By comparing these states, which must be
meapped into each other, we obtain the mapping for aj,B12, ¢ =

Teking n = 3 for exemple, we have
|max.> = a122 |0> = a.lg' |0>

so that a1 = oqz (ignoring constant factors). Now we require thet ay

be an SO(3) vector i.e.

[Kij’ak] = 631{ Iip B " 841 ojp 8,
which must still hold when the corresponding generators of the
covering group are substituted. In this way we find a; = V2 ajap
ag = - azz, and the traceless condition is necessarily satisfied,
because the representations are irreducible. For

so(L) ~ su(2) x su(2) we have

= m.
=2 ajo 2 |0> _ my Z 0

|max.> a)

+ =
= 00102 o 172 o>

so that a; = ajog, a2 = 012 and sgein, using properties as vectors we
cbtain (6). We note that with the mepping aj2 - 012 we may ellow mp

to take semi-integer values. Expressions for a.:‘_J = a; b:j - aj b:l are
readlly obtained and so we may solve for all bi' It is possible only

to express the b's in terms of eny one of them, b; s&y. We find

a1 Oy
by = a-;-i' a—a"bl
a2
bs =a'i'b1
G0y o0

by = - Sles 017 g

The varisbles a:lj
of b;. The a's and b's found in this way satisfy the traceless con-

which actually appear are nevertheless independent

altions i.e. ajey + apag = 0, byby + bob3 = 0, ajby + azby + azby +

ayb; = 0. In fact they satisfy more then this, because we have
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ajby + agzbp = 0 = ayb; + azbz. This is because a13 and ap, are zero

in the space for which mp # 0. When my < O the expressions for the

b's are
oy
by = ;;bl
%) (13
ba = -qul + El-
Og QY Oy
P4 =T Glas Pl Ty
and then a5 = 0 = agy .
For So(5) sa,, b, i=1,..5 are expressed in terms of
i = i. -
modified bosons % By for Sp(4) which satisfy €pq % Bq 0, i.e

a12 + agy = 0. The correspondence between the generators of Sp(k)

and S0(5) is as follows, where

S B i,J=1,..4

B o, + o, + B, +
13 = €1p %% * Syp %%t S1p Bpfs Y e Bp

are the generators of Sp(h):

S21 | K51 + Ky2
Sy3 | K51 - Ku2
1
— Sy2 K53
/2
1
— 832 Kys
V2
1
- =831 K31
V2
1
—= Sy K32
V2
% 822 Ksy
- % Syy Ks2
- %8511 K1
% S3a Ky
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The operators 8 s bi which heve all the required properties are

a1 = 013, 8p = - G1y, 83 = V2 a1z, @y = 023, 85 T 024
a2 oy
by = —— - —
2% 413 o3 !
01¢3 %12
by = V2 + /2 — by
1 413
B ag? g3
= = —~—— ¢ — D
* apz o3
a3y d30y G244

013 013 a13
For S0(6) the operators a,, b, ¢, j =1, .. 6 are expressed in

terms of ordinary bosons which sppear for SU(L). The results for a;

Bre &) = 012, 82 = G13, 83 = O23, 8y ¥ Oj4, 85 T = O2L» ag = 03y

54, Construction in a Non-Harmonic Space

We cen exploit our complete knowledge of the representations
of SU(2) to find a meens of constructing the spinor representations
of 50(3) in a form which can be generalized. We do this by carrying out
a stereographic projection, from the representation space of s0(3)
consisting of functions defined on & sphere of radius r, onto the
sU(2) functions defined on the two-dimensionel plane.

Instead of two complex variebles zj, 2z We may use z = —:—j— as
a variable on which to define the functions of the SU(2) representation
gpace. This realization has been descrived by Vilenkin ([ k9], Chpt III).
Homogeneous polynomials f(z1,z2) are related to the functions o(z)

22
defined on z = _szy f(zy,22) = zlp‘ o(z), where ¢ is the degree of f,

end is also the SU(2) lebel. The operators are

= 3f- 2 & S

Ji 2( 4 dz+2,z+dz)
Jp = - %i(- 22 L 4 22 - =
2 dz dz
J3=z-i-;§2.

dz
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Now we mey enlarge the representation space to consist of functlons
F(z,z) in z as well as z, giving a reducible representation. F will
be a polynomlal of meximum degree & in z end of meximum degree '
in 2. From z, z we carry out the stereographic projection onto the
sphere of radius r by means of the formula

xy + ix
1 2 9

z = ———— Wh 2 = x12 + %% + x3% .
T - X3 ere r 1 X2 3

The space of functions on xj, x3, x3 will be reducible and we cen
choose an irreducible subspace in several ways. If we choose the
subspace determined by & = &~ we recover the familiar S0(3) basis
states as the polynomials (r - X3)m F(z,z) which can be shown to be
the solid spherical harmonics. The generators when acting on these
functions teke the usual form.

Another subspace is obtained by putting 2° = O. Instead of the
functions F(z) we mey consider (r - xs)g' F(z) which is a homogeneous
polynomisl in x;, Xp, %3 of degree %. When acting on these functions

the generators teke the following form:

x3 - ixo
a d
Tr= il gy c % g T T TR
x3 - 1%y
d d
Jy ='_|_(x1 -d-;;-xa Ex—l'"'%,q, _I-'_-——;C—g-) (8)
d a
J3=i(x2 For xl-d—x—z-"';éiﬂ,) 5

We have derived these expressions without giving detalls, but
it is readily checked directly that the commutation relations
J xJ=1J are satisfled. Now J = J; + i J_ tekes the usual form,

x; - ixp

since the terms involving —;—_—x:;— cancel. The state of highest welght

is therefore the usual function |max.> = (x; + ixz)z (the expression
from IV. 17 is slightly different, due to a small change in the defini-

tion of the generstors). By applying J3 to this state we find that the
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eigenvalue, which is also the representation label, iz mj = %%. This
means that m; can be a semi-integer, and we obtain all spinor and
tensor representations. The minimum state is |min.> = (r - x3)2' vhich
is annihilated by J_ = J1 - i J,. The general state will be a
homogeneous polynomiel in X3, X2, X3 but will be different from the
spherical hsrmonic functions. This is because the generators (8) ao
not commute with the Laplacien, so thsat basis functions are not har-

monic. The general state is

‘21> = (xy + 1x)™ L (x - xg)™ T

(my =%8) .

