HUMAN MYELOID DIFFERENTIATION ANTIGENS

Alan Bruce Lyons, B.Sc. Hons (Adelaide),
Department of Microbiology and Immunology,
The University of Adelaide.

A thesis submitted for the degree of
Doctor of Philosophy, Faculty of Science

June, 1987
Awarded 13/12/87
ABSTRACT

This thesis is concerned with the identification and characterization of antigens defined by monoclonal antibodies (MoAb's) that can be used in the investigation of human myeloid haemopoiesis and differentiation.

A model system for the study of human monocytic differentiation was investigated. It was found that cells of the human myelomonocytic cell line RC-2A would differentiate towards macrophages when treated with a source of lymphocyte derived factors obtained from mitogen stimulated human peripheral blood mononuclear cells.

A panel of MoAb's was used to investigate the surface marker changes involved in this process, and in addition, new MoAb's were produced which were myeloid specific. A colorimetric assay for screening MoAb's to cell surface antigens was modified to enhance its sensitivity, in an attempt to maximise the chances of identifying MoAb's binding to antigens of low copy number.

Cells of the human myelomonocytic line RC-2A were induced to differentiate towards macrophages by culturing for up to twelve days in the presence of supernatant from phytohaemagglutinin stimulated human peripheral blood mononuclear cells (PHA-LCM). The process of differentiation was monitored by changes in expression of two macrophage related enzymes (a-Naphthol Butyrate Esterase and Acid Phosphatase), the changes in expression of the monocyte/macrophage cell surface markers detected by the monoclonal antibodies anti-Mo1 and anti-Mo2, Ia antigen detected by the monoclonal antibody FMC-14, and alteration in cell morphology.
RC-2A cells over a period of 8 days culture in the presence of PHA-LCM expressed α-Naphthol Butyrate Esterase very strongly compared to untreated cells, and de novo Acid Phosphatase activity was found within lysosomal granules. Such a pattern of enzymic expression is typical of macrophages. Investigation of cell surface markers detected by MoAb's showed changes consistent with differentiation towards macrophages, with the binding of α-Mo1 and α-Mo2 increasing. Induced RC-2A cells were able to stimulate in one-way Mixed Leukocyte Culture more effectively than control cells. Maturation induced by PHA-LCM was accompanied by a marked decrease in the proliferative potential of the cell population, and a reduced ability to form colonies in semi-solid medium. After 9 days in culture with PHA-LCM, these RC-2A cells had only 3% of the clonogenic potential of control untreated cells, suggesting that differentiation was accompanied by an irreversible loss of proliferative ability.

Investigations into the effects of the recombinant human biological factors tumour necrosis factor (TNF), Y-Interferon, Granulocyte-Macrophage colony stimulating factor (GM-CSF) and Granulocyte colony stimulating factor (G-CSF) revealed that none of these alone could induce the full complement of differentiation effects mediated by PHA-LCM, suggesting full differentiation is likely to be a multifactorial process. For example, of the four factors investigated, only Y-Interferon and G-CSF were able to reduce the clonogenic potential of RC-2A cells, and only Y-Interferon was able to increase the expression of α-Naphthol Butyrate Esterase. The alteration of antigen expression on RC-2A cells mediated by Y-Interferon and TNF was quite different to the pattern of expression induced by PHA-LCM.
A polyclonal antiserum against RC-2A cells raised in mice and absorbed with the autologous B lymphocyte cell line Cess B, was shown to increase the proliferation of RC-2A cells at appropriate dilutions, demonstrated by a 3 fold increase in \(^{3}H\)-thymidine uptake. The antiserum was also able to stimulate the formation of exclusively macrophage colonies in semi-solid agar culture of human bone marrow mononuclear cells. These properties were not shared by normal mouse serum, suggesting the feasibility of raising monoclonal antibodies with functional effects on haemopoietic cells.

