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ABSTRACT

The simple cells in feline and primate primary visual cortex are involved in the coding
and early processing of spatiotemporal information acquired binocularly from the visual
field. Each simple cell can be viewed as an approximately linear device characterised by
its receptive field profile (RFP), a spatially reversed version of its spatiotemporal impulse
response function.

The Gabor function model of the simple cell RFP is evaluated, and the recent contro-
versy concerning the relevance to early vision of its achievement of the lower bound on
joint spatial and spectral spread dictated by the Weyl-Heisenberg Uncertainty Principle
is illuminated. In an investigation of the multi-dimensional signal processing performed
by the simple cells, image processing and coding schemes which might explain the ob-
served variety of simple cell spatial RFPs are reviewed. These schemes are classified into
the categories of filtering and decomposition, according to whether the RFP is used as the
kernel of a spatial filter, or as an expansion function whose coefficent is to be calculated
for the visual image.

Artificial neural networks (ANNs) which find the least-squares solution to the set
of linear equations posed by the image decomposition problem are critically reviewed,
and a single-layered, linear recurrent ANN is proposed for this task. The linear neural
activation function used by this network is then replaced by a more biologically plausible,
piece-wise linear, saturating nonlinearity, and the resultant globally stable network is
shown to effect the optimisation of more general (semi)definite quadratic forms subject to
bound constraints on the optimisation variables. Although biologically plausible, these
networks, when used as models of simple cell processing, are found to predict simple
cell spatiotemporal RFPs whose spatial component differs in general from the chosen
expansion functions. It is concluded that the simple cell spatial RFPs are not used as
visual expansion functions, but rather as the kernels of (possibly position-dependent)

spatial filters, as is suggested by their definition.
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Chapter I

INTRODUCTION

1.1 Background and Motivation

1.1.1 The Simple Cell Receptive Field Profile

With the exception of the retina, the primary visual cortex has been perhaps the most
intensively studied area of the mammalian early visual system. Its functional proximity
to the visual input and its accessibility in the occipital lobe have made it a particularly
attractive target for the visual electrophysiologist. Much of our knowledge about the elec-
trophysiology of the striate cortex, as the primary visual cortex is alternatively known,
comes from experiments on feline and primate subjects. Although some differences do
exist between their respective visual cortices (Crawford et al., 1990), the presence in both
species of cells exhibiting similar functional characteristics suggests that these charac-
teristics contribute to the solution of generic visual problems which are common to the
respective visual environments of these somewhat different animals. Single-cell record-
ings from the primary visual cortex have shown that neurons in this region are involved
in the encoding and early processing of spatial, temporal and stereoscopic information.
Their implication in fine spatial vision (Crawford et al., 1990), in particular, and their
consequent potential as a source of biological inspiration for image preprocessing in the
field of pattern recognition, have made them especially interesting to the machine vision
community.

The simple cells were so named because unlike the responses of the remainder of the
primary visual cortical cells from which the pioneering team of Hubel & Wiesel (1962)
recorded, the responses of these cells to spatially extended visual stimuli could be largely
predicted from their responses to small circular spots of light at various positions in
the visual field. This observation is at least superficially suggestive of the mathematical
property of superposition, which is characteristic of linear systems. Linear systems are
in general more mathematically tractable, and consequently better understood, than
the more general class of nonlinear systems. It is perhaps, therefore, the promise of a
predominantly linear characterisation of the simple cells which has motivated a number of
visual electrophysiologists and computational neuroscientists to concentrate their efforts
on the investigation and modelling of the multi-dimensional (i.e. spatiotemporal) signal

processing performed by these cells.



The receptive field profile (RFP) of a visual cortical cell is a function which describes
the linear weighting applied by that cell to the visual stimulus to produce the observed
response. More formally, the RFP is the kernel of a linear integral operator which, when
applied to the visual stimulus over the domain of its definition, yields the output of that
cell. As this definition suggests, the RFP is closely related to the impulse response func-
tion of the cell; the distinction lies simply in the conceptually convenient sign-reversal of
the spatial variable. Its domain of definition corresponds to that over which the stim-
ulus is described; for completeness this should be the spatiotemporal domain, although
frequently the temporal dimension, and occasionally the second spatial dimension, are
omitted for convenience. The stimulus position is expressed in eye-centred spherical co-
ordinates (with the range dimension omitted). Consequently a cell with binocular input
has one RFP for each eye; these will be collectively referred to as the binocular RFP of
the cell. It will also often prove convenient to describe an RFP in the Fourier frequency
domain, and, by extension, to refer to this as the spectral RFP.

The accuracy with which the response of a simple cell can be reproduced by the linear
model of that cell’s processing inherent in the definition of an RFP is dependent on the
approximation involved in the neglect of the nonlinear terms, if any, which contribute
to this processing. A qualitative investigation of the extent of this approximation is
presented in Section 2.2, along with an examination of the validity or otherwise of the

omission of one or more of the stimulus dimensions.

1.1.2 Neural Networks for Sensory Signal Processing

The response of a simple cell to a visual stimulus is in fact the cumulative result not only
of the processing performed by neurons in the afferent retino-geniculo-cortical visual
pathway up to and including that simple cell, but also of intra- and possibly extra-
striate feedback influences on that cell. Evidence for intra-striate feedback, in particular,
onto the simple cells is reviewed in Chapter 7. A natural framework within which to
model the neural processing which contributes to the simple cell output, and hence also
its RE'P, is provided by the field of artificial neural networks (ANNs), and in particular
recurrent artificial neural networks (RANNs). Inspired at least initially by their biological
counterparts, ANNs are densely interconnected networks of computationally simple and
relatively slow processors called artificial neurons. These networks are characterised
chiefly by their fine-grained parallel distributed processing (Rumelhart & McClelland,
1986a; Rumelhart & McClelland, 1986b), in which the constituent artificial neurons
operate largely in parallel and the computational load on a network is finely distributed
between its processors. RANNs are simply ANNs in which the neural interconnection

patterns give rise to feedback loops, which are generally thought to exist in the striate
cortex (Douglas & Martin, 1991).



Artificial neural networks have received considerable attention in recent years from
the field of signal processing (Juang et al., 1991). ANNs provide a generic architecture
suited to the fine-grained parallel implementation of a large number of conventional
signal processing algorithms. This property, combined with their architectural similarity
to the neural substrate on which they are hypothetically implemented, makes them well
suited to the modelling of the multi-dimensional signal processing performed by early
sensory systems. The addition of a learning rule by which the interconnection strengths
of an ANN are updated furthermore admits the neural implementation of adaptive signal
processing algorithms.

The ANN framework not only offers potential neural realisations of models of early
sensory signal processing, but also, by facilitating the consideration of practical con-
straints on the biological implementation of such models, assists in their formulation and
refinement. For example, attempts to understand the limitations on the neural trans-
mission of information in such networks have resulted in theories concerning the trans-
formation of sensory messages to reduce their statistical redundancy (Attneave, 1954;
Barlow, 1959; Barlow, 1961) and thereby achieve an efficient coding of the sensory input.
Through the introduction of an unsupervised learning rule, the transformation effected
by a redundancy-reducing network can also be made adaptive to the changing statistics
of the sensory environment (Linsker, 1988; Linsker, 1989; Linsker, 1990; Foldiak, 1989;
Foldiak, 1992), a property which would be essential for the survival of the organism. The
principle of redundancy reduction has proven influential not only in subsequent theories
of biological sensory coding (Atick & Redlich, 1990b; Atick & Redlich, 1991; Atick &
Redlich, 1992), but also in the fields of image coding and compression.

1.1.3 Summary

Recurrent artificial neural networks (RANNs) have been chosen as a useful tool for the
modelling and investigation of the multi-dimensional signal processing performed by the
simple cells in the mammalian early visual system. The simple cells have been selected
over other cortical cells because of their approximate linearity. The linear component
of simple cell processing of the visual stimulus is characterised by the receptive field
profile (RFP). The primary visual cortex has been chosen because of the comparative
abundance of single-cell electrophysiological recordings from this area, which are needed
to infer the properties of the RFPs of individual cells!, and the controversiality of the

existence of simple cells in higher cortical areas (Henry, 1993).

Tn contrast, inferences drawn from psychophysical and area-level electrophysiological observations
invariably concern large multi-cell “units” such as psychophysical channels or cortical columns.



1.2 Overview

This thesis reviews models of the simple cell RFP and its variation over the simple
cell population, and uses artificial neural networks to investigate the multi-dimensional
signal processing role of the RFP in the formation of a cortical representation of the
visual image.

A critical review of simple cell RFP models is presented in Section 2.3. This review
centres around the Gabor function model and a simple, real-valued generalisation thereof
referred to here as the generalised real-valued Gabor function (GRGF); in justification of
this approach, it will be argued that the latter is the only model proposed to date which
exhibits sufficient degrees of freedom to fully describe the simple cell RFP2. Alternative
models are discussed primarily where they address shortcomings identified in the GRGF
model. The Gabor function model has attracted considerable attention since its proposal
by Daugman (1980) and Marcelja (1980), most of which has focused on its achievement
of the lower bound set by the Weyl-Heisenberg Uncertainty Principle (Weyl, 1932) on the
Joint spread or “uncertainty” of a function in the spatial and spatial frequency domains.
Reviewed in Section 2.3, the recent empirical success of the GRGF model of the simple
cell RFP has bolstered suggestions by Marcelja (1980) and Daugman (1985) that this
property indicates a role for the simple cells in the joint spatial and spectral localisation
of the stimulus (although see Wechsler (1990)). The electrophysiological foundations of
this hypothesis and the recent controversy it has attracted are criticised in Section 2.3.3.

Variation of the spatial RFP over the simple cell population is addressed in Chap-
ter 3. Theories of simple cell processing which postulate a systematic variation of various
parameters of the spatial RFP model over the population are examined for their con-
sistency with the observed variety of simple cell RFPs. Consideration is restricted to
those schemes which not only employ a suitably realistic model of the simple cell RFP,
but also make a serious attempt to account for the variety of spatial RFPs observed.
Among the schemes addressed are the Gabor and Wavelet Expansions, and the Wavelet
and Window Fourier Transforms. A brief overview of recent machine vision and image
processing applications of schemes involving the GRGF RFP model is also presented.

Theories concerning the variation of RFP parameters across the population, and
which assume a linear model of simple cell processing, are divided in Chapter 3 into the
two classes of filtering and decomposition. The filtering hypothesis of simple cell pro-
cessing, to which theories in the former category subscribe, postulates that the spatial
RFP acts as the kernel of a spatial filter which is applied to the image. In contrast,
the decomposition hypothesis of simple cell processing, to which theories in the latter

category subscribe, postulates that the spatial RFP acts as an expansion function whose

*This observation was made originally by Jones (1991) in justification of the decision by Jones &
Palmer (1987a) to fit only the GRGF model to their electrophysiologically identified simple cell RFPs.
It will become evident, however, that this observation remains current.



coeflicient, in the corresponding expansion of the image, is signalled by the simple cell.
By viewing the expansion functions as features to be detected, and the coeflicients as
measures of their relative presences in the visual image, the decomposition hypothesis
can be seen to be closely related to the earlier feature-detection hypothesis of simple cell
processing, which is discussed in Section 3.2. Although it is argued that the filtering
hypothesis appears more consistent with the definition of the simple cell spatial RFP, re-
current artificial neural networks are reviewed in Chapter 4 and developed in Chapters 5
and 6 which, if implemented in the early visual system, could calculate the coeflicients
required by decomposition theories. The biological plausibility of these networks is as-
sessed in Chapter 7, and the spatiotemporal simple cell RFPs which they predict are
analysed for their consistency with the chosen expansion functions.

Although primarily motivated by the desire to produce biologically plausible models
of image decomposition by the simple cells, the review and development in Chapters 4-6
of RANNS for the minimisation of the squared reconstruction error (SRE) has important
benefits for the least-squares solution of linear systems of equations. These include:
the demonstration that several RANNs which were previously though to provide only
approximate solutions to the SRE minimisation problem in fact provide exact solutions to
a regularised form of the problem; the development of a diagonal preconditioning strategy
to improve the stability of a proposed single-layered linear RANN in the presence of
weight implementation and signal propagation errors; the development of a single-layered
nonlinear RANN capable of minimising a positive (semi)definite quadratic error function
subject to bound constraints on the optimisation variables, a problem which arises in
several engineering disciplines (Moré & Toraldo, 1991); and the recognition that this
single-layered network may serve as a biologically plausible implementation of various
resistive networks used in the discrete-space solution of other regularised problems in

early vision.

1.3 Intended Audience

It may already have become apparent that the intended reader is expected to be conver-
sant with elementary neuroanatomy, neurophysiology and visual electrophysiology. He
or she should also be competent in linear algebra and the theory of dynamical systems,
although a number of the concepts relevant to the latter will be introduced as they are
needed. In order to head off criticism from experts in either field, an attempt has been
made to maintain a certain rigour in the treatment of both the biological and mathe-
matical content. However this could only be achieved at the expense of its readability to
practitioners of the complementary discipline. The author therefore requests the reader’s
indulgence in acknowledging, in cases where one or the other appears to be deficient, the

inevitable trade-off between rigour and readability faced in the presentation of this work.






Chapter II

THE GABOR FUNCTION MODEL OF SIMPLE CELL
RECEPTIVE FIELD PROFILES

2.1 Introduction

This chapter opens with a brief introduction to the concept of a “receptive field” (RF)
and a summary of the receptive field characteristics which define a “simple” cell. A linear
characterisation of the simple cell receptive field known as the “receptive field profile”
(RFP) is then presented, and the limitations of such a characterisation examined. The
extension of the RFP to account for the temporal and binocular behaviour of the simple
cell RF in addition to its spatial properties is presented, and the validity or otherwise of
the consideration of the spatial component of the receptive field profile in isolation from
its temporal and binocular components is discussed. Finally, subject to the reservations
which arise from this discussion, the “generalised real-valued Gabor function” (GRGF)
defined in this chapter is investigated as a model of the simple cell spatial RFP. Special
emphasis is placed on an analysis of the elegant series of identification experiments per-
formed by Jones & Palmer (1987b; 1987; 1987a), and their subsequent evaluation of the
GRGF model.

2.2 Simple Cell Receptive Field Profiles

2.2.1 Spatial Receptive Field Profile

The receptive field (RF) of a neuron whose axon forms part of the vertebrate optic nerve
was defined by Hartline (1938) as that region of the retina whose illumination would elicit
a response in the axon. In a series of experiments which pioneered the electrophysiological
exploration of the visual cortex, Hubel & Wiesel (1959; 1962; 1965; 1968) generalised
this term to cover visual cortical neurons and to refer more generally to that region of the
visual field over which a stimulus could influence the firing of the neuron (Bishop & Henry,
1972). Using stationary flashing stimuli consisting of positive contrast spots or bars on
a background of uniform luminance, and recording extracellularly with a microelectrode
from single neurons in feline and later primate (monkey) primary visual cortex (V1),
they determined the spatial organisation of the receptive field of each recorded neuron

by mapping out the sign of the change in firing rate (increase or decrease) following



stimulus onset as a function of the two dimensional (2D) spatial position of the stimulus.
Visual cortical cells were classified into one of the three categories simple, compler and
hypercomplex on the basis of characteristic properties of their receptive fields, which for
the simple cells were (Hubel & Wiesel, 1962):

® RF organisation consisting of distinct excitatory and inhibitory subfields.
e Summation of responses to stimuli presented concurrently in the same subfield.
e Antagonism between excitatory and inhibitory subfields.

e Predictability of responses to stationary or moving stimuli from the RF organisa-

tiom.

Henry (1977) proposed a derivative RF taxonomy in which these defining characteristics
were refined for stationary stimuli, and extended to characterise responses to both moving
edges and bars of increasing elongation. Notwithstanding the differences between the
resultant S-cell classification and its simple cell precursor!, the term simple cell will in
accordance with common practice be used interchangably to refer to either cell category.

Hubel & Wiesel found that the RF of each simple cell was organised into parallel
elongated excitatory and inhibitory subfields alternating in the direction perpendicular to
their axis of elongation and separated by straight-line borders, as shown in Figures 2.1(b),
(e) and (h). A subfield was designated ezcitatory — or later on-ezcitatory — if the onset
of a bright stimulus in that region produced an increase in the firing rate of the neuron,
and inhibitory if stimulus onset produced a suppression of the firing rate (on-inhibitory)
or stimulus offset produced an elevation of the firing rate (off-excitatory). In subsequent
Investigations — the relevant details of which are summarised in Appendix A.1 — the
resultant map of RF organisation was augmented to include a measure of the efficacy of
a standard stimulus in each position. In two dimensions, this augmented map of stimulus
efficacy as a function of visual angle — examples of which are shown in Figures 2.1(a),
(d) and (g) — is known as the spatial receptive field profile (RFP) of the cell. However
for practical reasons, the integral of thc RFP along the direction of subfield elongation
— known as the 1D line weighting function (LWF) — has been preferred by many
investigators. The LWF is obtained by recording, for each position along the axis of
subfield alternation, the strength of the neuron’s response to a long contrasting bar
oriented parallel to the axis of subfield elongation. Three examples of simple cell LWFs
are illustrated in Figures 2.1(c), (f) and (i). Simple cells with between 1 and 8 RF
subfields have been reported, although those with 2 and 3 subfields —— such as those

"The interested reader is referred to Henry (1985) and White (1989, p. 115-121) for further discussion
on the relationship between these two classifications.



(a) 2D RFP (b) RF organisation (c) LWF

(e) RF organisation (f) LWF

(g) 2D RFP (h) RF organisation (1) LWF

Figure 2.1: The 2D RFPs of typical simple cells (after Jones & Palmer (1987b)) having
(a) 2, (d) 3 and (g) 4 subfields respectively. The corresponding subfield organisations
are illustrated in (b), (e) and (h) respectively, with inhibitory regions shown dark, and
excitatory regions bright. Corresponding line weighting functions are shown in (c), (f)
and (i) respectively.
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illustrated in Figures 2.1(b) and (e) — appear to constitute the majority — in excess of
70% — of recorded simple cells (Glezer et al., 1989)2.

Only recently have full two dimensional RFP analyses been undertaken. Employing
the more sophisticated reverse correlation system identification technique and small rect-
angular stimuli more closely approximating the ideal spatial impulses®, Jones & Palmer
(1987b) correlated the number of output spikes emitted by a given simple cell in succes-
stve 50ms time bins with the position of the spatially localised stimulus on a 16 x 16 grid
spanning the cell’s spatial RFP. At the beginning of each 50ms interval, a new stimulus
was chosen at random from the 512 possible stimuli (positive or negative contrast in
one of 256 grid positions). The correlation of the response with a given stimulus was
continued over a number of subsequent stimulus presentation intervals, and the resultant
correlogram averaged over repeated presentations of the same stimulus. Separate correl-
ograms were compiled for positive and negative contrast stimuli, and then subtracted to
produce a final 2D RFP for each post-stimulus time bin. In accordance with estimates
of the order of 50ms (Ikeda & Wright, 1975b) to 60ms (Hamilton et al., 1989) for the
latency of simple cell response to retinal stimulation, the RFP for the 50-100ms time bin
was invariably the most pronounced, but was otherwise qualitatively similar to those for
subsequent time bins®.

Their subsequent mathematical analysis of the spatial properties of the resultant
RFPs revealed details which invalidate a number of pre-existing generic models of the 2D
simple cell RFP. Notably, while most contemporary models — and indeed some proposed
since then — relied heavily on precise odd and even symmetry of the RFP, earlier findings
based on LWF's that the majority of simple cell RFPs are in fact asymmetric (Kulikowski
et al., 1980; Field & Tolhurst, 1986) were supported by the 2D analysis of Jones & Palmer
(1987b). Furthermore their finding that Cartesian separability® of the RFP was clearly
violated in a number of cases called into question the common approach of modelling the
LWF and extending the model to 2D by multiplying the 1D model by a window — such
as a Gaussian — in the orthogonal direction.

These shortcomings were addressed by Jones & Palmer (1987b) using a generalised

form of the 2D rcal-valued Gabor function (RGF) model having 9 free parameters. A X2

1t is difficult however to draw any firm conclusions from these or any other electrophysiological
findings about relative frequencies in the population. Sampling bias (Robson, 1983) may result from
— among other things — a tendency of microelectrode techniques to record preferentially from larger
cells and those with certain geometries (Anderson et al., 1990, p. 215), and from a preponderance of
recordings from cells in particular cortical layers if RF properties are unevenly distributed between the
layers.

3Spatial impulses are used in the identification of the first order Volterra kernel (Schetzen, 1980).
*although see McLean & Palmer (1989), and the discussion thereof in Section 2.2.4

SA function f(z) with & € R is said to be Carlesian separable if there exist functions fi(z;) i€
{1...n} C Zy such that f(z) = [T=, fi(z:). In the present case n = 2, {f1, f2} are functions of the
independent spatial variables {x;, 2}, and the function f(z) = fi(z1)f2(z2) is Cartesian separable.
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test on the residual error — assuming a Gaussian spatial noise model — after a least-
squares fit using the generalised RGF (GRGF) model showed that this model captures
essentially all the necessary degrees of freedom of the simple cell RFP. Given by the real
and imaginary parts of a Gabor function — the product of a Gaussian and a sinusoid —
the RGF was proposed independently in 1D by Marcelja (1980) and in 2D by Daugman
(1980) as a model of the simple cell LWF and RFP respectively. The optimal joint locali-
sation of the 2D Gabor function in the spatial and spatial-frequency domains (Daugman,
1985) forms the foundation for its recent popularity in computational theories of vision.
Following the present introduction to simple cell receptive fields, which is intended to
be as far as possible model-free, the GRGF and rival models of the simple cell RFP are
compared in Section 2.3 on the basis of their ability to account for the above and other
experimental results. The relevance of the joint localisation property to biological and

computational vision is critically evaluated in Section 2.3.3.

2.2.2 Spectral RFP

Several years after the early experiments of Hubel & Wiesel, Campbell & Robson (1968)
showed that for low to moderate contrasts the detectability by a human subject of a spa-
tial grating having a sine, square, rectangular or saw-tooth wave luminance profile was
determined solely by the amplitude of the fundamental spatial Fourier component of the
grating, and that the non-sinusoidal gratings could not be distinguished from sinewave
gratings until their contrast was sufficient to cause the higher Fourier components to
exceed apparently independent thresholds. These results suggested the presence in the
visual system of “linearly operating independent mechanisms selectively sensitive to lim-
ited ranges of spatial frequencies”. Blakemore & Campbell (1969) showed that these
psychophysical spatial frequency channels were also selective for stimulus orientation,
suggesting an analysis of the visual image in terms of its constituent 2D spatial frequen-
cies. A possible cortical locus of these channels was soon identified by Campbell et al.
(1969), who showed using grating stimuli that cells in feline primary visual cortex were
selectively sensitive to a band of spatial frequencies as well as to the orientation of the
grating.

The band-pass tuning properties of the response or contrast sensitivity function of
the simple cells, in particular, in both primate and feline primary visual cortex for spatial
frequency magnitude, orientation and phase (usually with the other two stimulus vari-
ables held constant) have since been elaborated by a number of researchers. The relevant
features of a representative sample of such experiments are summarised in Appendix A.2.
However, the spatial Fourier harmonics present in non-sinusoidal stimuli — such as bars,

edges or square-wave gratings — several of which may lie within the spatial frequency
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(magnitude) pass-band of the cell, tend to exaggerate the apparent low-frequency re-
sponse or sensitivity of the cell (Pollen & Ronner, 1982), leading to reports that simple
cells are for example much more narrowly tuned for spatial frequency than for the width
of a single bar (Albrecht et al., 1980). This phenomenon could influence not only the
magnitude tuning curves obtained using such stimuli, but also those for orientation, since
the orientation tuning for each of the stimulus harmonics could potentially differ in hoth
bandwidth and optimal orientation (Daugman, 1983). However, with the exception of
the investigation by Jones et al. (1987), magnitude and orientation tuning curves have
generally been obtained only at the optimal setting of the other parameter. As noted
by Daugman (1980), extrapolation of these results to non-optimal settings requires the
assumption of polar separability of the 2D spectral RFP, defined by analogy with the
spatial RF'P as a plot of the amplitude of the fundamental Fourier component of the
temporal response to a drifting or temporally modulated sinewave grating against the
2D spatial frequency (magnitude and orientation) of the grating.

To examine the 2D spectral RFP of the simple cells whilst avoiding the assumption of
polar separability, Jones et al. (1987) used the method inherent in the above definition,
with stimuli drawn from an ensemble of drifting sinusoidal gratings in which spatial
frequency was distributed evenly over a 16 x 16 approximately Cartesian grid spanning
the cell’s responsive range. The majority of the resultant spectral RFPs were markedly
polar inseparable, invalidating previous independent investigations of spatial frequency
magnitude and orientation cited above. Their results were found to support a model
of the simple cell spectral RFP based on the Fourier transform of a GRGF, as would
be expected — given the good fit provided by the GRGF to the spatial RFP — if the
simple cell could be treated as a linear device. The validity of this linearity hypothesis

is examined in the following section.

2.2.3 Spatial Linearity

Movshon et al. (1978b) initiated a reconciliation between previous spatial and spectral
characterisations of the simple cells by demonstrating good qualitative agreement be-
tween the line weighting function of each simple cell as predicted by the inverse Fourier
transform of the spectral magnitude tuning curve — assuming odd or even spatial symme-
try in the absence of Fourier phase measurements — for an optimally oriented sinusoidal
grating stimulus, and that determined directly using stationary bar stimuli of the same
orientation. Experimentally derived spatial phase information was later incorporated by
Andrews & Pollen (1979), who again showed qualitative agreement between the predicted
and experimental line weighting functions, with the exception that additional subfields
beyond the measured spatial RFP could be inferred from the spectral data. Using bars,
edges and gratings drifting at or near the optimal stimulus velocity, Glezer et al. (1980)
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and later Kulikowski & Bishop (1981b) — using experimentally determined and esti-
mated phase respectively — confirmed this agreement in the spatial domain, and found
similar agreement in the spectral domain. Although clearly open to criticism concern-
ing their presumption of polar separability of the spectral RFP, these results provide
preliminary evidence for predominantly linear spatial behaviour in the simple cells.
Deferring consideration of the temporal and binocular behaviour of simple cells un-
til Sections 2.2.4 and 2.2.5 respectively, an idealised monocularly driven simple cell is

spatially linear if its output r(¢) can be expressed mathematically as®

r(t) = /vw(w)s(m,t) de (2.1)

where s:) X R — R is the stimulus contrast as a function of both position # € R? —
measured as a visual angle from the optical axis — in the visual field ¥V C R? and
time ¢t € R, and w:R%— R is the 2D spatial RFP of the cell”. However, the response of a
simple cell to a drifting sinewave grating approximates a half-wave rectified sinewave (see
e.g. Henry (1985)), an observation which is strongly suggestive of approximately linear
spatial summation over the RFP followed by the application of a threshold nonlinearity.
Such a model is commonly used to explain experimental observations (see e.g. Jones et al.

(1987)). A nonlinearity f:R — R of this type can be incorporated into (2.1) to yield

r(t) = f (/v w(@)s(, £) d:c)

In Appendix B, it is shown that for the case of the ideal halfwave rectification function
this nonlinearity can be rendered transparent by an idealisation of the reverse correlation
technique of Jones & Palmer (1987a) described in Section 2.2.1, revealing the underlying
spatial behaviour of the cell. Another type of nonlinearity which could be exhibited
within a simple cell RF is a nonlinear function p:R — R prior to spatial summation such

that (neglecting for the moment the rectification nonlinearity f)

r(t) = /vw(a:)p(s(;c,t)) dw

By subtracting the negative contrast (“dark”) correlogram from that obtained using
positive contrast (“light”) stimuli, the reverse correlation technique also eliminates the
effects of spontaneous activity and any even-order terms in the Taylor series expansion of
p, which produce the same response for light and dark stimuli (McLean & Palmer, 1989).
The experimental approximation of this idealised reverse correlation technique may not

however completely eliminate the influences of the even-order terms of the rectification

6Bold face lower-case type is henceforth used to denote vectors v € R” and the notation fv dv is
shorthand for the component-wise integration | - -fv dvy -+ - dv,. In (2.1) for example, where n =2, »
is the visual angle = € R2,

"The reader unfamiliar with the functional notation used in this exposition is referred to the brief
explanation provided in the glossary.



14

nonlinearity, in addition to which the real threshold contrast response function® (Albrecht
& Hamilton, 1982) f of the cell may — contrary to the assumption made in Appendix B
— contain finite odd-order terms which would influence the obtained RFP.

Nevertheless, after fitting the RGF model® to the simple cell 2D RFP obtained using
this reverse correlation technique and the corresponding 2D speciral RFP obtained in the
manner described above, Jones & Palmer (1987a) found reasonable quantitative agree-
ment between the 2D spatial and spectral receptive field characterisations'®. Although
arguably open to criticism on the basis of the presumption of a particular RFP model
— despite rigorous statistical testing of the residual (Jones & Palmer, 1987a) — this
observation rules out the possibility of significant higher odd-order terms in Taylor series
expansions of both the nonlinearity p prior to spatial summation and the rectification
nonlinearity f. However, since it does not rule out even-order terms, it provides only
qualified support for the tentative conclusion of spatial linearity drawn from the earlier
1D comparisons of spatial and spectral RFPs.

By way of an independent test of the spatial linearity of the simple cells, Tolhurst &
Dean (1987) investigated the applicability of the Principle of Superposition, which states
that for a linear system the response to the simultaneous presentation of two stimuli
should be the sum of the individual responses to the stimuli presented separately. The
in- and counter-phase sinusoidal modulation of two optimally oriented bars presented in
adjacent subfields of opposite sign produced reasonable agreement with the relationship
between stimulus contrast and simple cell response amplitude predicted by taking into
account both the thresholding (half-wave rectification) behaviour of the cell and the
difference in temporal phase'' between the responses to bars presented separately. In
particular, all simple cells exhibited approximately linear summation of excitatory inputs:
some departure from spatial linearity was however observed for inhibitory input. The
Principle of Superposition had been tested earlier by Henry et al. (1978) with more
equivocal results. Whilst superposition was found to hold after allowing for output
thresholding when two rectangular spots were drifted either individually or jointly — with
fixed spatial offset — across the receptive field in the preferred direction, this was not the
case when two optimally oriented bars were flashed individually and then simultaneously
in the receptive field. Despite the fact that for lower contrast levels the suprathreshold

response to the dual stimulus was found to increase approximately linearly with stimulus

8The contrast response function describes the response of the cell as a function of stimulus contrast.
Whilst in the present model the saturation of this function with increasing contrast is attributed to the
output nonlinearity f, it is likely that at least some of this saturation is in fact attributable to nonlinear
mechanisms prior to the presumed linear summation stage.

9The RGF model is described in detail in Section 2.3.1.

0although see Sections 2.3.2 and 2.3.3

'1See Section 2.2.4 for a discussion on the variation of temporal response phase across the simple cell
RF.
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contrast even when linear superposition did not apply, the discrepancy with their own
results was attributed by Tolhurst & Dean (1987) to response saturation (Albrecht &
Hamilton, 1982) at the comparatively higher contrast levels used.

A purely linear model of the simple cell spatial RFP is predicated upon the assump-
tion of balanced, antagonistic and spatially coextensive on- and off-type input to each
subfield. Known as the push-pull model (Palmer et al., 1991), this arrangement is nec-
essary to produce an equal response of opposite sign to stimuli of positive and negative
contrasts, as required by the Principle of Superposition. Due to half-wave rectification
of the response, however, the postulated inhibitory input to a subfield is not revealed by
experiments performed around the response threshold, such as those of Jones & Palmer
(1987b) and Jones et al. (1987). When the latter investigation of the 2D spectral RFP
was repeated by Palmer et al. (1991) in the presence of a second uncorrelated stimulus
used to elevate the mean firing rate of the cell, a spatial-frequency dependent suppression
of this mean was produced by drifting sinusoidal grating stimuli at spatial frequencies
to which the cell had been previously found to be unresponsive. A similar result was
reported by Bonds (1992) in independent investigations of orientation and spatial fre-
quency tuning, while Ramoa et al. (1986) demonstrated an orientation- but not (spatial)
frequency-sensitive suppression of pharmacologically-elevated simple cell activity by pre-
viously ineffective stimuli. Palmer et al. (1991) argued that their observations were
consistent with a modified form of the push-pull model in which the excitatory and
inhibitory inputs are neither precisely balanced nor spatially coextensive. This model
is at least qualitatively consistent with electrophysiological results suggesting that the
strengths of antagonistic inputs — such as on-excitatory and off-inhibitory inputs — to
a given subfield are frequently unbalanced (Heggelund et al., 1983; Heggelund, 1986a;
Tolhurst & Dean, 1987), that an inhibitory input region centred on an excitatory subfield
may not be precisely coextensive with that subfield (Ferster, 1988) and that one or other
type of input is completely lacking for some subfields (Glezer et al., 1982; Heggelund
et al., 1983). Taken together, these results suggest that the spatial processing performed
by each simple cell consists not only of the dominant linear component inferred by Tol-
hurst & Dean (1987), but also spatially nonlinear components. In modelling the simple
cell as a spatially linear device, one should therefore not lose sight of the approximation

involved in neglecting these nonlinear terms!?.

2.2.4 Spatiotemporal RFP

The linear model presented in (2.1) to describe the spatial RFP of a simple cell predicts

a response r(t) to the abrupt presentation of a stationary stimulus s(@,t) = sg(@)u(t)

12The interested reader is referred to Henry (1985) for further discussion on early results concerning
the spatial linearity and nonlinearity of the simple cells.
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which is given by
r(t) = u(t)/vw(m)sm(w) dw

where w(t) is the unit step function and sy(x) is the stimulus contrast as a function
of the visual angle @ alone. The predicted response, which is proportional to the unit
step function, fails to capture the temporal behaviour of real simple cells, which exhibits
both a finite delay (Ikeda & Wright, 1975a), and a time course (and temporal [requency
response) reminiscent of a low-pass or band-pass temporal filter (Ikeda & Wright, 1975b).
Neurophysiologists refer to such responses, and by extension the cells exhibiting them,
as sustained or X-like and transient or Y-like respectively. Furthermore simple cells
are known to receive X- or Y-like inputs (or possibly both) from neurons in the lateral
geniculate nucleus (LGN) of the thalamus (see e.g. White (1989, p. 136)) — through
which the majority of feedforward input to primary visual cortex passes on its way from
the retina — and each of these inputs may be of either on- or off-type. Finally, Hubel
& Wiesel (1962) noted that simple cells in the feline primary visual cortex were often
significantly more responsive to a stimulus if it was drifted across the receptive field, and
that the response varied with both the direction and velocity of the stimulus. The velocity
tuning curves of the simple cells for fixed stimulus size have since been elaborated by a
number of researchers (see e.g. Movshon (1975)), and experiments designed to elaborate
simple cell spatial and spectral RFPs routinely use stimuli moving at the optimal velocity
(magnitude and direction). A proper consideration of the temporal characteristics of the
simple cell is therefore likely to be vital to a full understanding of its computational role.

If we retain a linear model for simplicity, temporal behaviour can be incorporated by

defining a spatiotemporal RFP w:R?*x R, — R such that

r(t) = /_too/vw(:c,t—v')s(a:,r) dz dr (2.2)

A major consequence of this model is that the notion of a spatial RFP is no longer
strictly defined unless w is spatiotemporally separable, in which case it can be expressed
as w(x,t) = wg(@)w;(t) where wy(x) and w,(t) encapsulate independently the spatial
and temporal behaviour respectively. A separable spatiotemporal REFP is shown in Fig-
ure 2.2(a). This property was found to hold for only 24 of the 52 simple cells tested
by McLean & Palmer (1989), who used a reverse correlation technique similar to that
of Jones & Palmer (1987b) but with finer (1ms) temporal resolution to determine the
apparent spatial RFP of the cell as a function of the pre-spike stimulus presentation
time. The resultant 2D spatiotemporal plot may be viewed as a 2D (1 spatial and 1
temporal dimensional) section through the 3D spatiotemporal RFP along the (spatial)
axis of subfield alternation.

For the remaining 28 of the 52 simple cells studied by McLean & Palmer (1989) —
all of which were directionally selective — this plot revealed that the RF subfields drift

with approximately uniform velocity in the preferred direction of stimulus motion with
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Figure 2.2: Spatiotemporal RFP w(z,—t) (after McLean & Palmer (1989, Figs. 1B &
E)) showing for each position along the axis of subfield alternation and for each pre-spike
time, the probability that a bright (solid contours) or dark (dotted contours) stimulus
presented at that spatiotemporal position will elicit a spike at time ¢t = 0. (a) Separable.
(b) Inseparable.

decreasing pre-spike presentation time, as illustrated in Figure 2.2(b). The drift veloc-
ity of these subfields, which agreed well with both the preferred direction and velocity
of the simple cell, provides a measure of the degree of Cartesian inseparability of the
spatiotemporal RFP: the higher the subfield drift velocity, the less valid the notion of
a discriminable spatial RFP. In accordance with this observed spatiotemporal insepara-
bility, Reid et al. (1987) showed that velocity-sensitive behaviour in some simple cells
could be largely explained by a model based on linear spatial summation of subfield in-
puts whose temporal phase advanced (delay decreased) linearly in the preferred direction
of stimulus motion. Measurements of the spatiotemporal phase transfer function of sim-
ple cells in both monkey and cat were similarly shown by Hamilton et al. (1989) to be
largely consistent with the inseparable linear quadrature model of Watson & Ahumada
(1983; 1985).

Linear spatiotemporal RFP models did not however account completely for the veloc-
ity sensitivity observed by Reid et al. (1987) in simple cells. Furthermore, in the study
by McLean & Palmer (1989), 8 of the 24 cells having separable spatiotemporal RFPs
were still found to exhibit a preference for one direction of motion. This latter obser-
vation was supported by Emerson & Citron (1988; 1989), who used reverse correlation
techniques to identify the first- and second-order spatiotemporal Wiener kernels for the
simple cell (see e.g. Schetzen (1980)). A considerable direction selective component in
the second-order kernel was identified by performing a second-order reverse correlation of

the neural spike train with the spatiotemporal stimulus, which consisted of 16 optimally
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oriented bar stimuli spaced uniformly along the axis of subfield alternation and whose
contrasts were randomly and independently selected every 16ms from three possible val-
ues: zero, and equal positive and negative contrasts. This result indicates a direction
selective interaction between stimuli at small spatiotemporal offsets, such that following
the presentation of a bar the cell would prefer the subsequent presentation of a second
bar of the same contrast sign at a position whose spatial offset in the preferred direction
increases linearly with the temporal offset. The preferred direction predicted from such
nonlinear mechanisms is generally in agreement with that predicted from the first-order
Wiener kernel (Emerson & Citron, 1989; Reid et al., 1987) — viz. the spatiotemporal
RFP.

Thus in addition to Cartesian inseparability of the spatiotemporal RFP, a simple cell
may also exhibit spatiotemporal nonlinearity. For further discussion of the likely impor-
tance of nonlinearities in spatiotemporal vision, and the limitations of linear analysis in

this context, the interested reader is referred to Regan (1991).

2.2.5 Binocular RFP

Contrary to the implicitly monocular treatment of the simple cell presented so far, Hubel
& Wiesel (1962) noted that most if not all simple cells could be driven to some extent by
input to either eye. The provocative observation by Hubel & Wiesel (1962) that the left-
and right-eye receptive fields for a given simple cell occupied corresponding positions on
the two retinae led Barlow et al. (1967) and Pettigrew et al. (1967) to postulate and
investigate the involvement of cells in feline primary visual cortex in the computation of
binocular disparities and hence — in the case of horizontal disparities — of stereoscopic
depth. In the feline primary visual cortex, Pettigrew et al, (1967) showed that individual
simple cells were tuned to a range of horizontal disparities, while Barlow et a]. (1967)
demonstrated that the optimal disparity varied significantly between neurons'®., The
stereoscopic depth tuning properties of primary visual cortical neurons have since been
elaborated by a number of researchers for both monkey (see e.g. Poggio et al. (1988),
Poggio (1980)) and cat (see e.g. LeVay & Voigt (1988)).

If the inputs from the left and right eyes are assumed to be processed independently
by linear spatiotemporal mechanisms prior to linear combination of the binocular inputs,

the output 7(¢) of the simple cell is given by

r(t) = /_;/VL wi(a,t—7)s(e,7) de dr + /_;/VR wh(®,t~7)sp(z,7) de dr  (2.3)

where sy, : V; xR — R and Sp:VrXR =R represent the 3D stimulus as viewed from the left
and right eyes respectively, wy : VixRy—R and wp: VEXR; —R are the corresponding
monocular spatiotemporal RFPs, and V;, Vg C R2are the left- and right-eye visual fields.

13a,lthough they did not differentiate between simple, complex and hypercomplex cell types.
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The pair {wg,wgr} will be referred to as the binocular spatiotemporal RFP". Evidence
for linearity of binocular summation has been provided by Ohzawa & Freeman (1986)
and Freeman & Ohzawa (1990b; 1990a), who showed that the dependence of the response
amplitude on the spatial phase offset between dichoptically presented drifting sinusoidal
gratings at the optimal orientation and spatial frequency was approximately sinusoidal,
and exhibited a single phase at which response was (almost) completely suppressed. This
result was largely confirmed by Hammond (1991), with the exception that a few simple
cells were found to be largely insensitive to the interocular phase shift.

Ohzawa & Freeman (1986) showed good agreement between their experimental results
and a linear model in which the spatial LWF's were identical for the left and right eyes, but
offset by the optimal horizontal disparity for that cell. This model is in broad agreement
with the observations that the left and right eyes have similar spatial frequency and
orientation tuning (Freeman & Ohzawa, 1990a; Skottun & Freeman, 1984) — although
see Hammond & Pomfrett (1990) — RFP organisation (Hubel & Wiesel, 1962), and
LWFs (Maske et al., 1984). However, by plotting the 2D RFPs for left- and right-
eye monocular input using reverse correlation techniques similar to those of Jones &
Palmer (1987b), Freeman & Ohzawa (1990b) demonstrated that the left and right eye
spatial RFPs frequently differed, and in some cases the spatial ordering of the subfields
along the common axis of alternation was completely reversed. They suggested that this
observation was more consistent with a model such as that of Nomura et al. (1990)'® in
which the alternating pattern of subfields — windowed in both eyes by a function such
as a Gaussian centred at zero disparity — was phase shifted by the optimal disparity of
the cell. However collocation of the windowing function was not explicitly tested.

To describe the relative strength of the inputs from the two eyes, Hubel & Wiesel
(1962) proposed the ocular dominance index, according to which cells receiving exclu-
sive input from the contralateral or ipsilateral eye — as determined using monocular
stimulation — were assigned the extreme values 1 and 7 respectively, while intermediate
values signified somewhat coarsely the relative dominance of the two inputs. Monocular
experiments on the simple cells — such as those cited in previous sections — convention-
ally present stimuli to the dominant eye. However, Hubel & Wiesel (1962) found that
some cells could only be activated by binocular input, suggesting nonlinear interaction
between inputs from the two eyes. Furthermore Freeman & Ohzawa (1990b) found that
simple cells which appeared exclusively monocular under monocular stimulation showed

clear evidence of input from the supposedly silent eye during binocular stimulation. The

14The spatial component of this characterisation differs from the binocular receptive field defined by
Ohzawa & Freeman (1986), which is produced by the summation of the spatial RFPs of the left and right
eyes. Their model therefore fails to account for features which, either through an interocular difference
in the viewing perspective or through experimental manipulation, are not visible through one of the two
eyes.

15To be discussed further in Section 2.3.4.
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strength of this input varied little as the relative contrast of the stimulus to that eye was
varied over a 10-fold range, indicating the presence of independent gain control mech-
anisms for inputs to the two eyes. This latter observation suggests that monocularly
measured ocular dominance is largely irrelevant to the binocular operation of the cell.
A more complete characterisation of the simple cell as a binocular device would in-
volve the determination of the binocular spatiotemporal Wiener kernels of the simple
cell for 5D stimuli expressible in terms of the three variables: left- and right-eye po-
sitions @, ®p € R? and time ¢. Although insufficient to account for the temporally
non-stationary effects of contrast gain control, such an analysis may reveal more com-
plex details such as tuning for (possibly oblique) motion in depth (see e.g. Regan et al.

(1990)), and thereby indicate new directions of investigation.

2.2.6 Summary

In the foregoing discussion, the spatial, spectral, spatiotemporal and binocular recep-
tive field profiles of the simple cells have been described, and the extent to which the
linear characterisation of the cell inherent in the notion of an RFP is valid has been
briefly addressed. It is concluded that with the appropriate reservations, the simple cell
may be viewed to a first approximation as a linear device characterised by its binocular

spatiotemporal RFP.

2.3 Gabor Function Models

2.3.1 Spatial RFP

Maréelja (1980) demonstrated a strong resemblance between simple cell LWFs and the
one-dimensional (1D) real-valued Gabor functions (RGFs), which form the real and imag-
inary parts of the 1D Gabor functions. Given by the product of a Gaussian and a sinusoid,
the 1D Gabor functions were named in honour of Gabor (1946), who showed how they
can be used in the representation of 1D signals. The Gabor functions were generalised
by Daugman (1980; 1985), Kulikowski et al. (1982) and Watson & Ahumada (1983) to
two dimensions, by Heeger (1987) to 3D, and by MacLennan (1991) to n dimensions,

yielding the n-dimensional Gabor function g:R"— C
9(x) £ a-exp{~7|S7(z~mo) |3} - exp{s2ruf (e —w0o)} (2.4)

where T denotes the transpose operator. Gabor functions are parameterised by the set
{®o, S,ug,a}, where o€ R" is the location of the Gaussian centre, S € RP™ is a
diagonal matrix whose zth diagonal entry s;; is proportional to the standard deviation of

the Gaussian along the principal axis aligned with the ith coordinate axis, ug € R" is the
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(oriented) spatial frequency vector in cycles per unit length, and a € R is an amplitude

scaling factor. In two dimensions, for example,

To = e 5l =
Yo

with the aspect ratio A\ & min{:—;,:—:}. The explicit notation g(x;xo, S, ug,a) will be

reserved for situations in which it is useful to emphasise this parameterisation.

The real and imaginary parts of g(x) are given by

Rig(@)} = a-exp{-t]S(=-wo)[3) - cos(2ruf(@—=a)}  (25)
(@)} = a-exp{—r[SH(z-wo)3) -sin{2ruf(@—z0)}  (25b)

respectively, and will be referred to as the real-valued Gabor functions'® (RGF). While
the principal axes of the Gaussians in (2.5) are aligned with the coordinate axes, the
sinusoid may have arbitrary orientation arg{uo}, with the result that the RGF is not
in general Cartesian separable. In a number of the 2D simple cell RFPs identified by
Jones & Palmer (1987b), lack of Cartesian separability was evident as a progressive
displacement, across the RF, of the subfields in the direction of subfield elongation (see
e.g. Jones & Palmer (1987b, Fig. 2F)), as illustrated in Figure 2.1(h).

A simple generalisation of the Gabor function which is necessary to accommodate
the observed variety of simple cell 2D spatial RFPs involves the addition of two extra
degrees of freedom: a phase shift ¢ € R of the sinusoid relative to the Gaussian centre
xo (Kulikowski et al., 1980; Watson & Ahumada, 1983; Field & Tolhurst, 1986); and a
rotational angle 8 € R"~! between the principal axes of the Gaussian and the coordinate
axes (Daugman, 1985; Jones & Palmer, 1987b, both in 2D). The resultant functions —
which will henceforth be referred to as generalised Gabor functions — are parameterised

by the set {xo, S, uo,8, $,a} with 8, in radians, and are given by
g(x) £ a-exp{~7||S7 R_g(—0)|3} - exp{j[2mug (x—20) + ¢]} (2.6)

where R_g is the operator (matrix) performing a rotation through the angle —8. In two

dimensions, for example,

R g [ 0?3(92) —sin(0,) :|
sin(8,) cos(8,)

Except where indicated otherwise, g(@) is henceforth used to denote the generalised

version of the Gabor function. The real and imaginary parts of the generalised Gabor

18The term Gabor elementary funclion was reserved by Stork & Wilson (1990) for these real-valued
functions, but is generally used by others either interchangeably with the term Gabor function (Daug-
man, 1985) or to refer without distinction to either a Gabor function or its real and imaginary parts
(Marcelja, 1980). The new term real-valued Gabor function has therefore been coined to avoid the
potential confusion arising from these conflicting conventions.
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function are given by

Rig(x)} = a-exp{—m||S™Rg(x—xo)|3} cos{2muf(x—z0) + ¢}  (2.7a)
S{g(z)} = a-exp{—7|STR_g(@—wo)|3} sin{2rul(x—x0) + ¢} (2.7b)

respectively, and are related simply by a 90° phase shift in the sinusoidal term. Without
loss of generality, it is therefore only necessary when fitting this model to a real spatial
RFP to consider the generalised RGF (GRGF) w(z) £ R{g(x)}, with w:R"— R having
¢ as a free parameter. Examples of a 2D GRGF are presented in Figures 2.3(a), (c) and
(e).

The necessity of the above generalisation of the RGFs to arbitrary Gaussian orienta-
tion is most readily appreciated through an examination of the 2D spectral RFP, which
is the topic of Section 2.3.2. The need for a non-zero phase shift is evident for cases in
which the axis of subfield alternation in the spatial RFP shows approximate alignment
with a principal axis — the ith say — of the overall RF window, yet the RFP still fails
to exhibit the odd or even symmetry about the hyperplane z; = [@o]; — perpendicular
to that principal axis — which is predicted by the two RGF models in (2.5) respectively.
Clear examples of such asymmetric RFPs are presented by Jones & Palmer (1987a, Figs.
2E & 4B). Ironically however, despite the conclusion by Jones & Palmer (1987b) that
“most simple receptive fields are neither even symmetric nor odd symmetric”, their re-
port is not infrequently cited in support of models requiring these symmetries (see e.g.
Koenderink & van Doorn (1990a)), and in image analysis applications — reviewed in
Chapter 3 — in which only the original (odd- and even-symmetric) RGFs are used.

The frequent asymmetry of simple cell RFPs — noted earlier by Kulikowski et al.
(1980) and Field & Tolhurst (1986) in connection with the LWF — limits the generality
of most existing models of the simple cell spatial RFP. Many such models are motivated
by the computational goals — discussed further in Sections 3.2 and 3.3 respectively — of
detecting lines and edges in the visual image and of calculating directional spatial deriva-
tives of the image contrast (although see e.g. Atick & Redlich (1990a)). According to the
latter approach, the antisymmetric and symmetric RFPs with two and three subfields
respectively — illustrated in Figures 2.1(d) and (e) and commonly labelled as “edge and

line detectors”!”