The generators (8) are in a form which can be generslized to
all orthogonal groups. The way this might be done can be seen from a
similar construction in Chpt IX, but we will not carry out this
generalization. Although this would eneble the comstruction of all
spinor representations there would be two defects. The basis functions
would not be harmonic, and the generators would depend on the repre-
sentation lebel and so would need to be redefined for each representa~
tion. The tensor representations are constructed without these
deficiencies, and as is shown in Chpt IX the seme cen be done for the

spinor representetions.

§5. Realizations with Fermions

The fundamental spinor representation is lsbelled (3.% .. %)
for O(2v+1) and (%,% .. ¢ %) for 0(2v). It is known how to construct
these representations using the Clifford algebra ([ 841 Chpt VIII).
Thig formulation cen be carried out using fermions; for 0(3) we
require only one fermlon a, and its conjugate a* satisfylng a2 =0,

* * *
{a,0 } = 1. The generators are J+=-a,J_=a ,J3 =% - 0o and
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1

;’:> = |0> and l_2> = a* |o> where lo>

is the fermion vacuum state.

and the basis states are

We can form sn arbitrary spinor representation by teking the
direct product of a tensor representation with the fundamentsl spinor

representation, and reducing the result:
(RY X () = (2 +%)+ (2 - %) .

The representation space is constructed with modified bosons eand
fermions , which cormuite. The conditions which characterize the basis
functions of each irreducible subspace are found by requiring that
the Cagimir invariant be diagonal. It is possible then to determine
operators which carry us directly into each irreducible subspace.
However these operators, being a corbination of fermions and modified
bosons, do not satisfy simple cormutation relastions. As a result
this spproach does not lead to a gsimple construction of all spinor
representations, although it will generalize suitsbly for orthogonal
groups of odd dimension. The construction of the fimdemental spinor
representation only, with fermions, is & simple formulation end is

useful in some applications.
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CHAPTER 8

RELATION BETWEEN THE BOSON CALCULUS AND
ZHELOBENKO'S METHOD

§1. Zhelobenko's Method

The method of the boson calculus has been extensively developed
for the construction of finite~dimensional irreducible tensor repre-
sentations of U(n), and we have shown in Chpt III how to extend this
calculus so as to apply to O(n) and Sp(n). As there is already in
existence a fully developed formalism for constructing these repre-
sentations, due to Zhelobenko [56) , it is of interest to estsblish
the connection between the two methods. In addition, the formalism
of Zhelobenko includes in a natural way the construction of all
spinor representations of O(n), and so we hope to carry over this
construction so as to apply to the boson calculus. Some discussion
of the relstionship between the two methods is given by Zhelobenko
in the paper referred to, if the boson celculus 1is interpreted as the
construction of irreducible tensor representations, but we will give
a detailed correspondence showing exactly how to relate the polynomlal
beses which occur in both methods. In this way we are eble to tramsfer
casily from one formalism to the other, tsking advantage of the
results which might be shown more essily in one.

The formalism of Zhelobenko appears to be more appropriate in a
methematical context, since the construction employs a smaller
homogeneous space, which allows more economy in the use of the basic
variables, but which still allows the comstruction of all irreducidble
representations. On the other hand the boson calculus is of greater
importance from the physical viewpoint, since the basis functions are

tensors or multivectors which cen be interpreted as physical objects.
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This will be spparent in the case of 0(3), where the basis functions
are the spherical hermonics, but which in Zhelobenko's method appear
as monomials with a structure indistinguishable from Su(2) besis
functions. In general the boson calculus hes the advantage alsc that
the scalar products, and consequently unitary representations, ere
very essily definead.

7helcbenko has considered the finite- dimensional representations
of the complex classsical groups, without defining a scalar product since
the representations must be non-unitary, whereas the boson calculus
is usually concerned with the construction of unitary representations
of unitary groups (including the unitery orthogonal and symplectic
groups). However meny of the considerations involved in the construc-
tion of the finite-dimensionsl representstions are indifferent to
whether a complex group or one of the real or compact forms is being
considered, and so long as questions of adjoint operators end scalar
products do not arise, one may discuss representetions without worrying
sbout which particular field of numbers is chosen. Our procedure then
is to apply the boson calculus to the complex groups in order to
demonstrate the relationship, with the knowledge that the restriction
to the compact form is essily carried out for the boson celculus.

The starting point of both methods is to consider, say for the
group G6L(n), polynomials in the matrix elements gi,j’ and to deflne &

representation by the right regular representation:
Tg £(g”) = f(g°a) .

Instead of the full group manifold of GL(n), one mey choose the

/
homogeneous space OL(n)/ZD(n) vhere Z is a lower triengular group with
unit dlegonal elements and D is a diasgonal matrix, and then the poly-

nomial f(g’) is replaced by an inhomogeneous polynomial £(z) where 2y 4
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are the elemants of an upper triamgular metwix, uhich serve to label
the right cosets. Then multiplier representations of GL(n) may be

defined by right tremnslations on this space sccording to
Tg £(z) = olzg) £(z°g) (1)

where z°g means the right component in the Gauss decomposition of the
element zg € GL(n). This is the basis of Zhelobenko's method, and it
is fully discussed in [56].

In its simplified form the boson calculus starts with an n-
dimensional vector (ai), i =1, .. n, vhich transforms according to
the fundanental n-dimensional representation of GL(n), homogeneous
polynomisals f(a) in the (ai) are constructed, and a representation is
defined by

Tg £(a) = flag) . (2)

It we write £(a) = 81"} f(-:%-) , then f(%] is a function over the
homogeneous space GL(n)/H where H is the subgroup for which g,, = 0,
i > 1, and in this simple case we see that the boson calculus is also
concerned with a homogeneous space defined by a lower triengular sub-
group. A more detalled exsmination glven in the subsequent sections
shows that the general boson calculus can be expressed in terms of
polynomials over exactly the same homogeneous space &8 that employed
by Zhelobenko.

Zhelobenko's method relies on the existence for the group G
of & Geuss decomposition, in which G can be factorized as G = E
For the classicel groups, Z(Z resp.) is the subgroup of upper (1ower)
trisnguler metrices with unit diegonal elements, and D is the sub-
group of disgonal maetrices. The representations of D are 1-dimensional

and are all known:; these are used to induce representations of G of

the form (1). An important theorem, first noted by Godement [ 871, is
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stated by Zhelobenko as follows:

"Every irreducible representation of a group G is induced
by some character a(8) of the subgroup D; two irreducible
representations of G induced by the characters a) end oy are
equivalent if and only if a; = ay ."
Thus we obtain all irreducible finite-dimensional representations of
the complex groups and therefore also of the compact groups, and in
particular for O(n) this theorem ensures that the spinor representa-
tions appear naturally in this formalism.