In an effort to isolate MoAb's which exerted functional effects on RC-2A cells, in addition to those recognising human myeloid differentiation antigens, a screening assay was required which would identify antibodies binding antigens of low copy number. A previously described assay for detecting MoAb's binding to cell surface antigens, called the Rose Bengal Assay (RBA), was modified to give increased sensitivity. This assay involved coating the wells of 96-well microtitre trays with an anti-murine immunoglobulin reagent, allowing any immunoglobulin in test hybridoma supernatants to bind. Then target cells were added, which would be bound to wells that contained specific antibody from the hybridoma supernatant. Bound cells were stained with Rose Bengal dye, and optical density at the relevant wavelength correlated with presence of antibody specific to the target cells. During the course of these investigations, a number of antibodies reproducibly demonstrated binding to target cells in the RBA, but gave negative or very weak binding in indirect immunofluorescence assay, and would probably have been overlooked had such an assay been used for the initial screening process.
Hybridomas were produced by fusion of spleen cells from mice immunised with RC-2A cells with cells of the murine myeloma line x63Ag8.653, and selection in HAT medium. Hybrids were screened using the RBA, and those which produced antibody binding to RC-2A, but not to the autologous B lymphocyte cell line Cess B, were chosen for cloning by limit dilution and further investigation. Eventually, five differing MoAb's were selected to be characterised more fully. These MoAb's were screened for functional effects on RC-2A cells and haemopoietic cells, but were found to have no activity in the systems studied. The binding pattern of these five MoAb's to human haemopoietic cell lines, normal blood cells and tissue sections was determined, and their specificity for human haemopoietic progenitors was studied using negative selection by complement mediated cell lysis. The molecular weights of antigens detected by the MoAb's were determined for four of the five antibodies. Comparisons between these antibodies and those described in the literature suggest that the specificities of two of the MoAb's obtained may be different to those of antibodies previously published.
CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>-</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>vi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER 1: Introduction

1.1.1 Differentiation - - - - 1
1.1.2 Haemopoietic differentiation - - - - 1
1.1.3 Models of commitment to differentiation - - - - 3
1.1.4 Clonal culture of haemopoietic progenitor cells - - - - 7
1.1.5 Properties of the colony stimulating factors - - - - 9
1.1.5.1 Murine CSF's- - - - - 9
1.1.5.2 Human CSF's - - - - 11
1.1.5.3 Other haemopoietic growth factors - - - - 14
1.1.5.4 Functional effects of CSF's on mature cells - - - - 15
1.1.5.5 In vivo activity of the CSF's - - - - 15
1.2.1 Myeloid cell lines: Suitability and usefulness as models of haemopoietic differentiation - - - - 16
1.2.2 Induction of differentiation of myeloid cell lines - - - - 19
1.2.3 Induction of differentiation of HL-60 - - - - 20
1.2.3.1 Granulocytic differentiation of HL-60 - - - - 21
1.2.3.2 Monocyte/macrophage differentiation of HL-60 - - - - 22
1.2.4 Induction of differentiation in other human myeloid cell lines - - - - 24
1.2.5 Identity of biologically-derived agents which induce differentiation in myeloid cell lines - - - - 28
1.2.6 Myeloid cell lines: Summary - - - - 32
1.3.1 Monoclonal antibodies and haemopoietic differentiation - - - - 33
1.3.2 Monoclonal antibodies to human myeloid antigens - - - - 34
1.3.3 Less well-defined monoclonal antibodies - - - - 38
1.3.3.1 MoAb's with relative affinity for myeloid progenitor cells - - - 38
1.3.3.2 MoAb's with functional effects on myeloid cells 40
1.3.3.3 Miscellaneous MoAb's to myeloid cells - 41
1.3.4 Classification of myeloid leukaemia using MoAb's 43
1.3.4.1 Prognostic significance of anti-myeloid MoAb's 49
1.3.4.2 Lineage fidelity - - - 50
1.3.4.3 Clonogenic cells in AML - - 51
1.3.4.4 MoAb's with potential therapeutic uses. - - 52
1.4 Aims of the project - - - 53

CHAPTER 2: Materials and methods.

