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ABSTRACT

The simple cells in feline and primate primary visual cortex are involved in the coding

and early processing of spatiotemporal information acquired binocularly from the visual

fielcl. Each simple cell can be viewed as an approximately linear device characterised by

its receptive field profile (RFP), a spatially reversed version of its spatiotemporal impulse

response function.

The Gabor function model of the simple cell RFP is evaluatecl, and the recent contro-

versy concerning the relevance to early vision of its achievement of the lower bound on

joint spatial and spectral spread dictated by the Weyl-Heisenberg Uncertainty Principle

is illuminated. In an investigation of the multi-dimensional signal processing performecl

by the simple cells, image processing and coding schemes which might explain the ob-

served variety of simple cell spatial RFPs are reviewed. These schemes are classified into

the categories of filtering and decomposi,tion, according to whether the RFP is usecl as the

kernel of a spatial filter, or as an expansion function whose coefficent is to be calculated

for the visual image.

Artificial neural networks (ANNs) which find the least-squares solution to the set

of linear equations posed by the image decomposition problem are critically leviewed,

and a single-layered, linear recurrent ANN is proposed for this task. The linear neural

activation function used by this network is then replaced by a more biologically plausible,

piece-wise linear, saturating nonlinearity, and the resultant globally stable network is

shown to effect the optimisation of more general (semi)definite quadratic forms subject to

bound constraints on the optimisation variables. Although biologically plausible, these

networks, when used as models of simple cell processing, are found to preclict simple

cell spatiotemporal RFPs whose spatial component differs in general from the chosen

expansion functions. It is concluded that the simple cell spatial RFPs are not used as

visual expansion functions, but rather as the kernels of (possibly position-dependent)

spatial filters, as is suggested by their definition.
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Chapter I

INTRODUCTION

1.1- Background and Motivation

1.1.1 The Simple CelI Receptive Field Profrle

With the exception of the retina, the primary visual cortex has been perhaps the most

intensively studied area of the mammalian early visual system. Its functional proximity

to the visual input and its accessibility in the occipital lobe have made it a particularly

attractive target for the visual electrophysiologist. Much of our knowledge about the elec-

trophysiology of the striate cortex, as the primary visual cortex is alternatively known,

comes from experiments on feline and primate subjects. Although some differences clo

exist between their respective visual cortices (Crawford et al., 1990), the presence in both

species of cells exhibiting similar functional characteristics suggests that these charac-

teristics contribute to the solution of generic visual problems which are common to the

respective visual environments of these somewhat different animals. Single-cell record-

ings from the primary visual cortex have shown that neurons in this region are involved

in the encoding and early processing of spatial, temporal and stereoscopic information.

Their implication in fine spatial vision (Crawford et al., 1990), in particular, ancl their

consequent potential as a source of biological inspiration for image preprocessing in the

field of pattern recognition, have made them especially interesting to the machine vision

community.

The simple cells \¡r'ere so named because unlike the lesponses of the remainder of the

primary visual cortical cells from which the pioneering team of Hubel & Wiesel (1962)

recorded, the responses of these cells to spatially extencled visual stimuli could be largely

predicted from their responses to small circular spots of light at various positions in

the visual field. This observation is at least superficially suggestive of the mathematical

property of superposition, which is characteristic of linear systems. Linear systems are

in general more mathematically tractable, and consequently better understood, than

the more general class of nonlinear systems. It is perhaps, therefore, the promise of a
predominantly linear characterisation of the simple cells which has motivated a number of

visual electrophysiologists and computational neuroscientists to concentrate their efforts

on the investigation and modelling of the multi-dimensional (i.e. spatiotemporal) signal

processing performed by these cells.
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The receptiue f'eld prof,le (RFP) of a visual cortical cell is a function which clescribes

the linear weighting applied by that cell to the visual stimulus to produce the obser.vecl

response' Nlore formally, the RFP is the kernel of a linear integral operator which, when
applied to the visual stimulus over the domain of its definition, yielcls the output of that
cell. As this clefinition suggests, the RFP is closely related to the impulse response func-
tion of the cell; the distinction lies simply in the conceptually convenient sign-reversal of
the spatial variable. Its clomain of definition corresponds to that over which the stim-
ttlus is described; fbr completeness this should be the spatiotemporal domain, although
lrecluently the temporal climension, and occasionally the second spatial dimension, a¡e
omittecl for convenience. The stimulus position is explessed in eye-centred spherical co-

orclinates (with the range climension omitted). Consecluently a cell with binocular input
has one RFP t'or each eye; these will be collectively referred to as the binocul¿r RFP of
the cell. It will also often prove convenient to describe an RFP in the Fourier frequency
clomain, ancl, by extension, to refer to this as the spectralRFP.

The accuracy with which the response of a simple cell can be reproduced by the linea¡
model of that cell's processing inherent in the definition of an RFP is depenclent on the
approximation involved in the neglect of the nonlinear terms, if any, which contribute
to this processing. A qualitative investigation of the extent of this approximation is
presented in Section 2.2, along with an examination of the validity or otherwise of the
omission of one or moÌe of the stimulus dimensions.

1.1.2 lüeural l{eúworJcs for Sensory Signal Processing

The response of a simple cell to a visual stimulus is in fact the cumulative result not only
of the processing performed by neurons in the afferent retino-geniculo-coltical visual
pathway up to and including that simple cell, but also of intra- and possibly extra-
striate feedback influences on that cell. Eviclence for intra-striate feedback, in particular,
onto the simple cells is reviewed in Chapter 7. A natural framework within which to
model the neural processing which contributes to the simple cell output, ancl hence also

its RFP, is provided by the field of artiJicial neural networlcs (ANNs), ancl in particular
recurrent artificial neural networks (RANNs). Inspired at least initially by their biological
counterparts, ANNs are densely interconnected networks of computationally simple ancl

relatively slow plocessors called artificial neurons. These networks are characterised
chiefly by their fine-grained parallel distributed processing (Rumelhart & McClellancl,
1986a; Rumelhart & McClelland, 1986b), in which the constituent altificial neurons
operate largely in parallel and the computational load on a network is finely clistributed
between its processors. RANNs are simply ANNs in which the neural interconnection
patterns give rise to feedback loops, which are generally thought to exist in the striate
cortex (Douglas & Martin, 1991).
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Artificial neural networks have received consiclerable attention in recent years from

the field of signal processing (Juang et al., 1991). ANNs provide a generic architecture

suitecl to the fine-grained parallel implementation of a large number of conventional

signal processing algorithms. This property, combinecl rvith their architectural similarity

to the neural substrate on which they are hypothetically implementecl, makes them lvell

suitecl to the modelling of the multi-climensional signal processing pelformed by eally

sensory systems. The addition of a learning rule by which the interconnection strengths

of an ANN ale updated furthermole admits the neural implementation of adaptive signal

processing algorithms.

The ANN framework not only offers potential neural realisations of moclels of early

sensory signal processing, but also, by facilitating the consideration of practical con-

straints on the biological implementation of such models, assists in their formulation ancl

lefinement. For example, attempts to understancl the limitations on the neural trans-

mission of information in such networks have resulted in theories concerning the trans-

formation of sensory m.essages to reduce their statistical redunclancy (Attneave, 1954;

Barlow, 1959; Barlow, 1961) and thereby achieve an efficient coding of the sensory input.

Through the introduction of an unsupervised learning rule, the transformation effectecl

by a redundancy-reducing network can also be made adaptive to the changing statistics

of the sensory environment (Linsker, 1988; Linsker, 1989; Linsker, 1990; Fölcliák, 1989;

Földiák, 1992), a property which woulcl be essential for the survival of the organism. The

principle of redundancy redttction has proven influential not only in subsecluent theories

of biological sensory coding (Atick & Redlich, 1990b; Atick & Redlich, 1991; Atick 8¿

Redlich, 1992), but also in the fields of image coding and compression.

1.1.3 Sttmmary

Recurrent artificial neural networks (RANNs) have been chosen as a useful tool for the

modelling and investigation of the multi-dimensional signal processing performed by the

simple cells in the mammalian early visual system. The simple cells have been selectecl

over other cortical cells because of their approximate linearity. The linear component

of simple cell processing of the visual stimulus is characterised by the receptive fielcl

profile (RFP). The primary visual cortex has been chosen because of the comparative

abundance of single-cell electrophysiological recordings from this area, which are neeclecl

to infer the properties of the RFPs of individual cellsl, and the controversiality of ihe

existence of simple cells in higher cortical areas (Henry, 1993).

1In contrast, inferences drawn from psychophysical and area-level electrophysiological observations
invariably concern large multicell "units" such as psychophysical channels or cortical columns.
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L.2 Overview

This thesis reviews models of the simple cell RFP and its variation over the simple

cell population, and uses artificial neural networks to investigate the multi-dimensional
signal processing role of the RFP in the formation of a cortical lcprcsentation of the
visual image.

A critical review of simple cell RIrP moclels is plesentecl in Section 2.3. This review

centres arouncl the Gabor function model and a simple, real-valued generalisation thereof

referlecl to here as the generalised real-ualued Gabor J:unction (GRGF); in justification of
this approach, it will be argued that the latter is the only model proposecl to date which
exhibits sufficient degrees of freeclom to fully describe the simple cell RFP2. Alternative
models are cliscussed primarily where they adclress shortcomings identified in the GRGF
model. The Gabor function model has attracted considerable attention since its proposal

by Daugman (1980) and Marðelja (1980), most of which has focused on its achievement
of the lower bound set by the Weyl-Heisenberg Uncertainty Principle (Weyl, 1932) on the
joint spread or "uncertainty" of a function in the spatial and spaiial frecluency domains.

Reviewed in Section 2.3, the recent empirical success of the GRGF model of the simple
cell RFP has bolstered suggestions by Nlarðelja (1980) and Daugman (1985) that this
property indicates a role for the simple cells in the joint spatial and spectral localisation
of the stimulus (although see Wechsler (1990)). The electrophysiological founclations of
this hypothesis and the recent controversy it has attracted are criticised in Section 2.3.3.

Variation of the spatial RFP over the simple cell population is acldlessed in Chap-
ter 3. Theories of simple cell processing which postulate a systematic variation of various

parameters of the spatial RFP model over the population are examined for their con-

sistency with the observed variety of simple cell RFPs. Consideration is lestrictecl to
those schemes which not only employ a suitably realistic model of the simple cell RFP,
but also make a seriotts attempt to account for the variety of spatial RFPs observed.

Among the schemes addressed are the Gabor and Wavelet Expansions, and the Wavelet

and Window Fourier Transforms. A brief overview of recent machine vision ancl image
processing applications of schemes involving the GRGF RFP moclel is also presentecl.

Theories concerning the variation of RFP parameters across the population, and

which assume a linear model of simple cell processing, are divided in Chapter 3 into the

two classes oÍ f,ltering and decomposition. The filtering hypothesis of simple cell pro-

cessing, to which theories in the former category subscribe, postulates that the spatial
RFP acts as the kernel of a spatial filter which is applied to the image. In contrast,
the decomposition hypothesis of simple cell processing, to which theories in the latter
category subscribe, postulates that the spatial RFP acts as an expansion function whose

2This observation was made originally by Jones (1991) in justification of the decision by Jones &
Palmer (1987a) to fit only the GRGF model to their electrophysiologically identified simple cell RFPs.
It will become evident, however, that this observation remains current.
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coefficient, in the corresponcling expansion of the image, is signalled by the simple cell.

By viewing the expansion functions as features to be detected, ancl the coefficients as

measures of their relative pi-esences in the visual image, the decomposition hypothesis

can be seen to be closely related to the earlier feature-cletection hypothesis of simple cell

processing, which is cliscussed in Section 3.2. Although it is arguecl that the filtering

hypothesis appears more consistent with the clefinition of the simple cell spatial RFP, re-

current artificial neural networks are reviervecl in Chapter 4 and clevelopecl in Chapters 5

ancl 6 which, if implementecl in the early visttal system, coulcl calculate the coefficients

recluired by clecomposition theories. The biological plausibilit¡' of these netlvorks is as-

sessed in Chaptel 7, and the spatiotemporal simple cell RFPs which they preclict ale

analysecl for their consistency with the chosen expansion functions,

Although primarily motivated by the clesire to produce biologically plausible moclels

of image decomposition by the simple cells, the review and development in Chapters 4-6

of RANNs for the minimisation of the scluared leconstruction error (SRE) has important

benefits for the least-squares solution of linear systems of equations. These inclucle:

the demonstration that several RANNs which were previously though to provide only

approximate solutions to the SRE minimisation problem in fact provicle exact solutions to

a regularised form of the problem; the clevelopment of a diagonal preconditioning strategy

to improve the stability of a proposecl single-layered linear RANN in the presence of

weight implementation and signal propagation errors; the development of a single-layerecl

nonlinear RANN capable of minimising a positive (semi)definite quaclratic error function

subject to bound constraints on the optimisation variables, a problem which arises in

several engineering disciplines (lVloré & Toraldo, 1991); ancl the recognition that this

single-layered network may serve as a biologically plausible implementation of various

resistive networks used in the cliscrete-space solution of other regularisecl problems in

early vision.

1-.3 Intended Audience

It may already have become apparent that the intended reacler is expected to be conver-

sant with elementary neuroanatomy, neurophysiology and visual electrophysiology. He

or she should also be competent in lineal algebra ancl the theory of clynamical systems,

although a number of the concepts relevant to the latter will be introducecl as they are

needed. In order to head off criticism from experts in either field, an attempt has been

made to maintain a certain rigour in the treatment of both the biological and mathe-

matical content. However this could only be achieved at the expense of its reacìability to

practitioners of the complementary discipline. The author therefore requests the reacler's

indulgence in acknowledging, in cases where one or the other appears to be deficient, the

inevitable trade-off between rigour and readability faced in the presentation of this work.
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Chapter II

THE GABOR FUNCTION MODEL OF SIMPLE CEIL
RECEPTIVE FIELD PROFILES

2.L Introduction

This chapter opens with a brief introduction to the concept of a "receptive field" (RF)

and a summary of the receptive field characteristics which define a "simple" cell. A linear

characterisation of the simple cell receptive field known as the "receptive field profile"

(RFP) is then presented, and the limitations of such a characterisation examined. The

extension of the RFP to account for the temporal and binocular behaviour of the simple

cell RF in addition to its spatial properties is presented, and the validity or otherwise of

the consideration of the spatial component of the receptive field profile in isolation from

its temporal and binocular components is discussed. Finally, subject to the leservations

which arise fi'om this discussion, the "generalised real-valued Gabor function" (GRGF)

definecl in this chapter is investigated as a model of the simple cell spatial RFP. Special

emphasis is placed on an analysis of the elegant series of identification experiments per-

formed by Jones & Palmer (1987b; 1987; 1987a), and their subsequent evaluation of the

GRGF model.

2.2 Simple Cell Receptive Field Profiles

2.2.1 Spatial Receptive Field Profrle

The receptiue fi,eld (RF) of a neuron whose axon forms part of the vertebrate optic nerve

was defined by Hartline (1938) as that region of the retina whose illumination would elicit

a response in the axon. In a series of experiments which pioneered the electrophysiological

exploration of the visual cortex, Hubel & Wiesel (1959; 1962; 1965; 1968) generalised

this term to cover visual cortical neurons and to refer more generally to that region of the

visual field over which a stimulus could influence the firing of the neuron (Bishop & Henry,

1972). Using stationary flashing stimuli consisting of positive contrast spots or bars on

a background of uniform luminance, and recording extracellularly with a microelectrocle

from single neurons in feline and later primate (monkey) primary visual cortex (V1),

they determined the spatial organisation of the receptive field of each recordecl neuron

by mapping out the sign of the change in firing rate (increase or decrease) following
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stimulus onset as a function of the two climensional (2D) spatial position of the stimulus,
Vistral cortical cells wele classified into one of the three categories sirnp le, corn,plex and,
hypercomple:r on the basis of characteristic properties of their receptive fielcls, lvhich for
the simple cells were (Hubel & lViesel, 1g62):

o RF organisation consisting of clistinct excitatoly and inhibitory subfielcls.

o Summation of responses to stimuli presentecl concurrently in the same subfielcl.

o Antagonism between excitatory and inhibitory subfiercls.

o Pledictability of responses to stationary or moving stimuli from the RF organisa-
tion.

Henry (1977) proposed a clerivative RF taxonomy in which these clefining characteristics
lvere refined for stationary stimuli, and extendecl to characterise responses to both moving
edges and bars of increasing elongation. Notwithstancling the clifferences between the
resnltant S-cell classification ancl its simple cell precnrsorl, the term simple cell will in
accordance with common practice be usecl interchangably to refer to either cell category.

Hubel & Wiesel found that the RF of each simple cell was organisecl into parallel
elongated excitatory and inhibit ory subfields alternating in the clirection perpenclicular to
their axis of elongation and separatecl by straight-line borclers, as shown in Figures 2.1(b),
(e) and (h)' A subfield was clesign atecl ercitatory - or later on-ercitatory 

- ifthe onset
of a bright stimulus in that region proclucecl an increase in the firing rate of the neuron,
and inhibitory il stimulus onset proclucecl a suppression of the firing rate (on-i.nhibitory)
or stimultrs offset produced an elevation of the firing rate (off-ercitatory).In subsequent
investigati the relevant cletails of which are summarised in Appenclix A.1 - the
resultant map of RF organisation was augmented to inclucle a measure of the efficacy of
a standard stimulus in each position. In two dimensions, this augmented map of stimulns
efficacy as a function of visual angle - examples of which are shown in Figures 2.1(a),
(d) and (s) - is known as the spatial rece'ptiue fietd profite (RFp) of the cell. However
l'or practìca'l reasons, the integral of thc RFP along the tlirection of subfielcl elongation

- known as the 7D line weighting function (LWF) - has been preferrecl by many
investigators' The LWF is obtained by recording, for each position along the axis of
subfield alternation' the strength of the neuron's response to a long contrasting bar
orientecl parallel to the axis of subfield elongation. Three examples of simple cell LWFs
are illustrated in Figures 2'r(c), (f) and (i). Simple cells with between 1 and g RF
subfields have been reportecl, although those with 2 ancl, B subfielcls - such as those

lThe interested
on the relationship

reader is referred to llenry (r985) and white (rggg, p. 115-r21) for further discussion
between these two classifications.
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(a) 2D RFP (b) RF organisation (c) LIVF

(d) 2D RFP (e) RF organisation (f) LwF

(g) 2D RFP (h) RF organisation (i) LwF

Figure 2.1: The 2D RFPs of typical simple cells (after Jones & Palmer (1987b)) having
(u) 2, (d) 3 and (g) a subfields respectively. The corresponding subfield organisations
are illustrated in (b), (") and (h) respectively, with inhibitory regions shown dark, ancl

excitatory regions bright. Corresponding line weighting functions are shown in (c), (f)
and (i) respectively.
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illustrated in Figures 2.1(b) and (e) - appear to constitute the majority - in excess of
70% - of recorded simple cells (Glezer et al., lggg)2.

Only recently have full two dimensional RFP analyses been uncle¡taken. Employing
the more sophisticat ed reuerse comelationsystem iclentification technique ancl small rect-
angular stimuli nlore closely approximating the icleal spatial impulses3, Jones & palmer
(1987b) corr-elatecl the number of output spikes emittecl by a given simple cell in s.cces-
sive 50ms time bins with the position of the spatially localisecl stimulus on a 16 x 16 gricl
spanning the cell's spatial RFP. At the beginning of each 50ms interval, a new stimulus
was chosen at random from the 512 possible stimuli (positive or negative contrast in
one of 256 grid positions). The correlation of the response with a given stimulus was
continued over a number of subsequent stimulus presentation intervals, ancl the reslltant
co'rcelogram averaged over repeated presentations of the same stimulus. Separate correl-
ograms were compiled for positive and negative contrast stimuli, and then subtractecl to
produce a final 2D RFP for each post-stimulus time bin. In accorclance with estimates
of the order of 50ms (Ikeda & \,Vright, 1975b) to 60ms (Hamilton et al., 19gg) for the
latency of simple cell response to retinal stimulation, the RPP for the 50-100ms time bin
was invariably the most plonounced, but was otherwise qualitatively similar to those for
subsequent time binsa.

Their subsequent mathematical analysis of the spatial properties of the resultant
RFPs revealed details which invalidate a number of pre-existing generic moclels of the 2D
simple cell RFP' Notably, while most contemporary models - and indeed some proposecl
since then - relied heavily on precise odd and even symmetry of the RFp, earlier finclings
based on LWFs that the majority of simple cell RFPs are in lact asymmetric (Ktäkowski
et al., 1980; Field & Tolhurst, 1986) were supported by the 2D analysis of Jones & palmer
(1987b). Furthermore their finding that Cartesian separabilitys of the RFp was clearly
violated in a number of cases called into question the common approach of modelling the
LWF and extending the model to 2D by multiplying the 1D moclel by a winclow - such
as a Gaussian - in the orthogonal direction.

These shortcomings were addressed by Jones & Palmer (1gs7b) using a generalisecl
for-m of the 2D rcal-ualued Gabor funct'iort (RGF) moclel having 9 free parameterr. A X2

2It is difficult however to draw any firm conclusions from these or any other electrophysiological
findings about relative frequencies in the population Sampling bias (Robson, 1g83) may result from

among other things - a tendency of microelect rode techniques to record preferentially from larger
cells and those with certain geometries (Anderson et al., 1990, p. 215), and from a preponderance of
recordings from cells in particular cortical layers if RF properties are unevenly distributed between the
layers.

3Spatial impulses are used in the identification of the first order Volterra kernel (Schetzen, lgg0).
aalthough see lVIcLean & Palmer (1gsg), and the discussion thereof in Section 2.2.4

. 
5A function f(æ) with æ € IR" is said to be Carlesian separableif there exist functions fi(ø¿) i Ç.{1.. "} C z¡ s|.ch that,/(æ) = |IL, r;@¿). In the present ..." n = 2, Ih,lz] are functions of the

independent spatial variables {xt,xz}, and the function f @) = fr@r)Ír@ìiì.-óä.t".iun separable.
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test on the residual error - assuming a Gaussian spatial noise model - after a least-

squaÌes fit using the generalised RGF (GRGF) model showed that this model captures

essentially all the necessary degrees of freedom of the simple cell RFP. Given by the real

ancl imaginary parts of a Gabor function - the product of a Gaussian ancl a sinusoid -
the RGF was proposed independently in 1D by Nlarcelja (1980) and in 2D by Daugman

(1980) as a moclel of the simple cell LWF and RFP respectively. The optimal joint locali-

sation of the 2D Gabor function in the spatial and spatial-frequency domains (Daugman,

1985) forms the foundation for its recent popularity in computational theories of vision,

Following the plesent introduction to simple cell receptive fields, which is intended to

be as far as possible model-free, the GRGF and rival models of the simple cell RFP are

compared in Section 2.3 on the basis of their ability to account for the above ancl other

experimental results. The relevance of the joint localisation property to biological and

computational vision is critically evaluated in Section 2.3.3.

2.2.2 Spectral RFP

Several years after the early experiments of Hubel & Wiesel, Campbell & Robson (1968)

showed that for low to moderate contrasts the detectability by a humarr subject of a spa-

tial grating having a sine, square, rectangular or saw-tooth wave luminance profile was

cletermined solely by the amplitude of the fundamental spatial Fourier component of the

grating, ancl that the non-sinusoidal gratings could not be distinguished from sinewave

gratings until their contrast was sufficient to cause the higher Fourier components to

exceed apparently independent thresholds. These results suggested the presence in the

visual system of "linearly operating independent mechanisms selectively sensitive to lim-

ited ranges of spatial frequencies". Blakemore & Campbell (1969) showed that these

psychophysical spatial frequency channels were also selective for stimulus orientation,

suggesting an analysis of the visual image in terms of its constituent 2D spatial frecluen-

cies. A possible cortical locus of these channels was soon identified by Campbell et al.

(1969), who showed using grating stimuli that cells in feline primary visual cortex wele

selectively sensitive to a band of spatial frequencies as well as to the orientation of the

grating.

The band-pass tuning properties of the response or contrast sensitivity funcbion of

the simple cells, in particular, in both primate and feline primary visual cortex for spatial

frequency magnitude, orientation and phase (usually with the other two stimulus vari-

ables held constant) have since been elaborated by a number of researchers. The relevant

features of a representative sample of such experiments are summarised in Appendix 4.2.

However, the spatial Fourier harmonics present in non-sinusoidal stimuli - such as bars,

edges or square-wave gratings - several of which may lie within the spatial frequency
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(magnitude) pass-band of the cell, tend to exaggerate the apparent low-frequency re-
sponse or sensitivity of the cell (Pollen & Ronner, 1982), leading to reports that simple
cells are for example much more narrowly tuned for spatial frequency than for the width
of a single bar (Albrecht et al., 1980). This phenomenon could influence not only the
magnitude tuning curves obtainecl using such stimuli, but also those for orientation, since
the orientation tuning for each of the stimulus harmonics coulcl potentially cliffer in both
banclwidth and optimal orientation (Daugman, 1983). However, with the exception of
the investigation by Jones et al. (1987), magnitude and orientation tuning curves have
generally been obtained only at the optimal setting of the other parameter. As notecl
by Daugman (1980), extrapolation of these results to non-optimal settings requires the
assumption of polar separability of the 2D spectral RFP, defined by analogy with the
spatial RFP as a plot of the amplitude of the fundamental Fourier component of the
temporal response to a drifting or temporally modulated sinewave grating against the
2D spatial frequency (magnitude and orientation) of the grating.

To examine the 2D spectral RFP of the simple cells whilst avoiding the assumption of
polar separability, Jones et al. (1987) used the method inherent in the above clefinition,
with stimuli drawn from an ensemble of drifting sinusoidal gratings in which spatial
frequency was distributed evenly ove¡ a 16 x 16 approximately Cartesian gricl spanning
the cell's responsive range. The majority of the resultant spectrat RFPs were markeclly
polar inseparable, invalidating previous independent investigations of spatial frequency
magnitude and orientation cited above. Their results were founcl to support a moclel
of the simple cell spectral RFP based on the Fourier transform of a GRGF, as would
be expected - given the good fit provided by the GRGF to the spatial RFp - if the
simple cell could be treated as a linear device. The validity of this lìnearity hypothesis
is examined in the following section.

2.2.3 Spatial Linearity

Movshon et al. (1978b) initiated a reconciliation between previous spatial and spectral
characterisations of the simple cells by demonstrating good qualitative agreement be-

tween the line weighting function of each simple cell as preclicted by the inverse Fourier
transform of the spectral magnitude tuning curve - assuming oclcl or even spatial symme-
try in the absence of Fourier phase measurements - for an optimally oriented sinusoiclal
grating stimulus, and that determined directly using stationary bar stimuli of the same
orientation. Experimentally derived spatial phase information was later incorporated by
Andrews & Pollen (1979), who again showed qualitative agreement between the predicted
and experimental line weighting functions, with the exception that additional subfields
beyond the measured spatial RFP could be inferred from the spectral data. Using bars,
edges and gratings drifting at or near the optimal stimulus velocity, Glezer et al. (1980)
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and later Kulikowski & Bishop (1981b) - using experimentally determined and esti-

mated phase respectively - confirmed this agreement in the spatial domain, and founcl

similar agreement in the spectral domain. Although clearly open to criticism concern-

ing their presumption of polar separability of the spectral RFP, these results provicle

pleliminary evidence for predominantly linear spatial behaviour in the simple cells.

Deferring consideration of the temporal ancl binocular behavioul of simple cells un-

til Sections 2.2.4 and 2.2.5 respectively, an idealised monocularly dliven simple cell is

spatially linear if its output r(l) can be expressed mathematically as6

r(t) : 
lrtu(æ)s(æ,t) 

dæ (2.1)

where s:VxR--+R is the stimulus contrast as a function of both position æ € R.2 -
measured as a visual angle from the optical axis - in the visual fielcl V C R2, and

time I € lR, and u':lR2rR. is the 2D spatial RFP of the cell7. However, the response of a

simple cell to a drifting sinewave grating approximates a half-wave rectifiecl sinewave (see

e.g. Henry (1985)), an observation which is strongly suggestive of approximately linea¡

spatial summation over the RFP followed by the application of a thresholcl nonlinearity.

Such a model is commonly usecl to explain experimental observations (see e.g. Jones et al.

(1987)). A nonlinearity/:R--+lR of this type can be incorporated into (2.1) to yielcl

r(t) : f (lrw(æ)s(æ,t),1æ)

In Appendix B, it is shown that for the case of the ideal halfwave rectification function

bhis nonlinearity can be rendered transparent by an idealisation of the reverse correlation

technique of Jones & Palmer (1987a) described in Section 2.2.1,, r'evealing the unclerlying

spatial behaviour of the cell. Another type of nonlinearity which coulcl be exhibitecl

within a simple cell RF is a nonlinear function p:lR -+ R prior to spatial summation such

that (neglecting for the moment the rectification nonlinearity /)

r(t) : 
lrru(æ)n þ@,t)) dæ

By subtracting the negative contrast ("dark") correlogram from that obtained using

positive contrast ("light") stimuli, the reverse correlation technique also eliminates the

effects of spontaneous activity and any even-order terms in the Taylor series expansion of

p, which produce the same response for light and dark stimuli (NIcLean & Palmer, 1989).

The experimental approximation of this idealised reverse correlation technique may not

however completely eliminate the influences of the even-order terms of the rectification

6Bold face lower-case type is henceforth used to denote vectors o € lR" and the notation [, du is

shorthand for the component-wise integration / . " lr drt " 'dun. In (2.1) for example, where n = 2, a
is the visual angle æ € IR2.

TThe reader unfamiliar with the functional notation used in this exposition is referred to the brief
explanation provided in the glossary.
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nonlinearity, in adclition to which the real threshold contrast response functions (Albrecht
& Hamilton, 1982) / of the cell may - contrary to the assumption made in Appenclix B

contain finite odd-order terms which would influence the obtained RFP.

Nevertheless, after fitting the RGF modele to the simple cell 2D RFP obtained using

this reverse colrelation technique and the collespondilg 2D specLral RFP obtained in the
manner describecl above, Jones & Palmer (1987a) found reasonable quantitative agree-

ment between the 2D spatial ancl spectral receptive fielcl characterisationsl0. Although
arguably open to criticism on the basis of the presumption of a particular RFP moclel

- despite rigorous statistical testing of the resiclual (Jones & Palmer, 1987a) this
observation rules out the possibility of significant higher odd-order telms in Taylor series

expansions of both the nonlinearity p prior to spatial summation and the rectification
nonlinearity /. However, since it cloes not rule out even-order terms, it provides only
clualified support for the tentative conclusion of spatial linearity drawn lrom the earlier
lD comparisons of spatial and spectral RFPs.

By way of an independent test of the spatial linearity of the simple cells, Tolhurst &
Dean (1987) investigated the applicability of the Principle of Superposition, rvhich states

that for a linear system the response to the simultaneous presentation of two stimuli
should be the sum of the individual responses to the stimuli presented separately. The
in- and counter-phase sinusoidal modulation of two optimally oriented bars presented in
adjacent subfields of opposite sign produced reasonable agreement with the relationship
between stimulus contrast and simple cell response amplitude predicted by taking into
account both the thresholding (half-wave rectification) behaviour of the cell and the
clifference in temporal phasell between the responses to bars presented separately. In
particular, all simple cells exhibited approximately linear summation of excitatory inputs;
some departure from spatial linearity was however observed for inhibitory input. The
Principle of Superposition had been testecl earlier by Henrv et al. (1978) with more
equivocal results, Whilst superposition was found to hold after allowing for output
thresholcling when two rectangular spots were drifted either individually or jointly 

- with
fixed spatial offset - across the receptive field in the preferred direction, this was not the
case when two optimally oriented bars wcrc flashed indiviclually and then simultaneously
in the receptive field. Despite the fact that for lower contrast levels the suprathreshold

response to the dual stimulus was found to increase approximately linearly with stimulus

sThe contrast response function describes the response of the cell as a function of stimulus contrast.
Whilst in the present model the saturation of this function with increasing contrast is attributed to the
output nonlinearity /, it is likely that at least some of this saturation is in fact attributable to nonlinear
mechanisms prior to the presumed linear summation stage.

eThe RGF model is described in detail in Section 2.3.1.
l0although see Sections 2.3.2 and 2.3.3
l1See Section 2.2.4 fot a discussion on the variation of temporal response phase across the simple cell

RF.
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contrast even when linear superposition did not apply, the cliscrepancy with their own

results was attributed by Tolhurst & Dean (1987) to response saturabion (Albrecht &

Hamilton, 1982) at the comparatively higher contrast levels used.

A purely linear moclel of the simple cell spatial RFP is predicatecl upon the assump-

tion of balanced, antagonistic and spabially coextensive on- and off-type input to each

strbfield. Known as the push-pull model (Palmer et al., 1991), this arlangement is nec-

essary to procluce an eclual response of opposite sign to stimuli of positive ancl negative

contrasts, as required by the Principle of Supelposition. Due to half'-lvave rectiflcation

of the response, however, the postulatecl inhibitory input to a subfield is not levealed by

expeliments performecl around the lesponse threshold, such as those of Jones ,k Palmer'

(1987b) ancl Jones et al. (1987). When the latter investigation of the 2D spectral RFP

was repeatecl by Palmer et al. (1991) in the presence of a second uncorrelatecl stimulus

used to elevate the mean firing rate of the cell, a spatial-frequency depenclent suppression

of this mean was produced by drifting sinusoidal grating stimuli at spatial frequencies

to lvhich the cell had been previously found to be unresponsive. A similar result was

reported by Bonds (1992) in independent investigations of orientation and spatial fre-

quency tuning, while Ramoa et al. (1986) demonstrated an orientation- but not (spabial)

frequency-sensitive suppression of pharmacologically-elevated simple cell activity by pre-

viously ineffective stimuli. Palmer et al. (1991) arguecl that their observations were

consistent with a modifred form of the push-pull model in which the excitatory and

inhibitory inputs are neither precisely balanced nor spatially coextensive. This model

is at least qualitatively consistent with electrophysiological results suggesting that the

strengths of antagonistic inputs - such as on-excitatory and off-inhibitory inputs - to

a given subfield are frequently unbalanced (Heggeluncl et al., 1983; Heggeluncl, 1986a;

Tolhurst & Dean, 1987), that an inhibitory input region centreclon an excitatoly subfielcl

may not be precisely coextensive with that subfield (Ferster, 1988) and that one or other

type of input is completely lacking for some subfields (Glezer et al., 1982; Heggeluncl

et al., 1983). Taken together, these results suggest that the spatial processing performecl

by each simple cell consists not only of the dominant linear component inferrecl by Tol-

hurst & Dean (1987), but also spatially nonlinear components. In modelling the simple

cell as a spatially linear device, one should therefore not lose sight of the approximation

involved in neglecting these nonlinear terms12.

2.2.4 SpatiotemporalRFP

The linear model presented in (2.1) to clescribe the spatial RFP of a simple cell preclicts

a response r(ú) to the abrupt presentation of a stationary stimulus s(æ,t): sr(æ)u(¿)

12The interested reader is referred to Henry (1985) for further discussion on early results concerning
the spatial linearity and nonlinearity of the simple cells.
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rvhich is given by

r(r) : "Ø lrw@)s*(æ) ctæ

where'u(l) is the unit step function and s"(æ) is the stimulus contrast as a function
of the visual angle æ alone. The predictecl response, lvhich is proportional to the lnit
step function, fails to capture the temporal behaviour of real simple cells, which exhibits
both a finite clelay (Ikeda & lVright, 1975a), ancl a time course (ancl tenpt-rral frecluency
response) reminiscent of a low-pass or bancl-pass temporal filter (Ikecla & Wright, tg75b).
Neurophysiologists refer to such responses, ancl by extension the cells exhibiting them,
as sustained ot XJik¿ and transient or Y-like respectively. Furthermore simple cells
ale known to receive X- or Y-like inputs (or possibly both) from neurons in the lateral
(tenictr,late nucleus (LGN) of the thalamtts (see e.g. white (lggg, p. 186)) - through
which the majority of feedforward input to primary visual cortex passes on its way from
the retina - and each of these inputs may be of either on- or ofi-type. F inally, Hubel
& Wiesel (1962) noted that simple cells in the feline primary visual cortex were often
significantly more responsive to a stimulus if it was clriftecl across the receptive fielcl, ancl
that the response varied with both the direction ancl velocity of the stimulus. The velocity
tuning curves of the simple cells for fixecl stimulus size have since been elaboratecl by a
number of researchers (see e.g. Movshon (1975)), ancl experiments clesignecl to elaborate
simple cell spatial ancl spectral RFPs routinely use stimuli moving at the optimal velocity
(magnitucle and clirection). A proper consicleration of the temporal characteristics of the
simple cell is therefore likely to be vital to a full unclerstancling of its computational role.

If we letain a linear model for simplicity, tempolal behaviour can be incorporated by
clefining a s'patiotemporal RFP tr.':lR2xIR+-IR such that

.¡tfr(t¡: 
J_*Jrw(æ,t-r)s(æ, r) dæ dr Q.2)

A major consequence of this model is that the notion of a spatial RFP is no longer
strictly definecl unless u.' is spatiotemporally separable, in which case it can be expressecl
as w(æ,t) : **(æ)trl,(¿) where w,(æ) ancl 'r.r.'¿(/) encapsulate indepenclently the spatial
and temporal behaviour respectively. A separable spatiotemporal RFP is shown i1 Fig-
ure 2.2(a)' This property was founcl to holcl for only 24 of the 52 simple cells testecl
by Mclean & Palmer (1989), who used a reverse correlation technique similar to that
of Jones & Palmer (1987b) but with finer (1ms) temporal resolution to cletermine the
apparent spatial RFP of the cell as a function of the pre-spike stimulus presentation
time' The resultant 2D spatiotemporal plot may be viewed as a 2D (1 spatial ancl 1

temporal dimensional) section through the 3D spatiotemporal RFP along the (spatial)
axis of subfield alternation.

For the remaining 28 of the 52 simple cells studied by Mclean & Palmer (1g8g) -all of which were directionally selective - this plot revealecl that the RF subfielcls drift
with approximately uniform velocity in the preferred clirection of stimulus motion with



r7

Ø

O-
€
O

P.
v)

I

O

Ê.

ct
É

O
Ê
€
o

CN
I

a)
ti

P.

0t0t

Visual angle (deg)

(a) Separable

It 2t ¡J 1t

Visual angle (deg)

(b) Inseparable

Figure 2.2: Spatiotemporal RFP u(r,-t) (after Mclean & Palmer (1989, Figs. 1B &
E)) showing for each position along the axis of subfield alternation ancl for each pre-spike
time, the probability that a bright (solid contours) or clark (dotted contours) stimulus
presented at that spatiotemporal position will elicit a spike at time ú : O. (a) Separable.
(b) Inseparable.

decleasing pre-spike presentation time, as illustrated in Figure 2.2(b). The drift veloc-

ity of these subfields, which agreed well with both the preferred direction and velocity

of the simple cell, provides a measure of the degree of Cartesian inseparability of the

spatiotemporal RFP: the higher the subfield drift velocity, the less valid the notion of

a discriminable spatial RFP. In accordance with this observed spatiotemporal insepara-

bility, Reid et al. (1987) showed that velocity-sensitive behaviour in some simple cells

could be largely explained by a model based on linear spatial summation of subfield in-

puts whose temporal phase aclvanced (delay decreasecl) linearly in the preferrecl direction

of stimulus motion. Measurements of the spatiotemporal phase transfer function of sim-

ple cells in both monkey and cat were similarly shown by Hamilton et al. (1989) to be

largely consistent with the inseparable linear quad,rature moclel of Watson & Ahumacla

(1e83;1e85).

Linear spatiotemporal RFP models did not however account completely for the veloc-

ity sensitivity observed by Reid et al. (1987) in simple cells. Furthermore, in the stucly

by Mclean & Palmer (1989), 8 of the 24 cells having separable spatiotemporal RFPs

were still found to exhibit a preference for one direction of motion. This latter obser-

vation was supported by Emerson & Citron (1988; 1989), who used reverse correlation

techniques to identify the first- and second-order spatiotemporal Wiener lcernels for the

simple cell (see e.g. Schetzen (1980)). A considerable direction selective component in

the second-orcler kernel was identified by performing a second-order reverse correlation of

the neural spike train with the spatiotemporal stimulus, which consisted of 16 optimally
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o.iented bar stimuli spacecl uniformly along the axis of subfielcl alternation ancl whosecontrasts were randomly ancl indepenclently selectecl every 16ms from three possible val_ues: zero) ancl equal positive and negative contrasts. This result indicates a crirectionselective interaction betlveen stimuli at small spatiotemporal offsets, such that fo¡owingthe presentation of a bar the ccll rvoulcl ¡rrefer the subsecluent p'esentation of a seconclbar of the same cont|ast sign at a position whose spatial offset in the pref'crrecl clirectionincreases linearly rvith the temporal offset, The prei'errecl clirection preclictecl from suchnonlinear mechanisms is generally in agreement with that preclictecl from the first-orcler

#;1". 
kernel (Eme'son & citron, 1989; Reid er al., 19gz) _ viz. thesparìorempo.al

Thus in addition to cartesian inseparability of the spatiotempolal RFp, a simple cellmay also exhibit spatiotemporal nonlinearity. For further cliscussion of the rikery impor-tance of nonlinearities in spatiotemporal vision, ancl the limitations of linear analysis inthis context' the interested reacler is referrecl to Regan (1gg1).

2.2.5 Binocular RFp

contrarv to the implicitly monocular treatment of the simple cell presentecl so far, Hubel& wiesel (1962) notecl that most if not all simple cells coulci be clriven to some extent byinput to either eye' The provocative observation by Hubel & wiesel (r,g6z)that the left-and right-eye receptive fields for a given simple cell occupiecr corresponding positions onthe two retinae lecl Barlow et al. (1967) and Pettigrew et ar. (1962) to posturate anclinvestigate the involvement of cells in feline primary visual cortex in the computation ofbinocular disparities ancl hence - in the case of horizontal clisparities 
- of stereoscopicdepth' In the feline primary visual cortex, Pettigrew et al. (1g67) showecl that incliviclualsimple cells were tunecl to a range of horizontal disparities, while Ba¡low et al. (1962)clemonstrated that the t'pl,imal disparity varied significantly between neu¡onsr3. Thestereoscopic depth tuning properties of primary visual cortical neurons have since beenelaborated by a number of researchers for both monkey (see e.g. poggio et ar, (1ggg),Poggio (1930)) and cat (see e.g. LeVay & Voigr (1988)).

If the inputs from the left and right eyes are assumed to be processed increpenclentlyby linear spatiotemporal mechanisms prior to linear combination of the binocurar inputs,the output r(t) of the simple cell is given by

r(t) : l-*lr"t¡'(*,t-r)s7(æ,r) dæ * * l-*lro.r(*,t-r)sp(æ,r) dæ ctr (2.3)

where s¿ : V¿xìR -+ IR and sn : fnxR __+ lR represent the 3D stimulus as viewecl from the leftand right eyes respectively, tu¿ : V¿xlR.1 --+lR and wp:V¡-xìR1--+lR are the correspondingmonocular spatiotemporal RFps, ancl )/¿, fn C lR2 are the left- and right-eye visual fields.
lsalthough they cÌid not differentiate between simple, complex and hypercomplex cell types
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The pair: {-r,.n} will be referred to as the binocular spatiotemporal RFPra. Evidence

for linearity of binocular summation has been provided by Ohzawa & Freeman (1986)

and Freeman & Ohzawa (1990b; 1990a), who showed that the depenclence of the response

amplitude on the spatial phase offset between dichoptically presented drifting sinusoidal

gratings at the optimal orientation and spatial frecluency was approximately sinr.rsoiclal,

and exhibited a single phase at which response was (almost) completely suppressed. This

lesult was largely confirmed by Hammoncl (1991), with the exception that a few simple

cells were found to be largely insensitive to the interocular phase shift.

Ohzawa & Fleeman (1986) showed good agreement between theìr experimental results

and a linear model in which the spatial LWFs were identical for the left and r-ight eyes, but

offset by the optimal holizontal disparity for that cell. This model is in b.-oacl agleement

with the observations that the left and right eyes have similar spatial frequency and

orientation tuning (Freeman & Ohzawa, 1990a; Skottun & Freeman, i984) - although

see Hammond & Pomfrett (1990) - RFP organisation (Hubel & Wiesel, 1962), ancl

LWFs (Maske et al., 1984). However, by plotting the 2D RFPs fol left- and right-

eye monocular input using reverse correlation techniques similar to those of Jones &

Palmer (1987b), Freeman & Ohzawa (1990b) demonstrated that the left ancl right eye

spatial RFPs frequently cliffered, and in some cases the spatial orclering of the subfielcls

along the common axis of alternation was completely reversecl. They suggestecl that this

observation was more consistent with a model such as that of Nomura et al. (1990)15 in

which the alternating pattern of subfields - winclowecl in both eyes by a function such

as a Gaussian centred at zero disparity - was phase shiftecl by the optimal disparity of

the cell. However collocation of the windowing function rvas not explicitly tested.

To describe the relative strength of the inputs from the two eyes, Hubel & Wiesel

(1962) proposed the ocular dominance inder, according to which cells receiving exclu-

sive input from the contralateral or ipsilateral eye determined using monocular

stimulation - were assigned the extreme values 1 and 7 respectively, while intermediate

values signified somewhat coarsely the relative dominance of the two inputs. Nlonocular

experiments on the simple cells - such as those cited in previous sections - convention-

ally present stimuli to the dominant eye. Howêver, Hubel & Wiesel (1962) found that

some cells could only be activated by binocular input, suggesting nonlinear interaction

between inputs from the two eyes. Furthermore Freeman & Ohzawa (1990b) found that

simple cells which appeared exclusively monocular under monocular stimulation showed

clear evidence of input from the supposedly silent eye during binocular stimulation. The

laThe spatial component of this characterisation differs from the binocular recepliue feld defined by
Ohzawa & Freeman (1986), which is produced by ihe summation of the spatial RFPs of the left and right
eyes. Their model therefore fails to account for features which, either through an interocular difference
in the viewing perspective or through experimental manipulation, are not visible through one of the two
eyes.

15To be discussed further in Section 2.3.4.
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strength of this input varied little as the relative contrast of the stimulus to that eye was

valied over a 10-fold range, indicating the presence of independent gain contlol mech-

anisms for inputs to the two eyes. This latter observation suggests that monocularly

measu.-ecl ocular dominance is largely irrelevant to the binocular operation of the cell.

A more complete characterisation of the simple cell as a binocular device would in-

volve the cletermination of the binocular spatiotemporal Wiener kernels of the simple

cell for 5D stimuli expressible in terms of the three variables: left- and r-ight-eye po-

sitions tL,r,R€ IR2 and time l. Although insufficient to account for the temporally

non-stationary effects of contrast gain control, such an analysis may reveal more com-

plex details such as tuning for (possibly oblique) motion in depth (see e.g. Regan et al.

(1990)), and thereby indicate new directions of investigation.

2.2.6 Summary

In the foregoing discussion, the spatial, spectral, spatiotemporal and binocular recep-

tive field profiles of the simple cells have been clescribed, and the extent to which the

linear chalacterisation of the cell inherent in the notion of an RFP is valid has been

briefly addressed. It is concluded that with the appropriate reservations, the simple cell

may be viewed to a first approximation as a linear device characterised by its binocular
spatiotemporal RFP.

2.3 Gabor Function Models

2.3.1 SpatialRFP

Nlarðelja (1980) demonstrated a strong resemblance between simple cell LWFs ancl the

one-climensional (7D) real-aalueil Gabor functions (RGFs), which form the real and imag-

inary parts of the 1D Gabor functions. Given by the product of a Gaussian ancl a sinusoid,

the 1D Gabor functions were named in honour of Gabor (1946), who showed how they

can be used in the representation of 1D signals. The Gabor functions were generalised

by Daugman (1980; 1985), Kulikowski et al. (1982) and Watson & Ahumada (1983) to

two dimensions, by Heeger (1987) to 3D, and by Maclennan (199i) to n dimensions,

yielding the n-dimensional Gabor function g:R"--+Ç

g (*) t c' exp{ -zr I I s-' (' - *r)ll7} . exp{j 2tr uð' (r - ro) } (2.4)

where " denotes the transpose operator. Gabor functions are parameterisecl by the set

{to, S, uo,a\, where æ¡ € lR" is the location of the Gaussian centre, ,5 € Rf" is a

diagonal matrix whose ith diagonal entry s¿¿ is proportional to the stanclard deviation of
the Gaussian along the principal axis aligned with the ith coordinate axis, u6 € IR" is the



(oriented) spatial frequency vector in cycles per unit length, and ø € R is an amplitude

scaling factor. In two dimensions, for example,

,,:l'ol s:['" o.l ,o:["''lLr.l Lo,,l -" L",l

2l

rvith the as'pect ratio À A min{ff,fl}. The explicit notation g(æ;æo,S,uo,ø) will be

reserved for situations in which it is useful to emphasise this parameterisation.

The real and imaginary parts of. g(æ) are given by

n{g(t)} : ø'exp{-zrlls-'(t-*ùll3}'cos{2ru[(*-*o)] (2.5a)

S{g(r)} : a . exp{-zrllS-'(r -*o)lll} . sin{2zr u[(æ-æs)] (2.5b)

respectively, and will be referred to as the real-ualued Gabor functionsr6 (RGF). While

the principal axes of the Gaussians in (2.5) are aligned with bhe coorclinate axes,, the

sinusoid may have arbitrary orientation arg{zs}, with the result that the RGF is not

in general Cartesian separable. In a number of the 2D simple cell RFPs identifled by

Jones & Palmer (1987b), lack of Cartesian separability was evident as a progressive

displacement, across the RF, of the subfields in the direction of subfield elongation (see

e.g. Jones & Palmer (1987b, Fig. 2F)), as illustrated in Figure 2.1(h).

A simple generalisation of the Gabor function which is necessary to accommodate

the observed variety of simple cell 2D spatial RFPs involves the addition of two extra

degrees of freedom: a phase shift / € R of the sinusoid relative to the Gaussian centre

æ6 (Kulikowski et al., 1980; Watson & Ahumada, 1983; Field & Tolhurst, 1986); ancl a

rotational angle d € R"-1 between the principal axes of the Gaussian ancl the coorclinate

axes (Daugman, 1985; Jones & Palmer, 1987b, both in 2D). The resultant functions -
which will henceforth be referred to as generalised Gabor functions - are parameterised

by the set {æ6, S,rLo,0,ö,o} with 0,/ in radians, and are given by

, g(æ) a ø .exp{-r'11.9-'.8-e(*-ro)ll3} .""pUl2tru[(æ-æo) + ó)] (2.6)

where .R-e is the operator (matrix) performing a rotation through the angle -0. In two

climensions, for example,

R-

Bxcept where indicated otherwise, g(æ) is henceforth used to denote lhe generalised

version of the Gabor function. The real and imaginary parts of the generalised Gabor

16The term Gabor elemenlarg funclion was rêserved by Stork & Wilson (1990) for these real-valued
functions, but is generally used by others either interchangeably with the term Gabor function (Daug-
man, 1985) or to refer without distinction to either a Gabor function or its real and imaginary parts
(Marðelja, 1980). The new term real-aølued Gabor function has therefore been coined to avoid the
potential confusion arising from these conflicting conventions.

cos(0 ") - sin(0 
")

sin(O ") cos(O 
")
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function are given by

m{g(t)} : a'exp{-zrllS-' R--s(æ-*ùll3}'cos{2nu[(æ-æo) r ó] (2.7a)

3{g(r)} : c'exp{-r lls-' R-6(æ - *ùll7}'sin{2tru[(* -æo) * ó] (2.7b)

respectively, ancl are relatecl simply by a g0" phase shift in the sinusoiclal term. lVithout
loss of generality, it ìs therefore only necessary when fitting this model to a real spatial
RFP to consider the generalised RGF (GRGF) u(æ) L D{g/(r)}, with ,¿u:lR.'--+R having

/ as a free palameter. Examples of a 2D GRGF ale presented in Figures 2.3(a), (c) ancl

(").