For the clessical groups the representation (1) tekes the form

n] -m nm
rg 2(2) = 8y (ag) .. b (ze) £(3) (3)

where Ai(zg) is the diagonal minor of zg and % = zog has elements

Ay
%’ = A—l-‘l , where A ., by substituting

13 "8, 1) 1
the column with the number j in place of the column with the number i.

{8 the minor obtained from A

The restrictions on the exponents m - which show what repre-

Pyl
sentations are being constructed, are obtalned by considering the sub-
group SL{2,C). According to the theorem asbove we obtain all repre-
sentations, end so this approach solves the problem of the clagsifica~
tion of the finite-dimensionsl irreducible representations of the
clessical groups, a problem first solved by Cartan using different
methods.

The functions of the represgntation space are polynomials on
Z, and are characterized complete‘hr as the null space of a system
of differential operators. On the other hand, for the boson calculus
we will show that the basis functions mey be regarded as being defined

on the subgroup DZ, and are homogeneous polynomials which for 0(n)

and Sp(n) are also harmonic.
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§2. The Unitary and Linear Group

We cen describe the irreducible space of the boson calculus
for U(n) and GL(n) in the following way, showing exactly which
variebles sppear in the besis functions. In this description the

representation lsbels appear in the form

I‘1=mi

- m

441 for 1 =1, .. n(mn+1 = 0) . (L)

In generel we require n sets of bosons a.ia(i,a =1, .. n) with

edjoints &, in order to obtain sufficient polynomials. It will be

i
convenient to think of these operators as n? complex variables, i.e.,

. ¢ ,with adjoints &~ = . ~ » end the vacuun state

n? 1 Bzi
|0> becomes the constant 1. The representation space consists of

a—
&4 T %4

polynomials homogeneous of degree m in the n variables aik, for
k=1, ..n . We cen form an irreducible representation of U(n) in

the subspace of these polynomials in which the bosons &, a’ for fixed

o, appear only in antisymmetric combinations with aildﬁl, aiza—z, .

a.il. This subspace Rn eppears through the spplication of the Young

symmetrizer to an arbitrary polynomiel, which msy be regarded es a
tensor under U(n) transformations, to produce a polynomial (ternsor)
of a certain symmetry. The irreducible space now consists of poly-

, for

nomials homogeneous of degree r. in the variables 8y
k

k llli

k=1, ..n (rk defined by (L)).
In this space Rn we define the irreducible representation Tg by

(2) where "&" now stsnds collectively for the varisbles a Ll
,e k

and ag stands for the same varisbles, in which each aiu has been trans-

formed to (e.ug) = apagpi. In this representation the generators of

U(n) have the form
E . =aParl. (5)
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We wish to demonstrate the relation of these representations to
thoee obtained by Zhelobenko {561 in a different formalism. In orderxr
to do this we will obtein enother reelization of the representation
Tg, in a projective space Pn which is set up in the following we&y
(see e.g. Hermann [ 88] ). Two non-zero tensors a and a” are said to
be equivalent 1if there is a non-zero scalar A such that a = Xa”. Pn
is then defined to be the set of all these equivalence clesses, 8o that
a point of Pn ig an equivalence class of such tensors. A function f
defined on P must then satisfy £(Aa) = £(a) i.e., is homogeneous of

gzeroth degree. These functions can pe constructed by taking functlons

in the inhomogeneous coordinates

ailiz..ik

892 ..k

for kX = 1,..n. These coordinates are not defined everywhere, but on
those pointe for which 815, .k # 0. To each homogeneous polynomial
defined in Rn there corresponds a single polynomial defined on Pn,

since using the properties of f € Rn es a homogeneous polynomial we

can write
= m) =Ty My -m3 m
f(ai'a.flldz’ s By e i) = ay ai2 ‘v Byy D
a 8
; f[fl 312 - i .. in) . 6)
al ? a12 i i a, .. n

The functions on Pn are obtained by dividing the homogeneous poly-
nomials by the state of highest weight. In this way the representation
space cen be characterized not as the space Rn of polynomials homogen-
eous in the varisbles a, but as the space of polynomiels on the pro-
Jective space Pn. This construction has been described before for
su(2) and SL(2,C) (Vilenkin [L9,89]). We have obtained the functions

on Pn from the space Rn’ in which the polynomial degrees m  ere also
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the representetion lebels. However there are other weys to carry
out the construction described, in which the degrees m _ are not tlie
representation labels themselves.

The coordinate functions of Pn

1y .. 4
8.1 .o K

,k=1, ..n,
are not independent, but an independent set may be taken sas

a
12.-1"'1
ij=a —‘li,,j=1,..n.
12 ..1-~-11

Z

This follows from the ldentities

o+l 2
80, .m Myip..d 1 . R ®i,..4 .1 i
12041 Ak pe2 1o tp-1%pel *° Tkl
X a; .. mi_ . (7)
1 P

Using these identities for m = 1, .. n - 1 successively, we see
using (6), that each o

i, .. ik

al .o k

can be expressed in terms of

82 .. m- 14
a12..m-].m

form=1, .. k .

Eq. (7) is proved by considering the following 2m + 1 x 2m + 1 deter-

minent. The upper left m x m block has elements Mk 3 = al; 3y the

upper right m x m + 1 block is zero; the lower left m + 1 x m block

has elements Mk,j = a? . and the lower right m+ 1 x m + 1 block has

_ k
clements ij =8 - The value of this determinant is 8‘12..m 8‘11..1

m+l

J
as 1s shown by carrying out a Laplacian expansion according to the

first m end the last m + 1 rows (see Aitken [90] ). Now replace the

1P row by the 1* row minus the (1 + m)th row, for 1 = 1, .. m. The
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determinent is unchenged, but the upper left m X m block is now zero,

and the upper right m + 1 x m block has clements ij = - a.l;_ . Agein
3

carry out e laplaclan expansion, and we obtein the right hend side of
(7.