— are viewed as resulting from the application of discrete-space ap-
proximations of the first- and second-order directional derivative operators respectively
to the photoreceptor RFP, which is frequently modelled as a Gaussian. The resultant
Gaussian derivative model (Gaussian-windowed Hermite polynomials) which was first
proposed and evaluated by Young (1985) in 1D, and later proposed independently by
Martens (1990) and Koenderink & van Doorn (1990a; 1990b) in 2D, as a model of the

LWF and RFP respectively, relies on these canonical symmetries. As will be seen in

Section 3.3 however, the generic fractional discriminant function model of Hungenahally

'7Although for reasons discussed later in Section 3.2 this terminology should be discouraged.
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(a) 2D GRGF (b) Fourier magnitude
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(e) 2D GRGF (f) Fourier magnitude

Figure 2.3: Mesh and contour plots of a 2D GRGF with the common parameter values
(unit length given by 1 grid interval): @ = [0,0]7 (centre of grid), arg{uo} = 45°,
Smaj = 17.7, and A = 0.667. Additional parameters are (a) |uo| = 0.0509, 0, = 45°, &
¢ = 180° (c) |ug| = 0.0509, 6, = 30°, & ¢ = 60°; and (e) |uo| = 0.0382, 6, = 45°,
& ¢ = 90°. (b),(d),(f) Magnitude of the Fourier transform of the RGF's illustrated in
(a),(c),(e) respectively. Note that only the odd-symmetric (sine-phase) GRGF exhibits
zero magnitude at spatial DC (centre of plot).
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et al. (1992; 1993) avoids this pitfall. Nevertheless all such directional derivative RFP
models proposed to date exhibit Cartesian separability, although this property need not
hold if for example the Gaussian derivative model were to be extended to the case of
anisotropic Gaussians.

Attempts to relate the RGF model of the simple cell spatial RFP to the theories
of cdge and line detection and directional spatial derivatives may have conlributed to
the tendency to use only the odd- and even-symmetric RGF models, despite the obvious
modelling advantage conferred by the unused extra degree of freedom. Although aware of
the existence of asymmetric RFPs, Marcelja (1980) cited among other things the evident
utility of extracting lines and edges from the visual image as justification for his 1D RGF
model. Similarly Sakitt & Barlow (1982) proposed an economical scheme for the cortical
representation of the visual image in terms of odd- and even-symmetric Gabor func-
tions, which were nevertheless referred to as “edge and bar detectors”. Paler & Bowler
(1986) noted the similarity between the odd- and even-symmetric RGFs having 2 and
3 subfields'® and the Canny edge detector (Canny, 1986) and second Gaussian deriva-
tive respectively. Pollen & Ronner (1983) on the other hand preferred these canonical
symmetries'® on the basis of the mistaken belief that they are required for the optimally
efficient Gabor function decomposition of the image®, once again despite being aware
that some simple cells exhibit an asymmetrical RFP. This view was probably motivated
by the localised Fourier analysis hypothesis of simple cell spatial information processing
as discussed in Section 3.4, since it is conventional — but not necessary — in Fourier
analysis to use sinusoids in strict sine and cosine phase.

Although Jones & Palmer (1987a) later fitted the GRGF model to their data, it is
important to note that the conclusions drawn by Jones & Palmer (1987b) were — apart
from the assumption of spatial linearity — independent of any particular model of the
simple cell RFP. This is an important point, since any conclusions drawn after the fitting
of a particular model would necessarily be dependent on the appropriateness of that
model. However, the lack of RF symmetry and of Cartesian separability clearly visible
in some of the simple cell RFPs identified by Jones & Palmer (1987b) was also reflected in
the parameters obtained by Jones & Palmer (1987a) after fitting the GRGF model to the
RFPs of 36 simple cells. In particular, the angle | arg{wuo}—0.| between the sinusoid and
the nearest principal axis of the Gaussian — which is by definition in the range [0°, 45°]
— exceeded 20° for 7 of the 25 cells for which parameters were tabulated. Furthermore,
the phase angle |¢| was distributed approximately uniformly over the range [0°,90°], as

opposed to clustering around 0° and 90°, which would be required — assuming Cartesian

18j.e. a Gaussian with relatively small standard deviation along the axis of subfield alternation, so

that only two or three subfields are prominent.
Yalthough see Pollen et al. (1985).

20Gee Section 3.4.2 for further details.
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separability — to support the hypothesis that simple cells fall into the canonical odd-
and even- symmetries. This latter result supports the similar finding reported by Field
& Tolhurst (1986) for the simple cell LWF. The aspect ratio A for the cells tested ranged
from 0.23 (strongly elongated) to 0.92 (almost round), with no absolutely preferred value.

The accuracy of the fit provided by the GRGF model was later confirmed by Palmer
et al. (1991) using lms temporal resolution for the prespike time and selecting the time
bin at which maximum response was achieved, allaying possible concerns that the RFPs
obtained by Jones & Palmer (1987b) using 50ms time bins might be unrepresentative of
the instantaneous spatial structure in cases of spatiotemporally inseparable RFPs due
to blurring caused by subfield drift. However it should be pointed out that neither
group observed simple cells with more than three subfields. Although this finding is not
surprising given the relative scarcity of such cells (Glezer et al., 1989), the relatively
small sample size used (36), and the average retinal eccentricity of the recordings (Jones
& Palmer, 1987b), it means that the GRGF model — although able to account at least
qualitatively for an arbitrary number of subfields — is as yet untried on simple cell 2D
RFPs having 4 or more subfields.

Problems with the GRGF Model

The principal objection to the GRGF model of the simple cell spatial RFP is that it has
infinite spatial extent or noncompact support (MacLennan, 1991) — albeit with rapidly
diminishing weighting — and consequently an infinite number of zero crossings due to
the sinusoid (Stork & Wilson, 1990), as is evident from the zero-level contours in the
GRGF plots of Figures 2.3(a), (c) and (e). In contrast, the maximum number of subfields
recorded to date for a simple cell is 8 (Glezer et al., 1989). In reality however, no cell can
have a monocular RFP which exceeds the visual field for the corresponding eye, so that
truncation of any RFP model at the edge of the visual field is a practical necessity. In
view of the exhorbitant “wetware” (neural hardware) cost of providing feedforward input
via the LGN to each simple cell from every photoreceptor?!, evolution might be expected
to prefer a more parsimonious solution in which the support of real RFPs would in fact
be significantly smaller than this again, especially in cases where the (measurably) non-
zero portion of the RFP subtends only a small portion of the visual field. However, the
recordings of Jones & Palmer (1987b) did not extend beyond a few standard deviations
of the allegedly Gaussian window, and would almost certainly have required a prohibitive
number of stimulus cycles to reveal a non-zero weighting at this distance, so that the
exact behaviour of the window would be difficult to reveal experimentally.

A second potential objection to the GRGF model is that it fails to account for the end-

stopping or hypercomplex property exhibited by many cells classified as simple according

2lalthough lateral interactions between simple cells and feedback from subsequent cortical layers could
also contribute to the RFP. This possibility is discussed further in Chapter 7.
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to the criteria of Henry (1977) (Orban, 1991). “End-stopping” refers to the progressive
suppression of simple cell response (often in excess of 50%) as the length of an optimally
oriented bar is increased beyond its optimal value. To account for this behaviour using a
linear RF model, one would need to postulate the existence of inhibitory flanks at either or
both ends of the each excitatory RF subfield, a feature which cannot be accommodated
by the GRGF RFP model. Nevertheless, since end-stopping was not observed in the
identification experiments of Jones & Palmer (1987b), the possibility exists that this
phenomenon is a consequence of even-order spatial nonlinearities which are transparent to
the reverse-correlation identification technique and excluded by the linear definition of the
RFP. It remains however to demonstrate that simple cells exhibiting the hypercomplex

property were not systematically (albeit possibly inadvertently) excluded from the sample

tested by Jones & Palmer (1987h).

2.3.2 Spectral RFP

The Fourier transform G:R™— C of the generalised Gabor function — where G(u) £

F{g(x)} and F denotes the Fourier transform (FT) — is given by
G(u) = a-exp{—7||SR_g(u — wo)||;} - exp{j[27(u — uo) @0 + ¢]}

Using the notation G(u; o, S, uo,8, ¢, a) once again to emphasise the parameterisation,
the Fourier transform W:R"— C of the GRGF w(x) can be expressed as

W(u) 2 F{R{g(x)}} = G(u;x0, S, u0,0, $, g) + G(u; ®o, 5, —u0, 8, — 9, %) (2.8)

The Fourier transforms of the RGFs in (2.5) are special cases of (2.8) in which ¢ = 0°
and ¢ = 90° respectively and 8 = 0. W (u) consists of two Gaussians centred at uo and
—uo and modulated by sinusoids having phase ¢ and —¢ respectively at the Gaussian
centres, and “frequency” . The magnitude of W(u) in (2.8) can be derived using the
fact that |W(w)|* = W(u)W*(u) — where |- | and * denote the complex magnitude and

conjugate respectively — and by noting that
W*(u) = G(ua —ZLo, Sa Uo, 0) —¢a g) + G(u; —Zo, Sa —Uy, 07 ¢a %)

Three examples of the Fourier magnitude of a GRGF are presented in Figures 2.3(b),
(d) and (f).

The comprehensive investigation of the magnitude of the simple cell 2D spectral RFP
undertaken by Jones et al. (1987) revealed not only the polar inseparability of the RFP,
but also in some cases its Cartesian inseparability, evident as a lack of radial alignment
of any principal axis of the spectral window in the 2D spectral plane. However contrary
to the predictions of horizontal or vertical alignment derived from the RGF model, these

axes were mostly in approzimate radial alignment, indicating the need for the rotational
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angle 8 introduced in (2.7). These observations are once again independent of any
particular model of the 2D spectral RFP.

The ability of the RGF model of the spatial RFP to describe also the spatial frequency
tuning properties of the simple cells was demonstrated in 1D by Marcelja (1980) for
spatial frequency magnitude, and suggested in 2D by Daugman (1980) for. 2D spatial
frequency (magnitude and orientation). Visual inspection by Jones & Palmer (1987a) of
the error after the least-squares fit of the GRGF model to the Fourier magnitude data
obtained by Jones et al. (1987) revealed no obvious residual spectral structure, providing
support for W(u) — the FT of the GRGF — as a model of the simple cell spectral
RFP. A comparison of the GRGF parameters estimated from fits to the spatial and
spectral REF'Ps of each of 25 simple cells also showed broad agreement between parameter
estimates. The two principal exceptions to this general agreement were poor agreement
of the phase estimates and a consistent tendency for the estimates of the Gaussian space
constants s; obtained from the spectral data to be larger than those obtained in the

spatial domain. The latter phenomenon is discussed in Section 2.3.3.

Problems with the GRGF Model

The comparison by Jones & Palmer (1987a) between the estimates of the sinusoidal
phase parameter ¢ obtained from the spatial and spectral RFPs for individual simple
cells however revealed little correlation between these two estimates, and a tendency for
the spectral estimate to lie closer to or — in the case of 6 of the 25 cells for which
data was tabulated — exactly at 90°. This same effect was noted also in the monkey
by Hawken & Parker (1987), who fitted the 1D GRGF model to the spatial frequency
contrast sensitivity tuning curve. They pointed out that the Gabor function model
tended to consistently over-estimate the contrast sensitivity at low spatial frequencies,
and that ¢ = 90° gave the best least-squares fit probably because it provided the sharpest
low-frequency roll-off of all the GRGFs. Furthermore ¢ = 90° is the only phase which
predicts the zero response to spatial DC (uniform illumination) commonly reported for
simple cells (Stork & Wilson, 1990); compare for example Figures 2.3(b) and (d) with
Figure 2.3(f).

In the case of Hawken & Parker (1987), who measured the contrast required to
elicit a mean response which was 2 standard deviations above the spontaneous activity
of the cell, it is possible that the rate of low-frequency roll-off was overestimated due
to the nonlinear effects noted by Palmer et al. (1991). In particular, if in addition
to the sinusoidal response modulation expected for such a stimulus the grating also
suppressed the mean activity in a frequency-dependent manner, the stimulus contrast
required to elicit the specified mean response could well have been overstated at low
frequencies, and hence the contrast sensitivity underestimated. Although Movshon et al.

(1978a) reported qualitative agreement between tuning curves obtained for the same cell
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using both the fundamental Fourier component of the temporal response and the grating
contrast required to elicit the smallest discernible response, the response criterion used
by Hawken & Parker (1987) may have been slightly higher, enhancing the effect of the
nonlinearity. Nevertheless, this explanation accounts for neither the poor agreement
of the spatial and spectral phase estimates observed by Jones & Palmer (1987a), who
used the fundamental of the temporal response to obtain the spectral RFP, nor for
the consistent overestimation — based on the spatial RFP — of the spectral width
parameters. Thus it is appears more likely that nonlinear mechanisms are acting to limit
the extent of the spectral RFP even in the absence of the elevated mean firing rate used
by Palmer et al. (1991), and it is therefore not possible to discount the GRGF as a model
of the spatial RFP of the simple cell on the basis of the above spectral observations. Such
mechanisms would be consistent with the model-independent observation by Westheimer
(1984) that the line weighting functions of simple cells rarely exhibit a sufficient number
of subfields to account for the narrowness of the observed spatial frequency tuning curve.

Nevertheless, despite the apparent scarcity of models of the simple cell spatial and
spectral 2D RFPs which exhibit sufficient degrees of freedom to even warrant an attempt
at fitting them to the experimental data (Jones, 1991), the investigation by Jones &
Palmer (1987a) is open to the criticism that no alternative models were tried (Stork &
Wilson, 1990). The Fourier transform of an alternative model of the 2D spatial RFP
was shown by Hawken & Parker (1987) to account in a much more satisfactory manner
than the 1D GRGF model for the fall-off of the contrast sensitivity function of the simple
cell at low grating spatial frequency. According to the Difference of Offset Difference-of-
Gaussian (DOODOG) model proposed by Hawken & Parker (1987) in 1D — but readily
generalisable to 2D -— and based on a suggestion originally by Hubel & Wiesel (1962),
each RF subfield consists of input from the LGN having the familiar centre-surround
difference-of-Gaussians (DOG) RFP (see e.g. Wright & Tkeda (1973)). The ovcrall simple
cell RFP results from the linear combination of such RFPs with appropriate sign and
spatial offset, and — in the 2D case — alignment to produce the corresponding elongated
RF subfields. Cartesian inseparability is readily introduced in the 2D generalisation by
weighting the inputs along the direction of subfield elongation differently for each subfield.
However, despite the appeal of the spatial domain version of this model — which stems
from its more direct reflection of the RF properties of the geniculocortical inputs to
the simple cells — it has been shown that such a model cannot alone account for the
2D spatial frequency tuning properties of the simple cells (Webster & de Valois, 1985;
Worgotter & Koch, 1991). Furthermore, no direct fit of this model to the spatial RFP of
the simple cell was attempted, and given the established lack of residual structure after
such a fit for the 2D GRGF, there is no reason to believe that the DOODOG model
might provide a better description of the simple cell spatial RFP.



29

2.3.3 Optimal Joint Localisation

Weyl’s (1932) Uncertainty Principle — which was also derived independently by Gabor
(1946) in the context of communication theory — imposes a fundamental limit on the
extent to which the energy distributions |1)(x)|? and |¥(z)|? of any 1D function % :R —C
and its Fourier transform W:R — C can be simultaneously concentrated or localised in
the spatial and spatial-frequency domains respectively. This principle was extended by
Daugman (1985) to functions of two dimensions, and later generalised independently by
Wechsler (1990) and MacLennan (1991) to functions ¢ :R™— C in n dimensions and their

Fourier transforms W:R"— C. The generalised Uncertainty Principle may be stated as

Az;Au; > 11; Vie{l...n} CZy4 (2.9)
with
s |2 (= T) () de .
R N e o (@:10%)
o | S (u — )2 U (w)|? du
T \ [P (u))? du (2.10b)

where z;, u; are the ith components of the spatial and spatial frequency vectors &, u € R"

respectively, u; is in cycles per unit length, and

JZ% zilb () ? de
J2% (=) |? de
12w U ()P du
oo [¥(u)[? du
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are the centroids of the distributions obtained by integrating the original energy distri-
butions over all other dimensions j # i. Az; and Aw; provide measures of the spatial
and spectral spread of the energy distribution of the function in the sth direction, while
the product of their inverses is a corresponding measure of its joint localisation. The
necessary but insufficient condition

f_[ Az;Au; > (i>n

i=1 Am
for (2.9) is sometimes presented as an alternative statement of this generalised Uncer-
tainty Principle (see e.g. Wechsler (1990)).

Weyl (1932) showed that in one dimension (1D), the class of functions for which the
equality in (2.9) holds consists of those expressible as the product of a Gaussian and a
sinusoid, which would later come to be known as the Gabor functions. Satisfaction by the
Gabor functions of the equality in (2.9) for all 7 was asserted by Kulikowski et al. (1982)
for the 2D case, and later proven by Daugman (1985) for 2D and MacLennan (1991) for
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nD. A phase shift ¢, although not explicitly considered in these proofs, does not affect
this optimal joint localisation property of the nD Gabor functions since the sinusoidal
term vanishes when the complex modulus is computed in (2.10). Furthermore while
uniqueness of this property to the nD Gabor functions was not demonstrated, it follows
simply from the 1D case by noting that in order to satisfy the sth equality in (2.9), the
LD energy distribution formed by integrating over all other dimensions j # 4 must itself
be that of a Gabor function (possibly with ug = 0). The requirement for satisfaction of
the equality in (2.9) for all ¢ therefore uniquely specifies the set of generalised nD Gabor
functions for which the principal axes of the Gaussian are aligned with the coordinate
axes.

The Gabor functions represent a continuum in the inevitable trade-off between spatial
and spectral localisation, with the pure spatial and spectral (Fourier) domain represen-
tations constituting its two extremes. An important advantage, according to Daugman
(1989b), of a representation of the visual scene using the 2D Gabor functions is that it

therefore

... facilitates the extraction of local 2D spectral information (texture, scale,
axes of modulation) without loss of information about 2D location or metrical

relationships.

permitting for example the spatial segmentation of the visual image into regions defined
by distinct textural (spectral) signatures, with optimal spatial localisation of the texture
boundaries in each spectral band.

However, as indicated by Stork & Wilson (1990) for the 1D case, the GRGFs do not
exhibit the optimal joint localisation permitted by (2.9). This is a consequence of the
fact — demonstrated by Papoulis (1968, p. 197) for the 2D case — that any real-valued
function minimising the localisation about the hyperplane x; = 0 is Cartesian separable
and has a Gaussian form along the other coordinate axes; simultaneous optimisation
by a real function of the joint localisation about all hyperplanes z; = 0 is therefore
only achieved by a Gaussian whose principal axes are aligned with the coordinate axes.
Motivated by the sketch of a proof provided by Gabor (1946), Stork & Wilson (1990)
claimed to have shown that the 1D functions achieving local minima of the product
of the spatial and spectral spreads defined in (2.10) are the derivatives of a Gaussian,
of which the Gaussian itself is a special case. Their proof has since been criticised on
two counts. Yang (1992) pointed out that the functions which satisfy the first-order
conditions for a local optimum are Gaussian-windowed Hermite polynomials in which
the standard deviation of the Gaussian is greater by a factor of v/2 than that of the
Gaussian derivatives mistakenly proposed by Stork & Wilson (1990). More importantly,
however, Yang (1992) argued that both Gabor (1946) and Stork & Wilson (1990) had

failed to check the second-order conditions for a local optimum, and based on empirical
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evidence provided by Klein & Beutter (1992), he concluded that these functions in fact
constituted saddle points for the joint uncertainty measure. Klein & Beutter (1992)
furthermore showed that under a loose restriction on the class of permissible spatial
RFP functions, the Gaussian-windowed Hermite polynomials, with the exception of the
Gaussian itself, give local mazima of the joint uncertainty. Thus in addition to the
objections to the derivative-of-Gaussian model raised in Section 2.3.1, the first order
derivative exhibits a joint spread which exceeds the theoretical minimum by at least
an order of magnitude (Stork & Wilson, 1990, Fig. 3), and this factor increases as the
derivative order or the standard deviation of the Gaussian increases. Nevertheless, the
GRGF's exhibit similarly poor joint localisation.

In order for the optimal joint localisation property of the Gabor functions to have any
relevance to the early visual processing performed by the simple cells, it is necessary to
show that the simple cell layer might feasibly implement complez-valued Gabor functions.
Given the already-established resemblance between the GRGFs and the RFPs of the
simple cells, the only feasible?? scheme by which this might be achieved involves the
direct implementation of the real and imaginary parts of each generalised Gabor function
by a pair of simple cells whose spatial RFPs are respectively described by the GRGF

pair

w(x; ©g, S, u0,8, ¢ ,a) (2.11a)
w(x; ®o, S, 0,0, ¢+3 ,a) (2.11Db)

in spatial phase quadrature. To allow for the approximate half-wave rectification exhib-
ited by simple cells, this basic scheme was augmented by Pollen & Ronner (1981; 1982;
1983) — for the case ¢ = 0 — to include a second pair of simple cells in antiphase to the

first with RFPs given respectively by

w(x; ©o, S, 0,0, ¢+7 ,a) (2.12a)
w(x; xo, S, uo, 0, qb-l—%” ,a) (2.12b)

Pollen & Ronner (1981) reported evidence for pairs of adjacent feline simple cells showing
the quadrature relationship required by both (2.11) and (2.12) between their preferred
phases at the optimal grating spatial frequency (magnitude and phase). Approximate
phase quadrature was observed for all simple cell pairs for which two distinct responses
could be isolated from a single-electrode recording. The same procedure was also used
by Foster et al. (1983) to demonstrate the existence of antiphase simple cell pairs hav-

ing approximately odd-symmetric RFPs. In both cases, some leeway was permitted

22The only conceivable alternative involves the alternate signaling of the real and imaginary parts of
the inner product of the RFP with the image by a single simple cell. Justification for such a scheme
might be derived from the observed translation of the pattern of subfield alternation with pre-spike
time, as described in Section 2.2.4. However, since any such scheme would work only for stationary or
near-stationary stimuli, this alternative will not be afforded further consideration.
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in the comparison of optimal orientation (+5°), spatial frequency (£0.25 octaves) and
phase (£10°), and the spatial frequency tuning curves were not quantitatively compared.
However, if — as these observations suggest — the scheme proposed by Pollen & Ron-
ner (1981) is indeed implemented by the simple cells, high precision in the necessary
relationships between both the phase and non-phase parameters of adjacent simple cells
should not be expected, since according to the Principle of Sloppy Workmanship (Hug-
gins & Licklider, 1951; Grzywacz & Yuille, 1990) — restated by MacLennan (1992a)
as the Robustness Principle — the success of any computational scheme involving real
neurons should not rely heavily on precision of mathematical detail. Nevertheless, the
small number of cell pairs identified by these two groups as having the required phase
relationships (12 and 4 respectively), the atypicality of the recording situation in which
these relationships are observed (Pollen & Ronner, 1981), and the lack of independent
confirmation of these results collectively raise doubts concerning the ubiquity of their ob-
servations (Stork & Wilson, 1990). It is notable therefore that in his recent defence of the
biological implementation of complex-valued Gabor functions, Daugman (1993) sought
and provided no new evidence in favour of the existence of the requisite quadrature-phase
simple cell pairs.

As established earlier however, achievement of the optimal joint localisation permitted
by (2.9) also requires alignment of the Gaussian component of each Gabor function with
the coordinate axes, a requirement which conflicts with the observation by Jones et al.
(1987) of approximate radial alignment of the simple cell spectral RFP. In general no
single rotation of the coordinate axes can be found which allows simultaneous optimal
joint localisation for all biologically relevant generalised Gabor functions. Thus even if
we assume that the simple cells implement complex-valued generalised Gabor functions
— by the above scheme or any other — they cannot collectively exhibit the optimal joint
spatial and spectral localisation permitted by (2.9).

Assuming that the virtues of optimal joint spatial and spectral localisation extolled
by Daugman (1989b) are nonetheless desirable, then rather than discounting the GRGF
as a model of the simple cell RFP, the observed orientation dependence of the joint lo-
calisation measure in (2.9) points to a deficiency in the component-wise measure defined
in (2.10) of the spread of the energy distribution. Introduced by Daugman (1985) and
adopted by both Wechsler (1990) and MacLennan (1991), this generalised measure is the
square root of the second moment of the energy distribution of the function about the
hyperplane z; = 0 (u; = 0). The relevance of the corresponding joint localisation mea-
sure to biological vision has been questioned by Stork & Wilson (1990), who presented
several alternative 1D localisation measures for which there appears to be no less aprior:
biological justification, and which are not optimised by the GRGFs. The generalisation
of such alternative 1D localisation measures to nD should however avoid a component-

wise definition — such as that in (2.10) — of the spread of the energy distribution, since
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any such localisation measure will suffer from the same orientation dependence as that
exhibited by the particular uncertainty principle in (2.9). The component-wise nD ex-
tension by Wechsler (1990) of the joint entropic uncertainty proposed by Leipnik (1959),
for example, is optimised only by the nD Gabor functions with unrotated Gaussians.
Spatial localisation of the RFP according to some suitable localisation measure is
likely to be important in reducing the biological cost of providing neural interconnections
to support it. However, the results of Palmer et al. (1991) discussed in the previous
section suggest that spectral localisation is enhanced by nonlinear mechanisms, which
are not amenable to analysis using localisation measures based on the Fourier transform of
the spatial RFP. This nonlinear enhancement of the spectral localisation was confirmed by
Jones & Palmer (1987a) and Palmer et al. (1991), who plotted the effective areas Az;Ax,
and Au;Au, occupied by the best fitting GRGFs for the spatial and spectral RFPs
respectively of the same simple cell, and found that many cells exhibited considerably
better joint localisation than the theoretical optimum dictated by (2.9). This observation,
which is difficult to discount simply on the basis of experimental or data-fitting errors
since the joint localisation of any given GRGF is at least an order of magnitude worse
than this theoretical optimum (Stork & Wilson, 1990, Fig. 3), is therefore especially

damning for joint localisation analyses based on assumptions of spatial linearity.

2.3.4 Spatiotemporal RFP

The 2D spatial RFP obtained by Jones & Palmer (1987b) and Palmer et al. (1991) for
each simple cell was strictly the integral of the 3D spatiotemporal RFP over the prespike
time bin — of width 50ms and 1ms respectively — for which the strongest overall response
was obtained. These time “slices” however constitute an incomplete characterisation of
the linear behaviour of the simple cell, since they reveal nothing about the temporal
structure of the spatiotemporal RFP, and for those simple cells which exhibit Cartesian
inseparability of their spatiotemporal RFP, provide an inadequate description of even
the spatial dependence. Nevertheless since these time “slices” are well characterised by
the 2D spatial GRGF model, this model is commonly used as a starting point for a more
complete description of the 3D spatiotemporal RFP of the simple cell.

The most direct extension of the nD spatial GRGF is the n+1 dimensional GRGF
w(x) whose spatiotemporal argument & = [2',¢]" € R™*! is the concatentation of the
spatial variable &’ € R™ and the temporal variable t € R. First suggested by Adelson
& Bergen (1985) for one spatial dimension (n=1) and ¢ = 0, the corresponding spa-
tiotemporal model is in general Cartesian inseparable®®) exhibiting the type of oriented

spatiotemporal subfields demonstrated by McLean & Palmer (1989) for a section of the

Z3although the corresponding spatiotemporal Gabor function g(z) in its complex form is Cartesian
separable.
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3D spatiotemporal simple cell RFP along the axis of subfield alternation. This property
is not for example shared by the Cartesian separable Gaussian derivative RFP model
proposed by Martens (1990). The spatiotemporal GRGF model has since been extended
to n = 2 spatial dimensions by Heeger (1987), and to arbitrary spatial dimensions by
MacLennan (1991), in both cases for ¢ = 0. To date however, no attempt appears to
have been made to fit this model to the simple cell spatiotemporal RFP.

Unlike the ideal velocity-selective filter, which is a plane passing through the origin in
the spatiotemporal frequency domain, the GRGF is tuned to a Gaussian-shaped region
of the spatiotemporal frequency domain. Since any quadrature-phase pair (2.11) of spa-
tiotemporal GRGFs approximate a Hilbert transform pair (Adelson & Bergen, 1985), the
outputs of a quadrature pair may be squared and added to calculate an approximation
to the motion energy (Adelson & Bergen, 1985) of the visual scene in the spatiotemporal
frequency band to which the pair is tuned. The approximate stimulus velocity can then
be inferred from the outputs of the corresponding Gabor motion energy filters (Heeger,
1987; Grzywacz & Yuille, 1990). The existence of such quadrature-phase spatiotemporal
GRGF pairs amongst the simple cells — which has however yet to be established —
would also lend credence to the invocation by MacLennan (1991) of the 3D spatiotempo-
ral Uncertainty Principle (2.9) in justification of the possible use of these 3D GRGFs by
the simple cells. However, this principle remains unable to account for GRGFs having
Gaussians not aligned with the coordinate axes.

A major problem with the GRGF model of the spatiotemporal RFP of the simple
cell is that it is non-causal, so that the current output of the cell is dependent on future
inputs. However, the effect of truncation at the plane t =0 to ensure causality will be
negligible provided the temporal centre of the GRGF is located sufficiently far into pos-
itive time. An alternative model of the simple cell spatiotemporal RFP which does not
violate the causality constraint is that of Watson & Ahumada (1983; 1985), who used
a GRGF and a gamma function respectively as the spatial and temporal components
of a separable spatiotemporal filter. Whilst this filter is not by itself direction selective,
the linear combination of the outputs of the corresponding filter and its spatiotemporal
Hilbert transform — whose spatial dependence is approximated by a 2D spatial GRGF
in quadrature phase to the first — results in an output which is both direction selective
and appropriately tuned to spatiotemporal frequency. The separable filter produced by
the Hilbert transform of the original is however non-causal, and truncation at ¢ =0 is
once again required. With this modification, the two separable filters and the resul-
tant inseparable filter are respectively plausible models of the spatiotemporal RFPs of

direction-symmetric and direction selective simple cells.
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2.3.5 Binocular RFP

The GRGF model of the binocular RFP of the simple cell proposed by Nomura et al.
(1990) uses the pair of 1D GRGFs

wr(x; o, S, 0,8, ¢ ,a) (2.13a)
wr(®; o, S, 0,0, ¢+64 ,a) (2.13b)

— whose parameters are identical except for a sinusoidal phase shift §¢ — to describe
the left- and right-eye receptive field profiles of a given simple cell. In particular, the
Gaussians of the two RFPs are centred at the same retinal coordinates in the left and
right eyes — 1.e. at zero retinal disparity — while the phase shift 6¢ is used to control the
depth — relative to the current point of fixation — to which the cell is optimally tuned.
The phase shift is therefore observable as an interocular shift of the RF subfields relative
to the common Gaussian, in general agreement with the experimental observations of
Freeman & Ohzawa (1990b). With appropriate choices of the parameters §¢, ug, s and
the output threshold, this model was found to account well for the different types of
depth tuning reported by Poggio & Fischer (1977) and revised by Poggio et al. (1988) —
viz. tuned excitatory (TE), tuned inhibitory (TI), near, far, tuned near, and tuned far
— as well as the corresponding degree of ocular dominance. This model also accounts
in a natural way for the intermediate types of depth tuning reported by LeVay & Voigt
(1988), suggesting that the above depth tuning categories may represent a somewhat
artificial division of a continuum formed by the continuous variation of the parameters
in (2.13).

In addition to successfully accounting for the tuning of simple cells to stereoscopic
depth via horizontal binocular disparity, the above phase-shifted GRGF model of the
binocular spatial RFP also predicts — given the approximately uniform distribution of
orientation preference amongst the simple cells — the additional tuning of cells in primary
visual cortex to vertical disparities as observed by Barlow et al. (1967). However, the

computational role of vertical disparity sensitivity in early vision remains unclear.

2.3.6 Summary

It was argued in Section 2.2 that with the appropriate reservations, the simple cell may
be treated to a first approximation as a linear device characterised by its binocular
spatiotemporal RFP. In the present section, it has been shown that the monocular spatial
form of this RFP is well described by a two-dimensional generalised real-valued Gabor
function (GRGF), and that this model can be naturally extended to incorporate both
the spatiotemporal and binocular behaviour of the cell, facilitating an understanding of
the computational role of the simple cell in these augmented domains. Poor agreement

between two key parameters derived from the Fourier transform of the GRGI which
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best describes the spatial RFP and the best-fit GRGF for the experimentally determined
spectral RFP is at least in part attributable to the action of nonlinear mechanisms, and
does not in itself invalidate the GRGF model of the spatial RFP. The component-wise
nD extension of Weyl’s (1932) 1D Uncertainty Principle commonly used as justification
for the complex-valued Gabor function RFP model has been shown to be inapplicable
for realistic choices of the GRGF parameters, thereby releasing the modeller from the

need to maintain the unrealistic assumption of infinite spatiotemporal support for the

RFP.

2.4 Conclusion

Visual stimuli presented within the receptive field of the simple cell are in general sub-
jected to nonlinear binocular spatiotemporal processing, the linear component of which is
characterised by the binocular spatiotemporal RFP. Whilst the approximation involved
in neglecting the second- and higher-order terms of a complete nonlinear characterisation
of this processing has yet to be quantified, it has been argued here that the RFP accounts
at least qualitatively for a number of the experimental observations concerning simple
cell processing of visual stimuli. The monocular spatial RFP, to which (as will be seen in
the next chapter) consideration is frequently restricted, is strictly speaking only defined
in the case where the chosen monocular spatiotemporal RFP is Cartesian separable into
temporal and spatial components. Nevertheless, to the extent that such a characteri-
sation is valid, the GRGF is arguably the best, and certainly the most extensively and
accurately tested, model of the simple cell spatial RFP proposed to date.



Chapter III

ON THE COMPUTATIONAL ROLE OF THE SIMPLE
CELLS

3.1 Introduction

In the previous chapter, it was established that a simple cell may to a first approxima-
tion be treated as a linear device characterised by its binocular spatiotemporal RFP.
This characterisation suggests a role for the simple cells in the processing and encoding
of information regarding the spatial form, motion and stereoscopic depth of the visual
stimulus. What is lacking, however, is a unified theory of simple cell processing which pro-
vides both a realistic model of the binocular spatiotemporal RFP, and an account of the
variation of the model parameters over the simple cell population. Indeed experimentally
testable candidates for the first essential ingredient of such a theory are conspicuously
absent. The limited and largely qualitative nature of experimental evidence in favour
of RFP models which address even the binocular spatial or monocular spatiotemporal
domains furthermore suggests that consideration should in the mean time be restricted
to the monocular spatial domain, where the GRGF model enjoys comparatively strong
experimental support (Jones et al., 1987).

Motivated initially by theories postulating a role for the simple cells in a local Fourier
analysis of the visual image, the GRGF model of the monocular spatial RFP presented
in Section 2.3.1 has been appropriated by a number of competing theories of the com-
putational role of the simple cells, ranging from edge- and line-detection, through the
computation of spatial derivatives, to multiresolution image analysis. In the search for a
realistic and unified theory of simple cell processing, the present discussion is restricted
primarily to theories which use either the GRGF or a similarly realistic model of the
monocular spatial RFP of the simple cell, and which could conceivably account for the
experimentally observed variety of spatial RFPs.

An important proviso on the restriction of attention to the spatial domain is the
fact that the isolated consideration of monocular spatial processing to the exclusion of
the binocular and temporal domains may, as noted in the previous chapter, overlook
potentially important features of simple cell processing, such as the encoding of motion
in depth. However it should be noted in mitigation that at least some proportion of the

simple cells may be either monocular or motion-insensitive up to a first-order (linear)
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characterisation. The extent of overlap of these two populations (if indeed they form
distinct populations at all) and the relative contribution of this overlap to the overall
simple cell population is however unclear. In general therefore, theories which result from
purely spatial descriptions of the simple cells are at best incomplete, and await future

extension to the binocular spatiotemporal domain.

3.1.1 Bottom-up vs. Top-down

The requirement that any suitable theory of simple cell processing should provide an
accurate account of experimentally observed RFPs and their variety is in line with the
analytic approach to early vision characteristic of the nascent field of computational
neuroscience, according to which theories of vision involving the simple cells, for example,
should be based on an accurate empirical determination of what they compute (Palmer
et al., 1991). Such theories often assume little or nothing about the subsequent processing
of the simple cell outputs other than that the representation of the retinal image at this
level should be perceptually complete (Daugman, 1990; Geisler & Hamilton, 1986), so
that no spatial contrast information which is known to be used by higher level perceptual
processes is removed by the simple cells. This approach can be described as bottom-up,
in the sense that theories of higher level processing are dependent on accurate knowledge
of the processing performed by earlier stages in the visual pathway.

An alternative top-down or synthetic approach to vision proposed and strongly advo-
cated by Marr (1982) requires that one first decide what is to be computed by a particular
visual subsystem and only then decide how it might be computed by the available neu-
ral hardware implicated in that visual task. In the interests of parsimony, RFP models
resulting from such hypotheses concerning, for example, the role of the simple cells in a
given computational task generally exhibit the minimum number of degrees of freedom
necessary to fulfil the purported role. The simple cell model used by the Boundary Con-
tour System (Grossberg et al., 1989; Shapley et al., 1990) is for example odd symmetric
and varies only in its preferred orientation. Since the number of degrees of freedom re-
quired — and in some cascs permitted — by RFP models resulting from the top-down
approach falls far short of the number observed by Jones & Palmer (1987b) in real simple
cells, these models provide at best an incomplete explanation of the computational role
of the simple cells in early vision. Different top-down hypotheses may also lead to either
irreconcilable models of the simple cell RFP or irreconcilable schemes for the system-
atic variation of certain RFP parameters over the simple cell population, so that the
associated computational schemes could only be subserved in the same visual system by
two or more mutually exclusive or only partially overlapping populations of simple cells.
Since the aim of the present exposition is to examine theories which attempt to provide

a realistic and unifying account of the form and variety of simple cell spatial RFPs, most
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top-down models are therefore automatically excluded from consideration!.

3.1.2 Qualified Completeness

The requirement of most bottom-up theories that the representation of the visual image
by the simple cells be complete is necessarily subject to limitations imposed by the
mechanisms by which the visual scene is converted into a retinal and subsequently cortical
image. We assume for simplicity an array of photoreceptors whose RFPs are described
by the function h:R?— R centred at possibly non-uniformly spaced visual angles @; € S.
The retinal image b(@;,t) — where b: §xR — R — is computed by spatially correlating
the monocularly viewed stimulus s(,t) with the low-pass spatial filter kernel A(x), and
then sampling the resultant image® at the retinal coordinates corresponding to the visual

angles ®; € §. The retinal image can therefore be expressed as
b(w;,t) = [h* s](a;, 1) (3.1)
where * denotes the spatial correlation operation such that
[h* s(, 1) = /v W& —)s(@,1) dé (3.2)

[f the retinal sampling is assumed to be spatially uniform, the photoreceptor RFP £
can be viewed as the kernel of an anti-aliasing filter (Geisler & Hamilton, 1986), which
serves to limit the destructive effect of aliasing caused by retinal sampling®. This view
necessitates a qualification of the concept of completeness as it applies to the simple
cell representation of the visual image, since only the correspondingly spatially low-pass
filtered and possibly aliased version §(@,t) of the visual stimulus s(@,t) is available for
encoding by subsequent processing stages. Except where otherwise stated, this qualifi-
cation is assumed to be implicit in the following discussions.

The output r(t) of a simple cell having retino-cortical spatial weighting function
c¢:S — R is then given by

T‘(t) = Zc(mi)b(wi,t)

x;€ES

'As a philosophical aside however, a combination of the top-down and bottom-up approaches is
probably necessary to significantly further our understanding of biological vision systems. In practice
for example, neither approach can or should avoid the iterative loop linking the development of visual
theory with the testing of the predictions of that theory against electrophysiological observation. This
loop is useful both in guiding the development of top-down algorithms which have a plausible neural
implementation, and in avoiding the bottom-up modelling of details of the RFP which are not crucial
or are even irrelevant to the functioning of the complete visual system.

2This conceptual division of the imaging process into two distinct stages is merely an artefact of
the mathematical formalisation, and is not intended to imply the existence of correspondingly distinct
physical processes.

3There is evidence to suggest that at least in primates, optical diffraction may impose a more severe
anti-aliasing effect on early vision than the photoreceptor RFP (Levick, 1993); however, this observation
does not qualitatively affect the ensuing conclusion.
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. f !Z c(:ni)h(ri:—:ci)] s(&,t) d (3.3)
V |zies
where the expression in (3.3) is obtained by substituting for b(z;, t) using (3.1), expanding
the correlation using (3.2), and reversing the order of the (finite) sum and the (well-
behaved) integral. Comparison of (3.3) with (2.1) reveals that the spatial RFP w(x) of

the simple cell is given by

w(z) = > c(x;)h(z—a;) (3.4)

T €S
The simple cell spatial RFP is therefore given by the convolution of the photoreceptor
RFP h with the weighted, possibly irregular “bed-of-nails” function ¢. For evenly spaced
sampling points, the former may be viewed as a reconstruction filter (Carlson, 1986) for
the latter, band-limiting the resultant simple cell RFP w(z) to the same frequency range
as the retinal image prior to sampling®. The expression in (3.4) is also readily extended
to account for variations of retinal sampling density or photoreceptor RFP size, as occur

for example with increasing retinal eccentricity.

3.1.3 Filtering and Decomposition

Bottom-up theories of the spatial processing performed by the simple cells fall into the
two main classes of filtering and decomposition.

Theories of visual cortical spatial filtering relate the simple cell spatial RFP w to the
kernel #:R?*xR?— R of a position-dependent linear filter whose output r(x,t) is given
by

r(x, 1) :/vh(a”:,:c)s(:é,t) d
The value r(@o,t) of the filtered image at any given spatial coordinate ®o € R? is hy-
pothetically represented by the output of a simple cell located at the position @y in
the simple cell layer and having the RFP w(®) £ h(x,®o). In general the filter may be
position-dependent, with the form of w(z) varying as a function of the output coordinate
zo (Gutschow & Hecht-Nielsen, 1991), a feature which is of potential biological interest
in modelling for example the increase in mean receptive ficld size with retinal eccentricity.
Position-dependent filtering schemes are however excluded from the present discussion
due to the paucity of systematic experimental information regarding the position depen-
dence of simple cell spatial RFPs and the lack of available formal completeness results
for such schemes. Given these difficulties and the added computational complexity of
simulating position-dependent filtering schemes, many theories of visual filtering make

the simplifying assumption of position-independence, in which case

r(a, 1) = /vw(:i:—a:)s(:i:,t) d (3.5)

“The term “band-limited” should be interpreted loosely in this context, since in practice the pho-
toreceptor RFP A may not be ideally band-limited.
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and w(x) is the correlation kernel of the linear filter. Implementation of the position-
independent filter requires an array of simple cells with identical RFPs whose centres
densely populate the visual field V. Since, as shown in Section 3.1.2, w is (approximately)
band-limited in the spatial frequency domain, the Sampling Theorem (Bracewell, 1986)
can be invoked to show that the cortically filtered image can be sampled at an appropri-
ate rate without further loss of information®. This sampling corresponds to a reduction
in the necessary density of population of the visual field by the RF centres, and hence
to a reduction in the number of simple cells required to implement the filter. If two or
more filters, each implemented by a sub-population of simple cells, are assumed to be
applied simultaneously to the visual image, the requirement for completeness of the indi-
vidual filters can be relaxed, provided that collectively the filters continue to transmit all
the perceptually relevant information. Theories concerning the spatial filtering possibly
performed by the simple cells are presented in sections 3.2.2, 3.3, 3.4.5 and 3.5.2.
Theories of visual cortical spatial decomposition, on the other hand, assume that
the spatial RFPs of primary visual cortical cells such as the simple cells “constitute the
primitives of the biological image code”, the “relative presences” of which are signalled by
the firing rates of the corresponding cells (Daugman, 1990). According to this view, the
stimulus is decomposed into a set {¢;(¢):7 € Z} of coefficients ¢;(t) € R corresponding
to the set {w;(@):7 € Z,} of spatial RFPs such that the spatially low-pass filtered visual

stimulus 3(@,t) can be expressed as the expansion

i(m,t) = ci(t)wi(=) (3.6)
and hence § could be reconstructed if desired from the set of coefficients. The repre-
sentation of the visual stimulus by the coeflicients {¢;(¢)} is complete if for each image
encountered by the visual system there exists a corresponding set of coefficients satisfy-
ing (3.6). Assuming in the absence of further information that these images are drawn
from the set L?(R?) of finite energy (square-integrable) 2D functions, and denoting by
B C L*(R?) the subset of these functions which are appropriately band-limited to the
spatial frequency range passed by the retinal imaging process, it is therefore necessary
that the set of simple cell spatial RFPs be complete over the set B. Theories concern-
ing the spatial decomposition possibly performed by the simple cells are presented in
Section 3.4.

Whilst requiring that any image 3 be reconstructible from the corresponding coeffi-
cients {c;(¢)} using (3.6), the completeness condition should not be interpreted as im-
plying that such a reconstruction actually takes place. Recognising the need for this
distinction, Daugman (1990) noted that theories concerning the spatial decomposition

of the stimulus

®Since the band-limitation of w may not be ideal, sampling may in fact incur a further small loss of
information due to aliasing.
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. walk a kind of epistemological tightrope ... demanding that the represen-
tation be informationally complete over its domain, while at the same time
avoiding the implication that what is entailed by completeness is a cortical

image reconstruction (as if on behalf of cortical movie-viewing homunculi).

However the implicit assumption often accompanying spatial decomposition theories

of early vision (as documented later in Section 3.4.3), that the output

ri(t) = /,,“)i(w)s(w’t) o

of each simple cell represents (up to a scalar constant) the coefficient in (3.6) correspond-
ing to its own spatial RFP, is problematic. Except for certain special choices of the set of
simple cell RFPs — viz. when these functions form an orthonormal basis or a tight frame
(see e.g. Heil & Walnut (1989)) for the set B — these outputs will not in fact be the co-
efficients required by (3.6) (Daugman, 1988a; Martens, 1990). In an attempt to reconcile
the apparently conflicting requirements arising from this assumption, a computational
scheme whereby the simple cells might compute these coefficients is developed in Chap-
ters 4-6 and critically examined in Chapter 7. In the mean time, sections 3.4.3, 3.4.4 and
3.5.4 of the present chapter pursue the search for suitable special-case RFP sets. Since
for most candidate models discussed in Section 2.3.1 for the simple cell spatial RFP the
requirements of completeness and mutual orthogonality are conflicting ones, this search

focuses on results provided by the theory of tight frames.

3.1.4 Verification of Bottom-up Theories

Bottom-up theories of the spatial processing performed by the simple cells commonly
bear on the population distributions of the various RFP parameters. In particular,
in order to simplify attempts to ensure representational completeness, both filtering-
and decomposition-based theories usually assume highly regular spatial & /or spectral
(spatial-frequency) sampling of the retinal image by the simple cell RFPs. Such regular
sampling is difficult to refute by means of single- or even current multi-electrode record-
ing techniques, which are hampered by neural sampling biasses introduced among other
things by the choice and possibly laminar placement of a particular microelectrode (Rob-
son, 1983; Anderson et al., 1990, p. 215). Electrophysiological evidence for and against
such models is therefore frequently confined to a comparison of the correlations between
various RFP parameters predicted by the model, and those observed in the recorded

population.

3.1.5 Hierarchical Processing

The terms “stage” and “level” used here in connection with the simple cells are strictly

speaking a legacy of the hierarchical scheme of visual processing proposed by Hubel
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& Wiesel (1962; 1968), according to which the simple cells constitute the first cortical
processing stage in the visual pathway, receiving input from neurons in the LGN and
sending their outputs to the complex cells. The term “layer” which is sometimes used
interchangeably with these terms in this context should not however be confused with
the anatomically defined layers of the visual cortex (see e.g. Lund (1988) and Gilbert,
(1983)). Simple cells are found in cortical layers 2 to 6 of primary visual cortex, and
whilst they predominate in layer 4 in which the majority of afferents from LGN are
known to terminate®, simple cells are also found in other layers in which complex cells
are at least equally prevalent (see White (1989) for a review). Critics of the strictly
hierarchical model — including Stone et al. (1979) and White (1989) — cite evidence at
various stages of the visual pathway for connections which circumvent one or more such
processing levels, as well as the existence of feedback between various levels. Of particular
relevance to the present consideration of the simple cells is the presence of direct synaptic
input to V1 complex cells from LGN (White, 1989; Henry et al., 1983) and the probable
existence of feedback connections from complex cells onto simple cells, which has been
inferred from a number of independent observations (White, 1989, p. 144,187). These
findings suggest that the requirement of completeness of the simple cell representation
may not be a necessary one, since if pathways exist through which perceptually relevant,
visually derived spatial information may reach higher cortical processing areas without
passing through the simple cell “stage”, such information need not be independently
represented by the simple cell population.

Bottom-up theories regarding the spatial computation performed by the simple cells
furthermore frequently make the simplifying assumption that these cells respond ideally
only to spatial variations of achromatic contrast in the visual image (see e.g. Sakitt &
Barlow (1982) or Field (1987)), and exhibit no selectivity for other aspects of visual input
such as motion, colour or stereoscopic depth. More recent physiological models of visual
processing (Stone et al., 1979; Hubel & Livingstone, 1987) however posit the existence of
parallel visual pathways responsible for different combinations of these various aspects of
visual input, and which are either anatomically segregated or mixed only selectively at
various levels of the visual pathway. The above assumption that the simple cells collec-
tively constitute an homogeneous population concerned exclusively with the processing
of spatial information therefore ignores for example the putative segregation (see e.g.
White (1989)) of the X & Y (Stone et al., 1979; Gilbert, 1983) or parvo & magno (Hubel

& Livingstone, 1987) streams in layer 4 of feline and primate striate cortex respectively.

®White (1989) however points out that the termination of the thalamocortical afferents in layer 4
does not preclude direct LGN input to cells in other layers having dendrites in this layer.
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3.1.6  Summary

The present examination of the computational role of the simple cells will focus on
bottom-up theories of the monocular spatial processing performed by these cells. The
binocular and temporal characteristics of the simple cell RFP are not addressed by the
class of theories considered. Where suitable results exist, the qualified completeness or
otherwise of potential simple cell image representations will be examined, as well as the
ability of each representation to provide a unifying account of the observed variety of
simple cell RFPs. Acknowledged shortcomings of bottom-up theories include the failure
to incorporate feedback from higher processing areas to mediate attentional and expec-
tational mechanisms’, and the assumption of a strictly hierarchical processing scheme.
Direct verification of such theories is furthermore hampered by experimental difficul-
ties including electrode sampling bias, necessitating a resort to information concerning

correlations between RFP parameters over the simple cell population.