The necessity of the above generalisation of the RGFs to arbitrary Gaussian orienta-
tion is most readily appreciatecl through an examination of the 2D spectral RFP, which
is the topic of Section 2.3.2. The need for a non-zero phase shift is eviclent for cases in
which the axis of subfield alternation in the spatial RFP shows approximate alignment
with a principal axis - the ith say - of the overall RF window, yet the RFP still fails
to exhibit the odd ot even symmetry about the hyperplane r¿ : [æo]¿ - perpenciicular
to that principal axis - which is preclicted by the two RGF moclels in (2.5) respectively.
Clear examples of such asymmetric RFPs are presented by Jones & Palmer (1g87a, Figs.
2E k 4B). Ironically however, despite the conclusion by Jones & Palmer (19S7b) that
"most simple receptive fields are neither even symmetric nor ocld symmetric", their re-
port is not infrequently cited in support of models requiring these symmetries (see e.g.
Koenderink & van Doorn (1990a)), and in image analysis applications - reviewecl in
Chapter 3 - in which only the original (odd- and even-symmetric) RGFs are usecl.

The frequent asymrnetry of simple cell RFPs - noted earlier by Kulikowski et al.
(1980) and Field & Tolhurst (1936) in connection with the LWF - limits the generality
of most existing models of the simple cell spatial RFP. Many such models are motivated
by the computational goals - discussed further in Sections 3.2 and 3.3 respectively of
detecting lines and edges in the visual image ancl of calculating directional spatial cleriva-

tives of the image contrast (although see e.g. Atick & Redlich (1gg0a)). According tó the
latter approach, the antisymmetric and symmetric RFPs with two ancl three subfielcls

respectively- illustrated in Figures 2.1(d) and (e) ancl commonlylabellecl as "eclge and
line cletectors"lT - a,re viewed as resulting from the application of cliscrete-space ap-
proximations of the first- and second-order directional derivative operators respectively
to the photoreceptor RFP, which is frequently modelled as a Gaussian. The resultant
Gaussian deriuatiue model (Gaussian-windowed Hermite polynomials) which was first
proposed and evaluated by Young (19S5) in lD, and later proposed inclependently by
Martens (1990) and Koenderink & van Doorn (1990a; 1990b) in 2D, as a moclel of the
LWF and RFP respectively, relies on these canonical symmetries. As will be seen in
Section 3.3 however, the generic fractional díscrirninant function model of Hungenahally

lTAlthough for reasons discussed later in Section 3.2 this terminology should be discouragecl
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(a) 2D GRGF (b) Fourier magnitude

o

(c) 2D GRGF (d) Fourier magnitude

(e) 2D GRGF (f) Fourier magnitude

Figure 2.3: Mesh and contour plots of a 2D GRGF with the common parameter values
(unit length given by 1 grid interval): to: [0,0]' (centre of grid), arg{ug} - 45o,

sm¿j : 17,7, and ì:0.667. Additional parameters are (a) lrol :0.0509, 0":45o, k
d : 180"; (") lzol : 0.0509, 0" :30o, k ó :60o; and (") lrol : 0.0382, 0" : 45o,
k ó : 90". (b),(d),(f) Magnitude of the Fourier transform of the RGFs illustrated in
(a),(c),(e) respectively. Note that only the odd-symmetric (sine-phase) GRGF exhibits
zero magnitude at spatial DC (centre of plot).
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et al. (1992; 1993) avoids this pitfall. Nevertheless all such directional derivative RFP
moclels proposed to date exhibit Cartesian separability, although this property need not
holct if for example the Gaussian derivative model were to be extended to the case of
anisotropic Gaussians.

Attempts to relate the RGF moclel of the simple cell spatial RFP to the theories

of cdgc ancl line detection ancl directional spatial clerivatives rlay have conLribuLecl to

the tendency to use only the odcl- ancl even-symmetric RGF moclels, despite the obvious

moclelling advantage conferred by the unused extra clegree of freedom. Although aware of
the existence of asymmetric RFPs, Mar'ðelja (1930) cited among other things the eviclent

utility of extracting lines and edges from the visual image as justification for his lD RGF
moclel. Similarly Sakitt & Barlow (1982) proposed an economical scheme for the cortical
representation of the visual image in terms of odd- and even-symmetric Gabor func-
tions, which were nevertheless referred to as "edge and bar detectors". Paler & Bowler
(1986) noted the similarity between the odd- and even-symmetric RGFs having 2 and

3 subfields18 and the Canny edge detector (Canny, 1986) and second Gaussian cleriva-

tive respectively. Pollen & Ronner (1983) on the othel hand preferred these canonical

symmetriesle on the basis of the mistaken belief that they are required for the optimally
efficient Gabor function decomposition of the image2O, once again despite being aware

that some simple cells exhibit an asymmetrical RFP. This view was probably motivated
by the localised Fourier analysis hypothesis of simple cell spatial information processing

as cliscussed in Section 3.4, since it is conventional - but not necessary - in Fourier
analysis to use sinusoids in strict sine and cosine phase.

Although Jones & Palmer (1987a) later fitted the GRGF moclel to their data, it is

important to note that the conclusions drawn by Jones & Palmer (19S7b) weïe - apart

from the assumption of spatial linearity - indepenclent of any particular model of the
simple cell RFP. This is an important point, since any conclusions drawn after the fitting
of a particular model would necessarily be dependent on the appropriateness of that
model. However, the lack of RF symmetry and of Cartesian separability clearly visible

in some of the simple cell RFPs identified by Jones & Palmer (1987b) was also reflected in
the parameters obtained by Jones & Palmer (1987a) after fitting the GRGF model to the

RFPs of 36 simple cells. In particular, the angle larg{øs}-g,l between the sinusoid and

the nearest principal axis of the Gaussi which is by definition in the range [0",45"]

- exceeded 20o for 7 of the 25 cells for which parameters were tabulated. Furthermore,
the phase angle l/l was distributed approximately uniformly over the range [0o,90o], as

opposed to clustering around 0o and 90o, which would be required - assuming Cartesian

18i.e. a Gaussian with relatively small standard deviation along the axis of subfield alternation, so
that only two or three subfields are prominent.

lealthough see Pollen et al. (1985).
20See Section 3.4.2 for further details.
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separability - to support the hypothesis that simple cells fall into the canonical ocld-

and even- symmetries. This latter result supports the similar finding reported by Fielcl

& Tolhurst (1986) for the simple cell LWF. The aspect ratio À for the cells testecl ranged

from 0.23 (strongly elongated) to 0.92 (almost round), with no absolubely preferred value.

The accur-acy of the fit provided by the GRGF moclel was later confirmed by Palmer

et al. (1991) using lms temporal resolution for the prespike time and selecting the time

bin at which maximum response was achieved, allaying possible concerns that the RFPs

obtained by Jones & Palmer (1987b) using 50ms time bins might be unlepresentative of

the instantaneous spatial structure in cases of spatiotemporally inseparable RFPs due

to blurring caused by subfield drift. However it should be poinbed out that neither

group observecl simple cells with more than three subfields. Although this fincling is not

surprising given the relative scarcity of such cells (Glezer et al., 1989), the relatively

small sample size used (36), and the average retinal eccentricityof the recordings (Jones

& Palmer, 1987b), it means that the GRGF model - although able to account at least

qualitatively for an arbitrary number of subfields - is as yet untriecl on simple cell 2D

RFPs having 4 or more subfields.

Problems with the GRGF Model

The principal objection to the GRGF model of the simple cell spatial RFP is that it has

infinite spatial extent or noncompact support (Maclennan, 1991) - albeit with rapiclly

diminishing weighting - and consequently an infinite number of zero crossings due to

the sinusoid (Stork & Wilson, 1990), as is evident from the zero-level contours in the

GRGF plots of Figures 2.3(a), (c) and (e). In contrast, the maximum number of subfields

recorded to date for a simplecell is 8 (Glezer et al., 1989). In reality however, no cell can

have a monocular RFP which exceeds the visual field for the corresponding eye, so that

truncation of any RFP model at the edge of the visual field is a practical necessity. In

view of the exhorbitant "wetware" (neural hardware) cost of providing feedforwarcl input

via the LGN to each simple cell from every photoreceptor2l, evolution might be expected

to prefer a more parsimonious solution in which the support of real RFPs would in fact

be significantly smaller than this again, especially in cases where the (measurably) non-

zero portion of the RFP subtends only a small portion of the visual field. However, the

recordings of Jones & Palmer (1987b) did not extend beyond a few standard cleviations

of the allegedly Gaussian window, and would almost certainly have requirect a prohibitive

number of stimulus cycles to reveal a non-zero weighting at this distance, so that the

exact behaviour of the window would be difficult to reveal experimentally.

A second potential objection to the GRGF model is that it fails to account for the encl-

stopping or hypercompler property exhibited by many cells classified as simple according

2lalthough lateral interactions between simple cells and feedback from subsequent cortical layers could
also contribute to the RFP. This possibility is discussed further in Chapter 7.
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to the criteria of Henry (1977) (Orban, 1991). "End-stopping" refers to the progressive

suppression of simple cell response (often in excess of 50%) as the length of an optimally
oriented bar is increased beyond its optimal value. To account for this behaviour using a

linear RF model, one would neecl to postulate the existence of inhibitory flanks at either or

both ends of the each excitatory RF subfielcl, a feature which cannot be accommoclatecl

by thc GRCF RFP model. Nevertheless, since end-stopping was not observecl ir the

identification experiments of Jones & Palmer (1987b), the possibility exists that this
phenomenon is a consequence of even-order spatial nonlinearities which are transparent to
the reverse-correlation identification technique and excluded by the linear definition of the

RFP. It remains however to demonstrate that simple cells exhibiting the hypercomplex

property were not systematically (albeit possibly inadvertently) excludecl from the sample

tested by Jones & Palmer (1987b).

2.3.2 SpectralRFP

The Fourier transform G:R'-C of the generalised Gabor function - where G(u) L
F{g(*)} and T denotes the Fourier transform (FT) - is given by

G(u) : a . exp{ -z' ll S R-e(u - uo)ll ? } "*pU l2n (u - uo)' æo + dl }

Using the notation G(u;to¡S¡uot0,tS,a) once again to emphasise the parameterisation,
the Fourier transform ltrl:R"--+C of the GRGF w(æ) can be expressed as

W(") ê f{m{g(r)}} : G(u;æs,5,uo,0,ó,;) * G(u;a,o¡5,-r0o10,-ó,i) (2.s)

The Fourier transforms of the RGFs in (2.5) are special cases of (2.8) in which ö :0o
and / : 90o respectively and 0 : O. VV(u) consists of two Gaussians centred at z6 and

-z¡ and modulated by sinusoids having phase / and -/ respectively at the Gaussian

centres, and "frequency" æs. The magnitude of W@) in (2.8) can be derived using the

fact that lw(u)l' : W(u)W-(r) - where | 
. I and * denote the complex magnitucle and

conjugate respectively - and by noting that

W. (u) : G(u; -ao, S,uo) 0, -ó, ) + G(u; -æo,, Sr -uo,0, ó,
a

,

Three examples of the Fourier magnitude of a GRGF are presented in Figures 2.3(b),

(d) and (f).

The comprehensive investigation of the magnitude of the simple cell 2D spectral RFP
undertaken by Jones et al. (1987) revealed not onlf the polar inseparability of the RFP,

but also in some cases its Cartesian inseparability, evident as a lack of radial alignment
of any principal axis of the spectral window in the 2D spectral plane. However contrary
to the predictions of horizontal or vertical alignment derived from the RGF model, these

axes were mostly in approrimateradial alignment, indicating the need for the rotational

a,

t
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angle 0 introduced in (2.7). These observations are once again independent of any

particular model of the 2D spectral RFP.

The ability of the RGF model of the spatial RFP to describe also the spatial frequency

tuning properties of the simple cells was demonstrated in 1D by Nlarðelja (1980) for

spatial frequency magnitude, and suggested in 2D by Daugman (1980) for 2D spatial

frequency (magnibude ancl orientation). Visual inspection by Jones & Palmer (1987a) of

the error after the least-squares fit of the GRGF model to the Fourier magnitude clata

obtained by Jones et al. (1987) revealecl no obvious residual spectlal structure, providing

snpport lor lV (u) - the FT of the GRGF - as a model of the simple cell spectral

RFP. A comparison of the GRGF parameters estimated from fits to the spatial ancl

spectral RFPs of each of 25 simple cells also showec{ broad agreement between palameter

estimates. The two principal exceptions to this general agreement were poor agreement

of the phase estimates and a consistent tendency for the estimates of the Gaussian space

constants srr obtained from the spectral data to be larger than those obtained in the

spatial domain. The latter phenomenon is discussed in Section 2.3.3.

Problems with the GRGF ModeL

The comparison by Jones & Palmer (1987a) between the estimates of the sinusoiclal

phase parameter / obtainecl from the spatial and spectral RFPs for indiviclual simple

cells however revealed little correlation between these two estimates, and a tendency for

the spectral estimate to lie closer to or - in the case of 6 of the 25 cells for which

clata was tabulated - exactly at 90o. This same effect was noted also in the monkey

by Hawken & Parker (1987), who fitted the lD GRGF model to the spatial frecluency

contrast sensitivity tuning curve. They pointed out that the Gabor function model

tended to consistently over-estimate the contrast sensitivity at low spatial frequencies,

and that d : 90" gave the best least-squares fit probably because it provided the sharpest

low-frequency roll-off of all the GRGFs. Furthermore ó - 90o is the only phase which

predicts the zero Ìesponse to spatial DC (uniform illumination) commonly reported for

simple cells (Stork & Wilson, 1990); compare for example Figures 2.3(b) and (d) with

Figure 2.3(f).

In the case of Hawken & Parker (1987), who measured the contrast required to

elicit a mean response which was 2 standard deviations above the spontaneous activity

of the cell, it is possible that the rate of low-frequency roll-off was overestimated clue

to the nonlinear effects noted by Palmer et al. (1991). In particular, if in adclition

to the sinusoidal response modulation expected for such a stimulus the grating also

suppressed the 'mean activity in a frequency-depenclent manner, the stimulus contrast

required to elicit the specified mean response could well have been overstated at low

frequencies, and hence the contrast sensitivity underestimated. Although Nlovshon et al,

(1978a) reported qualitative agreement between tuning curves obtained for the same cell
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using both the fundamental Fourier component of the temporal response and the grating
contrast required to elicit the smallest cliscernible response, the response criterion usecl

by Hawken & Parker (1987) may have been slightly higher, enhancing the effect of the

nonlinearity. Nevertheless, this explanation accounts for neither the poor agreement

of the spatial and spectral phase estimates observed by Jones & Palmer (1987a), who

usecl the fundamental of the temporal response to obtain the spcctral RFP, nol for
the consistent overestimation - based on the spatial RFP - of the spectral wiclth
parameters. Thus it is appears more likely that nonlinear mechanisms are acting to limit
the extent of the spectral RFP even in the absence of the eìevated mean firing rate used

by Palmeret al. (1991), and it is therefole not possible to cliscount the GRGF as a model

of the spatial RFP of the simple cell on the basis of the above spectral observations. Such

mechanisms would be consistent with the model-independent observation by Westheimer

(1984) that the line weighting functions of simple cells rarely exhibit a sufficient number

of subfielcls to account for the nalrowness of the observed spatial frequency tuning curve.

Nevertheless, despite the apparent scarcity of models of the simple cell spatial ancl

spectral 2D RFPs which exhibit sufficient degrees of freeclom to even warrant an attempt
at fitting them to the experimental data (Jones, 1991), the investigation by Jones &
Palmer (1987a) is open to the criticism that no alternative models were tried (Stork &
Wilson, 1990). The Fourier transform of an alternative model of the 2D spatial RFP
rvas shown by Hawken & Parker (1987) to account in a much more satisfactory manner

than the 1D GRGF model for the fall-off of the contrast sensitivity function of the simple

cell at low grating spatial frequency. According to the Difference of Offset Differe.nce-of-

Gaussian (DOODOG) model proposed by Hawken & Parker (1987) in lD - but readily
generalisable to 2D - and based on a suggestion originally by Hubel & Wiesel (1962),

each RF subfield consists of input from the LGN having the familiar centre-surrouncl

difference-of-Gaussians (DOG) RFP (see e.g. Wright & Ikecla (1973)). The ovcrall simplc
cell RFP results from the linear combination of such RFPs with appropriate sign ancl

spatial offset, and - in the 2D case - alignment to produce the corresponding elongatecl

RF subfields. Cartesian inseparability is readily introduced in the 2D generalisation hy

weighting the inputs along the direction of subfield elongation differently for each subfield.

However, despite the appeal of the spatial domain version of this model - which stems

from its more direct reflection of the RF properties of the geniculocortical inputs to

the simple cells - it has been shown that such a model cannot alone account for the

2D spatial frequency tuning properties of the simple cells (Webster & de Valois, 1985;

Wörgötter & Koch, 1991). Furthermore, no direct fit of this model to the spatial RFP of
the simple cell was attempted, and given the established lack of residual structure after
such a fit for the 2D GRGF, there is no reason to believe that the DOODOG model

might provide a better description of the simple cell spatial RFP.
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2.3.3 Optimal Joint Localisation

lVeyl's (1932) Uncertui,nty Principle - which was also derivecl independently by Gabor

(1946) in the context of communication theory - imposes a fundamental limit on the

extent to which the energy distributions l/(æ)12 and lV(t)12 of any lD function r/ :R. --+C

and its Four-ier tlansform ü :lR --+ C can be simultaneously concentratecl or localised in

the spatial ancl spatial-frequency domains respectively. This principle was extended by

Daugman (1985) to functions of two climensions, and later generalisecl inclependently by

Wechsler (1990) and Nlaclennan (1991) to functions ry' :R"--+ C in n climensions ancl theil
Fourier tlansforms ü:lR"--+C. The generalisecl Uncertainty Principle may be statecl as

1

4r
Vie{1 ...n}CZ+ (2.e)

with

Lx¡ a

Lu¿ a

/A("0 -¡o)'þþ(æ)12 dæ

IT-ltþ(æ)\'?dæ

/å ('rn - an)' l,{t (u)12 du
(2.10b)

lÎ*l{t(u)1'zdu

where :xi)l.¿i are the ith components of the spatial and spatial frequency vectors æ, z € IR."

respectively, u¿ is in cycles per unit length, and

Aiti : [T*r,þþ(æ)l'd*

Au¿:
[?*ltþ(æ)\'?dæ

.[A u;l!ú(u)l' du

lï,-lut(u)\'zdu

are the centroids of the distributions obtained by integrating the original energy distri-

btrtions over all other dimensions j + i. Ar; and Az¿ provide measures of the spatial

and spectral spread of the energy distribution of the function in the ith clirection, while

the product of their inverses is a corresponding measure of its joi,nt localisation. The

necessary but insufficient condition

uAL,r

(2.10a)

fl Az¿Au¿ >
1

4"

n

i=1

n

for (2.9) is sometimes presented as an alternative statement of this generalised Uncer-

tainty Principle (see e.g. Wechsler (1990)).

Weyl (1932) showed that in one dimension (1D), the class of functions for which the

equality in (2.9) holds consists of those expressible as the procluct of a Gaussian and a

sinusoid, which would later come to be known as the Gabor functions. Satisfaction by the

Gabor functions of the equality in (2.9) for all i was asserted by Kulikowski et al. (1982)

for the 2D case, and later proven by Daugman (1985) for 2D and Maclennan (1991) for
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nD. A phase shift /, although not explicitly consiclerecl in these proofs, does not affect

this optimal joint localisation property of the nD Gabor functions since the sinusoidal
term vanishes when the complex moclulus is computecl in (2.10). Furthermore rvhile

uniclueness of this property to the nD Gabor functions lvas not demonstrated, it follows
simply fi'om the 1D case by noting that in orcler to satisfy the ith equality in (2.9), the
1D energy distribution formed by integrating over all othcr climensions 7 f d must itself
be that of a Gabor function (possibly with us : 0). The r-ecluirement for satisfaction of
the equality in (2.9) for all i therefore uniquely specifies the set of generalised nD Gabor
functions for rvhich the principal axes of the Gaussian are aligned with the coordinate
AXES.

The Gabor functions represent a continuum in the inevitable tracle-off between spatial
ancl spectral localisation, with the pure spatial and spectlal (Fourier) domain repÌesen-

tations constituting its two extremes. An important aclvantage, according to Daugman
(1989b), of a representation of the visual scene using the 2D Gabor functions is that it
therefore

. . . facilitates the extraction of local 2D spectral information (textule, scale,

axes of moclulation) without loss of information about 2D location or metrical
lelationships.

permitting for example the spatial segmentation of the visual image into regions clefined

by clistinct textural (spectral) signatures, with optimal spatial localisation of the texture
boundaries in each spectral band.

However, as indicated by Stork & Wilson (1990) for the 1D case, the GRGFs do not
exhibit the optimal joint localisation permitted by (2.9). This is a consequence of the
fact - demonstrated by Papoulis (1968, p. 197) for the 2D case - that any real-ualued

function minimising the localisation about the hyperplane r¡ : 0 is Cartesian separable

ancl has a Gaussian form along the other coorclinate axes; simultaneous optimisation
by a real function of the joint localisation about all hyperplanes r¿ : 0 is therefore
only achieved by a Gaussian whose principal axes a,re aligned with the coordinate axes.

iVlotivated by the sketch of a proof provided by Gabor (1946), Stork & Wilson (1990)

claimed to have shown that the 1D functions achieving local minima of the procluct

of the spatial and spectral spreads defined in (2.10) are the derivatives of a Gaussian,

of which the Gaussian itself is a special case. Their proof has since been criticised on

two counts. Yang (1992) pointed out that the functions which satisfy the first-order
conditions for a local optimum are Gaussian-windowed Hermite polynomials in which
the standard deviation of the Gaussian is greater by a factor of ¡/2 than that of the
Gaussian derivatives mistakenly proposed by Stork & Wilson (1990). More importantly,
however, Yang (1992) argued that both Gabor (1946) and Stork & Wilson (1990) had

failed to check the second-order conditions for a local optimum, and based on empirical
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evidence provided by Klein & Beutter (1992), he concluded that these functions in fact

constituted saddle points for the joint uncertainty measure. Klein & Beutter (1992)

furthermore showed that under a loose restriction on bhe class of permissible spatial

RFP functions, the Gaussian-windowed Hermite polynomials, with the exception of the

Gaussian itself, give local 'marima of the joint uncertainty. Thus in addition to the

objections to the derivative-of-Gaussian model raisecl in Section 2.3.7, the first orcler

derivative exhibits a joint splead which exceeds the theoretical minimum by at least

an orcler of magnitude (Stork & Wilson, 1990, Fig.3), and this factor increases as the

delivative order or the standard deviation of the Gaussian increases. Nevertheless, the

GRGFs exhibit similarly poor joint localisation.

In order for the optimal joint localisation property of the Gabor functions to have any

relevance to the eally visual processing performed by the simple cells, it is necessary to

show that the simple cell layer might feasibly implement compler-ualued Gabor functions.

Given the already-established resemblance between the GRGFs ancl the RFPs of the

simple cells, the only feasible22 scheme by which this might be achievecl involves the

direct implementation of the real and imaginary parts of each generalised Gabor function

by a pair of simple cells whose spatial RFPs are respectively describecl by the GRGF

pair

w(æ1æs,5,us,0, ó ,a) (2.11a)

w(æ;æs, S,us,0, ó+i ,a) (2.11b)

in spatial phase quadrature. To allow for the approximate half-wave rectification exhib-

ited by simple cells, this basic scheme was augmented by Pollen & Ronner (1981; 1982;

1983) - for the case ó : 0 - to include a second pair of simple cells in antiphase to the

first with RFPs given respectively by

w(æ;æs, S,us,0, ó+n ,a) (2.I2a)

w(æ;æs, S,us,O, ó++ ,a) (2.12b)

Pollen & Ronner (1981) reported evidence for pairs of adjacent feline simple cells showing

the quadrature relationship required by both (2.11) and (2.12) between their preferred

phases at the optimal grating spatial frequency (magnitude and phase). Approximate

phase quadrature was observed for all simple cell pairs for which two clistinct responses

could be isolated from a single-electrode recording. The same procedure was also used

by Foster et al. (1983) to demonstrate the existence of antiphase simple cell pairs hav-

ing approximately odd-symmetric RFPs. In both cases, some leeway was permitted

22The only conceivable alternative involves the alternate signaling of the real and imaginary parts of
the inner product of the RFP with the image by a single simple cell. Justification for such a scheme

might be derived from the observed translation of the pattern of subfield alternation with pre-spike
time, as described in Section 2.2.4. However, since any such scheme would work only for stationary or
near-stationary stimuli, this alternative will not be afforded further consideration.
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in the comparison of optimal orientation (+5"), spatial frequency (+0.25 octaves) ancl

phase (+10"), and the spatial frequency tuning crlrves were not quantitatively comparecl.
However, if - as these observations suggest - the scheme proposed by Pollen & Ron-
ner (1981) is incleed implementecl by the simple cells, high precision in the necessa¡y

relationships between both the phase and non-phase parameters of acljacent simple cells
shotrlcl not bc cxpcctcd, since accorcling to the Pritzcipte of Slop,p'y Worlcrnanslzip (Hug-
gins & Licklicler, 1951; Grzywacz k Yuille, 1990) - restated by Maclennan (1gg2a)

as the Robttstness Principle - the success of any computational scheme involving r.eal

netlrons should not rely heavily on precision of mathematical detail. Nevertheless, the
small numbel of cell pairs identified by these two groups as having the requilecl phase

relationships (12 and 4 respectively), the atypicality of the recording situation in which
these relationships are observed (Pollen & Ronner, 1981), and the lack of inclepenclent

confirmation of these results collectively raise doubts concerning the ubiquity of their ob-

servations (Stork & Wilson, 1990). It is notable therefore that in his recent clefence of the
biological implementation of complex-valued Gabor functions, Daugman (1gg3) sought
and provided no new evidence in favour of the existence of the requisite quaclrature-phase

simple cell pairs.

As established earlier however, achievement of the optimal joint localisation permittecl
by (2.9) also requires alignment of the Gaussian component of each Gabor function with
the coordinate axes, a requirement which conflicts with the observation by Jones et al.
(1987) of approximate radial alignment of the simple cell spectral RFP. In general no

single rotation of the coordinate axes can be found which allows simultaneous optimal
joint localisation for all biologically relevant generalised Gabor functions. Thus even if
we assttme that the simple cells implement complex-valued generalised Gabor functions

- by the above scheme or any other - they cannot collectively exhibit the optimal joint
spatial and spectral localisation permitted by (2.g).

Assuming that the virtues of optimal joint spatial ancl spectral localisation extollecl
by Daugman (1989b) are nonetheless desirable, then rather than cliscounting the GRGF
as a model of the simple cell RFP, the observed orientation depenclence of the joint lo-
calisation measure in (2.9) points to a deficiency in the component-wise measure clefinecl

in (2.10) of the spreacl of the energy distribution. Introduced by Daugman (198b) and
adopted by both Wechsler (1990) and Maclennan (1991), this generalised measure is the
square root of the second moment of the energy distribution of the function about the
hyperplane ïi : 0 (uo :0). The relevance of the corresponding joint localisation mea-
sure to biological vision has been questioned by Stork & Wilson (1990), who presented
several alternative 1D localisation measures for which there appears to be no less a'priori
biological justification, and which are not optimised by the GRGFs. The generalisation
of such alternative lD localisation measures to nD should however avoicl a component-
wise definition - such as that in (2.10) - of the spread of the energy distribution, since
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any such localisation measure will suffel from the same orientation clependence as that

exhibited by the particular uncertainty principle in (2.9). The component-rvise nD ex-

tension by lVechsler (1990) of the joint entropic uncertaintyproposed by Leipnik (1959),

for example, is optimised only by the nD Gabor functions lvith unlotatecl Gaussians.

Spatial localisation of the RFP accorcling to some suitable localisation measure is

likely to be important in reducing the biological cost of ploviding neural intelconnections

to support it. However, the r-esults of Palmel et al. (1991) cliscussecl in the previous

section strggest that spectral localisation is enhanced by nonlineør mechanisms, r,vhich

are not amenable to analysis using localisation measures based on the Foulier tlansform of

the spatial RFP. This nonlinear enhancement of the spectral localisation lvas confirmed by

Jones & Palmer (1987a) and Palmer et al. (1991), who plotted the effective areas Ar1Ar2
and Au1Au2 occupied by the best fitting GRGFs fbr the spatial and spectral RFPs

respectively of the same simple cell, and found that many cells exhibited consiclelably

betterjoint localisation than the theoretical optimum dictated by (2.9). This observation,

which is difficult to discount simply on the basis of experimental or clata-fitting errors

since the joint localisation of any given GRGF is at least an order of magnitude uorse

than this theoretical optimum (Stork & lVilson, 1990, Fig. 3), is therefole especially

damning for joint localisation analyses based on assumptions of spatial linearity.

2.3.4 SpatiotemporalRFP

The 2D spatial RFP obtained by Jones & Palmer (1987b) and Palmer et al. (1991) for

each simple cell was strictly the integral of the 3D spatiotemporal RFP over the prespike

time bin - of width 50ms and 1ms respectively - for which the strongest overall lesponse

was obtained. These time "slices" however constitute an incomplete characterisation of

the linear behaviour of the simple cell, since they reveal nothing about the temporal

structure of the spatiotemporal RFP, and for those simple cells which exhibit Cartesian

inseparability of their spatiotemporal RFP, provide an inadecluate description of even

the spatial dependence. Nevertheless since these time "slices" are well characterisecl by

the 2D spatial GRGF model, this model is commonly used as a starting point 1'or a more

complete description of the 3D spatiotemporal RFP of the simple cell.

The most direct extension of the nD spatial GRGF is the nt1 climensional GRGF

tu(æ) whose spatiotemporal argument æ : læ',1]t 6 p"+t is the concatentation of the

spatial variable atl € IR" and the temporal variable ¿ € R.. First suggested by Adelson

& Bergen (1985) for one spatial dimension (n:1) and / : 0, the corresponding spa-

tiotemporal model is in general Cartesian inseparable23, exhibiting the type of orientecl

spatiotemporal subfields demonstratecl by Mclean & Palmer (1989) for a section of the

23although the corresponding spatiotemporal Gabor function 9(æ) in its complex form is Cartesian
separable.
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3D spatiotemporal simple cell RFP along the axis of subfieìcl alternation. This property
is not for example shared by the Cartesian sepalable Gaussian clerivative RFP model
ploposed by Nlaltens (1990). The spatiotemporal GRGF model has since been extended
to n:2 spatial dimensions by Heeger (1987), and to arbitrary spatial dimensions by
Nlaclerrnan (1991), in both cases for ó:0. To clate however, no attempt appears to
have been made to fit this moclel to the simple cell spatiotemporal RFp.

Unlike the iclea,l velocity-selective filter, which is a plane passing through the origin in
the spatiotemporal frecluency clomain, the GRGF is tunecl to a Gaussian-shapecl region

of the spatiotemporal frequency clomain. Since any quadrature-phase pair (2.11) of spa-

tiotemporal GRGFs approximate a Hilbert transform pair (Adelson & Bergen, 1985), the
outputs of a quaclrature pair may be squared and aclcled to calculate an approximation
to the motion energA (Adelson & Bergen, 1985) of the visual scene in the spatiotemporal
frecluency band to which the pair is tuned. The approximate stimulus velocity can then
be inferrecl from the or.ttputs of the corresponcling Gabor motion energy filters (Heeger,

1987; Glzywacz k Yuille, 1990), The existence of such quadrature-phase spatiotemporal

GRGF pairs amongst the simple cells - which has however yet to be established -
woulcl also lend credence to the invocation by lVlaclennan (1991) of the 3D spatiotempo-
ral Uncertainty Principle (2.9) in justification of the possible use of these 3D GRGFs by
the simple cells. However, this principle remains unable to account for GRGFs having
Gaussians not aligned with the coordinate axes.

A major problem with the GRGF model of the spatiotemporal RFP of the simple
cell is that it is non-causøl, so that the current output of the cell is dependent on future
inputs. However, the effect of truncation at the plane ú: 0 to ensure causality will be

negligible provided the temporal centre of the GRGF is located sufficiently far into pos-

itive time. An alternative model of the simple cell spatiotemporal RFP which cloes not
violate the causality constraint is that of Watson & Ahumada (1983; 1985), who usecl

a GRGF ancl a gamma function respectively as the spatial and temporal components

of a separable spatiotemporal filter. Whilst this filter is not by itself direction selective,

the linear combination of the outputs of the corresponding filter and its spatiotemporal
Hilbert transform - whose spartial deprentlence is approximated by a 2D spatial GRGF
in quadrature phase to the first - results in an output which is both direction selective

and appropriately tuned to spatiotemporal frequency. The separable filter producecl by
the Hilbert transform of the original is however non-causal, and truncation at ú : 0 is
once again required. With this modification, the two separable fllters and the resul-

tant inseparable filter are respectively plausible models of the spatiotemporal RFPs of
direction-symmetric and direction selective simple cells.
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2.3.5 Binocular RFP

The GRGF moclel of the binocular RFP of the simple cell proposecl by Nomura et al.

(i990) uses the pair of 1D GRGFs

-r(*;to¡ S,,uo)0 j ó ,,ct) (2.13a)

wn(æ;tot S,uo,0 t ó+d6 ,a) (2,13b)

lvhose parameters are iclentical except for a sinusoidal phase shift ó/ to clescribe

the left- and right-eye receptive field profiles of a given simple cell. In particr.rlar, the

Gaussians of the two RFPs are centred at the same retinal coor-clinates in the left and

right eyes - i.e. at zero letinal dispari,ty - while the phase shift á/ is used to control the

clepth - relative to the current point of fixation - to which the cell is optimally tuned.

The phase shift is therefore observable as an interocular shift of the RF subfields relative

to the common Gaussian, in general agleement with the experimental observations of

Freeman & Ohzawa (1990b). With appropriate choices of the parameters 6$,'us, s ancl

the output threshold, this model was found to account well for the different types of

depth tuning reported by Poggio & Fischer (1977) and revised by Poggio et al. (1988) -
viz. tuned excitatory (Ttr), tuned inhibitory (TI), near, far, tuned near, and tuned far.

well as the corresponding degree of ocular dominance. This model also accounts

in a natural way for the intermediate types of depth tuning reported by LeVay & Voigt

(1988), suggesting that the above depth tuning categories may represent a somewhat

artificial division of a continuum formed by the continuous variation of the parameters

in (2.13).

In addition to successfully accounting for the tuning of simple cells to stereoscopic

clepth via horizont¿l binocular disparity, the above phase-shifted GRGF moclel of the

binocular spatial RFP also precticts - given the approximately uniform distribution of

orientation preference amongst the simple cells - the additional tuning of cells in primary

visual cortex to vertical disparities as observed by Barlow et al. (1967). However, the

computational role of vertical disparity sensitivity in early vision remains unclear.

2.3.6 Summary

It was argued in Section 2.2 thal with the appropriate reservations, the simple cell may

be treated to a first approximation as a linear device characterised by its binocular

spatiotemporal RFP. In the present section, it has been shown that the monocular spatial

form of this RFP is well described by a two-dimensional generalised real-valuecl Gabor

function (GRGF), and that this model can be naturally extended to incorporate both

the spatiotemporal and binocular behaviour of the cell, facilitating an understancling of

the computational role of the simpie cell in these augmented clomains. Poor agreement

between two key parameters derived from the Fourier transform of the GRGF which
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best describes the spatial RFP and the best-fit GRGP for the experimentally determinec{

spectral RFP is at least in part attributable to the action of nonlinear mechanisms, and

does not in itself invalidate the GRGF moclel of the spatial RFP. The component-wise

nD extension of Weyl's (1932) 1D Uncertainty Principle commonly used as justification
I'or the complex-valuecl Gabor function RFP model has been shown to be inapplicable
for realistic choices of the GRGF parameters, thereby releasing the modellel from the
need to maintain the unrealistic assumption of inflnite spatiotemporal support for the
R,FP.

2.4 Conclusion

Visual stimuli presented within the receptive fielcl of the simple cell are in general sub-
jected to nonlinear binocular spatiotemporal processing, the linear component of which is

characterised by the binocular spatiotemporal RFP, Whilst the approximation involved
in neglecting the second- and higher-order terms of a complete nonlinear characterisation

of this processing has yet to be quantified, it has been argued here that the RFP accounts

at least qualitatively for a number of the experimental observations concerning simple
cell processing of visual stimuli. The monocular spatial RFP, to which (as will be seen in
the next chapter) consideration is frequently restricted, is strictly speaking only defined

in the case where the chosen monocular spatiotemporal RFP is Cartesian separable into
temporal and spatial components. Nevertheless, to the extent that such a characteri-
sation is valid, the GRGF is arguably the best, and certainly the most extensively and

accurately tested, moclel of the simple cell spatial RFP proposed to date.



Chapter III

ON THE COMPUTATIONAT ROLE OF THE SIMPLE
CELLS

3.1 Introduction

In the plevious chapter, it was established that a simple cell may to a first approxima-

tion be treatecl as a linear clevice charactelised by its binocular spatiotemporal RFP.

This characterisation suggests a role fol the simple cells in the processing and encoding

of information regarding the spatial form, motion and stereoscopic depth of the visual

stimulus. What is lacking, however, is a unified theory of simple cell processing which pro-

vicles both a realistic model of the binocular spatiotemporal RFP, and an account of the

variation of the model parameters over the simple cell population. Indeed expelimentally

testable candidates for the first essential ingredient of such a theory are conspicuously

absent. The limitecl and largely qualitative nature of experimental eviclence in favour

of RFP models which address even the binocular spatial or monocular spatiotemporal

clomains furthermore suggests that consideration should in the mean time be restricted

to the monocular spatial domain, where the GRGF moclel enjoys comparatively strong

experimental support (Jones et al., 1987).

Vlotivated initially by theories postulating a role for the simple cells in a local Fourier

analysis of the visual image, the GRGF model of the monocular spatial RFP presented

in Section 2.3.1 has been appropriated by a number of competing theories of the com-

putational role of the simple cells, ranging from edge- and line-detection, through the

computation of spatial derivatives, to multiresolution image analysis. In the search for a

realistic and unified theory of simple cell processing, the present discussion is restricted

primarily to theories which use either the GRGF or a similarly realistic moclel of the

monocular spatial RFP of the simple cell, and which could conceivably account for the

experimentally observed variety of spatial RFPs.

An important proviso on the restriction of attention to the spatial domain is the

fact that the isolated consideration of monocular spatial processing to the exclusion of

the binocular and temporal domains may, as noted in the previous chapter, overlook

potentially important features of simple cell processing, such as the encoding of motion

in depth. However it should be noted in mitigation that at least some proportion of the

simple cells may be either monocular or motion-insensitive up to a first-orcler (linear)
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characterisation. The extent of ovellap of these tlvo populations (if incleecl they form
distinct populations at all) and the relative contribution of this overlap to the overall
simple cell population is however unclear. In general therefore, theories which lesult fi.om

purely spatial clescriptions of the simple cells are at best incomplete, and await futur-e

extension to the binocular spatiotemporal domain.

3.1.1 Bottom-ttp vs. Top-clown

The recluirement that any suitable theory of simple cell processing should provide an

acculate account of experimentally observed RFPs and their variety is in line with the
analytic approach to early vision characteristic of the nascent field oT computational
neuroscience, accorcling to which theories of vision involving the simple cells, for example,
shoulcl be based on an accurate empirical cletermination of what they compute (Palmer
et al., 1991). Such theories often assume little or nothing about the subsequent processing

of the simple cell outputs other than that the representation of the retinal image at this
level should be perceptually complete (Daugman, 1990; Geisler & Hamilton, lg86), so

that no spatial contrast information which is known to be used by higher level perceptual
processes is removed by the simple cells. This approach can be described as bottom-up,

in the sense that theories of higher level processing are dependent on accurate knowledge

of the processing performed by earlier stages in the visual pathway.

An alternative top-down oÍ syntheti,c approach to vision proposed and strongly advo-

cated by Marr (1982) requires that one first decide what is to be computedby a particular
visual subsystem and only then decide how it might be computed by the available neu-

ral hardware implicated in that visual task. In the interests of parsimony, RFP models

resulting from such hypotheses concerning, for example, the role of the simple cells in a

given computational task generally exhibit the minimum number of degrees of freedom

necessary to fulfil the purported role. The simple cell model used by the Boundary Con-

tour Systern (Grossberg et al., 1989; Shapley et al., 1990) is for example odd symmetric
ancl varies only in its preferred orientation. Since the number of degrees of freeclom re-

quired - and in some cascs pcrmitted - by RFP models resulting from the top-down

approach falls far short of the number observecl by Jones & Palmer (19S7b) in real simple
cells, these models provide at best an incomplete explanation of the computational role
of the simple cells in early vision. Different top-down hypotheses may also lead to either
irreconcilable models of the simple cell RFP or irreconcilable schemes fol the system-

atic variation of certain RFP parameters over the simple cell population, so that the
associated computational schemes could only be subserved in the same visual system by
two or more mutually exclusive or only partially overlapping populations of simple cells.

Since the aim of the present exposition is to examine theories which attempt to provide

a realistic ancl unifying account of the form and variety of simple cell spatial RFPs, most
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top-down models are therefore automatically excluded from considerationl.

3.1.2 Qualifred Completeness

The requirement of most bottom-up theories that the representation of the visual image

by the simple cells be complete is necessarily subject to limitations imposed by the

mechanisms by lvhich the visual scene is converted into a retinal and subsequently cortical

image. We assume for simplicity an array of photoreceptors whose RFPs are clescribecl

by ihe function å :R 2 --+ R. centred at possibly non-uniformly spaced visual angles æ¡ € 5.

The letinal image b(æ¿,t) - where b:5xR --+ IR - is computecl by spatially colrelating

the monocularly viewed stimulus s(n,t) with the low-pass spatial filter kernel Ä(æ), and

then sampling the resultant image2 at the retinal coordinates corresponding to the visual

angles æ; € E. The retinal image can therefore be expressed as

b(æ¡,t) : lh * s)(æ¿,t) (3.1)

where * denotes the spatial correlation operation such that

[å * s](c, Ð = lrh@- æ)s(ñ,t) dû (3 2)

If the retinal sampling is assumed to be spatially uniform, the photoreceptor RFP á

can be viewed as the kernel of. an anti-aliaáing filter (Geisler & Hamilton, 1986), which

serves to limit the destructive effect of aliasing caused by retinal sampling3. This vier,v

necessitates a qualification of the concept of completeness as it applies to the simple

cell representation of the visual image, since only the correspondingly spatially low-pass

filtered and possibly aliased version ,õ(ø,ú) of the visual stimulus s(æ,t) is available for

encoding by subsequent processing stages. Except where otherwise stated, this qualifi-

cation is assumed to be implicit in the following discussions.

The output r(/) of a simple cell having retino-cortical spatial weighting function

c:5 --+ R is then given by

r(¿) : \ c(æ¿)b(æ¡,t)
@t€.5

lAs a philosophical aside however, a combination of the top-down and bottom-up approaches is
probably necessary to significantly further our understanding of biological vision systems. In practice
for example, neither approach can or should avoid the iterative loop linking the development of visual
theory with the testing of the predictions of that theory against electrophysiological observation. This
loop is useful both in guiding the development of top-down algorithms which have a plausible neural
implementation, and in avoiding the bottom-up modelling of details of the RFP which are not crucial
ot are even irrelevant to the functioning of the complete visual system.

2This conceptual division of the imaging process into two distinct stages is merely an artefact of
the mathematical formalisation, and is not intended to imply the existence of correspondingly distinct
physical processes.

3There is evidence to suggest that at least in primates, optical diffraction may impose a more severe

anbi-aliasing effect on early vision than the photoreceptor RFP (Levick, 1993); however, this observation
does not qualitatively affect the ensuing conclusion.
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I c(æ¿)h(r-*o) s(æ,t) dæ (3 3)
æ, €S

where the expression in (3.3) is obtained by substituting for b(æ¿,t) using (3.1), expancling

the corlelation using (3.2), and revelsing the order of the (finite) sum and the (well-
behavecl) integral. Comparison of (3.3) with (2,1) r'eveals that the spatial RFP u(æ) of
the simple cell is given by

w(æ): \ c(æ;)h(*-æ;) (3.4)
o;€5

The simple cell spatial RFP is therefore given by the convolution of the photoreceptor

RFP /¿ with the weightecl, possibly irregular "bed-of-nails" function c. For evenly spacecl

sampling points, the former may be viewecl as a reconstructior¿ filter (Caison, 1986) for
the latter, bancl-limiting the resultant simple cell RFP tl(æ) to the same frecluency range

as the letinal image prior to samplinga. The expression in (a.+) is also readily extendecl

to account for variations of retinal sampling density or photoreceptor RFP size, as occur
for example with increasing retinal eccentricity.

3.1.3 Filtering and Decomposition

Bottom-up theories of the spatial processing performed by the simple cells fall into the
two main classes of fihering and decomposition.

Theories of visual cortical spatial filtering relate the simple cell spatial RFP to to the
kernel å:lR2xlR2--tR of a position-dependent linear filter whose output r(æ,t) is given

by

r(u,t) : 
lro@,æ)s(ù,t) dfr

The value r(æs,t) of the filtered image at any given spatial coordinate æo € IR.2 is hy-
pothetically represented by the output of a simple cell located at the position æs in
the simple cell layer and having the RFP .(*) L h(æ,æs). In general the filter may be

position-dependent, with the form of tr.'(æ) varying as a function of the output coordinate
æ6 (Gutschow & Hecht-Nielsen, 1991), a feature which is of potential biological interest
in modelling for example the increase in mean receptivc ficld sizc with retinal eccentricity.

Position-clependent filtering schemes are however excluded from the present discussion

due to the paucity of systematic experimental information regarding the position depen-

dence of simple cell spatial RFPs and the lack of available formal completeness results
for such schemes. Given these difficulties and the added computational complexity of
simulating position-dependent filtering schemes, many theories of visual filtering make

the simplifying assumption of position-independence, in which case

r(æ,t): lru@-æ)s(ù,t) clñ (3.5)

aThe term "band-limited" should be interpreted loosely in this context, since in practice the pho-
toreceptor RFP å may not be ideally band-limited.
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and u(æ) is the correlatio'n lcernel of the linear filter. Implementation of the position-

independent flltel requires an array of simple cells with identical RFPs whose centres

densely populate the visual field )/. Since, as shown in Section 3.I.2, 'u is (approximately)

bancl-limited in the spatial frecluency domain, the Sampling Theorem (Bracewell, 1986)

can be invoked to show that the cortically filtered image can be samplecl at an appropri-

ate t'ate without further loss of informations. This sampling corresponds to a reduction

in the necessary density of population of the visual field by the RF centres, and hence

to a redttction in the number of simple cells requirecl to implement the filter. If tlvo or

mole filters, each implemented by a sub-population of simple cells, are assumed to be

applied simultaneously to the visual image, the requirement for completeness of the incli-

vidual filters can be relaxed, provicled that collectively the filters continue to transmit all

the perceptually relevant information. Theories concerning the spatial filtering possibly

performed by the simple cells are presented in sections 3.2.2,,3.3,3.4.5 and 3.5.2.

Theories of visual cortical spatial decomposition, on the other hancl, assume that
the spatial RFPs of primary visual cortical cells such as the simple cells "constitute the

primitives of the biological image code", the "relative presences" of which are signalled by

the firing rates of the corresponding cells (Daugman, 1990). According to this view, the

stimulus is decomposed into a set {c¿(ú):i eZ¡} of coefficients c¿(l) € IR corresponding

to the set {ti.';(æ):i e Z¡} of spatial RFPs such that the spatially low-pass filterecl visual

stimulus s(æ,t) can be expressed as the expansion

s(æ,t): Ð c¿(t)w¡(æ) (3.6)

and hence .õ could be reconstructed if desired from the set of coefficients. The repre-

sentation of the visual stimulus by the coefficients {"¿(¿)} is complete if for each image

encountered by the visual system there exists a corresponding set of coefficients satisfy-

ing (3.6). Assuming in the absence of further information that these images are clrawn

from the set tr2(R2) of finite energy (square-integrable) 2D functions, ancl clenoting by

B c 12(m.2) the subset of these functions which are appropriately band-limited to the

spatial frequency range passed by the retinal imaging process, it is therefore necessary

that the set of simple cell spatial RFPs be complete over the set 6. Theories concern-

ing the spatial decomposition possibly performed by the simple cells are presented in

Section 3.4.

Whilst requiring that any image ii be reconstructible from the corresponding coeffi-

cients {.¿(¿)} using (3.6), the completeness condition should not be interpreted as im-

plying that such a reconstruction actually takes place. Recognising the need for this

distinction, Daugman (1990) noted that theories concerning the spatial clecomposition

of the stimulus

sSince the band-limitation of w may not be ideal, sampling may in fact incur a further small loss of
information due to aliasing.
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. . . walk a kind of epistemological tightrope . . . demancling that the represen-

tation be informationally complete over its domain, while at the same time

avoicling the implication that what is entailed by completeness is a cortical

image reconstruction (as if on behalf of cortical movie-viewing homunculi).

However the implicit assumption often accompanying spatial clecomposition theories

of early vision (as documented later in Section 3.4.3), that the output

r;(t) : 
lr*01*¡r1æ,t) 

dæ

of each simple cell represents (up to a scalar constant) the coefficient in (3,6) correspond-

ing to its own spatial RFP, is problematic. Except for certain special choices of the set of
simple cell RFPs - viz. when these functions form an orthonormal basis or a tight frame
(see e.g. Heil & lValnut (1989)) for the set B - these outputs will not in fact be the co-

efficients requirecl by (3.6) (Daugman, 1988a; Martens, 1990). In an attempt to reconcile

the apparently conflicting requirements arising from this assumption, a computational
scheme whereby the simple cells might compute these coefficients is developed in Chap-

ters 4-6 and critically examined in Chapter 7. In the mean time, sections 3.4.3, 3.4.4 and

3.5.4 of the present chapter pursue the search for suitable special-case RFP sets. Since

for most candidate models discussed ìn Section 2.3.1 for the simple cell spatial RFP the

lequi'-ements of completeness ancl mutual orthogonality are conflicting ones, this search

focuses on results provided by the theory of tight frames.

3.1.4 Verifrcation of Bottom-up Theories

Bottom-up theories of the spatial processing performed by the simple cells commonly

bear on the population distributions of the various RFP parameters. In particular,
in order to simplifv attempts to ensure representational completeness, both filtering-
ancl clecomposition-based theories usually assnme highly regular spatial &/or spectral

(spatial-frequency) sampling of the retinal image by the simple cell RFPs. Such regular

sampling is difficult to refute by means of single- or even current multi-electrode record-

ing techniques, lvhich are hampered by neural sampling l-¡iasses introducetl anong oLher

things by the choice and possibly laminar placement of a particular microelectrode (Rob-

son, 1983; Anderson et al., 1990, p. 215). Electrophysiological evidence for and against

such models is therefore frequently confined to a comparison of the correlations between

variotts RFP parameters predicted by the model, and those observed in the recordecl

population.

3.1.5 Hierarchical Processing

The terms "stage" and "level" used here in connection with the simple cells are strictly
speaking a legacy of the hierarchical scheme of visual processing proposed by Hubel
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& Wiesel (1962; 1968), according to rvhich the simple cells constitute the first corticai

processing stage in the visual pathway, receiving input from neurons in the LGN ancl

sending their outpttts to the complex cells. The term "layer" which is sometimes usecl

interchangeably with these terms in this context shoulcl not however be confused with
the anatomically definecl layers of the visual cortex (see e.g. Lund (198S) ancl Gilbert
(1983)). Simple cells are found in cortical layers 2 to 6 of primary visual coltex, ancl

whilst they predominate in layer 4 in which the majority of afferents from LGN are

known to terminate6, simple cells are also founcl in other layers in which complex cells

ale at least equally prevalent (see White (1989) for a review). Ci-itics of the stlictly
hierarchical model - including Stone et al. (1979) ancl White (1989) - cite evidence at

various stages of the visual pathway for connections which circumvent one or mole such

processing levels, as well as the existence of feedback between various levels. Of particular

relevance to the present consideration of the simple cells is the presence of dilect synaptic

input to V1 complex cells from LGN (White, 1989; Henry et al., 1983) and the probable

existence of feedback connections from complex cells onto simple cells, which has been

inferred from a number of independent observations (White, 1989, p. 144,187). These

findings suggest that the requirement of completeness of the simple cell representation

may not be a necessary one, since if pathways exist through which perceptually relevant,

visttally derivecl spatial information may reach higher cortical processing areas without
passing through the simple cell "stage", such information need not be independently

represented by the simple cell population.