The funection

a1

: %)

8‘12 ’ a ’ a']— v e n

on Pn can now be written as a function ¢ of the varisbles ziJ' Hence

the correspondence (6) may now be written

s}
£(a) = ™72 2" LA, 7 d(a) (8)

where f ¢ Rn, and & is defined on z = (zij) € Pn ,Illf,-m"e.—'f'é' z is upper
triengular. The function &g which corresponds ¢o f(ag) is then given by
m

mj-my n
R P 08

n (ag)
(ag)1"1 ™2 (ag)12"27"% .. (ag)y, ¢((;§7if*4-i3
m

my—m: Mo=m n
= a) 1772 a1 2773 85 n

[(ag) 1] my-ma [(&g) 12]312—1113 [( 38)12. n mn (ag)l' P
* 812 e (ag)y 4"

f(&g) aj

81 12..n L

Therefore the irreducible representation Tg defined on the space of

functions 4 on Pn is given by
n

[cag)1]m1‘1‘2 (o), ._n] n

81 " 32..n

o(z) , (9)

Tg &(z) =

.

where '; is the matrix with elements
oo (eg)1p 4 ~:51//(ag)12..1 -u
14

A

W oeyp - 812,14 - 14
(ag)yp g

The factors —————— for k = 1, .. n are functions of z,,, the
%12, .k 1

explicit form of which is given by
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(ag)
1222 = p (28) (10)
12..k
where Ak(zg) ig the minor formed from the first k rows and columms
of the matrix zg. To prove this, consider the k X k determinent D

with elements

Dyy = 89p,.4 - 1q &3 T P12..4 - 1 P1q By (q summed)
which has the value

D

81 812 «» 8qp k(zg) (11)

We will show that the (1,)) element of D may be written es

ai g w 12 1-1 ° without changing the value of D. This is clearly

true for 1 = 1 (with the convention that 81p 41 = 1 for i = 1).

Suppose it is true for i =1, .. m ~ 1. We carry out the followlng row

operations on the mth row leaving the determinent unchanged. Firstly

note that by expanding the determinant 815 . m-1 q down the mth colum ,

we can write
mel

a = a.m a + a.r c
12.,.m-1 q q 12..m-1 rel q r

for some coefficient C (depending on az, 2 # q). Therefore

m-1

_om
E"12..m--Zl.ng,‘j"a'qgcn_‘,j8‘12..111-1 rgl ng.Jr

Now replace the mth row of D by

m-1 C
(the m™™ row) - } T _ (the r'" row).
r=1 *12..r-1

<.: - r
The element Drj (for r € m -~ 1) is 8y &q3 815 15 80O that now the

o s Y=

the element DmJ is equal to a g

bringing out the factor 845 4-1° for i =2 .. k, we find that Dk

aJ 810 me1 By induction, and by

is equel to &) a17 .. multiplied by the determinant with

812, k-1
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i .
elements 8 €qJ which is (ag)le“k. This proves (10). If Aij(zg)
ie the minor obtaincd from Ai(zg) by substituting the eolumn with the
number j in place of the column with the number i, then the sane
proof shows that

(ag) _
by, (ze) = 12..4 -1

S ¥ W

The irreducible representation Tg cen now be written
Ity ~m y-m =" n
Tg 6(z) = 4;(zg)™1 72 8p(2) 2773 L. A (2g) © 6(z)

where now we mey write ?’:13 = Aid(zg)/ﬂi(zg) . In this form we

can see that the representation Tg is the seme as that obtained by
Zhelcbenkc by a different method. The results he hes obtained can
be immediately aspplied to our case where the functions ¢ are defined

a
on the space P_, with coordinates z,, = = . On the other heand,
n i) 815, .4

in the formalism of Zhelobenko, the functions ¢ are defined on Z, the
subgroup of GL(n) consisting of upper triangular matrices with elements
z”. However we can exhibit Pn a5 & homogeneous space of GL(n), and
idemtify P with the coset space GL(n)/H, where H = ZD(n) is the sub-
group of lower trienguler matrices referred to in §1. let us determine
the isotropy subgroup H of GL(n) st the point in P determined by the

tensors, denoted a, with the values a = 0 except 815,k =1, for

k
k=1, .. n. The matrix g leaves the point in Pn fixed if there exist

1. -i

non-zero scalars A = Al{k) such that ag = Aa . Firstly, we show that

agl =0 J>mn, and a'xmn = 1. Clearly this is true for m = 1. If it

ig true for m = 1,2 .. k - 1, then writing B‘l2..k—lj 88 a k X k deter-

minant, we find

< o} o? k-1 k _ _
alQ..k—lJ-al az-.ak_la‘j—o for } >k,=1 for J =k .
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The result follows by induction. Now the condition sg = Ae implies
the result &y =0 J>m, with g # 0. This is true for m = 1,

because (a,g)i = A(1) By = B, &y T By = A(1) §,, - Hence gy = 0
i > 1, and g1 = M1) is non-zero. Suppose the result is true for

m=1,2, .. k = 1. The ag = Aa means
= Ak) a 44 =0 for 3>k, =AMk) for J=k.

Writing (ag)l2 k-1 ss 8 determinant, we see that elements above the

diagonal are zero. Therefore

(ag)12..k—lj = £11822 - gk—l k-1 ng = 0, J>k

AMk) #0, J=k.

Hence &y = 0 for J >k, and g, # 0. By induction then we
have shown that H is the subgroup of GL(n) consisting of lower tri-
engular metrices and we can put P = GL(n)/H. This demonstrates the
asserted identity of the two methods for GL(n).

We can find the homogeneous spaces which are used in the boson
caleulus by putting A(k) = 1 in the sbove enslysis, and we see that
the representation functions are defined on GL(n)/Z instead of GL(n)/
7D(n) as for Zhelobenko's method. As Zhelobenko hes noted ([ 561 pbh)
the boson calculus is s reslization on the group DZ, and after a
necessary normalization elso on the group Z". This normalization is
carried out by dividing by the state of highest weight, as showm in
(8), "ceausing a 'contraction' of all dominent vectors to a single

point".

