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ABSTRACT

The simple cells in feline and primate primary visual cortex are involved in the coding
and early processing of spatiotemporal information acquired binocularly from the visual
field. Each simple cell can be viewed as an approximately linear device characterised by
its receptive field profile (RFP), a spatially reversed version of its spatiotemporal impulse
response function.

The Gabor function model of the simple cell RFP 1s evaluated, and the recent contro-
versy concerning the relevance to early vision of its achievement of the lower bound on
joint spatial and spectral spread dictated by the Weyl-Heisenberg Uncertainty Principle
1s illuminated. In an investigation of the multi-dimensional signal processing performed
by the simple cells, image processing and coding schemes which might explain the ob-
served variety of simple cell spatial RFPs are reviewed. These schemes are classified into
the categories of filtering and decomposition, according to whether the RFP is used as the
kernel of a spatial filter, or as an expansion function whose coefficent is to be calculated
for the visual unage.

Artificial neural networks (ANNs) which find the least-squares solution to the set
of linear equatious posed by the image decomposition problem are critically reviewed,
and a single-layered, linear recurrent ANN is proposed for this task. The linear neural
activation function used by this network is then replaced by a more biologically plausible,
piece-wise linear, saturating nonlinearity, and the resultant globally stable network is
shown to effect the optimisation of more general (semi)definite quadratic forms subject to
bound constraints on the optimisation variables. Although biologically plausible, these
networks, when used as models of simple cell processing, are found to predict simple
cell spatiotemporal RFPs whose spatial component differs in general from the chosen
expansion functions. It is concluded that the simple cell spatial RFPs are not used as
visual expansion functions, but rather as the kernels of (possibly position-dependent)

spatial filters, as is suggested by their definition.
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