Bottom-up theories regarding the spatial computation performed by the simple cells

furthermore frequently make the simplifying assumption that these cells respond icleally

only to spatial variations of achromatic contrast in the visual image (see e.g. Sakitt &
Barlow (1982) or Field (1987)), and exhibit no selectivityfor other aspects of visual input
such as motion, colour or stereoscopic depth. More recent physiological models of visual

processing (Stone et al., 1979; Hubel & Livingstone, 1987) however posit the existence of

parallel visual pathways responsibie for different combinations of these various aspects of

visual input, and which are either anatomically segregated or mixed only selectively at

various levels of the visuai pathway. The above assumption that the simple cells collec-

tively constitute an homogeneous population concerned exclusively with the processing

of spatial information therefore ignores for example the putative segregation (see e.g.

White (1989)) of the X €i Y (Stoneet al., 1979; Gilbert, 1983) or pa,ruo €l magno (Hubel

& Livingstone, 1987) streams in layer 4 of feline and primate striate cortex respectively.

owhite (1989) however points out that the termination of the thalamocortical afferents in layer 4
does not preclude direct LGN input to cells in other layers having dendrites in this layer.
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3.1.6 Summary

The present examination of the computational role of the simple cells will focus on

bottom-up theories of the monocular spatial processing performecl by these cells. The

binocular ancl temporal characteristics of the simple cell RFP a,r'e not aclclressecl by the

class of theories considered. Where suitable lesults exist, the clualifled completeness or

otherwise of potential simple cell image representations will be examinecl, as well as the

ability of each representation to provicle a unifying account of the observed variety of
simple cell RFPs. Acknowledgecl shortcomings of bottom-r.rp theories inclucle the failure
to incorporate feedback from higher plocessing areas to mecliate attentional ancl expec-

tational mechanismsT, and the assumption of a strictly hierarchical plocessing scheme.

Direct verification of such theories is furthermore hamperecl by experimental difficul-
ties inclucling electrode sampling bias, necessitating a lesort to information concerning

correlations between RFP parameters over the simple cell population.

3.2 Feature 66Detectors"

3.2.1 .l{onJinear Detectors

The observation by Hubel & Wiesel (1962) that for simple cells

The most effective stimulus configurations . . . were long narrow rectangles of
light (slits), straight-line borders between areas of different brightness (edges),

and clark rectangular bars against a light background.

led Barlow (1969a) to postulate that the simple cells were in fact feature cletectors whose

trigger features were luminance bars and edges at a particular binocular disparity (Barlow

et al., 1967; Barlow, 1969b). According to this feature detection hypothesis in its crudest

form (Barlow, 1969b, p.220), the output of a simple cell is interpreted as a binary variable

signalling the presence or absence of the trigger feature in its receptive field. A more

sophisticated form of the hypothesis (Barlow, 1969a; Daugman, 1990) has the firing rate

of a feature-detecting simple cell signalling the cell's degree of certainty of the presence

of the trigger feature. Nevertheless, the firing of a cell is to be interpreted in both cases

as making a "symbolic assertion" (Marr & Hildreth, 1980) regarding the presence of the

trigger feature.

Edge extraction as a basis for early vision has strong intuitive appeal, given the

apparent abundance of information available from such eclges (Marr, 1976; Marr & Hil-
clreth, 1980; Marr, 7982; Ullman, 1936) and the lower redunclancy (Barlow, 1972) of an

edge-based representation, and was for example central to the formation of the pri.mal

7It has been estimated that only 1% of the neural fibres entering Vl are visual afferents (von der
Malsburg, 1990).
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sketch representation usecl by Marr (1976; 1977;1982). Early theoretical support for this

approach was drawn from results guaranteeing under certain circumstances the complete

reconstruction of a multiresolution replesentation8 of a signal from its zero crossings

(Logan, 1977; Marr et al., 1979), since for the particular multiresolution representation

proposed by iVlarr & Hilclreth (1980), collocation and linear alignment of these zero cross-

ings across several spatial scales can be taken as evidence for a luminance edge (iVlarr &
Hildreth, 1980; NIarr, 1982). More recently, zero crossing representations have also been

ploposecl in the field of pattern recognition to overcome the lack of translation invariance

exhibited by straightforward multiresolution schemes (Mallat, 1989a).

However, Logan's theorem (1977) has been shown to be inapplicable to IVIarr & Hil-
dreth's (1980) multiresolution Laplacian of Gaussian decomposition (Nlarr, 1982; Daug-

man, 1983; Daugman, 1988b), necessitating the incorporation of additional information

to ensure completereconstruction (Marr et al., 1979; RotemkZeevi, 1986; Curtis et al.,

1989; Nlallat, 1989a). Furthermore both the feature detection hypothesis of Barlow

(1969a; 1969b) and IVIarr & Hildreth's (1980) Laplacian zero crossing detector model

predict simple cell behaviour which is strongly spatially nonlinear (Nlarr, 1982), in con-

trast with later evidence - reviewecl earlier in Section 2.2.3 - showing that the spatial

behaviour of the simple cells is to a first approximation linear. The response of a simple

cell to the third harmonic of a drifting square-wave grating is for example difficult to

explain in terms of the detection of the passage of luminance edges ovei- the RF, ancl mil-

itates against a view of the simple cells as edge or line (bar) detectors (Pollen & Ronner,

1982; Henry,1985).

3.2.2 Linear Matched Filters

The notion of a feature "detector" is severely restricted by the characterisation of the

simple cell as a linear clevice, since in attempting to suppress reponses to non-optimal

features falling within the cell's RF, a linear device is clenied recourse to the nonlinearities

required by models such as those of Barlow (1969a; 1969b) and Marr & Hildreth (1930).

The spatial RFP tr.' might however be treated as the kernel of a linear matched filter
for the desired feature, whose output r(æ,t) is given by (3.5). A matched filter is used

to improve the detection of a known signal - in this case for example an edge or a
line - in the presence of noise (see e.g. Papoulis (1984)). Assuming bhat such a filter

is indeed implemented by an array of simple cells, as described earlier in Section 3.1.3,

the simple cell outputs would be subjected by subsequent cortical layers to some form o{

nonlinearity such as thresholding to detect the presence or absence, as well as position(s),

sMultiresolution image representations are discussed briefly in Section 3.5; see also e.g. Mallat
(1e8eb).
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(a) Ideal edge kernel (b) Centred rvindow (c) Off-centre window

(d) Ideal bar kernel (e) Centred window (f) Otr-centre window

Figure 3.1: 1D cross-sections of Cartesian-sepalable 2D matched filter kernels for edges
and bars. The dotted line indicates the zero weighting level, ("),(d) Ideal edge and bar
kernels respectively. (b),(") Ideal kernels after localisation using a Gaussian winclow cen-
tred on the feature to be matched, and low-pass filtering representing the transformation
from visual scene to retinal image. These line weighting functions compare qualitatively
with those in Figures 2.1(c) and (f) which are derived from GRGFs. (c),(f) As for (b),(")
except with Gaussian windows centred to the right of the feature to be matched.

of the clesired feature in the visual fielde.

One dimensional cross-sections of the Cartesian-separable kernels of ideal matchecl

filters for bars and edges in the visual image are shown in Figures 3.1(a) and (d) respec-

tively. The sections are perpendicular to the direction of elongation of the eclge or bar

to be detected. Since the sharp transitions in the corresponding stimuli are removed by

the optical transformation mapping the visual scene onto the retinal image and are not

therefore available to be matched by the filter kernel, these kernels have been similarly
low-pass filtered to facilitate a better match to simple cell LWFs1O. Spatial localisation

of the smoothed kernels to reduce the number of retino-geniculo-cortical connections

required by each simple cell implementing them can be achieved by multiplying by a

eThis deferral of the actual detection process until after the simple cell stage avoirìs the "intellectu-
ally criminal" treatment of the simple cells as both linear convolvers and feature detectors, which was
condemned by Marr (1982).

1oThe comparison of 1D cross-sections and LWFs - obtained by integrating along the perpenclicular
direction - of a hypothetical 2D RFP is strictly speaking only valid if the RFP is Cartesian separable.
However it is assumed here for simplicity that approximate Cartesian separability applies.
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windowing function such as a truncated Gaussian. The resultant localised kernels are

illustrated in Figures 3.1(b) and (e) for windows centred on the feature to be matched,

and in Figures 3.1(c) and (f) for windows which have been placed off-centre to account

for asymmetric RFPs. The edge and bar filters exhibit characteristically bipartite ancl

tripartite LWFs respectively. However', despite the prevalence (Glezer et al., 1989) of

simple cell RFPs exhibiting the 2 and 3 subfields required respectively by such kernels,

the matched filtering of bars and edges is inconsistent with RFPs exhibiting up to 8

subfields (Glezer et al., 1989), which in the present context should be viewecl as kernels

for "grating filters". Furthermore whilst the line weighting functions prodr.rced by these

edge and bar filters compare qualitatively with those resulting from GRGF models, the

assumption of Cartesian separability on which they rely is not howevel justified by the

results of Jones & Palmer (1987b).

An undesirable consequence of the localisation achieved by windowing the ideal

matched filter kernels is a marked decrease in stimulus selectivity, so that for example a

bar filter now responcls more vigorously to a high-contrast edge than to a low-contrast

bar (Marr & Hildreth, 1980). This problem is exacerbated by offsetting the windowing

function from the centre of the bar kernel, which increasingly suppresses the extreme

flank in the direction opposite to that of the offset11, and thereby increases the resem-

blance between this kernel ancl the (negative of the) centred edgekernel in Figure 3.1(b).

Thus the ability of the resultant filters to signal the presence or absence of the stimulus

featttre to which they are supposedly matched is greatly diminished by localisation of the

filter kernel. Notwithstanding these objections, the requirement for the repetition of an

iclentical kernel for each point in the visual field in order to implement a given filter can

be relaxed to allow RFPs of cliffering (a)symmetries at each point, provided each such

composite matched filter continues to employ only bipartite or tripartite RFPs.

Under the linear feature detection hypothesis, at least one such filter is required

for each feature which is to be reliably detected anywhere on the retinal surface; the

reliable detection and localisation of edges has for example been found to require the

local agreement of edge detection mechanisms at several spatial scales (Marr & Hildreth,

1980). Whilst a position-dependent matched filter could be designed to detect clifferent

features at different positions, the detection of different features at a single position still
requires multiple matched filters. The enumeration of all possible lines and eclges at a

given position in the visual field - by independently varying attributes such as scale and

orientation - would require a large number of simple cells to implement such a matched

filtering scheme. However, estimates of the order o12-3 x 103 cells in striate cortex per

foveal cone photoreceptor (Wilson et al., 1990)12, of which perhaps 20To are located in

11The left-hand flank in Figure 3.1(f).
l2This figure reflects for the foveal representation an approximately 1:1 ratio of cones to retinal

ganglion cells, a 2-3: 1 ratio of LGN cells to retinal ganglion cells, and a 1000: l ratio of striate cortical
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layer 4 (Barlow, 1981, Fig 7) rvhere the simple cells predominate (White, 1989), do not
exclude the implementation of at least several hunclred matchecl filters, which may be

cluite sufficient for most purposes.

The matchecl filtering hypothesis aclmits natural extensions to the temporal and

binoculal clomaius, which are necess¿ìry to account properly for the binocular spatiotem-
poral behaviour of real simple cells. However this extension requires for each spatial
feature the additional enumeration of all relevant binocular clisparities and temporal
patternsl3. The consequent explosion in the number of simple cells requirecl, ancl the
relatively poor stimulus selectivity of the localisecl filter kernels in the first place, renclel

the matched filtering scheme untenable as a theory of simple cell processing.

3.2.3 Sttmmary

In this section it has been argued that linear and nonlineal feature detection, and in par-
ticular the detection of contrast edges or lines in the monocular visual field, are unlikely
to provicle a complete description of the spatial computational role of the simple cells.

Despite the improbability of such feature-detecting roles however, some researchers con-

tinue to refer to bipartite ancl tripartite RFPs - and especially those with approximate
odcl and even symmetries respectively - by the prejuclicial terms "edge ancl bar detec-

tors". Strch terms ate seen by Koenderink & van Doorn (1990a) as dangerous in that
they reinforce - by enshrining in the very nomenclat "speculative interpretations"
of the computational role of these cells.

3.3 Directional Spatial Derivatives

Since sharp, spatially coincident transitions in the retinal image at several neighbouring
spatial scales may be taken as evidence of the presence of a luminance edge in the
monocular visual field (Marr & Hildreth, 1980), an alternative to matched filtering in
the linear "detection" of oriented luminance edges is the calculation oT directional spatial
deriuatiues of the retinal image.

3.3.1 Retino-Cortical Derivative Operators

According to the directional derivative hypothesis of simple cell processing, the retino-
cortical weighting functionla c of each simple cell constitutes a discrete-space approxima-

tion to the kernel of a directional deriuatiue operator Dþ oT some order i e Z* (Koenderink

cells to LGN cells (Wilson et al., 1990).
13For simplicity, this conservative scheme assumes spatiotemporal separability of the simple cell RF P;

inseparability would only serve to further increase the degrees of freedom to be "covered" by the simple
cell population.

ladescribed earlier in Section 3.1.2.
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& van Doorn, 1990a; Koenclerink & van Doorn, i990b) or i € R¡ (Hungenahally et al.,

1992; Hungenahally et al., 1993) on the sampled retinal image b(æ¡,t) in the direction

9 e [0,22r). An approximation to the directional derivative Dþb of the retinal image is

computed by discrete correlation of the image with a retino-cortical spatial weighting

function cþ approximating the kernel Dþ such that

lcþ* bl(æ¡,t) x lDþbl(æ¡,t)

r,vhere * denotes discrete spatial correlation such that

lcþ *bl(æ¡,¿) = t "b@t,-n¡)b(æ¡,t) (3 7)
æ¡€S

Examples of one-dimensional first- and second-order derivative approximations to be

disctrssed shortly are presented in Figure 3.2. The spatial scale oî. the derivative approxi-

mation is determined by the spacing in the direction d of the photoreceptors from lvhich

the simple cell receives input. Nlultiple scales are achieved in the same retinal location

by appropriately undersampling the same photoreceptor array. Whilst thlesholding of

the first derivative fc[xb)(æ¡,1) in the direction d is sufficient - at least in the absence

of noise - to detect orthogonally oriented transitions at the chosen spatial scale, the cli-

rectional derivative hypothesis encompasses the computation of derivatives of arbitrary
order.

Like the linear matchecl filters in Section 3.2.2, each directional derivative operator

Dþ is ideally approximated by an array of simple cells having identical retino-cortical

weighting functions cþ - and hence spatial RFPs u.'þ:lR2--+IR given by (3.a) - whose

centres densely populate the retinal surface. The requirement of identical RFPs for the

implementation of a given operator can however be relaxed slightly, since it is possible to

clerive many different approximations to the kernel of a given derivative operator. For the

special case of uniformly spaced sampling points with sampling interval ?, one family of

derivative approximations results from the differentiation of the 1D interpolation formula

Í(*):Ë ¡t¡r¡"!*H
j=-oo "L T J

followed by truncation of the resultant series at an appropriate value of 7. However

this approximation has non-compact support and a slow rate of decay with increasing

l7l, requiring an unacceptable number of sampling points in order to obtain a suitable

approximation to the required derivative. A second family of clerivative approxima-

tions, which have strictly compact support and permit irregular sampling, results (see

e.g. Kreyszig (1983, Sect. 19.6)) from the differentiation of a 2D Lagrange interpolating

polynomial (LIP)

L(æ,,t)A t no+¡ll?u=' *þ\ - *l'l
,,rnmb(æ¡'t)
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(a) c[(æ¡), centred (b) cj(æ¡), off-centre (c) w|(æ), off-centre

(d) cl(æ¡), centred (e) cl(æ¡), off-centre (f) wj(æ), off-centre

Figure 3.2: "Directional" derivative masks cþ derived from the 21-point 1D LIP for
uniformly spaced sampling points. (u),(.1) First and second derivative masks respectively
for the derivative evaluated at the midpoint (#11) of the sampling array. (b),(e) First
and second derivative masks respectively for the clerivative evaluated at sampling point
#8, 3 samples to the left of the midpoint. (.),(f) The masks in (b),(e) applied to a
Gaussian of standard deviation 2.5 samples, representing the photoreceptor RFP å, to
produce corresponding simple cell RFPs tr.'|. As expected, the resultant flrst and seconcl
Gaussian derivatives remain respectively odd and even symmetric about the point of
derivative evaluation, despite the apparent asymmetry of the masks in (b),(e) usecl to
procluce them.

- where the superscript [rl denotes selection of the pth element of a vector - frttecl to
the retinal image b(æ¡,t) over a local subset Q C 5 of the sampling points. Directional
clifferentiation can be achieved by choosing a new Cartesian coorclinatc system such that
the r[1]-axis is oriented in the á direction and then simply evaluating the partial derivative

,äfr For a given point æ e R2 at which the derivative DþL is to be evaluatecl, the
set Q of points through which the polynomial is fitted can be chosen almost arbitrarily,
subject only to the condition that æ interpolates this set. Figures 3.2(a) and (b) illustrate
two 21-point lD LIP approximations c| to the first order derivative operator, where

the derivative has been evaluated at and to the lefi of the centre of the sampling array
respectively. Figures 3.2(d) and (e) show the corresponding approximations to the second

derivative c!.
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3.3.2 Fractional Derivatives

The generalisation of derivatives to fractional orders arises in applications inclucling the

conduction of heat in solids and electrical signals in cables (Bracewell, 1986). Fractional

directional clerivatives can perhaps be most easily explained via the Fourier transtbr.m

clomain, through which the identity

*ï- ç¡zn,ttl¡tf'(z) (3.8 )

which holds for integer orders i e V,* - where . ", in.li.utes a Fourier transfoi-m pair

ancl JF:R' --' C satisfy f @) J- F@) - can be generalised to fractional orclersrs

i e R1 (Bracewell, 1986). Thus the fractional partial differentiation 0il0("[rl)tof a

function in the spatial domain is equivalent to multiplication of its Fourier transform by

a fractional power o1 jZtrulk) in the Fourier domain. The half-order derivatives of an eclge

and a bar in the direction perpendicular to their orientation are illustrated in Table 8.2

of Bracewell (1986).

Fractional differ-entiation can be applied to LIPs in the same manner as outlined
above for integer order derivatives, to produce fractional discrete-space derivative ap-

proximations cþ. An alternative derivation of these fractional derivative operators was

providecl by Hungenahally et al. (1993), who appears to have used the observation that
if the derivative is to be evaluated at the centre of a uniformly spaced 1D sampling ar'-

ray, and the ith order derivative mask is derived from the (i + 1)-point LIP, the mask

values c'¡@j) are given by the coefficients of the binomial expansion of (t - i)t. This

clerivation however suffers from the limitation that for any given sampling grid, even

spacing of the sampling points along the r[1] direction of the coorclinate axes used to
derive the directional derivative cannot simultaneously apply for arbitrary orientations

d. For non-integer values of i, the coefficients resulting from the latter derivation exhibit
approximately factorial decay with sample number as illustrated in Figures 3.3(a)-(c),
permitting truncation of the series after relatively few terms, and unlike those Tor i € Z¡
do not sum to zero. The number n of alternations of sign with increasing sample inclex

is related to the order i of the derivative such that n : li], where [''l denotes the ceiling

function.

3.3.3 Discñminant Functions

A continuous-space discri,minant function (Hungenahally, i991; Hungenahally et al.,

1992) wþ can be generated from a discrete-space function c! using (3.a) with ar o,g-

gregation function å of strictly compact support. Care should however be taken with the

15The multiple roots which exist on the right-hand side for non-integer rational orders i produce
functions which differ only by a phase shift.

0'J@)
0(xt4¡t
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(b) c[a(æ¡) (c) cl8(n¡)

(d) tu! 6(æ) (e) urj a(æ) (f) wl8(æ)

Figtrre 3.3: (a)-(c) 1D fractional derivativemasks c'0@j) with i € R+ -v,+. The sample
index is shown increasing to the left, so that for consistency with (2.1), the mask can
be used as a correlation kernel. (d)-(f) Corresponding discriminant functions obtained
using a Gaussian aggregation function h with standard deviation 2.5 samples.

selection of the finite support aggregation function in order to limit the aliasing resulting
from its failure to band-limit the image falling on the retina (cf. Hungenahally et al.

(1993, Fig. 7)). Fractional discriminant functions corresponding to the discrete masks

shown in Figures 3.3(a)-(c) are illustrated in Figures 3.3(d)-(f), where the requirement
of compact support has been relaxed to admit a Gaussian aggregation function. These

functions possess no axes of symmetry and exhibit non-zero response to DC illumination
(Hungenahally et al., 1993), as is thc case for the CRGF model with 0 : arg{?¿g} and

ó+0.
The salient oscillatory property of the discriminant functions wþ can - for l¿ both

symmetric and not too large relative to the sampling period, and for i e V,* - be imi-
tatecl by multiplying a periodic function having 2 evenly-spaced zero-crossings per period
7 € 1R...,., such as a sinewave, by u compactly-supportecl window of width W : iT 12 to
produce a generalised discriminant function (Hungenahally, 1991). The width of the
window is used to control the number of RFP subfields and hence the order of the gen-

eralised derivative approximation. However the extension of this model to the fractional
case requires some cate, since the periodic function must be truncated to avoid one or

(a) c! 6(æ¡)
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more spurious additional zero-crossings, which would increase the number of subfielcls

and hence the derivative order. At least for the lower order derivatives, this truncation

permits only a poor approximation to the factorial tail - evident for example in Fig-

ures 3.3(a) and (.1) - of the fractional derivative function being generalised. Despite

the success of the GRGF model of the simple cell spatial RFP (Jones et al,, 1987), to

which suitable approximations can be generated using generalised discriminant functions,

the construction of the original cliscriminant functions reflects more directly the physical

feedforward mechanisms - formalised in Section 3.L2 - which contribute to the simple

cell RFP.

3.3.4 Gaussian Derivatives

Koenderink & van Doorn (1990a; 1990b) proposecl a family of kernels tu| known as

the Gaussian-windowed Herrnite polynomiøls given by the directional derivatives of an

isotropic Gaussian. In the present notation, each such kernel results from the application

of an unspecified approximation cþ to the corresponding directional clerivative operator

Dþ to an isotropic Gaussian kernel representing the photoreceptor RFP å. Examples of

first and second order Gaussian derivatives obtained using the derivative approximations

illustrated in Figures 3.2(b) and (e) are shown in Figures 3.2(c) and (f) respectively.

To appropriately approximate true Gaussian derivatives, the masks cþ must be derivecl

using sampling points spaced at intervals which are suitably small compared with the

standard deviation of the Gaussian å. If this condition is not observed, the 0 cross-

section of the corresponding simple cell RFP resembles a collection of isolated Gaussian

subfields, contrary to experimental observations. The number i + 1 of RF subfielcls

reflects the order of the differential operator applied to the retinal image. An attractive
property of these kernels is that it is possible to construct a set containing up to nth orcler

derivatives - with i * 1 distinct orientations 0 for the ith derivative order - which can

completely encode the mixed spatial partial derivatives of the blurred image up to orcler

n (Koenderink & van Doorn, 1990a). Young (1985) estimated that for the human visual

system the highest derivative order is 4. Despite the attractiveness of this completeness

property however, the RFP model relies on an isotropic Gaussian window of the same

dimensions as the photoreceptor RF, and odd and even RF symmetries, neither of which

seem to be preferred properties amongst the simple cell population (Jones & Palmer,

1e87b).

3.3.5 Summary

The directional derivative hypothesis of simple cell processing has been shown to account

for many features of simple cell spatial RFPs, including subfield alternation and - in

the case of fractional derivatives - asymmetry. The theory of fractional derivatives and
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discriminant functions, which awaits a full account of the physical significance of the

information they extract from an image, provicles considerable scope for future resear.ch

in this area. The mathematical completeness of a clirectional derivative representation

has so far been shown only fol the unlealistic case of RFPs given by Gaussian clerivatives

of integer orcler. Finally the smallest spatial scale or resolution available to clerivative

approximations at the simple cell level for any gìven retina,l eccentricity is limited by the
photoreceptor sampling interval, while the largest scale is cleterminecl by the size of the

photoreceptor RFP å, since simple cell spatial RFPs exhibiting spatially isolated blobs of
this size are yet to be reported. These two observations place strong limits on the range

of spatial scales over which derivative approximations could be evaluatecl by the simple

cells, in potential contrast with observations of simple cell RFPs in the foveal projection
with spatial dimensions spanning a range in excess of 30:1 (Daugman, 1985).

3.4 Spatial Flequency Analysis

3.4.1 Introduction

Outlined briefly in Section 2.2.2, the psychophysicaì results of Campbell & Robson (1968)

and Blakemore & Campbell (1969), from which the existence of psychophysical channels

with bandpass tuning for 2D spatial frequency magnitude and orientation was inferrecl,

lecl Pollen et al. (1971) to postulate that

. . . the brain has at its disposal the two-dimensional Fourier transform of the

plesented brightness distribution.

Noting that sinusoids are the principal components (the eigenfunctions of the auto-

covariance function) of an image ensemble exhibiting position-independent second order

spatial statistics (see e.g. Gaskill (1978)), Bossomaier & Snyder (1986) suggested that a
possible aclvantage of such an analysis is that it removes second-order statistical reclun-

clancy from the image (Attneave, 1954; Barlow, 1959; Barlow, 1961). The limited spatial
extent of the receptive fields of the spatial-frequency selective cells in primary visual

cortex prompted Pollen et al. (1971) to further speculate that these cells participate

in "two-dimensional spatial frequency decompositions of subsections of visual space" -
henceforth referred to collectively as a locali,sed Fourier analysis - a proposition which

under the assumption of approximate spatial linearity is more consistent with the rela-

tively broad spatial frequency tuning curves of cells in V1 (Robson, 1933). According
to Bossomaier & Snyder (1986), this localisabion of the proposecl analysis allows it to
take advantage of local statistical stationarity in reducing the redundancy of an image

ensemble whose spatial statistics are globally non-stationaryl6. The interested reader

164 more detailed exposition of the underlying statistical theory may be found in Sections 3.4.6 ancl
3.5.5
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is referred to the following wolks for further information on the history of the localisecl

Fourier analysis hypothesis of primary visual cortical function: Pollen & Gaska (1987),

Henry (1985), Pollen et al. (1985), Shapley & Lennie (1935), Pollen & Ronner (1983;

1982; 1981), Robson (1983), and Nlaffei & Fiorentini (1973).

3.4.2 The Gabor Expansion

Contrary to the suggestion by Pollen & Taylor (1974) that the complex cells were well-

placed to pelform the proposed localised Fourier or plincipal-components analysis, NIaffei

& Fiorentini (1973) argued that the simple cells were to be prefelred for this role be-

cause of their more linear spatiotemporal behaviour. The particular mathematical form

adopted by Bossomaier & Snyder (1986) for this localised analysis, known as the Gabor

representation (Marcelja, 1980; Porat k Zeevi, 1988) or Gabor erpansio'n|7 (Wexler &

Raz, 1990; Hlawatsch & Boudreaux-Bartels,1992), was first applied by Marðelja (1980)

to the understanding of the representation of the visual scene by the simple cells. Named

in honour of Gabor (1946), who first proposed the representation of lD communication

signals as a sum of Gabor functions, the Gabor expansion (GE) has since been gener-

alised to encompass possibly non-Gaussian localisation functions (see e.g. Wexler & Raz

(1990)). In view of the success of the GRGF model in describing the simple cell RFP

however, the present exposition is largely restricted to a consideration of the case of

Gaussian localisation functions.

The 1D Gabor expansion using a Gaussian localisation function involves the decom-

position or analysis of a 1D function s(r) into a set {c¿r: (i,p) e Z'} of coefficients

c¡p € C corresponding to the set

Ç, t {s¿r(r): (i,p) eZ')

of functions p¿o :R --+ C such that

s(r) : D D cipsip(r)
æ oo

?=-oo p=-oo
(3.e)

where

(3.10)

17The term "Gabor expansion" is used here in preference to "discrete Gabor transform" which appears
to have two conflicting definitions, according to which the same set of windowed sinusoids is used either
for the synthesis (expansion) or the analysis (filtering) of the signal or image. The first, decomposition-
based definition used by Daugman (1988a) involves the calculation of the coefficients in the Gabor
expansion to be defined below; the second, filter-based definition used by Heil & Walnut (1989) treats
the (complex conjugates of the) same functions as for the Gabor expansion as correlation kernels rather
than basis functions. The former definition is equivalent to that used by Hlawatsch & Boudreaux-
Bartels (1992) for the discrele shorl-time Fourier transform; the latter is equivalent to that used by
Nlallat (1989a) for the discrele window Fourier lransform.

e;e@) r + ",.e {-" [4, ]'] '"*01r, npl''r]
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A,

T

Figure 3.4: Lattice of Gabor function centres (*;,uo) ^ (iA",pA,) in phase space for lD
Gabor expansion set Çt.

A', A, specify the separations between neighbouring Gaussian centres along the spatial

and spatial-frequency axes respectivelyls as shown in Figure 3.4, and ,S is as defined for
(2.a) with n : l. The comparison of (3.10) with (2.6) reveals that the functions 94 are

simply 1D generalised Gabor functions with ø : *, rs: iL,a, zs : pA.u ancl

ó = 2triL,p\. (3.11)

The constant ø serves to normalise the Gaussian function to unit L2 norm, as required

by both the GE (Porat k, Zeevi, 1988) and the discrete window þ'ourier transfor'mrs

(DWFT) (Mallat, 1989a). Exploitation of the close relationship between 9r ancl the

corresponding set of canonical Weyl-Heisenberg coherent states (Daubechies et al., 1986)

- for which o : n-I, ó : ¡ri\,pA, and,9 : 1 - allows the aclaptation of a classical

lesult in mathematical physics concerning the completeness of these coherent states (see

e.g. Bargmann et al. (1971) or Higgins (1977)) to yield the following.

Theorem 3.L A necessary and sufficient condition for the inf,nite set Çt o/ translates

18The reader should be careful not to confuse these spatial and spectr al inleruals between Gabor
functions with the spatial and spectral spreails defined in Section 2.3.3 for a single function.

leto be discussed in Section 3.4.5
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¿nd modulates o/ the lD Gaussi,an function to be complete for the set ¿'(R) of f,nite-
energy (square-integrable) 1D functions is that

A,A, < 1 (3 12)

Thus provicled this condition is satisfied, any function s € ¿'(R) can be.exactly re-

constructed from the corresponding set of coefficients. If the equality holds in (3.12), the

number of GRGFs requirecl to completely represent a bancl-limited signal is minimisecl,

ancl is the same as that required by the Sampling Theorem (Hlawatsch & Bouclreaux-

Bartels, 1992); the signal is then said to be critically sampled. If on the other hand

the inequality holds in (3.12), the chosen GRGFs are linearly dependent and are said

to ouersample the signal. Whilst oversampling can be useful in the presence of noise to

avoid numerical instability in the computation of the expansion coefficients (Hlawatsch

& Boudreaux-Bartels, 1992), the coefficients are in general not unique; this problem is

addressed in Chapter 4. For critical sampling, the phase term / given by (3.11) is 0 (mod

2r) lor all generalised Gabor functions in Çt, while for oversampling, / is more generally

non-zero and different for each function.

Adopting the explicit extension by Porat k Zeevi (i985; 1988) to the more realistic

case for early vision of 2D generalised Gabor functions, and making explicit in the nota-

tion the temporal dependence of the low-pass filtered visual image é(æ,t), the 2D Gabor

expansion - as it may or may not apply to early vision - involves the decomposition of

this image into a set {c¿¡on(t): (i,k,p,q) eZa} of coefficients c¿tpq(t) € C corresponding

to the set

Çr! {g¡*rn(æ): (i, k,p,q) eZn}

of functions gikps:1R.2--C such that

s(æ,t): t I t D c¡¡on(t)s¿¡ro(æ)
æ æ co oo

'j=-æ /c=-oo p=-co q=-co
(3.13)

where

e;*po(æ) ê 
u6*u,, 

'exp{-zrllS -'(*-*îr)ll7} 'exp{jhtrufoæ\ (3.14)

Here ^9 is the diagonal matrix of Gaussian space constants definecl earlier in connection

with (2.a). The spatial and spectral offset terms

æik a [iAf], k1?ll'

upq a 
[pA[]1, qlf\'

are defined for notational convenience, with A[], AL'] rp""ifying the separation between

neighbouring Gaussian centres along the 11 and 12 axes respectively as shown in Fig-

ure 3.5(a), and AFl, Ai,'l rp""ifying analogous separations in the spectral domain as shown

in Figure 3.5(b). Once again, comparison of (3.1a) with (2.6) reveals that the functions
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rl2) l2l

^[:r

7+(Ð' 0" : 0, to : nik'¡

^r1. : 
^i2r

,'[11 ,,It]

(a) Spatial lattice (b) Spectral lattice

Figure 3.5: (a) Lattice of generalisecl Gabor function centres @ltì,*l'ì) in the spatial
domain for 2D Gabol expansion set Ç2. (b) Corresponding lattice of centres (ulrl,uf,l) in
the spatial-frequency domain.

gikpq are simply 2D generalisecl Gabor functions with a :
UO: llpq ã,îd

$:2nuf,oæ¿¡

Theorem 3.2 (Poral k Zeevi (1985)) 20 A necessary and stfficient condition for the

infi,nite set Çz of translates and rnodulates of the 2D Gaussian function to be complete

for the seú tr2(R.2) of f,nite-energy (square-integrable) 2D functions is that

¡trJ¡ttJ ç 1 (5.15a)

4tzla[,2] q 1 ß.15b)

The variety of phases which would be observed for these 2D generalised Gabor functions

whenever the inequalities in (3.15) hold is qualitatively consistent with that observed for

simple cell spatial RFPs, and militates against the preference by Pollen & Ronner (1933)

for precisely odd- and even-symmetric RFPs.

3.4.3 Do Simple Cells Perform a Gabor Decomposition?

In the previous section it was shown that the spatial RFPs of the simple cells could

potentially be described by the expansion functions of a discrete 2D Gabor expansion.

The cluestion therefore arises as bo whether the simple cells in fact compute the coefficients

zoAlthough the ensuing result is not directly stated in their work (Porat k Zeevi, 1985), it can be
easily inferred from it.
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of such an expansion. Whilst the following investigation of this issue focuses for notational

convenience on the 1D case, suitable extensions of the 1D results to the 2D case can be

assumed to hold unless stated otherwise.

Nlaróelja (1980) hypothetically identified each coefficient c¿p with the activation level

of a cortesponding simple cell having lD spatial RFP g,i(r), so that each simple cell con-

tributes to a decomposition of the (1D) visual stimulus s(r) by calculating the coefficient

of (the complex conjugate of) its own RFP function in the expansion in (3.9). The hy-

pothesis that the set of Gabor expansion coefficients "characterizes the [primary visual]

cortical representation of an image" (Zeevi & Porat, 1984) has been lvidely and often

implicitly aclopted by other researchers: Pollen & Ronner (1983) for example refer to the

simple cell outputs as encoding "local Fourier coefficients"21; Daugman (1989b, p.2aJ)
used observations regarding the coefficients of a 2D Gabor expansion to draw conclusions

about the activation levels of simple cel1s22; while Maclennan (1991) hypothesised that
the cells in V1 compute the coefficients of a 3D spatiotemporal Gabor expansion of the

stimulus23.

However, Nlarðelja (1980) noted that since the chosen set of Gabor functions is not

orthornomal, the simple cell outputs

'o': lv|r-)si'@) dx

would only approximate the true coefficients. In fact rather than giving the recluired

coefficients in the Gabor expansion, these hypothetical simple cell outputs are those

required for a discrete window Fourier transform (Mallat, 1989a) - to be clescribed

shortly in Section 3.4.5 - using the chosen Gaussian window, which is more in line with
a view of the simple cell spatial RFP as the correlation kernel of a spatial frequency filter,
a term used enigmatically by Pollen & Ronner (1983) in the same breath as the term

"local Fourier coefficient". Generalising an approach proposed by Bastiaans (1980) both

to the case of oversampling and to 2D - with the latter generalisation being omitted from

the following formalisation for notational convenience - Porat k Zeevi (19SS) showecl

that the set of coefficients given by

,Or: l: r(r) . 1@-iL") .exp {- j2trp\,,r} dx (3. i6)

- where the biorthogonal function 7 :lR. --+ R is given by

,@)t(f) ' (+)-r exp \-/,
n+* > *-{"(

T

A'
a

(-r)'exp 
{-" ("-å)'}

2lalthough Pollen et al. (1985) stop short of advocating Marðelja's (1980) Gabor expansion hypothesis.
22Elsewhere however, Daugman (1990) conceded that there exist problems with this view.
2sMaclennan (1991) acknowledged however that a relaxation process - such as that described in

Chapter 4 - would be required to calculate the correct coefficients (presumably from the simple cell
outputs given by (2.2)).
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and 1(o € R is a normalisation constant - satisfy the expansion in (3.9) up to a scalar

constant. Howevet, the 1D RFP requirecl by a simple cell in order for it to calculate the
Gabor expansion coefficient in (3.16) corresponding to a given GRGF is given by

'tu(z) : 7(rr-lÀ") .exp {-72rpL.r}

which bears little resemblance to either the chosen GRGF (see e.g. Porat k Zeevi (1988,

Fig. 17)) or to simple cell 1D RFPs. Nevertheless, since the GRGFs are lineally clepen-

dent for the case of oversampling, the choice of coefficients satisfying the Gabor expansion
is not unique, ancl it therefore remains to lule out the possibility that the discrete win-
clow Fourier transform might procluce an equally valid set of coefficients for the Gabor
expansion. In the following section the possibility of a reconciliation of Marðelja's (1980)

GE hypothesis with the computation actually performed by the simple cells is therefore
investigated.

3.4.4 Weyl-Heisenberg Frames

Setting aside the objections cliscussed earlier in Section 2.3.3 to the implementation by
the simple cells of complex-valued RFPs and outputs, as well as their conjugates, and

noting that the chosen Gabor functions do not form an orthonormal basis, hopes of
validating Marðelja's (1980) hypothesis appear to rest on the generalisation of the notion
of a basis provided by the theory of fra'mes (Heil & Walnut, 1g8g).

Definition 3.1 A set þþ¡:i e z) c ¿'z(R) of functions r/,:R --+C is said to form a

frame /or I2(R) if and only if there eústs a bounded inuertible linear o'perator P, callerl

the frame operator, such that for each function s e Ir(R)

[ps](r) : t ll ,ø,l,tf fr) dr)út@) (s.17)
i

The term in square brackets on the right-hand side of (3.17) can be identified with the
output of a simple cell having lD RFP ,þi@), while the summation can be identified
with the attempted reconstruction of the spatially low-pass filtered original image J(r)
from the frame elements r/¿ using the coefficients given by the simple cell outputs. Note
however that since the low-pass filtering operation performed on the image by the retinal
imaging process is not invertible, the corresponding operator is not a candiclate for the
frame operator P. Alternatively, (3.17) can be rewritten as

s(r) : 
+U s@)úî(r) a*)e-,ç;1*¡

so that the simple cell output - again in square brackets - can be seen as an expansion
coefficient corresponding to the element P-'rþo of the dual frame {P-'rþo} (Maclennan,
1ee1).
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The scalar constants Kr, K2 such that

rc1s(r) < Ps(r) < ru2s(r) Vs e tr2(R) (S.rS)

are called the frame bounds. A frame for which K7 : K2 is said to be tight, and in this
case P is simply the scalar K7 : Kzt so that the original image can be r.econstructed,

up to this constant factor, from the simple cell outputs as required by Marðelja's (1980)

hypothesis. For a given choice of 4,, the set Çr is known to form a Weyl-Heisenberg

frame for all sufficiently small values of A, (Daubechies et al., 1986; Heil & Walnut,
1989). However, although this frame becomes increasingly tight (lor - ^rl - 0) as the

product A'4, - 0 (Daubechies et al., 1986), it is not in fact a tight frame except in
the limiting case. This observation therefore rules out the possibility that the output
of a simple cell having 1D RFP g;e e Çt represents the coefficient of that RFP in the
expansion in (3.9), and hence invalidates Marðelja's (1930) hypothesis. Thus as lVlarðelja

(i980) concecled, the coefficient estimate provided by the simple cell is only approximate;

bounds on the error of this approximation are provided by (3.13). HoweveL, if indeecl

the set Ç2 of 2D Weyl-Heisenberg coherent states does provide an adequate model of the

set of simple cell spatial RFPs, a more natural account of the processing performecl by

simple cells is provided in the following section.

3.4.5 Discrete Window Fourier Transform

The 2D discrete window Fourier transform (DWFT) of a stimulus s(æ,ú) employing the

window function u:lR2-+lR - as it may or may not relate to the early visual system -
is given by

llVsl(æ¡¡,uon,t) n 
{r"@,t) 

.u(æ-æik) .exp{- j2ru[næ] rtæ

where W is the DWFT operator. Although the DWFT encompasses the use of more

general window functions, the choice of a Gaussian for the present purposes leads to
a set of 2D spatial RFPs given by the 2D Weyl-Heisenberg coherent states g;*pq(r) as

defined in (3.1a). For each point rlpq ot the spatial frequency lattice, lWs)(æ¡¡,uon,t) can

be viewed as the output of a filter having correlation kernel u(æ-æ¡¡) .exp{- j2truTr*}
and sampled at the points æik on a Cartesian lattice.

Unlike the Gabor expansion, the DWFT is def,ned in terms of the spatial inner
product of the stimulus with each of the GRGF elements of this set, and is therefore

more plausibly implemented by the simple cells2a. Like the Gabor expansion however,

the DWFT requires a large set of GRGFs having the same Gaussian window (up to
a translation) with a varying number of RF subfields (oscillations) "visible" under this
window, which despite reports of up to 8 RF subfields (Glezer et al., 1989), does not seem

2aalthough see the discussion in Chapter 7
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to be the case in general amongst the feline or primate simple cells (Daugman, 1988a),

whele RFs with 2 and 3 subfields predominate and Gaussian windows of various sizes have

been reported (Jones & Palmer, 1987b). This relatively small variation in the number.

of subfields exhibited by most simple cells is reflected in their approximately constant
banclwidths - approximately 1.5 octaves (Pollen & Gaska, 1987) - on a logarithmic
frequency scale (Daugman, 1988a) over the full range of centre frequencies cxhibitccl by
the population, an observation which conflicts with the prediction by the D\,VFT scheme,

cltte to the use of a single Gaussian winclow, of constant bandwidth on a lineal scale.

Furthermore, the 2D DWFT employs a Gaussian window with a single orientation, and

therefore fails to account for the variety of orientations observed amongst the simple cell

RFPs. It is not however possible on the basis of the above observations to conclusively

rule out the parallel implementation of multiple 2D DWFTs employing varying Gaussian

window sizes and orientations, for which a sufficient population of simple cells may incleed

exist. Nevertheless, the recent clevelopment of an alternative class of image representation

schemes - to be reviewed in Section 3.5 - which provicle a more natural account of
the variety of simple cell RFPs has probably sounded the death knell for the DWFT
hypothesis of simple cell processing.

3.4.6 Efficient Cocling Through Gabor Expansion

For clisclete-space (e.g. pixellated) images, the phase-space sampling lattice employed by
the 2D Gabor expansion is usually truncated both in spaceT to account for the finite spa-

tial extent of the image, and in spatial frequency, to account for the spectral limitations
imposed by spatial sampling2s. Applying one such truncated 2D Gabor expansion to an

image,, Daugman (1988a; 1989a) noted, after quantisation of the resultant coefficients to
n :256 grey levels, that the first-order entropy estimate

H, L -Ð fo].,g, Ín

n

i=l
(3.1e)

of the representation, where /, is the relative frequency of the ith cluantisation level, was

significantly less than the same measure applied to the pixels of the original image. The
symbol ffi is usecl to inclicate the fact that the relative frequencies of the various quan-

tisation levels provicle only an estimate of the true probability density function for the
pixel/coefficient random variables, which are assumed to be identically distributecl (see

below). When applied to the cluantised image, the measure H1, of which 111 is an esti-
mate, is bounded below by the true entropy H of the quantised image source? calculated

using the second- and higher-order joint probability distributions of the image pixels in

2sAlthough this involves a practical approximation, since due to the strictly infinite spatial and spectral
exbent of the Gaussian window employed in the true Gabor expansion, the coefficients of the Gabor
functions excluded by the truncation are not necessarily exactly zero.
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acldition to the marginal distributions. fI represents a measure of the information con-

tent of the image, with 2H giving the minimum number of discriminable signalling levels

required to completely encode each pixel/coefficient of the image in the absence of noise.

Contrary to the implication of the term "entropy reduction" used by Daugman (1989a),

a lossless transl'ormation of the image involves by definition no loss of inlbrmation and

hence entropy, but may convert the higher-order entropy of joint pixel intensity distlibu-
tions into the first-order entropy of individual pixel distributions (Field, 1987). Such a

conversion might for example be achieved by exploiting the statistical clependence of each

pixel on its neighbouls to predict the value of that pixel using a linear combination of the

neighbouring pixels, and transmitting only the difference between the true value and the

prediction (Atick & Redlich, 1991). Since there exist lossless coding algorithms such as

the Shannon-Fano algorithm (Carlson, 1986) which can achieve coding entropies close to
the first-order entropy, Daugman (1989a) concluded that the Gabor expansion is a more

efficient representation of the visual image than the original pixel-basecl representation.

However, the following formalisation of the above analysis reveals that despite its
promulgation in the literature (see e.g. Teuner & Hosticka (1993)), the comparison of the

first-order entropy estimates obtained using (3.19) before and after Gabor decomposition

of the image is invalid. Let an image be a single outcome of a 2D (spatial) stochastic

process26 (Papoulis, 1984). In order to determine the statistics of this pr-ocess from a
single image, we require that the process be ergodic, which in turn requires that it also

be stationary - i.e. its statistics are position-independent. The relevance of the following
argument to biological vision is consequently dependent on the extent to which the en-

semble of visual images can be characterised by a single ergodic 2D stochastic plocess2T,

a characterisation which is not only unlikely to encompass the statistical cliversity of nat-

ural scenes, but also ignores the piecewise temporal continuity of the visual environment.

In particular we wish to estimate the pixel probability density function on which the

first-order entropy measute 1{ is based, and require therefore that the stochastic process

which characterises the image is distribution-ergodic. The former condition can be met

if in addition to being identically distributed the pixel random uariables are also inde-

pendent for large pixel separations (Papoulis, 1984)28, which in the absence of further
information is not an unreasonable assumption in the context of natural vision.

These same considerations can be applied to the "image" resulting from Gabor de-

composition of the original image, whose "pixels" are no,ff the coefficients of the ex-

pansion. However, the requirement that the coefficients also be identically clistributed

26'Ihe reader unfamiliar with the theory of stochastic processes is referred to Papoulis (1984) for
definitions and explanations of the terms used in the present exposition.

2Talthough more sophisticated schemes for image representation should be adaptive to the more prob-
ably changing statistics of the visual environment.

28This claim is an extrapolation from the equivalent result proven by Papoulis (1984) for a 1D stochas-
tic process.
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places enormous restriclions on the class of allowabìe transformations between image ancl

coefficients2s. In the absence of further information regarcling the joint probability clistri-
butions of the input pixels, the satisfaction of these restrictions can only be guaranteed

apriori if the transformation is position-independent3o. The Gabor decomposition is not
however position-independent, sincc it cmploys Cabor functions with a range of spatial
moclulation frecluencies. Since the coefficients are therefore almost certainly not iclenti-
cally clistributecl, these ranclom variables cannot be characterised by a single plobability
clensity function, in violation of the assumption used to derive the first-order entropy
measure. Thus the measure obtained by Daugman (1989a) from the coefficient "image"
using (3.19) is not in fact an entropy measlrre, and its comparison with that obtainecl

for the original image is thelefore not justifiecl. In particular,, it cannot be conclucled on

the basis of this comparison that the Gabor expansion coefficients constitute an efficient

encoding of the image.

Nevertheless, this objection can be overcome if consicleration is restricted to the coef-

ficients of the Gabor expansion corresponcling to each spatial frec¡rency channel in turn.
Each such channel consists of an array of sensors having spatial RFPs given by the mod-

ulated biorthogonal functions in (3.16) centred at points given by the Cartesian spatial

sampling grid, and therefore effects a position-independent transformation of the input
image. A first-order entropy estimate can therefore be prepared for each channel individ-
ually using (3.19), and the resultant estimates averaged over all channels - each of rvhich

contributes the same number of coefficients - to produce a per-coefficient first-order en-

tropy. Since in comparison with the pixel distribution of the original image the composite
coefficient "distribution" presented by Daugman (1989a, Fig. 5) is strongly concentrated

around zero, it is apparent that this corrected first-order entropy estimate will still be

consiclerably lower than the corresponding measure for the input image. However, a full
exposition of the significance of this result for biological vision awaits the following: a jus-

tification of the assumption that the visual environment can be characterised by a single

ergodic 2D stochastic process; a demonstration of the performance of this decomposition

in the visual cortex3l; and a comparison with equivalent results - such as those outlined
in Section 3.5.5 - for competing simple cell image representation schemes, inclucling the

DWFT and the discrete wavelet transform (described in Section 3.5) to show that the

2eTo see this, assume a linear transformation such as that given by (3.16) and write clown the re-
quirements that the distributions of each of the coefficients have identical ith order moments for all
i €z+.

30Transformations which are position-independent up to any symmetries exhibited by the joint proba-
bility distributions of the input pixels/coeficients are sufÊcient, although these require apriori knowledge
of these symmetries. For example if bhe third- and higher-order joint distributions are zero, and the
second-order joint distribution is rotationally symmetric, the transformation need only be position-
independent up to rotations of the kernel.

slpresumably, for reasons outlined in previous sections, by cells other than the simple cells, although
see also Chapter 7.
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same benefit is not conferred by these other schemes

3.4.7 Sttmmary

The localised Fourier analysis hypothesis of simple cell spatial computation, that the

"simple cells can be said to extract spatially localised spatial frequency components"

(Pollen & Gaska, 1987), has been critically examined using two alternative mathemati-

cal formalisations: the Gabor expansion (GE), ancl the discrete winclow Foulier transfbrm

(DWFT). The hypothesis by Vlarðelja (1980) that the simple cell outputs represent the

coefficients of a 2D Gabor expansion of the visual image has been founcl to be inconsis-

tent with the GRGF model of the simple cell2D spatial RFP. In contrast the alternative

hypothesis, that the simple cells collectively compute a 2D discrete winclolv Fourier trans-

form of the visual image, is consistent with the GRGF RFP model, and therefore provides

the more plausible formalisation of the above assertion by Pollen & Gaska (1987). How-

ever the DWFT hypothesis has been found to provide at best an incomplete explanation

for the variation of the RFP model parameters observed in the simple ceìl populations

of feline and monkey primary visual cortex. The "preservation of both spatial frequency

and phase information at a given spatial position" also purported by Pollen & Gaska

(1987) furthermore entails the assumption - implicit in both the GE and DWFT hy-

potheses - that compler-ualued generalised Gabor functions are implemented amongst

the simple cells, an assumption whose criticism by Stork & Wilson (1990) was examinecl

earlier in Section 2.3.3. Finally, it has been argued that with a simple but important

modification, the empirical analysis provided by Daugman (1988a), in support of his as-

sertion that the Gabor expansion represents a more efficient coding for the visual image

than a pixel-based scheme, can be adapted to demonstrate - at least for the hypothet-

ical image source of which the single image analysed by Daugman (1988a) represents a

single outcome - what it purports to.

3.5'Wavelet-like Analysis

3.5.1 Introduction

According to the DWFT hypothesis of simple cell processing, simple cell RFPs can be

generated by the regular modulation and translation of. a common Gaussian window.