3.2 Feature “Detectors”

3.2.1 Nonlinear Detectors

The observation by Hubel & Wiesel (1962) that for simple cells

The most effective stimulus configurations ... were long narrow rectangles of
light (slits), straight-line borders between areas of different brightness (edges),

and dark rectangular bars against a light background.

led Barlow (1969a) to postulate that the simple cells were in fact feature detectors whose
trigger features were luminance bars and edges at a particular binocular disparity (Barlow
et al., 1967; Barlow, 1969b). According to this feature detection hypothesis in its crudest
form (Barlow, 1969b, p. 220), the output of a simple cell is interpreted as a binary variable
signalling the presence or absence of the trigger feature in its receptive field. A more
sophisticated form of the hypothesis (Barlow, 1969a; Daugman, 1990) has the firing rate
of a feature-detecting simple cell signalling the cell’s degree of certainty of the presence
of the trigger feature. Nevertheless, the firing of a cell is to be interpreted in both cases
as making a “symbolic assertion” (Marr & Hildreth, 1980) regarding the presence of the
trigger feature.

Edge extraction as a basis for early vision has strong intuitive appeal, given the
apparent abundance of information available from such edges (Marr, 1976; Marr & Hil-
dreth, 1980; Marr, 1982; Ullman, 1986) and the lower redundancy (Barlow, 1972) of an

edge-based representation, and was for example central to the formation of the primal

It has been estimated that only 1% of the neural fibres entering V1 are visual afferents (von der
Malsburg, 1990).
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sketch representation used by Marr (1976; 1977; 1982). Early theoretical support for this
approach was drawn from results guaranteeing under certain circumstances the complete
reconstruction of a multiresolution representation® of a signal from its zero crossings
(Logan, 1977; Marr et al., 1979), since for the particular multiresolution representation
proposed by Marr & Hildreth (1980), collocation and linear alignment of these zero cross-
ings across several spatial scales can be taken as evidence for a luminance edge (Marr &
Hildreth, 1980; Marr, 1982). More recently, zero crossing representations have also been
proposed in the field of pattern recognition to overcome the lack of translation invariance
exhibited by straightforward multiresolution schemes (Mallat, 1989a).

However, Logan’s theorem (1977) has been shown to be inapplicable to Marr & Hil-
dreth’s (1980) multiresolution Laplacian of Gaussian decomposition (Marr, 1982; Daug-
man, 1983; Daugman, 1988b), necessitating the incorporation of additional information
to ensure complete reconstruction (Marr et al., 1979; Rotem & Zeevi, 1986; Curtis et al.,
1989; Mallat, 1989a). Furthermore both the feature detection hypothesis of Barlow
(1969a; 1969b) and Marr & Hildreth’s (1980) Laplacian zero crossing detector model
predict simple cell behaviour which is strongly spatially nonlinear (Marr, 1982), in con-
trast with later evidence — reviewed earlier in Section 2.2.3 — showing that the spatial
behaviour of the simple cells is to a first approximation linear. The response of a simple
cell to the third harmonic of a drifting square-wave grating is for example difficult to
explain in terms of the detection of the passage of luminance edges over the RF, and mil-

itates against a view of the simple cells as edge or line (bar) detectors (Pollen & Ronner,

1982; Henry, 1985).

3.2.2 Linear Matched Filters

The notion of a feature “detector” is severely restricted by the characterisation of the
simple cell as a linear device, since in attempting to suppress reponses to non-optimal
features falling within the cell’s RF, a linear device is denied recourse to the nonlinearities
required by models such as those of Barlow (1969a; 1969b) and Marr & Hildreth (1980).
The spatial RFP w might however be treated as the kernel of a linear matched filter
for the desired feature, whose output r(w,¢) is given by (3.5). A matched filter is used
to improve the detection of a known signal — in this case for example an edge or a
line — in the presence of noise (see e.g. Papoulis (1984)). Assuming that such a filter
is indeed implemented by an array of simple cells, as described earlier in Section 3.1.3,
the simple cell outputs would be subjected by subsequent cortical layers to some form of

nonlinearity such as thresholding to detect the presence or absence, as well as position(s),

8Multiresolution image representations are discussed briefly in Section 3.5; see also e.g. Mallat

(1989b).
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(a) Ideal edge kernel (b) Centred window (c) Off-centre window

(d) Ideal bar kernel (¢) Centred window (f) Off-centre window

Figure 3.1: 1D cross-sections of Cartesian-separable 2D matched filter kernels for edges
and bars. The dotted line indicates the zero weighting level. (a),(d) Ideal edge and bar
kernels respectively. (b),(e) Ideal kernels after localisation using a Gaussian window cen-
tred on the feature to be matched, and low-pass filtering representing the transformation
from visual scene to retinal image. These line weighting functions compare qualitatively

with those in Figures 2.1(c) and (f) which are derived from GRGFs. (c),(f) As for (b),(e)

except with Gaussian windows centred to the right of the feature to be matched.

of the desired feature in the visual field®.

One dimensional cross-sections of the Cartesian-separable kernels of ideal matched
filters for bars and edges in the visual image are shown in Figures 3.1(a) and (d) respec-
tively. The sections are perpendicular to the direction of elongation of the edge or bar
to be detected. Since the sharp transitions in the corresponding stimuli are removed by
the optical transformation mapping the visual scene onto the retinal image and are not
therefore available to be matched by the filter kernel, these kernels have been similarly
low-pass filtered to facilitate a better match to simple cell LWFs!C. Spatial localisation
of the smoothed kernels to reduce the number of retino-geniculo-cortical connections

required by each simple cell implementing them can be achieved by multiplying by a

This deferral of the actual detection process until after the simple cell stage avoids the “intellectu-
ally criminal” treatment of the simple cells as both linear convolvers and feature detectors, which was
condemned by Marr (1982).

10The comparison of 1D cross-sections and LWFs — obtained by integrating along the perpendicular
direction — of a hypothetical 2D RFP is strictly speaking only valid if the RFP is Cartesian separable.
However it is assumed here for simplicity that approximate Cartesian separability applies.
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windowing function such as a truncated Gaussian. The resultant localised kernels are
illustrated in Figures 3.1(b) and (e) for windows centred on the feature to be matched,
and in Figures 3.1(c) and (f) for windows which have been placed off-centre to account
for asymmetric RFPs. The edge and bar filters exhibit characteristically bipartite and
tripartite LWF's respectively. However, despite the prevalence (Glezer et al., 1989) of
simple cell RFPs exhibiting the 2 and 3 subfields required respectively by such kernels,
the matched filtering of bars and edges is inconsistent with RFPs exhibiting up to 8
subfields (Glezer et al., 1989), which in the present context should be viewed as kernels
for “grating filters”. Furthermore whilst the line weighting functions produced by these
edge and bar filters compare qualitatively with those resulting from GRGF models, the
assumption of Cartesian separability on which they rely is not however justified by the
results of Jones & Palmer (1987b).

An undesirable consequence of the localisation achieved by windowing the ideal
matched filter kernels is a marked decrease in stimulus selectivity, so that for example a
bar filter now responds more vigorously to a high-contrast edge than to a low-contrast
bar (Marr & Hildreth, 1980). This problem is exacerbated by offsetting the windowing
function from the centre of the bar kernel, which increasingly suppresses the extreme
flank in the direction opposite to that of the offset!!, and thereby increases the resem-
blance between this kernel and the (negative of the) centred edge kernel in Figure 3.1(b).
Thus the ability of the resultant filters to signal the presence or absence of the stimulus
feature to which they are supposedly matched is greatly diminished by localisation of the
filter kernel. Notwithstanding these objections, the requirement for the repetition of an
identical kernel for each point in the visual field in order to implement a given filter can
be relaxed to allow RFPs of differing (a)symmetries at each point, provided each such
composite matched filter continues to employ only bipartite or tripartite RFPs.

Under the linear feature detection hypothesis, at least one such filter is required
for each feature which is to be reliably detected anywhere on the retinal surface; the
reliable detection and localisation of edges has for example been found to require the
local agreement of edge detection mechanisms at several spatial scales (Marr & Hildreth,
1980). Whilst a position-dependent matched filter could be designed to detect different
features at different positions, the detection of different features at a single position still
requires multiple matched filters. The enumeration of all possible lines and edges at a
given position in the visual field — by independently varying attributes such as scale and
orientation — would require a large number of simple cells to implement such a matched
filtering scheme. However, estimates of the order of 2—3 x 10° cells in striate cortex per

foveal cone photoreceptor (Wilson et al., 1990)!2, of which perhaps 20% are located in

"The left-hand flank in Figure 3.1(f).

12This figure reflects for the foveal representation an approximately 1:1 ratio of cones to retinal
ganglion cells, a 2—3: 1 ratio of LGN cells to retinal ganglion cells, and a 1000: 1 ratio of striate cortical
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layer 4 (Barlow, 1981, Fig 7) where the simple cells predominate (White, 1989), do not
exclude the implementation of at least several hundred matched filters, which may be
quite sufficient for most purposes.

The matched filtering hypothesis admits natural extensions to the temporal and
binocular domains, which are necessary to account properly for the binocular spatiotem-
poral behaviour of real simple cells. However this extension requires for each spatial
feature the additional enumeration of all relevant binocular disparities and temporal

patterns!3,

The consequent explosion in the number of simple cells required, and the
relatively poor stimulus selectivity of the localised filter kernels in the first place, render

the matched filtering scheme untenable as a theory of simple cell processing.

3.2.3 Summary

In this section it has been argued that linear and nonlinear feature detection, and in par-
ticular the detection of contrast edges or lines in the monocular visual field, are unlikely
to provide a complete description of the spatial computational role of the simple cells.
Despite the improbability of such feature-detecting roles however, some researchers con-
tinue to refer to bipartite and tripartite RFPs — and especially those with approximate
odd and even symmetries respectively — by the prejudicial terms “edge and bar detec-
tors”. Such terms are seen by Koenderink & van Doorn (1990a) as dangerous in that
they reinforce — by enshrining in the very nomenclature — “speculative interpretations”

of the computational role of these cells.

3.3 Directional Spatial Derivatives

Since sharp, spatially coincident transitions in the retinal image at several neighbouring
spatial scales may be taken as evidence of the presence of a luminance edge in the
monocular visual field (Marr & Hildreth, 1980), an alternative to matched filtering in
the linear “detection” of oriented luminance edges is the calculation of directional spatial

derivatives of the retinal image.

3.3.1 Retino-Cortical Derivative Operators

According to the directional derivative hypothesis of simple cell processing, the retino-
cortical weighting function'* ¢ of each simple cell constitutes a discrete-space approxima-

tion to the kernel of a directional derivative operator Dy of some order ;5 € Z, (Koenderink

cells to LGN cells (Wilson et al., 1990).

13For simplicity, this conservative scheme assumes spatiotemporal separability of the simple cell RFP;
inseparability would only serve to further increase the degrees of freedom to be “covered” by the simple
cell population.

14described earlier in Section 3.1.2.
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& van Doorn, 1990a; Koenderink & van Doorn, 1990b) or ¢ € R, (Hungenahally et al.,
1992; Hungenahally et al., 1993) on the sampled retinal image b(x;,t) in the direction
0 € [0,27). An approximation to the directional derivative Db of the retinal image is
computed by discrete correlation of the image with a retino-cortical spatial weighting

function ¢} approximating the kernel D} such that
[Cé * b](:l!]‘, t) ~ [Dbb](wh t)
where * denotes discrete spatial correlation such that

[c};7 *b|(x;,t) = Zscé(mk—a:j)b(wk,t) (3.7)

Examples of one-dimensional first- and second-order derivative approximations to be
discussed shortly are presented in Figure 3.2. The spatial scale of the derivative approxi-
mation is determined by the spacing in the direction 8 of the photoreceptors from which
the simple cell receives input. Multiple scales are achieved in the same retinal location
by appropriately undersampling the same photoreceptor array. Whilst thresholding of
the first derivative [c} * b](x;,t) in the direction @ is sufficient — at least in the absence
of noise — to detect orthogonally oriented transitions at the chosen spatial scale, the di-
rectional derivative hypothesis encompasses the computation of derivatives of arbitrary
order.
Like the linear matched filters in Section 3.2.2, each directional derivative operator
Y is ideally approximated by an array of simple cells having identical retino-cortical
weighting functions ¢, — and hence spatial RFPs w):R? — R given by (3.4) — whose
centres densely populate the retinal surface. The requirement of identical RFPs for the
implementation of a given operator can however be relaxed slightly, since it is possible to
derive many different approximations to the kernel of a given derivative operator. For the
special case of uniformly spaced sampling points with sampling interval T', one family of
derivative approximations results from the differentiation of the 1D interpolation formula
sin (W[#])

flo)= 3 FTY N

j=—00 77[ T ]

followed by truncation of the resultant series at an appropriate value of j. However
this approximation has non-compact support and a slow rate of decay with increasing
7], requiring an unacceptable number of sampling points in order to obtain a suitable
approximation to the required derivative. A second family of derivative approxima-
tions, which have strictly compact support and permit irregular sampling, results (see
e.g. Kreyszig (1983, Sect. 19.6)) from the differentiation of a 2D Lagrange interpolating
polynomial (LIP)
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(a) cy(w;), centred (b) cj(=;), off-centre x), off-centre
! b
(d) ci(x;), centred (e) ci(x;), off-centre ), off-centre

Figure 3.2: “Directional” derivative masks ¢, derived from the 21-point 1D LIP for
uniformly spaced sampling points. (a),(d) First and second derivative masks respectively
for the derivative evaluated at the midpoint (#11) of the sampling array. (b),(e) First
and second derivative masks respectively for the derivative evaluated at sampling point
#8, 3 samples to the left of the midpoint. (c),(f) The masks in (b),(e) applied to a
Gaussian of standard deviation 2.5 samples, representing the photoreceptor RFP &, to
produce corresponding simple cell RFPs wj. As expected, the resultant first and second
Gaussian derivatives remain respectively odd and even symmetric about the point of
derivative evaluation, despite the apparent asymmetry of the masks in (b),(e) used to
produce them.

— where the superscript [P denotes selection of the pth element of a vector — fitted to
the retinal image b(x;,t) over a local subset @ C S of the sampling points. Directional
differentiation can be achieved by choosing a new Cartesian coordinate system such that
the z[!-axis is oriented in the # direction and then simply evaluating the partial derivative
WZ[TL]?' For a given point @ € R? at which the derivative DYL is to be evaluated, the
set Q of points through which the polynomial is fitted can be chosen almost arbitrarily,
subject only to the condition that x interpolates this set. Figures 3.2(a) and (b) illustrate
two 21-point 1D LIP approximations cj to the first order derivative operator, where
the derivative has been evaluated at and to the left of the centre of the sampling array
respectively. Figures 3.2(d) and (e) show the corresponding approximations to the second

derivative cZ.
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3.3.2 Fractional Derivatives

The generalisation of derivatives to fractional orders arises in applications including the
conduction of heat in solids and electrical signals in cables (Bracewell, 1986). Fractional
directional derivatives can perhaps be most easily explained via the Fourier transform
domain, through which the identity

g—({v% MEN (j27ru[k])iF(u) (3.8)
which holds for integer orders : € Z, — where «Z indicates a Fourier transform pair
and f,F:R" — C satisty f(x) <o F(u) — can be generalised to fractional orders!®
v € Ry (Bracewell, 1986). Thus the fractional partial differentiation 9°/9(z) of a
function in the spatial domain is equivalent to multiplication of its Fourier transform by
a fractional power of j27ul®) in the Fourier domain. The half-order derivatives of an edge
and a bar in the direction perpendicular to their orientation are illustrated in Table 8.2
of Bracewell (1986).

Fractional differentiation can be applied to LIPs in the same manner as outlined
above for integer order derivatives, to produce fractional discrete-space derivative ap-
proximations cj. An alternative derivation of these fractional derivative operators was
provided by Hungenahally et al. (1993), who appears to have used the observation that
if the derivative is to be evaluated at the centre of a uniformly spaced 1D sampling ar-
ray, and the sth order derivative mask is derived from the (i 4+ 1)-point LIP, the mask
values cj(x;) are given by the coefficients of the binomial expansion of (1 — t)*. This
derivation however suffers from the limitation that for any given sampling grid, even
spacing of the sampling points along the z!!l direction of the coordinate axes used to
derive the directional derivative cannot simultaneously apply for arbitrary orientations
f. For non-integer values of 7, the coeflicients resulting from the latter derivation exhibit
approximately factorial decay with sample number as illustrated in Figures 3.3(a)-(c),
permitting truncation of the series after relatively few terms, and unlike those for ¢+ € Z
do not sum to zero. The number n of alternations of sign with increasing sample index
is related to the order 7 of the derivative such that n = [i], where [-] denotes the ceiling

function.

3.3.3 Discriminant Functions

A continuous-space discriminant function (Hungenahally, 1991; Hungenahally et al.,
1992) w} can be generated from a discrete-space function cy using (3.4) with an ag-

gregation function h of strictly compact support. Care should however be taken with the

15The multiple roots which exist on the right-hand side for non-integer rational orders 7 produce
functions which differ only by a phase shift.
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(a) c5°(;) (b) c5*(x;) (c) c5 ()
(d) wy () (e) wg*(=) () wi*(=)

Figure 3.3: (a)-(c) 1D fractional derivative masks cj(x;) with i € Ry — Z,. The sample
index is shown increasing to the left, so that for consistency with (2.1), the mask can
be used as a correlation kernel. (d)-(f) Corresponding discriminant functions obtained
using a Gaussian aggregation function & with standard deviation 2.5 samples.

selection of the finite support aggregation function in order to limit the aliasing resulting
from its failure to band-limit the image falling on the retina (cf. Hungenahally et al.
(1993, Fig. 7)). Fractional discriminant functions corresponding to the discrete masks
shown in Figures 3.3(a)-(c) are illustrated in Figures 3.3(d)-(f), where the requirement
of compact support has been relaxed to admit a Gaussian aggregation function. These
functions possess no axes of symmetry and exhibit non-zero response to DC illumination
(Hungenahally et al., 1993), as is the case for the GRGF model with 8 = arg{u,} and
b #0.

The salient oscillatory property of the discriminant functions w) can — for & both
symmetric and not too large relative to the sampling period, and for 7 € Z, — be imi-
tated by multiplying a periodic function having 2 evenly-spaced zero-crossings per period
T € Ry, such as a sinewave, by a compactly-supported window of width W = iT/2 to
produce a generalised discriminant function (Hungenahally, 1991). The width of the
window is used to control the number of RFP subfields and hence the order of the gen-
eralised derivative approximation. However the extension of this model to the fractional

case requires some care, since the periodic function must be truncated to avoid one or
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more spurious additional zero-crossings, which would increase the number of subfields
and hence the derivative order. At least for the lower order derivatives, this truncation
permits only a poor approximation to the factorial tail — evident for example in Fig-
ures 3.3(a) and (d) — of the fractional derivative function being generalised. Despite
the success of the GRGF model of the simple cell spatial RFP (Jones et al., 1987), to
which suitable approximations can be generated using generalised discriminant functions,
the construction of the original discriminant functions reflects more directly the physical

feedforward mechanisms — formalised in Section 3.1.2 — which contribute to the simple

cell RFP.

3.3.4 Gaussian Derivatives

Koenderink & van Doorn (1990a; 1990b) proposed a family of kernels wj) known as
the Gaussian-windowed Hermite polynomials given by the directional derivatives of an
isotropic Gaussian. In the present notation, each such kernel results from the application
of an unspecified approximation cj to the corresponding directional derivative operator
D}, to an isotropic Gaussian kernel representing the photoreceptor RFP h. Examples of
first and second order Gaussian derivatives obtained using the derivative approximations
illustrated in Figures 3.2(b) and (e) are shown in Figures 3.2(c) and (f) respectively.
To appropriately approximate true Gaussian derivatives, the masks c; must be derived
using sampling points spaced at intervals which are suitably small compared with the
standard deviation of the Gaussian h. If this condition is not observed, the 6 cross-
section of the corresponding simple cell RFP resembles a collection of isolated Gaussian
subfields, contrary to experimental observations. The number 7 + 1 of RF subfields
reflects the order of the differential operator applied to the retinal image. An attractive
property of these kernels is that it is possible to construct a set containing up to nth order
derivatives — with ¢ 4+ 1 distinct orientations 8 for the ith derivative order — which can
completely encode the mixed spatial partial derivatives of the blurred image up to order
n (Koenderink & van Doorn, 1990a). Young (1985) estimated that for the human visual
system the highest derivative order is 4. Despite the attractiveness of this completeness
property however, the RFP model relies on an isotropic Gaussian window of the same
dimensions as the photoreceptor RF, and odd and even RF symmetries, neither of which

seem to be preferred properties amongst the simple cell population (Jones & Palmer,

1987b).

3.3.5 Summary

The directional derivative hypothesis of simple cell processing has been shown to account
for many features of simple cell spatial RFPs, including subfield alternation and — in

the case of fractional derivatives — asymmetry. The theory of fractional derivatives and
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discriminant functions, which awaits a full account of the physical significance of the
information they extract from an image, provides considerable scope for future research
in this area. The mathematical completeness of a directional derivative representation
has so far been shown only for the unrealistic case of RFPs given by Gaussian derivatives
of integer order. Finally the smallest spatial scale or resolution available to derivative
approximations at the simple cell level for any given retinal eccentricity is limited by the
photoreceptor sampling interval, while the largest scale is determined by the size of the
photoreceptor RFP h, since simple cell spatial RFPs exhibiting spatially isolated blobs of
this size are yet to be reported. These two observations place strong limits on the range
of spatial scales over which derivative approximations could be evaluated by the simple
cells, in potential contrast with observations of simple cell RFPs in the foveal projection

with spatial dimensions spanning a range in excess of 30:1 (Daugman, 1985).

3.4 Spatial Frequency Analysis

3.4.1 Introduction

Outlined briefly in Section 2.2.2, the psychophysical results of Campbell & Robson (1968)
and Blakemore & Campbell (1969), from which the existence of psychophysical channels

with bandpass tuning for 2D spatial frequency magnitude and orientation was inferred,
led Pollen et al. (1971) to postulate that

... the brain has at its disposal the two-dimensional Fourier transform of the

presented brightness distribution.

Noting that sinusoids are the principal components (the eigenfunctions of the auto-
covariance function) of an image ensemble exhibiting position-independent second order
spatial statistics (see e.g. Gaskill (1978)), Bossomaier & Snyder (1986) suggested that a
possible advantage of such an analysis is that it removes second-order statistical redun-
dancy from the image (Attneave, 1954; Barlow, 1959; Barlow, 1961). The limited spatial
extent of the receptive fields of the spatial-frequency selective cells in primary visual
cortex prompted Pollen et al. (1971) to further speculate that these cells participate
in “two-dimensional spatial frequency decompositions of subsections of visual space” —
henceforth referred to collectively as a localised Fourier analysis — a proposition which
under the assumption of approximate spatial linearity is more consistent with the rela-
tively broad spatial frequency tuning curves of cells in V1 (Robson, 1983). According
to Bossomaier & Snyder (1986), this localisation of the proposed analysis allows it to
take advantage of local statistical stationarity in reducing the redundancy of an image

ensemble whose spatial statistics are globally non-stationary'®. The interested reader

1A more detailed exposition of the underlying statistical theory may be found in Sections 3.4.6 and
3.5.5.
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is referred to the following works for further information on the history of the localised
Fourier analysis hypothesis of primary visual cortical function: Pollen & Gaska (1987),
Henry (1985), Pollen et al. (1985), Shapley & Lennie (1985), Pollen & Ronner (1983;
1982; 1981), Robson (1983), and Maffei & Fiorentini (1973).

3.4.2 The Gabor Expansion

Contrary to the suggestion by Pollen & Taylor (1974) that the complex cells were well-
placed to perform the proposed localised Fourier or principal-components analysis, Maffei
& Fiorentini (1973) argued that the simple cells were to be preferred for this role be-
cause of their more linear spatiotemporal behaviour. The particular mathematical form
adopted by Bossomaier & Snyder (1986) for this localised analysis, known as the Gabor
representation (Marcelja, 1980; Porat & Zeevi, 1988) or Gabor ezpansion'” (Wexler &
Raz, 1990; Hlawatsch & Boudreaux-Bartels, 1992), was first applied by Marcelja (1980)
to the understanding of the representation of the visual scene by the simple cells. Named
in honour of Gabor (1946), who first proposed the representation of 1D communication
signals as a sum of Gabor functions, the Gabor expansion (GE) has since been gener-
alised to encompass possibly non-Gaussian localisation functions (see e.g. Wexler & Raz
(1990)). In view of the success of the GRGF model in describing the simple cell RFP
however, the present exposition is largely restricted to a consideration of the case of
Gaussian localisation functions.

The 1D Gabor expansion using a Gaussian localisation function involves the decom-
position or analysis of a 1D function s(z) into a set {c;: (i,p) € Z*} of coefficients

cip € C corresponding to the set

G1 = {gip(2): (i,p) € Z*}

of functions g;, :R — C such that
s(x) = Z Z Cipgip(T) (3.9)
1=—00 p=—00

where

-y

gip() - exp {—-7r [m—;’Axr} -exp{j27rpA,z} (3.10)

“[$

17The term “Gabor expansion” is used here in preference to “discrete Gabor transform” which appears
to have two conflicting definitions, according to which the same set of windowed sinusoids is used either
for the synthesis (expansion) or the analysis (filtering) of the signal or image. The first, decomposition-
based definition used by Daugman (1988a) involves the calculation of the coefficients in the Gabor
expansion to be defined below; the second, filter-based definition used by Heil & Walnut (1989) treats
the (complex conjugates of the) same functions as for the Gabor expansion as correlation kernels rather
than basis functions. The former definition is equivalent to that used by Hlawatsch & Boudreaux-
Bartels (1992) for the discrete short-time Fourier transform; the latter is equivalent to that used by
Mallat (1989a) for the discrete window Fourier transform.
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Figure 3.4: Lattice of Gabor function centres (z;,u,) £ (iAg, pA,) in phase space for 1D
Gabor expansion set G,.

Az, A, specify the separations between neighbouring Gaussian centres along the spatial
and spatial-frequency axes respectively!'® as shown in Figure 3.4, and S is as defined for
(2.4) with n = 1. The comparison of (3.10) with (2.6) reveals that the functions g;, are
simply 1D generalised Gabor functions with ¢ = %, xo = tA,, up = pA, and

¢ = 2miApA, (3.11)

The constant a serves to normalise the Gaussian function to unit L? norm, as required
by both the GE (Porat & Zeevi, 1988) and the discrete window Fourier transform!'®
(DWFT) (Mallat, 1989a). Exploitation of the close relationship between G; and the
corresponding set of canonical Weyl-Heisenberg coherent states (Daubechies et al., 1986)
— for which a = w‘%, ¢ = mA;pA, and S =1 — allows the adaptation of a classical
result in mathematical physics concerning the completeness of these coherent states (see

e.g. Bargmann et al. (1971) or Higgins (1977)) to yield the following.

Theorem 3.1 A necessary and sufficient condition for the infinite set G; of translates

18The reader should be careful not to confuse these spatial and spectral intervals between Gabor
functions with the spatial and spectral spreads defined in Section 2.3.3 for a single function.

19t6 be discussed in Section 3.4.5
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and modulates of the 1D Gaussian function to be complete for the set L*(R) of finite-
enerqy (square-integrable) 1D functions is that

AA, <1 (3.12)

Thus provided this condition s satisfied, any function s € L*(R) can be exactly re-
constructed from the corresponding set of coeflicients. If the equality holds in (3.12), the
number of GRGF's required to completely represent a band-limited signal is minimised,
and is the same as that required by the Sampling Theorem (Hlawatsch & Boudreaux-
Bartels, 1992); the signal is then said to be critically sampled. If on the other hand
the inequality holds in (3.12), the chosen GRGF's are linearly dependent and are said
to oversample the signal. Whilst oversampling can be useful in the presence of noise to
avoid numerical instability in the computation of the expansion coeflicients (Hlawatsch
& Boudreaux-Bartels, 1992), the coefficients are in general not unique; this problem is
addressed in Chapter 4. For critical sampling, the phase term ¢ given by (3.11) is 0 (mod
27) for all generalised Gabor functions in G, while for oversampling, ¢ is more generally
non-zero and different for each function.

Adopting the explicit extension by Porat & Zeevi (1985; 1988) to the more realistic
case for early vision of 2D generalised Gabor functions, and making explicit in the nota-
tion the temporal dependence of the low-pass filtered visual image $(z,t), the 2D Gabor
expansion — as it may or may not apply to early vision — involves the decomposition of
this image into a set {cikpe(t): (¢,k,p,q) € Z*} of coefficients c;xpq(t) € C corresponding
to the set

G2 £ {gikpg(2): (i, k,p,0) € Z7)
of functions gikp, :R?— C such that

[e o) (e} o0 o0

i(x,t) = Z Z Z Z Cikpq (1) Gikpq(T) (3.13)

i=—00 k=—00 P=—00 g=—0

where
A

1
ikpq () m

Here S is the diagonal matrix of Gaussian space constants defined earlier in connection

rexp{—7||S}(z—2})|2} - exp{j2ruy 2} (3.14)

with (2.4). The spatial and spectral offset terms

zy £ [IAN kAE)T
[pAll gAlhT

[l>

Upq

are defined for notational convenience, with All, A%l specifying the separation between
neighbouring Gaussian centres along the z; and z, axes respectively as shown in Fig-
ure 3.5(a), and Alll; Al specifying analogous separations in the spectral domain as shown

in Figure 3.5(b). Once again, comparison of (3.14) with (2.6) reveals that the functions
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(a) Spatial lattice (b) Spectral lattice

Figure 3.5: (a) Lattice of generalised Gabor function centres xm,mm in the spatial
g tk ik

domain for 2D Gabor expansion set G,. (b) Corresponding lattice of centres (ugq], ulll) in
the spatial-frequency domain.

Jikpg are simply 2D generalised Gabor functions with a = m, 0, =0, ¢y = x;,
U = Up, and

T
¢ = 27rupqwik

Theorem 3.2 (Porat & Zeevi (1985)) *° A necessary and sufficient condition for the
infinite set Gy of translates and modulates of the 2D Gaussian function to be complete
for the set L*(R?) of finite-energy (square-integrable) 2D functions is that

ANAD < (3.15a)
ABADL < (3.15b)

The variety of phases which would be observed for these 2D generalised Gabor functions
whenever the inequalities in (3.15) hold is qualitatively consistent with that observed for
simple cell spatial RFPs, and militates against the preference by Pollen & Ronner (1983)

for precisely odd- and even-symmetric RFPs.

3.4.3 Do Simple Cells Perform a Gabor Decomposition?

In the previous section it was shown that the spatial RFPs of the simple cells could
potentially be described by the expansion functions of a discrete 2D Gabor expansion.

The question therefore arises as to whether the simple cells in fact compute the coefficients

0 Although the ensuing result is not directly stated in their work (Porat & Zeevi, 1985), it can be
easily inferred from it.
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of such an expansion. Whilst the following investigation of this issue focuses for notational
convenience on the 1D case, suitable extensions of the 1D results to the 2D case can be
assumed to hold unless stated otherwise.

Marcelja (1980) hypothetically identified each coefficient c;, with the activation level
of a corresponding simple cell having 1D spatial RFP g5,(x), so that each simple cell con-
tributes to a decomposition of the (1D) visual stimulus s(z) by calculating the coefficient
of (the complex conjugate of) its own RFP function in the expansion in (3.9). The hy-
pothesis that the set of Gabor expansion coefficients “characterizes the [primary visuall
cortical representation of an image” (Zeevi & Porat, 1984) has been widely and often
implicitly adopted by other researchers: Pollen & Ronner (1983) for example refer to the
simple cell outputs as encoding “local Fourier coefficients”?!; Daugman (1989b, p. 243)
used observations regarding the coefficients of a 2D Gabor expansion to draw conclusions
about the activation levels of simple cells*?; while MacLennan (1991) hypothesised that
the cells in V1 compute the coefficients of a 3D spatiotemporal Gabor expansion of the
stimulus?®

However, Marcelja (1980) noted that since the chosen set of Gabor functions is not

orthornomal, the simple cell outputs

_/ gzp

would only approximate the true coefficients. In fact rather than giving the required
coefficients in the Gabor expansion, these hypothetical simple cell outputs are those
required for a discrete window Fourier transform (Mallat, 1989a) — to be described
shortly in Section 3.4.5 — using the chosen Gaussian window, which is more in line with
a view of the simple cell spatial RFP as the correlation kernel of a spatial frequency filter,
a term used enigmatically by Pollen & Ronner (1983) in the same breath as the term
“local Fourier coeflicient”. Generalising an approach proposed by Bastiaans (1980) both
to the case of oversampling and to 2D — with the latter generalisation being omitted from
the following formalisation for notational convenience — Porat & Zeevi (1988) showed

that the set of coefficients given by
~ —/ z—1A;) - exp {—j2rpA,z} dz (3.16)
— where the biorthogonal function v:R — R is given by

1S (%ﬁ) | (%y P {W <Ai>2} 'n+Z (=1)exp {—W (n+%)2}

1
22A1

lalthough Pollen et al. (1985) stop short of advocating Marcelja’s (1980) Gabor expansion hypothesis.
22Elsewhere however, Daugman (1990) conceded that there exist problems with this view.

#3MacLennan (1991) acknowledged however that a relaxation process — such as that described in
Chapter 4 — would be required to calculate the correct coefficients (presumably from the simple cell
outputs given by (2.2)).
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and Ko € R is a normalisation constant — satisfy the expansion in (3.9) up to a scalar
constant. However, the 1D RFP required by a simple cell in order for it to calculate the

Gabor expansion coefficient in (3.16) corresponding to a given GRGF is given by
w(e) = y(w—iA,) - exp {—j2rpA,z}

which bears little resemblance to either the chosen GRGF (see e.g. Porat & Zeevi (1988,
Fig. 17)) or to simple cell 1D RFPs. Nevertheless, since the GRGF's are linearly depen-
dent for the case of oversampling, the choice of coefficients satisfying the Gabor expansion
is not unique, and it therefore remains to rule out the possibility that the discrete win-
dow Fourier transform might produce an equally valid set of coefficients for the Gabor
expansion. In the following section the possibility of a reconciliation of Maréelja’s (1980)
GE hypothesis with the computation actually performed by the simple cells is therefore

investigated.

3.4.4 Weyl-Heisenberg Frames

Setting aside the objections discussed earlier in Section 2.3.3 to the implementation by
the simple cells of complex-valued RFPs and outputs, as well as their conjugates, and
noting that the chosen Gabor functions do not form an orthonormal basis, hopes of
validating Marcelja’s (1980) hypothesis appear to rest on the generalisation of the notion
of a basis provided by the theory of frames (Heil & Walnut, 1989).

Definition 3.1 A set {1;:i € Z} C L*(R) of functions 1;:R — C is said to form a
frame for L*(R) if and only if there exists a bounded invertible linear operator P, called

the frame operator, such that for each function s € L*(R)

[Psl(e) = 3= | [ s(@)bi (@) d2] wi(a) (3.17)
The term in square brackets on the right-hand side of (3.17) can be identified with the
output of a simple cell having 1D RFP ?(z), while the summation can be identified
with the attempted reconstruction of the spatially low-pass filtered original image §(z)
from the frame elements 1; using the coefficients given by the simple cell outputs. Note
however that since the low-pass filtering operation performed on the image by the retinal
imaging process is not invertible, the corresponding operator is not a candidate for the
frame operator P. Alternatively, (3.17) can be rewritten as
s(@) = [ [ st@wi(a) da] Pi(a)
so that the simple cell output — again in square brackets — can be seen as an expansion

coefficient corresponding to the element P~'1); of the dual frame {P~'t;} (MacLennan,
1991).
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The scalar constants &1, k5 such that
r15(z) < Ps(z) < kos(z) Vs € LA(R) (3.18)

are called the frame bounds. A frame for which &; = &, is said to be tight, and in this
case P is simply the scalar kK, = ks, so that the original image can be reconstructed,
up to this constant factor, from the simple cell outputs as required by Maréelja’s (1980)
hypothesis. For a given choice of A;, the set G; is known to form a Weyl-Heisenberg
frame for all sufficiently small values of A, (Daubechies et al., 1986; Heil & Walnut,
1989). However, although this frame becomes increasingly tight (|x; — k2| — 0) as the
product A;A, — 0 (Daubechies et al., 1986), it is not in fact a tight frame except in
the limiting case. This observation therefore rules out the possibility that the output
of a simple cell having 1D RFP g¢;, € G; represents the coefficient of that RFP in the
expansion in (3.9), and hence invalidates Maréelja’s (1980) hypothesis. Thus as Maréelja
(1980) conceded, the coefficient estimate provided by the simple cell is only approximate;
bounds on the error of this approximation are provided by (3.18). However, if indeed
the set G, of 2D Weyl-Heisenberg coherent states does provide an adequate model of the
set of simple cell spatial RFPs, a more natural account of the processing performed by

simple cells is provided in the following section.

3.4.5 Discrete Window Fourier Transform

The 2D discrete window Fourier transform (DWFT) of a stimulus s(z,t) employing the
window function »:R?*— R — as it may or may not relate to the early visual system —

is given by
(W s](2ik, Upq, t) 2 /vs(a:, t) - v(e—ai) - exp{—j2ru, x} de

where W is the DWFT operator. Although the DWFT encompasses the use of more
general window functions, the choice of a Gaussian for the present purposes leads to
a set of 2D spatial RFPs given by the 2D Weyl-Heisenberg coherent states gixp,(z) as
defined in (3.14). For each point u,, on the spatial frequency lattice, [Ws](@:x, tpq, t) can
be viewed as the output of a filter having correlation kernel v(x—w;;) - exp{—j2ruZ z}
and sampled at the points @;; on a Cartesian lattice.

Unlike the Gabor expansion, the DWFT is defined in terms of the spatial inner
product of the stimulus with each of the GRGF elements of this set, and is therefore
more plausibly implemented by the simple cells?®. Like the Gabor expansion however,
the DWFT requires a large set of GRGFs having the same Gaussian window (up to
a translation) with a varying number of RF subfields (oscillations) “visible” under this

window, which despite reports of up to 8 RF subfields (Glezer et al., 1989), does not seem

*although see the discussion in Chapter 7
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to be the case in general amongst the feline or primate simple cells (Daugman, 1988a),
where RFs with 2 and 3 subfields predominate and Gaussian windows of various sizes have
been reported (Jones & Palmer, 1987b). This relatively small variation in the number
of subfields exhibited by most simple cells is reflected in their approximately constant
bandwidths — approximately 1.5 octaves (Pollen & Gaska, 1987) — on a logarithmic
frequency scale (Daugman, 1988a) over the full range of centre frequencies cxhibited by
the population, an observation which conflicts with the prediction by the DWFT scheme,
due to the use of a single Gaussian window, of constant bandwidth on a linear scale.
Furthermore, the 2D DWFT employs a Gaussian window with a single orientation, and
therefore fails to account for the variety of orientations observed amongst the simple cell
RFPs. It is not however possible on the basis of the above observations to conclusively
rule out the parallel implementation of multiple 2D DWFTs employing varying Gaussian
window sizes and orientations, for which a sufficient population of simple cells may indeed
exist. Nevertheless, the recent development of an alternative class of image representation
schemes — to be reviewed in Section 3.5 — which provide a more natural account of
the variety of simple cell RFPs has probably sounded the death knell for the DWFT

hypothesis of simple cell processing.

3.4.6 Efficient Coding Through Gabor Expansion

For discrete-space (e.g. pixellated) images, the phase-space sampling lattice employed by
the 2D Gabor expansion is usually truncated both in space, to account for the finite spa-
tial extent of the image, and in spatial frequency, to account for the spectral limitations
imposed by spatial sampling®®. Applying one such truncated 2D Gabor expansion to an
image, Daugman (1988a; 1989a) noted, after quantisation of the resultant coefficients to

n = 256 grey levels, that the first-order entropy estimate
H 2% filog, f; (3.19)
=1

of the representation, where f; is the relative frequency of the sth quantisation level, was
significantly less than the same measure applied to the pixels of the original image. The
symbol f; is used to indicate the fact that the relative frequencies of the various quan-
tisation levels provide only an estimate of the true probability density function for the
pixel/coefficient random variables, which are assumed to be identically distributed (see
below). When applied to the quantised image, the measure Hj, of which H; is an esti-
mate, is bounded below by the true entropy H of the quantised image source, calculated

using the second- and higher-order joint probability distributions of the image pixels in

5 Although this involves a practical approximation, since due to the strictly infinite spatial and spectral
extent of the Gaussian window employed in the true Gabor expansion, the coefficients of the Gabor
functions excluded by the truncation are not necessarily exactly zero.
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addition to the marginal distributions. H represents a measure of the information con-
tent of the image, with 2¥ giving the minimum number of discriminable signalling levels
required to completely encode each pixel/coefficient of the image in the absence of noise.
Contrary to the implication of the term “entropy reduction” used by Daugman (1989a),
a lossless transformation of the image involves by definition no loss of information and
hence entropy, but may convert the higher-order entropy of joint pixel intensity distribu-
tions into the first-order entropy of individual pixel distributions (Field, 1987). Such a
conversion might for example be achieved by exploiting the statistical dependence of each
pixel on its neighbours to predict the value of that pixel using a linear combination of the
neighbouring pixels, and transmitting only the difference between the true value and the
prediction (Atick & Redlich, 1991). Since there exist lossless coding algorithms such as
the Shannon-Fano algorithm (Carlson, 1986) which can achieve coding entropies close to
the first-order entropy, Daugman (1989a) concluded that the Gabor expansion is a more
efficient representation of the visual image than the original pixel-based representation.

However, the following formalisation of the above analysis reveals that despite its
promulgation in the literature (see e.g. Teuner & Hosticka (1993)), the comparison of the
first-order entropy estimates obtained using (3.19) before and after Gabor decomposition
of the image is invalid. Let an image be a single outcome of a 2D (spatial) stochastic
process*® (Papoulis, 1984). In order to determine the statistics of this process from a
single image, we require that the process be ergodic, which in turn requires that it also
be stationary — i.e. its statistics are position-independent. The relevance of the following
argument to biological vision is consequently dependent on the extent to which the en-
semble of visual images can be characterised by a single ergodic 2D stochastic process?’,
a characterisation which is not only unlikely to encompass the statistical diversity of nat-
ural scenes, but also ignores the piecewise temporal continuity of the visual environment.
In particular we wish to estimate the pixel probability density function on which the
first-order entropy measure H; is based, and require therefore that the stochastic process
which characterises the image is distribution-ergodic. The former condition can be met
if in addition to being identically distributed the pixel random variables are also inde-
pendent for large pixel separations (Papoulis, 1984)*, which in the absence of further
information is not an unreasonable assumption in the context of natural vision.

These same considerations can be applied to the “image” resulting from Gabor de-
composition of the original image, whose “pixels” are now the coefficients of the ex-

pansion. However, the requirement that the coefficients also be identically distributed

26The reader unfamiliar with the theory of stochastic processes is referred to Papoulis (1984) for
definitions and explanations of the terms used in the present exposition.

2Talthough more sophisticated schemes for image representation should be adaptive to the more prob-
ably changing statistics of the visual environment.

8This claim is an extrapolation from the equivalent result proven by Papoulis (1984) for a 1D stochas-
tic process.
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places enormous restrictions on the class of allowable transformations between image and
coefficients®. In the absence of further information regarding the joint probability distri-
butions of the input pixels, the satisfaction of these restrictions can only be guaranteed
apriori if the transformation is position-independent®®. The Gabor decomposition is not
however position-independent, since it cmploys Gabor functions with a range of spatial
modulation frequencies. Since the coefficients are therefore almost certainly not identi-
cally distributed, these random variables cannot be characterised by a single probability
density function, in violation of the assumption used to derive the first-order entropy
measure. Thus the measure obtained by Daugman (1989a) from the coefficient “image”
using (3.19) is not in fact an entropy measure, and its comparison with that obtained
for the original image is therefore not justified. In particular, it cannot be concluded on
the basis of this comparison that the Gabor expansion coefficients constitute an efficient
encoding of the image.

Nevertheless, this objection can be overcome if consideration is restricted to the coef-
ficients of the Gabor expansion corresponding to each spatial frequency channel in turn.
Each such channel consists of an array of sensors having spatial RFPs given by the mod-
ulated biorthogonal functions in (3.16) centred at points given by the Cartesian spatial
sampling grid, and therefore effects a position-independent transformation of the input
image. A first-order entropy estimate can therefore be prepared for each channel individ-
ually using (3.19), and the resultant estimates averaged over all channels — each of which
contributes the same number of coefficients — to produce a per-coefficient first-order en-
tropy. Since in comparison with the pixel distribution of the original image the composite
coefficient “distribution” presented by Daugman (1989a, Fig. 5) is strongly concentrated
around zero, it is apparent that this corrected first-order entropy estimate will still be
considerably lower than the corresponding measure for the input image. However, a full
exposition of the significance of this result for biological vision awaits the following: a jus-
tification of the assumption that the visual environment can be characterised by a single
ergodic 2D stochastic process; a demonstration of the performance of this decomposition
in the visual cortex®!; and a comparison with equivalent results — such as those outlined
in Section 3.5.5 — for competing simple cell image representation schemes, including the
DWEFT and the discrete wavelet transform (described in Section 3.5) to show that the

?9To see this, assume a linear transformation such as that given by (3.16) and write down the re-
quirements that the distributions of each of the coefficients have identical ith order moments for all
t €74

39Transformations which are position-independent up to any symmetries exhibited by the joint proba-
bility distributions of the input pixels/coefficients are sufficient, although these require apriori knowledge
of these symmetries. For example if the third- and higher-order joint distributions are zero, and the
second-order joint distribution is rotationally symmetric, the transformation need only be position-
independent up to rotations of the kernel.

31presumably, for reasons outlined in previous sections, by cells other than the simple cells, although
see also Chapter 7.
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same benefit is not conferred by these other schemes.

3.4.7 Summary

The localised Fourier analysis hypothesis of simple cell spatial computation, that the
“simple cells can be said to extract spatially localised spatial frequency components”
(Pollen & Gaska, 1987), has been critically examined using two alternative mathemati-
cal formalisations: the Gabor expansion (GE), and the discrete window Fourier transform
(DWEFT). The hypothesis by Marcelja (1980) that the simple cell outputs represent the
coeflicients of a 2D Gabor expansion of the visual image has been found to be inconsis-
tent with the GRGF model of the simple cell 2D spatial RFP. In contrast the alternative
hypothesis, that the simple cells collectively compute a 2D discrete window Fourier trans-
form of the visual image, is consistent with the GRGF RFP model, and therefore provides
the more plausible formalisation of the above assertion by Pollen & Gaska (1987). How-
ever the DWFT hypothesis has been found to provide at best an incomplete explanation
for the variation of the RFP model parameters observed in the simple cell populations
of feline and monkey primary visual cortex. The “preservation of both spatial frequency
and phase information at a given spatial position” also purported by Pollen & Gaska
(1987) furthermore entails the assumption — implicit in both the GE and DWFT hy-
potheses — that complez-valued generalised Gabor functions are implemented amongst
the simple cells, an assumption whose criticism by Stork & Wilson (1990) was examined
earlier in Section 2.3.3. Finally, it has been argued that with a simple but important
modification, the empirical analysis provided by Daugman (1988a), in support of his as-
sertion that the Gabor expansion represents a more efficient coding for the visual image
than a pixel-based scheme, can be adapted to demonstrate — at least for the hypothet-
ical image source of which the single image analysed by Daugman (1988a) represents a

single outcome — what it purports to.

3.5 Wavelet-like Analysis

3.5.1 Introduction

According to the DWFT hypothesis of simple cell processing, simple cell RFPs can be
generated by the regular modulation and translation of a common Gaussian window.
However it was noted in Section 3.4.5 that the consequent prediction of spatial frequency
bandwidths which are approximately constant on a linear scale as the modulation fre-
quency is varied is at odds with the available electrophysiological evidence showing ap-
proximately constant bandwidths on a logarithmic scale. Such evidence led Sakitt &
Barlow (1982) to propose an alternative scheme for the representation of the visual im-

age by the simple cells, according to which the RFPs of the simple cell population were
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assumed to be characterised by the dilation, rotation and translation of a pair of even-
and odd-symmetric GRGF templates. Such a scheme is suggestive of an analysis of the
visual image at different spatial scales or resolutions, and with the exception of the addi-
tional degree of freedom offered by the rotation operation, is consistent with the general
class of multiresolulion decomposition schemes (see e.g. Mallat (1989b)). However, the
multi-stage pyramidal architectures usually used for the efficient implementation of mul-
tiresolution schemes are incompatible with the limited number of cortical layers in V1 in
which the simple cells are located. In an effort to both fit the available anatomical and
electrophysiological data and to ensure the completeness of the representation, Sakitt &
Barlow (1982) chose appropriate dilations, rotations and translations on a somewhat ad
hoc basis, permitting only empirical arguments in favour of the completeness of the repre-
sentation. These arguments were based on the coverage of the spatial-frequency domain
afforded by the choice of bandwidths and centre frequencies and on the Sampling The-
orem, which is not strictly applicable to such a representation scheme since the GRGFs
are not strictly band-limited (Mallat, 1989a). A related scheme proposed independently
by Watson & Ahumada (1983) suffered from a similar lack of formal completeness results,
despite exhibiting greater regularity in the spatial and spectral sampling lattices.

Since the chosen Gabor functions are not mutually orthogonal, a proper treatment
of the issue of completeness must once again involve the theory of frames. However,
since completeness results are not yet available for such sophisticated sampling schemes,
some simplifications are necessary. In particular, the eccentricity-dependent decline in
the cutoff frequency exhibited by primate and feline visual systems and included in
the models of both Sakitt & Barlow (1982) and Watson & Ahumada (1983), the scale-
dependent rotation increments used in the former scheme, and the biological likelihood
of somewhat irregular sampling lattices, will be ignored in the present analysis. With
these simplifications, one is left with a scheme such as that proposed by Field (1987)32)
which employs Gabor functions distributed on a log polar sampling lattice in the spatial
frequency domain as shown in Figure 3.6(a), and a frequency-dependent Cartesian lattice
in the spatial domain as illustrated in Figure 3.6(b); an explanation of the notation used
in Figure 3.6 is provided later in Section 3.5.2. Noting that the generalion ol a set
of functions through the regular dilation, rotation and translation of a single function,
along with these resultant spatial and spectral sampling lattices, is highly reminiscent
of a representation scheme known as the discrete wavelet transform (Daubechies et al.,
1986; Mallat, 1989a) or DWT, Daugman (1988a) referred to the resultant functions

as a set of Gabor wavelets. Since recent interest in wavelets has produced a number

32 refer here to the scheme by Field (1987) which uses the true Gabor functions, as opposed to
his second scheme — proposed in the same paper — involving sinusoidal functions having windows
which are Gaussian on a logarithmic scale. The latter scheme is related to several proposed by Porat
& Zeevi (1988) involving distortions of the Gabor functions, which are beyond the scope of the present
consideration.
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Figure 3.6: (a) Lattice of centres (uj, ui;) in the spatial-frequency domain for a wavelet-

like 2D representation with o = 2. (b) Lattice of centres (:rm a:g]q

ipq)?