§3, Orthogonal and Symplectic Groups,

In order to consider the groups with a metric some changes are

necessery. The methods for 0(n) and Sp(n) are the same, end can be
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combined using the metric p introduced in Chpt III. Zhelobenko

=T

0) , since it is then

chooses, for O(n), p = o and for Sp(n) p = (:
poesible to carry out e Gauss decomposition, for the complex groups,
into subgroups of upper and lower triangular metrices, as for GL(n).
We find it convenient, but not at all necessary, to use elso this
cholce of p, since then the states of highest weight teke the simplest
possible form, and the mapping between the two methods is correspond—

ingly simpler. Cenerally therefore pij = % Gi n+1-d
9

As before, the representations of G(n) (= 0(n) or Sp(n)) are
realized in a space Hn of homogeneous polynomiels. In order to ensure

that these representations are irreducible, the variebles

a,: (4, =1, .. n) on wvhich the polynomials are defined must be con-
strained with the condition ppq s.; a.i = 0. This is in order that the

tensors of the representation space are traceless, oOr from the same
viewpoint, the polynomials which appear are harmonic between all

varisbles. We will think of the &2 as modified bosons, i.e.,

i
o _ 0 _ P _qyA-1 2
8y = 25 = 202727 00y (ar)Pie T
s
with adjoints 3.;_‘ S = , but there are other possibilities.
-}
1

In this space Hn we define the irreducible representation Tg
by Tg £(a) = flag), g€ G(n), f¢ Hn' The generators then have the

form q —-a q =q
K = a - a8 8; .
13 " P1p % %) T Ppy Pp 4

For Sp(n) the state of highest weight is (for this metric)

mj ~mo mz—m3

m
|ma.x.> = a) 812 .o v |0> .

a12..\J

The varisbles of the space will then be ail 3 and the polynomials
e e k

will be homogeneous of degree Ty = meo= Moy in ail--ik' fork =1, .. v
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(m,, = 0). For 0(n) |mex,> is glven by IV, (7), (7°). For S0(2v)

we will not conslder the case mv € 0 since the situetion is entirely

anelogous to that for o, 2 0. Again the varisbles of the space will

be a.il 5 for k=1, .. v, appsaring with degree Ty except in the
e

case of the full orthogonal group, when ay fork =1, .. n will

luoik

appear.

Now we define a projective space Pn in the same way as before,
i.e., a point of Pn is en equivalence cless of tensors, where two
tensors a, 8” are defined to be equivalent if & = 2a” for a non-zero

scalar A. PFunctions on Pn are constructed from the coordinates

a

— 1..20 41"';'
%33 T a.
12..i-11i

Here we let 1,J =1, .. n, but if a

1.1 does not appear 1n Hn for

k

some value of k, the corresponding =z 13 will not be an independent
variable, as we shall see below, The polynomials ¢ on Pn are obtained from

those in Hn according to

r

f(a) = a.lrl R AT Y oo(z) , (12)

12.
(for the case m 2 0) i.e., by dividing by the state of highest weight.
The a's here are constructed from modified bosons and will be manipu-
leted formally, but the polynomials which actuelly appear are well
defined as tefore because the varisbles 80, % appearing in Ima.x.> may
be regarded as ordinarr bosons (as shown in IV, §3).

The z defined as sbove are not all independent, end the

13

relations between these variables are expressed in the restriction

that z is p-orthogonal, i.e., zpzt =p. Nowp holds

Z,. Z, =
pq “ip “3a T P1
identically for 1 2 n + 1 - J because z is upper triangular, with unit

diagonal elements. For 1 <n + 1 - J we need to show

Poq ®1..i-1p ®1..3-1¢ = 0 ¢
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end this follows immediately from III. 20. These relations between

the z are the same as those between the z 13 which sppear in the

i)
formalism described by Zhelobenko. The representations obteained in
both epproaches are therefore the same, with the same representation

spaces, i.e., we have
r Ty n
Tg 6(z) = Ay 1(zg) .. A\) (zg) o(z)

where in our formallism-

(ag)yo .y

, k=1, ...
812, .k

Ak(zg) =

We have considered here the case when the state of highest

r
welght takes the form |max.> = 8;’! .. & Y |o> so that (12)

12..v
applies, but the same procedure still holds when |max.> tekes &

di fferent form e.g. when the choice of metric is different, or when
m, < 0 for 0(2v). In these cases we divide elements of H by

|ma.x.> and lock for e mapping such that the matrix z = (zij) is upper
triangular and satisfies zpzt =0,

In the same way as for GL(n) we can show that the homogeneous
spaces employed in both methods ere the same, and the explicit mapping
for zg j then demonstrates exactly the relationship of the two methods .
We can use the important results obtained by Zhelobenko, snd epply
them to our case; in particular we cen transfer back to Hn in such a

wey a8 to nelude both spinor and tensor representations together in

a natural way.
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CHAPTER 9

SPINOR REPRESENTATIONS IN HARMONIC SPACES

§1. Inadequacy of Angular Momentum Generators

We have developed the boson calculus so as to apply to all
tensor representations of O(n) and Sp(n), end we now wish to carry
out a further development which will include sll the spinor repre-
sentations of O(n), for arbitrary n. This means we must try tc
realise the spinor representations in the same harmonic space used
for the tensor representations, since then basis functions cen be
expressed as polynomials in modified bosons, and the operators which
act within this space, such as the generators, will also be expres-
sible with modified bosons.

Iet us see now exactly why the construction in Chpt IV of the
tensor representations fails for the spinor representations. Teking
n = 3 for example, the state of highest weight is |max.> = all |o>
which is defined only for integral values of the label %. However
by writing a; as a differential operator, end changing to the
spherical polar coordinates defined by (Iv. 15), |max.> becomes equal

to e12¢ sinze which is defined for semi-integer %. By applying

I LT I 3
J_=e (— e T 1 cot 8 oY)

to |max.> we obtein a set of functions ng(9,¢) defined for both
integral and semi-integral 2. This representation is realized in a
(28+1)-dimensionel spece of complex valued functions, so that it is

necessary for J_ YE to be 1denticelly zero. It is readily checked

=L
that this condition, which of course holds for integrel £, is not
satisfied in the cases when % takes semi-integer values; therefore

this construction of the spinor representation fails.
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Pandres ([91,92] ) has sttempted to overcome this fact by inter-
preting Q =J Y as a "representation" of the zero vector.
Ly==1 = T8,-2
The property motivating this interpretation is msinly that Qﬂ, 41’
o
and in general the functions Q, = J S Y, _, are orthogonal to all
- .
Yﬂ,m’ which must be the case for all elgenvectors of the hermitean
operator J3. Pendres has defined a "scalar product”. & bilinear

mapping which setisfies

(@@~ ) =0 = (¥ ) s

ﬂ,m’QIL’,m’
P

(Ylm’Yﬂ, n”’ 62,2 m

]
v
(=]
1Y

However this mepping is not a true scalar product, because the
requirement (Pp,9) = 0 ® ¢ = 0 does not hold. A close examination
of Pandres' argument shows that this requirement has been used as
the definition of a zero vector i.e., y is "essentially" zero if
(¥,9) = 0, and this will then epply to ¥ = Q, . In this wey

Q is interpreted as being'essentielly” zero, and the functions

R ,-2-1
Yﬂ.m for semi-integer 2, m are claimed to span a suitable space.