However it was noted in Section 3.4.5 that the consequent prediction of spatial frecluency

bandwidths which are approximately constant on a linear scale as the modulation fre-

quency is variecl is at odds with the available electrophysiological evidence showing ap-

proximately constant bandwidths on a logarithmic scale. Such evidence led Sakitt &
Barlow (1982) to propose an alternative scheme for the representation of the visual im-

age by the simple cells, according to which the RFPs of the simple cell population were
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assumed to be characterised by the dilation, rotation and translation of a pair of even-

ancl oclcl-symmetric GRGF templates. Such a scheme is suggestive of an analysis of the
visual image at different spatial scales or resolutions, ancl with the exception of the acldi-

tional degree of freeclom offerecl by the rotation operation, is consistent with the general

class of ntLtltiresolttLiut¿ tlecornposition schemes (see e.g. Nlallat (19Sgb)). However, the
mtrlti-stage prÏamidal architectules usually used for the efficient implementation of mul-
tiresolution schemes ale incompatible with the limitecl number of coriical layers in V1 in
rvhich the simple cells are locatecl. In an effort to both fit the available anatomical ancl

electrophysiological data and to ensure the cornpleteness of the representation, Sakitt &
Barlow (1982) chose appropriate dilations, rotations and translations on a sornewhat ¿rl

åoc basis, permitting only empirical arguments in favour of the completeness of the repr.e-

sentation. These arguments were based on the coverage of the spatial-frequency clomain

affordecl by the choice of bandwiclths ancl centre frecluencies and on the Sampling The-
orem, which is not strictly applicable to such a representation scheme since the GRGFs
are not strictly band-limited (Vlallat, 1989a). A relatecl scheme proposed inclepenclently

by Watson .b Ahumacla (1983) sufferecl fi'om a similar lack of formal completeness results,
despite exhibiting greater regularity in the spatial and spectral sampling lattices.

Since the chosen Gabor functions are not mutually orthogonal, a proper tleatment
of the issue of completeness must once again involve the theory of frames. However,

since completeness results are not yet available for such sophisticated sampling schemes,

some simplifications are necessary. In palticular', the eccentricity-dependent decline in
the cutoff frecluency exhibited by primate ancl feline visual systems and inclucled in
the models of both Sakitt & Barlow (1982) and Watson & Ahumada (1983), the scale-

dependent rotation increments used in the former scheme, and the biological likelihoocl
of somewhat irregular sampling lattices, will be ignored in the present analysis. \,Vith
these simplifications, one is left with a scheme such as that proposecl by Field (1987)32,

which employs Gabor functions distributed on a log polar sampling lattice in the spatial
frequency domain as shown in Figure 3.6(a), and a frecluency-dependent Cartesian lattice
in the spatial domain as illustrated in Figure 3.6(b); an explanation of the notation used

in Figurc 3.6 is provided later in Section 3.5.2. Noting that the geleralit.rn of a set

of functions through the regular dilation, rotation and translation of a single function,
along with these resultant spatial and spectral sampling lattices, is highly reminiscent
of a representation scheme known as the discrete wauelet transform (Daubechies et al.,

1986; Vlaìlat, 1989a) or DWT, Daugman (1988a) referred to the resultant functions
as a set of Gabor wauelets. Since recent interest in wavelets has produced a number

32I refer here to the scheme by Fielcl (1987) which uses the true Gabor functions, as opposed to
his second scheme - proposed in the same paper - involving sinusoidal functions having windows
which are Gaussian on a logarithmic scale. The latter scheme is related to several proposed by Porat
k Zeevi (1988) involving distortions of the Gabor functions, which are beyond the scope of the present
consideration.
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(a) 2D spectral lattice (b) 2D spatial lattice

Figure 3.6: (a) Lattice of centres @lti,"l'ì) in the spatial-frequency clomain for a wavelet-
like 2D representation with a:2. (b) Lattice of centres @llìr,rto?ìr) in the spatial domain
for one value of the scale parameter i. The notation is explained in Section 3.5.2.

of useful results concerning the completeness of wavelet sets, an important step in the

search for a completeness proof for the type of representation proposed by Field (1987)

is an exploration of the link between this wavelet-like representation and Gabor function
wavelet schemes. To simplify the following development, we concentrate initially on the

1D case, and then extend consideration to two dimensions.

3.5.2 Discrete Wavelet Transform

The discrete wavelet transform of a function / e ¿'(R) is given by

lwfl\,pttþ,a): t: f (r)tþ;r(r) dr (i,p) e Z2 (3.20)

where the 1D wavelets

úq@) ! \/a, .rþ(o,*-pL,)

are generated from a single mother wavelet r/:R --C by dilating it by the factor a-i,
where 1 < o € R+, and translating it by pa-'L,,, where A, € R1. The set {þ¡r: (i,p) e
Zzj for a given mother wavelet function ry' is known as a set of lD discrete affine coherent

states (Daubechies et al., 1986), since they are generated from the mother wavelet (up

to the normalisation factor Jã) UV an affine transformation of the spatial variable z.

A bandpass function tþ is admissible as a mother wavelet if it satisfies the condition
(Daubechies et al., 1986)

r- lÜ(u)12 , .

J" 'Ë du 1æ (3'21)
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Figure 3.7: Phase-space lattice of centres (r¡r,u¿) - shown as dots - for the functions
tÞ;p :used by the 1D wavelet transform with o : 2.

where V + F{tþ} is the Fourier transform of /, which in particular requires that lü(0)l :
0 (Mallat, 1989a). If T/ is admissible, then the set {úo} of discrete affine coherent states

which uses ry' as its mother wavelet may, under certain additional conditions on tþ, L,,
and a, be shown to form a frame for tr2(R), and hence to be complete over this set of
square-integrable functions (Daubechies et al., 1986; Heil & Walnut, 19Sg). Denoting by
'us the centre frequency of r/ such that

fq)

J" (" - ø)lü(")l' du: o

the distribution in phase space of the spatial and spectral centres

:x ip -,4"

ui Q'uo

of the functions uÞ;e is illustrated in Figure 3.7 for a : 2. The centre spatial frequencies

ui are evenly spaced on a logarithmic scale, while as can be seen in Figure 3.7, the

spatial sampling interval varies inversely with the centre spatial frequency. Ignoring for
the moment the problems associated with implementing possibly complex-valued RFPs,

each coefficient [lff](i,p;rþ,o) of the 1D discrete wavelet transform could according to
(3.20) be calculated by a simple cell having corresponding lD spatial RFP r/;r, relatecl to
all other simple cell RFPs by dilation and translation. This possibility will be investigated

further in Section 3.5.3 following an exposition of the extension of wavelets to 2D.

po
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The 2D discrete wavelet transform of a function / € ¿'(R') is given by

úVfl(i,p,q;tþ,a) : t: f (æ)tþ;oo@) dæ (i,p,q) e Z3 (3.22)

rvhere the 2D wavelets

ú;rr(æ) ! Ja' 'rþ(oo*-[pa[t], qAfrl')

are generated from the mother wavelet ú,R'--+ C by dilating it by the factor a-',
where 1< cv € R*, and translating it by o-o[pAf], q\fll', where AfJ,¡tzl € R...,.. The

admissibility condition

¡- lü(sz)12 ds < oo Vø e R2 (J.23)Jos
is analogous to that in (3.21), where the integral is now performed along a radial line in

the frequency domain, and must be finite for all possible radial directions. In particular,

admissibility once again requires that the Fourier transform ü of the mother wavelet

satisfylü(0)l :0(Mallat, 1989a). Sincetheset {rl,orr,(i,p,q)€2"} doesnotexplicitly
incorporate rotations of the mother wavelet, orientation dependence can be incorporatecl

by choosing a rotationally symmetric mother wavelet r/, dividing its Fourier transform

into rn sectors, and choosing corresponding wavelets {rþr , k e [1, rn] C Z¡] whose

Fourier transforms Ü¡ are respectively concentrated on each of these sectors and satisfy

n1

I lvo(")¡2 : lü(z)12 (3.24)
k=l

(Mallat, 1989a). This construction yields the 2D spatial and spectral sampling lattices

illustrated in Figure 3.6, where the sub-wavelets 1Þu,po at a given scale are related to each

other by rotation through multiples of Ap - ?a and translation. As indicated earlier,

these lattices a¡e also employed by the representation scheme proposed by Field (1987).

3.5.3 Do Simple Cells Perform a Discrete Wavelet Transform?

In attempting to determine whether or not the simple cells implement a cliscrete wavelet

transform, the present discussion focuses initially on the Gabor function model of the

simple cell RFP; the conclusions drawn from this analysis are then shown to apply to

a broad class of RFP models. The question arises as to whether the Gabor functions

are suitable candidates for the mother wavelet function T/ in 1D, or for the mother sub-

wavelet functions tþ¡, in 2D.

The lD Gabor functions are not admissible as mother wavelets, since all complex-

valued Gabor functions have, by virtue of the Gaussian tail, non-zero magnitude at the

origin of the spatial frequency plane, and hence fail to satify the admissibility condition

(3.21). Since of the real- and complex-valued Gabor functions only the sine-phase RGF
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satisfies this condition, the theory of wavelets in its present form cannot, under the as-

sumption of a Gabor function model for the simple cell spatial RFP, provide an adequate

description of the variety of simple cell RFPs observed. To rationalise the continued use

of the completeness results offerecl by wavelet theory (Daubechies et al., 1986) in spite

of the above objections, the pragmatist may howevel be tempted to exploit the fact that
a complcx-v¿luccl Cabor function has approrimately zero DC response fol all sufficiently
large centt'e frequencies - given by the frequency of the sinusoid - relative to the size

of the Gaussian. Holvever, the justification of this approach would seem to require more

RFP subfielcls than are exhibited by most simple cells.

Nevertheless it will plove instructive to indulge this approximation for the moment,

and to examine whether the 2D Gabor functions are suitable candidates for the sub-

wavelet functions'r/¡. Owing to the finite response of these functions at zero frequency,

the function i[ will also have non-zero response at DC, which strictly speaking renclers

the rotationally symmetric function T/ inadmissible as a mother wavelet according to
condition (3.23). However, the satisfaction of (3.24) furthermore requires that \û¡ be

polar separable, which is neither satisfied by the Gabor functions nor characteristic of

the spectral RFP of the simple cells33 (Daugman, 1980; Jones et al., 1937), Thus, in
addition to their failure to satisfy the admissibility condition, Gabor functions are further
exclucled by the multi-orientation two-dimensional wavelet transform on the basis of their
inability to satisfy this isometry-preserving condition.

Despite the marked similarities between the 2D discrete wavelet transform and the

representation scheme of Field (1987), the latter scheme is therefore not a wavelet scheme,

ancl is consecluently not covered by the frame-based completeness results concerning

wavelet representations. The required completeness results therefore await future devel-

opments in the theory of such wavelet-like schemes. It should further be noted that the

two objections raised above - viz. non-zero DC response and lack of polar separability
in the spatial frequency domain - to thb use of Gabor functions in a discrete wavelet

transform extend to most if not all plausible moclels of the simple cell RFP, ancl argue

against the DWT as a description of the processing performed by the simple cells.

3.5.4 Gabor "Wavelet" Expansion

Using the same wavelet-like set of dilated, rotated and translated Gabor functions g;¡on

as the representation scheme of Field (1937), Daugman (1988a; 1989a; 1989c; 1990)

33In violation of this simple cell property, polar-separable wavelet-like representation schemes have
however been proposed. In the somewhat inaptly-named. corlex lransform, for example, Watson (1987)
used sub-wavelets which occupy annular sectors of the spatial frequency plane, with the edges rounded
off using a Gaussian profile to improve spatial localisation,
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proposed an alternative scheme according to which the coefficients c¿¡rn in the expansion

æ n'L oo co

.õ(æ,ú) : I D D D c¿¡ro(t)s¿¡,rr(æ) (3.25)
i=-co fr=l p=-(t q=-6

are required, rather than simply the outputs of simple cells having the functions ry'¿¡oo :
gikpq as spatial RFPs, as suggested by (3.22). This scheme is therefore similar to the

Gabor expansion, except that the functions usecl in the expansion are now generated by

the dilation, rotation, and frequency-dependent translation, rather than moclulation ancl

frequency-independent translation. Not surprisingly it suffers from the same shortcom-

ing: the simple cell outputs do not give the required coefficients, the calculation of lvhich

must therefore be deferred until later processing stages. Furthermore, for the reasons

outlined in the previous section, it is not possible to make use of the frame-based com-

pleteness results for wavelet representations (Daubechies et al., 1986) to demonstrate the

completeness or otherwise of this scheme.

3.5.5 Efficient Coding Through Wavelet-Lilce Analysis

Each channel of a wavelet-like image analysis consists of an array of sensors or "cells"

whose RFPs lsinpq are characterised by a common scale i and orientation k. Fielcl (1987)

analysed the Fourier amplitude spectra of six natural images, and demonstrated that

these spectra are approximated by " f I f clecay in amplitude with spatial frequency.

Representation of such images using a scheme whose channels exhibit constant band-

widths on a logarithmic scale and logarithmically spaced centre frequencies therefore

results in an approximately equal division of image power between these channels (Fielcl,

1987). The choice of a spatial-frequency bandwidth of approximately 1 octave was found

to be optimal in the sense that

. . . a small proportion of cells represents a large proportion of the information

with a high signal-to-noise ratio. . .

so that for any giuen image,, relatively few individual sensors had outputs which differed

significantly from the mean sensor output (presumed zero), and these accountecl for most

of the output activity or variance. Field (1987) interpreted this observation to mean that

second- and higher-order correlations between the pixels of the stochastic process charac-

terising the original image had been largely converted into first order redundancy in the

sensor output distributions for each channel. Having thus been made more explicit, the

redundancy in the image could be more easily reduced by subsequent cortical processing

stages. This interpretation could equally be applied to the related entropy-based obser-

vations by Daugman (1988a; 1989a) concerning the Gabor expansion. Furthermore, the

difference between the "entropy" measures obtained after applying to the same image



72

the Gabor "wavelet" expansion and its inner-product equivalent was observed by Pece

(1992) to be slight.

However the analysis from which this conclusion was clrawn lumpecl together the

non-identically clistributecl outputs of all channels, rendering it susceptible to the same

criticism - cletailecl in Section 3.4.6 - as that performed by Daugman (1988a; 1989a)

for the Gabor expansion. Neveltheless, Field's (1987) demonstration of approximately
eclual energy - ancl hence variance of the output "distribution" if the outputs of each

channel are assumecl to have zero mean - across channels provides partial leassrlrance

that similar results would have been obtained if the channel-wise analysis hacl been

performed. Furthermore, clespite having relatively few sensors in a given channel active

for any given image procluced by the characteristic 2D stochastic process, the present

lvavelet-like analysis, by virtue of the identical output clistributions of these sensors,

clistributes the representational effort evenly over all sensors in a given channel for an

ensemble of such images (Field, 1987). This property can be contrasted with the tendency

of principal component analysis - such as that discussed briefly in Section 3.4.1 - to
concentrate as much of the replesentational effort into as few sensors as possible over

the image ensemble (Field, 1987). This latter property would be convenient for reducing

the number of sensors required to represent the image with a specified sufficiently small
loss, as opposed to the number of distinguishable signalling leuels required to transmit
the output of each sensor. Since there appears to be an abundance of simple cells in
V1 relative to the number of photoreceptors, and each such cell appears to be relatively
noisy (Barlow et al., 1987) and subject to severe temporal limitations on the accuracy

with which its output can be signalled (Maclennan, 1992b)34, the latter scheme would

appear to be the more advantageous for the visual cortex.

3.6 Applications of Gabor Functions

Gabor functions have proven popular over the past decade for the preprocessing of images

for applications including texture analysis, image compression, and pattern recognition.

Since texture is often characterised by its spectral signature, of particular interest to
the texture anal" ,is commttnity have been the optimal joint spatial and spectral local-

isation property ¡¡f the complex-valued Gabor functions with d : 0, and the flexibility
with which resolution in one domain can be traded for resolution in the other. These

properties permit the localisation of boundaries between areas of differing texture, as

requirecl for segmentation, through the detection of discontinuities in local rnagnitude

&/or phase estirnates derived from the outputs of Gabor filters (Turner, 1986; Clark &
Bovik, 1989; Fogel & Sagi, 1989; Bovik et al., 1990; du Buf, 1990; Bovik, 1gg1). The
potential for image compression through Gabor function preprocessing derives from the

3aalthough see the discussion entitled "Neural Iteration" in Section 2.2.3



73

wolk on entropy reduction and efficient coding by Daugman (1988a; 1989a) ancl Field

(1987), as discussed in Sections 3.4.6 and 3.5.5 respectively. Practical compression has

been demonstrated by Daugman (1988a; 1989a) for both the Gabor expansion and the

Gabor "wavelet" expansion. The primary motivation for the use of Gabor functions in

the majority of pattern recognition applications appears to have been their bandpass

tuning for both spatial frequency magnitucle and orientation, despite the fact that many

other functions exhibit similar 2D spatial frequency tuning properties. A non-exhaustive

stlrvey of applications of Gabor functions to image cocling and analysis is presentecl in
Appendix C.

Motivated more commonly by engineering objectives than any clesire for biological

ficlelity, such applications have nevertheless clrawn inspiration from the results reviervecl

in Chapter 2 showing some justification for the 2D real-valued Gabor function as a moclel

of simple cell spatial RFPs, and at the same time have contributed to our knowleclge con-

cerning the benefits potentially conferred on the visual system by such RFP functions.

However, applications using the complex-valued Gabor functions in the estimation of

local amplitude or phase, or relying strongly on the optimal joint localisation ploperty,

depend crucially on the use of complex-valued Gabor functions, the biological imple-

mentation of which by the simple cells was argued in Section 2.3.3 to be as yet lalgely

unsubstantiated. The fact that the optimal joint localisation property applies only to
the complex-valued Gabor functions is sometimes overlooked, with Beck et al. (1990),

for example, erroneously invoking the optimal joint localisation property in justification

of an application using only real-valued Gabor functions. Furthermore, the truncation of

the Gaussian window necessitated by any computational or physical implementation of

a Gabor function renders strict reliance on the optimal joint localisation property of the

complex-valued Gabor function untenable, since with the imposition of the constraint of

finite spatial support on the search for optimally jointly localised functions, a solution

other than the truncated Gabor function will almost certainly emerge. Also of concern to

those wishing to relate the results of these applications to biological vision is the fact that
little effort has been made to exploit even a significant subset of the degrees of freedom

exhibited by spatial RFPs in the simple cell population. As indicated in Appendix C,

no systematic variation of the aspect ratio I or the phase parameter / has for example

been attempted.

3.7 Conclusion

A number of theories concerning the spatial computational role of the simple cells in

primary visual cortex have been investigated. Special attention has been paid to their

ability to account for the variety and distribution of spatial RFPs observed in the simple

cell population and to the completeness of the visual representation they postulate. In
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adclition to the limitations outlined in Section 3.1, the validity of this approach is cle-

pendent on the extent to which a linear spatial RFP can be considered or even definecl

inclependently of the temporal ancl binocular propelties of the true simple cell RFP, a
view which in the light of the analysis in Chapter 2 is largely indefensible. Nevertheless

on these grouncls alone, strong objections have been raised against most existing theories,

The feature-detection hypothesis was clisca,r'ded on the basis of its incompatibility
with the preclominant spatial linearity of simple cell processing. The linear matched
filtering hypothesis for bars and edges is rendered untenable by: the poor selectivity of
sirnple cell RFPs for eclges and bars (Nlalr & Hildreth, 1980); the existence of simple
cells having more subfields than permittecl for bar- and edge-selectivity; and the excessive

number of simple cells required by the extension to the binocular spatiotemporal case.

With the exception of the fractional discriminant functions, derivative-based theories of
simple cell spatial computation were commonly found to admit only purely even- ancl

odd-symmetric RFPs. The Gabor expansion ancl discrete window Fourier tlansform
were found to use an unrealistic distribution of Gabor function parameters, with an

unrotated Gaussian of constant size, and an even clistribution of the number of subfielcls

visible uncler the Gaussian. The biorthogonal functional form of the RFPs requirecl
for the Gabor expansion was also shown to be inconsistent with those exhibitecl by
the simple cells. The discrete wavelet transform aclmits neither the Gabor function nor
similarly lealistic spatial RFP models as mother sub-wavelets, while the Gabor "wavelet"
expansion is once again inconsistent with the spatial inner product performed by the
simple cells.

A number of image representation schemes which have been tentatively identifiecl with
the simple cells show greater biological realism and (perhaps inevitably) mathematical
complexity than those examined in depth in this chapter, including for example a retinal-
eccentricity clependent variation in the peak spatial frequency (Sakitt & Barlow, 1982;

Watson & Ahumada, 1983). Since the mathematical tools required to establish or refute
the completeness of these generalised wavelet-like schemes do not yet exist, the resolution
of this issue awaits the future generalisation of the existing tools of wavelet theory.



Chapter IV

NEURAL NETWORKS FOR NON.ORIHOGONAL IMAGE
DECOMPOSITION

4.L fntroduction

As discussed in the previous chapter, clecomposition-based theories of simple cell pro-

cessing postulate that each simple cell computes the coefficient corresponding to its own

spatial RFP in an expansion of the visual image which nses these RFPs as expansion

functions. Implicit in the definition of a coefficient employecl by these theories is the no-

tion that each cell signals the relative presence of its spatial RFP in the image, a notion

which is reminiscent of feature detection hypotheses of simple cell processing. The con-

cept of the "relative presence" of an expansion function can be quantified by choosing a

reconstruction error criterion, the minimisation of which, subject to suitable constlaints,

uniquely defines the set of expansion coefficients.

In this chapter the decomposition of a sampled multidimensional function using a

set of non-orthogonal expansion functions is formulated as a least squared error (LSE)

quadratic optimisation problem, the solution of which corresponds to the best linear

unbiassed estimate (BLUE) of the original image when the image is subject to zero.mean

spherical Gaussian noise. To standardise the formulation of the problem, the samplecl

function is first reduced to a vector, and the decomposition is thereafter expressed in

terms of matrix-vector algebra which is independent of the function dimension. Thus

although the discussion focuses almost solely on the decomposition of an image using 2D

expansion functions, it should be remembered that the formulation is not limited to the

two-dimensional case. Furthermore, since both the image impinging on the retina and the

receptive fields of sensory neurons are naturally represented by real-valuecl functions of

the retinal coordinates, the trivial extension to complex-valued functions and expansion

functions is not explicitly addressed. However, this extension is achieved simply by

replacing the matrix and vector transpose operators with their Hermetian equivalents in

the following formulation.

Since degeneracy of the solutions to the resultant LSE problem might be expected to

pose problems for any natural or synthetic perceptual system implementing the requirecl

decomposition, the problem is regularised to ensure uniqueness of the coefficients in

cases where the expansion functions are linearly dependant. The regularisation has the
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additional benefit that coefficients are preventecl fi'om becoming arbitrarily large in near-

clegenerate cases. Following a brief review of conventional methods in linear algebra

ancl optimisation theory for the solution of the LSE ancl regularisecl LSE problems, the

remainder of the chapter is clevoted to a review of linear time-inuariant (LTI) recur-r'ent

artificial neural netwolks (RANNs) whose dynamics converge to the desired LSE or

regularisecl LSE coefficients.

4.2 LSE Image Decomposition Problem

The reader is referred to any stanclard text on matrix algebra such as Golub & Van Loan

(1989) for general information on many of the concepts and algorithms discussed in this
and subsequent chapters.

4.2.1 IVIatrix Formttlation

It is recluired to represent a leal-valuecl image i(*) - where t: (r,y) denotes position

within the image - using a non-orthogonal set Ç of real two climensional (2D) expansion

ftrnctions {g¡(*)}. The reconstruction of i(æ) from the coefficients {øi} is defined to be

i(*) n D"¡g¡(*)
J

For a finite and discretely sampled image, such as that represented by the outputs of the

photoreceptors of the retina, the expansion functions are sampled on the same sampling

grid to produce a two-dimensional array of samples. This array can then be converted

into a sample vector by scanning the array in some regular order. For example, if the

sampling grid is rectangular, the array can be represented as a (two-dimensional) matrix,
and can be scanned in transpose raster order - using the operator uec']Rrr¿xn--+lfrrnn -
to procluce the required sample vector. Each such vector sampled from a given expansion

ftrnction gj(æ) of the chosen set can be represented as a row of the expansion function

matrix G € IR"x-, where n is the number of expansion functions and rn is the number

of points on the sampling grid. The coefÊcients {ø¡} are arranged in a column vector

d, € IR" in the same row order as their corresponding expansion functions appear in G,

The image z(æ) after discrete sampling can be converted in the same manner as each of
the expansion functions into a column vector i € lR-, leading to the following matrix-
vector formulation of the reconstruction

(4.1)

where " clenotes the transpose operator. This formulation is generalised to functions of
arbitrary dimension simply by adopting an appropriate and consistent convention for the

arrangement of image and expansion function samples into a column vector.

o,G,Ax
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4.2.2 Squarcd Reconstruction Error (SRE) lVlinimisation

The problem of image decomposition using the set Ç of expansion functions involves the
solution of the set of lineal equations

G'a, : i (4.2)

to iclentify the coefficient vector ø for which the reconstructecl image â most closely
resembles the original observed image i, in terms of some reconstruction error metric.
If the image is subject to additive zero-mean spherical Gaussian noise, then the óesl

linear unbiassed estimate (Mohanty, 1986) of the true image is obtainecl by minimising
the squared reconsh't¿ction error (SRE)

E(") L lli - i,lll : u - G, o), (i - G, a) (4.3)

for each image, where ll.llz denotes the Euclidean (/2) norm. The expectecl value of E
over an ensemble of noisy images is referred to as the rnean squarecl reconstruction error,
ancl is zero only if the set Ç of expansion functions is complete for the image ensemble
and the noise has zero variance.

The SRE ø in (a.3) is quadrati c in o,, forming a parabolic error surface definecl on the
domain of expansion function coefficients. Equating the gradient VE to zero ancl noting
that the Hessian Hø(o):2GGr is positive semidefinitereveals that the solutions to the
SRE optimisation problem

m"in {E(ø)}

are the solutions to the norrnal equations (Golub & Van Loan, 1g8g)

GG,A: Gó (4.4)

for the set of equations 1n @.2). If the expansion functions are linearly indepenclentl then
G has full row rank and Hø(a) is positive definite. The minimum of E is then unique
and is given by the (Moore-Penrose) left pseudoinuerse solution (Ogata, 1937)

aLp: (GGr)-'Gô (4.5)

of the over-cletermined set of equations in (a.\. Fol this choice of the coefficients, the
reconstructecl image â is the orthogonal projection of the noisy image i onto the subspace

spanned by the rows of G, and the corresponding SRE (in the absence of noise) is the
square of the Euclidean distance between the image and its projection. If the expansion

functions are orthogonal, then the matrix GG' is diagonal with diagonal entries given

by the square of the Euclidean norm of the corresponding expansion vector, and the
inversion is trivial.

lfor which a necessary condition is that n 1m



78

If the expansion functions are linearly dependenú2 then G is low rank deficient ancl

Hn(a) is positive semidefinite but singular, so that the minimum of B is no longer

unique. This degeneracy is usually resolved by seeking among the coefficient vectors

colresponding to minima of the cost function that which has the minimum Eucliclean

norm) giving rise to the following solution (Golub & Van Loan, 1989, Thm 5.5.1)

+Grø
+

z (4.6)

where + clenotes the fuloore-Pe'nrose 'pseudoinaerse3. An aclvantage of this aclditional

minimum Eucliclean norm criterion which will become significant during later cliscussions

of implementation of SRE minimisation schemes in analog systems is that the output

power requirecl to represent the coefficients is minimised. In the special case where G has

full row rank, (4.6) reduces to (a.5) since aip uniquely minimises E, and hence (trivially)
also minimises lløllz amongst the minimisers of B (Golub & Van Loan, 19S9). If on the

other hand there are at least rn linearly independent expansion functions (G has full
column rank), (4.6) reduces (Hager, 1988) to the (Moore-Penrose) right pseudoinaerse

solution

a*Rp: G(G'G)-'i (4.7)

of the under-determined set of equations in (4.2) , which gives perfect reconstruction of the

image in the absence of noise. Since at most rn linearly independent expansion functions

are required to completely represent the sampled image, the excess of expansion functions

makes this an unlikely scheme for image compression applications; however, it will be

seen in Chapter 7 that it warrants closer examination in connection with mammalian

visual systems.

4.2.3 Practical SRE Minimisation

If the matrix G is known to have full row rank, the SRE .E is a positive definite quaclratic

form, which can be minimised explicitly using optimisation techniques such as conjrLgate

gradient algorithms, quasi-Newúon methods (Press et al., 1988) or iterative matrix tech-

niques, frequently referred to as relaration algorithms. Relaxation algorithms can be

characterised as explicit or hybrid explicit-implicit Euler method approximations to the

graclient descent equation

a: -lVE
where f e Rf" is either 1" or fdiag(GG')l-',and diag:lR'x'--+lR'x'returns the matrix
obtained by replacing the offdiagonal entries of its matrix argument with zeros. The

2which occurs for example if there are more expansion functions n than image sample points rn
3henceforth referred to simply as the pseuiloinuerse, since there is no potential for confusion with

other pseudoinverses in the present context.
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application of relaxation algorith which include the Jacobi, Gauss-Seidel ancl Su,c-

cessiue Oaerrelaraúion (SOR) algorithms - to the solution of the normal equabions in

(4.4) has been reviewed by Yan & Gore (1990) in the context of non-orthogonal im-
age decomposition. Alternatively, the normal equations in (a.a) can be solved by clirect

methods such as matrix inversion or Gaussian elimination. Ill-posedness of the problem

- which is exacerbated by the scluaring of the condition number during conversion of the

ecluations in (a.2) to normal form - can be to some extent overcome by scaling (Golub

& Van Loan, 1989) the normal equations - a technique which is examinecl further in
Section 5.4.

If on the other hand the matrix G is known or suspected to be row rank cleficient,

explicit computation of the pseudoinverse solution in (a.6) is required. The calculation of
the pseudoinverse usually involves the singular ualue decompositioza (SVD) of G, which

prodtrces errors of the order of 6o^",(G) in the singular values, where o, ",(G) clenotes

the maximum singular value of G and ó clenotes the machine floating-point precision

(Golub & Van Loan, 19Sg). Denoting by o,,¡*(G) the smallest non-zero singular value of
G, the generalised spectt'al condition number of G is defined as

n,(G)!?!!!9>r (4.8)' o^¿"\G)

For the present purposes, G will be said to be ill-conditioned if nr(G) Þ I, ancl well-

conditionedif E2(G) = 1. If G is particularly ill-conditionecl, ranlc(G) - which is requirecl

for the calculation of the pseudoinve can be difficult to ascertain from the SVD
due to the relatively large etrors in the estimation of the zero and near zero singular

values. Thresholding of the singular values does little to alleviate this problem, since an

appropriate threshold is not known a priori, and estimates of non-zero singular values

can lie below the threshold, while those of zero singular values can lie above it. In
the calculation of the pseudoinverse, the estimated singular values which are nonzero

after thresholding are inverted to form singular values of the pseudoinverse matrix, while
the remaining singular values of the pseucloinverse are set to zero. An overestimate of
rank(G) will therefore result in the estimate of the pseudoinverse having one or more

singular values which should be zero but are in fact of the order of the inverse of the

threshold. Thus the estimated pseudoinverse is a strongly discontinuous function of the

estimate of rank(G).

An alternative approximate solution method which does not suffer from the problem

of cliscontinuity with estimatecl rank is suggested by the observation of den Broecler &
Charnes (1957) that the Nloore-Penrose pseudoinverse solution given in (a.6) can be

expressed as

a,\ : 
I33 {tcc' + e/,)-'G} i (a.ea)

aalthough Greaille's melhod (Greville, 1960) is an alternative.
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: 
l':3 {ctc'G + e t^¡-') t (4.eb)

where 1, and I* are the nxn and n'ì,xrn identity matrices respectively. The equality
of the two terms in limits can be established by adding eG to GG'G and pre- and
post-factolising by fi. As expectecl, as 6 --+ 0 these telms tend respectively to the left
pseudoinverse if G has full low rank, and to the right pseudoinverse if G has full column
rank. In the more general case, the calculation of either term for suitably small e > 0

procluces an approximation to the true pseudoinverse.

Foragivene>0
a,, 1qGG, + €I^)-'Gi

is the unique stationary point of the error function

E"(a;€) 4 lli - ¿17 + rll"ll3

and since the eigenvalues of the Hessian

Hø,(a):2(GG'IeI,)

(4.10)

(4.11)

are simply twice those of the positive semidefinite matrix GGt plus 2e - from which it
follows that HB,(ø) is positive clefinite - this stationary point is also the point at which
the global minimum of E, is attainecl (Ben-Israel & Greville, 1974). The optimisation
problem

m"in {ð,(ø;e)} (4.\2)

is referred to as the ridge regressiozproblem (Golub & Van Loan, 1989), and from (4.11)

has as its solutioî an a,pprorimate minimiser of the SRE which has a smaller norm.

The regularisation (Hager, 1988) or ridge (Golttb & Van Loan, 1989) parameter e > 0

controls the trade-off between minimisation of the SRE and minimisation of llølll in the
optimisation of 8", and can be chosen to avoid undue sensitivity of the computed solution
to errors or noise in any one element of the observed image vector i (Golub & Van Loan,

1989). However, for the present purposes it will be assumed that e > 0 is chosen to be

small euough io acltieve a suibable approximation to the true pseudoinverse solution.

Since -B' is a positive definite quadratic form, the application of gradient-based algo-

rithms to the augmented normal equations

(GG'*eI")a:Gi (4.13)

arising from the ridge regression problem is guaranteed to find the unique global minimum
of 8,. Alternatively, these augmented normal equations can be solved in the same ways

- outlined in the beginning of this section the original normal equations for the
full-rank case. Although as 6 --+ 0 the condition number of the augmented normal
equations approaches the square of that of G, the resultant errors are no longer subject
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to the strong discontinuity with estimated rank associated with the explicit calculation
of the pseudoinverse, Furthermore the larger the value of e, the better the conditioning
of the augmented equations, although of course the worse the lesultant approximation

of the true pseudoinverse.

4.3 Neural Networks for SRE Minimisation

For realistic image processing applications, the number m of pixels is frequently of the

order of 105 (e.g. 512x512), and if accurate reconstruction is required, the number n of

expansion functions is of the same order. The computation of the pseudoinverse solution
oL an approximation thereto by any of the means discussed in Section 4.2.3 is therefore

highly computationally intensive, and the use of parallel computation is a necessity for

leal-time applications. The reader is referred to Golub & Van Loan (1989, Chap. 6) for

an overview of parallel matrix computations on generic conventional parallel computer

architectures.

In order to investigate the feasibility of the implementation of an SRE minimisation
scheme in the mammalian early visual system, the solution of the SRE ploblem using a

class of fine-grainecl parallel computing architectures known as neural netwo'rlcs is exam-

ined. Attention is focused on recurrent analog neural networks, formed by the lecurrent
weightecl interconnection of a large number of analog computing elements, each of which

consists of a summing integrator with cascaded non-linearity. These networks - of which

possibly the best known example is the Hopfield network (Hopfield, 1984)- constitute
a subset of the class of additiue neural networks (Grossberg, 1969) which are commonly
used to clescribe biological neural networks at moderate levels of abstraction. Although
the identification of suitable analog aery large scale integrated (VLSI) circuit implemen-

tations of such networks is an on-going research issue (see e.g. Schach (1992)), their
structural regularity has intuitive appeal in VLSI circuit design. The possible implemen-

tation of neural networks discussed in this and the following chapter in the real neural

wetware (hardware) of the mammalian early visual system is examined in Chapter' 7.

The implementation on conventional fine-grained parallel architectur such as

single instruction rnultiple data (SIMD) machines - of direct methods for the compu-

tation of the pseudoinverse solution or its approximation - including singular value

clecomposition, or inversion of (a.13) - requires global coordination of the actions of the

individual processing elements. However such coordination, which is also required by

optimisation algorithms classified as conjugate gradient or quasi-Newton methods (Press

et al., 1988) to implement the necessary one-dimensional sub-minimisations, is inconsis-

tent with the autonomy of neurons in a recurrent neural network. In contrast, relaxation
algorithms require no such coordination and are therefore - with minor moclification in
some cases to permit simultaneous updating of all coefficients (Yan & Gore, 1990) - well
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suited to implementation in recurrent neural architectures. Furthermore) when formu-
lated in continuous-time, relaxation algorithms lead naturally to analog neural network
implementations.

In this section, neural netwolk approaches to the least-squares solution of a full-rank
over-cleterminecl set of linear equations are reviewed. In the following section, the appli-
cation of rteural rteLwork implementations of the ridge regression problem to the solution
of rank-cleficient ancl under-cletermined sets of linear equations is examined. In keeping

with the current context of image clecomposition using non-orthogonal expansion func-

tions, the terminology and much of the discussion in this and the following section centres

on SRE optimisation; however it should be born in mind that this is but one application
of the least-squares solution of sets of linear equations, to which these neural networks are

more generally applicable. The order of presentation of the neural network models has

been chosen to facilitate the ordered development of the relevant concepts, and in places

cloes not follow chronological order of publication. Finally, in or:der to avoicl distracting
considerations of the capabilities and peculiarities of particular VLSI technologies, ar-

chitectural comparisons of the various models presented in this and the following section

have been performed at the relatively abstract level of counts of connections and ideal

components such as summers and integrators. More detailed technological comparisons

are beyond the scope of this review.

4.3.1 Daugman (1988a)

An artificial neural network for MSRE image decomposition was first proposed by Daug-

man (1988a). Illustrated in Figure 4.1, Daugman's network was intended to implement
the coefficient upclate equation (Daugman, 1988a, Eqn 8)

ø(¿+ 1) : a(t) + lci - G (G',ø(t))l (4.14)

the continuous-time equivalent of which performs steepest descent (a : _Vn) on E
(Daugman, 1990), and hence is guaranteed to find the unique global optimum. However,

(4.14) constitutes an explicit Euler method approximation to the continuous-time case

with trnit step size, and is known to be unstable whenever an eigenvalue of GG' exceeds

2. In such cases, stability of Daugman's algorithm can be achieved by decreasing the step

size. As will be seen in Section 5.4, the rate of convergence to the optimal solution can

be accelerated for a given step size o e (0,1) by employing lhe diagonal preconditioning
strategy

a(t+a) : a(t) t at [Gi, - (GG') a(t)] (4.1b)

inherent in the Jacobi iterat,ion for the system of equations in (4.4), where

f q 
[diag(Gc.)]-'



83

Signals Input i Weights

Gó

o,

(acljustable)

GG'A

Figure 4.1: Network proposed by Daugman (1988a) for Gabor image clecomposition.
Reproduced from figule 3 of Daugman (1988a) with matrix-vector notation. The fol-
lowing conventions have been adopted in this and subsequent neural network diaglams
(except where otherwise indicated): to avoid clutter, only a subset of the links is shown
for each connection matrix; links carrying data in the top-to-bottom and bottom-to-top
directions are denoted by solid and dotted lines respectively; open circles represent sum-
mers; triangles represent adjustable weights, and the arrowed lines which intersect them
represent weight update signals.

is the diagonal preconditioner and diøg:lR"x" --+ lfrnxn returns the diagonal matrix obtained

by setting the offdiagonal entries of its matrix argument to zero. Equation (4.15) -,-educes

to (a.la) in the case of normalised expansion functions (diag(GG') : I^) and unit
step size (o : 1) (Yan & Gore, 1990). The requirecl coefficients are represented as

"weights" on the feedforward connections between the first and second neural layers,

and are adjusted according to the difference between the outputs of the first and thircl

layers. The feedforward weight vector of each neuron in the first layer represents a

corresponding row of the weight matrix G. Note that the expression of the expansion

function corresponding to this row as a weight vector is purely for notational convenience,,

and that the spatial implementation of these weights is more naturally viewecl in the

original dimensions of the expansion function.

According to the unwavering description given by Daugman (ig88a; 1989c; 1989b;

1990) of the operation of the network, the first and third neural layers are "identical",

G

G
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Activations Input i Weights

o,

GT

Reconstructecl Image â

Figure 4.2: Corcected and condensed version of network proposed by Daugman (1988a).
Black circles represent (explicit Euler method approximations to) icleal inverting sum-
ming integrators.

and in particular they have the same input weight matrix G (as shown in Figure 4.1 and

indicated by the explicit parentheses in (a.1a)). However, this description is inconsistent

with the labelling of the dotted feedback pathway serving as input to the weight acljust-

ment controller, since the second neural layer as drawn is not in a position to perform

the necessary prior multiplication of the coefficient vector by the matrix GT. Further-
more, the description of the coefficient representation as "weights" is also inconsistent

with this labelling, since if the description were true, the expression in the label shoulcl

include the image vector i. There are a number of ways in which the network may be

reclesigned to be consistent with the equations it was intended to implement. Arguably
the simplest - although see Section 4.3.2 - is to represent the coefficient vector as the
actiuations of a surrogate neural layer in place of the "weight layer" - thereby disposing

of the feedforward connections from the first neural layer to the weight "layer" - and to
add cross connections representing the matrix Gr between the outputs of the new neural

layer and the inputs of the (formerly) second neural layer.

For the purposes of fair comparison with other neural network models, the number

of nodes and connections required by the resultant network can be reduced by folding
the third layer back onto the first, as illustrated in Figure 4,2. The coefficients are

G

G

L



85

represented by the actiuations of the resultant composite first-layer nocles, which act as

(explicit Euler method approximations to) ideal summing integrators, with the update of

theil activation governed by their summed weighted inputs and current activation level

such that

ø(t + 1) : a(t) + lci - G¿l

: a(t)+lGi-G(G'a(t))) (4 16)

In recognition of the clistinction between these ideal integrating nodes and normal sum-

ming nocles, the former are henceforth clenoted by black circles and the latter as previ-

ously by white circles.

The feedforward and feeclback weight vectors of each neuron in the first layer are

identical (with the exception of a change of sign) ancl represent a corresponding row of G,

while the feedforward weights of each neuron in the second layer represent a corresponding

t'ow of Gt. The output of the first layer is the coefficient vector ø, whilst that of second

layer is the vector Gtø, which is by definition the reconstmcted image. The thlee
separate implementations of the matrix G (or its transpose) - as indicatecl by the

explicit parentheses in (4.16) and illustrated in Figure 4.2 - require a total of 3nm

connections. In addition, the network requires rn summing nocles and n integrators.

4.3.2 Wang k Yan (1992)

Yan & Gore (1990, Eqn i3) showed how the SOR algorithm can be modifiecl to allow
parallel weight updates by removing the dependence of the update of each coefficient ø¿

on the most recent updates {a¡ : j < i}. When the rows of G have unit Eucliclean

norm, this modification yields the update equation

ø(t+1) -- a(t) + plGi - GG'o.(t)l

where p e ll,2) is the relaxation pa'rameter. However, removal of this dependence is

achieved at the expense of the enhanced stability conferred by the implicit portion of
the hybrid implicit-explicit Euler method used by the SOR algorithm, rendering the

moclified algorithm less stable than Daugman's iteration scheme in (a.1a). As with the

latter scheme, a reduction in the step size is frequently necessary to achieve stability,

while as will be seen in Section 5.4 if the rows of G have not been normalisecl, the

rate of convergence may be improved significantly by using the diagonal preconclitioning

strategy

ø(¿+ 1) : a(t) + pt lGi. - (GG') a(t)l (4.17)

inherent in the true SOR algorithm, where f a fdiag(GG')]-' is the diagonal precondi-

tioner.
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Input Gi lVeights

_GG'

ø
(adjustable)

Figure 4.3: Network proposed by Wang & Yan (1992) for Gabor image decomposition.
Reproduced from their figure 1 with matrix-vector notation. Open circles do not represent
summers - see text.

Wang & Yan (1992) modified Daugman's discrete-time network for MSRE image cle-

composition to implement the modified Successive Overrelaxation (SOR) algorithm in

(4.17)5; the resultant network is depicted in Figure 4.3. The principal modifications con-

sist of the combination of Daugman's second and third neural layers in Figure 4.1 into

a single layer havin g output weight matrix GG' , the precalculation of the term Gi, -
avoicling the question of how this is to be performed in hardware - the elimination of the

erroneous feedforward connections from the signal Gi, to the adjustable weight layer, ancl

the incorporation of the relaxation parameter p and the elements of the preconditioner in

the weight update controller. However as with Daugman's network, the use of the term

"weights" to describe the representation of the coefficients remains misleading, since the

"weights" do not weight a signal input, performing instead the role of adjustable neural

activations. Furthermore, the middle layer (open circles) serves no computational pur-

pose, since the weight matrix on its output could equally well be considered to constitute

input weights to the first (summing) layer, permitting the omission of the middle layer.

sAlthough their equation 13 - which is said to govern the operation of the network - does not
incorporate the modification proposed by Yan & Gore (1990) to allow parallel weight updates, it is
assumed that it was intended, since otherwise - to use the words of Yan & Gore (1990) in reference to
the closely related Gauss-Seidel iteration method

. . . the weights cannot be updated simultaneously, and thus it is not appropriate for parallel
implementation.
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Activations Input 1 Weights

C''

Input i

Figure 4.4: Generative Back-Propagation network proposed for MSRE image decompo-
sition by Cohen & Shawe-Taylor (1990). Open circles represent bidirection¿l summer-s
(see text); the direction of signal propagation is controlled by the supervisor.

If these redundant nodes are omitted, the component count is n summing nodes, n2

weighted connections and n "weight" nodes.

4.3.3 Cohen k Shawe-Taylor (1990)

The generative back-propagation (GBP) approach to SRE minimisation (Cohen & Shawe-

Taylor, 1990) involves the training by error back-propagation of the input weights to the
first layer of a two-layer linear neural network. The network illustrated in Figure 4.4

is presented with a constant input given by the unit vector, which is then weighted by

the current estimate ø(ú) of the MSRE coefficients to produce the output of the first
layer nodes. The reconstructed image is then formed as the activations of the seconcl

layer nodes by passing the first-layer activations through the weight matrix G". The
reconstructed image is compared by a supervisor with the original image and the error

fecl back through the network to adjust the input weights to the first layer.

Although the generative back-propagation network itself is not strictly a relaxation
network, its "training" can be seen to implement the following form of the Jacobi-like
iteration in (a.1a)

a(t+t) : a(t) - aGlG'a(t) - ól (4.18)

where a€ R1. The difference term in brackets - the negative of the residual - is

evaluated by the supervisor and weighted by G during back-propagation through the

o,

?,
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Activations Input -i Weights

GT

G

f (¿)

a

Output ø

Figure 4.5: Network proposecl by Cichocki & Unbehauen (1992) for solving full-rank
overdetermined systems of linear equations. Black circles represent ideal inverting sum-
ming integrators.

interlaminar weights. The model at first appears to represent a considerable saving in

hardware over the modified network in Section 4.3.1, requiring only nm connections and n

nodes. However, this saving is achieved at the cost of the additional complexity required

by bidirectional weighted connections, and the non-local control by the supervisor of

the current direction of signal propagation. These issues are addressed by the following

neural network architecture.

4.3.4 Cichoclci k Unbehauen (1992)

Cichocki & Unbehauen (1992) recently proposed the neural architecture illustrated in

Figure 4.5 for the solution of full-rank overdetermined systems of linear equations. The

network implements the following set of equations

a : -f(t)Gr (a.19a)

r : G'a,-i (4.19b)

where ä denotes the time derivative of ø and f(¿) € IR'x'is a positive definite precondi-

tioner, for which - provided f(¿) remains positive definite - the SRE defined in (a.3)

r
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Activations Input -i Weights

GT

fG

o,

Output ø

Figure 4.6: Condensed form of network proposed by Cichocki & Unbehauen (1992) for
solving oveldetermined systems of linear equations. I is assumed to be time invaliant.
Black nodes represent ideal inverting summing integrators.

is a Liapunov function which is monotonically decreasing except at the unique ecluilib-

lium point (Cichocki & Unbehauen, 1992). The residual r is evaluated explicitly in the

input layer, and then projected onto the Gabor functions followed by f(t) to moclify the

coefficient vector ø.

Cichocki & Unbehauen (1992) showed that the case of non-Gaussian noise distribu-

tions on the inputs - such as a Gaussian distribution with outliers - can be dealt with
through the use of appropriate non-linear activation functions in the first-layer nocles.

In order to achieve linear convergence of the neural network to the optimal solution,

the preconditioner f(l) was aclapted according to the length of the residual error vector,

albeit at the cost of relatively expensive additional hardware. These two extensions are

however beyond the scope of the present analysis.

To facilitate fair and simple comparison with other networks, if f is time-invariant ancl

the input nodes have linear activation functions, the second and third neural layers can be

condensed into a single layer of ideal summing integrators with input weight matrix f G,

which can be precalculated. The relative overhead cost involved in this precalculation

is negligible provided the system of equations is to be solved repeatedly with different

inputs, which is the only case in which one would consider harclware implementation

of the neural network. Illustrated in Figure 4.6, the condensed network requires 2nrn

connections, n ideal summing integrators and m summing nodes, which constitutes a

saving of nm connections over the modified form of Daugman's network depicted in

r
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Figure 4.2.

The adclitional cost in connections over the GBP network is due to the replacement

of the nrn biclirectional connections lvith two sets of nm unidirectional connections.

Further-more, the computational role of the supervisor has been effectively assumed by

the nocles in the first layer, while its role as network scheduler is no longer required, since

the coefficients representecl by the output of the nodes il the second layer evolve under

the system dynamics, rather than by scheduled updates of the network weights.

4.4 Neural Networks for Minimum Norm SRE Minimisation

When appliecl to an under-determined or rank-deficient set of equations, the foregoing

networks fincl a non-unique minimum of the SRE. This degeneracy of the solutions ob-

tained by the neural network is likely to be problematic in the context of biological or

machine vision, since the alreacly complex task of perception is made more difficult by

the need to recognise the infinite set of degenerate solutions as representing the same

stimulus. Fulthermore, which of the degenerate set of solutions is reached by the network

is dependent on the state of the network prior to presentation of the current stimulus.

This history-clependence is probably undesirable in machine vision applications, although

history-clependence is for example an automatic consequence of automatic gain control

(AGC) mechanisms in biological vision. In this section, neural network approaches to

the ridge -,-egression problem - whose unique solution approximates the pseudoinverse

solution of a set of linear equations - will be examined.

4.1.1 Culhane et al. (1989)

Culhane et al. (1989) proposed two versions of an analog neural network for computing

discrete Fourier and Hartley transforms, for which the matrix G is orthogonal. Shown

generalised in Figure 4.7 to arbitrary rectangular G, their "ideal case" model - so callecl

because the summers in the first layer are assumed to have no delay and the two im-
pìementations of G are precisely matched - amounts to a special case of the linear

programming network of Tank & Hopfield (1986), in which the neurons have linear ac-

tivation functions and the coefficients of the linear expression to be minimised are zero.

Since much of their analysis does not rely on their assumption of the orthogonality of G,

it is largely unaffected by the generalisation. The generalised network is similar to the

condensed form - shown in Figure 4.6 - of the network proposed by Cichocki & Unbe-

hauen (1992); however in acknowledgement of the difficulty of practical approximation

of an icleal integrator, the integrators have been assigned an additional leakage term.

The network is governed by the following set of equations

Taa -o, - le,Gr (a.20a)



9l

Activations Input -i Weights

GT

_G

a

Output ø

Figure 4.7: Network proposed by Culhane et al. (1989) lbr computing cliscrete Fourier
ancl Hartley transforms, as generalised to permit arbitrary rectangular G; see text.

r : k,fG'a - i,) (4.20b)

where r € R- - which is proportional to the residual - represents the activations of
the nodes in the first layer, ro € IR+ is the integrator time constant, and k,,ko€ IR¡ are

the gains of the summing and summing integrator nodes in the first and second layers

respectively. These equations can be combined and rearranged to give

eroà,- -(GG'*el^)a+Gi (4.2I)

where €: (k"le,)-' @.2I) reveals that the system performs steepest descent on the regu-

larised energy function E" in (4.11) and, since the Hessian is positive definite, is globally
convergent to the unique equilibrium point given by (a.10). The former observation is

consistent with that of Culhane et al. (1989) that

Er"r, 1ll"ll3 + k"k,lli - G,ollr, Ø.22)

is a Liapunov function for the system, although the authors did not note the approxi-

mation of the pseudoinverse solution for large lcok, or the consequent extension to the

rank-deficient and uncler-determined cases.

4.4.2 Yan (1991b)

Acknowledging the inevitable finite delay (rise-time) associated with any practical im-
plementation of a summer and the difficulty of precisely matching component values,

r



92

Activations Input -i Weights

K"GT

-koGo

a

Output ø

Figure 4.8: Network proposed by Yan (1991a) for Gabor image decomposition.