) in the spatial domain

for one value of the scale parameter 7. The notation is explained in Section 3.5.2.

of useful results concerning the completeness of wavelet sets, an important step in the
search for a completeness proof for the type of representation proposed by Field (1987)
is an exploration of the link between this wavelet-like representation and Gabor function
wavelet schemes. To simplify the following development, we concentrate initially on the

1D case, and then extend consideration to two dimensions.

3.5.2 Discrete Wavelet Transform

The discrete wavelet transform of a function f € L*(R) is given by

WG pib,0) = [ fahbule) de (ip) € 22 (3.20)

where the 1D wavelets

pin(2) 2 Vai - p(a'z—pA,)

are generated from a single mother wavelet ¢ :R — C by dilating it by the factor a7,
where 1 < a € Ry, and translating it by pa™*A,, where A, € R,. The set {t;, : (i,p) €
Z*} for a given mother wavelet function + is known as a set of 1D discrete affine coherent
states (Daubechies et al., 1986), since they are generated from the mother wavelet (up
to the normalisation factor \/(;) by an affine transformation of the spatial variable z.

A bandpass function v is admissible as a mother wavelet if it satisfies the condition

(Daubechies et al., 1986)
o0 2
/ P 4 < (3.21)
o [yl
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--------------------------------

Figure 3.7: Phase-space lattice of centres (z;,, u;) — shown as dots — for the functions
ip used by the 1D wavelet transform with o = 2.

where U = F{1)} is the Fourier transform of ¢, which in particular requires that |¥(0)| =
0 (Mallat, 1989a). If 4 is admissible, then the set {t;} of discrete affine coherent states
which uses 1 as its mother wavelet may, under certain additional conditions on %, A,
and «, be shown to form a frame for L?(R), and hence to be complete over this set of
square-integrable functions (Daubechies et al., 1986; Heil & Walnut, 1989). Denoting by

Ug the centre frequency of ¥ such that

| =) du=0
0
the distribution in phase space of the spatial and spectral centres

—i
Ty, = pa A,

U; = a’ﬁa

of the functions 1, is illustrated in Figure 3.7 for & = 2. The centre spatial frequencies
u; are evenly spaced on a logarithmic scale, while as can be seen in Figure 3.7, the
spatial sampling interval varies inversely with the centre spatial frequency. Ignoring for
the moment the problems associated with implementing possibly complex-valued RFPs,
each coefficient [Wf](i, p; ¥, ) of the 1D discrete wavelet transform could according to
(3.20) be calculated by a simple cell having corresponding 1D spatial RFP 1, related to
all other simple cell RFPs by dilation and translation. This possibility will be investigated

further in Section 3.5.3 following an exposition of the extension of wavelets to 2D.
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The 2D discrete wavelet transform of a function f € L%(R?) is given by
WAGi,p g ,0) = [ f@lba(e)de  (ipq) € 2° (3.22)
where the 2D wavelets
Ping(@) & Vol - p(a'z—[pAl, qAlT)

are generated from the mother wavelet 1:R? — C by dilating it by the factor o™,
where 1 < a € Ry, and translating it by o~/ [pAll ¢ANT where AN ARl ¢ R, The

admissibility condition

ds < oo  VYu € R? (3.23)

/°° [V (su)|?
0 s

is analogous to that in (3.21), where the integral is now performed along a radial line in
the frequency domain, and must be finite for all possible radial directions. In particular,
admissibility once again requires that the Fourier transform W of the mother wavelet
satisfy |¥(0)| = 0 (Mallat, 1989a). Since the set {ip, : (4, p, ¢) € Z*} does not explicitly
incorporate rotations of the mother wavelet, orientation dependence can be incorporated
by choosing a rotationally symmetric mother wavelet v, dividing its Fourier transform
into m sectors, and choosing corresponding wavelets {¢x : k € [l,m] C Z,} whose

Fourier transforms W; are respectively concentrated on each of these sectors and satisfy
2o Tk(w)* = ¥ (u))® (3.24)
k=1

(Mallat, 1989a). This construction yields the 2D spatial and spectral sampling lattices
illustrated in Figure 3.6, where the sub-wavelets ;x,, at a given scale are related to each
other by rotation through multiples of Ay = %r and translation. As indicated earlier,

these lattices are also employed by the representation scheme proposed by Field (1987).

3.6.3 Do Simple Cells Perform a Discrete Wavelet Transform?

In attempting to determine whether or not the simple cells implement a discrete wavelet
transform, the present discussion focuses initially on the Gabor function model of the
simple cell RFP; the conclusions drawn from this analysis are then shown to apply to
a broad class of RFP models. The question arises as to whether the Gabor functions
are suitable candidates for the mother wavelet function 1 in 1D, or for the mother sub-
wavelet functions ¥y, in 2D.

The 1D Gabor functions are not admissible as mother wavelets, since all complex-
valued Gabor functions have, by virtue of the Gaussian tail, non-zero magnitude at the
origin of the spatial frequency plane, and hence fail to satify the admissibility condition

(3.21). Since of the real- and complex-valued Gabor functions only the sine-phase RGF
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satisfies this condition, the theory of wavelets in its present form cannot, under the as-
sumption of a Gabor function model for the simple cell spatial RFP, provide an adequate
description of the variety of simple cell RFPs observed. To rationalise the continued use
of the completeness results offered by wavelet theory (Daubechies et al., 1986) in spite
of the above objections, the pragmatist may however be tempted to exploit the fact that
a complex-valued Gabor function has approzimately zero DC response for all sufficiently
large centre frequencies — given by the frequency of the sinusoid — relative to the size
of the Gaussian. However, the justification of this approach would seem to require more
RFP subfields than are exhibited by most simple cells.

Nevertheless it will prove instructive to indulge this approximation for the moment,
and to examine whether the 2D Gabor functions are suitable candidates for the sub-
wavelet functions ;. Owing to the finite response of these functions at zero frequency,
the function ¥ will also have non-zero response at DC, which strictly speaking renders
the rotationally symmetric function 3 inadmissible as a mother wavelet according to
condition (3.23). However, the satisfaction of (3.24) furthermore requires that U, be
polar separable, which is neither satisfied by the Gabor functions nor characteristic of
the spectral RFP of the simple cells®® (Daugman, 1980; Jones et al., 1987). Thus, in
addition to their failure to satisfy the admissibility condition, Gabor functions are further
excluded by the multi-orientation two-dimensional wavelet transform on the basis of their
inability to satisfy this isometry-preserving condition.

Despite the marked similarities between the 2D discrete wavelet transform and the
representation scheme of Field (1987), the latter scheme is therefore not a wavelet scheme,
and is consequently not covered by the frame-based completeness results concerning
wavelet representations. The required completeness results therefore await future devel-
opments in the theory of such wavelet-like schemes. It should further be noted that the
two objections raised above — viz. non-zero DC response and lack of polar separability
in the spatial frequency domain — to the use of Gabor functions in a discrete wavelet
transform extend to most if not all plausible models of the simple cell RFP, and argue

against the DWT as a description of the processing performed by the simple cells.

3.5.4 Gabor “Wavelet” Expansion

Using the same wavelet-like set of dilated, rotated and translated Gabor functions gk,
as the representation scheme of Field (1987), Daugman (1988a; 1989a; 1989c; 1990)

3In violation of this simple cell property, polar-separable wavelet-like representation schemes have
however been proposed. In the somewhat inaptly-named cortez transform, for example, Watson (1987)
used sub-wavelets which occupy annular sectors of the spatial frequency plane, with the edges rounded
off using a Gaussian profile to improve spatial localisation.
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proposed an alternative scheme according to which the coefficients ¢;;,, in the expansion

(@0= 3 5 3 3 cnltun) (3:29

are required, rather than simply the outputs of simple cells having the functions %y, =
Gikpq as spatial RFPs, as suggested by (3.22). This scheme is therefore similar to the
Gabor expansion, except that the functions used in the expansion are now generated by
the dilation, rotation, and frequency-dependent translation, rather than modulation and
frequency-independent translation. Not surprisingly it suffers from the same shortcom-
ing: the simple cell outputs do not give the required coeflicients, the calculation of which
must therefore be deferred until later processing stages. Furthermore, for the reasons
outlined in the previous section, it is not possible to make use of the frame-based com-
pleteness results for wavelet representations (Daubechies et al., 1986) to demonstrate the

completeness or otherwise of this scheme.

3.5.5 Efficient Coding Through Wavelet-Like Analysis

Each channel of a wavelet-like image analysis consists of an array of sensors or “cells”
whose RFPs 4, are characterised by a common scale 7 and orientation k. Field (1987)
analysed the Fourier amplitude spectra of six natural images, and demonstrated that
these spectra are approximated by a 1/f decay in amplitude with spatial frequency.
Representation of such images using a scheme whose channels exhibit constant band-
widths on a logarithmic scale and logarithmically spaced centre frequencies therefore
results in an approximately equal division of image power between these channels (Field,
1987). The choice of a spatial-frequency bandwidth of approximately 1 octave was found

to be optimal in the sense that

. a small proportion of cells represents a large proportion of the information

with a high signal-to-noise ratio. ..

so that for any given image, relatively few individual sensors had outputs which differed
significantly from the mean sensor output (presumed zero), and these accounted for most
of the output activity or variance. Field (1987) interpreted this observation to mean that
second- and higher-order correlations between the pixels of the stochastic process charac-
terising the original image had been largely converted into first order redundancy in the
sensor output distributions for each channel. Having thus been made more explicit, the
redundancy in the image could be more easily reduced by subsequent cortical processing
stages. This interpretation could equally be applied to the related entropy-based obser-
vations by Daugman (1988a; 1989a) concerning the Gabor expansion. Furthermore, the

difference between the “entropy” measures obtained after applying to the same image
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the Gabor “wavelet” expansion and its inner-product equivalent was observed by Pece
(1992) to be slight.

However the analysis from which this conclusion was drawn lumped together the
non-identically distributed outputs of all channels, rendering it susceptible to the same
criticism — detailed in Section 3.4.6 — as that performed by Daugman (1988a; 1989a)
for the Gabor expansion. Nevertheless, Field’s (1987) demonstration of approximately
equal energy — and hence variance of the output “distribution” if the outputs of each
channel are assumed to have zero mean — across channels provides partial reassurance
that similar results would have been obtained if the channel-wise analysis had been
performed. Furthermore, despite having relatively few sensors in a given channel active
for any given image produced by the characteristic 2D stochastic process, the present
wavelet-like analysis, by virtue of the identical output distributions of these sensors,
distributes the representational effort evenly over all sensors in a given channel for an
ensemble of such images (Field, 1987). This property can be contrasted with the tendency
of principal component analysis — such as that discussed briefly in Section 3.4.1 — to
concentrate as much of the representational effort into as few sensors as possible over
the image ensemble (Field, 1987). This latter property would be convenient for reducing
the number of sensors required to represent the image with a specified sufficiently small
loss, as opposed to the number of distinguishable signalling levels required to transmit
the output of each sensor. Since there appears to be an abundance of simple cells in
V1 relative to the number of photoreceptors, and each such cell appears to be relatively
noisy (Barlow et al., 1987) and subject to severe temporal limitations on the accuracy
with which its output can be signalled (MacLennan, 1992b)3*, the latter scheme would

appear to be the more advantageous for the visual cortex.

3.6 Applications of Gabor Functions

Gabor functions have proven popular over the past decade for the preprocessing of images
for applications including texture analysis, image compression, and pattern recognition.
Since texture is often characterised by its spectral signature, of particular interest to
the texture anal: :is community have been the optimal joint spatial and spectral local-
isation property of the complex-valued Gabor functions with § = 0, and the flexibility
with which resolution in one domain can be traded for resolution in the other. These
properties permit the localisation of boundaries between areas of differing texture, as
required for segmentation, through the detection of discontinuities in local magnitude
&/or phase estimates derived from the outputs of Gabor filters (Turner, 1986; Clark &
Bovik, 1989; Fogel & Sagi, 1989; Bovik et al., 1990; du Buf, 1990; Bovik, 1991). The

potential for image compression through Gabor function preprocessing derives from the

34although see the discussion entitled “Neural Iteration” in Section 7.2.3.
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work on entropy reduction and efficient coding by Daugman (1988a; 1989a) and Field
(1987), as discussed in Sections 3.4.6 and 3.5.5 respectively. Practical compression has
been demonstrated by Daugman (1988a; 1989a) for both the Gabor expansion and the
Gabor “wavelet” expansion. The primary motivation for the use of Gabor functions in
the majority of pattern recognition applications appears to have been their bandpass
tuning for both spatial frequency magnitude and orientation, despite the fact that many
other functions exhibit similar 2D spatial frequency tuning properties. A non-exhaustive
survey of applications of Gabor functions to image coding and analysis is presented in
Appendix C.

Motivated more commonly by engineering objectives than any desire for biological
fidelity, such applications have nevertheless drawn inspiration from the results reviewed
in Chapter 2 showing some justification for the 2D real-valued Gabor function as a model
of simple cell spatial RFPs, and at the same time have contributed to our knowledge con-
cerning the benefits potentially conferred on the visual system by such RFP functions.
However, applications using the complex-valued Gabor functions in the estimation of
local amplitude or phase, or relying strongly on the optimal joint localisation property,
depend crucially on the use of complex-valued Gabor functions, the biological imple-
mentation of which by the simple cells was argued in Section 2.3.3 to be as yet largely
unsubstantiated. The fact that the optimal joint localisation property applies only to
the complex-valued Gabor functions is sometimes overlooked, with Beck et al. (1990),
for example, erroneously invoking the optimal joint localisation property in justification
of an application using only real-valued Gabor functions. Furthermore, the truncation of
the Gaussian window necessitated by any computational or physical implementation of
a Gabor function renders strict reliance on the optimal joint localisation property of the
complex-valued Gabor function untenable, since with the imposition of the constraint of
finite spatial support on the search for optimally jointly localised functions, a solution
other than the truncated Gabor function will almost certainly emerge. Also of concern to
those wishing to relate the results of these applications to biological vision is the fact that
little effort has been made to exploit even a significant subset of the degrees of freedom
exhibited by spatial RFPs in the simple cell population. As indicated in Appendix C,
no systematic variation of the aspect ratio A or the phase parameter ¢ has for example

been attempted.

3.7 Conclusion

A number of theories concerning the spatial computational role of the simple cells in
primary visual cortex have been investigated. Special attention has been paid to their
ability to account for the variety and distribution of spatial RFPs observed in the simple

cell population and to the completeness of the visual representation they postulate. In
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addition to the limitations outlined in Section 3.1, the validity of this approach is de-
pendent on the extent to which a linear spatial RFP can be considered or even defined
independently of the temporal and binocular properties of the true simple cell RFP, a
view which in the light of the analysis in Chapter 2 is largely indefensible. Nevertheless
on these grounds alone, strong objections have been raised against most existing theories.

The feature-detection hypothesis was discarded on the basis of its incompatibility
with the predominant spatial linearity of simple cell processing. The linear matched
filtering hypothesis for bars and edges is rendered untenable by: the poor selectivity of
simple cell RFPs for edges and bars (Marr & Hildreth, 1980); the existence of simple
cells having more subfields than permitted for bar- and edge-selectivity; and the excessive
number of simple cells required by the extension to the binocular spatiotemporal case.
With the exception of the fractional discriminant functions, derivative-based theories of
simple cell spatial computation were commonly found to admit only purely even- and
odd-symmetric RFPs. The Gabor expansion and discrete window Fourier transform
were found to use an unrealistic distribution of Gabor function parameters, with an
unrotated Gaussian of constant size, and an even distribution of the number of subfields
visible under the Gaussian. The biorthogonal functional form of the RFPs required
for the Gabor expansion was also shown to be inconsistent with those exhibited by
the simple cells. The discrete wavelet transform admits neither the Gabor function nor
similarly realistic spatial RFP models as mother sub-wavelets, while the Gabor “wavelet”
expansion is once again inconsistent with the spatial inner product performed by the
simple cells.

A number of image representation schemes which have been tentatively identified with
the simple cells show greater biological realism and (perhaps inevitably) mathematical
complexity than those examined in depth in this chapter, including for example a retinal-
eccentricity dependent variation in the peak spatial frequency (Sakitt & Barlow, 1982;
Watson & Ahumada, 1983). Since the mathematical tools required to establish or refute
the completeness of these generalised wavelet-like schemes do not yet exist, the resolution

of this issue awaits the future generalisation of the existing tools of wavelet theory.



Chapter IV

NEURAL NETWORKS FOR NON-ORTHOGONAL IMAGE
DECOMPOSITION

4.1 Introduction

As discussed in the previous chapter, decomposition-based theories of simple cell pro-
cessing postulate that each simple cell computes the coeflicient corresponding to its own
spatial RI'P in an expansion of the visual image which uses these RFPs as expansion
functions. Implicit in the definition of a coeflicient employed by these theories is the no-
tion that each cell signals the relative presence of its spatial RFP in the image, a notion
which is reminiscent of feature detection hypotheses of simple cell processing. The con-
cept of the “relative presence” of an expansion function can be quantified by choosing a
reconstruction error criterion, the minimisation of which, subject to suitable constraints,
uniquely defines the set of expansion coefficients.

In this chapter the decomposition of a sampled multidimensional function using a
set of non-orthogonal expansion functions is formulated as a least squared error (LSE)
quadratic optimisation problem, the solution of which corresponds to the best linear
unbiassed estimate (BLUE) of the original image when the image is subject to zero-mean
spherical Gaussian noise. To standardise the formulation of the problem, the sampled
function is first reduced to a vector, and the decomposition is thereafter expressed in
terms of matrix-vector algebra which is independent of the function dimension. Thus
although the discussion focuses almost solely on the decomposition of an image using 2D
expansion functions, it should be remembered that the formulation is not limited to the
two-dimensional case. Furthermore, since both the image impinging on the retina and the
receptive fields of sensory neurons are naturally represented by real-valued functions of
the retinal coordinates, the trivial extension to complex-valued functions and expansion
functions is not explicitly addressed. However, this extension is achieved simply by
replacing the matrix and vector transpose operators with their Hermetian equivalents in
the following formulation.

Since degeneracy of the solutions to the resultant LSE problem might be expected to
pose problems for any natural or synthetic perceptual system implementing the required
decomposition, the problem is regularised to ensure uniqueness of the coefficients in

cases where the expansion functions are linearly dependant. The regularisation has the
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additional benefit that coefficients are prevented from becoming arbitrarily large in near-
degenerate cases. Following a brief review of conventional methods in linear algebra
and optimisation theory for the solution of the LSE and regularised LSE problems, the
remainder of the chapter is devoted to a review of linear time-invariant (LT1) recurrent
artificial neural networks (RANNs) whose dynamics converge to the desired LSE or

regularised LSE coefficients.

4.2 LSE Image Decomposition Problem

The reader is referred to any standard text on matrix algebra such as Golub & Van Loan
(1989) for general information on many of the concepts and algorithms discussed in this

and subsequent chapters.

4.2.1 Matrix Formulation

It is required to represent a real-valued image (@) — where @ = (z,y) denotes position
within the image — using a non-orthogonal set G of real two dimensional (2D) expansion

functions {g;(2)}. The reconstruction of i(x) from the coefficients {a;} is defined to be
i(x) £ 3 ajg5()
J

For a finite and discretely sampled image, such as that represented by the outputs of the
photoreceptors of the retina, the expansion functions are sampled on the same sampling
grid to produce a two-dimensional array of samples. This array can then be converted
into a sample vector by scanning the array in some regular order. For example, if the
sampling grid is rectangular, the array can be represented as a (two-dimensional) matrix,
and can be scanned in transpose raster order — using the operator vec :R™" - R™ —
to produce the required sample vector. Each such vector sampled from a given expansion
function g;(x) of the chosen set can be represented as a row of the expansion function
matrix G € R™™, where n is the number of expansion functions and m is the number
of points on the sampling grid. The coefficients {a;} are arranged in a column vector
a € R™ in the same row order as their corresponding expansion functions appear in G.
The image :(2) after discrete sampling can be converted in the same manner as each of
the expansion functions into a column vector € R™, leading to the following matrix-

vector formulation of the reconstruction
12 G a (4.1)

where 7 denotes the transpose operator. This formulation is generalised to functions of
arbitrary dimension simply by adopting an appropriate and consistent convention for the

arrangement of image and expansion function samples into a column vector.
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4.2.2  Squared Reconstruction Error (SRE) Minimisation

The problem of image decomposition using the set G of expansion functions involves the

solution of the set of linear equations
GTa =1 (4.2)

to identify the coefficient vector a for which the reconstructed image 2 most closely
resembles the original observed image %, in terms of some reconstruction error metric.
It the image is subject to additive zero-mean spherical Gaussian noise, then the best
linear unbiassed estimate (Mohanty, 1986) of the true image is obtained by minimising

the squared reconstruction error (SRE)
E(a)2 |i-i|}=(i-G"a)" (i - G"a) (4.3)

for each image, where ||.||; denotes the Euclidean (I;) norm. The expected value of E
over an ensemble of noisy images is referred to as the mean squared reconstruction error,
and is zero only if the set G of expansion functions is complete for the image ensemble
and the noise has zero variance.

The SRE E in (4.3) is quadratic in a, forming a parabolic error surface defined on the
domain of expansion function coefficients. Equating the gradient VE to zero and noting
that the Hessian Hp(a) = 2G/G” is positive semidefinite reveals that the solutions to the
SRE optimisation problem

min {E(a)}

are the solutions to the normal equations (Golub & Van Loan, 1989)
GGTa = Gt (4.4)

for the set of equations in (4.2). If the expansion functions are linearly independent! then
G has full row rank and Hg(a) is positive definite. The minimum of £ is then unique

and is given by the (Moore-Penrose) left pseudoinverse solution (Ogata, 1987)
a;p=(GG")"'Ge (4.5)

of the over-determined set of equations in (4.2). For this choice of the coefficients, the
reconstructed image 7 is the orthogonal projection of the noisy image 2 onto the subspace
spanned by the rows of (7, and the corresponding SRE (in the absence of noise) is the
square of the Euclidean distance between the image and its projection. If the expansion
functions are orthogonal, then the matrix GG7 is diagonal with diagonal entries given
by the square of the Euclidean norm of the corresponding expansion vector, and the

inversion is trivial.

for which a necessary condition is that n <m
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If the expansion functions are linearly dependent? then G is row rank deficient and
Hg(a) is positive semidefinite but singular, so that the minimum of E is no longer
unique. This degeneracy is usually resolved by seeking among the coefficient vectors
corresponding to minima of the cost function that which has the minimum Euclidean

norm, giving rise to the following solution (Golub & Van Loan, 1989, Thm 5.5.1)
al = (G")* (4.6)

where * denotes the Moore-Penrose pseudoinverse®

. An advantage of this additional
minimum Euclidean norm criterion which will become significant during later discussions
of implementation of SRE minimisation schemes in analog systems is that the output
power required to represent the coefficients is minimised. In the special case where (& has
full row rank, (4.6) reduces to (4.5) since @} p uniquely minimises E, and hence (trivially)
also minimises ||a||; amongst the minimisers of £ (Golub & Van Loan, 1989). If on the
other hand there are at least m linearly independent expansion functions (G has full
column rank), (4.6) reduces (Hager, 1988) to the (Moore-Penrose) right pseudoinverse
solution

alp = G(GTG) ™4 (4.7)

of the under-determined set of equations in (4.2), which gives perfect reconstruction of the
image in the absence of noise. Since at most m linearly independent expansion functions
are required to completely represent the sampled image, the excess of expansion functions
makes this an unlikely scheme for image compression applications; however, it will be
seen in Chapter 7 that it warrants closer examination in connection with mammalian

visual systems.

4.2.3 Practical SRE Minimisation

[f the matrix G is known to have full row rank, the SRE E is a positive definite quadratic
form, which can be minimised explicitly using optimisation techniques such as conjugate
gradient algorithms, quasi-Newton methods (Press et al., 1988) or iterative matrix tech-
niques, frequently referred to as relazation algorithms. Relaxation algorithms can be
characterised as explicit or hybrid explicit-implicit Euler method approximations to the
gradient descent equation

a=-I'VE

where I' € RP™ is either I, or [diag(GG™)]™", and diag:R™" — R™" returns the matrix

obtained by replacing the offdiagonal entries of its matrix argument with zeros. The

2which occurs for example if there are more expansion functions n than image sample points m

3henceforth referred to simply as the pseudoinverse, since there is no potential for confusion with
other pseudoinverses in the present context.
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application of relaxation algorithms — which include the Jacobi, Gauss-Seidel and Suc-
cessive Overrelazation (SOR) algorithms — to the solution of the normal equations in
(4.4) has been reviewed by Yan & Gore (1990) in the context of non-orthogonal im-
age decomposition. Alternatively, the normal equations in (4.4) can be solved by direct
methods such as matrix inversion or Gaussian elimination. Ill-posedness of the problem
— which is exacerbated by the squaring of the condition number during conversion of the
equations in (4.2) to normal form — can be to some extent overcome by scaling (Golub
& Van Loan, 1989) the normal equations — a technique which is examined further in
Section 5.4.

If on the other hand the matrix G is known or suspected to be row rank deficient,
explicit computation of the pseudoinverse solution in (4.6) is required. The calculation of
the pseudoinverse usually involves the singular value decomposition® (SVD) of G, which
produces errors of the order of §ome-(G) in the singular values, where o,,(G) denotes
the maximum singular value of G and é denotes the machine floating-point precision
(Golub & Van Loan, 1989). Denoting by Tmi, (&) the smallest non-zero singular value of

G, the generalised spectral condition number of G is defined as

4 9maz ( G)

%a(G) 2 > 1 (4.8)

Tmin(G) ~
For the present purposes, G will be said to be ill-conditioned if ®2(G) > 1, and well-
conditioned if R2(G) ~ 1. If G is particularly ill-conditioned, rank(G) — which is required
for the calculation of the pseudoinverse — can be difficult to ascertain from the SVD
due to the relatively large errors in the estimation of the zero and near zero singular
values. Thresholding of the singular values does little to alleviate this problem, since an
appropriate threshold is not known a priori, and estimates of non-zero singular values
can lie below the threshold, while those of zero singular values can lie above it. In
the calculation of the pseudoinverse, the estimated singular values which are nonzero
after thresholding are inverted to form singular values of the pseudoinverse matrix, while
the remaining singular values of the pseudoinverse are set to zero. An overestimate of
rank(G) will therefore result in the estimate of the pseudoinverse having one or more
singular values which should be zero but are in fact of the order of the inverse of the
threshold. Thus the estimated pseudoinverse is a strongly discontinuous function of the
estimate of rank(G).

An alternative approximate solution method which does not suffer from the problem
of discontinuity with estimated rank is suggested by the observation of den Broeder &
Charnes (1957) that the Moore-Penrose pseudoinverse solution given in (4.6) can be

expressed as

a; = lim{(GG" +¢L)7G}s (4.9a)

*although Greville’s method (Greville, 1960) is an alternative.
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= 1lim {G(G"G +¢I,) "} (4.9b)

where [, and I, are the n xn and m xm identity matrices respectively. The equality
of the two terms in limits can be established by adding eG to GGTG and pre- and
post-factorising by (7. As expected, as ¢ — 0 these terms tend respectively to the left
pseudoinverse if GG has full row rank, and to the right pseudoinverse if G has full column
rank. In the more general case, the calculation of either term for suitably small ¢ > 0
produces an approximation to the true pseudoinverse.
For a given € > 0
a. = (GG™ +¢I,)'Gi (4.10)

is the unique stationary point of the error function
E.(a;e) £ || — o) + ¢]|all3 (4.11)
and since the eigenvalues of the Hessian
Hg,(a) =2(GG" +¢l,)

are simply twice those of the positive semidefinite matrix GGT plus 2¢ — from which it
follows that Hpg,(a) is positive definite — this stationary point is also the point at which
the global minimum of E, is attained (Ben-Israel & Greville, 1974). The optimisation

problem

min {E.(a;e)} (4.12)

is referred to as the ridge regression problem (Golub & Van Loan, 1989), and from (4.11)
has as its solution an epprozimate minimiser of the SRE which has a smaller norm.
The regularisation (Hager, 1988) or ridge (Golub & Van Loan, 1989) parameter ¢ > 0
controls the trade-off between minimisation of the SRE and minimisation of ||a||? in the
optimisation of E, and can be chosen to avoid undue sensitivity of the computed solution
to errors or noise in any one element of the observed image vector ¢ (Golub & Van Loan,
1989). However, for the present purposes it will be assumed that € > 0 is chosen to be
small enough to achieve a suitable approximation to the true pseudoinverse solution.
Since E. is a positive definite quadratic form, the application of gradient-based algo-

rithms to the augmented normal equations
(GG" +el,)a=Gi (4.13)

arising from the ridge regression problem is guaranteed to find the unique global minimum
of E.. Alternatively, these augmented normal equations can be solved in the same ways
— outlined in the beginning of this section — as the original normal equations for the
full-rank case. Although as ¢ — 0 the condition number of the augmented normal

equations approaches the square of that of GG, the resultant errors are no longer subject
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to the strong discontinuity with estimated rank associated with the explicit calculation
of the pseudoinverse. Furthermore the larger the value of ¢, the better the conditioning
of the augmented equations, although of course the worse the resultant approximation

of the true pseudoinverse.

4.3 Neural Networks for SRE Minimisation

For realistic image processing applications, the number m of pixels is frequently of the
order of 10° (e.g. 512x 512), and if accurate reconstruction is required, the number n of
expansion functions is of the same order. The computation of the pseudoinverse solution
or an approximation thereto by any of the means discussed in Section 4.2.3 is therefore
highly computationally intensive, and the use of parallel computation is a necessity for
real-time applications. The reader is referred to Golub & Van Loan (1989, Chap. 6) for
an overview of parallel matrix computations on generic conventional parallel computer
architectures.

In order to investigate the feasibility of the implementation of an SRE minimisation
scheme in the mammalian early visual system, the solution of the SRE problem using a
class of fine-grained parallel computing architectures known as neural networks is exam-
ined. Attention is focused on recurrent analog neural networks, formed by the recurrent
weighted interconnection of a large number of analog computing elements, each of which
consists of a summing integrator with cascaded non-linearity. These networks — of which
possibly the best known example is the Hopfield network (Hopfield, 1984)— constitute
a subset of the class of additive neural networks (Grossberg, 1969) which are commonly
used to describe biological neural networks at moderate levels of abstraction. Although
the identification of suitable analog very large scale integrated (VLSI) circuit implemen-
tations of such networks is an on-going research issue (see e.g. Schach (1992)), their
structural regularity has intuitive appeal in VLSI circuit design. The possible implemen-
tation of neural networks discussed in this and the following chapter in the real neural
wetware (hardware) of the mammalian early visual system is examined in Chapter 7.

The implementation on conventional fine-grained parallel architectures — such as
single instruction multiple data (SIMD) machines — of direct methods for the compu-
tation of the pseudoinverse solution or its approximation — including singular value
decomposition, or inversion of (4.13) — requires global coordination of the actions of the
individual processing elements. However such coordination, which is also required by
optimisation algorithms classified as conjugate gradient or quasi-Newton methods (Press
et al., 1988) to implement the necessary one-dimensional sub-minimisations, is inconsis-
tent with the autonomy of neurons in a recurrent neural network. In contrast, relaxation
algorithms require no such coordination and are therefore — with minor modification in

some cases to permit simultaneous updating of all coefficients (Yan & Gore, 1990) — well



82

suited to implementation in recurrent neural architectures. Furthermore, when formu-
lated in continuous-time, relaxation algorithms lead naturally to analog neural network
implementations.

In this section, neural network approaches to the least-squares solution of a full-rank
over-determined set of linear equations are reviewed. In the following section, the appli-
calion of neural nelwork implementations of the ridge regression problem to the solution
of rank-deficient and under-determined sets of linear equations is examined. In keeping
with the current context of image decomposition using non-orthogonal expansion func-
tions, the terminology and much of the discussion in this and the following section centres
on SRE optimisation; however it should be born in mind that this is but one application
of the least-squares solution of sets of linear equations, to which these neural networks are
more generally applicable. The order of presentation of the neural network models has
been chosen to facilitate the ordered development of the relevant concepts, and in places
does not follow chronological order of publication. Finally, in order to avoid distracting
considerations of the capabilities and peculiarities of particular VLSI technologies, ar-
chitectural comparisons of the various models presented in this and the following section
have been performed at the relatively abstract level of counts of connections and ideal
components such as summers and integrators. More detailed technological comparisons

are beyond the scope of this review.

4.3.1 Daugman (1988a)

An artificial neural network for MSRE image decomposition was first proposed by Daug-
man (1988a). Illustrated in Figure 4.1, Daugman’s network was intended to implement

the coefficient update equation (Daugman, 1988a, Eqn 8)
a(t+1) = a(t) + [Gi — G (G"a(t))] (4.14)

the continuous-time equivalent of which performs steepest descent (@ = —VE) on E
(Daugman, 1990), and hence is guaranteed to find the unique global optimum. However,
(4.14) constitutes an explicit Euler method approximation to the continuous-time case
with unit step size, and is known to be unstable whenever an eigenvalue of GGT exceeds
2. In such cases, stability of Daugman’s algorithm can be achieved by decreasing the step
size. As will be seen in Section 5.4, the rate of convergence to the optimal solution can
be accelerated for a given step size « € (0,1) by employing the diagonal preconditioning
strategy

a(t+a) = a(t) + ol [Gi — (GGT) a(t)] (4.15)

inherent in the Jacobi iteration for the system of equations in (4.4), where

T 2 [diag(GGT)]™
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GGTa
G

Figure 4.1: Network proposed by Daugman (1988a) for Gabor image decomposition.
Reproduced from figure 3 of Daugman (1988a) with matrix-vector notation. The fol-
lowing conventions have been adopted in this and subsequent neural network diagrams
(except where otherwise indicated): to avoid clutter, only a subset of the links is shown
for each connection matrix; links carrying data in the top-to-bottom and hottom-to-top
directions are denoted by solid and dotted lines respectively; open circles represent sum-
mers; triangles represent adjustable weights, and the arrowed lines which intersect them
represent weight update signals.

is the diagonal preconditioner and diag:R™" — R™" returns the diagonal matrix obtained
by setting the offdiagonal entries of its matrix argument to zero. Equation (4.15) reduces
to (4.14) in the case of normalised expansion functions (diag(GG") = I,) and unit
step size (o« = 1) (Yan & Gore, 1990). The required coefficients are represented as
“weights” on the feedforward connections between the first and second neural layers,
and are adjusted according to the difference between the outputs of the first and third
layers. The feedforward weight vector of each neuron in the first layer represents a
corresponding row of the weight matrix . Note that the expression of the expansion
function corresponding to this row as a weight vector is purely for notational convenience,
and that the spatial implementation of these weights is more naturally viewed in the
original dimensions of the expansion function.

According to the unwavering description given by Daugman (1988a; 1989c; 1989b;
1990) of the operation of the network, the first and third neural layers are “identical”,



84

Activations Input 2 Weights

G

GT

Reconstructed Image ?

Figure 4.2: Corrected and condensed version of network proposed by Daugman (1988a).
Black circles represent (explicit Euler method approximations to) ideal inverting sum-
ming integrators.

and in particular they have the same input weight matrix G (as shown in Figure 4.1 and
indicated by the explicit parentheses in (4.14)). However, this description is inconsistent
with the labelling of the dotted feedback pathway serving as input to the weight adjust-
ment controller, since the second neural layer as drawn is not in a position to perform
the necessary prior multiplication of the coefficient vector by the matrix GT. Further-
more, the description of the coefficient representation as “weights” is also inconsistent
with this labelling, since if the description were true, the expression in the label should
include the image vector ¢. There are a number of ways in which the network may be
redesigned to be consistent with the equations it was intended to implement. Arguably
the simplest — although see Section 4.3.2 — is to represent the coefficient vector as the
activations of a surrogate neural layer in place of the “weight layer” — thereby disposing
of the feedforward connections from the first neural layer to the weight “layer” — and to
add cross connections representing the matrix G* between the outputs of the new neural
layer and the inputs of the (formerly) second neural layer.

For the purposes of fair comparison with other neural network models, the number
of nodes and connections required by the resultant network can be reduced by folding

the third layer back onto the first, as illustrated in Figure 4.2. The coefficients are
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represented by the activations of the resultant composite first-layer nodes, which act as
(explicit Euler method approximations to) ideal summing integrators, with the update of
their activation governed by their summed weighted inputs and current activation level
such that

a(t+1) = a(t)+[Gi— Gi]
= a(t)+[Gi- G (G a(t))] (4.16)

In recognition of the distinction between these ideal integrating nodes and normal sum-
ming nodes, the former are henceforth denoted by black circles and the latter as previ-
ously by white circles.

The feedforward and feedback weight vectors of each neuron in the first layer are
identical (with the exception of a change of sign) and represent a corresponding row of (7,
while the feedforward weights of each neuron in the second layer represent a corresponding
row of GT. The output of the first layer is the coefficient vector a, whilst that of second
layer is the vector G"a, which is by definition the reconstructed image. The three
separate implementations of the matrix G (or its transpose) — as indicated by the
explicit parentheses in (4.16) and illustrated in Figure 4.2 — require a total of 3nm

connections. In addition, the network requires m summing nodes and n integrators.

4.3.2 Wang & Yan (1992)

Yan & Gore (1990, Eqn 13) showed how the SOR algorithm can be modified to allow
parallel weight updates by removing the dependence of the update of each coefficient «;
on the most recent updates {a; : j < i}. When the rows of G have unit Euclidean

norm, this modification yields the update equation
a(t+1) = a(t) + p[Gi — GG a(t)]

where p € [1,2) is the relazation parameter. However, removal of this dependence is
achieved at the expense of the enhanced stability conferred by the implicit portion of
the hybrid implicit-explicit Euler method used by the SOR algorithm, rendering the
modified algorithm less stable than Daugman’s iteration scheme in (4.14). As with the
latter scheme, a reduction in the step size is frequently necessary to achieve stability,
while as will be seen in Section 5.4 if the rows of (G have not been normalised, the
rate of convergence may be improved significantly by using the diagonal preconditioning
strategy

a(t+1) = a(t) + pI' |Gz — (GGT) a(t)] (4.17)

inherent in the true SOR algorithm, where ' £ [diag(GGT)]™ is the diagonal precondi-

tioner.
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Figure 4.3: Network proposed by Wang & Yan (1992) for Gabor image decomposition.
Reproduced from their figure 1 with matrix-vector notation. Open circles do not represent
summers — see text.

Wang & Yan (1992) modified Daugman’s discrete-time network for MSRE image de-
composition to implement the modified Successive Overrelaxation (SOR) algorithm in
(4.17)°; the resultant network is depicted in Figure 4.3. The principal modifications con-
sist of the combination of Daugman’s second and third neural layers in Figure 4.1 into
a single layer having output weight matrix GG”, the precalculation of the term Gz —
avoiding the question of how this is to be performed in hardware — the elimination of the
erroneous feedforward connections from the signal (G2 to the adjustable weight layer, and
the incorporation of the relaxation parameter p and the elements of the preconditioner in
the weight update controller. However as with Daugman’s network, the use of the term
“weights” to describe the representation of the coefficients remains misleading, since the
“weights” do not weight a signal input, performing instead the role of adjustable neural
activations. Furthermore, the middle layer (open circles) serves no computational pur-
pose, since the weight matrix on its output could equally well be considered to constitute

input weights to the first (summing) layer, permitting the omission of the middle layer.

S Although their equation 13 — which is said to govern the operation of the network — does not
incorporate the modification proposed by Yan & Gore (1990) to allow parallel weight updates, it is
assumed that it was intended, since otherwise — to use the words of Yan & Gore (1990) in reference to
the closely related Gauss-Seidel iteration method —

... the weights cannot be updated simultaneously, and thus it is not appropriate for parallel
implementation.
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Activations Input 1 Weights

Input 2

Figure 4.4: Generative Back-Propagation network proposed for MSRE image decompo-
sition by Cohen & Shawe-Taylor (1990). Open circles represent bidirectional summers
(see text); the direction of signal propagation is controlled by the supervisor.

If these redundant nodes are omitted, the component count is n summing nodes, n?

weighted connections and n “weight” nodes.

4.3.3 Cohen & Shawe-Taylor (1990)

The generative back-propagation (GBP) approach to SRE minimisation (Cohen & Shawe-
Taylor, 1990) involves the training by error back-propagation of the input weights to the
first layer of a two-layer linear neural network. The network illustrated in Figure 4.4
is presented with a constant input given by the unit vector, which is then weighted by
the current estimate a(t) of the MSRE coefficients to produce the output of the first
layer nodes. The reconstructed image is then formed as the activations of the second
layer nodes by passing the first-layer activations through the weight matrix G7. The
reconstructed image is compared by a supervisor with the original image and the error
fed back through the network to adjust the input weights to the first layer.

Although the generative back-propagation network itself is not strictly a relaxation
network, its “training” can be seen to implement the following form of the Jacobi-like
iteration in (4.14)

a(t+1) = a(t) — aG[GTa(t) — 1 (4.18)

where a € R;. The difference term in brackets — the negative of the residual - is

evaluated by the supervisor and weighted by G during back-propagation through the
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Figure 4.5: Network proposed by Cichocki & Unbehauen (1992) for solving full-rank
overdetermined systems of linear equations. Black circles represent ideal inverting sum-
ming integrators.

interlaminar weights. The model at first appears to represent a considerable saving in
hardware over the modified network in Section 4.3.1, requiring only nm connections and n
nodes. However, this saving is achieved at the cost of the additional complexity required
by bidirectional weighted connections, and the non-local control by the supervisor of
the current direction of signal propagation. These issues are addressed by the following

neural network architecture.

4.3.4 Cichocki & Unbehauen (1992)

Cichocki & Unbehauen (1992) recently proposed the neural architecture illustrated in
Figure 4.5 for the solution of full-rank overdetermined systems of linear equations. The

network implements the following set of equations
a = —-I(t)Gr (4.19a)
r = GTa—1 (4.19Db)

where @ denotes the time derivative of @ and ['(¢t) € R™" is a positive definite precondi-
tioner, for which — provided I'(t) remains positive definite — the SRE defined in (4.3)
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Figure 4.6: Condensed form of network proposed by Cichocki & Unbehauen (1992) for
solving overdetermined systems of linear equations. I' is assumed to be time invariant.
Black nodes represent ideal inverting summing integrators.

is a Liapunov function which is monotonically decreasing except at the unique equilib-
rium point (Cichocki & Unbehauen, 1992). The residual = is evaluated explicitly in the
input layer, and then projected onto the Gabor functions followed by I'(¢) to modify the
coefficient vector a.

Cichocki & Unbehauen (1992) showed that the case of non-Gaussian noise distribu-
tions on the inputs — such as a Gaussian distribution with outliers — can be dealt with
through the use of appropriate non-linear activation functions in the first-layer nodes.
In order to achieve linear convergence of the neural network to the optimal solution,
the preconditioner I'(t) was adapted according to the length of the residual error vector,
albeit at the cost of relatively expensive additional hardware. These two extensions are
however beyond the scope of the present analysis.

To facilitate fair and simple comparison with other networks, if I' is time-invariant and
the input nodes have linear activation functions, the second and third neural layers can be
condensed into a single layer of ideal summing integrators with input weight matrix I'G,
which can be precalculated. The relative overhead cost involved in this precalculation
is negligible provided the system of equations is to be solved repeatedly with different
inputs, which is the only case in which one would consider hardware implementation
of the neural network. Illustrated in Figure 4.6, the condensed network requires 2nm
connections, n ideal summing integrators and m summing nodes, which constitutes a

saving of nm connections over the modified form of Daugman’s network depicted in
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Figure 4.2.

The additional cost in connections over the GBP network is due to the replacement
of the nm bidirectional connections with two sets of nm unidirectional connections.
Furthermore, the computational role of the supervisor has been effectively assumed by
the nodes in the first layer, while its role as network scheduler is no longer required, since
the coefficients represented by the output of the nodes in the second layer evolve under

the system dynamics, rather than by scheduled updates of the network weights.

4.4 Neural Networks for Minimum Norm SRE Minimisation

When applied to an under-determined or rank-deficient set of equations, the foregoing
networks find a non-unique minimum of the SRE. This degeneracy of the solutions ob-
tained by the neural network is likely to be problematic in the context of biological or
machine vision, since the already complex task of perception is made more difficult by
the need to recognise the infinite set of degenerate solutions as representing the same
stimulus. Furthermore, which of the degenerate set of solutions is reached by the network
is dependent on the state of the network prior to presentation of the current stimulus.
This history-dependence is probably undesirable in machine vision applications, although
history-dependence is for example an automatic consequence of automatic gain control
(AGC) mechanisms in biological vision. In this section, neural network approaches to
the ridge regression problem — whose unique solution approximates the pseudoinverse

solution of a set of linear equations — will be examined.

4.4.1 Culhane et al. (1989)

Culhane et al. (1989) proposed two versions of an analog neural network for computing
discrete Fourier and Hartley transforms, for which the matrix G is orthogonal. Shown
generalised in Figure 4.7 to arbitrary rectangular (7, their “ideal case” model — so called
because the summers in the first layer are assumed to have no delay and the two im-
plementations of (G are precisely matched — amounts to a special case of the linear
programming network of Tank & Hopfield (1986), in which the neurons have linear ac-
tivation functions and the coefficients of the linear expression to be minimised are zero.
Since much of their analysis does not rely on their assumption of the orthogonality of G,
it is largely unaffected by the generalisation. The generalised network is similar to the
condensed form — shown in Figure 4.6 — of the network proposed by Cichocki & Unbe-
hauen (1992); however in acknowledgement of the difficulty of practical approximation
of an ideal integrator, the integrators have been assigned an additional leakage term.

The network is governed by the following set of equations

T.a = —a—k,Gr (4.20a)
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Figure 4.7: Network proposed by Culhane et al. (1989) for computing discrete Fourier
and Hartley transforms, as generalised to permit arbitrary rectangular G; see text.

r o= k[GTa—i (4.20b)

where # € R™ — which is proportional to the residual — represents the activations of
the nodes in the first layer, 7, € R, is the integrator time constant, and k,,k, € R, are
the gains of the summing and summing integrator nodes in the first and second layers

respectively. These equations can be combined and rearranged to give
en.a=—(GG" +el,)a+ Gt (4.21)

where € = (k,k,)™"; (4.21) reveals that the system performs steepest descent on the regu-
larised energy function E. in (4.11) and, since the Hessian is positive definite, is globally
convergent to the unique equilibrium point given by (4.10). The former observation is
consistent with that of Culhane et al. (1989) that

Epor, = @) + kok,||i — Gal|} (4.22)

is a Liapunov function for the system, although the authors did not note the approxi-
mation of the pseudoinverse solution for large k,k, or the consequent extension to the

rank-deficient and under-determined cases.

4.4.2 Yan (1991b)

Acknowledging the inevitable finite delay (rise-time) associated with any practical im-

plementation of a summer and the difficulty of precisely matching component values,
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Figure 4.8: Network proposed by Yan (1991a) for Gabor image decomposition.

Culhane et al. (1989, Sect II1.B(2)) improved on their “ideal case” network by replacing
the summers in the first layer with leaky summing integrators, and allowing the two im-
plementations of the matrix G to differ slightly from their true value. Yan (1991b; 1991a)
extended this improved neural network to the case of an incomplete non-orthogonal ex-
pansion function set by removing the requirement that the matrix G' be symmetric and
have orthogonal rows. Shown schematically in Figure 4.8, the network is governed by

the following simplified coupled ODEs

.a = —a-k,G,c (4.23a)
¢ = —c+k[GTa— 1] (4.23b)

where ¢ and a are the activations of the input and output layers respectively, 7, and 7,
are the neural time constants in the corresponding layers, G, and G, are approximations
to the ideal weight matrix G, and k, and k. are positive scalar constants. Setting ¢ =

(kok:)™", the equilibrium point of the system is given as
a=(G,G" +¢l,) G, (4.24)

by Yan (1991b) and as
a=G,(GIG, +¢el,) "1 (4.25)

by a simple extrapolation of the result of Culhane et al. (1989, p.700). These two claims
can be reconciled by noting as in (4.9) the equality of the two right-hand sides for € > 0,
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provided that the minimum eigenvalue of the matrix G,GT satisfies
Amin(GaGZ) > —€

This latter requirement ensures that the inverses exist, and is precisely the network
stability criterion (Yan, 1991b). Thus like the “ideal case” network of Culhane et al.
(1989), the network proposed by Yan gives an approximation to the pseudoinverse solu-
tion of (4.2); however this point and the consequent applicability of the network to the
rank-deficient and under-determined cases were not noted by Yan. The accuracy of the
approximation is dependent on the choice of the gain parameters k,, k. and the accuracy
of the two approximations GGy, G to G. For good accuracy the product k,k, should ide-
ally be large; however, in the presence of errors in Gy, G, or potential rank-deficiency of
G, this product should not be so large as to cause instability of the network.

The application of (¢ and its transpose once each in (4.23a) and (4.23b) requires a
total of 2nm connections. The replacement of the m summers in Figure 4.6 with leaky
summing integrators and of the n ideal summing integrators with their leaky counterparts

entails the use of n + m leaky summing integrators.

4.4.3 Pece (1992)

Pece (1992) independently proposed a relaxation model which is functionally identical

to that of Yan (1991a), except for a change of sign in the cross-terms and input term in
(4.23) and the choice of k, = 1 to yield

T.a = —a+ k,Ge (4.26a)
¢ = —c+[t—G"d] (4.26b)

as depicted in Figure 4.9. The equilibrium point and stability analysis presented by
Culhane et al. (1989) can be easily extended to demonstrate the exponential stability®
of the network, and the equivalence of its fixed point with that presented in (4.24) and
(4.25).