We reject this argument because the sz functions are nevertheless
non-zero in the normal sense, so that the representation space is not
finite~-dimensionsl ss we require. We note thet also the questions of
orthogonality are irrelevant, because in a representation space where
no scalar product has been defined it is still necessary that J_
ennihiletes the minimum state (see for example Miller [U7]).

We can see now that when the generators of 0(3) take the usual

form as the anguler momentum opersators,

d d
Tyt b R Ey) e

the spinor representations cannot be constructed. This is becsause

firstly these operators conserve particle number 1.e., basis functions
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w{ll be homogenecus yolymonmials fm, anéd et = Qf&'vhere N-c»xp-é%_;
P

secondly these polynomials will also be elgenfunctions of the Casimir
invarient J2 = r2v2 - N(N+1), with eigenvalue %(% + 1), and therefore
the polynomials fg' miest also be harmonic. But as we have seen sbove,
it is not possible to construct spinor representations in the harmonic
space when the generators teke the form (1).

We need to look for other realizations of the group generators.
We will do this by taking adventage of Zhelobenko's construction,
which we have described in Chpt VIII using as a starting point the
formalism of the boson calculus; by transferring back to this forma-
1ism we show that the space of harmonic homogeneous polynomials is a
gsulteble space with which to carry the spinor representations. This
is achieved by finding realizations of the lie algebra of 0o(n) which
are new. The methods used here lead also to new realizations of the
Iie algebra of U(n). It is likely that these reslizations will be
important in obtaining infinite dimensionsl representations of the
non-compact groups, especially considering that our approach is, in
the words of Zhelobenko "the theory of finite-dimensional representa-

tions from the infinite-dimensional polnt of view",

§2. Tyransfer from Zhelobenko's Formalism

We have shown in Chpt VIII how to construct maltiplier repre-
sentations in the space of functions ¢ on & set of n x n upper tri-
angular matrices z with elements 2y 3 The functions ¢, homogeneous
of zeroth degree, are constructed dy taking rationsl functions in

modi fied boson operators aia(i, o=1..n), and the coordinate

a : :
funetions z,, can be put equal to 2.3 =2 1rp(a) is a
1) 8 .. 1 -1

harmonic polynomial, homogeneous of degree r; = my = Wy, 4 in ai'l_"ik
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(fork =1, .. v, m = 0), then the 1-1 correspondence between f(a)

v+l
end ¢(z) is given by

m) -mo m =1 m

t(a) = = el ger L Bpp Ly 8 (2)

The representation Tg in the space of functions ¢ is given by

m) -0y m

Tg 6(z) = 4 b o(z) (3)

vhere Ak(z,g) is the minor formed from the first k rows and columns

(eg)yp .k "
of the matrix zg and is equal to —E———'-'— , eand z 1s a known function

12 L] lk
of z. The important results which Zhelobenko has obtained end which

apply to Tg defined by (3) are es follows:

For n = 2v+1l there exists a polynom:l.a:l. (z,g) on P such that
Av(zg) = l':f:-,:'oz(z,g). The fundementel spinor representation lsbelled by
(%,% .. %) can now be constructed according to Sg ¢(z) = @o(z,g) ¢(';) R
vhere Sg is a representation in the sense that Sgigy = * S5g15g2. The

miltiplier for an arbitrary representation Tg is now written

mj-my v\
A o A Jo , (&)

80 that m mey be a semi-integer, in which case m, .. m _, are also
semi~-integers.
For n = 2v there exist two polynomials on Pn,(i'v)_ and@_'_
such that ~ ‘
8,1 (z8) = (2,00 O, (5,6)
5,2
=)

a,(ze) =(D,2(z,8) .
The two fundamental spinor representations, labelled by (%5, .., ¢ %)
are constructed according to Sg ¢(z) =(,+ ¢(z) and in general the

multiplier has the form

m) ~mp m ,~m . W - m, .tm
Ay ..A2v2 \)16_\)1 v@vl v (5)

V=
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Again m , m

W) can be semi-~integers simultaneously, in which case

My, .. W are 8ll semi-integers. In the form (5) the representa-

v=-2
tion includes naturally the case for which m, < 0, even though the

transfer (2) to the functions 6 has been carried out from polynomials
f for which m, > 0 only. If we had begun with functions f for which

m < 0, then we would reach the same space of functions ¢(z) by

putting
mj-Nyp mu_1+mv -mv
tla) = & 812, ,v-1 o w1 (%)
with o a
12,.v - 1lv + 1

l..v = 1v + 1
as before).

We wish to transfer back to the harmonic space Hn in such s way
as to retain this construction of the spinor representations. We
obtain a polynomisal f(a) in H from 4(z) by multiplying ¢ with a
certain polynomial which becomes the state of highest weight in Hn.
This is expressed in the formula (2) which holds in the case when the
degreesr, of f(a) € H are comnected with the representation labels
m by r; = mg - m. As previously noted, the formule (2) restricts
each my to non-negative integral velues. DMore generally however we
cen also transfer back to H by mltiplying each ¢(z) with a poly-

nomial of degrees ry such thst ry > m, - We do this in the

My
following way. In the representation space of polynomials 6(z) on
Pn we replace each my by mo-py = 21, fori=1, .. v, s0o that the
representation labels are now R’i = m:l - Py- Now transfer back to
Hn’ the space of harmonic polynomials in the a's with degrees ry
vwhere r; is not equal to &; - Ryyq = (my - mi+1) - (pi - P:1+1) as

before, but ry =my - By 4y This transfer is cerried out by multiplying
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mi-my mv
each 6(z) with the polynomial &) o8B, Lee (2) still

holds, but now the m, ere no longer the representation labels. We

cen be sure thet f(a) obtained according to (2) is actually a poly-
s L}

nomial in the a's if m, - mi+1> (mi - pi) »(mi_'_l - P1+1) for

i=1, ..v (p\H_1 =0), l.e. ifP1Z2p22 .. >pv> 0. Since the

m = Py are representation lebels they satisfy

2v + 1

]

ml-p1>m2-p2>..>mv-p“>0 n

and

ml'P1>mz~p2>..>|mv-p n 2v . (6)

|

v
The m, sre integers, hence the py ere either all integers or all
semi-integers.