Culhane et al. (1989, Sect IILB(2)) improved on their "ideal case" network by replacing

the summers in the first layer with leaky summing integrators, and allowing the two im-
plementations of the matrix G to differ slightly from their true value. Yan (1991b; 1991a)

extended this improved neural network to the case of an incomplete non-orthogonal ex-

pansion function set by removing the requirement that the matrix G be symmetric and

have orthogonal rows. Shown schematically in Figure 4.8, the network is governed by

the following simplified coupled ODEs

c

Toà

T"ò

-a - lcoGoc

-c+lc"lc!c.-il
@.23a)

(4.23b)

where c and e, are the activations of the input and output layers respectively, ro and r"
are the neural time constants in the corresponding layers, Go and G" are approximations
to the ideal weight matrix G, and ko and k" are positive scalar constants. Setting e :
(k"k.)-', the equilibrium point of the system is given as

a: (G"GT + eI.)-'G",i (4.24)

by Yan (1991b) and as

a: G"(GTG"+II^)-'i (4.25)

by a simple extrapolation of the result of Culhane et al. (1989, p.700). These two claims

can be reconciled by noting as in (4.9) the equality of the two right-hand sides for e > 0,
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provided that the minimum eigenvalue of the matrix G"GT satisfies

À^¿"(G"G[) > -e

This latter requirement ensures that the inverses exist, and is precisely the network
stability criterion (Yan, 1991b). Thus like the "icleal case" network of Culhane et al.

(1989), the network proposed by Yan gives an approximation to the pseucloinverse solu-

tion of @.2); however this point and the consequent applicability of the network to the

rank-cleficient and uncler-determined cases were not noted by Yan. The accuracy of the

approximation is clependent on the choice of the gain parameters ko, k" ancl the accuracy

of the two approximations Go,G" to G. For good accuracy the product kok" shoulcl ide-

ally be largei however, in the presence of errors in Go,G" or potential rank-deficiency of
G, this product should not be so large as to cause instability of the network.

The application of G and its transpose once each in (a.23a) and (4.23b) recluires a

total of 2nm connections. The replacement of the rn summers in Figure 4.6 with leaky

summing integrators and of the n ideal summing integr-ators with their leaky counterparts
entails the use of n f rn leaky summing integrators.

4.4.3 Pece (1992)

Pece (1992) independently proposed a relaxation model which is functionally identical
to that of Yan (1991a), except for a change of sign in the cross-terms and input term in
(4.23) and the choice of k" :1 to yield

Toà :

T"è :

-o, * koGc

-c * li, - G'al
$.26a,)

(4.26b)

as depicted in Figure 4.9. The equilibrium point and stability analysis presented by

Culhane et al. (1989) can be easily extended to demonstrate the exponential stability6
of the network, and the equivalence of its fixed point with that presentecl in (4.24) and

(4.25).

4.6 Conclusion

In this chapter the decomposition of an image using a set of non-orthogonal expansion

functions was formulated as a least squared error (LSE) quadratic optimisation problem,

the solution of which corresponds to the best linear unbiassed estimate (BLUE) of the

original image when the image is subject to zero-mean spherical Gaussian noise. The
LSE problem was then regularised to ensure uniqueness of the coefficients in cases where

the expansion functions are linearly dependant; the regularised solution tends to the

6Exponential stability is defined later in Definition 6.1
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Figure 4.9: Network proposed by Pece (1992) for Gabor image decomposition.

IV[oore-Penrose pseudoinuerse solution of the corresponcling set of linear equations in

the limit as the regularisation parameter tends to zero. Conventional methods in linear

algebra and optimisation theory for the solution of the LSE and regularised LSE problems

were briefly reviewed, and it was argued that the underlying algorithms - with the

exception of relaxation algorithms - are incompatible with the autonomous fine-grained

parallelism offered by analog recurrent artificial neural networks (RANNs). Discrete- and

continuous-time RANNs which solve the LSE and legularised LSE problems were then

reviewed, and it was shown that several networks proposed as approximate solutions to

the LSE problem in fact solve the regularised LSE problem.



Chapter V

SINGTE.LAYERED NEURAL NETÏI/ORKS FOR
DECOMPOSITION

5.1 Introduction

In the latter part of Chapter 4, linear RANNs were reviewed which solve the LSE or regu-

larised LSE problems. In this chapter, single layered RANNs are proposed to solve these

two problems, and are shown in the general case to require less connections ol neurons

than comparable multi-layered models. These models are shown to bear considerable

resemblance to existing resistive grid architectures fol solving sets of linear equations
arising from the discrete formulation of partial differential equations (PDEs) governing
classical problems in machine vision.

5.2 Pattison (1992)

Upon abandoning the discrete-time (SOR) formulation of the SRE optimisation prob-
lem, the somewhat problematic architectule of Wang & Yan (1992) can be conclensecl

into a single neural layer to produce a network which had already been proposed incle-

pendently by Pattison (1992). Depicted in Figure 5.1, the resultant network implements

Activations Input i Weights

o, _GG'

Output ø

Figure 5.1: Relaxation network proposed by Pattison (1992). Complete input connec-
tions shown for centre node only. Grey nodes represent leaky summing integrators.

G
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the following ordinary differential equation (ODE)

à, : alci - (GG') a) (5 1)

whele a€ R1, which performs steepest clescent on the SRE (Pattison, 1992), ancl is

thcrcforc cxponcntially stable provided C has rank n 1m. The matrix L ! -GGr car
be precalculated, and each of its off-diagonal elements represented by a weightecl latelal
connection between corresponcling neurons in a single layered linear recurrent neulal
network. The value of the weight l;¡ on the lateral connection from cell ,t to cell i is

given by

I;¡: -lti@)sr(æ): l*¡ (5.2)

where g¿(æ) and gk(æ)are the 
"*purrriol 

functions on the feeclforwarcl weights to the ith
and frth neurons respectively. This quantity can be seen to be a discrete approximation
to the overlap integral between these two expansion functions, and may be either positive

(excitatory) or negative (inhibitory). The diagonal elements of tr can be implemented

either as external self-inhibitory connections on ideal summing integrator nodes or as

internal leakage terms in leaky summing integrator nodes. The latter scheme is preferable,

since it obviates the need for the active analog components required to approximate an

icleal integrator. The feedforward weight vector of the 7th neuron is given by the jth row

of G.

This network is substantially similar to resistive networks proposed for the solution of
partial differential equations (PDEs) associated with problems in vision, including clepth-

from-stereo (Chhabra & Grogan, 1989), shape-from-depth (Grimson, 1981) and contour-

based optical flow (Poggio & Koch, 1985; Chhabra & Grogan, 1990). The principal
clifference is that whereas in vision applications the connections are local - reflecting

the spatial localization of both discrete approximations to spatial derivatives and penalty

terms which enforce constraints such as spatial smoothness - the network clepicted

in Figure 5.1 may have or approach complete lateral connectivity depending on the

chosen expansion functions. Furthermore, unlike these resistive networks, the network of

Pattison (1992) may require both positive and negative weights.

The network requires n leaky summing integrators, while the number of weights

(connections) required by this implementation - including the self-connection (leakage)

term - is n(nt*) < 2nm lor ft 1 ffi, with equality if and only tL n : m. Thus

for general (full-rank) overdetermined sets of linear equations this network improves on

the connection economy of the condensed network depicted in Figure 4.6. Furthermore,

for expansion functions sets in which each function has non-zero overlap integral with
relatively few others, the feedback matrix .t is relatively sparse, and can be implemented

with considerably less connections than would in general be required. If in addition
each of the expansion functions overlaps only with others whose centres are located near

its own, then the required spatial extent of the lateral connections can be restricted
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by implementing the neural layer as a two-dimensional array of neurons, ancl assignìng

the expansion functions to the neurons topologically, according to the locations of their
receptive fielcl centres.

For olthogonal expansion functi in which case the SRE optimisation scheme is

of course reclunclant - the single-layered network requires up to n(rn- 1) fewer (non-zero)

connections than the network shown in Figure 4.6, which in the worst case would still
require 2nm connections. In general however, even small perturbations of the expansion

functions from an orthogonal set will cause the overlap (lateral weight) matrix to become

clensely populated. An exception is if the expansion functions ale localised in image space

(of strictly compact support and small compared with the size of the image), in a manner
similar to the foìlowing simplistic example.

Let each expansion function be circularly symmetric, positive over the range r e [0, rs]

where r is the radial clistance from its centre, and zero for r ) rs, Then each expan-

sion function has non-zero overlap integral with all othels whose centres lie within 2rs
of its centre, and hence the neuron whose feeclforwarcl weights represent that expansion

function requires a lateral connection to each of the corresponding nearby neurons. A
necessary condition for the complete representation of arbìtrary images in this neural
layer is n ) m; assuming for example that n : TrL¡ this connection pattern results in
(almost) 4 times as many non-zero lateral connections per neuron as non-zero feeclfor-

ward connections. Thus since the feedforward weight matrix of this moclel is four. times
sparser than the lateral weight matrix and the condensed model in Figure 4.6 effectively
implements this feedforward weight matrix twice - once in the feedforwarcl path ancl

once in the feedback path - the latter will require only 0.4 times as many connections.

Furthermore, whilst in cases where the overlap of any two expansion functions decays

asymptotically with distance between their centres it might seem tempting to reduce the
required number of connections by thresholding the lateral weight matrix, it will be seen

in Section 5.4 that the errors involved in this truncation are magnifiecl by the conclition
number of the lateral weight matrix, ancl in extreme cases the truncation can cause the
system to become unstable. This problem will be addressed further in that section.

A more suitable procedure for eliminating many of the smaller entries in the lateral
weight matrix when the expansion functions are localised is to truncate the expansion

functions themselves at some finite distance - for example after 3 stanclard deviations if
the expansion functions have Gaussian weighting functions - and recalculate the lateral
weight matrix.

As will be seen in Chapter 6, the network proposed by Pattison (1992) unlike the
other neural networks presented in this section - with the exception of that of Wang .k
Yan (1992) - it readily adapted to the solution of more general quadratic optimisation
problems. Furthermore it will be argued in Chapter 7 that this network admits a more

feasible mapping onto the wetware of the early visual system than these other networks.
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5.3 Additional Leakage Term

The use of a small additional leakage term -eø with e e R+ in (5.1) leacls to the network

equation

a-'it : - (GG, I eI.) o, + Gi (b 3)

revealing that like the network of Culhane et al. (1989) the moclified system pelfollrs
steepest descent on E, and hence is exponentially stable. This modification thelefore

allows the network to approximate the pseudoinverse solution of the set of equations

in (a.2). With the exceptions of non-local lateral connectivity and the need for both

positive and negative weights, the resultant network once again bears strong resemblance

to resistive gi-id networks used in machine vision, where the aclclitional leakage has been

used to impose a minimum norm penalty term in applications such as area-basecl optical

flow (Lee et al., 1988), ancl contour-basecl optical flow, shape-from-depth and depth-

from-stereo (Chhabra & Grogan, 1990).

The linear dynamical system

ø---Qa*Gi (5 4)

with

A : GG" (5.5a)

A: GGr+eI^ (b.5b)

for the neural networks of Section 5.2 and equation (5.3) respectively, is exponentially

stable - and hence exponentially convergent to the equilibrium point 6* - Q-\Gi for

constant ô - if and only if the state-feedback matrix Q is positive definite (Lancaster

& Tismenetsky, 1985). The use of (5.5b) rather than (5.5a) whenever G is known or

suspected to be rank deficient is sufficient to ensure that Q is always positive definite,

and hence that the system is stable. For notational convenience in the remainder of this

chapter, the matrix Q is therefore assumed to be positive clefinite and to result from an

appropriate choice in (5.5).

This single-layered architecture is readily extended to more general regularised LSE

problems. The restoration of a blurred image for example can be formulated (Galatsanos

& Katsaggelos, 1992) as

-"i" {,r"(ø) ê lli - G'allz + ellp'allr}

where i € lR- and ø € IR- are the noisy blurred image and the restored image respec-

tively, and Gt € IR-x- and P" e lR.-x- are matrices representing the image blurring

function and regularisation operator respectively. To solve this problem, the network

requires G as the feedforward weight matrix and Q : GG'lePPr as the lateral weight
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matrix. The wide range of LSE and regularised LSB applications to which the single-

layered neural network can be readily adapted well as the range of problems in
machine vision desc¡ibed above - provides stlong motivation for addressing the chal-

lenging issues in VLSI implementation of non-local lateral connectivity and the need for

both positive and negative weights.

6.4 Preconditioning

In Sections 4.3 and 4.4, recurrent neural networks were presented - along with the

linear first-order clifferential or diffetence equations which clescribe their dynamics -
rvhose common unique equilibrium point is by design the solution to the nolmal or

augmentecl normal equations. Each of these neural networks makes use of one or more

of the matrices G,, GGr, and GG'+ e1,,, which it has been tacitly assumed can be

implemented without error. However whilst G may be specified exactly through the

parametric specification of the expansion functions which when sampled constitute its
rows, the hardware implementation of these matrices as weights in a neural network

may incur considerable error. In this section, the implications of such implementation

errors for the neural networks of Sections 5.2 and 5.3 are examined, and the techniclue

of preconditioning is used to mitigate the consequent clisplacement of the equilibrium
coefficient vector ø* and the potential for network instability. The same preconclitioning

strategy used to reduce sensitivity to weight errors is also shown to accelerate convergence

in both continuous- and discrete-time implementations.

In the following analysis, weight implementation rather than computation is assumed

to constitute the predominant source of error; thus for example it is assumed that the er-

rors involved in the computation of the matrix GGt requirecl by the network in Figure 5.1

are negligible in comparison with those incurred by its subsequent implementation. This

assumption is clearly reasonable in the case of analog hardware, where the accuracy of

components such as conductances and analog multipliers is limited (see e.g, (Schach,

1992)). It may also be significant in floating point implementations where, for reasons of

economy, weight precision is low in comparison with that available during the external

evaluation of the matrix Q. For the case where errors in the original determination of

G constitute the sole or principal source of inaccuracy, a detailed error analysis of the

least-squares problem assuming ideal arithmetic in all subsequent computations has been

presented by Golub & Van Loan (1989).

5.4.1 Sensitivity to Weight and Derivative Round-Off Errors

The spectral condition number rc2(fu[) ) 1 of a matrix /VI € R.-"" is given by the ratio
of its maximum to minimum singular values. Unlike condition numbers based on other

matrix norms, the spectral condition number is convenient in the analysis of least-squares
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problems since it is derived from the spectral matrix norm, which is induced by the

Euclidean vector norm (Horn & Johnson, 1988) with the aid of which such problems are

formulatecl. The matrix Q, and by extension the system of linear equations

Qa: Gi (5 6)

thc soltrtion of which is thc cquilibrium point of (5 4) - is said tobe well-conditioned

if n2(Q) t 1 and i,ll-conditioned when or(Q) > l.
The condition numbers rc2(Q) and rc2(G) serve as a measule of the sensitivity of the

equilibrium point of (5.a) to weight implementation errors. If Q is invertible ancl G is
full rank, the relative error

e,I ll\c-"llrlll""ll,
in the equilibrium point ø* t Q-'G'i of the clynamical system in (5.a) caused by the

relative errors

ee

eG

ei

A llnQll,lllQllz < rcl'(Q)

a ll^cll,/llcll,
A ll^ill,lllåll,

in Q, G and i respectively, can be shown to satisfy

"" 
< or(Q) {"q -r or(G)1"" + eil} + o'(ll\Qllr,llaGllz, llAillr) (5 7)

where O'(.,',.) denotes second and higher order terms and cross-terms of its arguments.

Thus for small perturbations, the condition number gives an indication of the sensitivity

of the solution to errors in Q, G and i. Thus in the case of the full rank normal equations

for example, substituting (5.5a) into (5.7) and noting that n2(GG') : o'(G) reveals that

if G is even mildly ill-conditioned, the solution of the set of equabions in (5.6) obtained

at the equilibrium point of the system can be highly sensitive to implementation errors

in the matrices GG' andG. If G is rank cleficient and i lies in the row-space of G, (5.7)

is valid provided nz(G) is replaced by n2(G) as defined in (a.8); extension to the more

general case is beyond the scope of the present discussion.

The condition numbe, or(Q) also provides a measure of the sensitivity of the equilib-

rium point to floating point round-off errors in the evaluation of the temporal derivative

in (5.a). This sensitivity arises from the fact that an absolute residual error llGi - Qallz
in the normal or augmented normal equations which is less than the unit rouncloff á

results from any approximation â to the true coefficient vector ø* satisfying

llôr-o"llr<J"*r@)6

(Golub & Van Loan, 1989). Thus the presence of round-off error results in a region

about the true equilibrium point - the largest dimension of which is proportional to
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nz(Q) - in which all points yield à : 0 to floating point precision, which will TES

inaccurate location of the equilibrium point for most discrete-time simulation algorithms.

Whilst the resultant sensitivity to round-off may not represent a significant problem under
computer'-based double-precision arithmetic, in floating point harclware implementations
it may necessitate the ttse of excessive numerical precision, thereby increasing the cost

of implementation. This particular argument is of coulse preclicated on the assumption
that it is not sufficient that the coefficients obtainecl by the network corresponcl to a

small residual in the normal equations - ancl hence produce a good appr-oximation of
the true image - but that it is also necessary that the coefficients closely approximate
the optimal coefficients. The validity of this assumption will usually depencl on the
sensitivity of any subsequent processing of the coefficients to errors in those coefficients.

Finally, since the minimum singular value of Q is the spectral-norm distance from
the state-feedback matrix to the set of rank-deficient matrices (Golub & Van Loan, 1g89,

Thm 2.5.2), the minimum relative perturbation in Q required to make the state-feedback

matrix Q in (5.a) singular is given by the inverse K-'(8) of the condition number. Thus
since any further perturbation could make the state-feedback matrix indefinite - and

hence make the linear dynamical system unstable - the larger bhe value of rc2(Ç) the
more susceptible the system is to instability resulting from inaccurate implementation of
the state-feedback matrix.

In summary, if the matrix G - and hence I - ir ill-conditionecl, the ecluilibrium
point of the network can be excessively sensitive to implementation errors in these ma-

trices, and to floating-point round-off errors in the evaluation of the time derivative.
Furthermore, ill-conditioning of the state-feedback matrix Q renders the network sus-

ceptible to instability resulting from errors in its implementation. Thus for both analog

and digital implementations, it is clesirable to address potential ill-conclitioning of the
dynamical system in (5.a) in order to decrease its sensitivity to weight implementation
and floating-point round-off errors.

5.4.2 Diagonal Preconditioning

Preconditioning the linear dynamical system (5.4) involves choosing non-singular matrices
f, -B € R"x" called preconditioners such that the state-feedback matrix S ! l8B of the
preconditioned dynamical system

it : -lQBu +lGó (b.8a)

o, : Bu (5.8b)

is better conditioned than Q. Careful selection of the preconditioners can ensure that

*r(e)
orçr¡oriq 

< o'(S) < *z(Q)
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In this section, preconditioning is used to address the problems associated rvith ill-
conditioning of the dynamical system in (5.4), and guiclance is given on a suitable choice

of pleconclitioners.

The equilibrium point z* of the preconditioned system satisfies

lQBu: lGi (5.e)

rvhich upon sttbstitution of (5.8b) and factorisation by f yields the same equilibrium
point ø* as (5.4). In the special case of diagonal preconditioners, preconditioning of the

system in (5.a) simply produces rou- and column-scaling (GoItb & Van Loan, 1989) of

the normal or augmented normal equations which describe the ecluilibrium point of the

system.

A sufficient conclition for preserving the positive definiteness of the state-feeclback

matrix ancl hence the stability of the system is that the preconditioners f , B be symmetric

positive definite (Horn & Johnson, 1988, Thm 7.6.3). This condition also ensures that
the matrix Bf is positive definite, so that under the dynamics of the preconclitioned

system, for- a given input image the error function 7 which denotes E uncler the choice

of unpreconditioned state-feedback matrix in (5.5a) and ,Ð, under (5.5b) satisfies

v: (w)'¿:!v'vBtw <o (5.10)2-
with equality only at the unique stationary point of I/. Thus for symmetric positive

definite preconditioners, V is a global Liapunov function for the preconditioned dynamical

system in (5.8) and clecreases monotonically with time.

However except for some special classes of matrices (see e.g. Ku & Kuo (1992)), strate-

gies for choosing non-diagonal preconditioners ale not well developed. Furthermore the

generalisation from diagonal to non-cliagonal preconditioners considerably increases the

amount of potentially error-prone computation required during preconditioning, in vio-

lation of the assumption usually made in perturbation analyses that the preconditioning

step can be performed without error (see e.g. Golub & Van Loan (1989)). Considera-

tion is therefore restricted to diagonal preconditioners f , B € Rf", a restriction which

in Chapter 6 - where bound constraints are imposed on the quadratic optimisation

problem - is not only convenient but necessary.

For icleal preconditioning, f and B should be proportional to the inverse of corre-

sponding factors of GGr, giving "r(S): nz(I):1. However, since they are constrained

to be diagonal, f and B arc at best a reasonable approximation to scalar multiples of

such inverses. Now since Q is Hermitian, Schur's theorem on the strong majorisation of

eigenvalues by the diagonal entries (see e.g. Horn & Johnson (1988, p.t93)) can be usecl

to show that

nz(e)> Ï?î'Í1"ì (b.11)
mtn¿{Ç;¿}
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where q¿¿ is the ith diagonal entry of Q. Substitution of (5.11) into a standard conclition

number inequality yields

rc.,(s\, l1(Q), , t min;h;) max;{q¿¿} min¡{É;}
'\* t - rc2(l)rc2(B) - max¡{t¿} -in¿{q¡;} max;{B;} (5'12)

where l; and B¡ arc the ith diagonal entries of I ancl B respectively. According to (5.12),

an obviotts strategy is to assign the diagonal entries of f and B in the reverse order of
corresponcling diagonal elements of Q and with a smaller overall spread on a log scale,

in orcler to move the cliagonal entries s,; of S closer together than the corresponding

elements of Q. If these diagonal entries of ^9 are further required to be in the same order.

as those of Q, (5.12) becomes simply

rc'(S) t max¡{s¿¿J

rnr tsir I

which constitutes a limited extension of the above corollary of Schur's theorem to the

case where ,9 is not necessarily Hermitian (i.e. I + B).One simple choice satisfying the
reverse-ordering condition is

k
la 

-t/q¿¿

which under certain conditions on Q can be shown to yield the optimal or near-optimal
diagonal preconditioners (Greenbaum & Rodrigue, 1989). In addition to ensuring that ,9

is by virtue of a lower condition number less susceptible than Q to weight implementation
errors, in the case of the unaugmented normal equations this choice also improves the
condition of the matrix G with the same benefit, since for f : B

rc2(lGG'B) : ;TGG)

This result extends approximately to the case of the augmented normal equations for

sufficiently small e. Furthermore, since under this choice of preconditioners the right-
hand side in (5.12) becomes unity, no additional restriction is imposed on rc2(S), since

by definition rc2(.9) 2 1.

The preconditioned dynamical system in (5.8) can be re-written as

a : -BlQø + BIGö (b.14)

revealing that under ideal conditions the same trajectory a(U as,ls) could have been

obtained through the use of a single composite preconditioner l/ 4 gf. Under the

choice of preconditioners in (5.13), this composite preconditioner is simply

¡, : [dias(g)]_,

as is indeed used in discrete-time relaxation algorithms such as the Jacobi iteration and

the SOR method (discussed briefly in Section 4.3.2). However, it has been observed

13¿ k>o (5.13)
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Figtrre 5.2: Condition numbers of IQB (solid) and BfQ (dotted) for the choice of
preconclitioners in (5.13) with k:1vs the angle between the r-axis and the principal
eigenvector of Q.

heuristically that the use of dual preconditioners B, f produces in many cases a consid-

erably better conditioned state-feedback matrix, thereby reducing the potential of the
system to become unstable as a result of weight implementation errors. This observation

is illustrated in Figure 5.2 for the 2x2 case, in which with the exception of near-diagonal

Q, the symmetrically preconditioned matrix is considerably better conditionecl. For

rcz(Q) - 10', an improvement in the condition number of two orders of magnitude is

obtained just outside the near-diagonal range.

On recovery of the desired variable ø from z using (5.Sb), the reduction in the

botrnd on relative error eo of. the equilibrium point of the system obtained through
preconditioning is at least partially undone, since

eo 1 rc2(B)eu

Thus the relative error e¿ in u is amplified by a factor which by (5.13) is bounded above

by rc2(B) : rcr(diag(Q)). In some cases, this amplification factor may outweigh any

I 2 3 4 5 7

reduction in sensitivity to weight errors achieved by preconditioning, and Golub & Van
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Loan (1989) advise that the corresponding scaling of the normal equations should be

used with caution and on a case-by-case basis.

However, since in the case of the unaugmentecl normal equations the ith diagonal

entry Q¡¿ of Ç is simply given by the square llgo(r)ll] of the norm of the ith samplecl

expansion function, if freedom is allowed in choosing the amplitudes of the expansion

functions, the above preconditioning can be achieved implicitly by normalising the rows

of G, thereby avoiding the pitfall of error amplification on recovery of the true coeffi.cients.

If the normalisation option is available, the new state-feedback matrix becomes

S:IGG,B (5.15a)

for the normal equations and

S : IGG'B l eI, (b.i5b)

for the augmented normal equations with f,B chosen according to (5.13). In the latter
case this strategy is only approximately ecluivalent to preconditioning the matrix Q in
(5.5b); however normalisation is easily shown to improve the conditioning of this choice

of Ç whenever it improves the conditioning of that in (5.5a).

5.4.3 Accelerating Convergence

In this section, it is shown that diagonal preconditioning of the networks in Sections 5.2

and 5.3 can improve their rates of convergence when subject to a limitation on the

minimum permissible integrator time-constant in the case of analog implementation ancl

on the maximum eigenvalue of the system feedback matrix in the case of discrete-time

simulation or implementation.

The solution tr(ú; uo,to) to the initial value problem (IVP) associated with the dy-

namical system in (5.8a) for time-invariant input i presented at time ls is bounded,

continuous and unique, and is given by

u(t;us,to) : S-' [l - "-"lt-ú.)] 
lci ¡ ¿-s(t-to)qo (5.16)

which converges exponentially to the unique equilibrium point ....0* : B-'Q-'Gi. The

slowest mode of convergence to the equilibrium point is governed by the eigenvalue

of ,S having the smallest real part. For example if S is normal (e.g. Hermitian) ancl

diagonalisable, it can be shown that Golub & Van Loan (1989)

llo - o.ll, < 
"- 

min¡{æ()¡(s))}tlla - øollz

where ft(') returns the real part of its complex argument. In theory at least, the con-

vergence of the system in (5.a) can be arbitrarily accelerated by multiplying the right

hand side by some 1 < a € R+. However, this strategy is limited in real implementations

by an upper limit on the diagonal entries s¿¿ of ^9 imposed by a technology-clependent
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lower limit r,r,¿r, on the integrator time constants. Fnrthermore in discrete-time simula-

tions, some algorithms such as the explicit Euler method require a tracle-off between the

maximum eigenvalue and the temporal step size, so that increasing a which increases

the convergence rate necessitates a proportionate decrease in the temporal step size, so

that the same numbel of steps ancl hence computaliou is requirecl fol the network state

to approach within a specifiecl clistance of the tlue ecluilibrium point for a given starting
point.

If the state feedback matrix S of the dynamical system in (5.a) is particularly ill-
conditioned, convergence of the slolvest mocle can be orders of magnitude slower than
would in general be dictatecl by the smallest permissible time-constant in analog imple-
mentations or by the largest eigenvalr-re in discrete-time simulations. For example, in the

special case where 5' is symmetric - in which case the eigenvalues arè real and since ,S

is also positive definite are equal to the singular values - this situation is guaranteed by

widely spread diagonal entries - which by Schur's theorem on the strong majorisation
of diagonal entries by the eigenvalues is a sufficient conclition for ill-conditioning and

ill-conditioning respectively.

Assuming symmetrical cliagonal preconclitioning (f : B) to preserve the symmetry
of Q in S, this observation appears to suggest the following respective remedies

Heuristic 6.\ Choose e, : rnax¿{q¿¡}r^¿n to take acluantage of the auailable computa-

tional speed, and then precondition aQ in such a uay o,s to increase the minimum diagonal

entry whilst holding constant the mari'mrrm diagonal entry, thereby co'mpressing the range

of the diagonal entries of S co'mpared with that of Q.

Heuristic 6.2 Precondition Q whilst holding constant the (real) marirnum eigenualue, in

order to increase the minimu'm singular - and hence eigen- - aalue and hence accelerate

conuergence for the same simulation step-size.

Unfortunately for the former scheme however, a small spread of the cliagonal entries does

not guarantee that the above problem of sub-optimal convergence rate will not arise.

Furthermore since it may not always bc convcnicnt to calculate or estimate the largest

eigenvalue of Q - using for examplethe power method (see e.g. Golub & Van Loan (1989))

- a more practical albeit heuristic strategy in the latter remedy is to hold constant the

largest diagonal entry. Since in extreme cases either strategy has the potential to worsten

the convergence late - albhough in practice such cases do not appear to be comm

the above remeclies should only be afforded the status of heuristics.

A comparison of Heuristics 5.1 ancl 5.2 for the 2x2 case is illustrated in Figure 5.3.

For the chosen oz(Q) - 10n, a speed-up in excess of an order of magnitude is obtained

for near-diagonal matrices. Since the modified version of Heuristic 5.2 is equivalent to
Heuristic 5.1 with û : 1, the difference in convergence rate between the original and
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Fignre 5.3: Minimum eigenvalues of S :lQB for the choice of preconditioners in (b.13)
vs the angle between the r-axis and the principal eigenvector of Q, with n2(e) : 10a. k
has been chosen to equalise the maximum diagonal entry (solid) ancl eigenvalue (clottecl)
of .9 and Q, in accordance with heuristics 5.1 (with a : 1) and 5.2 respectively. The
minimum eigenvalues have been normalised by the minimum eigenvalue of Q. Greatest
improvement in convergence rate is observed when Q is near-diagonal.

modified strategies - which is at most a factor of 2 - does not appear to justify the
extra computational effort involved in calculating the maximum eigenvalue, especially
for higher dimensional problems.

If ^9 is not symmetric - as is indeed the case when the system preconclitioned accorcl-

ing to (5.13) is mapped back into the original state space as in (5.14) - the relationship
between the diagonal entries and the eigenvalues provided by Schur's theorem no longer

holds in general. However since

IQBæ : \æ :+ BIQ @æ) : À(Bæ)

the eigenvalues of the matrices fQB and BfQ are identical. In addition, since the
preconditioners are chosen to be diagonal, these two matrices have the same diagonal
entries. Thus a given choice of the preconditioners has the same effect on the diagonal
entries and eigenvalues of the dynamical system expressed in either state space.
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5.5 Examples

Example 5.1 The following example illustrates the application of the neural networ.k in
(5.3) to the minimum SRE decomposition of an image using non-orthogonal expansion

functions. The expansion functions rrsecl in this example are two-climensional Gabor func-
tions as clesclibecl in Chapter 2, with the palameters distributed uniformly ovel langes

which approximatethose typicallyobselved in cats (Jones & Palmer, 1987b; Glezelet al.,

1989). The centre cooldinates (r¿,y¿) lvere chosen from a uniform 2D clistribution across

the m : 40 x 40 : 1600 pixel input image, ancl the phases / and orientations arg(c.r)

clistt'ibutecl uniformly over the range 0-360". The magnitude lc.,l of the spatial frequency
vector for each Gabor function was chosen tiom a uniform distribution over the range

0.5 cycles/pixel 1.0 cycles/picture covering the full lange of available frequencies up to
the Nyquist frequency for the rectangular image sampling glid. The major axis of each

2D Gaussian was constrained to be parallel to the spatial frequency vector c.r, ancl the
variance od on this axis chosen so that the number of cycles of the sinusoicl within t3a"
of the centre of the Gaussian was distributecl uniformly over the range 1.0 4.0 cycles.

The variance db on the minor axis of each 2D Gaussian was then chosen to give an aspect

ratio oof o6 uniformly distributed over the range 1.0-2.0.

A better fit to the non-uniform clistributions of some of these parameters found in
nature was not attempted since the object of the exercise was not to investigate suit-
able sets of Gabor functions but to clemonstrate the effectivenes of the proposecl neural
network for any given set of expansion functions. Furthermore, any more systematic
scheme for choosing the set of expansion functions which relied on a precise relationship
between the parameters of the different expansion functions would seem to be dubious
for error-prone implementations, and unrealistic in the biological context. Since the re-

sultant set of n : 1600 expansion functions was therefore not guaranteed to be linearly
independent, and the determination of the rank of the matrix ç 6 pt0ooxr600 was po-

tentially ill-conditioned, the decomposition was formulated as the minimisation of the

regularised SRE in (4.11) with e : 0.001. The neural network in (5.3) was chosen to
perform this minimisation, and since the fïeedom was available to choose the expa,nsion

functions to be (Euclidean) normalised, no explicit preconclitioning was required. The
effects of preconditioning on a related neural network are illustrated in Chapter 6.

The neural network with ¿ : 0 was first presented with the image of an eye, and the
neural activations allowed to attain their equiliblium values. The output coefficients were

recorded at several stages during the transition from a: O to the equilibrium point, ancl

were later used to produce the corresponding sequence of reconstlucted images clepicted

in Figure 5.a(a). The network was then presented with the image of a mouth and nose,

and the neural activations once again allowed to attain their equilibrium values. The
output coefficients were again recorded at several stages during the transition from the
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(u)

(b)

Figure 5.4: (a) Sequence of images reconstructed from the outputs of the network in
(5.3) at times ú :0,1,10,100 and 1000ms after step presentation of the image of an eye
(shown at right) to the network input. The network activation vector at t :0 was oo : 0.
For ease of comparison, each reconstructed image was scaled (i.e. its intensity linearly
transformed) to utilise the full available grey-scale range. (b) Sequence of reconstructecl
images at times ú : 0, 1, 10, 100 and 1000ms after step presentation of the image of
a mouth (shown at right) to the same network following equilibration on the eye in
(a). Simulations were performed in double-precision arithmetic using the Runge-Kutta
method of order 4 with adaptive step-size selection.

first to the second equilibrium point, and were later used to produce the corresponding

sequence of reconstructed images depicted in Figure 5.4(b). The real time scale shown

in the caption was fixed by assuming a time constant for real cortical pyramidal cells of
20ms (Stratford et al., 1989). The network is known to be exponentially stable, and the
expected near-complete convergence of the coefficients within 3 time constants (60ms)

was indeed observed.

5.6 Conclusion

In this chapter, a single layered RANN has been presented which solves the LSE problem

and - through the simple addition of an extra nodal leakage term - the regularised LStr
problem associated with non-orthogonal image decomposition. The network has been

shown in the general case to require less connections or neurons than comparable multi-
layered networks. However for expansion functions of local and strictly compact support

- which in biological visual systems are most likely to be of interest - the number of
non-zero weighted connections may in fact exceed that for these other networks unless
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a pixel to coefficient ratio (compression factor) of at least 2.5 is applied. The netlvork
was found to bear a resemblance to existing resistive grid architectures for solving sets

of linear equations arising from the discrete formulation of partial differential equations

(PDEs) governing classical problems in machine vision. The two major distinctions -
(potentially) complete latelal connectivity ald l-r<-rth positive and negative weights -
pose a considerable challenge for analog VLSI implementation.

Symmetric diagonal preconditioning of the network dynamics has been shown to re-

sult in a potential reduction of the condition number of the state feedback matrix, thereby

reclucing the susceptibility of the equilibrium point and network stability to weight im-

plementation errors, and in the case of floating point implementations, of the equilibrium
point to derivative evaluation errors. Although it has not been theoretically guaranteed

that the amplification of the perturbation of the equilibrium point on conversion of the

neural activations back to the required coefñcient vector will not outweigh the original

benefits of preconditioning, it has been observed empirically that this is usually the case.

It has also been argued that diagonal preconditioning can be used to accelerate conver-

gence of the network for a given maximum eigenvalue or minimum neural time constant,

although once again cases exist where the opposite effect may result. However, in cases

where the freedom exists to choose the amplitude of (i.e. scale) each expansion function,

Euclidean normalisation of the expansion functions has the same effect as the proposecl

diagonal preconditioning scheme, whilst avoiding these potential though apparently un-

common pitfalls.



Chapter VI

NEURAI NETWORK FOR BOUND.CONSTRAINED

QUADRATIC OPTIMISATION

6.1 Introduction

In Chapter 4, the decomposition using the basis function matrix G € IR."x- of a signal

or image vector i € R- into a coefficient vector ø € lR." was formulated as the regularisecl

but unconstrained SRE optimisation problem

min {ø,@; 6) ê lli, - G' allT + 41'¡,r)

- with e : 0 for rank(G) : t 1- m - and various linear recurrent neural networks
which perform the requirecl quadratic optimisation for e : 0 and e ) 0 were reviewecl

in Sections 4.3 and 4.4 respectively, and in Chapter 5. In Chapter 7, the potential
implementation of such networks in the feline early visual system for the purposes of
nonorthogonal decomposition of the retinal image is to be investigated. However, in
orcler to facilitate a comparison between the various networks on the basis of neurological
plausibility, it is first necessary to address the following problem.

If the coefficients of such a decomposition are assumed to be signalled by the mean

or instantaneous firing frequencies of spiking neurons in the feline visual cortex, then
these coefficients are necessarily constrained to be non-negative and have a finite upper
limit. In the primary visual cortex, such neuro and the simple cells in particular

- are furthermore known to exhibit remarkably low spontaneous firing rates - see e.g.

(Ferster, 1988) - the suppression of which might otherwise be used to signal negative

values to neurons capable of measuring such departures from the spontaneous rate. An
engineering solution to the analog electronic implementation of a neural network whose

task is to minimise the (regularised) SRE using integrators exhibiting analogous output
range limitations would be to simply scale and shift the original problem to accommodate

these limitations. Since the appropriate coordinate transformation would have to be

performed for each new image and is not readily automated, a more practical approach

to this problem is to impose range or bound constraints on the (regularisecl) SRtr problem
and to reformulate the network to seek the corresponding constrained minimum.

In this chapter, it is shown that a linear recurrent neural network can be programmecl

to optimise a general positive semiclefinite quadratic form - of which the SRE and reg-

ularised SRE are examples - and that the requisite independent bouncl constraints can
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be imposed on the optimisation variables through the use of a piecewise linear saturating

activation function in each of the nocles.

6.2 lJnconstrained Quadratic Optimisation

The problem of optimising a cluadratic functional arises frequently in cnginccring ancl

science. The unconstlained semidefinite quadratic optimisation problem

(6 1){rr*rLf,*'w*-*',\mln

involves the minimisation over the vector æ € R" of the quadratic cost function "r(æ)
where trV€ IR"x" is a positive semidefinite matrix ancl r € R" is a vector constant.

The quadratic form J(æ,) is quite general. For example, the maximisation over æ of

the cluaclratic form

C(æ):!æ'Mæ*æ'z
2

where M€ IR"x" is negative semidefinite ancl z € IR" is constant can be converted into
the above minimisation problem by substitutingW - -lUI and r : -z and minimising

the resulting expression over æ. Furthermore, adding any constant to .I(æ) affects only

the value of J(æ) for any given æ, and not the location of its global optima. Thus for

example the regularised SRE minimisation problem can be reduced to the form of (6.1)

by rewriting E, as

E,(o; u) : 2l1c'' (GG' -t eI) a - a'Gi + !l';1 (6.2)t/12'ú/2r

noting that both the factor 2 and bhe last term in square brackets are independent of ¿

and can therefore be omitted from the optimisation over ø, and letting þV : GGr I €In,

æ:o,andr:Gi.
Although the global unconstrained minimum of "r(æ) in (6.1) clearly occurs where

yJ :!çw +rv,)æ- r: o
2

which may be solved by calculating the inverse of

(6.3)

the inversion process becomes computationally intensive for large n, and numerically

unstable for ill-posed problems. As has already been demonstratecl in Chapter 4, these

problems can be in part overcome by harnessing the massive parallelism of recurrent

analog neural networks, and through diagonal preconditioning respectively. The single-

layer recurrent neural network depicted in Figure 6.1 with lateral weight matrix -Ç,
input vector r and output vector æ governed by the following ODE

t

q +f,rw + W, )

ù:r-Qæ
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Figure 6.1: Linear recurrent network for the unconstrained minimisation of a positive
semidefinite quadrat tc J (æ).

performs steepest clescent on J(æ) and thereby implements the required optimisation.
The network structure in Figure 6.1 can be modified by the addition of weighted feed-

forward connections as used in Chapter 4 to form explicitly terms of the for.m r - Gi,
such as that required to solve the (regularised) SRE problem; it is henceforth assumed

that such connections are invoked wherever appropriate.

6.3 Bound-Constrained Quadratic Optimisation

The optimisation of .f(æ) is complicated by the imposition of constraints on the solu-

tion, since a closed-form solution no longer exists. The bound-constrained semidefinite

quadratic optimisation (BCSQO) problem

min{"I(æ) : p<æ1v} (6.4)

with ¡r,rz€ IR" can arise in such diverse topics as rigid body mechanics, fluid dynamics,

elastic-plastic torsion (Moré & Toraldo, 1991), and relaxation image labelling. Bouncl

constraints on the optimisation variables may also be imposed by the meclium in which a

scheme such as the network in Figure 6.1 for the unconstrainedquadratic optimisation in

(6.1) is to be implemented. For example, analog amplifier saturation and the positivity
constraint on neural firing rate are two factors which may impose such constraints.

Sudharsanan & Sundareshan (1991) modelled the saturation characteristics of the
amplifiers in an analog neural network for unconstrained quadratic optimisation as the

piecewise linear neural activation function g:lR --+R illustrated in Figure 6.2(a), by which

the neural outputs {r¿} are constrained to lie between upper and lower limits ¡1, z € R.

placed symmetrically about the origin (1, : -r). In order to simplify the definition of the

activation function, the assumed output limits p, and, / are mapped through the inverse

of the activation function gain (slope) ,6 g n to produce the corresponding activation
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(") (b)

Figtrre 6.2: (a) One element g(u¿) of the activation function g(u) used by Sudharsanan
& Strndareshan (1991). (b) One element h¿(u;) of the generalised constraint enforcement
function h(z) used by Bouzercloum & Pattison (1993b).

values ( and { respectively with ( : -€. The vector-valued neural activation function
g:R"--+lR' can then be defined for notational convenience as

gi(u): g(ui) :
Pe u¿1(
0u¿ "¿ 

€ [(, {]
Pe u¿)t

such that each of its elements g(u¡) constitutes the activation function of a node in the

network.

The neural activation (state) vector ø of their network is governed by

\¿
1l¿ LLi

È tq

u

ú

: u-Cs(r)-Au
: g(u)

(b.baJ

(6.5b)

(6.6a)

(6.6b)

(6.6c)

where g € R" is the external input, æ € R" is the network output, C € IR"x" is the

symmetriclateral feedback matrix with zero diagonal entries, and A € IR"x" is a positive

diagonal matrix representing the passive decay rate of the activation vector. To map

onto their neural network the unconstrained quadratic optimisation problem (6.1) with
lfl symmetric positive definite, Sudharsanan & Sundareshan (1991) set

a

A

C

r

Bdias(Q)

otrdiag(Q)
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where diag:R"x" --+ lfrnxn and offdiag:lR'*'--+ lfrnxn select the diagonal and offdiagonal

elements respectively of their matlix arguments. One node of the network with these

assignments is illustrated in Figule 6.3(a). However, it was left to the user to ensure that

r j j + i f¡@¡) j Ii

-qij
Ti

,Ui

:xi:x¡ Ti

(o) (b)

Figure 6.3: Neural models of (a) Sudharsanan & Sundareshan (1991) and (b) Bouzer'-
doum & Pattison (1993b) as impliecl by equations (6.5) & (6.6) and equations (6.9) &
(6.10) respectively.

the global optimum of the quadratic function lay within the region defined by the output
limits; no attempt was made to ensure that if in fact the global optimum lay outside this
legion, the network would seek the constrained optimum of the quadratic cost function.

Furthermore, the proof of exponential convergence offered by Sudharsanan & Sunclare-

shan (1991) for this network, has since been shown to be flawed (Davis & Pattison,
1992). Finally their proof of global convergence of the network relies on the erroneous

presumption of the invertibility and (arguably) differentiability of the activation function
g.

These problems have been acldressed by Bouzerdoum & Pattison (1993b), who gen-

eralised the neural output constraints used by Sudharsanan & Sundareshan (1991) by

defining the constraint enforcement function l¿:lR"--+ R." such that

æ: h(u) L nf@) (6.2)

where B e Rf" is the diagonal matrixof activation function gains {B¿} and f :R"--+R"
is defined by

f¡@) = T¿@;):

The neural activation vector tr € lR" is permitted to vary without constraint, and (, € e R"
are the constraints p)v on the output æ mapped onto corresponding activation values

¿ such that ( - B-rp and { : B-rv. A typical element h¿(u¿) of the constraint en-

forcement function tz(z) is illustrated in Figure 6.2(b), and represents a generalisation of

T
s(.)

-qii ll

-'liq¿iPi
uit

/,(')
-^/¡rl¿¿ 0¡
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the neural activation function used by Sudharsanan & Sundaleshan (1991) in that each

element h¡(u¡) has its own activation limits (;,(; and gain B¿, and that the activation

limits need not be symmetric about the origin. The latter generalisation is of interest

where, for example, the optimisation variables are constrained to have a specifiecl sign, or

prior knowledge places an estimate of the unconstrained optimum at some consiclerable

offset from the origin.

Finally, for the purposes of symmetric preconclitioning as discussed in the previous

chapter, the right-hand side of (6.5a) can be premultiplied by the positive diagonal pre-

conditioner I € IR"x". An appropriate choice of f will be discussed further in Section 6.9.

The network resulting from these generalisations will henceforth be referrecl to as the

botrnd constraint projection (BCP) nebwork, in recognition of the fact that the nonlin-

earity h maps or projects an infeasible neural activation vector z (i.e. Bu is infeasible)

onto a feasible output vector æ. The activation vector tr of the BCP network is governed

by

u

æ

a-C'f@)-Au
B r@)

diag(rQB)

otrdiag(fQ,B)

(6.ea)

(6.eb)

(6.10a)

(6.10b)

(6.10c)

with

g:fr
A

C

Since B and I are positive definite and Hermitian and Q is positive semidefinite, fQB
is positive semiclefinite (Horn & Johnson, 1988, Thm 7.6.3), and in particular A is non-

negative diagonal. By excluding the trivial case where the ith row and column of Ç are

zero, A is guaranteed to be positive diagonal as required.

The neuron models in Figures 6.3(a) and (b) differ not only in the generalisation of the

neulal activation function, but also in the explicit factorisation of the activation function

into a unity gain saturation function and a gain term which is applied explicitly only

to obtain the network output. The lateral connection matrix C is accordingly modified

to apply the necessary gain term implicitly during lateral feedback. This factorisation

is necessary in order to obtain a diagonally preconditioned lateral weight matrix which

as seen in Section 5.4 can be made less susceptible to implementation errors. For the

same reason, the gain term 7; is used outside the inner loop and incorporated into the

lateral- and self-feedback matrices, rather than inside this loop which would otherwise

be convenient for the local encapsulation of ,y;.

In the following two sections, it is shown that: each equilibrium point of the BCP

network corresponds to a solution of the BCSQO problem; for each solution of the BC-

SQO problem there exists a unique corresponding equilibrium point of the BCP network;
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and that under the neural dynamics the network outputs converge to the set of such so-

lutions. The proofs presented here cliffer considerably in a number of details from those

presented by Bouzerdoum & Pattison (1993b); these clifferences have been in part neces-

sitated by the relaxation of their requirement that tV l:e positive definite to the more
general condition that lV be positive semidefinite.

6.4 Equilibrium Point Analysis

The first step in the analysis of the proposecl network is to establish the location ancl

nature of the equilibrium points. To assist in this endeavour, it will prove convenient to
define the new energy function

E(u) L!n'çu¡qn@) - h,(u)r (6.11)
2

which, by identifying t¿(z) with æ confined to the constra'int region, can be seen to be

identical to ,I(æ) over this region. The BCSQO problem in (6.a) is thereby recluced to
the u,nconstrai,ned minimisation of E(z) over the network activation vector z.

Observation 6.1 The l{uhn-Tucleer optimality conditions (NIoré. €! Toraldo, 1gg1)

uJ
>0 ri:pi
-0 r¿e (p¡,u¿)

<0 ti:ui
(6.12)

are necessary and sufficient for a constrained minimum æ* of J.

Proof. For the optimisation of a convex function over a convex set, the Kuhn-Tucker
optimality conditions (6.12) are both necessary and sufficient (Bazaraa & Shetty, Ig7g,
Thm 4.2.11) for the constrained optimum. The required result folìows from the obser-

vation that -I is a convex function - since its Hessian Q is positive semiclefinite - and

the hyper-rectangular constraint region is a convex set.

This result is now used to verify the following observation, that the output of the
network at equilibrium is a constrained minimum of ,,/.

Observation 6.2 Each equilibrium point u* of the BCP neural netuorlc in (6.g) is

mapped by h onto a constrained minimum æ" of J, and for each constrained minimtrm
there erists a unique correspond,ing equilibriu'm point.

vi

Proof. It will first be shown that any equilibrium point u* is mapped by l¿ onto a

constrained optimum æ*. Differentiating (6.11) with respect to h.(z) and substituting
equation (6.9) gives 

dE*7 - r-r ?i'+ ,\f@) -.¿l) (6.18)dh(u)
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Since 'ù, :0 at all equilibrium points z*, this reduces to

,lE 
I

,rh@)|,=.. 
: f-rÁ[l (u.) - u*l

fi-om which it can be deducecl that the equilibrium points of the clynamical system pre-
sentecl in (6.9) must satisfy

AE l|¡q¡¡((,; - ui) > 0 ui < C;

0 ui e [('n,1,]

l3¡q;¿(€¿ - ui) < 0 ui > t¿

vi (6.14)ðh.¿(u¡)
1L=7L*

where p¡ ancl qii ate the ith diagonal elements of B ancl Q respectively. Rewriting (6.1a)
in terms of ø* : h(ø*) gives

\Jl,=,*
rf; : 

¡r,¿

xi e (¡t;,u;)

rî:u¡

0

-0
<0

Vi

which by Observation 6.1 implies that æ* is a constrainecl optimum of ./ as requirecl.
The existence and uniqueness of the equilibrium point u* corresponcling to a given

constrained optimum æ* of -f wiil now be established by showing that uncler the system
dynamics, all trajectories z(ú; uo,to) with starting points zs satisfying h(us) = ¡* -including l.Lo: B-'æ* - converge to a unique equilibrium point z* satisfying h(u*) :
æ^.

Since æ* satisfies the Kuhn-Tucker conditions, any starting point ue such that lz(ø6) :
æ* satisfies

AE

0h¡(u¿)
(6.15)

u=uo

f >o u¡1(;
{ :o u¿€lÇ¡,€;

[=o ,;](¡
Since the function å;:lR -+ R is invertible for u¿ € (ç,{¿), all such starting points zs
must have in common those elements u; which lie in their linear range. These elements
are henceforth denoted by zf. Furthermore, srrhstitution of (6.15) into (6.13) reveals
that under the system dynamics all such elements must have ancl continue to have zero
time-derivative until such time as ä(tr) changes. Rearrangement of (6.18) followed by
substitution of (6.15) also reveals that until this happens, each saturatecl component

"! ø Gi,€¿) will converge monotonically (exponentially) towards the unique value

(.
,,*_Je,-fr\J3e, "!s(¿-'- 

ì, €;-fr\Jà€, "t¿2€¿
which is clearly in the same saturation region, so that at no time will an initially satu-
rated component enter the linear range of its corresponcling activation function. Thus
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since h,(z) has remainecl unchanged, the point u* is an equilibrium point of the sys-

tem and satisfies h(u-) : æ* as required. Furthermore, since it has been establishecl

that all elements "i € ((,,{¿) and uj l(ei,(i) are uniquely determinedfor the specified

constrained optimum æ*, this equilibrium point is clearly unique.

Observation 6.2 indicates that at any equilibrium point of the system, the network

otttpttt constitutes a constrained minimum of .,I, and that for each constrained minimum
there exists a unique corresponding equilibrium point. If the given matrix Irtrl is positive

definite, .,/ is strictly convex and the constrained minimum æ* is unique (Bazaraa &
Shetty, 1979), and Observation 6.2 guarantees that the equilibrium point of the neural

network exists and is unique. If on the other hand I,l/ has one or more zero eigenvalues, J
is convex bttt not strictly convex, and the constrained optimum is not necessarily unique.