4.5 Conclusion

In this chapter the decomposition of an image using a set of non-orthogonal expansion
functions was formulated as a least squared error (LSE) quadratic optimisation problem,
the solution of which corresponds to the best linear unbiassed estimate (BLUE) of the
original image when the image is subject to zero-mean spherical Gaussian noise. The
LSE problem was then regularised to ensure uniqueness of the coefficients in cases where

the expansion functions are linearly dependant; the regularised solution tends to the

$Exponential stability is defined later in Definition 6.1.
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Figure 4.9: Network proposed by Pece (1992) for Gabor image decomposition.

Moore-Penrose pseudoinverse solution of the corresponding set of linear equations in
the limit as the regularisation parameter tends to zero. Conventional methods in linear
algebra and optimisation theory for the solution of the LSE and regularised LSE problems
were briefly reviewed, and it was argued that the underlying algorithms — with the
exception of relaxation algorithms — are incompatible with the autonomous fine-grained
parallelism offered by analog recurrent artificial neural networks (RANNs). Discrete- and
continuous-time RANNs which solve the LSE and regularised LSE problems were then
reviewed, and it was shown that several networks proposed as approximate solutions to

the LSE problem in fact solve the regularised LSE problem.



Chapter V

SINGLE-LAYERED NEURAL NETWORKS FOR
DECOMPOSITION

5.1 Introduction

In the latter part of Chapter 4, linear RANNSs were reviewed which solve the LSE or regu-
larised LSE problems. In this chapter, single layered RANNs are proposed to solve these
two problems, and are shown in the general case to require less connections or neurons
than comparable multi-layered models. These models are shown to bear considerable
resemblance to existing resistive grid architectures for solving sets of linear equations
arising from the discrete formulation of partial differential equations (PDEs) governing

classical problems in machine vision.

5.2 Pattison (1992)

Upon abandoning the discrete-time (SOR) formulation of the SRE optimisation prob-
lem, the somewhat problematic architecture of Wang & Yan (1992) can be condensed
into a single neural layer to produce a network which had already been proposed inde-

pendently by Pattison (1992). Depicted in Figure 5.1, the resultant network implements

Activations Input ¢ Weights

Output a

Figure 5.1: Relaxation network proposed by Pattison (1992). Complete input connec-
tions shown for centre node only. Grey nodes represent leaky summing integrators.



96

the following ordinary differential equation (ODE)
a=«a|Gt— (GG d] (5.1)

where o € Ry, which performs steepest descent on the SRE (Pattison, 1992), and is
therefore cxponentially stable provided (¢ has rank n < m. The matrix L £ —GGT can
be precalculated, and each of its off-diagonal elements represented by a weighted lateral
connection between corresponding neurons in a single layered linear recurrent neural
network. The value of the weight [;;, on the lateral connection from cell k to cell 7 is
given by

lik == gi(®)ge(x) = L (5.2)

©

where g;(z) and gi(x) are the expansion functions on the feedforward weights to the ith
and kth neurons respectively. This quantity can be seen to be a discrete approximation
to the overlap integral between these two expansion functions, and may be either positive
(excitatory) or negative (inhibitory). The diagonal elements of L can be implemented
either as external self-inhibitory connections on ideal summing integrator nodes or as
internal leakage terms in leaky summing integrator nodes. The latter scheme is preferable,
since it obviates the need for the active analog components required to approximate an
ideal integrator. The feedforward weight vector of the jth neuron is given by the jth row
of ¢4

This network is substantially similar to resistive networks proposed for the solution of
partial differential equations (PDEs) associated with problems in vision, including depth-
from-stereo (Chhabra & Grogan, 1989), shape-from-depth (Grimson, 1981) and contour-
based optical flow (Poggio & Koch, 1985; Chhabra & Grogan, 1990). The principal
difference is that whereas in vision applications the connections are local — reflecting
the spatial localization of both discrete approximations to spatial derivatives and penalty
terms which enforce constraints such as spatial smoothness — the network depicted
in Figure 5.1 may have or approach complete lateral connectivity depending on the
chosen expansion functions. Furthermore, unlike these resistive networks, the network of
Pattison (1992) may require both positive and negative weights.

The network requires n leaky summing integrators, while the number of weights
(connections) required by this implementation — including the self-connection (leakage)
term — is n(n+m) < 2nm for n < m, with equality if and only if n = m. Thus
for general (full-rank) overdetermined sets of linear equations this network improves on
the connection economy of the condensed network depicted in Figure 4.6. Furthermore,
for expansion functions sets in which each function has non-zero overlap integral with
relatively few others, the feedback matrix L is relatively sparse, and can be implemented
with considerably less connections than would in general be required. If in addition
each of the expansion functions overlaps only with others whose centres are located near

its own, then the required spatial extent of the lateral connections can be restricted
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by implementing the neural layer as a two-dimensional array of neurons, and assigning
the expansion functions to the neurons topologically, according to the locations of their
receptive field centres.

For orthogonal expansion functions — in which case the SRE optimisation scheme is
of course redundant — the single-layered network requires up to n(m—1) fewer (non-zero)
connections than the network shown in Figure 4.6, which in the worst case would still
require 2nm connections. In general however, even small perturbations of the expansion
functions from an orthogonal set will cause the overlap (lateral weight) matrix to become
densely populated. An exception is if the expansion functions are localised in image space
(of strictly compact support and small compared with the size of the image), in a manner
similar to the following simplistic example.

Let each expansion function be circularly symmetric, positive over the range r € [0, 0]
where r is the radial distance from its centre, and zero for 7 > ro. Then each expan-
sion function has non-zero overlap integral with all others whose centres lie within 2rg
of its centre, and hence the neuron whose feedforward weights represent that expansion
function requires a lateral connection to each of the corresponding nearby neurons. A
necessary condition for the complete representation of arbitrary images in this neural
layer is n > m; assuming for example that n = m, this connection pattern results in
(almost) 4 times as many non-zero lateral connections per neuron as non-zero feedfor-
ward connections. Thus since the feedforward weight matrix of this model is four times
sparser than the lateral weight matrix and the condensed model in Figure 4.6 effectively
implements this feedforward weight matrix twice — once in the feedforward path and
once in the feedback path — the latter will require only 0.4 times as many connections.

Furthermore, whilst in cases where the overlap of any two expansion functions decays
asymptotically with distance between their centres it might seem tempting to reduce the
required number of connections by thresholding the lateral weight matrix, it will be seen
in Section 5.4 that the errors involved in this truncation are magnified by the condition
number of the lateral weight matrix, and in extreme cases the truncation can cause the
system to become unstable. This problem will be addressed further in that section.
A more suitable procedure for eliminating many of the smaller entries in the lateral
welght matrix when the expansion functions are localised is to truncate the expansion
functions themselves at some finite distance — for example after 3 standard deviations if
the expansion functions have Gaussian weighting functions — and recalculate the lateral
weight matrix.

As will be seen in Chapter 6, the network proposed by Pattison (1992) unlike the
other neural networks presented in this section — with the exception of that of Wang &
Yan (1992) — is readily adapted to the solution of more general quadratic optimisation
problems. Furthermore it will be argued in Chapter 7 that this network admits a more

feasible mapping onto the wetware of the early visual system than these other networks.
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5.3 Additional Leakage Term

The use of a small additional leakage term —ca with ¢ € R in (5.1) leads to the network
equation

ata=-(GG"+el)a+ Gi (5.3)

revealing that like the network of Culhane et al. (1989) the modified system perforins
steepest descent on E. and hence is exponentially stable. This modification therefore
allows the network to approximate the pseudoinverse solution of the set of equations
in (4.2). With the exceptions of non-local lateral connectivity and the need for both
positive and negative weights, the resultant network once again bears strong resemblance
to resistive grid networks used in machine vision, where the additional leakage has been
used to impose a minimum norm penalty term in applications such as area-based optical
flow (Lee et al., 1988), and contour-based optical flow, shape-from-depth and depth-
from-stereo (Chhabra & Grogan, 1990).

The linear dynamical system

a=—-Qa+ G (5.4)

with
QR = GGT (5.5a)
@ = GG" +¢€l, (5.5b)

for the neural networks of Section 5.2 and equation (5.3) respectively, is exponentially
stable — and hence exponentially convergent to the equilibrium point a* = Q~'G% for
constant ¢ — if and only if the state-feedback matrix @ is positive definite (Lancaster
& Tismenetsky, 1985). The use of (5.5b) rather than (5.5a) whenever G is known or
suspected to be rank deficient is sufficient to ensure that () is always positive definite,
and hence that the system is stable. For notational convenience in the remainder of this
chapter, the matrix @) is therefore assumed to be positive definite and to result from an
appropriate choice in (5.5).

This single-layered architecture is readily extended to more general regularised LSE
problems. The restoration of a blurred image for example can be formulated (Galatsanos
& Katsaggelos, 1992) as

min{J.(a) £ [|i — G"all + ¢| Pal}

where ¢ € R™ and @ € R™ are the noisy blurred image and the restored image respec-
tively, and GT € R™™ and PT € R™™ are matrices representing the image blurring
function and regularisation operator respectively. To solve this problem, the network

requires (& as the feedforward weight matrix and Q = GGT + ¢ PPT as the lateral weight
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matrix. The wide range of LSE and regularised LSE applications to which the single-
layered neural network can be readily adapted — as well as the range of problems in
machine vision described above — provides strong motivation for addressing the chal-
lenging issues in VLSI implementation of non-local lateral connectivity and the need for

both positive and negative weights.

5.4 Preconditioning

In Sections 4.3 and 4.4, recurrent neural networks were presented — along with the
linear first-order differential or difference equations which describe their dynamics —
whose common unique equilibrium point is by design the solution to the normal or
augmented normal equations. Each of these neural networks makes use of one or more
of the matrices G, GGT, and GGT + el,, which it has been tacitly assumed can be
implemented without error. However whilst G may be specified exactly through the
parametric specification of the expansion functions which when sampled constitute its
rows, the hardware implementation of these matrices as weights in a neural network
may incur considerable error. In this section, the implications of such implementation
errors for the neural networks of Sections 5.2 and 5.3 are examined, and the technique
of preconditioning is used to mitigate the consequent displacement of the equilibrium
coefficient vector @* and the potential for network instability. The same preconditioning
strategy used to reduce sensitivity to weight errors is also shown to accelerate convergence
in both continuous- and discrete-time implementations.

In the following analysis, weight implementation rather than computation is assumed
to constitute the predominant source of error; thus for example it is assumed that the er-
rors involved in the computation of the matrix GG” required by the network in Figure 5.1
are negligible in comparison with those incurred by its subsequent implementation. This
assumption is clearly reasonable in the case of analog hardware, where the accuracy of
components such as conductances and analog multipliers is limited (see e.g. (Schach,
1992)). It may also be significant in floating point implementations where, for reasons of
economy, weight precision is low in comparison with that available during the external
evaluation of the matrix (). For the case where errors in the original determination of
G constitute the sole or principal source of inaccuracy, a detailed error analysis of the
least-squares problem assuming ideal arithmetic in all subsequent computations has been

presented by Golub & Van Loan (1989).

5.4.1 Sensitivity to Weight and Derivative Round-Off Errors

The spectral condition number k2(M) > 1 of a matrix M € R™" is given by the ratio
of its maximum to minimum singular values. Unlike condition numbers based on other

matrix norms, the spectral condition number is convenient in the analysis of least-squares
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problems since it is derived from the spectral matrix norm, which is induced by the
Euclidean vector norm (Horn & Johnson, 1988) with the aid of which such problems are

formulated. The matrix ), and by extension the system of linear equations
Qa = (1 (5.6)

the solution of which is the equilibrium point of (5.4) — is said to be well-conditioned
if k2(Q) = 1 and ill-conditioned when k(@) > 1.

The condition numbers x2(()) and k,(G) serve as a measure of the sensitivity of the
equilibrium point of (5.4) to weight implementation errors. If @ is invertible and G is

full rank, the relative error

ea = [Aa”]2/[la”];

in the equilibrium point a* £ Q~'G% of the dynamical system in (5.4) caused by the

relative errors

eq 2 [|AQ/NIQl2 < £71(Q)
e = [|AG]2/ |Gz
ei = ||Adll2/| 4]l

in @, G and 2 respectively, can be shown to satisfy
ea < K2(Q) {eq + £2(G) [eg + eil} + O*([AQ]|2, [|AG]|2, | Adl2) (5.7)

where O*(-, -, -) denotes second and higher order terms and cross-terms of its arguments.
Thus for small perturbations, the condition number gives an indication of the sensitivity
of the solution to errors in @}, G and ¢. Thus in the case of the full rank normal equations
for example, substituting (5.5a) into (5.7) and noting that x2(GGT) = £*(G) reveals that
if G is even mildly ill-conditioned, the solution of the set of equations in (5.6) obtained
at the equilibrium point of the system can be highly sensitive to implementation errors
in the matrices GGT and G. If GG is rank deficient and ¢ lies in the row-space of G, (5.7)
is valid provided k3(G) is replaced by %2(G) as defined in (4.8); extension to the more
general case is beyond the scope of the present discussion.

The condition number k,(Q)) also provides a measure of the sensitivity of the equilib-
rium point to floating point round-off errors in the evaluation of the temporal derivative
in (5.4). This sensitivity arises from the fact that an absolute residual error |G — Qal|,
in the normal or augmented normal equations which is less than the unit roundoff é

results from any approximation @ to the true coefficient vector a* satisfying

& —a||; < Vnka(Q)S

(Golub & Van Loan, 1989). Thus the presence of round-off error results in a region

about the true equilibrium point — the largest dimension of which is proportional to
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k2(@Q) — in which all points yield @ = 0 to floating point precision, which will restt-Tn

inaccurate location of the equilibrium point for most discrete-time simulation algorithms.
Whilst the resultant sensitivity to round-off may not represent a significant problem under
computer-based double-precision arithmetic, in floating point hardware implementations
1t may necessitate the use of excessive numerical precision, thereby increasing the cost
of implementation. This particular argument is of course predicated on the assumption
that it is not sufficient that the coefficients obtained by the network correspond to a
small residual in the normal equations — and hence produce a good approximation of
the true image — but that it is also necessary that the coefficients closely approximate
the optimal coefficients. The validity of this assumption will usually depend on the
sensitivity of any subsequent processing of the coefficients to errors in those coefficients.

Finally, since the minimum singular value of @ is the spectral-norm distance from
the state-feedback matrix to the set of rank-deficient matrices (Golub & Van Loan, 1989,
Thm 2.5.2), the minimum relative perturbation in @ required to make the state-feedback
matrix ¢ in (5.4) singular is given by the inverse £~!(Q) of the condition number. Thus
since any further perturbation could make the state-feedback matrix indefinite — and
hence make the linear dynamical system unstable — the larger the value of x5(Q) the
more susceptible the system is to instability resulting from inaccurate implementation of
the state-feedback matrix.

In summary, if the matrix G — and hence @ — is ill-conditioned, the equilibrium
point of the network can be excessively sensitive to implementation errors in these ma-
trices, and to floating-point round-off errors in the evaluation of the time derivative.
Farthermore, ill-conditioning of the state-feedback matrix ) renders the network sus-
ceptible to instability resulting from errors in its implementation. Thus for both analog
and digital implementations, it is desirable to address potential ill-conditioning of the
dynamical system in (5.4) in order to decrease its sensitivity to weight implementation

and floating-point round-off errors.

5.4.2 Diagonal Preconditioning

Preconditioning the linear dynamical system (5.4) involves choosing non-singular matrices
[, B € R™" called preconditioners such that the state-feedback matrix S £ I'QB of the

preconditioned dynamical system

u = —I'QBu+TIGt (5.8a)
a = Bu (5.8b)

is better conditioned than ). Careful selection of the preconditioners can ensure that

k2(Q)

W < K2(S) < £2(Q)
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In this section, preconditioning is used to address the problems associated with ill-
conditioning of the dynamical system in (5.4), and guidance is given on a suitable choice
of preconditioners.

The equilibrium point w* of the preconditioned system satisfies
I'QBu =TGe (5.9)

which upon substitution of (5.8b) and factorisation by T' yields the same equilibrium
point @* as (5.4). In the special case of diagonal preconditioners, preconditioning of the
system in (5.4) simply produces row- and column-scaling (Golub & Van Loan, 1989) of
the normal or augmented normal equations which describe the equilibrium point of the
system.

A sufficient condition for preserving the positive definiteness of the state-feedback
matrix and hence the stability of the system is that the preconditioners I', B be symmetric
positive definite (Horn & Johnson, 1988, Thm 7.6.3). This condition also ensures that
the matrix Bl is positive definite, so that under the dynamics of the preconditioned
system, for a given input image the error function V' which denotes E under the choice

of unpreconditioned state-feedback matrix in (5.5a) and E. under (5.5b) satisfies
: 1
V=(VW)a= 5VTVBFW <0 (5.10)

with equality only at the unique stationary point of V. Thus for symmetric positive
definite preconditioners, V is a global Liapunov function for the preconditioned dynamical
system in (5.8) and decreases monotonically with time.

However except for some special classes of matrices (see e.g. Ku & Kuo (1992)), strate-
gies for choosing non-diagonal preconditioners are not well developed. Furthermore the
generalisation from diagonal to non-diagonal preconditioners considerably increases the
amount of potentially error-prone computation required during preconditioning, in vio-
lation of the assumption usually made in perturbation analyses that the preconditioning
step can be performed without error (see e.g. Golub & Van Loan (1989)). Considera-
tion is therefore restricted to diagonal preconditioners I', B € R7", a restriction which
in Chapter 6 — where bound constraints are imposed on the quadratic optimisation
problem — is not only convenient but necessary.

For ideal preconditioning, I' and B should be proportional to the inverse of corre-
sponding factors of GG”, giving £4(S) = k2(I) = 1. However, since they are constrained
to be diagonal, ' and B are at best a reasonable approximation to scalar multiples of
such inverses. Now since () is Hermitian, Schur’s theorem on the strong majorisation of
eigenvalues by the diagonal entries (see e.g. Horn & Johnson (1988, p.193)) can be used

to show that ()
maX;yq:;
kao(Q) > maXi19iiJ

2 minr{ga) (5.11)
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where g;; is the ith diagonal entry of @. Substitution of (5.11) into a standard condition

number inequality yields

i k2(Q) min;{y:} max;{g:} min;{6;}
(5) 2 k() k2(B) = max;{7;} min;{¢;} max; {4}

where 7; and f; are the ith diagonal entries of I' and B respectively. According to (5.12),

(5.12)

an obvious strategy is to assign the diagonal entries of I' and B in the reverse order of
corresponding diagonal elements of @) and with a smaller overall spread on a log scale,
in order to move the diagonal entries s;; of S closer together than the corresponding
elements of (). If these diagonal entries of S are further required to be in the same order
as those of @, (5.12) becomes simply
max;q S

KQ(S) > __ii
mmi{sii}
which constitutes a limited extension of the above corollary of Schur’s theorem to the
case where S is not necessarily Hermitian (i.e. I' # B). One simple choice satisfying the

reverse-ordering condition is

Yi=—==8 k>0 (5.13)
qii

which under certain conditions on () can be shown to yield the optimal or near-optimal
diagonal preconditioners (Greenbaum & Rodrigue, 1989). In addition to ensuring that S
1s by virtue of a lower condition number less susceptible than @ to weight implementation

errors, in the case of the unaugmented normal equations this choice also improves the

condition of the matrix G with the same benefit, since for I' = B
k2(TGG"B) = k3(T'G)

This result extends approximately to the case of the augmented normal equations for
sufficiently small €. Furthermore, since under this choice of preconditioners the right-
hand side in (5.12) becomes unity, no additional restriction is imposed on «4(S), since
by definition £9(S) > 1.

The preconditioned dynamical system in (5.8) can be re-written as
a = —BI'Qa + BTGt (5.14)

revealing that under ideal conditions the same trajectory a(t;ag,t) could have been
obtained through the use of a single composite preconditioner IV £ BT. Under the

choice of preconditioners in (5.13), this composite preconditioner is simply

IV = [diag(Q)]™

as is indeed used in discrete-time relaxation algorithms such as the Jacobi iteration and
the SOR method (discussed briefly in Section 4.3.2). However, it has been observed
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Figure 5.2: Condition numbers of 'QB (solid) and BT'Q (dotted) for the choice of
preconditioners in (5.13) with & = 1 vs the angle between the z-axis and the principal
eigenvector of ().

heuristically that the use of dual preconditioners B, T produces in many cases a consid-
erably better conditioned state-feedback matrix, thereby reducing the potential of the
system to become unstable as a result of weight implementation errors. This observation
is illustrated in Figure 5.2 for the 2x2 case, in which with the exception of near-diagonal
@, the symmetrically preconditioned matrix is considerably better conditioned. For
k2(() = 10%, an improvement in the condition number of two orders of magnitude is
obtained just outside the near-diagonal range.

On recovery of the desired variable @ from w using (5.8b), the reduction in the
bound on relative error e, of the equilibrium point of the system obtained through

preconditioning is at least partially undone, since

ea < K2(B)ey

Thus the relative error e, in % is amplified by a factor which by (5.13) is bounded above
by &o(B) = y/k2(diag(Q)). In some cases, this amplification factor may outweigh any

reduction in sensitivity to weight errors achieved by preconditioning, and Golub & Van
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Loan (1989) advise that the corresponding scaling of the normal equations should be
used with caution and on a case-by-case basis.

However, since in the case of the unaugmented normal equations the ith diagonal
entry gi; of () is simply given by the square ||g;(x)||3 of the norm of the ith sampled
expansion function, if freedom is allowed in choosing the amplitudes of the expansion
functions, the above preconditioning can be achieved implicitly by normalising the rows
of 7, thereby avoiding the pitfall of error amplification on recovery of the true coefficients.

If the normalisation option is available, the new state-feedback matrix becomes
S=IGG"B (5.15a)

for the normal equations and

S =TGG"B +¢l, (5.15b)

for the augmented normal equations with I'; B chosen according to (5.13). In the latter
case this strategy is only approximately equivalent to preconditioning the matrix @ in
(5.5b); however normalisation is easily shown to improve the conditioning of this choice

of () whenever it improves the conditioning of that in (5.5a).

5.4.3 Accelerating Convergence

In this section, it is shown that diagonal preconditioning of the networks in Sections 5.2
and 5.3 can improve their rates of convergence when subject to a limitation on the
minimum permissible integrator time-constant in the case of analog implementation and
on the maximum eigenvalue of the system feedback matrix in the case of discrete-time
simulation or implementation.

The solution u(t;ug,t0) to the initial value problem (IVP) associated with the dy-
namical system in (5.8a) for time-invariant input Z presented at time ¢, is bounded,

continuous and unique, and is given by
u(t; g, to) = §7 [ — e7S6-0)| TG 4 ¢=S-t0)y, (5.16)

which converges exponentially to the unique equilibrium point w* = B—'Q~'G¢. The
slowest mode of convergence to the equilibrium point is governed by the eigenvalue
of S having the smallest real part. For example if S is normal (e.g. Hermitian) and

diagonalisable, it can be shown that Golub & Van Loan (1989)

- min,‘{?R(/\.-(S))}t|

la —a*|. < e la — aol|;

where R(-) returns the real part of its complex argument. In theory at least, the con-
vergence of the system in (5.4) can be arbitrarily accelerated by multiplying the right
hand side by some 1 < a € R;. However, this strategy is limited in real implementations

by an upper limit on the diagonal entries s;; of S imposed by a technology-dependent
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lower limit 7,,;, on the integrator time constants. Furthermore in discrete-time simula-
tions, some algorithms such as the explicit Euler method require a trade-off between the
maximum eigenvalue and the temporal step size, so that increasing o which increases
the convergence rate necessitates a proportionate decrease in the temporal step size, so
that the same number of steps and hence computation is required for the network state
to approach within a specified distance of the true equilibrium point for a given starting
point.

It the state feedback matrix S of the dynamical system in (5.4) is particularly ill-
conditioned, convergence of the slowest mode can be orders of magnitude slower than
would in general be dictated by the smallest permissible time-constant in analog imple-
mentations or by the largest eigenvalue in discrete-time simulations. For example, in the
special case where S is symmetric — in which case the eigenvalues are real and since S
is also positive definite are equal to the singular values — this situation is guaranteed by
widely spread diagonal entries — which by Schur’s theorem on the strong majorisation
of diagonal entries by the eigenvalues is a sufficient condition for ill-conditioning — and
ill-conditioning respectively.

Assuming symmetrical diagonal preconditioning (I' = B) to preserve the symmetry

of @ in S, this observation appears to suggest the following respective remedies

Heuristic 5.1 Choose a = max;{qi;}Tmi to take advantage of the available computa-
tional speed, and then precondition a) in such a way as to increase the minimum diagonal
entry whilst holding constant the mazimum diagonal entry, thereby compressing the range
of the diagonal entries of S compared with that of Q.

Heuristic 5.2 Precondition Q) whilst holding constant the (real) mazimum eigenvalue, in
order to increase the minimum singular — and hence eigen- — value and hence accelerate

convergence for the same simulation step-size.

Unfortunately for the former scheme however, a small spread of the diagonal entries does
not guarantee that the above problem of sub-optimal convergence rate will not arise.
Furthermore since it may not always be convenient to calculate or estimate the largest
eigenvalue of () — using for example the power method (see e.g. Golub & Van Loan (1989))
— a more practical albeit heuristic strategy in the latter remedy is to hold constant the
largest diagonal entry. Since in extreme cases either strategy has the potential to worsten
the convergence rate — although in practice such cases do not appear to be common —
the above remedies should only be afforded the status of heuristics.

A comparison of Heuristics 5.1 and 5.2 for the 2x 2 case is illustrated in Figure 5.3.
For the chosen £,(Q) = 10%, a speed-up in excess of an order of magnitude is obtained
for near-diagonal matrices. Since the modified version of Heuristic 5.2 is equivalent to

Heuristic 5.1 with o = 1, the difference in convergence rate between the original and
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Figure 5.3: Minimum eigenvalues of S = I'QB for the choice of preconditioners in (5.13)
vs the angle between the z-axis and the principal eigenvector of @, with x,(Q) = 10*. &
has been chosen to equalise the maximum diagonal entry (solid) and eigenvalue (dotted)
of § and @Q, in accordance with heuristics 5.1 (with o« = 1) and 5.2 respectively. The
minimum eigenvalues have been normalised by the minimum eigenvalue of Q. Greatest
improvement in convergence rate is observed when @ is near-diagonal.

modified strategies — which is at most a factor of 2 — does not appear to justify the
extra computational effort involved in calculating the maximum eigenvalue, especially
for higher dimensional problems.

If S is not symmetric — as is indeed the case when the system preconditioned accord-
ing to (5.13) is mapped back into the original state space as in (5.14) — the relationship
between the diagonal entries and the eigenvalues provided by Schur’s theorem no longer

holds in general. However since
'QBx = Az = BI'Q(Bz)= )\(Bz)

the eigenvalues of the matrices TQB and BT'Q are identical. In addition, since the
preconditioners are chosen to be diagonal, these two matrices have the same diagonal
entries. Thus a given choice of the preconditioners has the same effect on the diagonal

entries and eigenvalues of the dynamical system expressed in either state space.
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5.5 Examples

Example 5.1 The following example illustrates the application of the neural network in
(5.3) to the minimum SRE decomposition of an image using non-orthogonal expansion
functions. The expansion functions used in this example are two-dimensional Gabor func-
tions as described in Chapter 2, with the parameters distributed uniformly over ranges
which approximate those typically observed in cats (Jones & Palmer, 1987b; Glezer et al.,
1989). The centre coordinates (z;,y;) were chosen from a uniform 2D distribution across
the m = 40x40 = 1600 pixel input image, and the phases ¢ and orientations arg(w)
distributed uniformly over the range 0—360°. The magnitude |w| of the spatial frequency
vector for each Gabor function was chosen trom a uniform distribution over the range
0.5 cycles/pixel — 1.0 cycles/picture covering the full range of available frequencies up to
the Nyquist frequency for the rectangular image sampling grid. The major axis of each
2D Gaussian was constrained to be parallel to the spatial frequency vector w, and the
variance o, on this axis chosen so that the number of cycles of the sinusoid within +30,
of the centre of the Gaussian was distributed uniformly over the range 1.0-4.0 cycles.
The variance oy, on the minor axis of each 2D Gaussian was then chosen to give an aspect
ratio o, /oy uniformly distributed over the range 1.0-2.0.

A better fit to the non-uniform distributions of some of these parameters found in
nature was not attempted since the object of the exercise was not to investigate suit-
able sets of Gabor functions but to demonstrate the effectivenes of the proposed neural
network for any given set of expansion functions. Furthermore, any more systematic
scheme for choosing the set of expansion functions which relied on a precise relationship
between the parameters of the different expansion functions would seem to be dubious
for error-prone implementations, and unrealistic in the biological context. Since the re-
sultant set of n = 1600 expansion functions was therefore not guaranteed to be linearly
independent, and the determination of the rank of the matrix G € R601800 wag po-
tentially ill-conditioned, the decomposition was formulated as the minimisation of the
regularised SRE in (4.11) with € = 0.001. The neural network in (5.3) was chosen to
perform this minimisation, and since the freedom was available to choose the expansion
functions to be (Euclidean) normalised, no explicit preconditioning was required. The
effects of preconditioning on a related neural network are illustrated in Chapter 6.

The neural network with @ = 0 was first presented with the image of an eye, and the
neural activations allowed to attain their equilibrium values. The output coefficients were
recorded at several stages during the transition from @ = 0 to the equilibrium point, and
were later used to produce the corresponding sequence of reconstructed images depicted
in Figure 5.4(a). The network was then presented with the image of a mouth and nose,
and the neural activations once again allowed to attain their equilibrium values. The

output coefficients were again recorded at several stages during the transition from the
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Figure 5.4: (a) Sequence of images reconstructed from the outputs of the network in
(5.3) at times ¢t = 0,1,10,100 and 1000ms after step presentation of the image of an eye
(shown at right) to the network input. The network activation vector at ¢ = 0 was ay = 0.
For ease of comparison, each reconstructed image was scaled (i.e. its intensity linearly
transformed) to utilise the full available grey-scale range. (b) Sequence of reconstructed
images at times ¢t = 0,1,10,100 and 1000ms after step presentation of the image of
a mouth (shown at right) to the same network following equilibration on the eye in
(a). Simulations were performed in double-precision arithmetic using the Runge-Kutta
method of order 4 with adaptive step-size selection.

first to the second equilibrium point, and were later used to produce the corresponding
sequence of reconstructed images depicted in Figure 5.4(b). The real time scale shown
in the caption was fixed by assuming a time constant for real cortical pyramidal cells of
20ms (Stratford et al., 1989). The network is known to be exponentially stable, and the
expected near-complete convergence of the coefficients within 3 time constants (60ms)

was indeed observed.

5.6 Conclusion

In this chapter, a single layered RANN has been presented which solves the LSE problem
and — through the simple addition of an extra nodal leakage term — the regularised LSE
problem associated with non-orthogonal image decomposition. The network has been
shown in the general case to require less connections or neurons than comparable multi-
layered networks. However for expansion functions of local and strictly compact support
— which in biological visual systems are most likely to be of interest — the number of

non-zero weighted connections may in fact exceed that for these other networks unless
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a pixel to coefficient ratio (compression factor) of at least 2.5 is applied. The network
was found to bear a resemblance to existing resistive grid architectures for solving sets
of linear equations arising from the discrete formulation of partial differential equations
(PDEs) governing classical problems in machine vision. The two major distinctions —
(potentially) complete lateral connectivity and both positive and negative weights —
pose a considerable challenge for analog VLSI implementation.

Symmetric diagonal preconditioning of the network dynamics has been shown to re-
sult in a potential reduction of the condition number of the state feedback matrix, thereby
reducing the susceptibility of the equilibrium point and network stability to weight im-
plementation errors, and in the case of floating point implementations, of the equilibrium
point to derivative evaluation errors. Although it has not been theoretically guaranteed
that the amplification of the perturbation of the equilibrium point on conversion of the
neural activations back to the required coeflicient vector will not outweigh the original
benefits of preconditioning, it has been observed empirically that this is usually the case.
It has also been argued that diagonal preconditioning can be used to accelerate conver-
gence of the network for a given maximum eigenvalue or minimum neural time constant,
although once again cases exist where the opposite effect may result. However, in cases
where the freedom exists to choose the amplitude of (i.e. scale) each expansion function,
Euclidean normalisation of the expansion functions has the same effect as the proposed
diagonal preconditioning scheme, whilst avoiding these potential though apparently un-

common pitfalls.



Chapter VI

NEURAL NETWORK FOR BOUND-CONSTRAINED
QUADRATIC OPTIMISATION

6.1 Introduction

In Chapter 4, the decomposition using the basis function matrix G € R™™ of a signal
or image vector 2 € R™ into a coefficient vector a € R™ was formulated as the regularised

but unconstrained SRE optimisation problem
min{E.(a;e) £ [li — G"all? + c[lal2}

~— with ¢ = 0 for rank(G) = n < m — and various linear recurrent neural networks
which perform the required quadratic optimisation for ¢ = 0 and € > 0 were reviewed
in Sections 4.3 and 4.4 respectively, and in Chapter 5. In Chapter 7, the potential
implementation of such networks in the feline early visual system for the purposes of
nonorthogonal decomposition of the retinal image is to be investigated. However, in
order to facilitate a comparison between the various networks on the basis of neurological
plausibility, it is first necessary to address the following problem.

If the coefficients of such a decomposition are assumed to be signalled by the mean
or instantaneous firing frequencies of spiking neurons in the feline visual cortex, then
these coefficients are necessarily constrained to be non-negative and have a finite upper
limit. In the primary visual cortex, such neurons — and the simple cells in particular
— are furthermore known to exhibit remarkably low spontaneous firing rates — see e.g.
(Ferster, 1988) — the suppression of which might otherwise be used to signal negative
values to neurons capable of measuring such departures from the spontaneous rate. An
engineering solution to the analog electronic implementation of a neural network whose
task is to minimise the (regularised) SRE using integrators exhibiting analogous output
range limitations would be to simply scale and shift the original problem to accommodate
these limitations. Since the appropriate coordinate transformation would have to be
performed for each new image and is not readily automated, a more practical approach
to this problem is to impose range or bound constraints on the (regularised) SRE problem
and to reformulate the network to seek the corresponding constrained minimum.

In this chapter, it is shown that a linear recurrent neural network can be programmed
to optimise a general positive semidefinite quadratic form — of which the SRE and reg-

ularised SRE are examples — and that the requisite independent bound constraints can
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be imposed on the optimisation variables through the use of a piecewise linear saturating

activation function in each of the nodes.

6.2 TUnconstrained Quadratic Optimisation

The problem of optimising a quadratic functional arises frequently in engincering and
science. The unconstrained semidefinite quadratic optimisation problem

min {J(:c) = %:vTW:c — :L'Tr} (6.1)

involves the minimisation over the vector @ € R"™ of the quadratic cost function J(x)
where W € R™ is a positive semidefinite matrix and » € R™ is a vector constant.
The quadratic form J(@) is quite general. For example, the maximisation over @ of

the quadratic form

G(z) = %wTMa: +a2

where M € R™" is negative semidefinite and z € R" is constant can be converted into
the above minimisation problem by substituting W = —M and » = —z and minimising
the resulting expression over @. Furthermore, adding any constant to J(x) affects only
the value of J(z) for any given @, and not the location of its global optima. Thus for
example the regularised SRE minimisation problem can be reduced to the form of (6.1)

by rewriting E. as
1 1...
E.(a;e) = 2[§aT (GG" +¢el,)a —a"Gi + §iTz] (6.2)

noting that both the factor 2 and the last term in square brackets are independent of a
and can therefore be omitted from the optimisation over a, and letting W = GGT +¢1,,,
x =a and r = Gt.

Although the global unconstrained minimum of J(&) in (6.1) clearly occurs where
VJ = %(VV +Whe-r=0
which may be solved by calculating the inverse of
al T
Q= i(W + W) (6.3)

the inversion process becomes computationally intensive for large n, and numerically
unstable for ill-posed problems. As has already been demonstrated in Chapter 4, these
problems can be in part overcome by harnessing the massive parallelism of recurrent
analog neural networks, and through diagonal preconditioning respectively. The single-
layer recurrent neural network depicted in Figure 6.1 with lateral weight matrix —@Q,

input vector r and output vector @ governed by the following ODE

z=r—Q
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Activations Input » Weights

Output «

Figure 6.1: Linear recurrent network for the unconstrained minimisation of a positive
semidefinite quadratic J(z).

performs steepest descent on J(x) and thereby implements the required optimisation.
The network structure in Figure 6.1 can be modified by the addition of weighted feed-
forward connections as used in Chapter 4 to form explicitly terms of the form r = (i,
such as that required to solve the (regularised) SRE problem; it is henceforth assumed

that such connections are invoked wherever appropriate.

6.3 Bound-Constrained Quadratic Optimisation

The optimisation of J(@x) is complicated by the imposition of constraints on the solu-
tion, since a closed-form solution no longer exists. The bound-constrained semidefinite

quadratic optimisation (BCSQO) problem
min{J(z) : p <z < v} (6.4)

with u,» € R" can arise in such diverse topics as rigid body mechanics, fluid dynamics,
elastic-plastic torsion (Moré & Toraldo, 1991), and relaxation image labelling. Bound
constraints on the optimisation variables may also be imposed by the medium in which a
scheme such as the network in Figure 6.1 for the unconstrained quadratic optimisation in
(6.1) is to be implemented. For example, analog amplifier saturation and the positivity
constraint on neural firing rate are two factors which may impose such constraints.
Sudharsanan & Sundareshan (1991) modelled the saturation characteristics of the
amplifiers in an analog neural network for unconstrained quadratic optimisation as the
piecewise linear neural activation function g:R — R illustrated in Figure 6.2(a), by which
the neural outputs {z;} are constrained to lie between upper and lower limits x, v € R
placed symmetrically about the origin (4 = —v). In order to simplify the definition of the
activation function, the assumed output limits 4 and v are mapped through the inverse

of the activation function gain (slope) € R to produce the corresponding activation
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R 7] — — v; = B

""""""" p=p0=—v m———Memsesnenness] p; = i

Figure 6.2: (a) One element g(u;) of the activation function g(u) used by Sudharsanan
& Sundareshan (1991). (b) One element k;(u;) of the generalised constraint enforcement
function h(wu) used by Bouzerdoum & Pattison (1993b).

values ¢ and ¢ respectively with ( = —£. The vector-valued neural activation function

g:R™"— R" can then be defined for notational convenience as

B¢ u; <
gi(u) = g(wi) = ¢ Bui u; € [(,€]
BE ui>¢

such that each of its elements g(u;) constitutes the activation function of a node in the
network.

The neural activation (state) vector u of their network is governed by

u = y—Cg(u)— Au (6.5a)
r = g(u) (6.5b)

where y € R”™ is the external input, @ € R" is the network output, C € R™" is the
symmetric lateral feedback matrix with zero diagonal entries, and A € R™" is a positive
diagonal matrix representing the passive decay rate of the activation vector. To map
onto their neural network the unconstrained quadratic optimisation problem (6.1) with

W symmetric positive definite, Sudharsanan & Sundareshan (1991) set

y =r (6.6a)

A = [diag(Q) (6.6b)
C = offdiag(Q) (6.6¢)
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where diag:R™" — R™" and offdiag:R™™ — R™" select the diagonal and offdiagonal

elements respectively of their matrix arguments. One node of the network with these

assignments is illustrated in Figure 6.3(a). However, it was left to the user to ensure that

zj IJ {742 filuj) j #1

{j—qm
Ty T g

—i4i; B;

U= r— [T
P 9(-) L) 17
-3 =Vl

(a) (b)

Figure 6.3: Neural models of (a) Sudharsanan & Sundareshan (1991) and (b) Bouzer-
doum & Pattison (1993b) as implied by equations (6.5) & (6.6) and equations (6.9) &
(6.10) respectively.

the global optimum of the quadratic function lay within the region defined by the output
limits; no attempt was made to ensure that if in fact the global optimum lay outside this
region, the network would seek the constrained optimum of the quadratic cost function.
Furthermore, the proof of exponential convergence offered by Sudharsanan & Sundare-
shan (1991) for this network, has since been shown to be flawed (Davis & Pattison,
1992). Finally their proof of global convergence of the network relies on the erroneous
presumption of the invertibility and (arguably) differentiability of the activation function
g.

These problems have been addressed by Bouzerdoum & Pattison (1993b), who gen-
eralised the neural output constraints used by Sudharsanan & Sundareshan (1991) by

defining the constraint enforcement function h:R™— R such that
xz = h(u) 2 Bf(u) (6.7)

where B € R}™ is the diagonal matrix of activation function gains {3;} and f:R»—R"
is defined by

G < G
filw) = filw) = { wi wui€[G6) (6.8)
& ui> &

The neural activation vector u € R™is permitted to vary without constraint, and ¢, £ € R”
are the constraints g, on the output @ mapped onto corresponding activation values
u such that { = B™'p and § = B™'v. A typical element h;(u;) of the constraint en-

forcement function h(u) is illustrated in Figure 6.2(b), and represents a generalisation of
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the neural activation function used by Sudharsanan & Sundareshan (1991) in that each
element h;(u;) has its own activation limits (;,¢; and gain §;, and that the activation
limits need not be symmetric about the origin. The latter generalisation is of interest
where, for example, the optimisation variables are constrained to have a specified sign, or
prior knowledge places an estimate of the unconstrained optimum at some considerable
offset from the origin.

Finally, for the purposes of symmetric preconditioning as discussed in the previous
chapter, the right-hand side of (6.5a) can be premultiplied by the positive diagonal pre-
conditioner I' € R™". An appropriate choice of I" will be discussed further in Section 6.9.
The network resulting from these generalisations will henceforth be referred to as the
bound constraint projection (BCP) network, in recognition of the fact that the nonlin-
earity h maps or projects an infeasible neural activation vector u (i.e. Bu is infeasible)

onto a feasible output vector . The activation vector u of the BCP network is governed

by

u = y—Cf(u)— Au (6.9a)
x = Bf(u) (6.9b)
with
y = I'r (6.10a)
A = diag(T'@B) (6.10b)
C = offdiag(I'QB) (6.10c)

Since B and I' are positive definite and Hermitian and @) is positive semidefinite, I'Q B
is positive semidefinite (Horn & Johnson, 1988, Thm 7.6.3), and in particular A is non-
negative diagonal. By excluding the trivial case where the ith row and column of @ are
zero, A is guaranteed to be positive diagonal as required.

The neuron models in Figures 6.3(a) and (b) differ not only in the generalisation of the
neural activation function, but also in the explicit factorisation of the activation function
into a unity gain saturation function and a gain term which is applied explicitly only
to obtain the network output. The lateral connection matrix C' is accordingly modified
to apply the necessary gain term implicitly during lateral feedback. This factorisation
is necessary in order to obtain a diagonally preconditioned lateral weight matrix which
as seen in Section 5.4 can be made less susceptible to implementation errors. For the
same reason, the gain term +; is used outside the inner loop and incorporated into the
lateral- and self-feedback matrices, rather than inside this loop which would otherwise
be convenient for the local encapsulation of +;.

In the following two sections, it is shown that: each equilibrium point of the BCP
network corresponds to a solution of the BCSQO problem; for each solution of the BC-

SQO problem there exists a unique corresponding equilibrium point of the BCP network;
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and that under the neural dynamics the network outputs converge to the set of such so-
lutions. The proofs presented here differ considerably in a number of details from those
presented by Bouzerdoum & Pattison (1993b); these differences have been in part neces-
sitated by the relaxation of their requirement that W be positive definite to the more

general condition that W be positive semidefinite.

6.4 Equilibrium Point Analysis

The first step in the analysis of the proposed network is to establish the location and
nature of the equilibrium points. To assist in this endeavour, it will prove convenient to

define the new energy function
1
E(u) 2 §hT(u)Qh(u) — h"(u)r (6.11)

which, by identifying h(u) with @ confined to the constraint region, can be seen to be
identical to J(@) over this region. The BCSQO problem in (6.4) is thereby reduced to

the unconstrained minimisation of E(u) over the network activation vector .

Observation 6.1 The Kuhn-Tucker optimality conditions (Moré & Toraldo, 1991)

>0 z; =y
Vo =0 z€(pu) Wi (6.12)
<0 z; =y

are necessary and sufficient for a constrained minimum ®* of J.

Proof. For the optimisation of a convex function over a convex set, the Kuhn-Tucker
optimality conditions (6.12) are both necessary and sufficient (Bazaraa & Shetty, 1979,
Thm 4.2.11) for the constrained optimum. The required result follows from the obser-
vation that J is a convex function — since its Hessian () is positive semidefinite — and
the hyper-rectangular constraint region is a convex set.

This result is now used to verify the following observation, that the output of the

network at equilibrium is a constrained minimum of J.

Observation 6.2 Fach equilibrium point u* of the BCP neural network in (6.9) is
mapped by h onto a constrained minimum x* of J, and for each constrained minimum,

there exists a unique corresponding equilibrium point.

Proof. 1t will first be shown that any equilibrium point w* is mapped by h onto a
constrained optimum x*. Differentiating (6.11) with respect to h(%) and substituting

equation (6.9) gives
dE

dh(u)

=T (—u + A[f(u) — u]) (6.13)
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Since % = 0 at all equilibrium points u*, this reduces to

from which it can be deduced that the equilibrium points of the dynamical system pre-

sented in (6.9) must satisfy

Bigii(G —uf) >0 ur <
=40 ul € [(;,&] Vi (6.14)

12

v Bigii(& — uf) <0 ur > €

oF
Bhi(u,-)

where B; and ¢;; are the ith diagonal elements of B and Q respectively. Rewriting (6.14)

in terms of * = h(u*) gives

= 933 = [
<0 zf=vy

which by Observation 6.1 implies that «* is a constrained optimum of J as required.
The existence and uniqueness of the equilibrium point u* corresponding to a given
constrained optimum «* of J will now be established by showing that under the system
dynamics, all trajectories w(t;uo,%o) with starting points uq satisfying h(ug) = * —
including wy = B™'@* — converge to a unique equilibrium point w* satisfying h(u*) =
xz*.
Since * satisfies the Kuhn-Tucker conditions, any starting point wg such that h(ug) =

x* satisfies

9F >0 w; <
()|, =0 u; €[G,8&] (6.15)
- <0 u; > ¢

Since the function h;:R — R is invertible for u; € (¢i, &), all such starting points uqg
must have in common those elements u; which lie in their linear range. These elements
are henceforth denoted by uf. Furthermore, substitution of (6.15) into (6.13) reveals
that under the system dynamics all such elements must have and continue to have zero
time-derivative until such time as h(u) changes. Rearrangement of (6.13) followed by
substitution of (6.15) also reveals that until this happens, each saturated component

uf ¢ (¢, &) will converge monotonically (exponentially) towards the unique value

E—AVI>¢ ul >

Q¢

. {@—%V.Jsg ul < ¢
ul: =

which is clearly in the same saturation region, so that at no time will an initially satu-

rated component enter the linear range of its corresponding activation function. Thus
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since h(u) has remained unchanged, the point w* is an equilibrium point of the sys-
tem and satisfies h(u*) = &* as required. Furthermore, since it has been established
that all elements u} € ((;, &) and u} € ((;,¢;) are uniquely determined for the specified
constrained optimum @*, this equilibrium point is clearly unique.

Observation 6.2 indicates that at any equilibrium point of the system, the network
output constitutes a constrained minimum of J, and that for each constrained minimum
there exists a unique corresponding equilibrium point. If the given matrix W is positive
definite, J is strictly convex and the constrained minimum x* is unique (Bazaraa &
Shetty, 1979), and Observation 6.2 guarantees that the equilibrium point of the neural
network exists and is unique. If on the other hand W has one or more zero eigenvalues, J

is convex but not strictly convex, and the constrained optimum is not necessarily unique.

6.4.1 Multiple Constrained Minima

Multiple constrained minima clearly do arise in some cases, and in such cases the cor-
responding neural network has by Observation 6.2 multiple equilibrium points, each of
which produces a network output which optimises J over the constraint region. To see
that the constrained minimum is not unique in some cases, note firstly that the parabolic
cost function J(&) has zero curvature in the directions of the eigenvectors with zero eigen-
value. Differentiating J() with respect to @, using the eigenvalue decomposition for Q
real, symmetric and diagonalisable, and setting the gradient of J to zero in order to

locate the stationary points yields
VJ=> Neele—r=0 (6.16)

where A; and e; are the ith eigenvalue and eigenvector of ) respectively. For convenience
the kernel or nullspace of @) is denoted by ker(Q) = {e;|\; = 0}. If » has a component
in the direction of any eigenvector e; € ker(Q)) of @, J(«) has constant non-zero slope
in that direction; thus the rightmost equality in (6.16) cannot be satisfied, and J(&) has
no global minimum. However, with the imposition of the proposed bound constraints a
constrained minimum is introduced. Furthermore .J has zero slope in the direction of each
eigenvector e; € ker(Q)) (if any) to which » is orthogonal, and there exists an infinite set
of unconstrained minima in this direction. In some cases, the imposition of constraints
can resolve this degeneracy; this occurs for example if the set of unconstrained minima
lies outside the constraint region, and the corresponding eigenvector with zero eigenvalue
is not parallel to any of the boundary surfaces of the constraint region. This example
illustrates the potential existence of multiple constrained minima when W — and hence

) — is singular.
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Problem Parameters Minima
Q r m v x° x*
2 2 1 0.5 -1 1 1.0
[ 2 2 —0.5 -1 1 - -1.0
11 0.5 -1 1 0.25
0.5 s —05<s<1.0
II 7 0.5 7 e 0.5—3s 0.5—s
—0.5 -0.5 —-0.5

Table 6.1: Parameters for the two BCSQO problems in Example 6.1.

Example 6.1 The parameters for two bound constrained positive semidefinite quadratic
optimisation problems with W singular are listed in Table 6.1, along with the uncon-
strained and constrained minima @° and «* respectively. In problem II, r is orthogonal
to the eigenvector of () having zero eigenvalue, and there exist multiple unconstrained
and constrained minima (expressible in parametric form). In problem I on the other
hand, this orthogonality condition does not hold, and a single constrained minimum is

observed, while the unconstrained minimum exists only at infinity.

6.5 Convergence Analysis

So far it has been established that the equilibrium points of the system are in one-to-one
correspondence with the constrained minima of J. All trajectories of the system are
now shown to converge to the set of equilibrium points, from which it can be concluded
that the output of the network converges to a constrained minimum of the quadratic

problem. To achieve this it is necessary to invoke LaSalle’s invariance principle (LaSalle,

1968; LaSalle, 1976).