In this wey we obtaln the representations (21, - R‘v) in the
space of harmonic polynomlals homogeneous of degrees Ty =m o= o e
By choosing Py gsultsbly we can obtain any of the permissible values
of (21, .. 2.\’). A1l the tensor representations for zv 2 0 are obteined
by putting By = 0 for all 1, end all the spinor representations for
2“ 2 0 by putting Py = 3% for all i. We could also obtain, for n = 2v,
all representations for which IL\, < 0 but these are constructed more
conveniently in the space Hn for which o, < 0.

The representation Tg in the space of functions ¢(z) has the
form (putting m > m - Pi)

my-~Tl

. 1-I2 m \ P1-P2 D
Tg 6(2) = {8, by Y (3D [ALI] .. [Ai] v

\Y)
1 P1-pP2 1 P\,
= ¢g H .o K“ S

v

We transfer back to Hn and using the fact that ¢g corresponds to

(ag)yp, i
82..k

f(ag) end by = we find that Tg is defined in H by

P1-P2

a3 p\)
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Tor n = 2v + 1 this mey be written

a P1-P2 P,.1"P ~2p
rot(e) = [ . [RRerd | TG e
(ag)y (ag)yy - 1

(8)

wvhile for n = 2v we have

ay qF17P2 - a Py Py Py Py
ot « [S] 7 [P PENEEG L
(ag)y (ag)yy |, _ o
7P p(ag) (9)

+

82 ..4 - 13

82 .1 - 11

~ (=
vhere G-jo’ (‘% are polynomials in

The space Hn ig inverisnt under Tg provided the parameters by
are restricted to the values indiceted sbove. From Tg we can calecu-
late the form of the generastors. However we will find it easler to
use the correspondence (2) to celculate the dependence of the genera-
tors on m, in the space of functions ¢, and then to put m, -+ mi - Py
and transfer back to Hn' It

= P =P — » Y
Kij(a‘) Iyq % % Oyq % 3

then the generators Kij(z) acting on 6(z) are determined by

m a,

oy ompem N I o 1
K”(a.) £(a) = KiJ(a’) ap 1772 .. 810, .y ¢~(a1 L ka
m]-myo m\)
= a) e Byp KiJ(Z) o(z) . (10)

The dependence of KiJ(Z) on the m,, which is found from the action
m
my-my \Y .
of Ki,j(a') on ay I R estsblished in this way for

integral o, but will also hold in the case when m, tekes semi-integer

values. The classification of the Ki 3 as raising or lowering genera-

tors, or weight generators, has been given in III. 26. The raising
m)~my m

generators commute with 83 . 5.12 v V and therefore when acting
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on 6(z) are independent of m, . Henoe they are unchenged in Hn' The

weight generators ere H, =K ., . 1 and using (10) we see that
Kn+1—i ,i(z) =m + Di(z) where Di ig a differential operator in z,

independent of my, .. m . Putting my > m - Py and transferring to

H we have that XK (2) 18 replaced by K ., . ,i(a.) ~py. In

+1-1,1
order to specify the changes necessary for the lowering generstors

it is sufficient to comsider only the generators corresponding to the
simple roots, since all other lowering generators are cbtained from
these by commutation. For n = 2v + 1 the lowering generators corres-

ponding to the simple roots are K2v+1-j R for j =1, .. v. We find

Kove1-3 ’J(Z) = (mJ - mJ+l)z.jj+1 + Di(z) for some D°. Hence in H_
Kpye1.y,4(8) is replaced by
a
1..0~-1+1 .
K2w—1—,j ,j(a) - (pj - pj+1) s J=1, .. v.

By .. - 1)

For n = 2v all lowering generators can be cbtained from K2v 3
9

We find X (z) = (m )

2v~-3 3] 3 7 Ty

+ DJ (z) and Kv,v-l(Z) = (mv-l + mv)zv-1v+1 + D:j (z) for

J‘.'l,n.\)“'l ande

1" Zygge1 T

di fferential operstors D°°, D”““. Hence in Hn

yL..a-1+2
8 .. - 13

K (a) » K

2v-3 5] ov-,3%8) = (By = Pyg

and

a
1 * 0 \) = 2\, + 1
Kv,v-l(a) LR ,v-l(a) - (p\)-l + pv) 8y v Dy-1 )

These replacements are considersbly gimplified in the case
Py =0 (tensor representations) and D, = 3 (spinor representations).

Although the generators involve ratios of the varisbles a.i1 1 thelir
1 *w k
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renge is a subspacs of Hn apd mo wational function ef rolyromialse
appears provided the p; gatisfy (6) end p1 7 p2 2 ++ & P, > 0. The
representetions constructed are not unitary in general, although they
are equivalent to unitary representetions. They can be made wmitary
by redefining the scalar product in Hn which can always be done
because SO(n) is compact (see Vilenkin [ k9] pllk).

It is possible to find reelizations of the type Just described
for the generators of U(n) also. We can construct representations
lsbelled by 9‘:’1 =m - Py (4 =1, .. n) in the space of homogeneous
polynomiale of degree r = oy o4l in the varlables 8y - ik for
k=1, .. n, vhere aia are now ordinary bosons. We require
P1L# P2 - = P, > 0 vhere the p, are all integers, and also
my - p; £ Wy - P2 .- 2 mo = Ppe The representation Tg in this space

is given Yy
P1-P2

- 1 "%42,.n
Tg f(a) = [TBTS-TI] ace [GEE—I;

n
f(ag) (11)

and the generstors Ei 3 satisfying

[ByyoBegd = S Bag ™ O1p By

are specified by

=

1
o
'
o

j>1i (reising generators)

=]
L]

_.DP=DP _
1 =By S8 & Py (12)

a‘ll.i"li"’l

P P
= g a - (p - P )
1+1,1 © i+l 4 17 P’ Tl

(lowering generators).