6.4.1 Multiple Constrained Minima

Multiple constrained minima clearly do arise in some cases, ancl in such cases the cor-

responding neural network has by Observation 6.2 multiple equilibrium points, each of
which produces a network output which optimises ,/ over the constraint region. To see

that the constrained minimum is not unique in some cases, note firstly that the parabolic

cost functi on J (æ) has zero curvature in the directions of the eigenvectors with zero eigen-

value. Differentiating .f(æ) with respect to ø, using the eigenvalue decomposition for Q
real, symmetric and diagonalisable, and setting the gradient of J to zero in orcler to
locate the stationary points yields

YJ:\À¿e¡efæ - r:0 (6.16)

where À¿ and ei are the ith eigenvalue and eigenvector of Q respectively. For convenience

the lcernel ot nullspace of Q is denoted by ker(Ç) : {e¡lÀ¿ : 0}. If r has a component

in the direction of any eigenvector e¿ e ker(Q) of Q, J(æ) has constant non-zero slope

in that direction; thus the rightmost equality in (6.16) cannot be satisfied, ancl .I(ø) has

no global minimum. However, with the imposition of the proposed bound constraints a

constrained minimum is introduced. Furthermore "/ has zero slope in the direction of each

eigenvector e¿ € ker(Q) (if any) to which r is orthogonal, and there exists an infinite set

of unconstrained minima in this direction. In some cases, the imposition of constraints

can resolve this degeneracy; this occurs for example if the set of unconstrained minima
lies outside the constraint region, and the corresponding eigenvector with zero eigenvalue

is not parallel to any of the boundary surfaces of the constraint region. This example

illustrates the potential existence of multiple constrained minima when W - and hence

I - i. singular.
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Problem Palameters Minima
a r p v æ

o
æ^

I
221
221
112

0.5

-0.5
0.5

-1
-1
-1

1

1

I

1.0

- 1.0

0.25

II tt
0.5
0.5

-0.5

)1 ))

s

0.5-s
-0.5

-0.5<s(1.0
0.5-s
-0.5

Table 6.1: Parameters for the two BCSQO problems in Example 6.1

Example 6.1 The parameters for two bound constrained positive semiclefinite quadratic

optimisation problems with lll singular ale listed in Table 6.1, along with the uncon-

strained ancl constrained minima øo and æ* respectively. In problem II, r is orthogonal

to the eigenvector of. Q having zero eigenvalue, and there exist multiple unconstrained

and constrained minima (expressible in parametric form). In problem I on the other

hand, this orthogonality condition does not hold, and a single constrained minimum is

observed, while the unconstrained minimum exists only at infinity.

6.5 Convergence Analysis

So far it has been established that the equilibrium points of the system are in one-to-one

correspondence with the constrained minima of .I. All trajectories of the system are

now shown to converge to the set of equilibrium points, from which it can be concluded

that the output of the network converges to a constrained minimum of the quadratic

problem. To achieve this it is necessary to invoke LaSalle's invariance principle (LaSalle,

1968; LaSalle, 1976).

Observation 6.3 The energy function E(u) giuen in (6.11) is a global Liapunoa func-
tion .for the BCP neural network described bg (6.9).

Before the proof of this observation is presented, it should be remarked that although

Sudharsanan & Sundareshan (1991) macle the equivalent observation regarding their neu-

ral network, their proof relied on both invertibility and differentiability of their activation

function g, neither of which hold. The following proof rectifies these errors.

Proof. Since the functio" l(z) (and hence h(u)) is continuous and bounded, E(z)
is also continuous and bounded. Denoting Tty D+ the right lower derivative operator

(LaSalle, 1976), it therefore remains to show that the forward time derivative D¡V oT
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V(Ð L E@þ;zo,úo)) I satisfles

D+V <0

ancl hence - since E(z) is continuous - that E(tl) is non-increasing along trajectories.

Applying the chain rule to the diffelentiation of V(t), defining F:lR" ) IRnxr¿ such that

j +i
F;¡(u): u;>0

ú¿:I j
u¿<0

+f¿

f¿{ï;

?,

(6.17)

(6.18)

ancl noting that D¡u :'it,1or continuous input gives

D¡v: (#)' fir6¡*
In particular, F accounts appropriately for the discontinuity in the clerivative of /, at (¿

and {¿ by substituting at each point the left or right derivative of fi depending on the

sign of the time-derivative of u¿. Substituting for the first and third terms in (6.18) using

(6.13) and (6.17) respectively, and noting that the second term is simply B and that
F(u)(f (u) - u): 0 sives

D+V -- -ù',1-1BF@)it < 0 (6.1e)

since f-1BF(ø) is non-negative diagonal and hence positive semidefinite. Therefore, the

energy function E(u) is non-increasing along trajectories, and hence is a global Liapunov

function for the BCP network.

Theorem 6.1 Trajectories of the BCP network in (6.9) conl)erge to the set of equilibrium

points.

The network is said to be quasiconaergenú if the equilibrium points are spatially contigu-

ous, and globally conuergent if the equilibrium point is unique.

Proof. Because the dynamical system (6.9) is bounded for positive diagonal A (see Ap-

pendix D.1), every forward trajectory converges to a non-empty compact and connectecl

set, the positiue limit set, which is invariant under the dynamics (LaSalle, 1976). Since

E(ø) is a global Liapunov function for the system, all trajectories will by LaSalle's in-

variance principle converge to M, the largest invariant subset of the set in which the

Liapunov function is constant on orbits. Setting D+V :0 in (6.19) and noting that
l-r BF(u) is non-negative diagonal gives

Mcel{u:ù¿-0 4¿(r) : oÌor

1Sin." E(u(t;uo,fo)) is strictly a function of the spatial variable u, V(t) is introduced so that the
application of D1 obtains the forward lemporal derivative.
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Consider first the set 7l C t which consists of all points z € t which are mapped by

l¿ onto points æ not satisfying the Kuhn-Tucker conditions. It will be shown that any

trajectory u(t;us,/6) with uo € R passes outside of t, and hence that the set 7? is

excltrcled by the invariant set M C t.
Let the Kuhn-Tucker optimality conclitions (6.12) be violated by the current network

otrtput state ø : h(u). Thcn

ril \r
< 0 ri: Pi

+o x¡e (lt'¿,u;)

> 0 ri: I'/i

(6.20)

Rewriting this in ter-ms of the network activation vector z and the unconstrained cost

function ,E and using (6.13) yields

li I ti¡
>0 u;1e¡
: -1iþi\E +0 ,,,¡e (e¡,t¡)

<0 u¡2€;
(6.21)

In particular an offending component u¿ e ((¿,4;) must have a non-zero time derivative,
and therefore cannot belong to a point in the set t. On the other hand, an offending

component zr; / ((;,€o) has by (6.21) a time derivative which will return it to the linear
region of its activation function, and the first moment at which one or more such com-

ponents satisfies u¿ € {(¿,(l} will now be considered. Since the aim is to ìdentify the

invariant set M C t, the trajectory u (ú) is assumed to remain in t until this time, so

that no other componentu¡ e (e¡,€¡) - and hence æ: h(u) - has changed before this
happens. Then for each offending component u¿ e {e¿,t;}, F¿¿(u): 1 and u¡ 10, so that
at this stage the trajectory passes outside of t. Thus it is concluded that M c t - R.

Now since the Kuhn-Tucker conditions are sufficient for a constrainecl minimum of J
and hence a global minimum of E, the set t - R must be invariant under the system

dynamics, since otherwise -E must increase at some stage, contrary to Observation 6.3.

Thtrs M - t - -R, and it remains only to prove convergence of all trajectories which start
in t - Ã to the set of equilibrium points. Since this result has already been established

in the last part of the proof of Observation 6.2, it can be concluded that all trajectories

of the system converge to the set of equilibrium points, as required.

6.6 Related Neural Networks

6.6.1 The Hopfreld I'{etworlç

The networks described by Equations (6.5) and (6.9) fall into the general class of additiue

networks (Grossberg, 1969), and are similarto the associative memorymodel studied by

Hopfield (1984) and used by Hopfield & Tank (1985) for combinatorial optimisation.
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The Hopfield model has a sigmoidal activation function s:lR'-+ IR" such that s¿(z) :
uisþ-r4) e l},u¿l where z¿ is the maximum activation of the ith node, and the nodal

activation vector z is governed by

CiL: r-lTs(u)-R-lu
ú : 

"(r)
where r,æe IR'are the network input and output respectively,T € lR"x" is the symmet-

ric lateral interconnection matrix, and C,Re RlI" are cliagonal matrìces representing

the nodal capacitance and resistance respectively. In the high gain li,mit as the activation

function tends to the unit step function, the quadratic function

Vn(æ)!-!æ'Tæ-æ'r
2

is a Liapunov function for the Hopfield network (Hopfieid & Tank, 1986). Thus in the

high gain limit for T negative semidefinite the network solves the optimisation problem

m"in{V¡¡(æ) 
'"0 € {0,r¡} Vi}

which differs from the BCSQO problem in that solutions are additionally constrainecl to

lie only on vertices of the constraint region.

The mapping of the overdetermined full-rank SRE optimisation problem onto the

BCP network bears superficial resemblance to the mapping by Tank & Hopfield (1986) of

the non-orthogonal decomposition decision problem - the object of which is to procluce

a binary decision vector æ such that z¿ indicates the presence or absence of the ith basis

function in the input signal - onto the Hopfield network. The latter mapping involvecl

setting

r : c; + f,uaias 
(GG')

T : -offdiag (GG')

U:1

where adiøg:lR'x'--+1R." returns the diagonal entries of its matrix argument as a column

vector. However, the mappings differ in that the diagonal entries of GG' are used in the

Hopfield model as constant nodal input ("bias") terms, and in the BCP model as nodal

self-inhibitory or decay terms.

6.6.2 Generalised Bmin-State-In-A-Box (GBSB) I,{etworh

Golden (1992) recently generalised the discrete-time Brain-State-in-a-Bor (BSB) model

proposed by Anderson et al. (1977) to be governed by the update equations

æ(r+1) : f@(t)+aró(r)) (6.22a)

ó(¿) a (W+Wr)æ!r (6.22b)
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where r,æÇ.1R.' are the network input and output respectively, ó(l)€ R." is the output
update term, I,l/ e R.'x" is not necessarily positive semidefinite, a€ IRl is the temporal
step size, and f € Rl" is a diagonal preconditioner2 with diagonal entries 7r € (0,1).

The function f :R"--+lR'is equivalent to that defined in (6.8) with (: ¡^c and €: u.
Golden (1992) shor,vcd that for sufficiently small step size cv the quaclratic cost function

Vc(æ)!-æ'Wæ-ærr

is a Liapunov function for the generalised BSB (GBSB) network. In the case where

I,l/ is negative semidefinite, this network can therefore be shown to solve the BCSQO

problem in (6.1). However, in the more general case where I,1/ is not necessarily positive

semidefinite the gradient descent strategy employed by the GBSB and BCP networks

which will be cliscussed in Section 6,7 is not guaranteed to find the constrainecl minimum.

6.6.3 Continuous-time GBSB l{eúworJc

A continuous-time analogue of the GBSB network with preconditioning - henceforth

refet''-ed to as the continuous Generalised Brain-State-in-a-Bor (CGBSB) network - can

be lbrmulated as

An: U-lrU
:Bu

((,' 1¡)

(¿

¿
ç

u¿1

u¡€
u¡)

(6.23a)

(6.23b)

(6.23c)

q(t)

æ

where

r(w+vv')B

ancl (, { a,re a,s clefinecl previously. For the case where lll is positive semidefinite this net-

work is similar to the BCP network except that the nodal activation z is itself implicitly
hard-limited by the network dynamics whenever it attempts to exceed the range [C,€],
ancl consequently f (u) may be replaced by u provided the network is initialised such

that zs € [C, €]. This change addresses the fact that in active analog implementations
of the BCP network, the nodal activation vector ø is subject to qualitatively the same

saturation which limits the range of outputs, and hence cannot be allowed to assume

arbitrarily large values, as would be required in extreme cases in order for the network
to attain equilibrium. In Appendix D.2, it is shown that for l7 positive semidefinite and

Ty:l
lt

2

2Although Golden (1992) suggested neither this specific purpose nor any suitable choice for I
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zo € [C,{], the CGBSB network converges to the set of constrained minimaof ./(æ) and

hence solves the BCSQO problem.

However, if a trajectory starts or is caused by noise to stray outside of the feasible

region, it will not necessarily return to this region under the network dynamics. If
z is physically constrained to the feasible region by for example amplifier saturation,
this problem will not arise. However, to ensure for robustness that in the absence of

such physical constraints the network produces only feasible outputs, (6.23a) should be

reformulatecl as

;,T¡j u;1 Ç¿

u¡ e ((¡, €¿) (6.23c1)

;,T;j u; ) €¿

This has the effect of collapsing each set of adjacent eqtiilibrium points lying outsicle

this region onto the single equilibrium point given by their projection onto the feasible

region, and causing trajectories starting from infeasible solutions to return to the feasible
I

region..Fit latter function is performed in the GBSB network by the saturation function

I'R"---+ IR". However, a full stability analysis of this network will be cleferred until a

later publication.

6.7 Optimisation Strategy

Conventional approaches to bound-constrained quadratic optimisation reviewed by NIoré

& Toralclo (1991) share two essential elements: an algorithm - such as the conjugate

gradient (CG) method - for searching a selected boundary face of the constraint region,

ancl a rule or algorithm for deciding when and how to select a ne\ry boundary face fol
such a search. Although the necessary matrix computations are parallelisable, the core of
such algorithms - including the series of 1D searches required by the CG algorithm - is

inherently sequential. In contrast, the BCP neural network is formulatecl in continuous

time and admits a direct analog implementation, rendering clirect comparisons on the

basis of computational efficiency impossible. Instead, the optimisation strategy employecl

by the BCP network is compared in this section with those of conventional and neural

netrvork approaches to BCSQO. It is noted in passing that since any (stable) discrete-time

simulation of the BCP network automatically constitutes a numerical method for solution

of the BCSQO problern, efficiency comparisons between the above algorithmic methocls

and such simulations ¿re possible for any suitable discrete-time simulation algorithm.

Such comparisons are however beyond the scope of this thesis.

6.7.1 Descúption k Compañsons

Noting that for ti conbinuous, D.,.æ : BF(u)ù and substituting for ú using (6.13) yielcls

D¡æ: -lBF(u)VJ (6.24)
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whele F(ø) defined in (6.17) is diagonal. For the special case I : B : F(u) : ¡.,
(6.24) performs steepest descent on J, as illustrated below in Example 6.2. As will be

seen from Example 6.3, the effect of the preconditioners l, B is to modify the search

direction from that of steepest clescent - ví2. the negative of the true gradient; however,

since f and B are positive cliagonal, the network still performs graclient descent - i.e.

(D+u)'V-r < 0 - and E slrictly clecreases with time.

The effect of premultiplication of the gradient V/ by F(z) in (6.24) is twofolcl. Firstly,
it sets to zero the forwarcl time clerivative of any output component r; which nncler

graclient descent woulcl be forced out of the constraint region. Illustrated in Example 6.2

below, this effect results from the fact that since the output trajectory æ(l) is obtainecl by

mapping z(t) through h, it is necessarily confined to the constraint region, and hence is

constrained to move only in feasible directions. In contrast, conventional penalty function
methocls - upon which previous neural network approaches to constrained linear and

nonlinear optimisation have been based (Tank & Hopfield, 1986; Kennedy & Chua,

1988; Rodrígrez-Yâzquez et al., 1990; Chen et al., 1992; NIaa & Shanblatt, 1992a)

can generate infeasible solutions (Bazaraa & Shetty, 1979; Maa & Shanblatt, i992b).

The two networks proposed respectively by Rodrígtez-Yâzquez et al. (1990) and NIaa

& Shanblatt (1992b) in their attempts to rectify this deficiency have yet to be proven

stable3, and both ensure feasibility at the expense of considerable aclditional harclware

and network complexity.

The optimisation method described so far and henceforth referrecl to as constrained

gradient descent - or in the special case where I : B : In constrained steepest descent

falls into the general class of gradient methods for constrained nonlinear optimisation

(Gellelt et al., 1989), in which the search direction used for minimisation is any feasible

downhill direction. However, the second effect of premultiplication of the gradient vector

by F(u) is to set to zero the forward time derivative of any output component z¿ for

which u; is strictly in the saturation region of /¿, even if ViJ is such that under graclient

clescent r¿ would move in a feasible direction away from the corresponding bounclary

face. Although this has the potentially undesirable effect of confining the search proccss

to the current boundary face, the following argument shows that this confinement is only

temporary, as expected given the convergence result in Section 6.5.

For such points æ on the boundary of the constraint region, at least one of the

components r¿ lies on one of its corresponding constraint surfaces ri : lli ancl r¿ : y¿,

and the relevant constraint is said to be actiae. If there exist feasible directions pointing

away from an active constraint surface and in which ,,/ is decreasing, then the Kuhn-

Tucker optimality conditions (6.12) must be violated, and by (6.21) the time clerivative of

the element z¿ corresponding to this constraint is such that u¡ will eventually be brought

3The stabilityof the network of Rodríguez-Yâzqrez et al. (1990) has in fact been questioned by ùIaa
& Shanblatt (1992a).
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into the linear region of its activation function fi. In the mean time, all other output
components e¡ corresponding to activations uj € [(¡,{r] are free to pursue constrainecl

gradient descent on -/ with the search confined at least to the ibh boundary face of the

constraint region. Once u¿ has returned to the linear region, ri can become unstuck

from the relevant constraint boundaly, and the search is then no longer confined to this

boundary face.

In the case where the system is not immediately free to pursue search directions

away from a bounclary face, the return of u¿ into the lineal region of its corresponding

activation function is governecl by

a¡¿(e; - u¿) - 1\J r¿: LIi

a¡¿(€¡ - u,¿) - y\J ri: I/i
( 6.25)

where ø¿¿ is the ith cliagonal entry of ,4. In the special case where the desired search

clirection is perpendicularly away from the boundary face - ie æ minimises ./ over this

active boundary face -'ui converges exponentially towards a point insicle the linear region

of its activation function. However, as soon as u; hits the linear region, ti¡ : _1Y,/ ancl

the search is free to pursue the component of the gradient in the ith direction. This
behaviour is evident in Example 6.4 below.

It is therefore concluded that the optimisation method employed by the BCP net-
work is graclient-based, with the search constrainecl to feasible clirections ancl at worst
temporarily to one or more boundary faces on which the current point ø is locatecl. Al-
though in Example 6.4 this latter effect does not cause an appreciable delay in obtaining
the optimal solution, it has the potential to do so in more extreme cases. This problem

is overcome by the GBSB and CGBSB models which prevent saturation of the neural ac-

tivation, leaving them free on presentation of a new network input to pursue constrained
gradient descent on the new cost function .,/. The optimisation strategy of the GBSB
network for f : 1, is closely related to the gradient projection (GP) method used by

Moré & Toraldo (1991) to move between boundary faces, with the principal difference

being in the use of a fixed rather than adaptive Euler step size a. This method involves

taking a step in the direction of the gradient, and then projecting the resultant point
back onto the constraint region - a function performed by the nonlinearity in the GBSB

model. The continuous-time equivalent of this strategy employed by the CGBSB model

is to constrain the search direction itself to feasible directions by modifying the gradient

accordingly. Although the GP method is itself sufficient to locate the bound-constrained

optimum of a convex cost function, more computationally efficient though inherently
serial methods - such as the CG algorithm - are often employed to search any new

boundary face located by an abbreviated GP search (NIoré & Toraldo, 1gg1).

1T

6.7.2 Examples
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Problem Parameters
r p u

Minima
æ æ,^

I
4.585
1.341

1.341

0.6648
0

0
-5
-5

5

5

0

0

0

0

II 11 4.368

-0.6307
)) 3

-7
2.415

-5.000
t)

Table 6.2: Parameters for the two BCSQO problems in Example 6.2; æo and æ* clenote
the unconstrained and constrainecl minima respectively.

Initialisation Ecluilibria
Problem I Problem II

1l's ts u^ æ* u^ æ

-5
0

-5
0

0

0

0

0

2.+r5

-5.820

2.4t5

-5.000
0

5

0

5
tt )) tt tt

5

0

5

0
tt ,) )) )t

0

-ð
0

-5
11 )', )) )1

Table 6.3: Network equilibria for the application of the BCP network with f : In : B
to the BCSQO problems in Table 6.2. The network output trajectory is illustrated in
Figure 6.4 for problem I and in Figure 6.5 for problem II; u* and æ* denote the neural
activation and output vectors respectively at equilibrium.

Example 6.2 The BCP network with I : In: B was applied to the two BCSQO prob-

lems whose parameters are listed in Table 6.2, along with the corresponding constrained

ancl unconstrained minima - denoted æ* and æo respectively - of ,,/, which ale coinci-

dent in problem I but distinct for problem II. Spatial and temporal representations of the

trajectories æ(t; æ0,0) of the network output for four clifferent starting points æ¡ for each

of problems I and II are presented in Figures 6.4 and 6.5 respectively, and the network
equilibria listed in Table 6.3. In the interior of the constraint region as expected each

trajectory performs steepest descent on ,,I - and hence E - moving perpendicular to
the contours and converging to the constrained optimum. However, when the trajectories
in Figure 6.5(a) reach the constraint boundar! 12 : -5, they are prevented by the nodal

activation function /2 from leaving the constraint region. Characteristic of the steepest

descent strategy is the rapid descent on steep inclines followed by slow convergence along

the gently sloping valley floor, as can be seen from the temporal plots in Figures 6.4 ancl

6.5 of the trajectory starting from cs : [-5,0]t for each problem.
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Parameters Nlinima
a r It v æ

o
æ

39.60
3.960

3.960
0.5307

138.6

19.92

0

15

30

45
-1
45

0

37.56

Table 6.4: Parameters for the BCSQO problem in Example 6.3

Preconditioning Initialisation Equilibria
f:B Ug tg 1tr* n,

In
30

45

30

45
-0.2562

37.56

0.000
37.56

0.7361
0

0

6.359
40.75

7.077
JJ -0.3448

5.903

Table 6.5: Network equilibria for the application of the BCP network with two different
settings of the preconditioners to the BCISQO problems in Table 6.4. The network output
trajectory is illustratecl in Figure 6.6.

Example 6.3 The modification of the search direction by preconditioning is illustratecl

by the following example. In anticipation of the discussion in Section 6.9 on the appro-

priate choice of preconditioners, the preconditioning strategy described in Section 5.4

is used. The BCP network was applied with and without preconditioning to the BC-

SQO problem whose parameters are listed along with the corresponding constrained and

unconstrained minimaof J in Table 6.4. The unconstrained optimum lies outside the

constraint region. Note in passing that in keeping with the generalisation of the acti-

vation limits used in the formulation of the BCP network, the bound constraints are

different for the two optimisation variables, and neither pair of constraints is placed

symmetrically about the origin. Spatial and temporal representations of the trajectories

æ(t;æs,0) of the network output both with and without preconditioning are presented

in Figure 6.6 and the network equilibria listed in Table 6.3. For the preconditioned net-

work, the preconditioners are chosen to satisfy (5.13), with the scaling factor k : 4.633

ensuring that the preconditioned matrix fÇB has the same maximum eigenvalue as Q,
so that a fair comparison of rates of convergence can be made. As can be seen from

both the spatial and temporal views, both networks converge to the optimal solution. In
the interior of the constraint region, the unpreconditioned system progresses as expectecl

in the direction of steepest descent (perpendicular to the contours). Once the trajectory
of the unpreconditioned system hits the constraint boundary rt:0¡ it is constrained to

move along that constraint in a direction as near as possible to that of steepest descent.

The path taken by the preconditioned system, on the other hand, deviates strongly from

steepest descent, spending some time in saturation on the boundar! ï2: 15.
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Figure 6.6: Spatial and temporal representations of the trajectories æ(t;æ0,0) of the
unpreconditioned (dot-dashecl) and preconditioned (solid) systems detailed in Tables 6.4
and 6.5 applied to the BCSQO problem whose parameters are listed in Table 6.4. Loga-
rithmically spaced contours of the cost function ./ (dotted) along with the foul bounclary
faces of the constraint region (dashed) are superimposed on the spatial representation.
The constrained minimum is marked with an asterisk.

Problem Parameters
r It v

Minima
æo æ

I 4.585

-7.347
- 1.341

0.6648
-5t.47
6.876

-5
-5

5

5
-20
-30

-5.000
0.2565

II )) 1.124
1.307

)) 1) 2

6

1.708

5.000

Table 6.6: Parameters for the two BCSQO problems in Example 6.4

Example 6.4 In this example the optimisation strategies of the GBSB, CGBSB ancl

BCP networks are compared. Each network was first applied without preconditioning to

the solution of problem I in Table 6.6. For the BCP network, this had the effect of driving
z1 well into the saturation region of its corresponding activation function, whereas the

activations of the GBSB and CGBSB networks were restricted to their linear ranges by

their respective difference or differential equations. Each network was then presented with
the new input U : r in problem II of Table 6.6. Spatial and temporal representations of

the trajectories æ(ú; oo,0) of the output of each network subsequent to the presentation

of the new input are presented in Figure 6.7 and the network equilibria listed in Table 6.7.

The BCP network takes some time to bring z1 back into its linear region, during which
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Figure 6.7: Spatial and temporal representations of the trajectories of the GBSB (dotted),
CGBSB (dashed) and BCP (solid) networks without preconditioning. Logarithmically
spaced contours of the cost function .I (dotted) along with the four boundary faces
of the constraint region (dashed) are superimposed on the spatial representation. The
constrained minimum is marked with an asterisk.

Network ation
U's ts.

Equilibria
?L*

+
æ^

GBSB -5.000
0.2565

-5.000
0.2565

1.708

5.000
1.708

5.000
CGBSB 11 )) )') 1)

BCP - 11.15

0.2565
)) 1.708

5.410
1)

Table 6.7: Network equilibria for the application of the GBSB, CGBSB and BCP net-
works to problem II in Table 6.6. The output trajectory of each network is illustrated in
Figure 6.7.
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æ(/) is constrained to move along the constraint boundaty itt : -5 in a direction as near

as possible to that of steepest descent. In contrast, both the GBSB and CGBSB networks

are immediately free to pursue constrained steepest descent on the new error function -/,
As expected, the trajectories of these latter two networks are almost identical, with the

slight discrepancies being attributable to the use by the GBSB network of an explicit
Euler method approximation to the ODE governing the CGBSB network.

6.7.3 Constraint Generalisation

The constraints on the optimisation variables considered in this chapter are quite specific:

either the constraint region is hyper-rectangular and its principal axes are aligned with
the optimisation variable axes, or it can be described by

(6.26 )

where P € Rnxrù is non-singular, which can be linearly - although not necessarily

efficiently - transformed into this form through substitution of æ : P-r z followecl

by a change of variables. However, the technique by which the outputs of the BCP

network are limited to strictly feasible solutions should be amenable to extension to
general convex constraint sets. The constraints which constitute the current minimum
upper and maximum lower permissible limits on the range of a given optimisation variable

z¿ should be used to set upper and lower thresholds Ç and (¿ or, the corresponding

activation function /¿. In general these thresholds will be a function of æ(l), making
stability analysis and practical implementation of the resulting time-varying dynamical
system significantly more challenging.

An alternative strategy suggested by the CGBSB network for generalising the con-

straints is to subtract from the negative of the cost function gradient vector those compo-

nents which are in the direction of the outward facing normal to each active constraint,

thereby limiting the search to feasible directions. This strategy can be expressed math-
ematically as

ù:-YJ-fr(-V/'nJn,
ÉA

where "4 is the set of active constraints, n; is the outward facing normal to the ith
constraint, and r:lR --+ R. with r(.) 4 max(0,.) is the half-wave rectification function.
The convergence of such a network to the set of minima of the positive semidefinite

cost function over a convex constraint set is readily argued through consideration of

the underlying strategy of gradient descent constrained to feasible directions. Although
for linear constraints the normals are independent of the current point æ so that the

requisite inner product can be implemented in a linear (non-integrating) node having

predetermined weights and activation function r, in the more general case of nonlinear

constraints the "weights" would need to be continuously recomputed. Furthermore the

p, 1Pæ1v
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output of each such node would have to be gatecl by the output of a second node which

is responsìble for determining whether the corresponcling constraint is currently active.

Thus, although this scheme for the more general case is clearly inherently parallel and

amenable at least theoretically to fine-grained parallel implementation, the engineering

and biological plausibility of such implementations awaits future investigation.

6.8 Exponential Stability

In this section it is shown that under appropriate conclitions on the matrices A and C , the

BCP network is exponentially stable. Sufficient conclitions on the given matrix Q ancl the

preconclitioners I ancl B are then presented to ensure that in cases where the constrained

minimum of the corresponcling quadratic cost function is unique, the neural network

producecl by mapping the optimisation problem onto the BCP architecture converges

exponentially to the optimal solution. For convenience À^¡n(A) is defined to be the

minimtrm eigenvalue of A and o^",(C) to be the maximum singular value of C.

6.8.1 Theoretica,l ResuJús

Definition 6.L A dynamical system is said to be exponentially stable in the sense of
Liapunou if 

=P,ry 
€ R+ such that for all pairs {æ(t;to,æo),æ(t;ts,æt)} of solutrons

llæ(t;ts,*t) - æ(t;ts,ro)ll I Be-n(t-to) (6.27)

Definition 6.2 The degree of an erponentially stable dynamical system is the largest

non-negatiue ualue of r¡ for which (6.27) holds.

Theorem 6.2 If the self-feedback and lateral connection matrices A and C respectiuely

.satisfy

rt 1À^¿,(A)- o^""(c)> o (6 28)

then the BCP neural network (6.9) is erponentially stable with a lower bound on the

degree of erponential stability oiuen by r¡.

Proof. Since l(z) is continuous and Lipschilzian, the solution z(t) : u(t;to,uo) of the

initial value problem associated with (6.9) is continuous and unique. The solution is also

bounded for A positive diagonal (see Appendix D.1), and is given by

u(t) : e-A(t-to)uo t l',"-Aa-")g(r) o" - I',"-A(t-s) 
c f @(s)) ds (6.29)

Subtlacting u(t) from a second trajectory o(ú) starting from o¡ at time ús and taking

the norm yields

llr(¿) -.r(ú)ll < lle-nu-t)lllloo - zoll + l,"llu^,-")llllcllll/(o(,)) - f(r("))ll ds (6.30)
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Using the spectral norm, the matrix norm induced by the Euclidean vector norm
(Horn & Johnson, 1988), gives

llf (o(,)) - l("("))ll < ll,(') -,(")ll
lle-1(¿-")ll : e-,\-i"(Á)(¿-s)

llcll : o*"'(c)

Substituting these results into (6.30) and multiptying both sides by ,r*;'(.4)ú *¡u",

ll"(¿) - u(t)lle^^;"(',' < llro - luoll"^^o'('1)¿o + o^.,(c) li,ll"o - z(s)¡¡er-;'(Á)" ds

Applying Gronwall's Inequality (Reinhard, 1986) and evaluating the integral in the re-

sulting expression produces the following inequality

llr(¿) - "(ú)ll S llro - roll "-n(t-to) (6.81)

Therefore a sufficient condition for exponential stability of the BCP network is that the
exponent in (6.31) is strictly negative, from which condition (6.28) follows. Furthermore

if (6.28) is satisfied, 4 provides a lower bound on the degree of exponential stability,
which completes the proof.

Theorem 6.2 shows that provided the network weight matrices A and C' satisfy
condition (6.28), the Euclidean distance between any two trajectories z,(/; zs,ls) anci

a(t;as,ús) will decrease at least exponentially with time. In particular, if tr6 is chosen to
be an equilibrium point of (6.9), and the given input vector g does not vary with time, all
trajectories z(ú; uo,to) must converge exponentially to that equilibrium point. However,

since this is not possible if the system has multiple equilibrium points4, (6.28) clearly

cannot be satisfied by any choice of the preconditioners f and B if the matrix Q has one

or more zero eigenvalues ancl the constrained minimum is not unique. Recall however

that according to Theorem 6.1 the network will still converge to the set of constrained

minima, even though it is not exponentially convergent.

6.8.2 Practical Considerations

The required singular value for the evaluation of (6.28) is the square root of the largest

eigenvalue of. CC', and can be efficiently computed using the power method (Golub &
Van Loan, 1989). However, whilst Theorem 6.2 provides a lower bound on the rate of

convergence of the network, it gives little indication of how best to choose the elements

of the preconditioners I and B when mapping the constrained optimisation problem

onto the proposed network, or whether or not there extst any such choices which will
ensure exponential convergence or improve the convergence properties of the network.

aTry choosing üs and os to be distinct equilibrium points
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Two sets of sufficient conclitions for exponential convergence are now presented which
make appropriate choices of these preconditioners more apparent, albeit at the expense

of sacrificing some of the generality of Theorem 6.2.

For convenience, the ith diagonal entries of f and B are denoted by 7; and B; respec-

tively, and '1^o" and B^o, are defined to be lhe largest of these, lmin : min;{q;¿} to be

the minimumdiagonal entry of Q, and À*",(Q") - max;{l^¡(e)l} to be the maximum
magnitude eigenvalue of the matrix 8, 4 offdiag(Q)

Lemma 6.\ If the matrtu Q defined in (6.3) satisf,es

Smin ) À*",(Q") (6,32)

then choosing I and B such that

min¿{1¿q¡¿B¿} :1^o,Q*inþ^o" (6 33)

ensures that the BCP network is erponentially stable, with a lower bound on the degree

of e'rponential stability gi,uen by 1^",(q^¿n - À^",(Q"))þ^",.

Proof. Noting that since f and B arc diagonal, lQ.B: offcliag(fQB) yields

J^o,À^o,(Qo)þ^", : llfllll0,llllBll

: o*",(C) (6.34)

Starting with (6.33) and using (6.32) followed by (6.34) gives

min¿{l¿q;¿þ¿} : 1^o,q^inþ*o,

which is simply (6.28). Thus conditions (6.32) and (6.33) are sufficient to ensure expo-

nential stability of thc nctwork.

Furthermore, by (6.35) the lower bound 4 on the degree of exponential convergence

satisfies

n > min¿{1¡q¿¿þ¿} - ^/*",À*",(Qo)þ^,,
: ^l*o,(Ç*¿n - À^o,(Q o)) 0^",

as required.

Equation (6.33) is satisfied by the choice of preconditioners in (5.13). Note that even

if Q does not satisfy (6.32), there may still exist choices of f and B which ensure the
satisfaction of (6.28), and hence guarantee exponential convergence of the system. The
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power method can be used to efficiently compute \*""(Q.) in order to verify whether or

not Q satisfies condition (6.32). However, the following corollary replaces conclition (6.32)

in Lemma 6.1 with a condition which is computationally less expensive to evaluate whilst
still sufficient to satisfy (6.32).

Corollary 6.L If the matrir Q defined in (6.3) satisfies

'min¡{q¡¡]¡ > mar¿{\lq¿¡l} (6 36)
i+i

then choosing I and B according to (6.33) is su,fficient to ensure erponential stabitity of
the BCP networlc described by (6.9).

Proof . It can be shorvn that any matrix M € IR"x" satisfies llMll < llMll' llMll-, where

llMll"" 4 max¿{f¡ ln;¡l},llMll' a 
-u*¡ {Dnlpn¡l}, ancl llMll is the spectral norm of IVI

(Golub & Van Loan, 1989, Cor. 2.3.2). Furthermore,iT M is symmetricthis reduces to

ll,v/ll < ll&1ll-. rhus

max¿{f lø;¡l} : ll8,ll"" > ll8,ll : À^""(Qo)
j+i

which indicates that if (6.36) is satisfied, then so is (6.32), as required.

6.9 Preconditioning

If IQB satisfies (6.28), multiplying either f or B by a scalar constant a ) 1 increases

the rate of convergence guaranteed by Theorem 6.2 by a factor of o, and hence - at
least in theory - convergence of the neural network can be made arbitrarily fast by

making a arbitrarily large. However, as seen in Section 5.4.3, practical considerations

limit the utility of this strategy, and in such cases preconditioning should be used insteacl

to improve the convergence rate subject to these limitations.
In Section 5.4 it was shown that preconditioning of the linear networks in Sections 5.2

and 5'3 for SRE and minimum-norm SRE optimisation can both mitigate the sensitivity
of the equilibrium point to weight implementation and floating-point derivative evalu-

ation errors and accelerate convergence to the equilibrium point. In this section the
implications of these results for the nonlinear network for constrained quadratic optimi-
sation are discussed.

The nonlinear network can be viewed as an essentially linear network in which the

offdiagonal entries in the ith column of the state-feedback matrix a¡e set to zero when-

ever the activation of the ith neuron saturates, and a constant term cjilti or cjiui -
where c¡; is the (i, i)th element of C - added to the input of the jth neuron (V j I i) in
compensation. These "changes" are reversed when the ith neuron comes out of satura-
tion. Thus for as long as the trajectory remains in the linear region of each of the neural
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activation functions for example, the network can be treated as a linear network with
state-feedback matrix C + A. On the othel hand, while all neurons are operating strictly
in their saturation regions, the network can be consiclerecl to be linear with effective

feedback matrix A which is diagonal, inclicating the temporary uncoupling of the neural

activations.

The condition number- of the effective state-fèeclback matrix variess between those

oL C * A: tQB and A. The relevant condition number trom the point of view of

sensitivity of the ecluilibrium point to weight implementation and clerivative evaluation

etrors is that which applies in the region in which the true equilibrium point is located,

which is not generally known a'priori. Furthermore, for robust stability in the presence

of weight implementation errors the perturbecl system matrix ffiÞ -.,rt remain non-

singular after the above modification for each of the regions of state-space through which

the trajectory passes, which again is not usually known in advance. Thus in the absence of

such prior knowledge, a general preconclitioning strategy which improves the conclitioning

of both fQB and A - arrd hence all other intermediate effective state-feedback matrices

- should be employed. This is achieved by the symmetric diagonal preconditioning

strategy cletailed in Section 5.4.

Using a singular value inequality for the matrix sum (Horn & Johnson, 1991, Thm
3.3.16) yields

\ : À^;n(A) - o*",(C) < o^¿"(lQB) (6.37)

which provides an upper bound on the rate of exponential convergence guaranteed by

Theorem 6.2. For the choiceof diagonal preconditioners detailed in (5.13) with k chosen

to preserve the maximum eigenvalue - and hence in view of symmetry the maximum

singular value - as in Heuristic 5.2, this bound is guaranteed to exceed that of the un-

preconditioned system whenever the preconditioning is effective in reducing the condition

number of Q. However, except in the case of a 2 x 2 matrix with symmetric precondi-

tioning - for which the equality in (6.37) can be shown to hold - increasing this upper

bound on 17 does not ensure that either 4 or the degree of exponential stability will be

increased.

Example 6.5 The effects of preconditioning on the condition number of the extreme

effective state-feedback matrices fQB : C * A and A for the matrix Q given in Ta-

ble 6.4 of Example 6.3 are illustrated in Table 6.8. The preconditioners were chosen

to satisfy (5.13), with the scaling factor k : 4.633 chosen in accordance with Heuris-

tic 5.2 to ensure that the preconclitioned matrix fQB has the same maximum eigenvalue

as 8. The improvement in the condition number of both matrices indicates a reduced

susceptibility to weight implementation and floating-point derivative evaluation errors,

Since the eigenvalues of a symmetric positive semidefinite matrix are also its singular

sUnproven observation
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Preconditioning Condition f Eigenvalues Degree I
f:B | rcz(tQB) nz(A) I l-"*(fg.B l-¡"(lQB rl

In 300.0 74.62 40.00 0.1333 0.1333
0.7361

0

0

6.359
13.69 1.000 40.00 2.922 2.922

Table 6.8: Effects of preconditioning on the condition number of the extreme effective
state-feedback matrices lÇB : C I A and A for Example 6.3. The extreme eigenvalues
orlQB and the lower bound 4 on the degree of convergence are also shown.

q)

d€
U)

o
d
O

Êì

rot

too

to'

to'

lo'

to'

rd

rootr
I ro'

rn
- 

lo¡
U)

Q ro'

U
Þ ro'€
d

õto-''
l¿i

lo'o

lo''

to' '

to''
4S0 35 25

time
(a) llu - ø.ll

Figure 6.8: (a) The Euclidean distance of the activation vector z from the equilib-
rium point z* as a function of time for the network in (6.9) applied to the problem
in Example 6.3 both with (solid) and without (dot-dashed) preconditioning. (b) The
corresponding relative cost error as a function of time.

values, the improvement by a factor in excess of 20 in the lower bound 4 on the degree

of convergence which is also evident from Table 6.8 can be seen to be consistent with
(6.37). As indicated by the plot of distance from the equilibrium point against time
in Figure 6.8(a), the actual rate of convergence for the chosen starting points is also

markedly accelerated by preconditioning, with an estimated increase by a factor of 40 in
the slope on a log scale of the final segments of each trajectory. This same speed-up is

also observed in Figure 6.S(b) for the monotonic decrease of the cost ./(æ) to its optimal
value. In contrast, the constrained steepest descent strategy employed by the network

without preconditioning produces rapid initial reduction of the cost and the distance

from the equilibrium point, but soon gives way to painfully slow convergence.

For a given application or implementation of the proposed recurrent neural network,

there will of course be other considerations involved in the choice of the preconditioners.
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For example, f and B can be usecl to control the dynamic range of internal network

signals for a given externally imposed range of the variables r ancl æ. In such cases care

should be taken not to lvorsten the conditioning of the system, and a trade-off between

these possibly conflicting requirements may need to be investigated.

6.10 Bound Constrained SRE Minimisation

The goal of this chapter - to clevelop a neural network capable of solving the quaclratic

SRE minimisation problem arising from non-orthogonal image clecomposition subject to

bound constraints on the basis function coefficients imposed by the biological or elec-

tronic neural implementation mecli has now been achieved. The following example

illustrates the effect on the reconstructed image of such constraints.

Example 6.6 The BCP neural network was applied to the regularisecl SRE image de-

composition problem described in Example 5.1 upon which the three sets of bouncl con-

straints {t",r): {-2,2},{-0.1,0.1} and i0,10} were independently imposed. As in
Example 5.1, due to the prior normalisation of the basis functions, no explicit precon-

ditioning was required. The procedure used to obtain each of the three corresponcling

pairs of reconstructed image sequences depicted in figures 6.9,6.10 ancl 6.11 respec-

tively was the same as that used in Example 5.1. The near-complete convergence of

the coefficients observed for each of the image sequences lvithin 75ms 3 time con-

stants - of presentation of the image is consistent with exponential or near-exponential

convergence. For both input images, the minimum regularised SRE coefficients for the

unconstrained case in Example 5.1 exhibited a zero mean, approximately Gaussian dis-

tribution, with a standard deviation in the vicinityof 0.1 and all coefficients lying inside

the range (-2,2). Consequently, the final image in each sequence reconstructed from

the coefficients attained by the network having {p,r} : {-2,2} shows no apprecia-

ble clifference from the corresponding solution reached by the unconstrained network in

Example 5.1; this observation is confirmed by the fact that for both image sequences)

the two networks produce the same final SRE value. Constraint of the coefficients to

the range {p,r}: {-0.1,0.1} - which was exceeded by approximately 30% of the

unconstrained coefficients - produced a barely noticeable effect on the image sequence,

clespite an almost 50% increase in the SRE for the image at ú : 1000ms. The effect of

the constraint of the coefficients to the range {p,r} : {0,10} - which excludes ap-

proximately 50% of the unconstrained coefficients - is similarly difficult to discern from

the corresponding image sequence, despite an almost 300% increase in the SRE for the

image at t :1000ms over the unconstrained case. Whilst these examples by no means

constitute an exhaustive analysis of the effects of bound constraints on the coefficients,

they do at least suggest that a great deal of the visual information in an image is retained

despite such potentially restrictive constraints.
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(u)

(b)

Figure 6.9: (a) Sequence of images reconstructed from the outputs of the BCP network
with {¡r, u} : {-2,2} at times t : 0,1,10,100 and 1000ms after step presentation of the
image of an eye (shown at right) to the network input. The network activation vector at
ú : 0 wâS ?Ís : 0. For ease of compalison, each reconstructed image was normalisecl to
utilise the full available grey-scale range. (b) Sequence of reconstructed images at times
ú : 0,1,10, 100 and 1000ms after step presentation of the image of a mouth (shown at
right) to the same network following equilibration on the eye in (a).

(.)

(b)

Figure 6.10: Sequence of reconstructed images for the BCP network with {p,r} :
{-0.1,0.1}. All other details are the same as those for Figure 6.9.
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(u)

(b)

Pigule 6.11: Sequence of reconstructed images for the BCP network with {p,r} :
{0,10}. All other cletails are the same as those for Figure 6.9.

6.lL Conclusron

In this chapter, the Bound Constraint Projection (BCP) network proposed by Bouzer-

doum & Pattison (1993b) has been presented and shown to converge to the set of optima

of the bound-constrained semidefinite quadratic optimisation (BCSQO) problem. The

BCP network is a generalisation of the network of Sudharsanan & Sundareshan (1991),

who considered the application of their network only to the unconstrained optimisa-

tion of a definite quadratic function. The extension of the requisite proofs presented by

Bouzerdoum & Pattison (1993b) to cover the case where the matrix I4l is singular - and

the network potentially quasiconvergent - necessitated a considerable strategic depar-

ture from the former treatment. The proof of exponential convergence - under certain

conclitions on the Hessian Q of the quadratic function and the preconditioners f , B -
for the case where lll is positive definite is however substantially unchanged from their
paper. These proofs have superceded those of Sudharsanan & Sundareshan (1991) for
global convergence and exponential stability, which have been shown here and by Davis

& Pattison (1992) respectively to be flawed.

The optimisation strategy of the BCP network has been shown to be one of gradient

descent with the search constrained to feasible directions and at times temporarily to

one or more boundary faces of the constraint region. In contrast with penalty function

methods on which most previous neural network approaches to constrained linear and

non-linear optimisation are based - which are guaranteed to produce feasible solutions

only in the limit as the weighting of the constraint-violation penalty function tends to
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infinity, the bound constraints are strictly enforced in the BCP network by the piecewise

linear nodal activation function. The algorithm underlying this optimisation strategy

differs from that of conventional serial methods for solution of the BCSQO problem

- which require the sequential application of parallelisable matrix computati
in that it is inherently fully parallel. Ironically, those portions of such conventional

algor-ithms which necessitate a sequential approach are those such as the Conjugate
Graclient algolithm which were introduced to accelerate the optimisation process on

serial architectures.

Comparison of the optimisation strategy of the BCP network with that of the Gen-

eralised Brain-State-in-a-Box (GBSB) network proposed by Golden (1992) revealecl that
the latter did not suffer from the unproductive temporary constraint of the search to one

or mote boundary faces of the constraint region exhibited by the former. In order to an-

swer the potential objection to the BCP network that the nodal activations can become

excessive, the Continuous-time Generalised Brain-State-in-a-Box (CGBSB) network was

proposed as a continuous-time analogue of the GBSB, and trajectories starting in the
feasible region were shown to converge to the set of solutions of the BCSQO problem.

An analysis of the stability of the network after the proposed modification to force the
return of the trajectory to the feasible region following a "glitsch" or infeasible initialisa-
tion awaits future investigation, as does a suitable analog implementation of the modified

CGBSB network.

The BCP network was applied to the regularised squared reconstruction error (SRE)

minimisation problem arising from the decomposition of an image using a set of Gabor
basis functions. For the two example images, the quality of the image reconstructecl
from the coefficients obtained by the network was found to be robust to the imposition
of restrictive bound constraints on the coefficients, suggesting that the nonlinear mapping
from image to constrained coefficients implemented by the network at equilibrium may
still transmit the vast majority of the visual information inherent in the input image.

This hypothesis however awaits more thorough future investigation.
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Chapter VII

DO THE SIMPTE CETLS PERFORM IMAGE
DECOMPOSITION?

7.L Introduction

Decomposition-based theories of simple cell processing postulate that each simple cell

computes the coefficient corresponding to its own spatial RFP in an expansion of the

visual image which uses these RFPs as expansion functions. Implicit in the definition of
a coefficient employed by these theories is the notion that each cell signals the relative
presence of its spatial RFP in the image. As indicated earlier in Section 4.1, the concept of
the "relative presence" (Daugman, 1990) of an expansion function is effectively quantified

by the choice of a reconstruction error measure, since the minimisation of this error

measure subject to appropriate constraints uniquely defines a set of expansion coefficients.

In Chapters 4-6, recurrent artificial neural networks (RANNs) were examined which

solve, subject to these constraints, the least squared error (LSE) problem resulting from
the use of the squared reconstruction error (SRE) measure. Minimisation of this measure

is known to produce the best linear unbiassed estimator (BLUE) of the original image

in the presence of zero-mean spherical Gaussian noise.

lVlaclennan (1993b), Pattison (1992) and Pece (1992) have argued that several of
these RANNs could potentially be mappecl onto the neural architecture of the early vi-

sual system. The potential for the early visual implementation of these networks raises

the possibility that the simple cells may have at their disposal the computational ma-

chinery to compute, by relaxation, the coefficients of non-orthogonal image expansions

such as those discussed in Chapter 3. In an investigation of this hypothesis, the proposecl

early visual implementation of each of these SRE-minimising neural networks is examinecl

in Section 7.2 for its consistency with the neuroanatomy of the retino-geniculo-cortical

pathway and with general principles of neural modelling and computation. Those im-
plementations which are, according to these criteria, biologically plausible are examinecl

further in Section 7.3 for consistency with the results of the RFP identification experi-

ments of Jones & Palmer (1987b) and Palmer et al. (1991). A discussion and summary

of the findings is then presented in Section 7.4.

The following treatment does not pretend to provide an exhaustive analysis of the

plausibility of early visual implementations of SRE-minimising networks. However it will
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be arguecl, on the basis of inconsistencies between the predictecl ancl actual results of the

reverse-correlation identification experiments of Jones & Palmer (1987b), that sufficient

doubt exists to cause one to question the motivation behind the promulgation of these

networks as models of early visual processing. In particular, why shoulcl the output of

a simple cell be assumed to signal the lelative presence of its spa,Lial RFP irr the visual

image, r'ather than the spatial inner product of that RFP with the image, in terms o.f

which, the spatial RFP is defined? It is concluded that this decomposition hypothesis

of simple cell processing, for which no apriori justification is evident, can be discounted

as a vestige of the earlier feature-detection hypothesis, which was discussecl briefly in
Section 3.2.

7.2 Biological Implementation of Decomposition Networks

In this section, the early visual implementation of the recurrent neural networks for SRE

or regularised SRE minimisation presented in Chapters 4-6 is investigated. Although

most of these networks were not intended by their authors as models of early visual

processing, this investigation is occasioned by the observations of Nlaclennan (1993b),

Pattison (1992) and Pece (1992) that several of these RANNs might be amenable to early

visual implementation. In orcler to assess the relative biological plausibility of the var-

ious models, it is first necessary to examine some principles of, and neurophysiological

ancl neuroanatomical constraints on, neural and neural network modellingl (Maclen-
nan, 1993b; Shepherd, 1990; Crick & Asanuma, 1986; Sejnowski, 1986), with particular
emphasis on the functional architecture of the feline and primate early visual systems

(Henry, 1991; Taylor, 1990; Thorpe & Imbert, 1989; White, 1989; Sereno, 1988; Lund,

1988; Gilbert, 1983; Poggio, 1980). Since this section combines disparate lines of rea-

soning to establish or refute the biological plausibility or otherwise of the various neulal

networks under consideration, it may appear somewhat disjointed on a first reading; in

order to assist the reader, the principal messages of each sub-section are highlighted,

where appropriate, in bold face type.