Observation 6.3 The energy function E(u) given in (6.11) is a global Liapunov func-
tion for the BCP neural network described by (6.9).

Before the proof of this observation is presented, it should be remarked that although
Sudharsanan & Sundareshan (1991) made the equivalent observation regarding their neu-
ral network, their proof relied on both invertibility and differentiability of their activation
function g, neither of which hold. The following proof rectifies these errors.

Proof. Since the function f(u) (and hence h(u)) is continuous and bounded, E(u)
is also continuous and bounded. Denoting by D, the right lower derivative operator

(LaSalle, 1976), it therefore remains to show that the forward time derivative D,V of
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V(t) £ E(u(t;uo,to)) ! satisfies
D,V <0

and hence — since E(u) is continuous — that F(u) is non-increasing along trajectories.
Applying the chain rule to the differentiation of V'(¢), defining F:R"™— R™" such that

0 j#i
Fij(u) = Difi >0 (6.17)
0 =0 j=i

D_f,' iLi <0
and noting that Dyu = w for continuous input gives

dEN\" dh :
D,V = (E) EF(u)u (6.18)

In particular, F' accounts appropriately for the discontinuity in the derivative of f; at (;
and §; by substituting at each point the left or right derivative of f; depending on the
sign of the time-derivative of u;. Substituting for the first and third terms in (6.18) using

(6.13) and (6.17) respectively, and noting that the second term is simply B and that
F(u)(f(u) — u) = 0 gives

D,V = -4 T'BF(u)u < 0 (6.19)

since '"' BF'(u) is non-negative diagonal and hence positive semidefinite. Therefore, the
energy function F(u) is non-increasing along trajectories, and hence is a global Liapunov
function for the BCP network.

Theorem 6.1 Trajectories of the BCP network in (6.9) converge to the set of equilibrium

points.

The network is said to be quasiconvergent if the equilibrium points are spatially contigu-
ous, and globally convergent if the equilibrium point is unique.

Proof. Because the dynamical system (6.9) is bounded for positive diagonal A (see Ap-
pendix D.1), every forward trajectory converges to a non-empty compact and connected
set, the positive limit set, which is invariant under the dynamics (LaSalle, 1976). Since
E(u) is a global Liapunov function for the system, all trajectories will by LaSalle’s in-
variance principle converge to M, the largest invariant subset of the set in which the
Liapunov function is constant on orbits. Setting D,V = 0 in (6.19) and noting that

[~!BF(u) is non-negative diagonal gives

MCEE{u:u;=0 or Fy(u)=0}

Since E(u(t;uo,to)) is strictly a function of the spatial variable u, V(t) is introduced so that the
application of Dy obtains the forward temporal derivative.
+
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Consider first the set R C & which consists of all points w € £ which are mapped by
h onto points @ not satisfying the Kuhn-Tucker conditions. It will be shown that any
trajectory w(t;uo,to) with ug € R passes outside of £, and hence that the set R is
excluded by the invariant set M C £.

Let the Kuhn-Tucker optimality conditions (6.12) be violated by the current network
output state & = h(wu). Then

<0 ;=
F| NI #0 i€ () (6.20)
>0 x; =y

Rewriting this in terms of the network activation vector u and the unconstrained cost

function F and using (6.13) yields

>0 u; <G
3| i) = —WANE A0 w e (Gt (6.21)
<0 u; > &

In particular an offending component u; € ((;,¢;) must have a non-zero time derivative,
and therefore cannot belong to a point in the set £. On the other hand, an offending
component u; € ((;, &) has by (6.21) a time derivative which will return it to the linear
region of its activation function, and the first moment at which one or more such com-
ponents satisfies u; € {(;, &} will now be considered. Since the aim is to identify the
invariant set M C &, the trajectory u(t) is assumed to remain in € until this time, so
that no other component u; € (¢;,£;) — and hence @ = h(u) — has changed before this
happens. Then for each offending component u; € {¢;, ¢}, Fii(w) = 1 and u; # 0, so that
at this stage the trajectory passes outside of £. Thus it is concluded that M C £ — R.
Now since the Kuhn-Tucker conditions are sufficient for a constrained minimum of J
and hence a global minimum of E, the set £ — R must be invariant under the system
dynamics, since otherwise F' must increase at some stage, contrary to Observation 6.3.
Thus M = & — R, and it remains only to prove convergence of all trajectories which start
in € — R to the set of equilibrium points. Since this result has already been established
in the last part of the proof of Observation 6.2, it can be concluded that all trajectories

of the system converge to the set of equilibrium points, as required.

6.6 Related Neural Networks

6.6.1 The Hopfield Network

The networks described by Equations (6.5) and (6.9) fall into the general class of additive
networks (Grossberg, 1969), and are similar to the associative memory model studied by
Hopfield (1984) and used by Hopfield & Tank (1985) for combinatorial optimisation.



123

The Hopfield model has a sigmoidal activation function s:R™ — R™ such that s;(u) =
vis(u;) € [0,v;] where v; is the maximum activation of the 7th node, and the nodal

activation vector u is governed by

Ci = r+Ts(u)- R 'u

x = s(u)

where 7, € R™ are the network input and output respectively, T € R™" is the symmet-
ric lateral interconnection matrix, and C, R € R}™ are diagonal matrices representing
the nodal capacitance and resistance respectively. In the high gain limit as the activation
function tends to the unit step function, the quadratic function
1
Vu(z) & —amTTa: —z"r
is a Liapunov function for the Hopfield network (Hopfield & Tank, 1986). Thus in the

high gain limit for T' negative semidefinite the network solves the optimisation problem
min {Vx () : z; € {0,1:} Vi}

which differs from the BCSQO problem in that solutions are additionally constrained to
lie only on vertices of the constraint region.

The mapping of the overdetermined full-rank SRE optimisation problem onto the
BCP network bears superficial resemblance to the mapping by Tank & Hopfield (1986) of
the non-orthogonal decomposition decision problem — the object of which is to produce
a binary decision vector & such that x; indicates the presence or absence of the ¢th basis
function in the input signal — onto the Hopfield network. The latter mapping involved

setting
s L p
r = Gi+ évdzag (GG™)
T = -—offdiag(GG™)
v =1
where vdiag :R™" — R" returns the diagonal entries of its matrix argument as a column
vector. However, the mappings differ in that the diagonal entries of GGT are used in the

Hopfield model as constant nodal input (“bias”) terms, and in the BCP model as nodal

self-inhibitory or decay terms.

6.6.2 Generalised Brain-State-In-A-Box (GBSB) Network

Golden (1992) recently generalised the discrete-time Brain-State-in-a-Boz (BSB) model
proposed by Anderson et al. (1977) to be governed by the update equations

z(t+1) = f(x(t)+al'd(t)) (6.22a)

6t & WH+WhHe+r (6.22b)
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where 7, & € R™ are the network input and output respectively, §(¢) € R™ is the output
update term, W € R™" is not necessarily positive semidefinite, « € R} is the temporal

step size, and I' € R} is a diagonal preconditioner?

with diagonal entries v; € (0, 1).
The function f:R"™— R"™ is equivalent to that defined in (6.8) with ¢ = p and € = v.

Golden (1992) showed that for sufficiently small step size o the quadratic cost function
Vo(z) & —2" Wz —a"r

is a Liapunov function for the generalised BSB (GBSB) network. In the case where
W is negative semidefinite, this network can therefore be shown to solve the BCSQO
problem in (6.1). However, in the more general case where W is not necessarily positive
semidefinite the gradient descent strategy employed by the GBSB and BCP networks

which will be discussed in Section 6.7 is not guaranteed to find the constrained minimum.

6.6.3 Continuous-time GBSB Network

A continuous-time analogue of the GBSB network with preconditioning — henceforth
referred to as the continuous Generalised Brain-State-in-a-Boz (CGBSB) network — can

be formulated as

max{0,n;} w; <

uj = ni u; € (G, &) (6.23a)
II'liIl{DJ},‘} U; Z f,‘
n(t) £ y—Cu (6.23b)
* = Bu (6.23¢)
where
y = I'r
_ %r (W + W) B

and ¢, € are as defined previously. For the case where W is positive semidefinite this net-
work is similar to the BCP network except that the nodal activation w is itself implicitly
hard-limited by the network dynamics whenever it attempts to exceed the range [, €],
and consequently f(w) may be replaced by u provided the network is initialised such
that uo € [¢,&]. This change addresses the fact that in active analog implementations
of the BCP network, the nodal activation vector u is subject to qualitatively the same
saturation which limits the range of outputs, and hence cannot be allowed to assume
arbitrarily large values, as would be required in extreme cases in order for the network

to attain equilibrium. In Appendix D.2, it is shown that for W positive semidefinite and

2 Although Golden (1992) suggested neither this specific purpose nor any suitable choice for T,
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uo € [, &], the CGBSB network converges to the set of constrained minima of J(a) and
hence solves the BCSQO problem.

However, if a trajectory starts or is caused by noise to stray outside of the feasible
region, it will not necessarily return to this region under the network dynamics. If
u is physically constrained to the feasible region by for example amplifier saturation,
this problem will not arise. However, to ensure for robustness that in the absence of
such physical constraints the network produces only feasible outputs, (6.23a) should be
reformulated as

max{¢; — u;,mi} wi <G
Ui =19 i ui € (Gir &) (6.23d)

min{& —w;,, 7} w; > &
This has the effect of collapsing each set of adjacent equilibrium points lying outside
this region onto the single equilibrium point given by their projection onto the feasible
region, and causing trajectories starting from infeasible solutions to return to the feasible
region. L’I"bis latter function is performed in the GBSB network by the saturation function
f:R™— R™ However, a full stability analysis of this network will be deferred until a

later publication.

6.7 Optimisation Strategy

Conventional approaches to bound-constrained quadratic optimisation reviewed by Moré
& Toraldo (1991) share two essential elements: an algorithm — such as the conjugate
gradient (CG) method — for searching a selected boundary face of the constraint region,
and a rule or algorithm for deciding when and how to select a new boundary face for
such a search. Although the necessary matrix computations are parallelisable, the core of
such algorithms — including the series of 1D searches required by the CG algorithm — is
inherently sequential. In contrast, the BCP neural network is formulated in continuous
time and admits a direct analog implementation, rendering direct comparisons on the
basis of computational efficiency impossible. Instead, the optimisation strategy employed
by the BCP network is compared in this section with those of conventional and neural
network approaches to BCSQO. It is noted in passing that since any (stable) discrete-time
simulation of the BCP network automatically constitutes a numerical method for solution
of the BCSQO problem, efficiency comparisons between the above algorithmic methods
and such simulations are possible for any suitable discrete-time simulation algorithm.

Such comparisons are however beyond the scope of this thesis.

6.7.1 Description & Comparisons

Noting that for @ continuous, D @ = BF(u)@ and substituting for % using (6.13) yields
Dyz = -TBF(u)VJ (6.24)
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where F'(u) defined in (6.17) is diagonal. For the special case I' = B = F(u) = I,,
(6.24) performs steepest descent on J, as illustrated below in Example 6.2. As will be
seen from Example 6.3, the effect of the preconditioners I', B is to modify the search
direction from that of steepest descent — viz. the negative of the true gradient; however,
since I' and B are positive diagonal, the network still performs gradient descent — i.e.
(Dya)" VJ < 0 — and E sirictly decreases with time.

The effect of premultiplication of the gradient VJ by F(u) in (6.24) is twofold. Firstly,
it sets to zero the forward time derivative of any output component x; which under
gradient descent would be forced out of the constraint region. Illustrated in Example 6.2
below, this effect results from the fact that since the output trajectory @(t) is obtained by
mapping u(t) through h, it is necessarily confined to the constraint region, and hence is
constrained to move only in feasible directions. In contrast, conventional penalty function
methods — upon which previous neural network approaches to constrained linear and
nonlinear optimisation have been based (Tank & Hopfield, 1986; Kennedy & Chua,
1988; Rodriguez-Vazquez et al., 1990; Chen et al., 1992; Maa & Shanblatt, 1992a) —
can generate infeasible solutions (Bazaraa & Shetty, 1979; Maa & Shanblatt, 1992b).
The two networks proposed respectively by Rodriguez-Vazquez et al. (1990) and Maa
& Shanblatt (1992b) in their attempts to rectify this deficiency have yet to be proven
stable®, and both ensure feasibility at the expense of considerable additional hardware
and network complexity.

The optimisation method described so far and henceforth referred to as constrained
gradient descent — or in the special case where [' = B = I, constrained steepest descent
— falls into the general class of gradient methods for constrained nonlinear optimisation
(Gellert et al., 1989), in which the search direction used for minimisation is any feasible
downhill direction. However, the second effect of premultiplication of the gradient vector
by F(u) is to set to zero the forward time derivative of any output component z; for
which u; is strictly in the saturation region of f;, even if YJ is such that under gradient
descent z; would move in a feasible direction away from the corresponding boundary
face. Although this has the potentially undesirable effect of confining the search proccss
to the current boundary face, the following argument shows that this confinement is only
temporary, as expected given the convergence result in Section 6.5.

For such points @ on the boundary of the constraint region, at least one of the
components z; lies on one of its corresponding constraint surfaces z; = y; and z; = v;,
and the relevant constraint is said to be active. If there exist feasible directions pointing
away from an active constraint surface and in which J is decreasing, then the Kuhn-
Tucker optimality conditions (6.12) must be violated, and by (6.21) the time derivative of

the element u; corresponding to this constraint is such that u; will eventually be brought

3The stability of the network of Rodriguez-Vazquez et al. (1990) has in fact been questioned by Maa
& Shanblatt (1992a).
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into the linear region of its activation function f;. In the mean time, all other output
components z; corresponding to activations u; € [(j,¢;] are free to pursue constrained
gradient descent on J with the search confined at least to the ith boundary face of the
constraint region. Once u; has returned to the linear region, ; can become unstuck
from the relevant constraint boundary, and the search is then no longer confined to this
boundary face.

In the case where the system is not immediately free to pursue search directions
away from a boundary face, the return of u; into the linear region of its corresponding
activation function is governed by

i = { ai( G —wi) — vV xi = (6.25)

ai(§ — w) =Nz = v

where a;; is the ¢th diagonal entry of A. In the special case where the desired search
direction is perpendicularly away from the boundary face — ie @ minimises J over this
active boundary face — u; converges exponentially towards a point inside the linear region
of its activation function. However, as soon as u; hits the linear region, u; = —v:VJ and
the search is free to pursue the component of the gradient in the sth direction. This
behaviour is evident in Example 6.4 below.

It is therefore concluded that the optimisation method employed by the BCP net-
work is gradient-based, with the search constrained to feasible directions and at worst
temporarily to one or more boundary faces on which the current point  is located. Al-
though in Example 6.4 this latter effect does not cause an appreciable delay in obtaining
the optimal solution, it has the potential to do so in more extreme cases. This problem
is overcome by the GBSB and CGBSB models which prevent saturation of the neural ac-
tivation, leaving them free on presentation of a new network input to pursue constrained
gradient descent on the new cost function J. The optimisation strategy of the GBSB
network for I' = I, is closely related to the gradient projection (GP) method used by
Moré & Toraldo (1991) to move between boundary faces, with the principal difference
being in the use of a fixed rather than adaptive Euler step size a. This method involves
taking a step in the direction of the gradient, and then projecting the resultant point
back onto the constraint region — a function performed by the nonlinearity in the GBSB
model. The continuous-time equivalent of this strategy employed by the CGBSB model
is to constrain the search direction itself to feasible directions by modifying the gradient
accordingly. Although the GP method is itself sufficient to locate the bound-constrained
optimum of a convex cost function, more computationally efficient though inherently
serial methods — such as the CG algorithm — are often employed to search any new
boundary face located by an abbreviated GP search (Moré & Toraldo, 1991).

6.7.2 Examples
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Problem Parameters Minima
Q r n v x° x*
I 4.585 1.341 0 -5 5 0 0
1.341 0.6648 0 -5 5 0 0
I " 4.368 N ” 3 2.415
—0.6307 -7 —5.000

Table 6.2: Parameters for the two BCSQO problems in Example 6.2; £° and «* denote
the unconstrained and constrained minima respectively.

Initialisation Equilibria
Problem 1 Problem II

Ug g u* | x* u* x*
-5 ) 0 0 2.415 2.415

0 0 0 0 —5.820 —5.000

0 0 N N " ”

5 5

3 3 ” ” ” »

0 0

0 0 " ,, ” "
-5 -5

Table 6.3: Network equilibria for the application of the BCP network with ' = I, = B
to the BCSQO problems in Table 6.2. The network output trajectory is illustrated in
Figure 6.4 for problem I and in Figure 6.5 for problem II; u* and &* denote the neural
activation and output vectors respectively at equilibrium.

Example 6.2 The BCP network with I' = I,, = B was applied to the two BCSQO prob-
lems whose parameters are listed in Table 6.2, along with the corresponding constrained
and unconstrained minima — denoted @* and ®° respectively — of J, which are coinci-
dent in problem I but distinct for problem II. Spatial and temporal representations of the
trajectories & (¢; @o,0) of the network output for four different starting points x, for each
of problems I and II are presented in Figures 6.4 and 6.5 respectively, and the network
equilibria listed in Table 6.3. In the interior of the constraint region as expected each
trajectory performs steepest descent on J — and hence F — moving perpendicular to
the contours and converging to the constrained optimum. However, when the trajectories
in Figure 6.5(a) reach the constraint boundary z; = —5, they are prevented by the nodal
activation function f; from leaving the constraint region. Characteristic of the steepest
descent strategy is the rapid descent on steep inclines followed by slow convergence along
the gently sloping valley floor, as can be seen from the temporal plots in Figures 6.4 and

6.5 of the trajectory starting from zo = [—5,0]" for each problem.
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Figure 6.4: (a) Spatial representation of the trajectories x(¢;@o,0) (solid) of the BCP
network without preconditioning (I' = [, = B) applied to problem I in Table 6.2 for
the four starting points listed in Table 6.3. Logarithmically spaced contours of the
cost function J (dotted) along with the four boundary faces of the constraint region
(dashed) are shown superimposed. The constrained minimum is marked with an asterisk.
(b) Temporal representation of the trajectory shown in (a) starting from @, = [—5,0]".
The Runge-Kutta method of order 4 with adaptive step size was used to simulate the
network dynamics over temporal intervals which were equal on a logarithmic scale.

al
zlu
S0
o
8
—_
2F 8
4}
6 i L =L L £S5 I
6 -4 2 0 2 4 6 10° 10" e 10' 10*
Z1 time
(a) Spatial (b) Temporal

Figure 6.5: Description as for Figure 6.4 but with reference to problem II in Table 6.2.
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Parameters Minima
Q r u v z° x”
39.60 3.960 138.6 0 30 -1 0
3.960 0.5307 19.92 15 45 45 37.56

Table 6.4: Parameters for the BCSQO problem in Example 6.3.

Preconditioning |[ Initialisation Equilibria
'=~8 Ug g u* x*
I 30 30 —0.2562 0.000
" 45 45 37.56 37.56
0.7361 0 40.75 " —0.3448 "
0 6.359 7.077 5.903

Table 6.5: Network equilibria for the application of the BCP network with two different
settings of the preconditioners to the BCSQO problems in Table 6.4. The network output
trajectory is illustrated in Figure 6.6.

Example 6.3 The modification of the search direction by preconditioning is illustrated
by the following example. In anticipation of the discussion in Section 6.9 on the appro-
priate choice of preconditioners, the preconditioning strategy described in Section 5.4
is used. The BCP network was applied with and without preconditioning to the BC-
SQO problem whose parameters are listed along with the corresponding constrained and
unconstrained minima of J in Table 6.4. The unconstrained optimum lies outside the
constraint region. Note in passing that in keeping with the generalisation of the acti-
vation limits used in the formulation of the BCP network, the bound constraints are
different for the two optimisation variables, and neither pair of constraints is placed
symmetrically about the origin. Spatial and temporal representations of the trajectories
x(t;®o,0) of the network output both with and without preconditioning are presented
in Figure 6.6 and the network equilibria listed in Table 6.3. For the preconditioned net-
work, the preconditioners are chosen to satisfy (5.13), with the scaling factor £ = 4.633
ensuring that the preconditioned matrix I'Q B has the same maximum eigenvalue as (),
so that a fair comparison of rates of convergence can be made. As can be seen from
both the spatial and temporal views, both networks converge to the optimal solution. In
the interior of the constraint region, the unpreconditioned system progresses as expected
in the direction of steepest descent (perpendicular to the contours). Once the trajectory
of the unpreconditioned system hits the constraint boundary z; = 0, it is constrained to
move along that constraint in a direction as near as possible to that of steepest descent.
The path taken by the preconditioned system, on the other hand, deviates strongly from

steepest descent, spending some time in saturation on the boundary z, = 15.
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Figure 6.6: Spatial and temporal representations of the trajectories @ (¢;@o,0) of the
unpreconditioned (dot-dashed) and preconditioned (solid) systems detailed in Tables 6.4
and 6.5 applied to the BCSQO problem whose parameters are listed in Table 6.4. Loga-
rithmically spaced contours of the cost function J (dotted) along with the four boundary
faces of the constraint region (dashed) are superimposed on the spatial representation.
The constrained minimum is marked with an asterisk.

Problem Parameters Minima
Q r " v x° z*
I 4.585 —1.341 —51.47 -5 5 —20 —5.000
—1.341 0.6648 6.876 -5 5 -30 0.2565
1 " 1.124 ” " 2 1.708
1.307 6 5.000

Table 6.6: Parameters for the two BCSQO problems in Example 6.4.

Example 6.4 In this example the optimisation strategies of the GBSB, CGBSB and
BCP networks are compared. Each network was first applied without preconditioning to
the solution of problem I in Table 6.6. For the BCP network, this had the effect of driving
u; well into the saturation region of its corresponding activation function, whereas the
activations of the GBSB and CGBSB networks were restricted to their linear ranges by
their respective difference or differential equations. Each network was then presented with
the new input ¥y = » in problem II of Table 6.6. Spatial and temporal representations of
the trajectories x(t; @o,0) of the output of each network subsequent to the presentation
of the new input are presented in Figure 6.7 and the network equilibria listed in Table 6.7.

The BCP network takes some time to bring u; back into its linear region, during which
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Figure 6.7: Spatial and temporal representations of the trajectories of the GBSB (dotted),
CGBSB (dashed) and BCP (solid) networks without preconditioning. Logarithmically
spaced contours of the cost function J (dotted) along with the four boundary faces
of the constraint region (dashed) are superimposed on the spatial representation. The
constrained minimum is marked with an asterisk.

Network [nitialisation Equilibria
Ug xo u* x*
—5.000 —5.000 1.708 1.708
ol 0.2565 0.2565 5.000 5.000
CGBSB b ”» ” 2
—11.15 ,, 1.708 ,
BCP 0.2565 5.410

Table 6.7: Network equilibria for the application of the GBSB, CGBSB and BCP net-
works to problem II in Table 6.6. The output trajectory of each network is illustrated in
Figure 6.7.



133

x(t) is constrained to move along the constraint boundary z; = —5 in a direction as near
as possible to that of steepest descent. In contrast, both the GBSB and CGBSB networks
are immediately free to pursue constrained steepest descent on the new error function .J.
As expected, the trajectories of these latter two networks are almost identical, with the
slight discrepancies being attributable to the use by the GBSB network of an explicit
Euler method approximation to the ODE governing the CGBSB network.

6.7.3 Constraint Generalisation

The constraints on the optimisation variables considered in this chapter are quite specific:
either the constraint region is hyper-rectangular and its principal axes are aligned with

the optimisation variable axes, or it can be described by

p< Pex<v (6.26)
where P € R™" is non-singular, which can be linearly — although not necessarily
efficiently — transformed into this form through substitution of @ = P~'z followed

by a change of variables. However, the technique by which the outputs of the BCP
network are limited to strictly feasible solutions should be amenable to extension to
general convex constraint sets. The constraints which constitute the current minimum
upper and maximum lower permissible limits on the range of a given optimisation variable
z; should be used to set upper and lower thresholds (; and & on the corresponding
activation function f;. In general these thresholds will be a function of ®(t), making
stability analysis and practical implementation of the resulting time-varying dynamical
system significantly more challenging.

An alternative strategy suggested by the CGBSB network for generalising the con-
straints is to subtract from the negative of the cost function gradient vector those compo-
nents which are in the direction of the outward facing normal to each active constraint,
thereby limiting the search to feasible directions. This strategy can be expressed math-
ematically as

x=-VJ - Z r(—VJ™n;)n;
€A
where A is the set of active constraints, m; is the outward facing normal to the ith
constraint, and 7:R — R with r(-) £ max(0,-) is the half-wave rectification function.
The convergence of such a network to the set of minima of the positive semidefinite
cost function over a convex constraint set is readily argued through consideration of
the underlying strategy of gradient descent constrained to feasible directions. Although
for linear constraints the normals are independent of the current point @ so that the
requisite inner product can be implemented in a linear (non-integrating) node having
predetermined weights and activation function r, in the more general case of nonlinear

[¢

constraints the “weights” would need to be continuously recomputed. Furthermore the
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output of each such node would have to be gated by the output of a second node which
is responsible for determining whether the corresponding constraint is currently active.
Thus, although this scheme for the more general case is clearly inherently parallel and
amenable at least theoretically to fine-grained parallel implementation, the engineering

and biological plausibility of such implementations awaits future investigation.

6.8 Exponential Stability

In this section it is shown that under appropriate conditions on the matrices A and C, the
BCP network is exponentially stable. Sufficient conditions on the given matrix @ and the
preconditioners I' and B are then presented to ensure that in cases where the constrained
minimum of the corresponding quadratic cost function is unique, the neural network
produced by mapping the optimisation problem onto the BCP architecture converges
exponentially to the optimal solution. For convenience A, (A) is defined to be the

minimum eigenvalue of A and 0,,,,(C) to be the maximum singular value of C.

6.8.1 Theoretical Results

Definition 6.1 A dynamical system is said to be exponentially stable in the sense of
Liapunov if 33,n € Ry such that for all pairs {x(t;te, o), x(t;t0, 1)} of solutions

[@(t; to, ®1) — ®(t; to, o)]| < Be7(%) (6.27)

Definition 6.2 The degree of an exponentially stable dynamical system is the largest
non-negative value of n for which (6.27) holds.

Theorem 6.2 If the self-feedback and lateral connection matrices A and C respectively
satisfy

12 Anin(A) = Omaz(C) > 0 (6.28)
then the BCP neural network (6.9) is exponentially stable with a lower bound on the
degree of exponential stability given by n.

Proof. Since f(u) is continuous and Lipschitzian, the solution u(t) = w(t; to, uo) of the
initial value problem associated with (6.9) is continuous and unique. The solution is also

bounded for A positive diagonal (see Appendix D.1), and is given by

t t
u(t) = A ug 4 [ Ay (s)ds — [ AICf(u(s)) ds (6.29)

to to

Subtracting u(t) from a second trajectory v(t) starting from v at time ¢y and taking

the norm yields

Jo(6) = w0l < el ~ ol + [ }eHIICIIF(w(s) = Fu(s)] ds (630
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Using the spectral norm, the matrix norm induced by the Euclidean vector norm

(Horn & Johnson, 1988), gives

1£ () = Flu(l < lv(s) —u(s)]

“e—A(t—s)” = e Amin(A)(t-s)

IC = Tmas(C)
Substituting these results into (6.30) and multiplying both sides by e*min(A)t gives
¢
[o(2) = w(Oll™ D < flog ol 4 5,1, (C) [ (s) - u(s)4 ds
to

Applying Gronwall’s Inequality (Reinhard, 1986) and evaluating the integral in the re-

sulting expression produces the following inequality
lo(t) = w(t)]| < [lvo — uol|e™"~") (6.31)

Therefore a sufficient condition for exponential stability of the BCP network is that the
exponent in (6.31) is strictly negative, from which condition (6.28) follows. Furthermore
if (6.28) is satisfied, n provides a lower bound on the degree of exponential stability,
which completes the proof.

Theorem 6.2 shows that provided the network weight matrices A and C' satisfy
condition (6.28), the Euclidean distance between any two trajectories u(t; uo, tp) and
v(t; o, o) will decrease at least exponentially with time. In particular, if vg is chosen to
be an equilibrium point of (6.9), and the given input vector y does not vary with time, all
trajectories w(t; uo, o) must converge exponentially to that equilibrium point. However,
since this is not possible if the system has multiple equilibrium points*, (6.28) clearly
cannot be satisfied by any choice of the preconditioners I' and B if the matrix () has one
or more zero eigenvalues and the constrained minimum is not unique. Recall however
that according to Theorem 6.1 the network will still converge to the set of constrained

minima, even though it is not exponentially convergent.

6.8.2 Practical Considerations

The required singular value for the evaluation of (6.28) is the square root of the largest
eigenvalue of CC”, and can be efficiently computed using the power method (Golub &
Van Loan, 1989). However, whilst Theorem 6.2 provides a lower bound on the rate of
convergence of the network, it gives little indication of how best to choose the elements
of the preconditioners I' and B when mapping the constrained optimisation problem
onto the proposed network, or whether or not there exist any such choices which will

ensure exponential convergence or improve the convergence properties of the network.

“Try choosing 1o and vg to be distinct equilibrium points.
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Two sets of sufficient conditions for exponential convergence are now presented which
make appropriate choices of these preconditioners more apparent, albeit at the expense
of sacrificing some of the generality of Theorem 6.2.

For convenience, the :th diagonal entries of I' and B are denoted by 7; and ; respec-
tively, and ynar and Bia; are defined to be the largest of these, ¢nin = min;{q;;} to be
the minimum diagonal entry of @, and Aaz(Q,) = max;{|A;(Q,)|} to be the maximum

magnitude eigenvalue of the matrix Q, = offdiag(Q).
Lemma 6.1 If the matriz ) defined in (6.3) satisfies

Gmin > Amal‘(Qo) (632)

then choosing I' and B such that

'mini{'ﬂqiiﬂi} = '7ma.1:qminﬂmaa: (633)

ensures that the BCP network is exponentially stable, with a lower bound on the degree

of exponential stability given by Ymae(gmin — Amaz(@o))Bmas-

Proof. Noting that since I' and B are diagonal, 'Q,B = offdiag(T'Q B) yields

7maa: maCL‘(Q )/Bmaz‘ = ”FH“QOHIIBH
> TQ.B]
= Omaz(C) (6.34)

Starting with (6.33) and using (6.32) followed by (6.34) gives

mini{%i¢iifi} = YmacGminPmas
> ’Ymaa: ma;r(Q )/Bﬂlu.l,
> Omaz(C) (6.35)

which is simply (6.28). Thus conditions (6.32) and (6.33) are sufficient to ensure expo-
nential stability of the nctwork.
Furthermore, by (6.35) the lower bound 7 on the degree of exponential convergence

satisfies

n Z mini{’)’i%iﬂz} Ymaz maz(Q )ﬂmarz
. 7ma$(qmin‘ maz‘(Q ))/gmaa:

as required.
Equation (6.33) is satisfied by the choice of preconditioners in (5.13). Note that even
if ) does not satisfy (6.32), there may still exist choices of I' and B which ensure the

satisfaction of (6.28), and hence guarantee exponential convergence of the system. The
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power method can be used to efficiently compute A,.-(@Q,) in order to verify whether or
not () satisfies condition (6.32). However, the following corollary replaces condition (6.32)
in Lemma 6.1 with a condition which is computationally less expensive to evaluate whilst
still sufficient to satisfy (6.32).

Corollary 6.1 If the matriz Q defined in (6.3) satisfies

mini{gii} > maz;{_ |q;;]} (6.36)
J#i
then choosing I' and B according to (6.33) is sufficient to ensure exponential stability of
the BCP network described by (6.9).

Proof. 1t can be shown that any matrix M € R™" satisfies || M|| < /||M||;||M]|oo, where
M ||so £ maxi{3; |pi;|}, |M]ls & max;{Z; |pi;|}, and ||M]| is the spectral norm of M
(Golub & Van Loan, 1989, Cor. 2.3.2). Furthermore, if M is symmetric this reduces to
M| < ||M||oo. Thus

maxi {) 1¢i|} = [|Qollco 2 |Qull = Amaz(Qo)

J#i
which indicates that if (6.36) is satisfied, then so is (6.32), as required.

6.9 Preconditioning

If I'Q B satisfies (6.28), multiplying either ' or B by a scalar constant « > 1 increases
the rate of convergence guaranteed by Theorem 6.2 by a factor of «, and hence — at
least in theory — convergence of the neural network can be made arbitrarily fast by
making o arbitrarily large. However, as seen in Section 5.4.3, practical considerations
limit the utility of this strategy, and in such cases preconditioning should be used instead
to improve the convergence rate subject to these limitations.

In Section 5.4 it was shown that preconditioning of the linear networks in Sections 5.2
and 5.3 for SRE and minimum-norm SRE optimisation can both mitigate the sensitivity
of the equilibrium point to weight implementation and floating-point derivative evalu-
ation errors and accelerate convergence to the equilibrium point. In this section the
implications of these results for the nonlinear network for constrained quadratic optimi-
sation are discussed.

The nonlinear network can be viewed as an essentially linear network in which the
offdiagonal entries in the sth column of the state-feedback matrix are set to zero when-
ever the activation of the ith neuron saturates, and a constant term Cjilbi OT CjiVv; —
where ¢;; is the (j,2)th element of C' — added to the input of the jth neuron (Vj # 1) in
compensation. These “changes” are reversed when the ith neuron comes out of satura-

tion. Thus for as long as the trajectory remains in the linear region of each of the neural
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activation functions for example, the network can be treated as a linear network with
state-feedback matrix C'+ A. On the other hand, while all neurons are operating strictly
in their saturation regions, the network can be considered to be linear with effective
feedback matrix A which is diagonal, indicating the temporary uncoupling of the neural
activations.

The condition number of the effective state-feedback matrix varies® between those
of C + A =T@B and A. The relevant condition number from the point of view of
sensitivity of the equilibrium point to weight implementation and derivative evaluation
errors 1s that which applies in the region in which the true equilibrium point is located,
which is not generally known apriori. Furthermore, for robust stability in the presence
of weight implementation errors the perturbed system matrix @ must remain non-
singular after the above modification for each of the regions of state-space through which
the trajectory passes, which again is not usually known in advance. Thus in the absence of
such prior knowledge, a general preconditioning strategy which improves the conditioning
of both I'Q B and A — and hence all other intermediate effective state-feedback matrices
— should be employed. This is achieved by the symmetric diagonal preconditioning
strategy detailed in Section 5.4.

Using a singular value inequality for the matrix sum (Horn & Johnson, 1991, Thm
3.3.16) yields

N = Amin(A) — Omaz(C) < Onin(TQB) (6.37)

which provides an upper bound on the rate of exponential convergence guaranteed by
Theorem 6.2. For the choice of diagonal preconditioners detailed in (5.13) with &k chosen
to preserve the maximum eigenvalue — and hence in view of symmetry the maximum
singular value — as in Heuristic 5.2, this bound is guaranteed to exceed that of the un-
preconditioned system whenever the preconditioning is effective in reducing the condition
number of (). However, except in the case of a 2 x 2 matrix with symmetric precondi-
tioning — for which the equality in (6.37) can be shown to hold — increasing this upper
bound on 7 does not ensure that either n or the degree of exponential stability will be

increased.

Example 6.5 The effects of preconditioning on the condition number of the extreme
effective state-feedback matrices QB = C + A and A for the matrix @ given in Ta-
ble 6.4 of Example 6.3 are illustrated in Table 6.8. The preconditioners were chosen
to satisfy (5.13), with the scaling factor & = 4.633 chosen in accordance with Heuris-
tic 5.2 to ensure that the preconditioned matrix I'Q) B has the same maximum eigenvalue
as (). The improvement in the condition number of both matrices indicates a reduced
susceptibility to weight implementation and floating-point derivative evaluation errors.

Since the eigenvalues of a symmetric positive semidefinite matrix are also its singular

5Unproven observation.
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Preconditioning Condition # Eigenvalues Degree >
M= & £2(TQB) | £2(A) || Anax(T@B) | Ain(TQB) n
I, 300.0 74.62 40.00 0.1333 0.1333
0.7361 0
0 6.350 13.69 1.000 40.00 2.922 2.922

Table 6.8: Effects of preconditioning on the condition number of the extreme effective
state-feedback matrices QB = C' + A and A for Example 6.3. The extreme eigenvalues
of I'QB and the lower bound 7 on the degree of convergence are also shown.
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Figure 6.8: (a) The Euclidean distance of the activation vector w from the equilib-
rium point u* as a function of time for the network in (6.9) applied to the problem
in Example 6.3 both with (solid) and without (dot-dashed) preconditioning. (b) The
corresponding relative cost error as a function of time.

values, the improvement by a factor in excess of 20 in the lower bound 7 on the degree
of convergence which is also evident from Table 6.8 can be seen to be consistent with
(6.37). As indicated by the plot of distance from the equilibrium point against time
in Figure 6.8(a), the actual rate of convergence for the chosen starting points is also
markedly accelerated by preconditioning, with an estimated increase by a factor of 40 in
the slope on a log scale of the final segments of each trajectory. This same speed-up is
also observed in Figure 6.8(b) for the monotonic decrease of the cost J(z) to its optimal
value. In contrast, the constrained steepest descent strategy employed by the network
without preconditioning produces rapid initial reduction of the cost and the distance

from the equilibrium point, but soon gives way to painfully slow convergence.

For a given application or implementation of the proposed recurrent neural network,

there will of course be other considerations involved in the choice of the preconditioners.
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For example, I' and B can be used to control the dynamic range of internal network
signals for a given externally imposed range of the variables » and @. In such cases care
should be taken not to worsten the conditioning of the system, and a trade-off between

these possibly conflicting requirements may need to be investigated.

6.10 Bound Constrained SRE Minimisation

The goal of this chapter — to develop a neural network capable of solving the quadratic
SRE minimisation problem arising from non-orthogonal image decomposition subject to
bound constraints on the basis function coefficients imposed by the biological or elec-
tronic neural implementation medium — has now been achieved. The following example

illustrates the effect on the reconstructed image of such constraints.

Example 6.6 The BCP neural network was applied to the regularised SRE image de-
composition problem described in Example 5.1 upon which the three sets of bound con-
straints {p, v} = {—2,2},{-0.1,0.1} and {0,10} were independently imposed. As in
Example 5.1, due to the prior normalisation of the basis functions, no explicit precon-
ditioning was required. The procedure used to obtain each of the three corresponding
pairs of reconstructed image sequences depicted in figures 6.9, 6.10 and 6.11 respec-
tively was the same as that used in Example 5.1. The near-complete convergence of
the coeflicients observed for each of the image sequences within 75ms — 3 time con-
stants — of presentation of the image is consistent with exponential or near-exponential
convergence. For both input images, the minimum regularised SRE coefficients for the
unconstrained case in Example 5.1 exhibited a zero mean, approximately Gaussian dis-
tribution, with a standard deviation in the vicinity of 0.1 and all coefficients lying inside
the range (—2,2). Consequently, the final image in each sequence reconstructed from
the coeflicients attained by the network having {u,v} = {—2,2} shows no apprecia-
ble difference from the corresponding solution reached by the unconstrained network in
Example 5.1; this observation is confirmed by the fact that for both image sequences,
the two networks produce the same final SRE value. Constraint of the coefficients to
the range {p,v} = {—0.1,0.1} — which was exceeded by approximately 30% of the
unconstrained coeflicients — produced a barely noticeable effect on the image sequence,
despite an almost 50% increase in the SRE for the image at ¢ = 1000ms. The effect of
the constraint of the coeflicients to the range {u, v} = {0,10} — which excludes ap-
proximately 50% of the unconstrained coefficients — is similarly difficult to discern from
the corresponding image sequence, despite an almost 300% increase in the SRE for the
image at ¢ = 1000ms over the unconstrained case. Whilst these examples by no means
constitute an exhaustive analysis of the effects of bound constraints on the coeflicients,
they do at least suggest that a great deal of the visual information in an image is retained

despite such potentially restrictive constraints.



141

Figure 6.9: (a) Sequence of images reconstructed from the outputs of the BCP network
with {p, v} = {—2,2} at times¢ = 0,1,10,100 and 1000ms after step presentation of the
image of an eye (shown at right) to the network input. The network activation vector at
t = 0 was up = 0. For ease of comparison, each reconstructed image was normalised to
utilise the full available grey-scale range. (b) Sequence of reconstructed images at times
t =0,1,10,100 and 1000ms after step presentation of the image of a mouth (shown at
right) to the same network following equilibration on the eye in (a).

Figure 6.10: Sequence of reconstructed images for the BCP network with {u,v} =
{—0.1,0.1}. All other details are the same as those for Figure 6.9.
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(b)

Figure 6.11: Sequence of reconstructed images for the BCP network with {p,v} =
{0,10}. All other details are the same as those for Figure 6.9.

6.11 Conclusion

In this chapter, the Bound Constraint Projection (BCP) network proposed by Bouzer-
doum & Pattison (1993b) has been presented and shown to converge to the set of optima
of the bound-constrained semidefinite quadratic optimisation (BCSQQ) problem. The
BCP network is a generalisation of the network of Sudharsanan & Sundareshan (1991),
who considered the application of their network only to the unconstrained optimisa-
tion of a definite quadratic function. The extension of the requisite proofs presented by
Bouzerdoum & Pattison (1993b) to cover the case where the matrix W is singular — and
the network potentially quasiconvergent — necessitated a considerable strategic depar-
ture from the former treatment. The proof of exponential convergence — under certain
conditions on the Hessian @) of the quadratic function and the preconditioners I', B —
for the case where W is positive definite is however substantially unchanged from their
paper. These proofs have superceded those of Sudharsanan & Sundareshan (1991) for
global convergence and exponential stability, which have been shown here and by Davis
& Pattison (1992) respectively to be flawed.

The optimisation strategy of the BCP network has been shown to be one of gradient
descent with the search constrained to feasible directions and at times temporarily to
one or more boundary faces of the constraint region. In contrast with penalty function
methods — on which most previous neural network approaches to constrained linear and
non-linear optimisation are based — which are guaranteed to produce feasible solutions

only in the limit as the weighting of the constraint-violation penalty function tends to
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infinity, the bound constraints are strictly enforced in the BCP network by the piecewise
linear nodal activation function. The algorithm underlying this optimisation strategy
differs from that of conventional serial methods for solution of the BCSQO problem
— which require the sequential application of parallelisable matrix computations —
in that it is inherently fully parallel. Ironically, those portions of such conventional
algorithms which necessitate a sequential approach are those such as the Conjugate
Gradient algorithm which were introduced to accelerate the optimisation process on
serial architectures.

Comparison of the optimisation strategy of the BCP network with that of the Gen-
eralised Brain-State-in-a-Box (GBSB) network proposed by Golden (1992) revealed that
the latter did not suffer from the unproductive temporary constraint of the search to one
or more boundary faces of the constraint region exhibited by the former. In order to an-
swer the potential objection to the BCP network that the nodal activations can become
excessive, the Continuous-time Generalised Brain-State-in-a-Box (CGBSB) network was
proposed as a continuous-time analogue of the GBSB, and trajectories starting in the
feasible region were shown to converge to the set of solutions of the BCSQO problem.
An analysis of the stability of the network after the proposed modification to force the
return of the trajectory to the feasible region following a “glitsch” or infeasible initialisa-
tion awaits future investigation, as does a suitable analog implementation of the modified
CGBSB network.

The BCP network was applied to the regularised squared reconstruction error (SRE)
minimisation problem arising from the decomposition of an image using a set of Gabor
basis functions. For the two example images, the quality of the image reconstructed
from the coefficients obtained by the network was found to be robust to the imposition
of restrictive bound constraints on the coefficients, suggesting that the nonlinear mapping
from image to constrained coefficients implemented by the network at equilibrium may
still transmit the vast majority of the visual information inherent in the input image.

This hypothesis however awaits more thorough future investigation.
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Chapter VII

DO THE SIMPLE CELLS PERFORM IMAGE
DECOMPOSITION?

7.1 Introduction

Decomposition-based theories of simple cell processing postulate that each simple cell
computes the coefficient corresponding to its own spatial RFP in an expansion of the
visual image which uses these RFPs as expansion functions. Implicit in the definition of
a coefficient employed by these theories is the notion that each cell signals the relative
presence of its spatial RFP in the image. As indicated earlier in Section 4.1, the concept of
the “relative presence” (Daugman, 1990) of an expansion function is effectively quantified
by the choice of a reconstruction error measure, since the minimisation of this error
measure subject to appropriate constraints uniquely defines a set of expansion coeflicients.
In Chapters 4-6, recurrent artificial neural networks (RANNs) were examined which
solve, subject to these constraints, the least squared error (LSE) problem resulting from
the use of the squared reconstruction error (SRE) measure. Minimisation of this measure
is known to produce the best linear unbiassed estimator (BLUE) of the original image
in the presence of zero-mean spherical Gaussian noise.

MacLennan (1993b), Pattison (1992) and Pece (1992) have argued that several of
these RANNs could potentially be mapped onto the neural architecture of the early vi-
sual system. The potential for the early visual implementation of these networks raises
the possibility that the simple cells may have at their disposal the computational ma-
chinery to compute, by relaxation, the coefficients of non-orthogonal image expansions
such as those discussed in Chapter 3. In an investigation of this hypothesis, the proposed
early visual implementation of each of these SRE-minimising neural networks is examined
in Section 7.2 for its consistency with the neuroanatomy of the retino-geniculo-cortical
pathway and with general principles of neural modelling and computation. Those im-
plementations which are, according to these criteria, biologically plausible are examined
further in Section 7.3 for consistency with the results of the RFP identification experi-
ments of Jones & Palmer (1987b) and Palmer et al. (1991). A discussion and summary
of the findings is then presented in Section 7.4.

The following treatment does not pretend to provide an exhaustive analysis of the

plausibility of early visual implementations of SRE-minimising networks. However it will
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be argued, on the basis of inconsistencies between the predicted and actual results of the
reverse-correlation identification experiments of Jones & Palmer (1987b), that sufficient
doubt exists to cause one to question the motivation behind the promulgation of these
networks as models of early visual processing. In particular, why should the output of
a simple cell be assumed to signal the relative presence of its spatial RFP in the visual
image, rather than the spatial inner product of that RFP with the image, in terms of
which the spatial RFP is defined? It is concluded that this decomposition hypothesis
of simple cell processing, for which no apriori justification is evident, can be discounted

as a vestige of the earlier feature-detection hypothesis, which was discussed briefly in
Section 3.2.

7.2 Biological Implementation of Decomposition Networks

In this section, the early visual implementation of the recurrent neural networks for SRE
or regularised SRE minimisation presented in Chapters 4-6 is investigated. Although
most of these networks were not intended by their authors as models of early visual
processing, this investigation is occasioned by the observations of MacLennan (1993b),
Pattison (1992) and Pece (1992) that several of these RANNs might be amenable to early
visual implementation. In order to assess the relative biological plausibility of the var-
lous models, it is first necessary to examine some principles of, and neurophysiological
and neuroanatomical constraints on, neural and neural network modelling! (MaclLen-
nan, 1993b; Shepherd, 1990; Crick & Asanuma, 1986; Sejnowski, 1986), with particular
emphasis on the functional architecture of the feline and primate early visual systems
(Henry, 1991; Taylor, 1990; Thorpe & Imbert, 1989; White, 1989; Sereno, 1988; Lund,
1988; Gilbert, 1983; Poggio, 1980). Since this section combines disparate lines of rea-
soning to establish or refute the biological plausibility or otherwise of the various neural
networks under consideration, it may appear somewhat disjointed on a first reading; in
order to assist the reader, the principal messages of each sub-section are highlighted,

where appropriate, in bold face type.

7.2.1 Plausibility Considerations
Orthodromic Transmission

Conventional models of neural information processing have been based on the ortho-
dromic (feedforward) neural transmission of signals, with passive electrotonic spread of

axo-dendritic synaptic input through the dendritic tree to the axon hillock via the soma,

!The term “neural modelling” is used here to refer to the modelling of the signal- and information-
processing role of individual neurons, as opposed to the overall processing performed by the neural
network of which it may be a part.
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and active propagation along the axon to synapses located at each axon terminal. How-
ever cortical microcircuits are known to be considerably more complex than is suggested
by this simplified model (see e.g. Shepherd (1990; 1988)). For example, the generation
of an action potential at the axon hillock produces a wave of membrane depolarisation
which spreads antidromically (i.e. backwards) into the dendritic tree (Shepherd, 1988),
raising the possibility of antidromic as well as orthodromic signal transmission in neural
circuits, such as would be required by the GBP network (Cohen & Shawe-Taylor, 1990)
depicted in Figure 4.4. Nevertheless, the effective retrograde transmission of a signal
across a synapse and antidromically along an axon, as is also required by this network,
has yet to be documented in the cerebral cortex. The GBP network is therefore not

supported by the available electrophysiological evidence.

Synaptic Model

The “strength” of a synaptic connection between two neurons is dependent on the phys-
ical properties of the neural membrane on either side of the synaptic cleft (which are
in turn affected by the history of activity at that synapse). Many artificial neural net-
works employ a crude linear and usually short-term time-invariant model of synaptic
transmission, in which synaptic strength is represented by a weight?. Since this weight
therefore reflects membrane properties which are localised to the synaptic cleft, it can-
not be directly signalled to other neurons. The neural network models depicted in

Figures 4.1, 4.3 and 4.4 are clearly implausible on this count.

Neural Model

The linear model of synaptic transmission postulates that the pre-synaptic signal is trans-
formed linearly into a post-synaptic trans-membrane current. This current adds to those
established at nearby synaptic sites to produce a nett current which spreads electro-
tonically along the dendrite. Currents flowing in converging branches of the dendritic
tree are progressively summed as they flow towards the soma. Each patch of neural
membrane can to a first approximation be represented by an equivalent linear electrical
circuit (Hodgkin & Huxley, 1952; Shepherd, 1988), according to which, in the absence of
synaptic input, the dendritic membrane shunts some of this current, while the somatic
membrane behaves as a leaky integrator for the remainder reaching the soma. Thus
to the extent to which the linear model of synaptic transmission and the membrane

equivalent electrical circuit can be said to reflect the processing actually performed by

2More realistic models of the dynamics of the post-synaptic membrane, in which the membrane con-
ductance is controlled by synaptic input, lead under certain circumstances to multiplicative or shunting-
inhibitory synaptic transmission (see e.g. Bouzerdoum (1991, Ch. 2) or Nabet & Pinter (1991, Ch. 3)).
However there is evidence to suggest that shunting inhibition may not play a major role in shaping the
responses of visual cortical cells (Douglas et al., 1988; Berman et al., 1991; Dehay et al., 1991).
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the neuron, and to which the transmission losses along the dendrites can be modelled
linearly and hence lumped into a modified synaptic weight, the dendro-somatic neural
subsystem may be treated as a leaky summing integrator®. In particular, an artificial
neural model consisting only of a summer is excluded by the above considerations on the
basis of its (theoretically) infinitely short rise-time. Similarly, a neural model consisting
only of a summing integrator lacks the leakage term arising from the membrane conduc-
tance required to prevent saturation of the somatic potential. The networks depicted
in Figures 4.1-4.7 are therefore implausible due to their use of summer or

summing integrator neurons.