This construction leads to no new representations except that now

the 1lsbels & i can be negetive in addition to the usual non~

negative values.
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§3. Results for 0(3)

In order to illustrete the construction described above we will
write down the results explicitly for S50(3). We begin in the space
H of harmonic homogeneous polynomials of degree m; in the 8y where
m = £ 1s elso the representation lsbel, and the a; exe modified

bosons with 2ajaz + a2 = 0. We have

ey
it

+ = K32 = a12 ~ azeég

ey
i

Ko1 = 8p8] ~ @38y

J3 = K3; = a1a) - 8a3as

and en arbitrary basis state is

1’3 = 8 8,*™ Jo> . Ve put

a2 a3 2
z13 = ;1-= z, so that ;;-= -~ %z< and then
82 B3
m
f(alsaZ’a‘S) = a3 ! f(lv ;1—1. s ;T)
=g} 4(z)
where
o(z) = £(1,z, - %z2) .

The representation Tg in the space of functions ¢(z) is glven by

(ag)f'ml (ag)) (ag)q
Tg ¢(z) = el ¢ o ]

a1

Now g = (giJ) satisfies gcgt o, so that if g1, 812, 821 are teken

to be independent, we have

8212 Elz2
831 = = 5g; ° 8137 T 2z ¢
2 2
212821 £21 821812 g12
832 = = - gog = = ———— - =T,
23112 £11 28]_12 211
2
821812 1 ¢ 8218y,
= + 1 = —— 4 — . (13)
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Hence
(ag); =
a] = a1 gpl - zlp Ep1
: g212
= g1y + 2821 + Mz Ter1
g21 2
= ('/811 +z )
2vg11
i.e.,
/?;’) 2821
\\Jb(z,g) = Vg11 + :
2/g11
Also
(=g)2 zg21 . E12 812821
Z
= = (Ve + y + + 2 ) .
2/gyy VYeir Yen 2g117811
therefore g12821
2m +z + 2
2021 | 1 812 2811
Tg o(z) = (Ve + R e e : (14)
27g11 11 21

The basis functions are zSL-m for - & € m < % and the generators are

J, =5, J_=mlz—35zza-dz-, Jg

my - 2 ‘%
m; cen now be a semi-integer. Putting my *~ m - P = %, vhere p can

have any of the values O, %, .. mj end transferring beck to H, we

find the generators have the form

<y
L}

a{éz i 9.23.3
a2

_ 8p8) - 838y - D o (15)

e
]

Jg = ajaq - a3ty - D -
Tg is defined in H by

2a1vg11 ‘2p

Te fle) = 281811 + 22821/

f(ag) . (16)

We obtain all tensor representations by putting p ~ 0, and all

spinor representstions by putting p = 3.
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The basis states are

\R,\ N 8Jlm+p &22-m o>
w |

. . 2+p .
which are the solid spherical harmonies r Y2,+p ’m+P(0,¢) (shown in
IV, §5). The minimum state is

g 20 %
|°z>=aepaa'1’ |o> for p < &
= alp»ﬂ, a.222' |o> forp# &,

and of course is amnihilated by J_.

These representations we have constructed are non-witary
because J+ ig not the hermitean adjoint of J_, but they can be mede
unitary by redefining the scaler product in H. To do this it is

sufficient to specify the scalar product between the basis states,

)

g\ % _ oM L m)i(e + m)i(2 + p)!
(I /f ’ |m>] = %20-Sum- ((e;)n'. ~ .

snd from the requirement that

1

) - feeageessl

we find

We see that it has been necessary only to renormelize the spherical
harmonics. The busls states have the necessary orthogonality
properties with the former scalar product because the lebelling
operators J3, and J2 = J3(Jg + 1) + 2 J_ J_ are hermitean. This 1s
because Z—j- J, = 8g8p + 28383 is hermitean.

We have noted that p must tske non-negetive semi-integer values
in order that H be invarisnt under the generators. However it is

possible to allow p to be negative, and we obtain then inhomogeneous

a2
besis states involving ET , which do not belong to H but which still
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cut off suitably. For p = - & the besis states are 222 yhere
az
z = 5—1 , and in this wey we can choose p BO &5 to transform partially

or completely to the space of polynomials employed by Zhelcbenko.

The operators (15) satisfy the 0(3) commutation relations
because of the properties of modified bosons as 0(3) vectors. Ordin-
ary bogons also possess these properties, and so if the a's in (15)
are all ordinary bosons the commutation relations are still satisfied.
A satisfactory representation space cannot be constructed with this

realization, but if we put

_ d d
J+ = 2z EEE' 29 EE;
r = 2y
d da
J__=z2-é-z-i-—23?z-2'+p 1 (17)
J3 =2 s

Eria T

suitable basis states can be calculated. We can transfer from this
space to H simply by substituting for the z's with modified bosons

(when r becomes zero) and we regein (15). The realization (17) 1s
possible only if p is equal to the representation lebel mj, and we

then cbtain the same reelization described in Chpt. VII, except for

r - 22 2Z3

the different metric (note slso that — = ). It would seem
21 r+ zs

possible to generalize (17) to srbitrary n es has been done for (15),
but as explained in Chpt VII such realizations are not entirely satis-

fastory. We cen generslize (17) within 0(3) s follows:

J=zl_§___zzd_qr..z2
+ dz, dzj Z3
r = Zog
4 d
= —_— +
J. = 22 a4z 23 dzp P Z1 (18)
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This realization hes been encountered before in palar coordinatea by
Hurst [93] , withp =%u=-q. In this case however the spinor rep-
resentations do not appear because 2q must be en integer, and there-
fore y = p - q is en integer. Modi fied bosons can be substituted
in (18) to obtain what sppears to be a generalizetion of (15), but
in fact nothing is lost by putting q = 0.

Thege results do not depend on the form we have teken for the

metric o; if we put o = I, the jdentity, then we would have
a3

a1 - 10y Thig formelism also includes neturally the representa-

tions of the full orthogonal group 0(3), by enlerging the representa-
tion space to include axial tensors. The state of highest welght is
then written

2+p-1
1 D

=8 812 |0> 3

g

and the generators have a similer form as (15).

Although SU(2) is the covering group of s0(3) it is not obvious
how Tg defined by (1L) is a representation of g € su(2). 1In fact we
can recover the ususal expression for Tg, 8 € su(2) by substituting

ap

for 8y, 8, a3 with VII. 2. Then z = o= = V2 %i—where a1, Op are

ordinary bosons. With the matrix

a B
u= (5 3 - lal?2+lsl2=1,
which belongs to SU(2) we ldentify g € 80(3) determined by

g1 = o2, gg1 = - Y2 0B , g12 = v208. Then from (1h) T  tekes the

- + o
7, o(2) = (a- 8 20 o—2H)
a-B =
which is the familiar expression for representetions of SU(2) in the

space of polynomlials ¢ of one varisble z.
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