7.2.1 Plausibility Considerations

O rthodromic Tr ansmission

Conventional models of neural information processing have been basecl on the ortho-

dromic (feedforward) neural transmission of signals, with passive electrotonic spreacl of

axo-dendritic synaptic input through the dendritic tree to the axon hillock via the soma,

lThe term "neural modelling" is used here to refer to the modelling of the signal- and information-
processing role of individual neurons, as opposed to the overall processing performed by the neural
network of which it may be a part
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and active propagation along the axon to synapses located at each axon terminal. How-

ever cortical microcircuits are known to be considerably more complex than is suggestecl

by this simplified model (see e.g. Shepherd (1990; 1983)). For example, the generation

of an action potential at the axon hillock produces a wave of membrane depolarisation

which spleads antidromically (i.e, backrvards) into the clendritic tree (Shephercl, 1988),

raising the possibility of antidromic as well as olthodromic signal transmission in neulal
circuits, such as would be recluired by the GBP network (Cohen & Sharve-Taylor, 1990)

depicted in Figure 4.4. Nevertheless, the effective retrograde transmission of a signal

actoss a synapse and antidromically along an axon, as is also required by this network,

has yet to be documentecl in the cerebral cortex. The GBP network is therefore not
supported by the available electrophysiological evidence.

Synaptic Model

The "strength" of a synaptic connection between two neurons is dependent on the phys-

ical properties of the neural membrane on either side of the synaptic cleft (which are

in turn affected by the history of activity at that synapse). Nlany artificial neural net-

works employ a crude linear and usually short-term time-invariant model of synaptic

transmission, in which synaptic strength is represented by a weight2. Since this lveight

therefore reflects membrane properties which are localised to the synaptic cleiT, it can-

not be directly signalled to other neurons. The neural network models depicted in
Figures 4.L, 4.3 and 4.4 are clearly implausible on this count.

Neura.l Model

The linear model of synaptic transmission postulates that the pre-synaptic signal is trans-

formed linearly into a post-synaptic trans-membrane current. This current aclds to those

established at nearby synaptic sites to produce a nett current which spreacls electro-

tonically along the dendrite. Currents flowing in converging branches of the dendritic
tree are progressively summed as they flow towards the soma. Bach patch of neural

membrane can to a first approximation be represented by an equivalent linear electrical

circuit (Hodgkin & Huxley, 1952; Shepherd, 1988), according to which, in the absence of
synaptic input, the dendritic membrane shunts some of this current, while the somatic

membrane behaves as a leaky integrator for the remainder reaching the soma. Thus

to the extent to which the linear model of synaptic transmission and the membrane

equivalent electrical circuit can be said to reflect the processing actually performed by

2More realistic models of the dynamics of the post-synaptic membrane, in which the membrane con-
ductance is controlled by synaptic input, lead under certain circumstances to multiplicative or shunting-
inhibitory synaptic transmission (see e.g. Bouzerdoum (1991, Ch. 2) or Nabet & Pinter (1991, Ch. 3)).
However there is evidence to suggest that shunting inhibition may not play a major role in shaping the
responses of visual cortical cells (Douglas et al., 1988; Berman et al., 1991; Dehay et al., 1991).
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the neuron, and to which the transmission losses along the dendrites can be modelled

linearly ancl hence lumped into a modified synaptic weight, the dendro-somatic neural

subsystem may be treated as a leaky summing integrator3. In particular, an artificial
neural model consisting only of a summer is excluded by the above considerations on the

basis of its (theoretically) infinitely short rise-time. Similarly, a neural moclel consisting

only of a summing integrator lacks the leakage term arising from the membrane conduc-

tance required to prevent saturation of the somatic potential. The networks depicted
in Figures 4.1-4.7 are therefore implausible due to their use of summer or
summing integrator neurons.

Activation Function

In spiking neurons such as the simple cells, the somatic membrane potential is convertecl

to a train of impulses, the frequency of which is usually assumed to encode the output
of the dendro-somatic subsystem4. The relationship between the somatic potential -
or more correctly the potential at the axon hillock - and the output firing fr-equency

exhibits a generally monotonic increase in firing rate with input level, with a small amount

of spontaneous activity in the absence of input, and saturation at high firing frequencies.

The observation that firing frequency cannot be negative necessitates, in the case of the

idealised linear neurons employed by the networks in Chapters 4 and 5, the postulation

of cell pairs whose outputs signal the positive and negative halves of the linear activation

function respectively. This scheme could be achieved by cell pairs having identical inputs

but weights of opposite sign, as have been proposed and investigated by Pollen & Ronner

(1981; 1982; 1983). However, the neural activation function employed by the
Bound Constraint Projection (BCP) network presented in Chapter 6 can

be used to impose more realistically the constraints of non-negativity and
saturation exhibited by the firing frequencies of real neurons.

Although the linearity of this activation function between the available extremes may

at first appear to be simply a convenient idealisation, there is Some empirical evidence

in favour of such a model. Bialek et al. (1991) showed that the horizontal velocity of

a randomly-moving visual stimulus could be near-optimally (in the least-scluales sense)

reconsttucted from the spike train of the blowfly Hl neuron using a linear filter, the

impulse response of which resembles a typical synaptic impulse response function. In a

realistic nonlinear model of spike generation, a linear filter was also shown to effect a

reconstruction of the waveform of injected currents used to produce the simulated spike

3A number of other important factors have been ignored here for simplicity, including for example:
the matter of relative synaptic arrival times of, and dendritic delays experienced by, different synaptic
inputs; the presence of voltage-dependent membrane conductances; and the possibility of dendritic action
potentials.

aalthough see the discussion in Section 7.2.3 for possible alternative neural signalling schemes.
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train. Thus

rn this view of computation with spike trains, the combination of
nonlinearities in spike generation and the filter characteristics of
the synapse results in an essentially linear transmission of analog
signals from pre-synaptic cell bodies to post-synaptic dendrites.

(Bialek et al., 1991). The lower and upper activation limits are, however, still necessary

to represent the limits on the sign (Bialek et al., 1991) and maximum magnitude of the
transmittecl signal.

Da]e's Law k Interneurons

An important question in assessing the biological validity of artificial neural network mocl-

els concerns the likelihood of a single nelrron exhibiting both excitatory and inhibitory
influences on different post-synaptic target neurons. A much misunderstoocl (Shephercl,

1988) hypothesis in neurobiology, known as Dale's Law (1935), states that a given neuron
will use the same neurotransmitter at all of its axon terminals. However, since at least

some neurotransmitters have been found to exert excitatory and inhibitory influences

on the post-synaptic membrane at different synapses depending on which receptors are

present, Dale's hypothesis (which has come under fire in recent years) cannot be inter-
preted as meaning that a neuron must either excite all or inhibit all of its post-synaptic
targets (Shepherd, 1988).

Nevertheless, experimental evidence of cortical neurons which excite some
cells and directly (mono-synaptically) inhibit others appears to be lacking
(Crick & Asanuma, 1986) or at least rare. Whilst the concept of clisynaptic pathways

mediated by abundant, locally connected interneurons can still be invoked to satisfy the
need for mixed post-synaptic influences in biological implementations of the recurrent
networks under consideration, Crick & Asanuma (1986) argue against neural connection
schemes in which these interneurons simply change the sign of the signals they transmit.
Additional delays introduced by the use of interneurons in the feedback pathways may
furthermore have a deleterious effect on the stability of each network. In Appendix D.3

for example, it is demonstrated that the sufficient condition for exponential stability de-

rived for the BCP network in Section 6.8 becomes (exponentialty) more difficult to satisfy
as a uniform delay on all lateral feedback connections is introduced and increased. The
latter observation is indicative of the more general need to minimise transmission delays

in the feedback paths of such networks, and suggests thab the use of interneurons to
mediate the mixed post-synaptic influences exerted by neurons in the recur-
rent neural networks under consideration is likely to be strongly constrained
by network stability requirements.



150

Reciprocal Connections

In accordance with the Principle of Sloppy Workmanship (Huggins & Licklider, 1951;

Grzywacz & Yuille, 1990), networks employing reciprocal connections between
neurons should not rely on a high degree of precision in the matching of
either the weights or delays on these connections for their solution accuracy
or stability. The network models by Culhane et al. (1989) and Yan (1991b), t'or

example, allow for the possibility of an imprecise match of leciprocal weights, and the

stability analyses which have been presented for these networks can be reaclily extenclecl

to cover the single-layered networks presented in Chapter 5. The effects of weight errors

on the precision of the solutions achieved by the latter networks, and the potential

of pleconditionings to mitigate these effects, were examined in Chapter 5. Although

symmetric preconditioning was employed for mathematical tractability throughout the

preconditioning analysis, the network could be preconditioned asymmetrically, removing

the requirement for symmetrically weighted reciprocal connections.

Image Decompositrcn

The results of Jones & Palmer (1987a) demonstrate that the GRGF provides a goocl fit
to the spatial RFP of the simple cell6, reflecting the relationship between the contrast of

the visual stimulus and the response of the simple cell. Similarly, clecomposition-based

theories of simple cell processing postulate that the response of a given simple cell signals

the relative presence of the spatial RFP of that cell in the visual stimulus. However,

the discrete-space formulation of the networks presented in Chapters 4-6
corresponds more naturally to the decomposition of the image formed by the
outputs of the photoreceptor array, which constitute the "pixels" of the photo-

tlansduced image. In particular, since these networks clearly could not have clirect

access to the visual image prior to transduction, and since any attempted reconstruction

of that image by a neural array would necessarily be performecl in discrete-space, those

governed by equations in which the image vector i or the image reconstruction Gr ø

appeil explicitly must be viewed as attempting a discrete-space decomposition of the

ph of o -tran s du ced retinal image.

In contrast however, each element of the vector Gi is the result of the discrete-space

equivalent of the continuous-space inner product

î
Jroi@)t'{*'t) 

dæ

scombined with the simple scaling of the outputs of the preconditioned system as described in (5.8b).
6As was discussed in Chapter 2, this claim is dependent on the extent to which the spatial RFP of a

cell having an inseparable spatiotemporal RFP can even be defined. Refer to Sections 2.2.4and 7.3 for
further discussion of this issue.
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between the feedforward spatial weighting functionT (FSWF) gj :R2 --+ R of an iclealisecl

simple cell and the spatiotemporal stimulus i(æ,t). Similarly the elements of the matrix
GG' are the equivalents of the pairwise inner proclucts

lrsi@)st(æ) dæ

between the simple cell FSWFs. Networks governed by equations in which the input ancl

reconstructed images appear only in expressions of the explicit form Gi and (GGt le I")a
lvith e ) 0 can therefore be seen to have clirect continuous-space analogues lvhich ai-e

capable of decomposing the stimulus i using continuous-space expansion functions {g¡},
The linear recurrent network in (5.4), for example, can be reformulated by clefining a

vector g:lR2 --+ IR." whose elements are the FSWFs {g¡,j e [1,"]] of the incliviclual
neurons such that g(*) 1bt61,...,9,(æ)]r. The elements Q¡r of the corresponcling

feedback matrix I € R""" are then given by

Q¡t, : lrsi@b*(æ) ctæ * 6¡*e (7.1)

where ó¡¡ is the Kronecker delta function, and the resultant network is governed by

¿r(t) : -eo(t) + lro@);.(æ,t) 
dæ (7.2)

which, not surprisingly, bears a close resemblance to the original cliscrete-space folmu-
lation in (5.a). The BCP network in Chapter 6 is clearly amenable to continuous-space

reformulation in the same manner. Thus each of the single-layered recurrent net-
works in Chapters 5 and 6 admits a continuous-space formulation, whose
neural implementation in the early visual system would permit the decompo-
sition of the visual stimulus using the contdnuous-spøce simple cell FSWFs.

7.2.2 Corticofugal Feedbach

C or t i co- Ret in aI Fee db ack

Since retinal ganglion cells have spatial RFPs which consist of concentric antagonistic

"centre and surround" subfields, as opposed to the single-subfield RFPs of the photore-

ceptors, the outputs of the photoreceptors in the feline and primate visual systems have

already been substantially modified by the time they are encoded as the outputs of the
retinal ganglion cells, whose axons constitute the optic nerve. The vector i of unmodi-

fied photoreceptor outputs is therefore clearly only available in the retina. Thus if the
expansion function coefficients for the image formed by the photoreceptor outputs are

TThe FSWF of a cell is a weighting function which characterises the nett spatial processing performed
by the feedforward pathway to that cell. If the feedback pathway were absent, the RFP would simply
correspond to the FSWF of the cell. In the presence of feedback however, the RFP of a cell differs in
general from the FSWF. This issue will be examined further in Section 2.3.
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to be given by the simple cells, the implementation of the terms of the form lG'ø - il
in Equations (4.19b), (4.20b) ancl (4.23b) within the visual system - for which they

were not intencled by their respective proponents - would require massive corticofugal

feedback to the r"etina, which has not been observecl. The networks depicted in Fig-
ures 4.6-4.8 respectively are therefore incompatible with the neuroanatomy
of the early visual system.

C oú i co- G en i cttl at e Fe e db ack

Corticofugal feeclback is however known to occur in the primate (Lund, 1988) and feline

visual systems from layer 6 of primary visual cortex to the LGN, and this observation

was usecl by Pece (1992) as the basis for his mapping of the neural network clepicted in

Figure 4.9 onto the early visual system. The neurons in the first layer were identified with
cells in the LGN, and those in the second with unspecified cells in Vl. In contrast with
the previous mapping, the network input was consequently identified lvith the nett feed-

forwarcl input to the LGN, which, being derived from the outputs of retinal ganglion cells

having centre-surround spatial RFPs, represents a significantly transformed version of

the photoreceptor image. Pece (1992) argued that the opposite signs on the feedforward

(geniculo-cortical) and feedback (cortico-geniculate) pathways were consistent with the

observation by Murphy & Sillito (1987) that the "activity of LGN neurons is suppressed

by stimuli which are optimal for excitation of V1 neurons". However this argument is

clifficult to sustain in the light of the model's prediction that an excited cortical neuron

will inhibit some LGN cells but excite otherss. Nevertheless, the geniculo-cortical im-
plementation proposed by Pece (1992) for his two-layered network remains
an at least superffcially attractive explanation for the massive and as yet
somewhat neglected cortico-geniculate projection.

Given that the GRGF model had earlier been successfully fitted by Jones & Palmer

(1987a) to the spatial RFPs of simple cells, the specification of cliscrete-space GRGF

weighting functions on the feedforward geniculo-cortical connections to the unidentifiecl

cortical cells suggests that these cells were intended to represent simple cells. However

since each spatial RFP is by definition measured lelative to the visual input, while each

geniculo-cortical weighting function weights the outputs of the LGN, it remains to rec-

oncile Pece's (1992) specification of the latter with the verification by Jones & Palmer

(1987a) of the GRGF model for the former. Ignoring for the moment the effect of the

cortico-geniculate feedback pathway, so that the predicted spatial RFP of the simple cell

is given simply by its FSWF, a loose reconciliation is suggested by the following argu-

ment. If the LGN cell feedforward spatial weighting functions (FSWFs) are assumed

sMore generally, the feedback influence suggested by this model on the network layer idenbified with
the LGN takes the form of the reconstructed image, and consequently has approximately the same
structure as the feedforward input to these cells from the retinal ganglion cells.



153

for simplicity to be identical up to a translation, the geniculo-cortical spatial weighting
function is related to the simple cell FSWF by a discrete convolution with the LGN
cell FSWF. The spatially low-pass afferent retino-geniculate processing might therefore

be viewed as acting, at least approximately, as a spatial reconstruction filter (Carl-
son, 1986) for the discrete-space geniculo-cortical weighting functions; conversely, the
geniculo-cortical weighting functions would, according to this approximation, be viewed

as sampled, anti-aliased versions of the corresponcling simple cell FSWFs.

This reconstruction filter approximation shoulcl however be treated with some cau-

tion, since the LGN cell FSWFs exhibit relatively poor low-pass behaviour in comparison
lvith the ideal "brick wall" low-pass reconstruction filter, ancl, like the retinal ganglion

cell spatial RFPs, are likely to vary quite considerably in size over the LGN cell popula-
tion. More importantly, however, the above open-loop analysis also ignores the very real

possibility that the cortico-geniculate feedback pathway might alter the simple cell spa-

tial RFP. Thus even if the reconstruction filter approximation were to hold, it remains
to show that the simple cell spatial RFP is described by its corresponding
GRGF FSWF. This question is investigated in Section 7.3.

Since the geniculo-cortical weighting functions are given by the chosen cliscrete-space

expansion functions, the fact that the network proposed by Pece (1992) solves the aug-

rnented normal equations for the decomposition problem is consistent with the obser-

vation that the simple cells significantly outnumber cells in the LGN (i.e. n Þ m).
However, an open question in the verification of the proposed implementation
is the extent to which the inter-areal delay in the feedback path would jeopar-
dise the network stability. Although these connections can be ¡easonably presumecl

to mediate some form of visual feedback system which is stable, the critical question here

is whether or not Lhe proposerl network could be stable in the presence of the associated

inter-areal delays.

7.2.3 Intracortical Feedbaclç

Daugman's Network

Illustrated in Figure 4.2, the corrected version of Daugman's (1988a) network sholvn

in Figure 4.1 computes the difference Gó - GIG'ø] between the spatial inner products
of the expansion functions with the original and reconstructed images, a computation
which could potentially be performed entirely within Vl. The small intra-areal delay

associated with a cortical implementation offers a substantial reduction in feedback delay,

and hence improvement in network stability, over the inter-areal pathways required by
the networks discussed in the previous section. Nevertheless, as a model of biological
visual processing - for which Daugman did not intend it - Daugman's (lg8Sa)
network also predicts an explicit cortical reconstruction of the retinal image,
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for which there is as yet no evidence. Furthermore the regularisation term used

in the formulation of the augmented normal equations necessitated by the estimated

1000:1 ratio of simple cells n to photoreceptors m (Wilson et al., 1990)e cannot be

reaclily accommodated by the (corrected) Daugman architecture.

Pattison's Network

By identifying the nenrons in Pattison's (1992) single-layered network clepictecl in Fig-

ure 5.1 (ol the continuous-space equivalent thereof clescribed by (7.2)) with the simple

cells, the improved stability offered by an intracortical implementation of the feedback

pathway can be exploited without involving an explicit leconstruction of the input image.

The GRGF weights on the feedforward connections to each neulon encapsulate the

nett feedforward spatial processing performed by the retino-geniculo-cortical pathway,

while the reciplocal lateral connections between a given pair of simple cells are weighted

by the negative of the inner product between the GRGFs on the corresponding feedfor-

ward connections. The decay or self-feedback term for each neuïon is simply incleased

by e to implement the necessary regularisation of the normal equations. The grossly

topological organisation and finite spatial support of the receptive fields of primary vi-
sual cortical cells should limit the number and spatial extent of the lateral connections

recluired by the network moclel to well below those recluired for complete lateral intercon-

nection. Although, as explained in Section 5.2, this network requires more connections

in general than those of Culhane et al. (1939), Yan (1991b), Cichocki & Unbehauen

(1992) and Pece (1992), intrastriate connections are likely to be metabolically cheaper

than the inter-areal projections required by these networks. Thus the enhanced stability
of the single-layered network is likely to be realised for little or no aclditional biological
expense.

Evidence for the relatively dense lateral connectivity between simple cells predicted

by Pattison's (1992) single-layered network will be examined shortly. In the mean time,
the linear activation function required by this network will be replaced in the following
section by the more realistic piecewise linear saturating activation function of the BCP
network.

BCP Network

If the linear activation function of the single-layered networks presented in Chapter 5

is replaced by the piecewise linear saturating function depicted in Figure 6.2(b), the

resultant networks can be seen to be special cases of the BCP network of Bouzerdoum

eThe derivation of this estimate from the information provided by Wilson et al. (1990) is explainecl
in Section 3.2.2
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& Pabtison (1993b; 1993a) in which (ignoring preconditioning for the moment)

:Gi
: diag(GG') Ieln
: offdiag(GG')

with e ) 0. The saturation parameter {¿ can be chosen to reflect the input level at

which the output activity of a simple cell saturates, while since the linear portion of
the activation function mttst lie on a line passing through the oligin ancl the neural

firing rate is by definition non-negative, (¿ is ideally zero. Although simple cells exhibit
remarkably little spontaneous activity, this model would recluire a minor correctionl0 if a
finite membrane hyperpolarisation (i.e. negative input) were required to silence a simple
cell, or if the cell could remain silent in the presence of a finite membrane depolarisation

(i.e. positive input).

Rather than requiring idealised linear nodes, whose implementation necessitates the

invocation of pairecl simple cells with weights differing only by a sign change (Pollen &
Ronner, 1981,1982,1983), to solve the unconstrained SRE minimisation problem posed by

image decomposition, an early visual implementation of the BCP network would
use this more realistic nonlinear activation function to solve the decomposi-
tion problem subject to constrainús imposed on the individual neural firing
rates by their respective activation functions. Examples of the solutions attained

by this network under increasingly severe constraints were presented in Figures 6,9-6.11,

and indicated that the effect of a positivity constraint, such as that imposed by pulse-

frequency encoding of neural activation, is surprisingly mildll. As mentioned previousìy,

the effect of uniform delays on the lateral connections of the BCP network incurrecl by

the proposed cortical implementation is to make the sufficient condition for exponential

stability, derived in Section 6,8 and extended in Appendix D.3, exponentially harder to
satisfy, although this condition may not of course be necessary for global convergence,

Hebbian Weight Development

Since the feedforward and feedback terms of the proposed single-layered networks can be

calculated using the continuous-space spatial RFP of each simple cell, these networks,

when modified as detailed in Section 7.2to use spatially continuous FSWFs, are capable

of performing a decomposition of the visual image prior to transduction. The question

of course arises as to how the spatial RFP of each cell, which encapsulates the nett

1Oviz. the subtraction of the vertical offset of the true activation function from the signal transmitted
to all other neurons.

114 more extensive analysis would of course be required before any firm conclusions could be clrawn
from these preliminary observations. In particular, the effects of the choice of GRGFs, images, and
relative numbers of neurons n and inputs rn would need to be investigated.

U
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spatial processing performed by the letino-geniculo-cortical pathway to that cell12, could

be explicitly available at the level of the plimary visual cortex for the computation of
the recluired inner products for the lateral connection weights. Since the early visual

system unclergoes significant developmental changes in the early postnatal period (see

e.g. HonavaL (1990) 1'or a review), the lateral weights are unlikely to be harcl-codecl or

genetically pre-specifiecl, and must thelefore result from some fbrm of self-organisation.

A simple folm of self-organisation is that resulting from the family of Hebbian synap-

tic lealning rules, which are reviewed, along with their biological plausibility, by Brown

et al. (1990). Drawing inspiration from a postulate by Hebb (1949) on the neural basis

of learning, Hebbian learning rules are characterisecl by the adaptation of a synaptic

weight according to an expression resembling the correlation or covariance between the
pre- and post-synaptic activity. The potential for the relationship between the feecl-

forward and feedback weights recluirecl by the netrvork of Pattison (1992) to develop

accorcling to the particular form of Hebbian learning law proposed by Földiák (1989) is

demonstrated in Appendix E. lVhilst the mature network will not necessarily exhibit the

recluired Gabor function weights on the feedforward connections, a number of Hebbian

learning algorithms which develop orientation-sensitive and in some cases Gabor-like spa-

tial RFPs in single-layered networks have been reported elsewhere (von der lVlalsburg,

1973; Linsker, 1986b; Yuille et al., 1989; Rubner & Schulten, 1990; Sanger, 1g90). An
indication that these RFPs are not simply artefacts of the somewhat unrealistic single-

layered and mono-synaptic model of the retino-geniculo-cortical pathway employed by

most competing moclels can be gained from the observation that Linsker's (1986c; 1986b;

1986a) results were obtained using a more realistic series of neural layers. Viewed to-

gether, these results are indicative of the possibility that the necessary feedforward
and feedback weights might develop through Hebbian self-organisation as a
result of exposure to a statistically realistic approximation to the natural
visual environment.

Evidence for Intracortical Feedback

A literal interpretation of the networks of Pattison (1992) and Bouzerdoum & Pattison
(1993a) as models of simple cell processing would require the presence of monosynaptic

excitatory and inhibitory connections between simple cells. A looser interpretation would

admit the possibility that the necessary interactions may also be mediated by di- or

even poly-synaptic pathways involving possibly one or more other cortical layers. In
accordance with this looser interpretation, the following analysis examines eviclence in
favour of any intrastriate feedback pathways connecting these cells.

Based on evidence from various sources (reviewed by 
".g.White 

(1989, p. 141-148)

l2including, at least notionally, the effect of any feedback interactions; an examinationof the predicted
effects of feedback interactions on the spatial RFP is presented in Section 7.3.
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and Douglas & Martin (1991)), generic models of cortical circuitry incorporating massive

intracortical feedback are nowadays commonplace. Specific models of simple cell process-

ing include those postulating mutual inhibition between iso- or closs-oriented simple cells

(or both) in order to sharpen their orientation tuningl3 (see e.g. Ferster & Koch (1987)

or Wörgötter & Koch (1991) for a review). Nevertheless, direct evidence for feeclback

pathways between cells functionally identified as simple cells is hard to come by, ancl the
following overview is therefore necessarily based on a number of inclirect sonrcesl4.

Simple cells in feline Vl receive monosynaptic excitation and clisynaptic inhibition
fi'om cells in the LGN (Toyama et a1.,1974; Ferster & Linclstr'öm, 1983; Martin & \,Vhit-
teridge, 1984). The inhibitory input is presumed to be mediatecl by inhibitory interneu-

tons, most likely the basket or clutch cells (Ferster & Koch, 1987). The geniculo-cortical

afferents providing input to these interneurons appear to be specialised to produce rapicl

post-synaptic activation, and hence to expedite the resultant inhibitory input to exci-

tatory simple cells (Douglas & Martin, 1991), such as the spiny stellate cells in layer 4
(White, 1939). As might be expectecl from this arrangement, a blockacle of intracorti-
cal inhibition using an antagonist of the inhibitory neurotransmitter GABA leads to a

disturbance of the receptive field properties of the simple cells (Sillito, 1975; Tsumoto
et al., 1979; Sillito et al., 1980). However, the profound nature of this disturbance, in-
cluding a loss or reduction of the distinction between on- and off-excitatory subfielcls, of
clirection sensitivity, and in some cases of orientation sensitivity (Sillito, 1975; Tsumoto
et al., 1979; Sillito et al., 1980) is inconsistent with the simple withdrawal of inhibitory
input to each subfield, since the excitatory input alone could for example retain both
subfield segregation and orientation sensitivity. In particular, these observations suggest

the involvement of input from cells whose inputs are themselves either directly or incli-

rectly affected by the local intracortical blockade of inhibition, as proposecl for example
by Ferster & Koch (1987) in connection with the effects on orientation selectivity.

Having demonstrated the presence of spatially opponent inhibitory input to simple

cells in feline V1, Ferster (1988) concluded that

. . . the most obvious candidates for the pre-synaptic inhibitory neurons ale

other simple cells.

in accordance with which Palmer & Davis (19S1b) had earlier identified a number of

adjacent simple cells having overlapping receptive fields whose corresponding subfields

were of opposite excitatory type. A less direct feedback pathway between cells in layer 4,

13This topic is addressed briefly in Section 7.4.
laThis should not however be interpreted as an indication that the required pathways are either weak

or rare - the predictive power of the model by Wörgötter & Koch (1991) involving feedback between
simple cells argues against this conclusion - but rather as evidence of both the lack of experiments
designed to investigate this specific question, and the difficulty of piecing together a coherent picture
from disparate sources such as functional, morphological and anatomical studies of the striate cortex.
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in which the simple cells predominate, is via cells in layer 6 whose axons contribute to the

cortico-geniculate projection, and collaterals of which procluce monosynaptic excitation

and disynaptic inhibition of cells in layer' 4 (McGuire et al., 1984; Ferster & Linclström,

1985). However despite the existence of feedforward pathways from layer 4 to layer'6 via

inbervening layers (see e.g. Douglas & Martin (1991)), the presence of direct geniculate

input to at least some cells in layer 6 (lVlcGuire et al., 1984; Ferster & Lindström, 1935)

makes it difficult to establish this as a purely tèedback pathway as required by the

proposecl neural network models.

The most direct evidence obtained so far for feedback interactions between orientation-

sensitive cells in the same cortical layer comes from experiments involving the cross-

correlation of simultaneous electropirysiological recorclings from pairs of cells in feline

primary visual cortex. Using cross-correlation techniclues, Hata et al. (1988) identifiect

unidirectional, short latency (about 1.4ms), probably monosynaptic inhibition between

5 of 82 pairs of cells in layer 4, while Ts'o et al. (1986) reported uniclirectional lateral ex-

citation between cells in layers 2-3 showing similar orientation preference. The strength

of the interaction was found in the latter case to vary approximately with the degree of

receptive field overlap, as preclicted broadly by the proposed single-layerecl decomposi-

tion networks, although excitation was also found between cell pairs having apparently

non-overlapping receptive fields. However, whilst in the former study the recorcled cells

were in layer 4, in which simple cells predominate, neither group functionally iclenti-

fied the recorded cells as simple cells. Furthermore the lack of reciprocity in the lateral

interactions inferrecl from these experiments is inconsistent with the proposed network

models, although mutual inhibition was observed by Toyama et al. (1981) between cells

in layer 4 exhibiting a single subfieldl5. The relative infrequency of unequivocal in-
stances of lateral connectivity (reciprocal or otherwise) between simple cells

does little to dispel such doubts about the true cortical plausibility of these
network models, which in general require dense lateral interconnections.

lúe¿rra./ Iteration

The success of any relaxation algorithm relies on the propagation of the state vector with
sufficient accuracy to avoid a catastrophic accumulation of errors, such as may occur in

the presence of floating-point round-off. In the present investigation of the biological

implementation of SRE minimisation networks, it has so far been assumecl that each

node in the network should be identified with a real neuron. However Marr (1982) and,

more recently, Maclennan (1993a) have argued that if the mean firing frequency over a

given interval is taken to signal the real-valued neural output, then a neural relaxation

network would take an infeasibly long time to perform a small number of iterations with

l5The investigators chose not to class these cells as simple since the lack of additional subfields hindered
conventional distinctions between the functional classes.
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even a modest degree of precision. In criticising the neural implementation proposed by

Pattison (1992) for the unregularised (e : 0) network in Chapter 5, Maclennan (1993a)

argued in particular that the Weyl-Heisenberg ("Gabor") Uncertainty Principle in the

temporal ancl temporal-frequency domains places a fundamental lower limit on the time
taken to signal a coefficient to a specified accuracy using pulse-frequency cocling. A
review of the temporal constraints on this and related neural signalling mechanisms, and

their implications for the feasibility of the neural implementation of relaxation algorithms

in early vision has been presented by Thorpe & Imbert (1989).

However, these arguments and associated estimates of relaxation times are preclicatecl

on the unwarranted assumption that a neuron receiving the output pulse train must

constantly re-acquire its estimate of the sending frequency. Uncler this assumption each

acquisition, which delimits a notional "iteration" of the corresponding neural relaxation

network (Thorpe & Imbert, 1989), starts ab i,nitio ancl is therefore subject to the above

trade-off between acquisition time and accuracy. In contradiction of this assumption,

the duration of the impulse response function of the linear filter used by Bialek et al.

(1991) to successfully clecocle a neural spike train in the visual system of the fly, which

may be taken as the time required for acquisition of the encoded signal, was of the

order of only 5-10 times the minimum interspike interval. According to Marr (19S2),

only 0.5-1 clecimal cligits of precision could be signalled in this interval, in apparent

contrast with estimates by Bialek et al. (1991) of average information rates in insect

sensory systems approaching 3 bits per spike, which would permit the transmission of

5-9 decimal digits (15-30 bits) in this same interval. This conflict is in part16 resolved by

the observation that once the signal has been acquired, it is thereafter only necessary to
track it. Tracking allows the receiver of the spike train to maintain a relatively accurate

estimate of the transmitted signal whilst requiring a considerably lower information rate

to update this estimate than to continually re-acquire the signal. This tracking process

would be facilitated by the relatively low temporal rate of change of the output imposed

by the low-pass filtering effect of the proposed relaxation networks on the input.

The removal of the assumed need to constantly re-acquire the signal conveyed by the

neural spike train renders impotent the objections raised by Marr (1982) and Maclennan
(1993a) to the neural implementation of relaxation algorithms. In particular, the impo-

sition of temporal constraints on the relaxation process does not entail the severe trade-

off with the accuracy of transmission of the neural state vector alleged by iVlaclennan

(1993a). Since similar assumptions concerning temporal constraints on neural signalling

mechanisms underly many of the objections raised by Thorpe & Imbert (1989) to the

16The relatively high informationrates reported by Bialek et al. (1991) probably also indicate the use
of other parameters of the spike train, such as the relative timing of the spikes, to convey information
in addition to that conveyed by the spiking frequency.
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use of relaxation in early visual processing, these may be similarly discountedrT. These
considerations therefore reopen the possibility that relaxation algorithms may
indeed be implemented in the neural wetware of the early visual system. We

note in passing that Sejnowski (1986, p, 378-80) r-eached a similar conclusion concerning

the plausibility of the neural implementation of stochastic relaxation algorithms.

Dendritic Neúworks

The relaxation algorithm in (5.1) proposed by Pattison (1992) for unregularised non-

orthogonal image decomposition was developed inctependently by Vlaclennan (1993b).

Whereas the former proposed a neural implementation of this algorithm, consisting of

classical neurons communicating via axo-clendritically tr-ansmitted impulse trains, the

latter strggested its implementation in a densely connected dendritic networl¡ in which

electrotonic communications are mediated by dendro-clendritic synapses. The principal

argument presented by Maclennan (1993b) in favour of a dendritic implementation was

that the use of electrotonic signalling would overcome the alleged timing problems as-

sociated with the acquisitionls of signals transmitted using axonal spike trains. Since

variables such as the displacement of the membrane potential from its resting value

may be either positive or negative, the use of electrotonic communication furthermore

suggests the possibility of avoiding the positivity constraint imposecl on the coefficients

of the corresponding neural implementation of the network - and hence on the SRE

minimisati by the presumed pulse-frequency signalling mechanism. According to

decomposition-based theories of simple cell processing, however, each of the coefficients

producecl by the relaxation process must ultimately be translatecl into the output neural

spike train of the correspgnding simple cell. The positivity constraints, which are con-

sequently inevitable under the presumed method of output signalling, should therefore

be imposed on the SRE minimisation rather than on the coefficients of an unconstrained

optimisation performed using electrotonic signalling.

Although the general feasibility of dendritic computation was discussed at length by

Maclennan (1993b), neither the functional classification of the neurons whose dendrites

l7Even assuming an ideal analog signalling mechanism however, the demonstration of short-latency
neural and behavioural responses which are dependent on the classification or recognition of the visual
stimulus seems to place strong constraints on the implementation of iterative algorithms in early visual
processing (Thorpe & Imbert, 1989), since the initiation of these responses must be based on short-
latency, crude early reponses of such algorithms. The possibility that a given classification or recognition,
or the confidence attached thereto, might be dynamically refined as more accurate information becomes
available as a result of subsequent "iteration" is not, however, precluded by such observations. The
exponential convergence of the proposed networks with neural time constants of the order of 20ms
(Stratford et al., 1989), in comparison with initial latencies in excess of 100ms (Thorpe & Imbert, 1989),
may be fast enough to render such refinements relatively transparent to the experimental techniques
used in these experiments.

18As was noted in the previous section however, the important distinction between signal acquisition
and tracking was not noted by Maclennan (1993b).
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might contribute to this network, nor the specific biophysical parameters to be identified
with its state variables, were specifically identified. In lieu of the former, the dendrites of
the proposed network are henceforth tentatively assumed to belong to the simple cells.

Nevertheless, a full assessment of the biological plausibility of the proposed
dendritic network, and the extension of this implementation to incorporate
the regularisation term used in (5.3), await a more detailed specification of
the networkts neuroanatomical and biophysical substrate.

7.2.4 Summary

Hypothetical early visual implementations of the networks proposeci in Chapters 4-6 f'or

the decomposition of the visual image using non-orthogonal expansion functions have

been considered. Some networks were found to be clearly implausible, requiring the

communication of synaptic weights and, in the case of the GBP network, bidirectional
synaptic and axonal signal transmission. Of the remainder, the network implementation
proposed by Pece (1992) as a possible explanation for the prominent corticofugal feed-

back projection was found to be at odds with one of the electrophysiological observations

it was intended to explain. Some (albeit mostly indirect) evidence was found in support

of the direct or indirect interconnection of simple cells, as required by the linear net-

works presented in Chapter 5 and the BCP network of Bouzerdoum & Pattison (1993b).

It was furthermore argued that the nonlinear activation function of the BCP network

may represent a reasonably accurate characterisation of the nett processing performed

by the cascaded mechanisms of spike generation and synaptic transmission. The BCP
network is therefore the most plausible candidate among those networks proposed for

neural implementation in the primary visual cortex. On the other hand, with the simple

acldition of the necessary regularisation term the dendriúic implementation suggested by

Vlaclennan (1993b) for the linear unregularised network in Chapter 5, proposed inde-

pendently by Maclennan (1993b) and Pattison (1992), is potentially the most plausible

implementation of the linear regularised network also presented in Chapter 5. Never-

theless, large residual uncertainties concerning the existence of the appropriate neural

or dendritic connectivity, the suitability of the neural models employed, and the modes

of interneural signalling suggest that caution should be exercised in attempting to draw

firm conclusions from these tentative findings.

Amongst the networks amenable to more plausible neural or dendritic implementa-

tions, different networks were found to effect the decomposition of the "image" formed

at different stages of the visual pathway, ranging from the raw image prior to optical
blurring, to the output of the retinal ganglion cells. However, the attempts by Pattison

(1992), Pece (1992) and Maclennan (1993b) to relate these networks to the early visual

system were only necessitated in the first place by their adherence to the decomposition
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hypothesis of simple cell processing, according to which the expansion functions used

in the decomposition are the spatial RFPs of the simple cells, which are by definition
referred to the raw visual image. However attractive one might find the neural imple-
mentation of networks, such as that proposed by Pece (1992), which use the simple cell

spatial RFP to decompose anything othel than the raw image, these networks therefore

fail to satisfv their very raison d'être as models of early visual processing.

7.3 Predicted and Identified Spatiotemporal RFPs

7.3.1 Introduction

Decomposition-based models of simple cell processing postulate that each simple cell
signals the coefficient of its own spatial RFP in an expansion of the visual image which

uses these RFPs as expansion functions. However, in Chapter 3 it was shown that except

in cases where the simple cell spatial RFPs are mutually orthogonal or collectively f'orm

a tight frame, the computation of the required coefficients cannot be achieved using

the spatial inner product of the image with the RFPs, in terms of which each spatial
RFP is defined. A potential resolution of this dilemma is suggested by the analysis

in the previotts section, where it was argued that the simple cells could be tentatively
identified with the output nodes of one of several different recurrent neural networks,
each of which is capable of finding the minimum SRE (MSRB) expansion coefficients

ancl amenable to implementation in the wetware of the early visual system. Among the

many questions to be answered in assessing the consistency of this solution with the

available electrophysiological evidence is the following:

Can the spatial RFPs identified by Jones & Palmer (1987b) be taken to be the

expansion functions used by an early visual implementation of the proposed

SRE minimisation networks?

or conversely

Would the reverse-correlation identiflcation technique of Jones & Palmer

(1987b) correctly identify the expansion functions used by these networks?

The latter statement of this question reflects the approach to be pursued in this sec-

tion to the assessment of the electrophysiological plausibility of the proposed relaxation
networks.

In this section it is shown that contrary to the purely spatial description of the simple

cells assumed by the very theories which give rise to their formulation, the postulated

relaxation networks would, if implemented in the early visual system, produce spatiotem-

poralsimple cell behaviour. Cells in the proposed networks are furthermore shown to have
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spatiotemporally inseparable RFPs, which strictly speakìng renders the concept of a spa-

tial RFP inapplicable. Thus if these predictecl spatiotemporal RFPs are to be reconciled

with the "spatial RFPs" identified and modellecl by Jones & Palmer (1987b), the results

of the reverse-correlation identification techniclues usecl by Jones & Palmer (1987b) and

Palmer et al. (1991) must therefore be interpreted in the light of the pledictions of the

model.

In Appendix B it was shown that provided the stimuli ancl the output time bins ap-

proximate spatiotemporal and temporal impulses respectively, reverse-colrelation analy-

sis iclentifies the simple cell spatiotemporal RFP to within a spatial DC term. Although
this analysis assumed the special case of spatiotemporally separable RFPs, it is leaclily

extended to cover the generic form of the simple cell spatiotemporal RFP preclictecl by

the proposed relaxation networks. The effects of the finite-sized rectangular spatiotem-

poral stimuli and temporal bins used in these experiments on the estimation of the true
spatiotemporal RFP are examinecl in Section 7.3.3. To permit a preliminary compalison

of the identified "spatial RFP' with the preclicted spatiotemporal RFP in the mean time
however, these identification experiments are naively assumed in Section 7.3.2 to yield

temporal slices through the spatiotemporal RFP of each recorded simple cell at the end

of each post-stimulus time bin. Each such section is henceforth referred to as the instan-
taneous spatial RFP of the cell at the corresponding sampling instant. The unwanted

spatial DC term is ignored in order to simplify the ensuing discussion ancl thereby focus

attention on the critical issues.

7.3.2 Theoretical RFPs

In this section, analytic expressions are derived for the spatiotemporal RFPs of the out-

put neurons of the one- and two-layered recurrent neural networks in Section 4.4 ancl

Chapter 5 respectively, whose implementations in the early visual system wele deemecl

in Section 7.2 to be, broadly speaking, biologically plausible. Notwithstanding the clif-

ferences discussed in Section 7.2, the dendritic implementation proposed by Maclennan

(1993b) for the networks in Chapter 5 is, under the idealisations inherent in a purely linear

analog model, formally equivalent to the neural implementation proposed by Pattison
(1992), and is therefore not addressed separately. Furthemore, since analytic expres-

sions cannot be obtained for RFPs in the BCP network, and the domain of validity of
simulation studies would be restricted to the particular distributions of spatial GRGF

parameters used in the simulations, analysis is restricted to the case of neurons hav-

ing linear activation functions. For generic networks of both the one- and two-layerecl

types, the instantaneous spatial component of each predicted spatiotemporal RFP is

then compared for all post-stimulus times with the expansion function whose coefÊcient

is purportedly signalled by the corresponding neuron. Speculations concerning the BCP
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network are based on the approximate analogy with the corresponding linear network.

One-Layered Networks

In Section 7 .2, the output neurons of the single-layered linear recurrent neural networks
presentecl in Chapter 5 were tentatively identified with the simple cells. 'Iheir FSWFs,
given by the corresponding rows of the ma,trix G or elements g¡ of the function g¡, were

accorclingly taken to lepresent lineal approximations to the nett spatial processing per-

formed by the afferent retino-geniculo-cortical pathway. The response a(t) of the linear
lecurrent netlvork ]n (7.2) to a spatiotemporal stimulus s(æ,t) is given by

a(t) : l' *"-ov-Ò lro@)r(*,r) rtæ dr (7.3)

Defining the combined spatiotemporal RFP to:lR2 x R --+ IR' to be the vector whose

elements are the spatiotemporal RFPs to¡:lR2xR --+ R. of the individual simple cellsle,

comparison of (7.3) with (2.2) reveals that

u(æ,t) : ¿-atg(æ) (7.4)

Assuming for simplicity that Q is diagonalisable with discrete eigenvalues ); € R (since

Ç is symmetric) and corresponding eigenvectors ei, the spatiotemporal RFP can be

expressed as 
n

u(æ,t): ! e-r'i . {[.¡"ilg@)} (2.5)
i=l

revealing that the RFP of any given cell is a sum of spatiotemporally separable terms,
a property it shares for example with the linear quadrature model of motion processing

proposed by Watson & Ahumada (1933). The interesting spatiotemporal properties

of the lineal quadrature model, which were outlined in Section 2.2.4, engender initial
confidence in the possibility that the spatiotemporal RFP of a real simple cell might be

generated by the proposed single-layered network.

The spatial component of each term in the expansion in (7.5) consists of a linear
combination of the FSWFs g¡ of. each neuron, while the temporal component is a simple

exponential decay2o. Thus whilst the instantaneous spatial RFP of the jth cell at time
ú : 0 is given simply by the 7th expansion function gj, as required, this spatial RFP
changes form as the various terms in (7.5) decay at different rates. Furthermore, since

leThe combined RFP ro is closely related to the spatiotemporal impulse response function of the
network, the only difference being a change of sign of the spatial variable consistent with the spatial
correlation (as opposed to convolution) used in (2.3).

20In the case of repeated eigenvalues, temporal components of the form ¡k"-)',t, where k € [0,p¿] and
p¿ is the multiplicity of À¡, are also introduced.
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the end of the first 50ms post-stimulus time bin2r - from which Jones & Palmer (1987b)

obtained the spatial RFPs to which the GRGF model was successfully fitted - occurrecl

50ms after stimulus presentation, a period which is long compared with estimated neural

titne constants of the order of 20ms (Stratford et al., 1989), the instantaneous spatial

RFP iclentifiecl by Jones & Palmer (1987b) could be expected to differ significantly flom
the predictecl instantaneous RFP at ú : 0.

Nevertheless, if the chosen expansion functions are linearly dependent2z, the possi-

bility arises that at one or more aclclitional post-stimulus times ú ) 0, the expansion

functions might be re-synthesised tì'om non-trivial (t.e. s-a' * I") linear combinations

of the others to give the requirecl instantaneous spatial RFPs. However, the aclditional

constraint that one such time must coincide at least approximately with the encl of the

time bin used by Jones & Palmer (1987b) makes this prospect similarly unattractive.

Two-Layered Networks

The simple cell spatiotemporal RFPs predicted by the two-layered networks in Section 4.4

are derived in the same way as those for the single-layered networks. The requisite

analysis is outlined below for the network proposed by Pece (1992), which is governed by

@.26); extension of this analysis to the network by Yan (1991b) is trivial. In accolclance

with Pece's (1992) mapping of this network onto the early visual system, as discussecl in
Section 7.2, (4.26) can be reformulated in continuous space and using matlix notation
to yield

1.",, o"-, 

] l: I 
: -lrT, -i:" ] l: l. l,l .i;, f,,*,, n*

l0i* r"I^

where ,(*) L 
["r(æ), ...,r.(r)]' is the vector of LGN cell FSIVFs r¿:lR2 -; IR, 0,,- is

the n xn-¿ zero matrix, and 0, is the n-dimensional zero vector. The remaining notation

was described earlier in connection with (4.26), with the exception of the gain factor
k" € R+, which has been added to make apparent the extension of this analysis to the

network of Yan (1991b). The resultant spatiotemporal RFP ø(æ, ú) is then given by

u(æ,t):!"-"| :".-] (7.6)rc 
L t(') -l

21Sinc" the approximately 50ms latency of simple cell response to retinal stimulation is not explicitly
modelled in the proposed networks, this latency is henceforth subtracted from all post-stimulus time
measurements reported by Jones & Palmer (1987b) in order to facilitate comparisons with the temporal
predictions of these networks. Accordingly, the numbering of the post-stimulus time bins has been
adjusted such that the "first" bin from the point of view of bhese networks is that spanning the practical
post-stimulus interval 50-100ms.

22as would for example be the case if these functions form a frame for the set of square-integrable
real-valued functions.
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where
1 -1.çîo 1d

Inps
f;c' *t^

rvith the fir'st n elements of to giving the simple cell spatiotemporal RFPs. By analogy

with the case of the onc laycrccl nctlvork, the instantaneous spatial RFP predictecl for
each simple cell by the two-layered moclel is therefore a time-varying linear combination
of the LGN cell FSWFs. The coefficients of this linear combination are given by the
colresponcling row of the instantaneous geniculo-cortical weight matlix M(ú) € R'"-,
defined as the top light-h and nxm block of the matrix e-Pt. Consistent with observations

indicating a latency of simple cell response to retinal stimulation (see e.g. Ikeda & Wright
(1975b); Hamilton et al. (1989)), the instantaneous simple cell spatial RFPs predicted

by the generic two-layered network are zero at time I : 0.

Implicit in Pece's (1992) choice of a cliscrete-space GRGF for the geniculo-cortical

weight vector of each simple cell - given for the yth cell by the jth row of the geniculo-

cortical weight matlix G - is the assumption that this weight vector is related to the cell's
spatial RFP 9;(t) bV anti-aliased spatial sampling. It was argued in Section 7.2.2 that
if the time dependence of the simple cell spatial RFP could be ignored, this assumption

coulcl be reconciled with the observations of Jones & Palmer (1987b; 1987a) provided

that the LGN cell FSWFs collectively approximated a spatial reconstruction filter, such

that

s(æ) x Gr(æ) (7.7)

However, the hypothesised early visual implementation of the proposed two-layered net-

wot'k would predict that both the instantaneous spatial RFP and the instantaneous
geniculo-cortical weighting function of each simple cell should be time-varying, so that
their- respective temporal behaviours cannot be ignored. The spatial-domain identifica-
tion techniques used by Jones & Palmer (1987b; 1987a) to test the GRGF model of the

simple cell spatial RFP have been assumed, for the present purposes, to identify the

instantaneous spatial RFP of the simple cell (at the end of the corresponding time bin).
In order to reconcile Pece's (1992) specification of the geniculo-cortical weight ma,trix

with the identified simple ceII instantaneous spatial RFPs, conclitions must therefore be

established under which the instantaneous geniculo-cortical weight matrix 11(/) satisfies

s(æ): M(t)r(æ) (7 8)

at one or more post-stimulus times ú.

In general, the solution of (7.8) for the required instantaneous geniculo-cortical weight

matrix would in turn require the identification of the FS\ /F of each contributing cell in
the LGN. However, this requirement is obviated if the instantaneously measured simple

cell RFP can be assumed, at least approximately, to be related to the instantaneous
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geniculo-cortical spatial weighting function by anti-aliased spatial sampling. Notwith-
standing the objections to this apploximation presented in Section 7.2.2, this relation-
ship simplifies the necessaÌy reconcilitation, since a comparison of Equations (7.7) and

(7,8) reveals that it then only remains to establish conditions under which luI(t) x G for

some time or times ú. An examination of (7.6) and the matrix P reveals that a sufficient

conclition for eqr.rality to hold is that

e-Pt x -P (7 9)

with a positive constant of proportionality. The ease or otherwise with which this concli-

tion can be satisfied will depend on the particular choice of the basis functions {g¡} via a
dependence on the matrix G. In general however, the matrix P is positive definite (Yan,

1991b) and approximately anti-symmetric (provided f; = f ); if it is also diagonalis-

able with distinct eigenvalues, €-P'is characterised by exponentially dampecl oscillatory

modes. Thus in order to produce the required negative definite result, these mocles must

all be negative at time ú, a condition which may prove difficult to satisfy. This clifficulty
would once again be compoundecl by the additional constraint that one such time must

coincide at least approximately with the end of the time bin used by Jones & Palmer

(1e87b).

Sttmmary and Discussion

The weights in the biologically plausible networks proposed by Maclennan (1993b),

Pattison (1992) and Pece (1992) were chosen according to the GRGF moclel of the simple

cell spatial RFP. However, this model was validated by Jones & Palmer (1987b; 1987a)

using reverse-correlation identification techniques which yield an approximation to the

instanta'neous spatial RFP of each simple cell at the end of the corresponding time bin.

For those cells in each network hypothetically identified with the simple cells, conditions

have therefore been examined under which the instantaneous spatial RFP is given by the

chosen GRGF expansion functions.

It has been shown that the simple cell instantaneous spatial RFP predicted by the

generic one-layered network for the instant ú : 0 is the corresponding expansion function.
However it was argued that the instantaneous spatial RFP obtained by Jones & Palmer

(1987b) at the end of the first post-stimulus time bin, which occurs approximately 1

neural time constant later, is likely to differ significantly from that which would be

measured at ú : 0. It was furthermore concluded that for both the one- and two-layerecl

networks, the simple cell instantaneous spatial RFPs at the end of the first time bin are

unlikely to coincide with the chosen expansion functions. It therefore appears improbable

that the instantaneous spatial RFPs identified experimentally by Jones & Palmer (1987b)

result from an early visual implementation of either generic network using these functions

as expansion functions.
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To prove the negative case however -viz. that the instantaneous spatial RFPs iden-

tifiecl experimentally by Jones & Palmer (1987b) do not result from an early visual

implementation of either generic network using these functions as expansion functions -
rvould in general require the exhaustive elimination of all alternatives. Efforts to this encl

are hampered by the unavailability of important information such as a cletailed knowledge

of the population clistribution of simple cell RFP palameters, The above conclusions arc

sufficient, however, to suggest the need for a fundamental re-evaluation of the decompo-

sition hypothesis of simple cell processing, a re-evaluation of its very motivation lvhich

should be undertaken before any attempt is made to disprove it through exhaustive ex-

perimentation. This matter will be discussed further in subsequent sections following an

attempt to eliminate non-ideal aspects of the reverse correlation identification technique

as potential sources of the noted discrepancies.