Activation Function

In spiking neurons such as the simple cells, the somatic membrane potential is converted
to a train of impulses, the frequency of which is usually assumed to encode the output

of the dendro-somatic subsystem?

. The relationship between the somatic potential —
or more correctly the potential at the axon hillock — and the output firing frequency
exhibits a generally monotonic increase in firing rate with input level, with a small amount
of spontaneous activity in the absence of input, and saturation at high firing frequencies.
The observation that firing frequency cannot be negative necessitates, in the case of the
idealised linear neurons employed by the networks in Chapters 4 and 5, the postulation
of cell pairs whose outputs signal the positive and negative halves of the linear activation
function respectively. This scheme could be achieved by cell pairs having identical inputs
but weights of opposite sign, as have been proposed and investigated by Pollen & Ronner
(1981; 1982; 1983). However, the neural activation function employed by the
Bound Constraint Projection (BCP) network presented in Chapter 6 can
be used to impose more realistically the constraints of non-negativity and
saturation exhibited by the firing frequencies of real neurons.

Although the linearity of this activation function between the available extremes may
at first appear to be simply a convenient idealisation, there is some empirical evidence
in favour of such a model. Bialek et al. (1991) showed that the horizontal velocity of
a randomly-moving visual stimulus could be near-optimally (in the least-squares sense)
reconstructed from the spike train of the blowfly Hl neuron using a linear filter, the
impulse response of which resembles a typical synaptic impulse response function. In a
realistic nonlinear model of spike generation, a linear filter was also shown to effect a

reconstruction of the waveform of injected currents used to produce the simulated spike

3A number of other important factors have been ignored here for simplicity, including for example:
the matter of relative synaptic arrival times of, and dendritic delays experienced by, different synaptic
inputs; the presence of voltage-dependent membrane conductances; and the possibility of dendritic action
potentials.

“although see the discussion in Section 7.2.3 for possible alternative neural signalling schemes.
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train. Thus

In this view of computation with spike trains, the combination of
nonlinearities in spike generation and the filter characteristics of
the synapse results in an essentially linear transmission of analog

signals from pre-synaptic cell bodies to post-synaptic dendrites.

(Bialek et al., 1991). The lower and upper activation limits are, however, still necessary
to represent the limits on the sign (Bialek et al., 1991) and maximum magnitude of the

transmitted signal.

Dale’s Law & Interneurons

An important question in assessing the biological validity of artificial neural network mod-
els concerns the likelihood of a single neuron exhibiting both excitatory and inhibitory
influences on different post-synaptic target neurons. A much misunderstood (Shepherd,
1988) hypothesis in neurobiology, known as Dale’s Law (1935), states that a given neuron
will use the same neurotransmitter at all of its axon terminals. However, since at least
some neurotransmitters have been found to exert excitatory and inhibitory influences
on the post-synaptic membrane at different synapses depending on which receptors are
present, Dale’s hypothesis (which has come under fire in recent years) cannot be inter-
preted as meaning that a neuron must either excite all or inhibit all of its post-synaptic
targets (Shepherd, 1988).

Nevertheless, experimental evidence of cortical neurons which excite some
cells and directly (mono-synaptically) inhibit others appears to be lacking
(Crick & Asanuma, 1986) or at least rare. Whilst the concept of disynaptic pathways
mediated by abundant, locally connected interneurons can still be invoked to satisfy the
need for mixed post-synaptic influences in biological implementations of the recurrent
networks under consideration, Crick & Asanuma (1986) argue against neural connection
schemes in which these interneurons simply change the sign of the signals they transmit.
Additional delays introduced by the use of interneurons in the feedback pathways may
furthermore have a deleterious effect on the stability of each network. In Appendix D.3
for example, it is demonstrated that the sufficient condition for exponential stability de-
rived for the BCP network in Section 6.8 becomes (exponentially) more difficult to satisfy
as a uniform delay on all lateral feedback connections is introduced and increased. The
latter observation is indicative of the more general need to minimise transmission delays
in the feedback paths of such networks, and suggests that the use of interneurons to
mediate the mixed post-synaptic influences exerted by neurons in the recur-
rent neural networks under consideration is likely to be strongly constrained

by network stability requirements.
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Reciprocal Connections

In accordance with the Principle of Sloppy Workmanship (Huggins & Licklider, 1951;
Grzywacz & Yuille, 1990), networks employing reciprocal connections between
neurons should not rely on a high degree of precision in the matching of
either the weights or delays on these connections for their solution accuracy
or stability. The network models by Culhane et al. (1989) and Yan (1991b), for
example, allow for the possibility of an imprecise match of reciprocal weights, and the
stability analyses which have been presented for these networks can be readily extended
to cover the single-layered networks presented in Chapter 5. The effects of weight errors
on the precision of the solutions achieved by the latter networks, and the potential
of preconditioning® to mitigate these effects, were examined in Chapter 5. Although
symmetric preconditioning was employed for mathematical tractability throughout the
preconditioning analysis, the network could be preconditioned asymmetrically, removing

the requirement for symmetrically weighted reciprocal connections.

Image Decomposition

The results of Jones & Palmer (1987a) demonstrate that the GRGF provides a good fit
to the spatial RFP of the simple cell®, reflecting the relationship between the contrast of
the visual stimulus and the response of the simple cell. Similarly, decomposition-based
theories of simple cell processing postulate that the response of a given simple cell signals
the relative presence of the spatial RFP of that cell in the visual stimulus. However,
the discrete-space formulation of the networks presented in Chapters 4-6
corresponds more naturally to the decomposition of the image formed by the
outputs of the photoreceptor array, which constitute the “pixels” of the photo-
transduced image. In particular, since these networks clearly could not have direct
access to the visual image prior to transduction, and since any attempted reconstruction
of that image by a neural array would necessarily be performed in discrete-space, those
governed by equations in which the image vector ¢z or the image reconstruction G"a
appear explicitly must be viewed as attempting a discrete-space decomposition of the
photo-transduced retinal image.

In contrast however, each element of the vector Gz is the result of the discrete-space

equivalent of the continuous-space inner product

/vgj(a:)i(a:,t)da:

®combined with the simple scaling of the outputs of the preconditioned system as described in (5.8b).

6As was discussed in Chapter 2, this claim is dependent on the extent to which the spatial RFP of a
cell having an inseparable spatiotemporal RFP can even be defined. Refer to Sections 2.2.4 and 7.3 for
further discussion of this issue.
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between the feedforward spatial weighting function” (FSWF) g¢; :R?— R of an idealised
simple cell and the spatiotemporal stimulus i(«,¢). Similarly the elements of the matrix

G'GT are the equivalents of the pairwise inner products

/9 (@)u(@) dz

between the simple cell FSWFs. Networks governed by equations in which the input and
reconstructed images appear only in expressions of the explicit form (4 and (GGT +¢1,)a
with € > 0 can therefore be seen to have direct continuous-space analogues which are
capable of decomposing the stimulus 7 using continuous-space expansion functions {9;}.
The linear recurrent network in (5.4), for example, can be reformulated by defining a
vector g:R? — R™ whose elements are the FSWFs {g;:5 € [1,n]} of the individual
neurons such that g(z) £ [g1(2),...,gn(x)]". The elements @« of the corresponding
feedback matrix Q € R™" are then given by

Qi = /v!/j(w)gk(w) dz + 6;xe (7.1)

where ;i is the Kronecker delta function, and the resultant network is governed by

a(t) = —Qa(t) + /v g(@)i(e,t) da (7.2)

which, not surprisingly, bears a close resemblance to the original discrete-space formu-
lation in (5.4). The BCP network in Chapter 6 is clearly amenable to continuous-space
reformulation in the same manner. Thus each of the single-layered recurrent net-
works in Chapters 5 and 6 admits a continuous-space formulation, whose
neural implementation in the early visual system would permit the decompo-

sition of the visual stimulus using the continuous-space simple cell FSWFs.

7.2.2  Corticofugal Feedback
Cortico-Retinal Feedback

Since retinal ganglion cells have spatial RFPs which consist of concentric antagonistic
“centre and surround” subfields, as opposed to the single-subfield RFPs of the photore-
ceptors, the outputs of the photoreceptors in the feline and primate visual systems have
already been substantially modified by the time they are encoded as the outputs of the
retinal ganglion cells, whose axons constitute the optic nerve. The vector ¢ of unmodi-
fied photoreceptor outputs is therefore clearly only available in the retina. Thus if the

expansion function coefficients for the image formed by the photoreceptor outputs are

“The FSWF of a cell is a weighting function which characterises the nett spatial processing performed
by the feedforward pathway to that cell. If the feedback pathway were absent, the RFP would simply
correspond to the FSWF of the cell. In the presence of feedback however, the RFP of a cell differs in
general from the FSWF. This issue will be examined further in Section 7.3.
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to be given by the simple cells, the implementation of the terms of the form [G"a — 1]
in Equations (4.19b), (4.20b) and (4.23b) within the visual system — for which they
were not intended by their respective proponents — would require massive corticofugal
feedback to the retina, which has not been observed. The networks depicted in Fig-
ures 4.6—4.8 respectively are therefore incompatible with the neuroanatomy

of the early visual system.

Cortico-Geniculate Feedback

Corticofugal feedback ¢s however known to occur in the primate (Lund, 1988) and feline
visual systems from layer 6 of primary visual cortex to the LGN, and this observation
was used by Pece (1992) as the basis for his mapping of the neural network depicted in
Figure 4.9 onto the early visual system. The neurons in the first layer were identified with
cells in the LGN, and those in the second with unspecified cells in V1. In contrast with
the previous mapping, the network input was consequently identified with the nett feed-
forward input to the LGN, which, being derived from the outputs of retinal ganglion cells
having centre-surround spatial RFPs, represents a significantly transformed version of
the photoreceptor image. Pece (1992) argued that the opposite signs on the feedforward
(geniculo-cortical) and feedback (cortico-geniculate) pathways were consistent with the
observation by Murphy & Sillito (1987) that the “activity of LGN neurons is suppressed
by stimuli which are optimal for excitation of V1 neurons”. However this argument is
difficult to sustain in the light of the model’s prediction that an excited cortical neuron
will inhibit some LGN cells but excite others®. Nevertheless, the geniculo-cortical im-
plementation proposed by Pece (1992) for his two-layered network remains
an at least superficially attractive explanation for the massive and as yet
somewhat neglected cortico-geniculate projection.

Given that the GRGF model had earlier been successfully fitted by Jones & Palmer
(1987a) to the spatial RFPs of simple cells, the specification of discrete-space GRGF
weighting functions on the feedforward geniculo-cortical connections to the unidentified
cortical cells suggests that these cells were intended to represent simple cells. However
since each spatial RFP is by definition measured relative to the visual input, while each
geniculo-cortical weighting function weights the outputs of the LGN, it remains to rec-
oncile Pece’s (1992) specification of the latter with the verification by Jones & Palmer
(1987a) of the GRGF model for the former. Ignoring for the moment the effect of the
cortico-geniculate feedback pathway, so that the predicted spatial RFP of the simple cell
1s given simply by its FSWF, a loose reconciliation is suggested by the following argu-
ment. If the LGN cell feedforward spatial weighting functions (FSWFs) are assumed

8More generally, the feedback influence suggested by this model on the network layer identified with
the LGN takes the form of the reconstructed image, and consequently has approximately the same
structure as the feedforward input to these cells from the retinal ganglion cells.
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for simplicity to be identical up to a translation, the geniculo-cortical spatial weighting
function is related to the simple cell FSWF by a discrete convolution with the LGN
cell FSWF. The spatially low-pass afferent retino-geniculate processing might therefore
be viewed as acting, at least approximately, as a spatial reconstruction filter (Carl-
son, 1986) for the discrete-space geniculo-cortical weighting functions; conversely, the
geniculo-cortical weighting functions would, according to this approximation, be viewed
as sampled, anti-aliased versions of the corresponding simple cell FSWFs.

This reconstruction filter approximation should however be treated with some cau-
tion, since the LGN cell FSWF's exhibit relatively poor low-pass behaviour in comparison
with the ideal “brick wall” low-pass reconstruction filter, and, like the retinal ganglion
cell spatial RFPs, are likely to vary quite considerably in size over the LGN cell popula-
tion. More importantly, however, the above open-loop analysis also ignores the very real
possibility that the cortico-geniculate feedback pathway might alter the simple cell spa-
tial RFP. Thus even if the reconstruction filter approximation were to hold, it remains
to show that the simple cell spatial RFP is described by its corresponding
GRGF FSWF. This question is investigated in Section 7.3.

Since the geniculo-cortical weighting functions are given by the chosen discrete-space
expansion functions, the fact that the network proposed by Pece (1992) solves the aug-
mented normal equations for the decomposition problem is consistent with the obser-
vation that the simple cells significantly outnumber cells in the LGN (i.e. n > m).
However, an open question in the verification of the proposed implementation
is the extent to which the inter-areal delay in the feedback path would jeopar-
dise the network stability. Although these connections can be reasonably presumed
to mediate some form of visual feedback system which is stable, the critical question here
is whether or not the proposed network could be stable in the presence of the associated

inter-areal delays.

7.2.3 Intracortical Feedback

Daugman’s Network

[lustrated in Figure 4.2, the corrected version of Daugman’s (1988a) network shown
in Figure 4.1 computes the difference Gi ~ G[G"a] between the spatial inner products
of the expansion functions with the original and reconstructed images, a computation
which could potentially be performed entirely within V1. The small intra-areal delay
associated with a cortical implementation offers a substantial reduction in feedback delay,
and hence improvement in network stability, over the inter-areal pathways required by
the networks discussed in the previous section. Nevertheless, as a model of biological
visual processing — for which Daugman did not intend it - Daugman’s (1988a)

network also predicts an explicit cortical reconstruction of the retinal image,
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for which there is as yet no evidence. Furthermore the regularisation term used
in the formulation of the augmented normal equations necessitated by the estimated
1000: 1 ratio of simple cells n to photoreceptors m (Wilson et al., 1990)° cannot be

readily accommodated by the (corrected) Daugman architecture.

Pattison’s Network

By identifying the neurons in Pattison’s (1992) single-layered network depicted in Fig-
ure 5.1 (or the continuous-space equivalent thereof described by (7.2)) with the simple
cells, the improved stability offered by an intracortical implementation of the feedback
pathway can be exploited without involving an explicit reconstruction of the input image.

The GRGF weights on the feedforward connections to each neuron encapsulate the
nett feedforward spatial processing performed by the retino-geniculo-cortical pathway,
while the reciprocal lateral connections between a given pair of simple cells are weighted
by the negative of the inner product between the GRGFs on the corresponding feedfor-
ward connections. The decay or self-feedback term for each neuron is simply increased
by & to implement the necessary regularisation of the normal equations. The grossly
topological organisation and finite spatial support of the receptive fields of primary vi-
sual cortical cells should limit the number and spatial extent of the lateral connections
required by the network model to well below those required for complete lateral intercon-
nection. Although, as explained in Section 5.2, this network requires more connections
in general than those of Culhane et al. (1989), Yan (1991b), Cichocki & Unbehauen
(1992) and Pece (1992), intrastriate connections are likely to be metabolically cheaper
than the inter-areal projections required by these networks. Thus the enhanced stability
of the single-layered network is likely to be realised for little or no additional biological
expense.

Evidence for the relatively dense lateral connectivity between simple cells predicted
by Pattison’s (1992) single-layered network will be examined shortly. In the mean time,
the linear activation function required by this network will be replaced in the following
section by the more realistic piecewise linear saturating activation function of the BCD

network.

BCP Network

[f the linear activation function of the single-layered networks presented in Chapter 5
is replaced by the piecewise linear saturating function depicted in Figure 6.2(b), the

resultant networks can be seen to be special cases of the BCP network of Bouzerdoum

9The derivation of this estimate from the information provided by Wilson et al. (1990) is explained
in Section 3.2.2.
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& Pattison (1993b; 1993a) in which (ignoring preconditioning for the moment)

y = Gt
A = diag(GG") +¢l,
C = offdiag(GG™)

with € > 0. The saturation parameter {; can be chosen to reflect the input level at
which the output activity of a simple cell saturates, while since the linear portion of
the activation function must lie on a line passing through the origin and the neural
firing rate is by definition non-negative, ¢; is ideally zero. Although simple cells exhibit
remarkably little spontaneous activity, this model would require a minor correction? if a
finite membrane hyperpolarisation (i.e. negative input) were required to silence a simple
cell, or if the cell could remain silent in the presence of a finite membrane depolarisation
(i.e. positive input).

Rather than requiring idealised linear nodes, whose implementation necessitates the
invocation of paired simple cells with weights differing only by a sign change (Pollen &
Ronner, 1981,1982,1983), to solve the unconstrained SRE minimisation problem posed by
image decomposition, an early visual implementation of the BCP network would
use this more realistic nonlinear activation function to solve the decomposi-
tion problem subject to constraints imposed on the individual neural firing
rates by their respective activation functions. Examples of the solutions attained
by this network under increasingly severe constraints were presented in Figures 6.9-6.11,
and indicated that the effect of a positivity constraint, such as that imposed by pulse-
frequency encoding of neural activation, is surprisingly mild!!. As mentioned previously,
the effect of uniform delays on the lateral connections of the BCP network incurred by
the proposed cortical implementation is to make the sufficient condition for exponential
stability, derived in Section 6.8 and extended in Appendix D.3, exponentially harder to

satisty, although this condition may not of course be necessary for global convergence.

Hebbian Weight Development

Since the feedforward and feedback terms of the proposed single-layered networks can be
calculated using the continuous-space spatial RFP of each simple cell, these networks,
when modified as detailed in Section 7.2 to use spatially continuous FSWFs, are capable
of performing a decomposition of the visual image prior to transduction. The question

of course arises as to how the spatial RFP of each cell, which encapsulates the nett

19viz. the subtraction of the vertical offset of the true activation function from the signal transmitted

to all other neurons.

1A more extensive analysis would of course be required before any firm conclusions could be drawn
from these preliminary observations. In particular, the effects of the choice of GRGFs, images, and
relative numbers of neurons n and inputs m would need to be investigated.
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spatial processing performed by the retino-geniculo-cortical pathway to that cell*?, could
be explicitly available at the level of the primary visual cortex for the computation of
the required inner products for the lateral connection weights. Since the early visual
system undergoes significant developmental changes in the early postnatal period (see
e.g. Honavar (1990) for a review), the lateral weights are unlikely to be hard-coded or
genetically pre-specified, and must therefore result from some form of self-organisation.

A simple form of self-organisation is that resulting from the family of Hebbian synap-
tic learning rules, which are reviewed, along with their biological plausibility, by Brown
et al. (1990). Drawing inspiration from a postulate by Hebb (1949) on the neural basis
of learning, Hebbian learning rules are characterised by the adaptation of a synaptic
weight according to an expression resembling the correlation or covariance between the
pre- and post-synaptic activity. The potential for the relationship between the feed-
forward and feedback weights required by the network of Pattison (1992) to develop
according to the particular form of Hebbian learning law proposed by Foldidk (1989) is
demonstrated in Appendix E. Whilst the mature network will not necessarily exhibit the
required Gabor function weights on the feedforward connections, a number of Hebbian
learning algorithms which develop orientation-sensitive and in some cases Gabor-like spa-
tial RFPs in single-layered networks have been reported elsewhere (von der Malsburg,
1973; Linsker, 1986b; Yuille et al., 1989; Rubner & Schulten, 1990; Sanger, 1990). An
indication that these RFPs are not simply artefacts of the somewhat unrealistic single-
layered and mono-synaptic model of the retino-geniculo-cortical pathway employed by
most competing models can be gained from the observation that Linsker’s (1986¢; 1986b;
1986a) results were obtained using a more realistic series of neural layers. Viewed to-
gether, these results are indicative of the possibility that the necessary feedforward
and feedback weights might develop through Hebbian self-organisation as a
result of exposure to a statistically realistic approximation to the natural

visual environment.

Evidence for Intracortical Feedback

A literal interpretation of the networks of Pattison (1992) and Bouzerdoum & Pattison
(1993a) as models of simple cell processing would require the presence of monosynaptic
excitatory and inhibitory connections between simple cells. A looser interpretation would
admit the possibility that the necessary interactions may also be mediated by di- or
even poly-synaptic pathways involving possibly one or more other cortical layers. In
accordance with this looser interpretation, the following analysis examines evidence in
favour of any intrastriate feedback pathways connecting these cells.

Based on evidence from various sources (reviewed by e.g. White (1989, p. 141-148)

“including, at least notionally, the effect of any feedback interactions; an examination of the predicted
effects of feedback interactions on the spatial RFP is presented in Section 7.3.
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and Douglas & Martin (1991)), generic models of cortical circuitry incorporating massive
intracortical feedback are nowadays commonplace. Specific models of simple cell process-
ing include those postulating mutual inhibition between iso- or cross-oriented simple cells
(or both) in order to sharpen their orientation tuning'® (see e.g. Ferster & Koch (1987)
or Worgotter & Koch (1991) for a review). Nevertheless, direct evidence for feedback
pathways between cells functionally identified as simple cells is hard to come by, and the
following overview is therefore necessarily based on a number of indirect sources!t.

Simple cells in feline V1 receive monosynaptic excitation and disynaptic inhibition
from cells in the LGN (Toyama et al., 1974; Ferster & Lindstrém, 1983; Martin & Whit-
teridge, 1984). The inhibitory input is presumed to be mediated by inhibitory interneu-
rons, most likely the basket or clutch cells (Ferster & Koch, 1987). The geniculo-cortical
afferents providing input to these interneurons appear to be specialised to produce rapid
post-synaptic activation, and hence to expedite the resultant inhibitory input to exci-
tatory simple cells (Douglas & Martin, 1991), such as the spiny stellate cells in layer 4
(White, 1989). As might be expected from this arrangement, a blockade of intracorti-
cal inhibition using an antagonist of the inhibitory neurotransmitter GABA leads to a
disturbance of the receptive field properties of the simple cells (Sillito, 1975; Tsumoto
et al., 1979; Sillito et al., 1980). However, the profound nature of this disturbance, in-
cluding a loss or reduction of the distinction between on- and off-excitatory subfields, of
direction sensitivity, and in some cases of orientation sensitivity (Sillito, 1975; Tsumoto
et al., 1979; Sillito et al., 1980) is inconsistent with the simple withdrawal of inhibitory
input to each subfield, since the excitatory input alone could for example retain both
subfield segregation and orientation sensitivity. In particular, these observations suggest
the involvement of input from cells whose inputs are themselves either directly or indi-
rectly affected by the local intracortical blockade of inhibition, as proposed for example
by Ferster & Koch (1987) in connection with the effects on orientation selectivity.

Having demonstrated the presence of spatially opponent inhibitory input to simple
cells in feline V1, Ferster (1988) concluded that

... the most obvious candidates for the pre-synaptic inhibitory neurons are

other simple cells.

in accordance with which Palmer & Davis (1981b) had earlier identified a number of
adjacent simple cells having overlapping receptive fields whose corresponding subfields

were of opposite excitatory type. A less direct feedback pathway between cells in layer 4,

13This topic is addressed briefly in Section 7.4.

14This should not however be interpreted as an indication that the required pathways are either weak
or rare — the predictive power of the model by Worgétter & Koch (1991) involving feedback between
simple cells argues against this conclusion — but rather as evidence of both the lack of experiments
designed to investigate this specific question, and the difficulty of piecing together a coherent picture
from disparate sources such as functional, morphological and anatomical studies of the striate cortex.
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in which the simple cells predominate, is via cells in layer 6 whose axons contribute to the
cortico-geniculate projection, and collaterals of which produce monosynaptic excitation
and disynaptic inhibition of cells in layer 4 (McGuire et al., 1984; Ferster & Lindstrom,
1985). However despite the existence of feedforward pathways from layer 4 to layer 6 via
intervening layers (see e.g. Douglas & Martin (1991)), the presence of direct geniculate
input to at least some cells in layer 6 (McGuire et al., 1984; Ferster & Lindstrom, 1985)
makes it difficult to establish this as a purely feedback pathway as required by the
proposed neural network models.

The most direct evidence obtained so far for feedback interactions between orientation-
sensitive cells in the same cortical layer comes from experiments involving the cross-
correlation of simultaneous electrophysiological recordings from pairs of cells in feline
primary visual cortex. Using cross-correlation techniques, Hata et al. (1988) identified
unidirectional, short latency (about 1.4ms), probably monosynaptic inhibition between
5 of 82 pairs of cells in layer 4, while Ts’o et al. (1986) reported unidirectional lateral ex-
citation between cells in layers 2-3 showing similar orientation preference. The strength
of the interaction was found in the latter case to vary approximately with the degree of
receptive field overlap, as predicted broadly by the proposed single-layered decomposi-
tion networks, although excitation was also found between cell pairs having apparently
non-overlapping receptive fields. However, whilst in the former study the recorded cells
were in layer 4, in which simple cells predominate, neither group functionally identi-
fied the recorded cells as simple cells. Furthermore the lack of reciprocity in the lateral
interactions inferred from these experiments is inconsistent with the proposed network
models, although mutual inhibition was observed by Toyama et al. (1981) between cells
in layer 4 exhibiting a single subfield!®. The relative infrequency of unequivocal in-
stances of lateral connectivity (reciprocal or otherwise) between simple cells
does little to dispel such doubts about the true cortical plausibility of these

network models, which in general require dense lateral interconnections.

Neural Iteration

The success of any relaxation algorithm relies on the propagation of the state vector with
sufficient accuracy to avoid a catastrophic accumulation of errors, such as may occur in
the presence of floating-point round-off. In the present investigation of the biological
implementation of SRE minimisation networks, it has so far been assumed that each
node in the network should be identified with a real neuron. However Marr (1982) and,
more recently, MacLennan (1993a) have argued that if the mean firing frequency over a
given interval is taken to signal the real-valued neural output, then a neural relaxation

network would take an infeasibly long time to perform a small number of iterations with

15The investigators chose not to class these cells as simple since the lack of additional subfields hindered
conventional distinctions between the functional classes.
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even a modest degree of precision. In criticising the neural implementation proposed by
Pattison (1992) for the unregularised (¢ = 0) network in Chapter 5, MacLennan (1993a)
argued in particular that the Weyl-Heisenberg (" Gabor”) Uncertainty Principle in the
temporal and temporal-frequency domains places a fundamental lower limit on the time
taken to signal a coefficient to a specified accuracy using pulse-frequency coding. A
review of the temporal constraints on this and related neural signalling mechanisms, and
their implications for the feasibility of the neural implementation of relaxation algorithms
in early vision has been presented by Thorpe & Imbert (1989).

However, these arguments and associated estimates of relaxation times are predicated
on the unwarranted assumption that a neuron receiving the output pulse train must
constantly re-acquire its estimate of the sending frequency. Under this assumption each
acquisition, which delimits a notional “iteration” of the corresponding neural relaxation
network (Thorpe & Imbert, 1989), starts ab initio and is therefore subject to the above
trade-off between acquisition time and accuracy. In contradiction of this assumption,
the duration of the impulse response function of the linear filter used by Bialek et al.
(1991) to successfully decode a neural spike train in the visual system of the fly, which
may be taken as the time required for acquisition of the encoded signal, was of the
order of only 5-10 times the minimum interspike interval. According to Marr (1982),
only 0.5-1 decimal digits of precision could be signalled in this interval, in apparent
contrast with estimates by Bialek et al. (1991) of average information rates in insect
sensory systems approaching 3 bits per spike, which would permit the transmission of
5-9 decimal digits (15-30 bits) in this same interval. This conflict is in part'® resolved by
the observation that once the signal has been acquired, it is thereafter only necessary to
track it. Tracking allows the receiver of the spike train to maintain a relatively accurate
estimate of the transmitted signal whilst requiring a considerably lower information rate
to update this estimate than to continually re-acquire the signal. This tracking process
would be facilitated by the relatively low temporal rate of change of the output imposed
by the low-pass filtering effect of the proposed relaxation networks on the input.

The removal of the assumed need to constantly re-acquire the signal conveyed by the
neural spike train renders impotent the objections raised by Marr (1982) and MacLennan
(1993a) to the neural implementation of relaxation algorithms. In particular, the impo-
sition of temporal constraints on the relaxation process does not entail the severe trade-
off with the accuracy of transmission of the neural state vector alleged by MacLennan
(1993a). Since similar assumptions concerning temporal constraints on neural signalling

mechanisms underly many of the objections raised by Thorpe & Imbert (1989) to the

1The relatively high information rates reported by Bialek et al. (1991) probably also indicate the use
of other parameters of the spike train, such as the relative timing of the spikes, to convey information
in addition to that conveyed by the spiking frequency.
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use of relaxation in early visual processing, these may be similarly discounted!”. These
considerations therefore reopen the possibility that relaxation algorithms may
indeed be implemented in the neural wetware of the early visual system. We
note in passing that Sejnowski (1986, p. 378-80) reached a similar conclusion concerning

the plausibility of the neural implementation of stochastic relaxation algorithms.

Dendritic Networks

The relaxation algorithm in (5.1) proposed by Pattison (1992) for unregularised non-
orthogonal image decomposition was developed independently by MacLennan (1993b).
Whereas the former proposed a neural implementation of this algorithm, consisting of
classical neurons communicating via axo-dendritically transmitted impulse trains, the
latter suggested its implementation in a densely connected dendritic network, in which
electrotonic communications are mediated by dendro-dendritic synapses. The principal
argument presented by MacLennan (1993b) in favour of a dendritic implementation was
that the use of electrotonic signalling would overcome the alleged timing problems as-
sociated with the acquisition’® of signals transmitted using axonal spike trains. Since
variables such as the displacement of the membrane potential from its resting value
may be either positive or negative, the use of electrotonic communication furthermore
suggests the possibility of avoiding the positivity constraint imposed on the coefficients
of the corresponding neural implementation of the network — and hence on the SRE
minimisation — by the presumed pulse-frequency signalling mechanism. According to
decomposition-based theories of simple cell processing, however, each of the coefficients
produced by the relaxation process must ultimately be translated into the output neural
spike train of the corresponding simple cell. The positivity constraints, which are con-
sequently inevitable under the presumed method of output signalling, should therefore
be imposed on the SRE minimisation rather than on the coefficients of an unconstrained
optimisation performed using electrotonic signalling.

Although the general feasibility of dendritic computation was discussed at length by

MacLennan (1993b), neither the functional classification of the neurons whose dendrites

1"Even assuming an ideal analog signalling mechanism however, the demonstration of short-latency
neural and behavioural responses which are dependent on the classification or recognition of the visual
stimulus seems to place strong constraints on the implementation of iterative algorithms in early visual
processing (Thorpe & Imbert, 1989), since the initiation of these responses must be based on short-
latency, crude early reponses of such algorithms. The possibility that a given classification or recognition,
or the confidence attached thereto, might be dynamically refined as more accurate information becomes
available as a result of subsequent “iteration” is not, however, precluded by such observations. The
exponential convergence of the proposed networks with neural time constants of the order of 20ms
(Stratford et al., 1989), in comparison with initial latencies in excess of 100ms (Thorpe & Imbert, 1989),
may be fast enough to render such refinements relatively transparent to the experimental techniques
used in these experiments.

18As was noted in the previous section however, the important distinction between signal acquisition
and tracking was not noted by MacLennan (1993b).
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might contribute to this network, nor the specific biophysical parameters to be identified
with its state variables, were specifically identified. In lieu of the former, the dendrites of
the proposed network are henceforth tentatively assumed to belong to the simple cells.
Nevertheless, a full assessment of the biological plausibility of the proposed
dendritic network, and the extension of this implementation to incorporate
the regularisation term used in (5.3), await a more detailed specification of

the network’s neuroanatomical and biophysical substrate.

7.2.4 Summary

Hypothetical early visual implementations of the networks proposed in Chapters 4-6 for
the decomposition of the visual image using non-orthogonal expansion functions have
been considered. Some networks were found to be clearly implausible, requiring the
communication of synaptic weights and, in the case of the GBP network, bidirectional
synaptic and axonal signal transmission. Of the remainder, the network implementation
proposed by Pece (1992) as a possible explanation for the prominent corticofugal feed-
back projection was found to be at odds with one of the electrophysiological observations
it was intended to explain. Some (albeit mostly indirect) evidence was found in support
of the direct or indirect interconnection of simple cells, as required by the linear net-
works presented in Chapter 5 and the BCP network of Bouzerdoum & Pattison (1993b).
It was furthermore argued that the nonlinear activation function of the BCP network
may represent a reasonably accurate characterisation of the nett processing performed
by the cascaded mechanisms of spike generation and synaptic transmission. The BCP
network is therefore the most plausible candidate among those networks proposed for
neural implementation in the primary visual cortex. On the other hand, with the simple
addition of the necessary regularisation term the dendritic implementation suggested by
MacLennan (1993b) for the linear unregularised network in Chapter 5, proposed inde-
pendently by MacLennan (1993b) and Pattison (1992), is potentially the most plausible
implementation of the linear regularised network also presented in Chapter 5. Never-
theless, large residual uncertainties concerning the existence of the appropriate neural
or dendritic connectivity, the suitability of the neural models employed, and the modes
of interneural signalling suggest that caution should be exercised in attempting to draw
firm conclusions from these tentative findings.

Amongst the networks amenable to more plausible neural or dendritic implementa-
tions, different networks were found to effect the decomposition of the “image” formed
at different stages of the visual pathway, ranging from the raw image prior to optical
blurring, to the output of the retinal ganglion cells. However, the attempts by Pattison
(1992), Pece (1992) and MacLennan (1993b) to relate these networks to the early visual

system were only necessitated in the first place by their adherence to the decomposition
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hypothesis of simple cell processing, according to which the expansion functions used
in the decomposition are the spatial RFPs of the simple cells, which are by definition
referred to the raw visual image. However attractive one might find the neural imple-
mentation of networks, such as that proposed by Pece (1992), which use the simple cell
spatial RFP to decompose anything other than the raw image, these networks therefore

fail to satisfy their very raison d’étre as models of early visual processing.

7.3 Predicted and Identified Spatiotemporal RFPs

7.3.1 Introduction

Decomposition-based models of simple cell processing postulate that each simple cell
signals the coefficient of its own spatial RFP in an expansion of the visual image which
uses these RFPs as expansion functions. However, in Chapter 3 it was shown that except
in cases where the simple cell spatial RFPs are mutually orthogonal or collectively form
a tight frame, the computation of the required coefficients cannot be achieved using
the spatial inner product of the image with the RFPs, in terms of which each spatial
RFP is defined. A potential resolution of this dilemma is suggested by the analysis
in the previous section, where it was argued that the simple cells could be tentatively
identified with the output nodes of one of several different recurrent neural networks,
each of which is capable of finding the minimum SRE (MSRE) expansion coefficients
and amenable to implementation in the wetware of the early visual system. Among the
many questions to be answered in assessing the consistency of this solution with the

available electrophysiological evidence is the following:

Can the spatial RFPs identified by Jones & Palmer (1987b) be taken to be the
expansion functions used by an early visual implementation of the proposed

SRE minimisation networks?
or conversely

Would the reverse-correlation identification technique of Jones & Palmer

(1987b) correctly identify the expansion functions used by these networks?

The latter statement of this question reflects the approach to be pursued in this sec-
tion to the assessment of the electrophysiological plausibility of the proposed relaxation
networks.

In this section it is shown that contrary to the purely spatial description of the simple
cells assumed by the very theories which give rise to their formulation, the postulated
relaxation networks would, if implemented in the early visual system, produce spatiotem-

poralsimple cell behaviour. Cells in the proposed networks are furthermore shown to have
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spatiotemporally inseparable RI'Ps, which strictly speaking renders the concept of a spa-
tial RFP inapplicable. Thus if these predicted spatiotemporal RFPs are to be reconciled
with the “spatial RFPs” identified and modelled by Jones & Palmer (1987b), the results
of the reverse-correlation identification techniques used by Jones & Palmer (1987b) and
Palmer et al. (1991) must therefore be interpreted in the light of the predictions of the
model.

In Appendix B it was shown that provided the stimuli and the output time bins ap-
proximate spatiotemporal and temporal impulses respectively, reverse-correlation analy-
sis identifies the simple cell spatiotemporal RFP to within a spatial DC term. Although
this analysis assumed the special case of spatiotemporally separable RFPs, it is readily
extended to cover the generic form of the simple cell spatiotemporal RFP predicted by
the proposed relaxation networks. The effects of the finite-sized rectangular spatiotem-
poral stimuli and temporal bins used in these experiments on the estimation of the true
spatiotemporal RFP are examined in Section 7.3.3. To permit a preliminary comparison
of the identified “spatial RFP” with the predicted spatiotemporal RFP in the mean time
however, these identification experiments are naively assumed in Section 7.3.2 to yield
temporal slices through the spatiotemporal RFP of each recorded simple cell at the end
of each post-stimulus time bin. Each such section is henceforth referred to as the instan-
taneous spatial RFP of the cell at the corresponding sampling instant. The unwanted
spatial DC term is ignored in order to simplify the ensuing discussion and thereby focus

attention on the critical issues.

7.3.2 Theoretical RFPs

In this section, analytic expressions are derived for the spatiotemporal RFPs of the out-
put neurons of the one- and two-layered recurrent neural networks in Section 4.4 and
Chapter 5 respectively, whose implementations in the early visual system were deemed
in Section 7.2 to be, broadly speaking, biologically plausible. Notwithstanding the dif-
ferences discussed in Section 7.2, the dendritic implementation proposed by MacLennan
(1993b) for the networks in Chapter 5 is, under the idealisations inherent in a purely linear
analog model, formally equivalent to the neural implementation proposed by Pattison
(1992), and is therefore not addressed separately. Furthemore, since analytic expres-
sions cannot be obtained for RFPs in the BCP network, and the domain of validity of
simulation studies would be restricted to the particular distributions of spatial GRGF
parameters used in the simulations, analysis is restricted to the case of neurons hav-
ing linear activation functions. For generic networks of both the one- and two-layered
types, the instantaneous spatial component of each predicted spatiotemporal RFP is
then compared for all post-stimulus times with the expansion function whose coefficient

is purportedly signalled by the corresponding neuron. Speculations concerning the BCP
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network are based on the approximate analogy with the corresponding linear network.

One-Layered Networks

In Section 7.2, the output neurons of the single-layered linear recurrent neural networks
presented in Chapter 5 were tentatively identified with the simple cells. Their FSWFs,
given by the corresponding rows of the matrix (¢ or elements g; of the function g, were
accordingly taken to represent linear approximations to the nett spatial processing per-
formed by the afferent retino-geniculo-cortical pathway. The response a(t) of the linear

recurrent network in (7.2) to a spatiotemporal stimulus s(,t) is given by

a(t) :/too e‘Q(“T)/vg(:n)s(:c,T)dw dr (7.3)

Defining the combined spatiotemporal RFP w:R?x R — R” to be the vector whose
elements are the spatiotemporal RFPs w;: R?XR — R of the individual simple cells'®,

comparison of (7.3) with (2.2) reveals that
w(z,t) = e Vlg(x) (7.4)

Assuming for simplicity that @ is diagonalisable with discrete eigenvalues \; € R (since
@ is symmetric) and corresponding eigenvectors e;, the spatiotemporal RFP can be

expressed as
wlz,t) = e {leiel] g(a)) (7.5

revealing that the RFP of any given cell is a sum of spatiotemporally separable terms,
a property it shares for example with the linear quadrature model of motion processing
proposed by Watson & Ahumada (1983). The interesting spatiotemporal properties
of the linear quadrature model, which were outlined in Section 2.2.4, engender initial
confidence in the possibility that the spatiotemporal RFP of a real simple cell might be
generated by the proposed single-layered network.

The spatial component of each term in the expansion in (7.5) consists of a linear
combination of the FSWF's g; of each neuron, while the temporal component is a simple
exponential decay?®. Thus whilst the instantaneous spatial RFP of the jth cell at time
¢t = 0 is given simply by the jth expansion function g;, as required, this spatial RFP

changes form as the various terms in (7.5) decay at different rates. Furthermore, since

19The combined RFP w is closely related to the spatiotemporal impulse response function of the
network, the only difference being a change of sign of the spatial variable consistent with the spatial
correlation (as opposed to convolution) used in (7.3).

*’In the case of repeated eigenvalues, temporal components of the form t*¢=** where k € [0, p;] and
p; is the multiplicity of );, are also introduced.
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the end of the first 50ms post-stimulus time bin** — from which Jones & Palmer (1987b)
obtained the spatial RFPs to which the GRGF model was successfully fitted — occurred
50ms after stimulus presentation, a period which is long compared with estimated neural
time constants of the order of 20ms (Stratford et al., 1989), the instantaneous spatial
RFP identified by Jones & Palmer (1987b) could be expected to differ significantly from
the predicted instantaneous RFP at t = 0.

Nevertheless, if the chosen expansion functions are linearly dependent??, the possi-
bility arises that at one or more additional post-stimulus times ¢ > 0, the expansion
functions might be re-synthesised from non-trivial (i.e. e=?! ¢ I,,) linear combinations
of the others to give the required instantaneous spatial RFPs. However, the additional
constraint that one such time must coincide at least approximately with the end of the

time bin used by Jones & Palmer (1987b) makes this prospect similarly unattractive.

Two-Layered Networks

The simple cell spatiotemporal RFPs predicted by the two-layered networks in Section 4.4
are derived in the same way as those for the single-layered networks. The requisite
analysis is outlined below for the network proposed by Pece (1992), which is governed by
(4.26); extension of this analysis to the network by Yan (1991b) is trivial. In accordance
with Pece’s (1992) mapping of this network onto the early visual system, as discussed in
Section 7.2, (4.26) can be reformulated in continuous space and using matrix notation

to yield
Toln  Opm a I, —k,G 0,
== —+—/ s(x,t) de
(L Y ¢ k.GT I, V| r(x)

where r(z) £ [r(x),...,r.(2)]" is the vector of LGN cell FSWFs r;:R?* — R, 0, is

the nxm zero matrix, and 0, is the n-dimensional zero vector. The remaining notation

a

[

was described earlier in connection with (4.26), with the exception of the gain factor
k. € R4, which has been added to make apparent the extension of this analysis to the
network of Yan (1991b). The resultant spatiotemporal RFP w(zx,t) is then given by

(7.6)

w(xe,t) = ie‘P‘ O
(1) Te [ r(x)

21Gince the approximately 50ms latency of simple cell response to retinal stimulation is not explicitly
modelled in the proposed networks, this latency is henceforth subtracted from all post-stimulus time
measurements reported by Jones & Palmer (1987b) in order to facilitate comparisons with the temporal
predictions of these networks. Accordingly, the numbering of the post-stimulus time bins has been
adjusted such that the “first” bin from the point of view of these networks is that spanning the practical
post-stimulus interval 50-100ms.

2235 would for example be the case if these functions form a frame for the set of square-integrable

real-valued functions.
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where

a
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1 k
~I, —-2G }

with the first n elements of w giving the simple cell spatiotemporal RFPs. By analogy
with the case of the onc-laycred nctwork, the instantaneous spatial RFP predicted for
each simple cell by the two-layered model is therefore a time-varying linear combination
of the LGN cell FSWFs. The coeflicients of this linear combination are given by the
corresponding row of the instantaneous geniculo-cortical weight matrix M(t) € R™™,
defined as the top right-hand nxm block of the matrix e~#*. Consistent with observations
indicating a latency of simple cell response to retinal stimulation (see e.g. Ikeda & Wright
(1975b); Hamilton et al. (1989)), the instantaneous simple cell spatial RFPs predicted
by the generic two-layered network are zero at time ¢t = 0.

Implicit in Pece’s (1992) choice of a discrete-space GRGF for the geniculo-cortical
weight vector of each simple cell — given for the jth cell by the jth row of the geniculo-
cortical weight matrix G — is the assumption that this weight vector is related to the cell’s
spatial RFP g;(«) by anti-aliased spatial sampling. It was argued in Section 7.2.2 that
if the time dependence of the simple cell spatial RFP could be ignored, this assumption
could be reconciled with the observations of Jones & Palmer (1987b; 1987a) provided
that the LGN cell FSWF's collectively approximated a spatial reconstruction filter, such
that

g(z) ~ Gr(z) (7.7)

However, the hypothesised early visual implementation of the proposed two-layered net-
work would predict that both the instantaneous spatial RFP and the instantaneous
geniculo-cortical weighting function of each simple cell should be time-varying, so that
their respective temporal behaviours cannot be ignored. The spatial-domain identifica-
tion techniques used by Jones & Palmer (1987b; 1987a) to test the GRGF model of the
simple cell spatial RFP have been assumed, for the present purposes, to identify the
instantaneous spatial RFP of the simple cell (at the end of the corresponding time bin).
In order to reconcile Pece’s (1992) specification of the geniculo-cortical weight matrix
with the identified simple cell instantaneous spatial RFPs, conditions must therefore be

established under which the instantaneous geniculo-cortical weight matrix M (¢) satisfies
g(x) = M(t)r(z) (7.8)

at one or more post-stimulus times ¢.

In general, the solution of (7.8) for the required instantaneous geniculo-cortical weight
matrix would in turn require the identification of the FSWF of each contributing cell in
the LGN. However, this requirement is obviated if the instantaneously measured simple

cell RFP can be assumed, at least approximately, to be related to the instantaneous
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geniculo-cortical spatial weighting function by anti-aliased spatial sampling. Notwith-
standing the objections to this approximation presented in Section 7.2.2, this relation-
ship simplifies the necessary reconcilitation, since a comparison of Equations (7.7) and
(7.8) reveals that it then only remains to establish conditions under which M (t) ~ G for
some time or times . An examination of (7.6) and the matrix P reveals that a sufficient

condition for equality to hold is that
e Ptoc —P (7.9)

with a positive constant of proportionality. The ease or otherwise with which this condi-
tion can be satisfied will depend on the particular choice of the basis functions {g;} via a
dependence on the matrix i. In general however, the matrix P is positive definite (Yan,
1991b) and approximately anti-symmetric (provided ’:—: ~ %)’ if 1t is also diagonalis-

able with distinct eigenvalues, e~

is characterised by exponentially damped oscillatory
modes. Thus in order to produce the required negative definite result, these modes must
all be negative at time ¢, a condition which may prove difficult to satisfy. This difficulty
would once again be compounded by the additional constraint that one such time must

coincide at least approximately with the end of the time bin used by Jones & Palmer

(1987b).

Summary and Discussion

The weights in the biologically plausible networks proposed by MacLennan (1993b),
Pattison (1992) and Pece (1992) were chosen according to the GRGF model of the simple
cell spatial RFP. However, this model was validated by Jones & Palmer (1987b; 1987a)
using reverse-correlation identification techniques which yield an approximation to the
instantaneous spatial RFP of each simple cell at the end of the corresponding time bin.
For those cells in each network hypothetically identified with the simple cells, conditions
have therefore been examined under which the instantaneous spatial RFP is given by the
chosen GRGF expansion functions.

It has been shown that the simple cell instantaneous spatial RFP predicted by the
generic one-layered network for the instant ¢ = 0 is the corresponding expansion function.
However it was argued that the instantaneous spatial RFP obtained by Jones & Palmer
(1987b) at the end of the first post-stimulus time bin, which occurs approximately 1
neural time constant later, is likely to differ significantly from that which would be
measured at ¢t = 0. It was furthermore concluded that for both the one- and two-layered
networks, the simple cell instantaneous spatial RFPs at the end of the first time bin are
unlikely to coincide with the chosen expansion functions. It therefore appears improbable
that the instantaneous spatial RFPs identified experimentally by Jones & Palmer (1987b)
result from an early visual implementation of either generic network using these functions

as expansion functions.
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To prove the negative case however — viz. that the instantaneous spatial RFPs iden-
tified experimentally by Jones & Palmer (1987b) do not result from an early visual
implementation of either generic network using these functions as expansion functions —
would in general require the exhaustive elimination of all alternatives. Efforts to this end
are hampered by the unavailability of important information such as a detailed knowledge
of the population distribution of simple cell RFP parameters. The above conclusions arc
sufficient, however, to suggest the need for a fundamental re-evaluation of the decompo-
sition hypothesis of simple cell processing, a re-evaluation of its very motivation which
should be undertaken before any attempt is made to disprove it through exhaustive ex-
perimentation. This matter will be discussed further in subsequent sections following an
attempt to eliminate non-ideal aspects of the reverse correlation identification technique

as potential sources of the noted discrepancies.

7.3.3 Practical Identification

The arguments presented in the previous section are based on a comparison between
the spatiotemporal RFPs predicted theoretically by the relaxation networks proposed
in Chapter 5, and those actually identified in real simple cells by the experiments of
Jones & Palmer (1987b) and Palmer et al. (1991). It remains to address the possibility
that approximations inherent in the reverse-correlation identification technique used by
these investigators can account for the expected discrepancies between the predicted and
identified RFPs.

An analysis of the reverse-correlation technique is presented in Appendix B for the
ideal case where the stimuli can be assumed to approximate spatiotemporal impulses and
the output of a cell is given by (B.1). Under the additional assumptions that the third
and higher odd-order terms of the Taylor series expansion of the nonlinear function f are
negligible, which is clearly true for the proposed linear relaxation networks, and that the
DC offset of the spatial component of the spatiotemporally separable RFP is negligible,
it was concluded that the spatiotemporal RFP estimate obtained by this technique would
be the ideal RFP. This conclusion is furthermore unaffected by a simple extension of the
analysis to the present case, in which each of the spatiotemporal RFPs in Equations (7.4)
and (7.6) is given by a sum of spatiotemporally separable terms. As indicated by (B.6),
the effect of a non-zero DC offset in the spatial component of the ideal RFP is simply to
introduce an additional time-varying DC offset in the identified spatial component.