2.1 Buffers and general reagents - - - 55
2.2 Antisera - - - 56

2.2.1 Preparation of rabbit antiserum to mouse immunoglobulin- - - 56

2.2.2 Preparation of goat antiserum to mouse immunoglobulin- - - 57

2.2.3 Affinity purification of goat antibodies to mouse immunoglobulin - - - 58

2.2.4 Labelling of antibodies with I^{125} - - 59
2.2.5 Labelling of antibodies with FITC - - 60

2.3 Tissue culture - - - 60

2.3.1 General tissue culture medium - - 61

2.3.2 IMDM; Single strength - - - 61
2.3.3 IMDM; Double strength - - - 62

2.3.4 In vitro culture of cell lines - - 62

2.3.5 Human haemopoietic cell lines - - 63
2.3.6 Cryopreservation of cells - - 63

2.3.7 Thawing of frozen cells - - 64
2.4 Isolation of human haemopoietic cells

2.4.1 Preparation of peripheral blood mononuclear cell fraction

2.4.2 Preparation of peripheral blood polymorphonuclear cell fraction

2.4.3 Preparation of peripheral blood erythrocytes

2.4.4 Preparation of bone marrow mononuclear cells

2.4.5 Preparation of bone marrow nucleated cells

2.4.6 Preparation of cord blood mononuclear cells

2.4.7 Determination of cell morphology

2.5 Immunoassay of MoAb binding to haemopoietic cells

2.5.1 Indirect immunofluorescence assay of MoAb binding to haemopoietic cells

2.5.2 Manual scoring of FITC-Sheep/Goat anti-mouse labelled cells

2.5.3 Flow cytometric scoring of FITC-Sheep/Goat anti-mouse labelled cells

2.5.4 Haemagglutination assay

2.6 Culture of myeloid progenitor cells

2.6.1 Production of lymphocyte conditioned medium (PHA-LCM)

2.6.2 Culture of myeloid progenitor cells in semi-solid medium

2.6.3 Triple stain of myeloid colonies

2.7 Determination of molecular weights of proteins detected by MoAb's to cell surface antigens

2.7.1 Immunoadsorption of biotinylated cell surface proteins

2.7.2 Polyacrylamide gel electrophoresis of immunoadsorbed cell surface proteins

2.7.3 Polyacrylamide gel electrophoresis; reagents and method

2.7.4 Western transfer onto nitrocellulose of proteins separated by electrophoresis

2.7.5 Detection of biotin-labelled protein on nitrocellulose paper
CHAPTER 3: Studies on the differentiation of the human myelomonocytic cell line RC-2A in response to lymphocyte derived factors.

3.1 Introduction

3.2 Materials and methods

3.2.1 Cell line

3.2.2 Preparation of PHA-LCM

3.2.3 Induction of differentiation of RC-2A cells with PHA-LCM

3.2.4 Culture of RC-2A cells in the presence of purified/clone human growth factors

3.2.5 Cytochemical stains

3.2.6 Indirect immunofluorescence assay of surface marker expression

3.2.7 Optimization of growth of RC-2A cells in semi-solid agar

3.2.8 Clonal assay of cellular proliferative potential

3.2.9 Ability of purified/clone growth factors to replace the requirement of RC-2A cells for RC-2A conditioned medium for the formation of colonies in semi-solid agar

3.2.10 One-way mixed leukocyte culture

3.2.11 Production of a polyclonal murine antiserum to RC-2A cells

3.2.12 Effect of adsorbed anti-RC-2A serum on \(^{3}H\)-Thymidine uptake by RC-2A cells

3.2.13 Effect of adsorbed anti-RC-2A serum on bone marrow myeloid progenitor cells

3.3 Results

3.3.1 Growth characteristics of RC-2A cells

3.3.2 Effect of differentiation inducers on \(\alpha\)-Naphthol-Butyrate esterase expression by RC-2A cells
3.3.3 Effect of differentiation inducers on morphology of RC-2A cells - - - 92
3.3.4 RC-2A surface marker expression changes caused by inducers of differentiation - - 93
3.3.5 The effect of differentiation inducing agents on the clonogenic potential of RC-2A cells - 95
3.3.6 Ability of cloned/purified growth factors and PHA-LCM to replace the requirement for RC-2A conditioned medium for culture of RC-2A cells in semi-solid agar - - - 96
3.3.7 Effect of culture of RC-2A cells in the presence of PHA-LCM on their ability to stimulate in one-way mixed leukocyte culture - - - 97
3.3.8 Effect of anti-RC-2A serum on uptake of ³H-Thymidine by RC-2A cells - - - 97
3.3.9 Effect of anti-RC-2A serum on bone marrow myeloid progenitor cell growth - - - 97

3.4 Discussion

CHAPTER 4: Development of an improved screening method for monoclonal antibodies binding to cell surface antigens.