7.3.3 Practical Identifrcation

The arguments presented in the previous section are based on a comparison between

the spatiotemporal RFPs preclicted theoretically by the relaxation networks proposed

in Chapter 5, and those actually identified in real simple cells by the experiments of
Jones & Palmer (1987b) and Palmer et al. (1991). It remains to address the possibility
that approximations inherent in the reverse-correlation identification technique used by

these investigators can account for the expected discrepancies between the predicted and

identified RFPs.

An analysis of the reverse-correlation technique is presented in Appendix B for the

ideal case where the stimuli can be assumed to approximate spatiotemporal impulses and

the output of a cell is given by (B.1). Under the additional assumptions that the third
and higher odd-order terms of the Taylor series expansion of the nonlinear function f are

negligible, which is clearly true for the proposed li,near relaxation networks, and that the

DC offset of the spatial component of the spatiotemporally separable RFP is negligible,

it was concluclecl that the spatiotemporal RFP estimate obtained by this technique would

be the icleal RFP. This conch.rsion is furthermore unaffected by a simpleextension of the

analysis to the present case, in which each of the spatiotemporal RFPs in Equations (7.4)

and (7.6) is given by a sum of spatiotemporally separable terms. As indicated by (8.6),
the effect of a non-zero DC offset in the spatial component of the ideal RFP is simply to
introduce an additional time-varying DC offset in the identified spatial component.

However the true stimuli used by Jones & Palmer (19S7b) and Palmer et al, (1991)

are rather poor approximations to spatiotemporal impulses. This is especially true in the

temporal domain, where the stimulus duration of 50ms is large relative to reported time
constants of the order of 20ms for cortical pyramidal cells (Stratford et al., 1989), ancl to
a lesser extent in the spatial domain, where the stimulus elongation in the direction of
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subfield elongation is up to *Å of the width of the receptive field. A revision of the analysis

in Appendix B using rectangular stimuli of constant size and assuming a strictly lineal
system, such as the proposed relaxation network, reveals that the effect of these non-

ideal stimuli on the lesult of the reverse correlation iclentification technique is to filter.

the true RFP (plus parasitic terms) with a rectangular filter given by the stimulus23.

The temporal binning proceclnre used in the estimation of the neural firing rate results

in additional temporal smoothing, with the corresponding smoothing filtel having a
rectangular ("box-car") impulse response function whose width is that of the tempolal
bins. To reduce the computational effort, the identification procedure calculates, or in
effect samples, the estimate of the smoothed spatiotemporal RFP in the tempolal clomain

at the ends of these bins, ancl in the spatial domain at the centres of the clivisions of the

spatial stimulus grid.

In a simplified analysis of the application of the reverse corlelation technique used by

Jones & Palmer (1987b) to the un-regularised network presented in Chapter 5, Pattison

(1992, App. B) approximated the temporal smoothing effect of a rectangular stimulus

as a temporal integration. Since the RFP is simply the (spatially reversecl) spatiotem-

poral impulse response function of the neuron, its integration yielded the corresponding

temporal step response function. This step response approximation is valid for times ú

not exceeding the cluration of the stimulus pulse, so that Pattison's (1992) analysis is

valid only over this interval; 1'or times exceeding this interval, the neural response - ancl

hence spatial RFP - should be derived using the true rectangular stimulus insteacl of the

temporal step function approximation. The step response was then temporally smoothecl

to account for the 50ms time bin used by Jones & Palmer (1987b), ancl sampled at the

end of the first post-stimulus time bin to obtain an estimate of the spatial RFP24. Since

the transient components of the step response had time constants of the order of half the

width of the time-bin integration period their effect on the predicted spatial RFP was

assumed to be largely overshadowed by the steady state component, which is given by

the corresponding row of the expression

Q's@) (7.10)

where I € R"*" is definecl in (7.1). However, this steady-state assumption was based on

the neural time constants, whose inverses are given by the diagonal entries of the matrix

Q. The time constants of the transient components of the network step ïesponse are in
fact given by the inverse eigenvalues of Q, which may differ from the neural time constants

23'Ihe technique used by Jones & Palmer (1987b) and Palmer et al. (1991) differs slightly from the
ideal reverse correlation technique, described for example by Victor (1992) - for which the resultant
smoothing filter is given by the autocorrelation of the stimulus - in that the response to the actual stim-
ulus is in effect correlated with the idealised (impulsive) stimulus rather than with the actual stimulus.

2aIn practice, smoothing and sampling were effected simultaneously through an integration of the step
response over the first post-stimulus time-bin.
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by orders of magnitude, so that the steady-state assumption may in some cases involve
a rather gross approximation. The unwanted additional time-varying spatial DC term
introcluced by the reverse-correlation technique was not includecl in Pattison's (1g92)
analysis, and is neglectecl here simply because it makes no useful contribution to the
lcsultant spatial RIP estimate2s. PaLtison (1992) concluclecl that lncler the assumption
that the neural output is given by the instantaneous firing frequency and that this is
(unrealistically) permitted to be negative, the relaxed spatial RFP of each neuron wonlcl
beal little lesemblance to its FSWF g¡(*). An interesting exception to this conclusion is
provided by the case where the expansion functions {g., } form a tight frame. In this case

-l/.r+ l\rg¿(æ)g¡(æ) 
dæ)u@) : À-' g¡(æ) vi,*

giving that

Q-'s(*): Às(æ) Yæ

and hence the relaxed spatial RFP of each cell is linearly relatecl to the corresponcling
expansion function' However in this case, the relaxation process is nnneccessary in the
first place' Whilst the spatial smoothing resulting from the use of rectangular stimuli
was not taken into account in Pattison's analysis, such smoothing is not of the requirecl
form to undo the premultiplication by the matrix O-' ir, (2.10).

The additional temporal resolution achieved by Palmer et al. (1gg1) through the
use of lms time bins to minimise the temporal smoothing effect of binning permitted
them to obtain estimates of simple cell spatiotemporal RFPs, although these estimates
were still subject to the temporal smoothing occasioned by the use of rectangular stimuli.
Assuming the residual effect of temporal binning to be negligible in comparison with that
of the rectangular stimulus, and ignoring the unwanted effects of spatial smoothing and
DC offset, the spatiotemporal RFP estimate ti1 predictecl by the proposed single-layerecl
networks over the 50ms stimulus presentation interval is

ta{æ,t) È

ñ
O-' (r^ - "-ot) o@)

Q-'g(*)

the instantaneous spatial component of which, since the exponential term has time con-
stants of the order of 20ms, approximates the RFP presentecl in (7.10) for 20ms < ¿ <
50ms" Although the accuracy of this approximation is once again largely clependent on
the ratio of the inverse of the smallest eigenvalue of Q to the 20ms neural time constants,
it is assumed to be sufficient for the present qualitative purposes. Barring the possibility
of linearly dependent expansion functions, this spatiotemporal RFP is inconsistent with
the hypothesis that the neurons in the proposed network would at any time during this

0(i(50ms
20ms(l{50ms

2sAlthough it may of course significantly affect the best-fit GRGF' parameters obtainecl by Jones &
Palmer (1987a).
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interval exhibit instantaneous spatial RFPs resembling the expansion functions given by
their FSWFs. A similar analysis for the generic two-layered network yields the vector
{u2 of instantaneous spatial RFPs

{a2(æ,t) P-1 (,,**

r(æ)

0(ú(50ms_ 
"-rr)

l

0,,

r(*)
P-r

Tc

on
20ms(ú(50ms

of which the first n elements belong to the simple cells. Since the top right-hand block
of the matrix P-' differs in general from G, the model simple cells again fail to exhibit
the required spatial RFPs.

Analysis of the reverse correlation technique with rectangular stimuli is complicatecl
by the adclition of a static nonlinearity,f as used in (8.1). However as was the case

with impulsive stimuli, even-order terms of this nonlinearity result in components of the
estimated RFP which cancel out. Furthermore, for the nonlinearity used by the BCP
network with saturation limits lti : 0 and u; Þ 0, ancl with appropriate smoothing at

the origin to ensttre the existence of the relevant derivatives, odd-orcler derivatives are

approximately zero. Thus provided the stimuli produce only small deviations aboLrt the
origin of the nonlinearity, the BCP network appears uncler reverse correlation iclentifica-
tion to be approximately linear regardless of the precise form of the stimulus, and the
identified spatiotemporal RFPs for this network should therefore not differ clualitatively
from those obtained for the corresponding linear networks.

Qualifrcation and Summary

A full assessment of the implications, for the decomposition hypothesis of simple cell

processing, of the use of temporal binning and rectangular spatiotemporal stimuli in the
reverse correlation identification techniques employed by Jones & Palmer (1987b) ancl

Palmer et al. (1991) would necessarily include an analysis, similar to the temporal anal-

ysis presented above, of the effects of spatial smoothing on the identified instantaneous
spatial RFP. Such an analysis would require detailed assumptions regarding the spatial
forms of each of the expansion functions, assumptions which, in the absence of sufficient

electrophysiological information, have been avoided here so as not to unduly limit the
generality of the discussion. Pending a full spatiotemporal analysis of the effects of tem-
poral binning and rectangular spatiotemporal stimuli, it is therefore difficult to draw firm
conclusions from the above observations.

The preliminary discussions in this section suggest nevertheless that spatiotemporal
smoothing does not account for the predicted discrepancies between the "spatial RFPs"
which would be measured by Jones & Palmer (19S7b) and Palmer et al. (1991) and

the expansion functions whose relative presences in the visual image the simple cells are
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hypothesised to calculate by relaxation. Given the as yet complete lack of evidence in
favour of the latte¡ hypothesis, the onus should therefore be placecl on proponents of this
hypothesis to show that such an explanation might be forthcoming.

7.3.4 Summary ancl Discussion

'fhe hypothetical early visual implementations proposecl by lVIaclennan (1993b), Pattison
(1992) and Pece (1992) t'or their respective SRE minimisationnetworks have been shown

to predict spatiotemporally inseparable simple cell RFPs, the instantaneous spatial com-

ponents of which differ, at almost all post-stimulus times, from the expansion functions
whose coefficients are calculatecl by these networks. It has furthermore been clemon-

strated that the Ìeverse-correlation identification techniques used by Jones & Palmel
(1987b) woulcl, when applied to a model simple cell in any of the proposed networks,
yield a temporal slice, taken at the end of the corresponding time bin, through a spa-

tiotemporally smoothed ancl spatially DC-shifted version of the spatiotemporal RFP.

Neglecting initially the effects of smoothing and DC-shilling, it was therefore tentatively
concluded that the "spatial RFPs" identifiecl by Jones & Palmer (1987b) do not corre-

spond to the expansion functions used by an eally visual implementation of any of these

networks. In particular, it was found that the GRGF model successfully fitted to these

"spatial RFPs" by Jones & Palmer (19S7a) cannot be interpretecl as desclibing the ex-

pansion functions used by such a network. It was furthermore argued that this conclusion

extends, at least to a first approximation, to the proposed neural implementation of the

more realistic BCP network.

Although it was argued in Section 7.3.3 that the effect of spatiotempolal srnoothing

is not in fact negligible, temporal smoothing, when considered in isolation, was found

to be incapable of effecting the required reconciliation. The effects of spatial smoothing

and ìlC-shilting were not considered in detail.

It is not possible, on the basis of the above observations, to conclusiuely rule out

agreement between the expansion functions and measured "spatial RFPs" for special

choices of the expansion functions and the stimulus ancl measurement parameters of the

identification technique. There is however sufÊcient evidence to compel those who might
choose to persist with the notion that these "spatial RFPs" are used by the early visual
system as non-orthogonal expansion functions to consider alternative neural schemes,

and possibly error criteria, for the computation of the required coefÊcients.

The comparison of the RFPs identified by Jones & Palmer (1987b) and Palmer et al.

(1991) with those predicted by the application of the same identification technique to the

proposed relaxation network models,, is of course predicated on the assumption that the
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instantaneous spiking frequency'u of each real simple cell represents a corresponding co-

efficient estimate in the theoretical network. However, provided there exists a monotonic

- ideally linear - relationship between the firing rate and the value actually being sig-

nalled, this comparison retains approximate validity. Nevertheless, the possibility exists

that a more sophisticated method is in fact used to encode an analog value in the output
spike train, and the above comparisons must therefore be viewecl as contingent upon the

verification of the neural firing rate signalling hypothesis.

7.4 Discussion

Implicit in the ploposed encocling of the chosen expansion functions on the feedforwarcl

connections of both the one- and two-layered networks is the assumption that the simple

cell spatial RFP is determined solely by its feedforward weighting of the retino-geniculo-

cortical input, an assumption which was disproved in Section 7.3 on the basis of its
neglect of the temporal dimension imparted to the RFP by the plesence of feedback.

This assumption is furthermore at oclds with the evidence in favour of moclels of the early

visual system which postulate the presence of mutual inhibition between iso- or cross-

oriented simple cells in order to sharpen their orientation tuning (see e.g. Ferster & Koch

(1987) or Wörgötter & Koch (1991) for a review). These models commonly assume that
an orientation bias is established in the feedforward pathway to a given neuron, through
for example the alignment of LGN afferents (Hubel & Wiesel, 1962), and that this bias is

enhanced by intracortical inhibition between the simple cells. Wörgötter & Koch (1991)

showed that an eclectic model combining several intracortical inhibitory mechanisms to
achieve this enhancement of orientation tuning predicts, among other things, the effect

on this orientation tuning of the application of GABA lateral to the recorcling site.

Nevertheless, the negative findings in Section 7.3 clo not of course eliminate the pos-

sibility that the simple cell spatial RFPs might still be used as expansion functions in
a decomposition of the visual image. For example, it would be possible to propose al-

ternative reconstruction error criteria (Cichocki & Unbehauen, 1992), and, presumably,

biologically plausible neural networks capable of minimising these errors. Alternatively,
in a departure from the hypothesis that the simple cells signal the expansion coefficients,

cells such as the complex cells, located in subsequent processing "stages" and receiving

input from the simple cells, might be identified with the output nodes of the proposed

SRE-minimisation networks. However, before such alternatives can be given serious

consideration, it is necessary to re-evaluate the motivation behind the decomposition

hypothesis.

26An estimate of the spiking frequency is obtained for each post-stimulus time bin by counting the
number of spikes occuring in that bin, dividing by the width of the bin, and averaging the result over
repeated presentations of the same stimulus.
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As Daugman (1988a) pointed out,

. . . it goes without saying that the purpose of vision is not to reconstruct the

retinalimage...

Linsker (1990) therefore raised the question

If the original scene is never' "reconstructed" by the brain (and why should

it be?), what is the meaning of the ficlelity criterion?

In particular, why go to the computational and metabolic expense of minimising the
reconstrttction error when that error is never realised in a cortical reconstruction? For

clecomposition-based theories of simple cell processing, the answer is that this "fidelity
criterion" is, as indicatecl earlier, simply a means of quantifying the concept of the "rel-
ative presence" of a simple cell spatial RFP in the visual image. According to this
interpretation, the minimisation of some measure of reconstruction error clearly does not
imply that a reconstruction of the image is to be performed.

However it remains to justify the underlying assumption which gave rise to this di-
versionary debate on reconstruction error minimisation in the first place - viz. that the
simple cells spatial RFPs are used in the early visual system as expansion functions.
In seeking justification for the possible neural implementation of a reconstruction error
minimisation algorithm amongst the simple cells, the more pertinent question is there-
fore,, "Why should the output of a simple cell be assumed to signal the relative presence

of its spatial RFP in the visual image, rather than the spatial inner procluct of that
RFP with the image, in terms of which the spatial RFP is def,ned?" Apart from the
observation that this assumption, which is central to decomposition-based theories of
simple cell processing, is probably a vestige of the earlier feature-detection hypothesis,
no clear motivation ot apriorijustification for this assumption is in evidence. Although
the sceptic might argue that this quite specific assumption appears in hinclsight to have

been somewhat ill-conceived, and that it is not possible on this basis to rule out the
calculation of the required expansion coefficients elsewhere in the early visual system
using the simple cell outputs, he or she should be challenged to justify the need for and

the utility of the hypothesised expansion.

7.6 Conclusion

The implementation of the SRE minimisation networks of Maclennan (1993b), Patti-
son (1992) and Pece (1992) in the feline early visual system has been shown to be at
least broadly speaking biologically feasible. However, the identification of their output
nocles with the simple cells has been found to be almost certainly inconsistent with the
hypothesis that the latter use the "spatial RFPs" obtained by Jones & Palmer (19S7b)
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as expansion functions in a mtnimum SRE decomposition of the visual image. Although

this finding is by no means fatal for more general decomposition-based theories of early

visual processing, it suggests the need for a fundamental re-evaluation of their motivation

in the absence oL apriorijustification. In particular, claims - either explicit or implicit

- of "biological motivation" for image processing algorithms which use models of the

simple cell "spatial RFP" as visual expansion functions should be treatecl with extreme

caution.
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Chaptel VIII

CONCLUSIONS

8.1- Overview

This thesis has reviewed models of the simple cell RFP and its variation over the sim-

ple cell population, and has used artificial neural networks to investigate the multi-

dimensional signal processing role of the RFP in the formation of a cortical representation

of the visual image.

The degree of linearity of simple cell processing, ancl the validity of omitting one

or more stimulus dimensions from the RFP, were examined in Section 2.2. The GRGF

model of the simple cell RFP was then evaluated in Section 2.3. Theories concerning

the variation of RFP parameters across the simple cell population were investigatecl in

Chapter 3 with regard to their ability to account for the true variety of simple cell RFPs

observed experimentally. These theories were divided into the two categories of filtering

and decomposition, depending on their use of the spatial RFP as either the kernel of a
visual filter or a visual expansion function. RANNs which solve the SRtr minimisation

problem associated with the decomposition of an image using non-orthogonal expansion

functions were reviewed in Chapter 4 and developecl in Chapters 5 and 6. The biological

plausibility of these networks was assessed in Chapter 7, ancl the RFPs which bhey

predicted were compared with the expansion functions used by these networks in orcler

to evaluate the viability of the decomposition hypothesis of simple cell processing.

8.2 Summary and Conclusions

In Chapter 2 it was concluded that the simple cell can be considered, to a first approx-

imation, to be a linear device characterised by its binocnlar spatiotemporal RFP. The

omission of the temporal or the second spatial dimension from the RFP was found to be

valid only in the special case where the RFP is Cartesian separable. In particular the

concept of a "spatial RFP", which is used extensively in Chapter 3, is strictly speaking

undefined except for the Cartesian separable case. To the extent to which it can be de-

fined, the identified simple cell spatial RFP is best fltted by the GRGF model presented

in Section 2.3. The fact that functions have been found which provide a better'flt to the

identified spectral RFP is not sufficient to discount the GRGF spatial model, since the

observed discrepancy between the spectral RFP and the Fourier transform of the spatial
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RtrP (Jones & Palmer, 1987a) is most likely attributable to nonlinear components of
simple cell processing.

The recent controversy concerning the alleged optimal joint spatial and spectral local-

isation ploperty of simple cell processing was found to hinge on the creclibility assigned

to the implementation of complex-valued Gabor functions by pairs of simple cells whose

RFPs are in spatial phase quadrature. However even if one accepts that such pairs a,re

widespreacl, as Daugman (1993) would have us believe, it was also argued that since the
particulal localisation measure used in (2.10) is sensitive to rotations of the coordinate

axes, it cannot be simultaneously minimised by a population of simple cells exhibiting
albitrary relative orientations. This property, which holds for all component-wise locali-
sation measures, casts grave doubts on the relevance of optimising some measure of the
joint spatial and spectlal localisation to the processing performed by the simple cells.

A number of theories concerning the spatial processing of the visual stimulus per-

formed by the simple cells were examined in Chapter 3. Few if any were found to make

any serious attempt to account for all the degrees of freedom exhibited by simple cell
spatial RFPs, with many models assuming one or more of the following: ocld or even RFP
symmetry, constant window size or orientation across the population, mutual orthogonal-
ity with respect to spatial integration, phase quadrature pairs, and highly regular spatial
and spectlal sampling lattices. It should be noted however that for those which did at-
tempt to answer even some of these objections, determination of the completeness of the
resultant RFP sets generally exceeds our current mathematical capabilities. Although
this by no means constitutes an argument against their suitability as models of simple
cell processing, it is difficult, without established completeness results, to rule out the
existence of large classes of stimuli which are in effect invisible to the feline or primate
visual systems (Daugman, 1988b). This observation limits the utility in machine vision
of many of the more realistic models of simple cell RFP variety.

The decomposition hypothesis of simple cell processing was found to be in conflict
with the very definition of the spatial RFP. Whilst the RFP model(s) employed by such

theories may enjoy electrophysiological support, the RFP definition supports their use

as the kernels of (possibly position-depeltlelt) spa[ial lìlters. However, this conclusion

is later reviewed in Chapter 7 as a result of the development of biologically plausible

RANNs which calculate the required expansion coefficients.

The theory of non-orthogonal image decomposition was reviewed in Chapter 4. The
squared reconstruction error (SRE) minimisation problem, whose solution yields the

best linear unbiassed estimator (BLUE) in the presence of spherical Gaussian noise, was

formulated, and a minimum-norm regularisation term added to overcome the problems

associated with ill-conditioning of the normal equations. ANNs which solve the SRE and

minimum-norm SRE minimisation problems were critically reviewed. Most notably, it
was shown that the two-layered networks in Section 4.4 which were previously though
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to provide only approximate solutions to the SRE minimisation problem in fact provicle

exact solutions to the minimum-norm regularised form of the problem.

In Chapter 5, a one-layerecl analog RANN was plesented which solves the SRE and

minimum-norm SRE minimisation problems. It was shown to be closely lelated to resis-

tive glicl networks proposed inclependently for- the cliscrete-space solution of minimum-

norm SRE minimisation problems alising in machine vision applications. A strategy 1'or

cliagonally pleconditioning the netwolk equations was presentecl in older to improve the

stability of the network in the presence of weight implementation and state propagation

etrors.

The neural activation function of the single-layered RANN ploposecl in Chapter 5

was moclifiecl in Chapter 6 to more accurately reflect the constraints on the firing rate of
real neurons. The global and exponential stability of the resultant boundary constraint

plojection (BCP) network was then established, along with its optimisation of the chosen

positive (semi)definite quadratic cost function subject to the imposed bouncl constraints

on the optimisation variables. This network was comparecl with similal RANN moclels,

including that of Sudharsanan & Sunclareshan (1991) and the generalised Blain-State-

In-A-Box (GBSB) network of Golden (1992). A continuous-time equivalent of the GBSB

network, the continuous GBSG (CGBSB) network, was then proposed to overcome a

perceived shortcoming of the BCP network for engineering applications, and a partial
stability proof for it outlined. Finally, variotts examples and comparisons of the operation

of these networks were presented.

In Chapter 7, the biological plausibility of the SRE minimisation networks reviewed in

Chapter 4 and those developed in Chapters 5 and 6 was first examined. The hypothesis

that the expansion coefficients purportedly signalled by the simple cells are computecl by

an early visual implementation of an SRE minimisation network was then investigatecl

through a comparison of the RFPs predicted by these networks with the corlesponding

expansion functions. It was concludecl that if such a network were indeed implemented in
the early visual system, the "spatial RFPs" iclentified by Jones & Palmer (198ib) woulcl

not be the expansion functions used by that network. Although this does not conclu-

sively discount the possibility that the simple cells perform a decomposition using other

expansion functions, it does at least argue against the postulated Gabor-like expansions

presentecl in Chapter 3.

8.3 Discussion

If the discussion in Chapters 2, 3 and 7 could be said to have a weak point, it is that much

of the more detailed analysis relies on data from only a few experiments. In par-ticular,

the reverse-correlation experiments of Jones & Palmer (1987b) and their subsequent

evaluation of the GRGF model of the simple cell spatial RFP (Jones & Palmer, 1987a)
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constitute the principal source of electrophysiological information. This reliance is largely
necessitated by the lack of alternative electrophysiological investigations of the 2D spatial
RFP which are both quantitative and fi'ee of strong aprioriassumptions such as symmetry
or Cartesian separability.

8.4 Contributions

The principal contlibutions of this thesis are as follows:

¡ A critical review of the evidence for and against the GRGF moclel of the simple
cell RFP.

o A critical review of bottom-up theories of simple cell spatial pr.ocessing.

r A brief 
'eview 

of applications of GRGFs in image processing.

o A comparison and critical leview of existing neural networks for solving the SRE
minimisation problem associated with non-orthogonal image clecomposition.

o The recognition of the fact that the two-layered RANNs of Culhane et al. (lg8g),
Yan (1991b) and Pece (1992) solve, exactly, the minimum-norm SRE minimisation
problem.

o The clevelopment of a single-layered linear network for minimum-norm SRE min-
imisation, and a comparison with resistive grid networks used in other early vision
applications.

o The clevelopment of a diagonal preconditioning strategy to mitigate the effects
on network stability and solution accuracy of errors in weight implementation or
state- vector propagation.

¡ The development of the BCP network, the proof of its global and exponential
stability, and its comparison with similar ANN models. This work was based on
earlier work undertaken jointly and published by Bouzerdoum & Pattison (1gg3b).

o The demonstration that

- the decomposition theory of simple cell processing contradicts the very clefi-

nition of the simple cell spatial RFP,

- its biologically plausible RANN implementation predicts spatiotemporally in-
separable simple cell RFPs, in which case the required spatial RFPs are not
even defined, and

- the instantaneous spatial RFPs of the hypothetical simple cells in such imple-
mentations are not, in general, the chosen expansion functions.



Appenclix A

SPATIAL AND SPECTRAL RF INVESTIGATIONS

A'.1 Spatial RF

Table 4.1 contains a non-exhaustive summary of single-unit electrophysiological in-
vestigations of the spatial receptive field organisation, profile &/or 1D response plane

(RP - see eg. Palmer & Davis (1981b)) of the simple cells in primate ancl ièline pri-
maty visual cortex. The stimulus consists of a contrast bar, edge or spot, ancl is either
stationary (flashed once on-off or periodically modulatecl) or moving with constant ch.ift

velocity. The receptive field map is based on measurements of response (mean or peak

firing frequency or probability) or reverse correlation of the output spike train with the
stimulus. A "bar" has for the present purposes been classified as a spot if its length
was substantially less than the elongation of a subfield. The specification of 1D in the

RFP column inclucles both the true LWF, obtained using long thin bars, ancl 1D sections

thlough the RFP in the direction of subfield alternation, obtained using spots or small
bars. Stimulus and measurement specifications refer only to those portions of each stucly

concerned with the spatial properties of simple cell RFPs.

^.2 
Spectral RF

Table 4.2 contains a non-exhaustive summary of single-unit electrophysiological in-
vestigations of the spatial frequency magnitude, orientation and phase tuning properties

of the simple cells in primate and feline primary visual cortex. The stimulus consists of
a contrast bar, edge, ot sinewave or squarewave grating, and is either stationary (usu-

ally flashed or counter-phase modulated) or drifting with constant velocity. The tuning
cul'ves are based on measurements of either response (mean or peak firing frecluency)

or contrast sensitivity (CS - inverse of minimum stimulus contrast recluirecl to elicit a

specified response). Several studies do not differentiate between simple, complex ancl

hypercomplex cell types. Stimulus and measurement specifications refer only to those

portions of each study concerned with the relevant tuning curves of simple cells.
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Investigators

Henry & Bishop (1972)
Schiller et al. (1976a)
Movshon et aI. (1978b)

Glezer et al. (1980)
Kulikowski & Bishop (1981a)
Kulikowski et aJ. (1981)
Kulikowski & Bishop (1981b)
Palmer & Davis (1981b)
Palmer & Davis (1981a)
Glezer et al. (1982)
Mullikin et al. (1984)
Camarda et al. (1985b)
Camarda et al. (1985a)
Maske et al. (1985)

Peterhans et al. (1985)
Yamane et al. (1985)
Field & Tolhurst (1986)
Heggelund (1986b)
Jones & Palmer (1987b)
Glezer et al. (1989)
Mclean & Palmer (1989)
Palmer et al. (1991)

Table 4.1: A non-exhaustive summary of investigations of the spatial structure of the simple cell RF. See text for an explanation of symbols
and abbreviations.
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Investigators

Henry & Bishop (1972)
Maffei & Fiorentini (1973)
Henry et al. (197a)
Rose & Blakemore (1974)
Watkins & Berkley (1974)
Ikeda 8¿ Wright (1975b)
Ikeda & Wright (1975a)
Finlay et al. (1976)
Schiller et al. (1976b)

Schiller et al. (1976c)
Heggelund & Albus (1978)
Movshon et al. (1978b)
Movshon et al. (1978a)

Albrecht et al. (1980)

Glezer et al. (1980)

Kulikowski & Bishop (1981a)

de Valois et al. (1982)
de Valois et al. (1982)
Pollen & Ronner (1982)
Spitzer & Hochstein (1985)

Webster & de Valois (1985)
Hawken & Parker (1987)
Jones et al. (1987)
Reid et aì. (1987)

Table 4.2: A non-exhaustive summary of investigations of the spectlal stlucture of the simple cell RF. See text for an explanation of
symbols and abbreviations.
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Appenclix B

RFP IDENTIFICATION USING IMPULSES

Let the response r(ú) of a spatiotemporal system to an input s(æ,ú) be given by

r(t) : f (l:h(t-r) l* .1*),(æ,,) an a,) (B.l)

r,vhere (æ,ú) are the spatiotemporal coorclinates, /:R --+R is a nonlinear function applied

to the outpttt of an otherwise linear system, å(t) is the temporal impulse response func-

tion, and u.':lR2-+R is a spatial weighting function. The aim is to estimate the function
T-o using the reverse correlation technique, which for each possible stimulus position æ¡

involves presenting the system with a stream of spatiotemporal impulses occurring at

regular temporal intervals of T seconds and at spatial positions æ¿ chosen from a uni-

form distribution over the supportl of tl, and correlating the resultant output r,vith the

spatiotemporal impulse presented at positiorì 4s. Prior to correlation with the stimulus.

the response of the system is averaged over a number of trials, with the time axes of the

trials alignecl so that the impulse at positiorì os occurs at the same time in each tlial,
which is arbitrarily taken to be time ú : 0.

The stimulus and response are given by

s(æ,t) : + Ë 6@-æ¡)6(t-iT)
¿=-oo

r+(¿) : ¡(+Ðu(æ¿)h(t-ir)) (B.z)\ 7 '/
respectively. Assuming that the system is operating in the vicinity of the origin of the

nonlinearity /, and that / is analytic in this region so that its 'Iaylor series expansion

about the origin2 exists, then averaging (E}.2) over a series of trials gives

r¡(t;æs) : (Ë,*rl,iP lr-,{,0)n(ú-i")]') (8 3)

: /(o) + Ër*r¡,41Íol wi@o)rri(t)
J=0

+¡{1)10; I (.('o)) h(t -ir)
i+o

1

+;/('?)(0)f D @@¿)ru(æk)) h(t-ir)h(t-kD + . .. (8.4)¿ ;¡ok
lThe support of a function is the smallest region outside of which it evaluates to zero everywhere
2viz. its lVlaclauren series expansion
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where (') denotes the average over trials and /(i)(0) denotes the 7th derivative of / at
0. The parameterisation of the averaged response r+ by the spatial variable o¡ serVes

as a leminder that the average is over trials in which a stimulus impulse occurs in this
position at time I : 0. Estimates ti,1,ti'-:R2xR --+ R of the spatiotemporal RFP are

obtained by repeating the above process for all stimulus positions æ¡, weighting each

trial-averaged response r+(¿;æo) by the corresponding spatial stimulus i6(æ-æ6), ancl

aclcling the results such that

û;a(æ,ú) : + l* ,*(t;æs)6(æ-æs) d,ns (B 5)

Adding the two estimates obtained with positive ancl negative impulses respectively 3

yields the combined spatiotemporal RFP estimate

Rather than denoting a fixed spatial position, the notat\on æ; should be interpleted
as the position of the stimulus presented i? seconds after the stimulus æs. This position
varies randomly over trials, having a uniform distribution over the support of r,r.' so that

(,,(,0)) :õê ll-ir*¡a*
Similarly, the average of the jth orcler cross terms in u.'(æ¿) gives the arca RL uncler

the jth order (spatial) autocorrelation r?r., of to. Thus the RFP estimates obtained wiih
positive and negative impulses are identical except for a difference in the sign of the even

orcler terms, which upon addition (averaging) of the two estimates results in cancellation
of these terms to yield

{a(æ,t) : åffi w2i+t(æ)ft2i+rtr¡ + 
{¡r'r(0)rä 

h(t-ir)

+|rt'r{o)EläT 
\ou-ir)h(t-.k1h(t-rr¡ 1 I

J

This cancellation of the even-order terms - which is not dependent on the present

assumption of spatiotemporal separability or even linearity of the RFP - can be seen to
result from a failure of these terms to preserve the sign of the input stimulus, a property
shared by any even-order static nonlinearities occurring prior to the spatial summation
(which are not incorporated in the model of (8.1)). This latter observation provicles a
formal basis for the assertion by Mclean & Palmer (1gSg) that

. . . spontaneous activity and spatial regions excited by both bright and dark

stimuli tencl to cancel.

3This is equivalent to the suôlr¿clionof the two estimates obtained by Jones & Palmer (1987b) since
they did not account for the negative sign of the negative contrast stimuli until this stage, whereas it
has already been incorporated in the present analysis in (8.5).

út(æ,t)+ j io- (æ,t) * ú-(æ,t)l
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Assuming that the third and higher odd-orcler delivatives of / are negligible at the

origin yields

tb(æ,t)æ ¡{l)io¡ fri'¡oi,¡+ irt h(t-ir)f (8.6)
L'+.J

lvhere ú clenotes the DC component (mean value) of to, so that for any given time ú, ti'

is not proportional to tu unless the latter has no DC component. The effect on '¿D of such

a DC component is to introcluce a DC offset term which is inclepenclent of æ, but varies

rvith the time ú aller presentation of the stimulus. Assuming that the impulse Ìesponse

function /u (l) decays monotonically for ú > 7, the weighting of this DC term rvill increase

lelative to that of the desirecl term as each subsequent stimulus is receivecl.

The use of spatiotemporal impulses in the above analysis immitates the icleal ex-

per-imental situation which Jones & Palmer (1987b) sought to approximate rvith finite
rectangular spatiotemporal pulses. The model assumecl for the simple cell is a cleliber-

ately simple one, consisting of a spatiotemporally separable linear system follorved by

a nonlinear function. Spatiotemporal separability was found to hold for approximately

40% of the simple cells examined by Palmer et al. (1991). However, even for such a

simple moclel and in the absence of the nonlinearity, the proposed Leverse correlation
technique cloes not yield the clesired RFP except when that RFP integrates to zero over

its support. The RFP model fitted by Jones & Palmer (1987a) satisfies these conclitions

only for odd symmetry ($ : nr 12,,n : Il,+3. . .) lvhich was found to be no more com-

mon than any other value of spatial phase. This finding is consistent rvith that of Jones

et al. (1987), who noted that the spectral RFP of some simple cells did not appeal to
clecay to zero for small spatial frequencies.

\,Vith the introduction of a nonlinearity, such as the halfwave rectification nonlin-

earity commonly used to moclel the conversion of somatic membrane potential to fir-
ing rate (see eg. Palmer et al. (1991)), additional terms including those of the form

f(2i+t)(0)u2i+r(n)¡zi+t(t)lQj * 1)! are introclucecl, the seconcl term of which is in gen-

eral nonzero, making the estimate Ti less reliable for nonlinearities having non-zero highel

odcl-order derivatives at the origin. However, in the particular case of the half-rvave lec-

tification nonlinearity (with appropriate smoothing at the origin) these ocld-or.der terms

are zero) thereby eliminating this potential solrrce of error. The use of the Taylor series

expansion of / about zero is justified since the cells probed by Jones & Palmer (1987b)

operated around the spiking threshold and were never strongly activated. The existence

ancl convergence of this expansion is assumed since the relation between membrane po-

tential and firing rate or probability is likely to be appropriately smooth, even though

this is not the case for the iclealised halfwave rectification function commonly used to

approximate it.
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Appenclix C

GABOR FUNCTION APPLICATIONS IN IMAGE CODING
AND ANALYSIS

Tables C.1 and C.2 present a non-exhaustive summary of applications of Gabor-function
lepresentabion schemes to computational tasks involving image coding ancl analysis. Ta-

ble C.1 indicates lvhether the chosen Gabor functions are usecl as filters or expansion

functions in the chosen image representation, the type of infor-mation extracted from
the representation, and the type of application. Table C.2 summarises the systematic

variation of the Gabor function parameters over the set chosen for each application.
In the "Application" column of Table C.1, each application is classifiecl into one of the

following categories: texture (Text.) including segmentation (S), disclimination (D) or

classification (C); image compression (Comp.), including vector quantisation (VQ); pat-

tern recognition (PR), perhaps to achieve some type of invariance (I); stereopsis (Stereo.);

and miscellaneous (Nlisc.). The "Operation" column specifies whether the image is fil-
terecl by or expanded using the chosen Gabor functions. Filtering schemes,, rvhich inclucle

the cliscrete window Fourier transform and the wavelet-like transforms by Watson & AhLr-

mada (1983) and Field (1987), may involveeither convolution or correlation - clenotecl

r-espectively by *g¿(æ) and *g¡(-æ) where * indicates 2D convolution - of the image

with each of the chosen Gabor function kernels. Filtering is generally followecl by sam-

pling of the result on a grid of Gabor function centres in the input space, the form ancl

spacing of which are specified in the æ¡ column of Table C.2, which is to be clescribed

shortly. Expansion schemes, including the Gabor expansion and Gabor ",,vavelet" ex-

pansion, may be implemented either by correlation - denotecl \¡t(-æ) - lvith the

modulated 2D biorthogonal functions Tn(æ) 1 l@) .exp{j2trlil[]1, t4Pt1"æ] (Porat &
Zeevi,1988) in the case of the GE, or more generally by relaxation (Relax.) as clescribecl

in Chapter 4. The information used for further processing may consist of the real &/or
imaginary parts (D{'}, S{.}) or the corresponding magnitude ancl phase (1.1, l.) of each

pixel/coefficient after filtering or decomposition. Representations employing only cosine-

or only sine-phase GRGFs are for convenienceclassified in the real (D{.}) or imaginary
(S{'}) columns respectively, even though they don't in fact implement complex-valuecl

Gabor fttnctions. Applications which adaptively select the outputs of an appropriate

subset of the functions used are inclicated in the column markecl "Adapt.".
Table C.2 clescribes the systematic variation of the Gabor function parameters used
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Table C.i: Applications of Gabor functions in image analysis and machine vision. Corresponding selections of function parameters (where
published) are detailed in Table C.2. Refer to text for an explanation of abbreviations used. Where insufficient information is provided,
"?" indicates the inferred or presumed classification.
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Investigators

Daugman & Kammen (1986)
Daugman & Kammen (i986)
Paler & Bowler (1986)
Turner (1986)
Daugman (1988a; 1989b; 1990)
Daugman (1988a; 1989a; i989b; 1990)
Porat &. Zeevi (1988)
Buhmann et al. (1989)
Clark & Bovik (1989)
Flaton & Toborg (1989)
Fogel & Sagi (i989)
Porat k Zeevi (1989)
Zetzsche & Caelli (1989)
Beck et al. (1990)
Bovik et al. (1990)
Gopal et al. (1990)
Gutschow & Hecht-Nielsen (1991)
du Buf (1990)

Rubenstein & Sagi (1990)
Tan & Constantinides (1990)
Bovik (1991)

Jain & Farrokhnia (1991)
Theimer 8¿ Mallot (1992)
Zhou þ. Chellappa (1992)

Table C.2: Selection schemes for Gabor function or GEF parameters used in the applications detailed in Table C.1. See text for an
explanation of symbols used. Where insufficient information is provided, "?" indicates the inferred or presumed classification.

(O



192

Representaüion UO s
(,' P LP 1/ læo I Other' t' | /luol læo I 0ther

a a a
GWE,DWT a a a

Table C.3: IllLrstratior of how the ilrage lepresentation schemes discussecl in Sections 3.4
and 3.5 woulcl be classifiecl according to the conventions used in Table C.2. See text tbr
an explanation of symbols used.

to construct the set of Gabor functions used in each of the applications for which this
information is provided. The notation adopted in Table C.2 is as follows. Indepenclent

parameters may be either fixed (F)or clistributed evenly on a Cartesian (C), polar (P),
log-polar (LP) or hexagonal (H) gricl, the spacing of which is a function of the subscriptecl
parameter (if any). Linearly or inverse-linearly dependent parameters have a single value

for each value of the independent parameter - indicatecl in the column heacling - on

which they are dependent. With the exception of the application by Turner (1986),

the Gabor function phase parameter / was chosen to be 0, corresponcling to a pair. of
GRGFs with phases 0 and f (although in some cases, as indicated, only one or the other
was used). The aspect ratio ) of the Gaussian was for most applications 1, ancl lvas

invariably chosen to be the same for all Gabor functions employed by the application.
In the former case, the Gaussian rotation parameter d" is irrelevant, and in both cases)

since the aspect ratio syf s2 remains constant, the variation of the dimensions of the
2D Gaussian window - detailed in the "s" column of Table C.2 - can be completely
characterised by variations of the single parametel s : sl (ruy). The Gaussian size

parameter s could be: fixed; varied directly with the spatial (lrol) eccentricitv; variecl

inversely with the spectral (l"ol) eccentricity;or otherwise varied. The spatial lattice over.

which the Gaussian centres are distributed - or equivalently the filtered image samplecl

- can be classified as: Cartesian; Cartesian with grid spacing varying inversely with
spatial frequency (Ct/þo); log-polar; or hexagonal with grid spacing varying inversely
with spatial frequency (/J¡.tøì. The spatial frequency lattice over which the Gaussian

centres are distributed is classified as: Cartesian; polar; log-polar; inversely dependenl
on spatial eccentricit1 Ollæo) or varied in some other way. Table C.3 indicates how the
GE, DWFT, GWÐ and DWT would be classified according to these categories.



Appenclix D

STABILITY IN NONLINEAR NETWORKS

D.1 Boundedness of Solutions of the BCP Network

It is requirecl to prove that for bouncled inputs {V(t) t llyll < Y} ancl bouncled starting
points {26 : llzsll < t/}, with Y, [/ e R* finite, the tlajectory of the system in (6.g)

with A positive cliagonal is bounded.

Taking the Eucliclean norm in (6.29) and substituting for the spectral nolms of the

relevant matrices using the results of Section 6.8 gives

llu(t;ts,zo)ll I "-r-¡'(.'r)(t-',)llroll * f'0"-^^,"(.4)(,-s) {o^",(C)lll(r("))ll + lls(s)ll} ¿s

Now clearly llf(r)ll < F for some finite F € IR1. Thus

llr(¿)ll < llroll"-^-,.('4)(¿-ú0) I lo^,,(C)F +Yl [' e-^^,^{'n)(¿-")r/s'Jh

llrollr-^-,"(A)(ú-¿o) - lo^",(C)F * Yl 
ft - e-À-,"(A)(¿-¿0))'L À*¡^(A) It' v

which is equal to llu¡ll at ú : ú6 and converges exponentially to (ø-" "(C)F +Y)l^*i"(A).
Thus an upper bound on llz(ú; to,uo)ll is given by

,".. 
{ 

tt,ott, "4:@! } = "'.* {r,#}
and solutions of the system will remain bounded, as required. If in adclition the system

initialization satisfies

ll'oll < 
o*"'.(C)F'+Y

À^¡"(A)

an upper bound on llz(i; to,uo)ll is given by

o^o, F +Y
À^¡"(A)

D.2 Convergence Proof for CGBSB Network

The proof of convergence or quasiconvergence of trajectories of the CGBSB network

starting in the feasible region proceeds along the same lines as the global convergence

proof for the BCP network; the necessary steps and proofs are therefore simply outlinecl

below.

C



194

Observation D.l Trajectories of the CGBSB network for which øo € [C, {] will under
the system dyna'mics remain in this region.

Thìs observation is readily verified by inspection of (6.Zfa).

Observation D.2 Any eq'uilibrium point u* of the CGBSB networle for W positiuc

semidef,nite satisfying u* e [(,€] i" rnapped by B onto a constrained minirnum of J(æ),
and Jor each constra,ined minim'um there erists a unique comespo'ndirug equi,librium point
u. € [c, €].

Proof. The proof involves establishing that the network output at equilibrium satisfies

the Kuhn-Tucker conditions for a constrained optimum. Let P:lR'--+ lR'x' be definecl

such that
j +i

P¡¡(u):
1 u¿1Ç¡ and \;>g
1 ¿¿¡ €. ((,,€o)

1 u;){¡ and ?;<¡
0 otherwise

permitting the expression of (6.23a) as

¿: P(u)q(u): -P(u)tVJ
Setting ø : 0 to locate the equilibrium points yields

0

LJ
(D 1)

(D.2)

YJlu=u.

<0

-0
>0

C¿

((¿' {¿)
t.
S¿

u¿1

ut e.

u¡)
which upon expression in terms of æ yields the required Kuhn-Tucker conditions provided
zo € [C,€].

'l'he existence and uniqueness of an equilibrium point corresponding to a given con-

strained optimum are both guaranteed by the invertibility of the mapping B.

Theorem D.l Trajectories of the CGBSB networlc conaerge to the set of equilibrium
'¡tttinLs.

Proof. Trajectories of the CGBSB network are clearly continuous and bounded. Assum-

ing that they are also uniquel it is sufficient to show that "/(æ) is a Liapunov function
for the network, and that it has zero time derivative only at equilibrium points of the
system. Since diagonal matrices commute and P'(ø) P(u) : P(z) it follows from (D.2)
that z : P'(u)it Therefore

4:V'Jù: -'ùrl-'B'it(l,t

lwhich is not obvious since ø is no longer Lipschitzian, but can be argued through consideration of
the constrained gradient descent strategy implemented by the network, as explained in Section 6.7
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so that since l, B are both positive cliagonal, J(æ) is a Liapunov function for the netlvork

as requirecl, and has zet'o time derivative only at equilib.-ium points of the system.

Since by Observation D.1 tlajectories starting in the feasible region will remain ìn

this region, such trajectories thelefore converge to the set of constrainecl minima of J.

D.3 LJniform Delay on Lateral Connections of BCP Network

We now examine the effect on the BCP network of the introcluction of a unifblm clelav

on all lateral connections.

Observation D.3 The network described by th,e tinte-delayed tlifferential ec¡tation

it, : v(t) - C'f (u(t - ")) - Au(t) (D.3)

has the sa'me equilibriu'm points as the BCP network

Proof. For a given time-invariant input g, the network at equilibrir-rm at some time ú1

must by definition satisfy

u(t-r):u(t) Vt>h+r

However, with this substitution, the clifferential equation (D.3) recluces to that governing

the BCP network with un-delayed lateral connections, and hence has the same equilib-

rium points, as required.

Theorem D.2 The network tlescribed by (D.3) is erponentially asymptotically stable Jor
A positiue diagonal prouided

q 1À^¿*(A) - e\^''('t)'o^",(c) > o (D 4)

Proof. Since l(z) is continuous and Lipschitzian, the solution u(t): u(tils,ø(T)) for

all 7 € lto-r,ls] of the initial value problem associatecl with (D.3) is continuons ancl

unique. The solution is given by

u(t) : e-A(t-to)u(r") + l:,e-A(t-s)s(s) 
d" - l',"-ua-"tc f @(s - r)) cts (D b)

which can be shown - by a trivial modification of the proof in Appenclix D.1 - to be

botrnded for.4 positive diagonal. Subtractingu(t) from a seconcl trajectory o(/) starting

from tr(l¡) at time ús and taking the norm yields

llo(¿) -.,(r)ll <

I ll"-o('-")llllclllll("(" -,)) - f(.r(" - 1))ll ú/s (D 6)
Jto'
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Choosing the Euclidean vector norm, substituting the spectral norms given in the proof
of Theorem 6.2 into (D.6) and multiplying both sides by eÀ-i'('4)¿ gives

ll"(¿) - u(t)lle^^h(A)t <

o^o,(C)/'llrt, - r) - u(" -r)lleì-i"(Á)'ds (D.7)

Changing the variable in the integral and using the fact that the integrancl is non-negative

gives

l,"rl"rt - r) - u(s -r)lleÀ-;'(a) " ds 1 
"\^¡n(A)r 

[' -þþ) - u(p)1¡eÀ^;'(A)c c]o
J to-,

Substituting this result into (D.7), applying Gronwall's Inequality (Reinhard, 1986) ancl

evaluating the integral in the resulting expression produces the following inequality

ll"(¿) - u(t)ll, < 
"go^"'(c)" llo(¿o) - u(to)ll"e-n(t-to) (D.S)

where

g A- 
"À^i^(A)r

Tt L À^¿^(A)-\o^,,(C)

(D.ea)

(D.eb)

A sufficient condition for exponential stability of the solutions is that ry is strictly positive.

Note that since (6.28) is already a fairly stringent condition on the system matrices A and

C, the exponential function 0 of r in (D.9b) means that if at all, exponential convergence

is only likely to be guaranteed by Theorem D.2 for small clelays on the lateral connections.

The issue of limit cycles in the delayed network however remains to be addressed,

awaiting a full convergence analysis along the lines of that performed for the BCP net-

work.



Appendix E

HEBBIAN WEIGHT DEVELOPMENT

Földiák's (1989) rveight clevelopment equations are

vV(t + r) : vV(t) - ooffdiag (ty(¿))

0(¿+ 1) : Q(t) + Plr(t)Ex- diag(Dy(¿))8(¿)l

with associated update equations

rþ) a u -vv(t))-'g(t)
xv(¿) : T(t)ÐxT(t)'

(E.1a)

(tr.1b)

(E.2a)

(E.2b)

whet'e lV(t) is the offdiagonal nxn matrix representing the lateral weights; Q(ú) is the

nxrn feedforward weight matrix; 7(t) is the nxm transfer function of the relaxecl netlvork;

X¡ and Ey are themxm input and nxn output (spatial) covariance matrices lespectively;

1is the nxn iclentity matrix; a and B are positive scalars ç 1; ll/(0) is the zero matrix;
and Q(0) is ranclomly initialisecl. Now W(t) and Q(i) are both time-invariant iff both of

the following holcl

Ey : diag(xy) (8.3a)

TEx : clias(Ey)Ç (E.3b)

Postmultiplying (E.3b) by T' and substituting using (tr.3a) gives

Ev(I - QT'):o (8.4)

Now Földiák found that the r¿ rows of ? developed to span the subspace spannecl by the

n most dominant eigenvectors of X¡. Thus we can write 7 as follows

r:lt olx
where A is an nxn matrix of rank n, O is the nx(rn -n) zerc matrix, and the lows of X
are the n eigenvectors of X¡ in descending order of corresponding eigenvalues. Thus rve

can now write

Ey:rDyr':la olxzxx,lt:] ruo

Now XX¡X" is the diagonal matrix containing the eigenvalues of X¡ in clescending

order. Since X¡ is a covariance matrix, it must be non-negative definite, and hence has
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all non-negative eigenvalues. Let us assume that Dx is of rank r such that n 1 r I m,
and define the nxn matrix B to be the diagonal matrix containing the first n eigenvalues

of X¡, and Z to be the (m-n)x(m- n) diagonal matrix containing the remaining (r - n)
non-zero eigenvalues as its first (r - n ) diagonal entries, and zeros elsewhere. Then from
(tr.5)

>" - t A " tl:. 

^l::l: 

ABA. (E 6)

Now since A and B arc both of full rank, then so is the right hand side of (E.6), giving
that Ey is also of full rank. This gives

QT' : I (8.7)

as the only possible solution to (E.a). Now substituting (8.2a) into (E.7) we have

QQ'IQ -w)-')' : I (8.8)

Since I'trl is initialised symmetrically, and according to (E.1a) receives only symmetrical
updates, I - W is symmetric, and so is its inverse. Note that if the inverse does not
exist, then the weight update algorithm fails in trying to evaluate ?, so we only consider

the case where it does exist. Thus (E.8) becomes

QQ,: I -W
which is the clesired result
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