However the true stimuli used by Jones & Palmer (1987b) and Palmer et al. (1991)
are rather poor approximations to spatiotemporal impulses. This is especially true in the
temporal domain, where the stimulus duration of 50ms is large relative to reported time
constants of the order of 20ms for cortical pyramidal cells (Stratford et al., 1989), and to

a lesser extent in the spatial domain, where the stimulus elongation in the direction of
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subfield elongation is up to & of the width of the receptive field. A revision of the analysis
in Appendix B using rectangular stimuli of constant size and assuming a strictly linear
system, such as the proposed relaxation network, reveals that the effect of these non-
ideal stimuli on the result of the reverse correlation identification technique is to filter
the true RFP (plus parasitic terms) with a rectangular filter given by the stimulus®.
The temporal binning procedure used in the estimation of the neural firing rate results
in additional temporal smoothing, with the corresponding smoothing filter having a
rectangular (“box-car”) impulse response function whose width is that of the temporal
bins. To reduce the computational effort, the identification procedure calculates, or in
effect samples, the estimate of the smoothed spatiotemporal RFP in the temporal domain
at the ends of these bins, and in the spatial domain at the centres of the divisions of the
spatial stimulus grid.

In a simplified analysis of the application of the reverse correlation technique used by
Jones & Palmer (1987b) to the un-regularised network presented in Chapter 5, Pattison
(1992, App. B) approximated the temporal smoothing effect of a rectangular stimulus
as a temporal integration. Since the RFP is simply the (spatially reversed) spatiotem-
poral impulse response function of the neuron, its integration yielded the corresponding
temporal step response function. This step response approximation is valid for times ¢
not exceeding the duration of the stimulus pulse, so that Pattison’s (1992) analysis is
valid only over this interval; for times exceeding this interval, the neural response — and
hence spatial RFP — should be derived using the true rectangular stimulus instead of the
temporal step function approximation. The step response was then temporally smoothed
to account for the 50ms time bin used by Jones & Palmer (1987b), and sampled at the
end of the first post-stimulus time bin to obtain an estimate of the spatial RFP?*. Since
the transient components of the step response had time constants of the order of half the
width of the time-bin integration period their effect on the predicted spatial RFP was
assumed to be largely overshadowed by the steady state component, which is given by

the corresponding row of the expression

Q'g(z) (7.10)

where () € R™" is defined in (7.1). However, this steady-state assumption was based on
the neural time constants, whose inverses are given by the diagonal entries of the matrix
@. The time constants of the transient components of the network step response are in

fact given by the inverse eigenvalues of (), which may differ from the neural time constants

#3The technique used by Jones & Palmer (1987b) and Palmer et al. (1991) differs slightly from the
ideal reverse correlation technique, described for example by Victor (1992) — for which the resultant
smoothing filter is given by the autocorrelation of the stimulus — in that the response to the actual stim-
ulus is in effect correlated with the idealised (impulsive) stimulus rather than with the actual stimulus.

4In practice, smoothing and sampling were effected simultaneously through an integration of the step
response over the first post-stimulus time-bin.
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by orders of magnitude, so that the steady-state assumption may In some cases involve
a rather gross approximation. The unwanted additional time-varying spatial DC term
introduced by the reverse-correlation technique was not included in Pattison’s (1992)
analysis, and is neglected here simply because it makes no useful contribution to the
resultant spatial RI'P estimate®. Patlison (1992) concluded that under the assumption
that the neural output is given by the instantaneous firing frequency and that this is
(unrealistically) permitted to be negative, the relaxed spatial RFP of each neuron would
bear little resemblance to its FSWF g;(x). An interesting exception to this conclusion is

provided by the case where the expansion functions {g;} form a tight frame. In this case

[ [ @los@) o] gi(@) = A rgi@) Ve

giving that
Q7'g(z) = Ag(z) Ve

and hence the relaxed spatial RFP of each cell is linearly related to the corresponding
expansion function. However in this case, the relaxation process is unneccessary in the
first place. Whilst the spatial smoothing resulting from the use of rectangular stimuli
was not taken into account in Pattison’s analysis, such smoothing is not of the required
form to undo the premultiplication by the matrix Q' in (7.10).

The additional temporal resolution achieved by Palmer et al. (1991) through the
use of 1ms time bins to minimise the temporal smoothing effect of binning permitted
them to obtain estimates of simple cell spatiotemporal RFPs, although these estimates
were still subject to the temporal smoothing occasioned by the use of rectangular stimuli.
Assuming the residual effect of temporal binning to be negligible in comparison with that
of the rectangular stimulus, and ignoring the unwanted effects of spatial smoothing and
DC offset, the spatiotemporal RFP estimate w; predicted by the proposed single-layered

networks over the 50ms stimulus presentation interval is

P4

wi(e,t) ~ Q7 (I, — e g(x) 0 <t < 50ms

~ Q'g(e) 20ms < t < 50ms

the instantaneous spatial component of which, since the exponential term has time con-
stants of the order of 20ms, approximates the RFP presented in (7.10) for 20ms < t <
50ms. Although the accuracy of this approximation is once again largely dependent on
the ratio of the inverse of the smallest eigenvalue of Q to the 20ms neural time constants,
it is assumed to be sufficient for the present qualitative purposes. Barring the possibility
of linearly dependent expansion functions, this spatiotemporal RFP is inconsistent with

the hypothesis that the neurons in the proposed network would at any time during this

%5 Although it may of course significantly affect the best-fit GRGF parameters obtained by Jones &
Palmer (1987a).
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interval exhibit instantaneous spatial RFPs resembling the expansion functions given by
their FSWFs. A similar analysis for the generic two-layered network yields the vector

w-, of instantaneous spatial RFPs

wy(x,t) ~ PTC (In+m — e'Pt) l: () ] 0 <t<50ms
N 0,
~ PT i 20ms < t < 50ms
© L r(e)

of which the first n elements belong to the simple cells. Since the top right-hand block
of the matrix P~ differs in general from G, the model simple cells again fail to exhibit
the required spatial RFPs.

Analysis of the reverse correlation technique with rectangular stimuli is complicated
by the addition of a static nonlinearity f as used in (B.1). However as was the case
with impulsive stimuli, even-order terms of this nonlinearity result in components of the
estimated RFP which cancel out. Furthermore, for the nonlinearity used by the BCP
network with saturation limits 4; = 0 and »; > 0, and with appropriate smoothing at
the origin to ensure the existence of the relevant derivatives, odd-order derivatives are
approximately zero. Thus provided the stimuli produce only small deviations about the
origin of the nonlinearity, the BCP network appears under reverse correlation identifica-
tion to be approximately linear regardless of the precise form of the stimulus, and the
identified spatiotemporal RFPs for this network should therefore not differ qualitatively

from those obtained for the corresponding linear networks.

Qualification and Summary

A full assessment of the implications, for the decomposition hypothesis of simple cell
processing, of the use of temporal binning and rectangular spatiotemporal stimuli in the
reverse correlation identification techniques employed by Jones & Palmer (1987b) and
Palmer et al. (1991) would necessarily include an analysis, similar to the temporal anal-
ysis presented above, of the effects of spatial smoothing on the identified instantaneous
spatial RFP. Such an analysis would require detailed assumptions regarding the spatial
forms of each of the expansion functions, assumptions which, in the absence of sufficient
electrophysiological information, have been avoided here so as not to unduly Limit the
generality of the discussion. Pending a full spatiotemporal analysis of the effects of tem-
poral binning and rectangular spatiotemporal stimuli, it is therefore difficult to draw firm
conclusions from the above observations.

The preliminary discussions in this section suggest nevertheless that spatiotemporal
smoothing does not account for the predicted discrepancies between the “spatial RFPs”
which would be measured by Jones & Palmer (1987b) and Palmer et al. (1991) and

the expansion functions whose relative presences in the visual image the simple cells are
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hypothesised to calculate by relaxation. Given the as yet complete lack of evidence in
favour of the latter hypothesis, the onus should therefore be placed on proponents of this

hypothesis to show that such an explanation might be forthcoming.

7.3.4 Summary and Discussion

The hypothetical early visual implementations proposed by MacLennan (1993b), Pattison
(1992) and Pece (1992) for their respective SRE minimisation networks have been shown
to predict spatiotemporally inseparable simple cell RFPs, the instantaneous spatial com-
ponents of which differ, at almost all post-stimulus times, from the expansion functions
whose coeflicients are calculated by these networks. It has furthermore been demon-
strated that the reverse-correlation identification techniques used by Jones & Palmer
(1987b) would, when applied to a model simple cell in any of the proposed networks,
yield a temporal slice, taken at the end of the corresponding time bin, through a spa-
tiotemporally smoothed and spatially DC-shifted version of the spatiotemporal RFP.
Neglecting initially the effects of smoothing and DC-shifting, it was therefore tentatively
concluded that the “spatial RFPs” identified by Jones & Palmer (1987b) do not corre-
spond to the expansion functions used by an early visual implementation of any of these
networks. In particular, it was found that the GRGF model successfully fitted to these
“spatial RFPs” by Jones & Palmer (1987a) cannot be interpreted as describing the ex-
pansion functions used by such a network. It was furthermore argued that this conclusion
extends, at least to a first approximation, to the proposed neural implementation of the
more realistic BCP network.

Although it was argued in Section 7.3.3 that the effect of spatiotemporal smoothing
is not in fact negligible, temporal smoothing, when considered in isolation, was found
to be incapable of effecting the required reconciliation. The effects of spatial smoothing
and DC-shifting were not considered in detail.

[t is not possible, on the basis of the above observations, to conclusively rule out
agreement between the expansion functions and measured “spatial RFPs” for special
choices of the expansion functions and the stimulus and measurement parameters of the
identification technique. There is however sufficient evidence to compel those who might
choose to persist with the notion that these “spatial RFPs” are used by the early visual
system as non-orthogonal expansion functions to consider alternative neural schemes,
and possibly error criteria, for the computation of the required coefficients.

The comparison of the RFPs identified by Jones & Palmer (1987b) and Palmer et al.
(1991) with those predicted by the application of the same identification technique to the

proposed relaxation network models, is of course predicated on the assumption that the
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instantaneous spiking frequency?® of each real simple cell represents a corresponding co-
efficient estimate in the theoretical network. However, provided there exists a monotonic
— ideally linear — relationship between the firing rate and the value actually being sig-
nalled, this comparison retains approximate validity. Nevertheless, the possibility exists
that a more sophisticated method is in fact used to encode an analog value in the output
spike train, and the above comparisons must therefore be viewed as contingent upon the

verification of the neural firing rate signalling hypothesis.

7.4 Discussion

Implicit in the proposed encoding of the chosen expansion functions on the feedforward
connections of both the one- and two-layered networks is the assumption that the simple
cell spatial RFP is determined solely by its feedforward weighting of the retino-geniculo-
cortical input, an assumption which was disproved in Section 7.3 on the basis of its
neglect of the temporal dimension imparted to the RFP by the presence of feedback.
This assumption is furthermore at odds with the evidence in favour of models of the early
visual system which postulate the presence of mutual inhibition between iso- or cross-
oriented simple cells in order to sharpen their orientation tuning (see e.g. Ferster & Koch
(1987) or Worgétter & Koch (1991) for a review). These models commonly assume that
an orientation bias is established in the feedforward pathway to a given neuron, through
for example the alignment of LGN afferents (Hubel & Wiesel, 1962), and that this bias is
enhanced by intracortical inhibition between the simple cells. Worgotter & Koch (1991)
showed that an eclectic model combining several intracortical inhibitory mechanisms to
achieve this enhancement of orientation tuning predicts, among other things, the effect
on this orientation tuning of the application of GABA lateral to the recording site.
Nevertheless, the negative findings in Section 7.3 do not of course eliminate the pos-
sibility that the simple cell spatial RFPs might still be used as expansion functions in
a decomposition of the visual image. For example, it would be possible to propose al-
ternative reconstruction error criteria (Cichocki & Unbehauen, 1992), and, presumably,
biologically plausible neural networks capable of minimising these errors. Alternatively,
in a departure from the hypothesis that the simple cells signal the expansion coeficients,
cells such as the complex cells, located in subsequent processing “stages” and receiving
input from the simple cells, might be identified with the output nodes of the proposed
SRE-minimisation networks. However, before such alternatives can be given serious
consideration, it is necessary to re-evaluate the motivation behind the decomposition

hypothesis.

26 An estimate of the spiking frequency is obtained for each post-stimulus time bin by counting the
number of spikes occuring in that bin, dividing by the width of the bin, and averaging the result over
repeated presentations of the same stimulus.
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As Daugman (1988a) pointed out,

. 1t goes without saying that the purpose of vision is not to reconstruct the

retinal image . ..
Linsker (1990) therefore raised the question

If the original scene is never “reconstructed” by the brain (and why should

it be?), what is the meaning of the fidelity criterion?

In particular, why go to the computational and metabolic expense of minimising the
reconstruction error when that error is never realised in a cortical reconstruction? For
decomposition-based theories of simple cell processing, the answer is that this “fidelity
criterion” is, as indicated earlier, simply a means of quantifying the concept of the “rel-
ative presence” of a simple cell spatial RFP in the visual image. According to this
interpretation, the minimisation of some measure of reconstruction error clearly does not
imply that a reconstruction of the image is to be performed.

However it remains to justify the underlying assumption which gave rise to this di-
versionary debate on reconstruction error minimisation in the first place — viz. that the
simple cells spatial RFPs are used in the early visual system as expansion functions.
In seeking justification for the possible neural implementation of a reconstruction error
minimisation algorithm amongst the simple cells, the more pertinent question is there-
fore, “Why should the output of a simple cell be assumed to signal the relative presence
of its spatial RFP in the visual image, rather than the spatial inner product of that
RFP with the image, in terms of which the spatial RFP is defined?” Apart from the
observation that this assumption, which is central to decomposition-based theories of
simple cell processing, is probably a vestige of the earlier feature-detection hypothess,
no clear motivation or apriori justification for this assumption is in evidence. Although
the sceptic might argue that this quite specific assumption appears in hindsight to have
been somewhat ill-conceived, and that it is not possible on this basis to rule out the
calculation of the required expansion coefficients elsewhere in the early visual system
usi.ng the simple cell outputs, he or she should be challenged to justify the need for and
the utility of the hypothesised expansion.

7.5 Conclusion

The implementation of the SRE minimisation networks of MacLennan (1993b), Patti-
son (1992) and Pece (1992) in the feline early visual system has been shown to be at
least broadly speaking biologically feasible. However, the identification of their output
nodes with the simple cells has been found to be almost certainly inconsistent with the
hypothesis that the latter use the “spatial RFPs” obtained by Jones & Palmer (1987b)
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as expansion functions in a minimum SRE decomposition of the visual image. Although
this finding is by no means fatal for more general decomposition-based theories of early
visual processing, it suggests the need for a fundamental re-evaluation of their motivation
in the absence of apriori justification. In particular, claims — either explicit or implicit
— of “biological motivation” for image processing algorithms which use models of the

simple cell “spatial RFP” as visual expansion functions should be treated with extreme

caution.
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Chapter VIII

CONCLUSIONS

8.1 Overview

This thesis has reviewed models of the simple cell RFP and its variation over the sim-
ple cell population, and has used artificial neural networks to investigate the multi-
dimensional signal processing role of the RFP in the formation of a cortical representation
of the visual image.

The degree of linearity of simple cell processing, and the validity of omitting one
or more stimulus dimensions from the RFP, were examined in Section 2.2. The GRGF
model of the simple cell RFP was then evaluated in Section 2.3. Theories concerning
the variation of RFP parameters across the simple cell population were investigated in
Chapter 3 with regard to their ability to account for the true variety of simple cell RFPs
observed experimentally. These theories were divided into the two categories of filtering
and decomposition, depending on their use of the spatial RFP as either the kernel of a
visual filter or a visual expansion function. RANNs which solve the SRE minimisation
problem associated with the decomposition of an image using non-orthogonal expansion
functions were reviewed in Chapter 4 and developed in Chapters 5 and 6. The biological
plausibility of these networks was assessed in Chapter 7, and the RFPs which they
predicted were compared with the expansion functions used by these networks in order

to evaluate the viability of the decomposition hypothesis of simple cell processing.

8.2 Summary and Conclusions

In Chapter 2 it was concluded that the simple cell can be considered, to a first approx-
imation, to be a linear device characterised by its binocular spatiotemporal RFP. The
omission of the temporal or the second spatial dimension from the RFP was found to be
valid only in the special case where the RFP is Cartesian separable. In particular the
concept of a “spatial RFP”, which is used extensively in Chapter 3, is strictly speaking
undefined except for the Cartesian separable case. To the extent to which it can be de-
fined, the identified simple cell spatial RFP is best fitted by the GRGF model presented
in Section 2.3. The fact that functions have been found which provide a better fit to the
identified spectral RFP is not sufficient to discount the GRGF spatial model, since the

observed discrepancy between the spectral RFP and the Fourier transform of the spatial
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RFP (Jones & Palmer, 1987a) is most likely attributable to nonlinear components of
simple cell processing.

The recent controversy concerning the alleged optimal joint spatial and spectral local-
1sation property of simple cell processing was found to hinge on the credibility assigned
to the implementation of complex-valued Gabor functions by pairs of simple cells whose
RFPs are in spatial phase quadrature. However even if one accepts that such pairs are
widespread, as Daugman (1993) would have us believe, it was also argued that since the
particular localisation measure used in (2.10) is sensitive to rotations of the coordinate
axes, it cannot be simultaneously minimised by a population of simple cells exhibiting
arbitrary relative orientations. This property, which holds for all component-wise locali-
sation measures, casts grave doubts on the relevance of optimising some measure of the
joint spatial and spectral localisation to the processing performed by the simple cells.

A number of theories concerning the spatial processing of the visual stimulus per-
formed by the simple cells were examined in Chapter 3. Few if any were found to make
any serious attempt to account for all the degrees of freedom exhibited by simple cell
spatial RFPs, with many models assuming one or more of the following: odd or even RFP
symmetry, constant window size or orientation across the population, mutual orthogonal-
ity with respect to spatial integration, phase quadrature pairs, and highly regular spatial
and spectral sampling lattices. It should be noted however that for those which did at-
tempt to answer even some of these objections, determination of the completeness of the
resultant RFP sets generally exceeds our current mathematical capabilities. Although
this by no means constitutes an argument against their suitability as models of simple
cell processing, it is difficult, without established completeness results, to rule out the
existence of large classes of stimuli which are in effect invisible to the feline or primate
visual systems (Daugman, 1988b). This observation limits the utility in machine vision
of many of the more realistic models of simple cell RFP variety.

The decomposition hypothesis of simple cell processing was found to be in conflict
with the very definition of the spatial RFP. Whilst the RFP model(s) employed by such
theories may enjoy electrophysiological support, the RFP definition supports their use
as the kernels of (possibly position-dependent) spatial filters. However, this conclusion
is later reviewed in Chapter 7 as a result of the development of biologically plausible
RANNs which calculate the required expansion coefficients.

The theory of non-orthogonal image decomposition was reviewed in Chapter 4. The
squared reconstruction error (SRE) minimisation problem, whose solution yields the
best linear unbiassed estimator (BLUE) in the presence of spherical Gaussian noise, was
formulated, and a minimum-norm regularisation term added to overcome the problems
associated with ill-conditioning of the normal equations. ANNs which solve the SRE and
minimum-norm SRE minimisation problems were critically reviewed. Most notably, it

was shown that the two-layered networks in Section 4.4 which were previously though
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to provide only approximate solutions to the SRE minimisation problem in fact provide
exact solutions to the minimum-norm regularised form of the problem.

In Chapter 5, a one-layered analog RANN was presented which solves the SRE and
minimum-norm SRE minimisation problems. It was shown to be closely related to resis-
tive grid networks proposed independently for the discrete-space solution of minimum-
norm SRE minimisation problems arising in machine vision applications. A strategy for
diagonally preconditioning the network equations was presented in order to improve the
stability of the network in the presence of weight implementation and state propagation
errors.

The neural activation function of the single-layered RANN proposed in Chapter 5
was modified in Chapter 6 to more accurately reflect the constraints on the firing rate of
real neurons. The global and exponential stability of the resultant boundary constraint
projection (BCP) network was then established, along with its optimisation of the chosen
positive (semi)definite quadratic cost function subject to the imposed bound constraints
on the optimisation variables. This network was compared with similar RANN models,
including that of Sudharsanan & Sundareshan (1991) and the generalised Brain-State-
In-A-Box (GBSB) network of Golden (1992). A continuous-time equivalent of the GBSB
network, the continuous GBSG (CGBSB) network, was then proposed to overcome a
perceived shortcoming of the BCP network for engineering applications, and a partial
stability proof for it outlined. Finally, various examples and comparisons of the operation
of these networks were presented.

In Chapter 7, the biological plausibility of the SRE minimisation networks reviewed in
Chapter 4 and those developed in Chapters 5 and 6 was first examined. The hypothesis
that the expansion coefficients purportedly signalled by the simple cells are computed by
an early visual implementation of an SRE minimisation network was then investigated
through a comparison of the RFPs predicted by these networks with the corresponding
expansion functions. It was concluded that if such a network were indeed implemented in
the early visual system, the “spatial RFPs” identified by Jones & Palmer (1987b) would
not be the expansion functions used by that network. Although this does not conclu-
sively discount the possibility that the simple cells perform a decomposition using other
expansion functions, it does at least argue against the postulated Gabor-like expansions

presented in Chapter 3.

8.3 Discussion

If the discussion in Chapters 2, 3 and 7 could be said to have a weak point, it is that much
of the more detailed analysis relies on data from only a few experiments. In particular,
the reverse-correlation experiments of Jones & Palmer (1987b) and their subsequent
evaluation of the GRGF model of the simple cell spatial RFP (Jones & Palmer, 1987a)
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constitute the principal source of electrophysiological information. This reliance is largely

necessitated by the lack of alternative electrophysiological investigations of the 2D spatial

RFP which are both quantitative and free of strong apriori assumptions such as symmetry

or Cartesian separability.

8.4

Contributions

The principal contributions of this thesis are as follows:

A critical review of the evidence for and against the GRGF model of the simple
cell RFP.

A critical review of bottom-up theories of simple cell spatial processing.
A brief review of applications of GRGFs in image processing.

A comparison and critical review of existing neural networks for solving the SRE

minimisation problem associated with non-orthogonal image decomposition.

The recognition of the fact that the two-layered RANNSs of Culhane et al. (1989),
Yan (1991b) and Pece (1992) solve, exactly, the minimum-norm SRE minimisation

problem.

The development of a single-layered linear network for minimum-norm SRE min-
imisation, and a comparison with resistive grid networks used in other early vision

applications.

The development of a diagonal preconditioning strategy to mitigate the effects
on network stability and solution accuracy of errors in weight implementation or

state-vector propagation.

The development of the BCP network, the proof of its global and exponential
stability, and its comparison with similar ANN models. This work was based on

earlier work undertaken jointly and published by Bouzerdoum & Pattison (1993b).
The demonstration that
— the decomposition theory of simple cell processing contradicts the very defi-

nition of the simple cell spatial RFP,

— its biologically plausible RANN implementation predicts spatiotemporally in-
separable simple cell RFPs, in which case the required spatial RFPs are not

even defined, and

— the instantaneous spatial RFPs of the hypothetical simple cells in such imple-

mentations are not, in general, the chosen expansion functions.
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SPATIAL AND SPECTRAL RF INVESTIGATIONS

A.1 Spatial RF

Table A.1 contains a non-exhaustive summary of single-unit electrophysiological in-
vestigations of the spatial receptive field organisation, profile &/or 1D response plane
(RP - see eg. Palmer & Davis (1981b)) of the simple cells in primate and feline pri-
mary visual cortex. The stimulus consists of a contrast bar, edge or spot, and is either
stationary (flashed once on-off or periodically modulated) or moving with constant drift
velocity. The receptive field map is based on measurements of response (mean or peak
firing frequency or probability) or reverse correlation of the output spike train with the
stimulus. A “bar” has for the present purposes been classified as a spot if its length
was substantially less than the elongation of a subfield. The specification of 1D in the
RFP column includes both the true LWF, obtained using long thin bars, and 1D sections
through the RFP in the direction of subfield alternation, obtained using spots or small
bars. Stimulus and measurement specifications refer only to those portions of each study

concerned with the spatial properties of simple cell RFPs.

A.2 Spectral RF

Table A.2 contains a non-exhaustive summary of single-unit electrophysiological in-
vestigations of the spatial frequency magnitude, orientation and phase tuning properties
of the simple cells in primate and feline primary visual cortex. The stimulus consists of
a contrast bar, edge, or sinewave or squarewave grating, and is either stationary (usu-
ally flashed or counter-phase modulated) or drifting with constant velocity. The tuning
curves are based on measurements of either response (mean or peak firing frequency)
or contrast sensitivity (CS — inverse of minimum stimulus contrast required to elicit a
specified response). Several studies do not differentiate between simple, complex and
hypercomplex cell types. Stimulus and measurement specifications refer only to those

portions of each study concerned with the relevant tuning curves of simple cells.



Investigators RFP Property Species Stimulus Measurement
Org. | RFP | RP || Cat | Monkey || Stat. | Drift. | On-Off | Mod. || Bar | Edge | Spot || Resp. | Corr.

Henry & Bishop (1972) 1D . o o o o . o

Schiller et al. (1976a) 1D ° ° ° ° o ° o °
Movshon et al. (1978b) 1D ° ° ° ° °

Glezer et al. (1980) 1D . . o o o
Kulikowski & Bishop (1981a) 1D . o o o °
Kulikowski et al. (1981) 1D ° ° ° ° ° ® °
Kulikowski & Bishop (1981b) 1D ° ° ° ° ° °

Palmer & Davis (1981b) . . . . . .

Palmer & Davis (1981a) . o ° o o o o

Glezer et al. (1982) 1D ) B . o
Mullikin et al. (1984) o o o o o °
Camarda et al. (1985b) 1D . . . o o o
Camarda et al. (1985a) 1D ° . o o o o

Maske et al. (1985) 1D o o o o
Peterhans et al. (1985) 1D ) 3 o . . .
Yamane et al. (1985) 1D o o o o o

Field & Tolhurst (1986) 1D ° ° ° °
Heggelund (1986b) 1D ° ® ° ° °

Jones & Palmer (1987b) 2D ° o o o o
Glezer et al. (1989) 1D o o o o o o
McLean & Palmer (1989) 1D o . ° ) .
Palmer et al. (1991) 2D o . ° o o

Table A.1: A non-exhaustive summary of investigations of the spatial structure of the simple cell RF. See text for an explanation of symbols
and abbreviations.
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Investigators Tuning Parameter Species Stimulus Measurement
Mag. | Orient. | Phase || Cat | Monkey || Stat. | Drift. | Bar | Edge | Sine | Square || CS | Response

Henry & Bishop (1972) o o . o .
Maffei & Fiorentini (1973) . . o ° o
Henry et al. (1974) . . . . o o
Rose & Blakemore (1974) o . o . o
Watkins & Berkley (1974) . . . . . .
Tkeda & Wright (1975b) . . o . o o . o
Ikeda & Wright (1975a) o . o o . o ) .
Finlay et al. (1976) . . . o o .
Schiller et al. (1976b) . . . . o ? ? o
Schiller et al. (1976¢) ) . ) ) . . .
Heggelund & Albus (1978) ° ° ° ° °
Movshon et al. (1978b) 1D o . o o
Movshon et al. (1978a) o o o o o .
Albrecht et al. (1980) ° ° ° ° ° ° ° ° °
Glezer et al. (1980) . 1D o o . o
Kulikowski & Bishop (1981a) . . . . . . .
de Valois et al. (1982) o . . . 3

de Valois et al. (1982) o . . . o o
Pollen & Ronner (1982) . . o . . .
Spitzer & Hochstein (1985) . 1D . . . .
Webster & de Valois (1985) . ) o . .
Hawken & Parker (1987) . . . . o o

Jones et al. (1987) ° ° ° ° °
Reid et al. (1987) 1D . . . .

Table A.2: A non-exhaustive summary of investigations of the spectral structure of the simple cell RF. See text for an explanation of
symbols and abbreviations.
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Appendix B

RFP IDENTIFICATION USING IMPULSES

Let the response r(t) of a spatiotemporal system to an input s(x,t) be given by
r(t) = f (/°° h(t—r)/oo w(@)s(e, 7) de dr) (B.1)
~o0 —o0
where (,1) are the spatiotemporal coordinates, f:R —R is a nonlinear function applied
to the output of an otherwise linear system, A(t) is the temporal impulse response func-
tion, and w:R?— R is a spatial weighting function. The aim is to estimate the function
w using the reverse correlation technique, which for each possible stimulus position @
involves presenting the system with a stream of spatiotemporal impulses occurring at
regular temporal intervals of T' seconds and at spatial positions @; chosen from a uni-
form distribution over the support! of w, and correlating the resultant output with the
spatiotemporal impulse presented at position @y. Prior to correlation with the stimulus,
the response of the system is averaged over a number of trials, with the time axes of the
trials aligned so that the impulse at position @y occurs at the same time in each trial,
which is arbitrarily taken to be time ¢t = 0.
The stimulus and response are given by

s(x,t) = :l:.io: o(e—wm;)6(t—:iT)

re(t) = f (ﬂ: > w(mi)h(t—z’T)) (B.2)

respectively. Assuming that the system is operating in the vicinity of the origin of the
nonlinearity f, and that f is analytic in this region so that its Taylor series expansion

about the origin? exists, then averaging (B.2) over a series of trials gives
g ging g

re(t;®y) = <i(i1)ﬂw [Z w(azi)h(t—iT)T> (B.3)

|
7=0 ]' )

oo fQ) _ .
= f(0)+ Z(il)ij—.(O)wj(-’vo)h’(t)
+f1(0) ; (w(a:)) h(t—iT)
-|-%f(2)(0) SN (w(x)w(@e)) h(E—iT)R(t—ET)+ ...  (B.4)
i#£0 k

' The support of a function is the smallest region outside of which it evaluates to zero everywhere.

2viz. its MacLauren series expansion
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where () denotes the average over trials and f()(0) denotes the jth derivative of f at
0. The parameterisation of the averaged response ry by the spatial variable @ serves
as a reminder that the average is over trials in which a stimulus impulse occurs in this
position at time ¢ = 0. Estimates 1y, %w_:R?XR — R of the spatiotemporal RFP are
obtained by repeating the above process for all stimulus positions o, weighting each
trial-averaged response r4(; @) by the corresponding spatial stimulus +é(x—xo), and

adding the results such that
Wy (x,t) :t/ +(t;20)6(—m0) dacg (B.5)

Adding the two estimates obtained with positive and negative impulses respectively 3
yields the combined spatiotemporal RFP estimate

e,0) 2 2 [iby(w,1) + (2, 1)

Rather than denoting a fixed spatial position, the notation @; should be interpreted
as the position of the stimulus presented :T" seconds after the stimulus . This position
varies randomly over trials, having a uniform distribution over the support of w so that

(wi(e:)) = w & /°° wi(@) da

-0

Similarly, the average of the jth order cross terms in w(w;) gives the area RI, under
the jth order (spatial) autocorrelation B! of w. Thus the RFP estimates obtained with
positive and negative impulses are identical except for a difference in the sign of the even
order terms, which upon addition (averaging) of the two estimates results in cancellation

of these terms to yield

; _ S SEH0) jgr, 2 /e .
w(x,t) = ]Z;) G 1) wH (g )h2t (t)-l—{f( )(O)w;h(t—zT)

NOVRS Y-S5 h(t—iT)h(t—kT)h(t—IT) + .. }

i#0 k1
This cancellation of the even-order terms — which is not dependent on the present
assumption of spatiotemporal separability or even linearity of the RFP — can be seen to
result from a failure of these terms to preserve the sign of the input stimulus, a property
shared by any even-order static nonlinearities occurring prior to the spatial summation
(which are not incorporated in the model of (B.1)). This latter observation provides a

formal basis for the assertion by McLean & Palmer (1989) that

.. spontaneous activity and spatial regions excited by both bright and dark

stimuli tend to cancel.

3This is equivalent to the subtraction of the two estimates obtained by Jones & Palmer (1987b) since
they did not account for the negative sign of the negative contrast stimuli until this stage, whereas it
has already been incorporated in the present analysis in (B.5).
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Assuming that the third and higher odd-order derivatives of f are negligible at the

origin yields

w(z, t) &~ fO0) w(@)h(t) + @ h(t—iT) (B.6)

i#0

where W denotes the DC component (mean value) of w, so that for any given time ¢, 1
is not proportional to w unless the latter has no DC component. The effect on % of such
a DC component is to introduce a DC offset term which is independent of @, but varies
with the time ¢ after presentation of the stimulus. Assuming that the impulse response
function h(t) decays monotonically for ¢ > T', the weighting of this DC term will increase
relative to that of the desired term as each subsequent stimulus is received.

The use of spatiotemporal impulses in the above analysis immitates the ideal ex-
perimental situation which Jones & Palmer (1987b) sought to approximate with finite
rectangular spatiotemporal pulses. The model assumed for the simple cell is a deliber-
ately simple one, consisting of a spatiotemporally separable linear system followed by
a nonlinear function. Spatiotemporal separability was found to hold for approximately
40% of the simple cells examined by Palmer et al. (1991). However, even for such a
simple model and in the absence of the nonlinearity, the proposed reverse correlation
technique does not yield the desired RFP except when that RFP integrates to zero over
its support. The RFP model fitted by Jones & Palmer (1987a) satisfies these conditions
only for odd symmetry (¢ = n7/2,n = £1,43...) which was found to be no more com-
mon than any other value of spatial phase. This finding is consistent with that of Jones
et al. (1987), who noted that the spectral RFP of some simple cells did not appear to
decay to zero for small spatial frequencies.

With the introduction of a nonlinearity, such as the halfwave rectification nonlin-
earity commonly used to model the conversion of somatic membrane potential to fir-
ing rate (see eg. Palmer et al. (1991)), additional terms including those of the form
FEHD(0)w* (2)h+1(t) /(25 + 1)! are introduced, the second term of which is in gen-
eral nonzero, making the estimate @ less reliable for nonlinearities having non-zero higher
odd-order derivatives at the origin. However, in the particular case of the half-wave rec-
tification nonlinearity (with appropriate smoothing at the origin) these odd-order terms
are zero, thereby eliminating this potential source of error. The use of the Taylor series
expansion of f about zero is justified since the cells probed by Jones & Palmer (1987b)
operated around the spiking threshold and were never strongly activated. The existence
and convergence of this expansion is assumed since the relation between membrane po-
tential and firing rate or probability is likely to be appropriately smooth, even though
this is not the case for the idealised halfwave rectification function commonly used to

approximate it.
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Appendix C

GABOR FUNCTION APPLICATIONS IN IMAGE CODING
AND ANALYSIS

Tables C.1 and C.2 present a non-exhaustive summary of applications of Gabor-function
representation schemes to computational tasks involving image coding and analysis. Ta-
ble C.1 indicates whether the chosen Gabor functions are used as filters or expansion
functions in the chosen image representation, the type of information extracted from
the representation, and the type of application. Table C.2 summarises the systematic
variation of the Gabor function parameters over the set chosen for each application.

In the “Application” column of Table C.1, each application is classified into one of the
following categories: texture (Text.) including segmentation (S), discrimination (D) or
classification (C); image compression (Comp.), including vector quantisation (VQ); pat-
tern recognition (PR), perhaps to achieve some type of invariance (I); stereopsis (Stereo.);
and miscellaneous (Misc.). The “Operation” column specifies whether the image is fil-
tered by or expanded using the chosen Gabor functions. Filtering schemes, which include
the discrete window Fourier transform and the wavelet-like transforms by Watson & Ahu-
mada (1983) and Field (1987), may involve either convolution or correlation — denoted
respectively by #g;(x) and xg;(—a) where % indicates 2D convolution — of the image
with each of the chosen Gabor function kernels. Filtering is generally followed by sam-
pling of the result on a grid of Gabor function centres in the input space, the form and
spacing of which are specified in the &y column of Table C.2, which is to be described
shortly. Expansion schemes, including the Gabor expansion and Gabor “wavelet” ex-
pansion, may be implemented either by correlation — denoted *v;(—&) — with the
modulated 2D biorthogonal functions vy (x) £ v(x) - exp{j2r[iAl, kA7) (Porat &
Zeevi, 1988) in the case of the GE, or more generally by relaxation (Relax.) as described
in Chapter 4. The information used for further processing may consist of the real & /or
imaginary parts (R{-}, 3{-}) or the corresponding magnitude and phase (||, Z-) of each
pixel/coeflicient after filtering or decomposition. Representations employing only cosine-
or only sine-phase GRGF's are for convenience classified in the real (R{-}) or imaginary
(3{:}) columns respectively, even though they don’t in fact implement complex-valued
Gabor functions. Applications which adaptively select the outputs of an appropriate
subset of the functions used are indicated in the column marked “Adapt.”.

Table C.2 describes the systematic variation of the Gabor function parameters used



Investigators Operation Information Adapt. Application
xgi(x) | *gi(—x) | *vip(—x) | Relax. || REF T SE}H -] ] £ Text. | Comp. | PR | Stereo | Misc.
® ® ®

® ° ° vQ

Daugman & Kammen (1986)
Daugman & Kammen (1986)
Paler & Bowler (1986)

Turner (1986)

Daugman (1988a; 1989b; 1990) ° °
Daugman (1988a; 1989a; 1989b; 1990) ° ° ° o
Porat & Zeevi (1988) ° ° ° ® °
Buhmann et al. (1989)
Clark & Bovik (1989)
Flaton & Toborg (1989)
Fogel & Sagi (1989) ° D,S
Lawton (1989) ? ° ° ®
Porat & Zeevi (1989) °
Zetzsche & Caelli (1989) o ? ? I
Beck et al. (1990) ° °
Bovik et al. (1990) ° o | o °
Gopal et al. (1990) ° ®

Gutschow & Hecht-Nielsen (1991) ° ° ° ° °
du Buf (1990) =
Leung et al. (1990) i ° °
Rubenstein & Sagi (1990) °
Tan & Constantinides (1990)
Bovik (1991) .
Jain & Farrokhnia (1991) o ° °
Theimer & Mallot (1992) ° ° N °
Wang & Yan (1992) ° ° ° °
Zhou & Chellappa (1992) ° ° ° °

[ BN NN NN ]
[ ]
wn

[ ]
wn

w

w2

w/

v O|g

Table C.1: Applications of Gabor functions in image analysis and machine vision. Corresponding selections of function parameters (where
published) are detailed in Table C.2. Refer to text for an explanation of abbreviations used. Where insufficient information is provided,
“?” indicates the inferred or presumed classification.

061



Investigators

Ty

Ug

C'yjuol

LP

H, )

P LP [ 1]z

Other

1/|uy

|€130|

Other

Daugman & Kammen (1986)

Daugman & Kammen (1986)

Paler & Bowler (1986)

Turner (1986)

Daugman (1988a; 1989b; 1990)

Daugman (1988a; 1989a; 1989b; 1990)

Porat & Zeevi (1988)

Buhmann et al. (1989)

Clark & Bovik (1989)

-

Flaton & Toborg (1989)

Fogel & Sagi (1989)

Porat & Zeevi (1989)

Zetzsche & Caelli (1989)

ve| e | e

Beck et al. (1990)

Bovik et al. (1990)

Gopal et al. (1990)

Gutschow & Hecht-Nielsen (1991)

du Buf (1990)

Rubenstein & Sagi (1990)

Tan & Constantinides (1990)

| e

Bovik (1991)

Jain & Farrokhnia (1991)

Theimer & Mallot (1992)

Zhou & Chellappa (1992)

Table C.2:

explanation of symbols used. Where insufficient information is provided,

Wy

Selection schemes for Gabor function or GEF parameters used in the applications detailed in Table C.1. See text for an

indicates the inferred or presumed classification.
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Representation zp ug s

| Cislug) [ LP [ Hyjjug) [[C TP LP [ T/Two] [ Other [[ F [ 1/Tug] | Jzol | Other
GE,DWFT . ° °
GWE,DWT ° ° °

Table C.3: Illustration of how the image representation schemes discussed in Sections 3.4
and 3.5 would be classified according to the conventions used in Table C.2. See text for
an explanation of symbols used.

to construct the set of Gabor functions used in each of the applications for which this
information is provided. The notation adopted in Table C.2 is as follows. Independent
parameters may be either fixed (F') or distributed evenly on a Cartesian (C), polar (P),
log-polar (L P) or hexagonal (H) grid, the spacing of which is a function of the subscripted
parameter (if any). Linearly or inverse-linearly dependent parameters have a single value
for each value of the independent parameter — indicated in the column heading — on
which they are dependent. With the exception of the application by Turner (1986),
the Gabor function phase parameter ¢ was chosen to be 0, corresponding to a pair of
GRGFs with phases 0 and Z (although in some cases, as indicated, only one or the other
was used). The aspect ratio A of the Gaussian was for most applications 1, and was
invariably chosen to be the same for all Gabor functions employed by the application.
In the former case, the Gaussian rotation parameter 6, is irrelevant, and in both cases,
since the aspect ratio s;/s; remains constant, the variation of the dimensions of the
2D Gaussian window — detailed in the “s” column of Table C.2 — can be completely
characterised by variations of the single parameter s = s; (say). The Gaussian size
parameter s could be: fixed; varied directly with the spatial (|&o|) eccentricity; varied
inversely with the spectral (|ug|) eccentricity; or otherwise varied. The spatial lattice over
which the Gaussian centres are distributed — or equivalently the filtered image sampled
— can be classified as: Cartesian; Cartesian with grid spacing varying inversely with
spatial frequency (Cy/ju,)); log-polar; or hexagonal with grid spacing varying inversely
with spatial frequency (Hjjju,|). The spatial frequency lattice over which the Gaussian
centres are distributed is classified as: Cartesian; polar; log-polar; inversely dependent
on spatial eccentricity (1/]ao|); or varied in some other way. Table C.3 indicates how the

GE, DWFT, GWE and DWT would be classified according to these categories.



Appendix D

STABILITY IN NONLINEAR NETWORKS

D.1 Boundedness of Solutions of the BCP Network

It is required to prove that for bounded inputs {y(t) : |y|| < Y} and bounded starting
points {ug : ||ue|| < U}, with Y,U € R, finite, the trajectory of the system in (6.9)
with A positive diagonal is bounded.

Taking the Euclidean norm in (6.29) and substituting for the spectral norms of the

relevant matrices using the results of Section 6.8 gives

t

Ja(t o, )| < e+ e fg (O F(a)] + () s
0

Now clearly || f(u)|| < F for some finite F' € R,. Thus

t
[u® < fuolle™ M) 4 5 (CYF + Y] [ e mnldlt=) g

to
Omaz(C)F +Y
)‘min(A)

which is equal to ||uol| at ¢ = ¢; and converges exponentially t0 (Gmae(C)F+Y )/ Anin(A).

= ||u0||6—Am.-n(A)(t—to) + [ ] (1 _ e-,\mm(A)(t_fo)>

Thus an upper bound on ||u(t; to, uo)|| is given by

Omaz(C)F +Y Omaz(C)F +Y
{225 Y < e {22 DLV

and solutions of the system will remain bounded, as required. If in addition the system

initialization satisfies

Omaz(C)F +Y
Amin(14)

an upper bound on ||u(t; to, uo)|| is given by

lato]| <

Omasc(C)F +Y
/\min(A)

D.2 Convergence Proof for CGBSB Network

The proof of convergence or quasiconvergence of trajectories of the CGBSB network
starting in the feasible region proceeds along the same lines as the global convergence
proof for the BCP network; the necessary steps and proofs are therefore simply outlined

below.
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Observation D.1 Trajectories of the CGBSB network for which uo € [, €] will under

the system dynamics remain in this region.
This observation is readily verified by inspection of (6.23a).

Observation D.2 Any equilibrium point w* of the CGBSB network for W positive
semidefinite satisfying w* € [C,&] is mapped by B onto a constrained minimum of J(x),
and for each constrained minimum there exists a unique corresponding equilibrium point

u” € [(, €]

Proof. The proof involves establishing that the network output at equilibrium satisfies

the Kuhn-Tucker conditions for a constrained optimum. Let P:R™ — R™" be defined

such that
(0 J#
I v, <(¢ and 7;,>0
Piju) =4 ] 1 we€(G,é) = (D.1)
1 w; >2¢& and 7, <0
0 otherwise
permitting the expression of (6.23a) as
u = P(u)n(u) = —P(uw)I'VJ (D.2)

Setting w = 0 to locate the equilibrium points yields

<0 u; <G
VWluzar | =0 wi € (Gi6)
>0 u; >¢

which upon expression in terms of @ yields the required Kuhn-Tucker conditions provided
Ug € [Ca &]
'The existence and uniqueness of an equilibrium point corresponding to a given con-

strained optimum are both guaranteed by the invertibility of the mapping B.

Theorem D.1 Trajectories of the CGBSB network converge to the set of equilibrium

poinls.

Proof. Trajectories of the CGBSB network are clearly continuous and bounded. Assum-
ing that they are also unique' it is sufficient to show that J(z) is a Liapunov function
for the network, and that it has zero time derivative only at equilibrium points of the
system. Since diagonal matrices commute and P"(u)P(u) = P(u) it follows from (D.2)
that w = P"(u)u. Therefore

d
Y 9Te = —a"T Ba
dt

!which is not obvious since 4 is no longer Lipschitzian, but can be argued through consideration of
the constrained gradient descent strategy implemented by the network, as explained in Section 6.7
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so that since I', B are both positive diagonal, J(z) is a Liapunov function for the network
as required, and has zero time derivative only at equilibrium points of the system.
Since by Observation D.1 trajectories starting in the feasible region will remain in

this region, such trajectories therefore converge to the set of constrained minima of J.

D.3 Uniform Delay on Lateral Connections of BCP Network

We now examine the effect on the BCP network of the introduction of a uniform delay

on all lateral connections.

Observation D.3 The network described by the time-delayed differential equation
u=y(t)—Cflult—71))— Au(t) (D.3)
has the same equilibrium points as the BCP network.

Proof. For a given time-invariant input y, the network at equilibrium at some time ¢,

must by definition satisfy
u(t—71)=u(t) Vi>t,+r7

However, with this substitution, the differential equation (D.3) reduces to that governing
the BCP network with un-delayed lateral connections, and hence has the same equilib-

rium points, as required.

Theorem D.2 The network described by (D.3) is exponentially asymptotically stable for
A positive diagonal provided

12 Apin(A) = ermin@7e(C) >0 (D.4)

Proof. Since f(u) is continuous and Lipschitzian, the solution u(t) = w(t;to, u(T)) for
all T' € [to—,10] of the initial value problem associated with (D.3) is continuous and

unique. The solution is given by
t ¢
u(t) = e A0y (1)) + [ ey (s)ds — / e =0 f(u(s — 7)) ds (D.5)
to to
which can be shown — by a trivial modification of the proof in Appendix D.1 — to be

bounded for A positive diagonal. Subtracting %(t) from a second trajectory v(¢) starting

from v(to) at time ¢y and taking the norm yields

lo(t) ~w()]] < fle= ) fo(to) - ()] +
LI eI F (s = 7)) = Flu(s =r)llds (D)
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Choosing the Euclidean vector norm, substituting the spectral norms given in the proof

of Theorem 6.2 into (D.6) and multiplying both sides by e*min(4)t gives
||'U(t) — u(t)lie/\min(A)t S ||,v(t0) _ u(to)”e,\m,‘n(/l)to 3
t
O'maJJ(C)/ ||'U(S - T) = U(S — T)||e’\m‘"(A)3 ds (D7)
to

Changing the variable in the integral and using the fact that the integrand is non-negative
gives
t ¢
Jo(s = ) = u(s = )l mn4ds < A [ () —u(p) 7 dp
to lo—~T .

Substituting this result into (D.7), applying Gronwall’s Inequality (Reinhard, 1986) and

evaluating the integral in the resulting expression produces the following inequality

lo(t) —u(t)], < €= v (to) — w(to){, e ) (D.8)

where
§ £ erminld)r (D.9a)
N 2 Anin(A) — 00ma(C) (D.9b)

A sufficient condition for exponential stability of the solutions is that 7 is strictly positive.
Note that since (6.28) is already a fairly stringent condition on the system matrices A and
C, the exponential function 8 of 7 in (D.9b) means that if at all, exponential convergence
is only likely to be guaranteed by Theorem D.2 for small delays on the lateral connections.

The issue of limit cycles in the delayed network however remains to be addressed,
awaiting a full convergence analysis along the lines of that performed for the BCP net-

work.



Appendix E

HEBBIAN WEIGHT DEVELOPMENT

Féldiak’s (1989) weight development equations are

W(it+1) = W(t)— aoffdiag (Xy(¢)) (E.la)
QU+1) = Q)+ B[T(1)Ix — diag(Ty (1))Q(t)] (E.1b)

with associated update equations

T & (I- W) Q) (E.22)

Yy(t) = THExT()" (E.2b)

where W(t) is the offdiagonal nxn matrix representing the lateral weights; Q(t) is the
nxm feedforward weight matrix; 7'(¢) is the nxm transfer function of the relaxed network;
Y x and Yy are the mxm input and nxn output (spatial) covariance matrices respectively;
I is the nxn identity matrix; o and § are positive scalars < 1; W(0) is the zero matrix;

and Q(0) is randomly initialised. Now W(¢) and Q(¢) are both time-invariant iff both of
the following hold

Ey = dla,g(Zy) (E3a)
TYx = diag(Xy)Q (E.3b)

Postmultiplying (E.3b) by T'" and substituting using (E.3a) gives
Sy (I = QT") =0 (E.4)

Now Foldidk found that the n rows of T' developed to span the subspace spanned by the

n most dominant eigenvectors of Xx. Thus we can write T as follows
T=[A 0]|X

where A is an nxn matrix of rank n, O is the nx(m — n) zero matrix, and the rows of X
are the n eigenvectors of ¥y in descending order of corresponding eigenvalues. Thus we

can now write
T

OT

Now X¥xX7T is the diagonal matrix containing the eigenvalues of ¥x in descending

Ny =TExT"=|A O | XExX" (E.5)

order. Since Y x is a covariance matrix, it must be non-negative definite, and hence has
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all non-negative eigenvalues. Let us assume that ¥x is of rank r such that n < r < m,
and define the nxn matrix B to be the diagonal matrix containing the first n eigenvalues
of ¥x, and Z to be the (m —n)x(m —n) diagonal matrix containing the remaining (r —n)
non-zero eigenvalues as its first (r —n) diagonal entries, and zeros elsewhere. Then from
(E.5)

B O AT
or Z oT
Now since A and B are both of full rank, then so is the right hand side of (E.6), giving
that Xy is also of full rank. This gives

Sy=]4 0] = ABA" (E.6)

QT =1 (E.7)
as the only possible solution to (E.4). Now substituting (E.2a) into (E.7) we have
QRII-W)" =1 (E.8)

Since W is initialised symmetrically, and according to (E.1a) receives only symmetrical
updates, ] — W is symmetric, and so is its inverse. Note that if the inverse does not
exist, then the weight update algorithm fails in trying to evaluate T, so we only consider

the case where it does exist. Thus (E.8) becomes
QQT=1-w

which is the desired result.
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