4.1 Introduction - - - - 105
4.2 Materials and methods - - - 106
4.2.1 Monoclonal antibodies and sera - - 106
4.2.2 Cell lines - - - 106
4.2.3 The rose bengal assay - - - 107
4.2.4 Indirect immunofluorescence - - 108
4.2.5 Whole cell radioimmunoassay - - 108
4.3 Results - - - - 109
4.3.1 Optimisation of the RBA - - - 109
4.3.2 Comparison with whole cell RIA - - 109
4.3.3 Comparison with manual indirect immunofluorescence 110
4.3.4 Comparison with indirect immunofluorescence scored by flow cytometry - - - 110
4.3.5 Screening of an anti-AML fusion: Comparison with RIA - - - 111
CHAPTER 5: Production of monoclonal antibodies binding to human myeloid cells.

5.1 Introduction - - - 116
5.2 Materials and methods - - - 117
5.2.1 Immunization of mice - - - 117
5.2.2 Preparation of single cell suspensions from mouse spleen and thymus - - - 118
5.2.3 Production of monoclonal antibody secreting murine hybridomas - - - 118
5.2.4 Screening by RBA - - - 120
5.2.5 Screening by 3H-Thymidine uptake assay - - 120
5.2.6 Limit dilution cloning of antibody producing murine hybridomas - - - 121
5.2.7 Expansion of hybrids - - - 122
5.2.8 Determination of immunoglobulin sub-class by radial immunodiffusion - - - 122
5.2.9 Determination of immunoglobulin concentration 123
5.3 Results - - - 125
5.3.1 Screening by RBA - - - 125
5.3.2 Screening for ability to alter 3H-Thymidine uptake by RC-2A cells - - - 125
5.3.3 Limit dilution cloning of antibody secreting hybridoma cells - - - 126
5.3.4 Immunoglobulin sub-classes of monoclonal antibodies 128
5.3.5 Establishment of frozen stocks of hybridoma cells, and of supernatants - - - 128
5.3.6 Concentrations of immunoglobulin in MoAb stocks 129
5.4 Discussion - - - 129
CHAPTER 6: Characterization of monoclonal antibodies binding to human myeloid cells.

6.1 Introduction - - - - 130
6.2 Materials and methods - - - - 131
6.2.1 Estimation of molecular weights of antigens detected by anti-myeloid MoAb's - - 132
6.2.2 Binding to human haemopoietic cell lines - 132
6.2.3 Binding to normal peripheral blood leukocytes and erythrocytes, and bone marrow nucleated cells 132
6.2.4 Complement mediated cell lysis of cord blood progenitor cells - - - 133
6.2.5 Immunohistochemistry - - - 134
6.2.6 The effects of purified growth factors and PHA-LCM on the surface marker expression of RC-2A cells 135
6.2.7 Effects of antibodies on differentiation of RC-2A cells and cord blood myeloid progenitor cells 135
6.2.8 Binding of antibodies to peripheral blood leukocytes of AML patients - - - 136
6.3 Results - - - - 137
6.3.1 Molecular weights of antigens detected by anti-myeloid MoAb's - - - 137
6.3.2 Binding to human haemopoietic cell lines - 138
6.3.3 Binding to human peripheral blood leukocytes and erythrocytes, and bone marrow nucleated cells 138
6.3.4 Complement mediated cell lysis of myeloid progenitors from cord blood. - - - 139
6.3.5 Immunohistochemistry - - - 140
6.3.6 Binding to RC-2A cells treated with inducers of differentiation - - - 141
6.3.7 Functional effects on RC-2A cells and myeloid progenitor cells - - - 141
6.3.8 Binding of antibodies to myeloid leukaemic cells 142

6.4 Discussion

CHAPTER 7: General discussion. - - - 147

BIBLIOGRAPHY - - - - 154