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Abstract 

 

The accurate simulation of pressure transients in pipelines and pipe networks is becoming 

evermore important in water engineering.  Applications such as inverse transient analysis for 

condition assessment, leak detection and pipe roughness calibration require accurate 

modelling of transients for longer simulation periods that, in many situations, requires 

improved modelling of unsteady frictional behaviour.  In addition, the numerical algorithm 

used for unsteady friction should be highly efficient, as inverse analysis requires the transient 

model to be run many times.  A popular model of unsteady friction that is applicable to a 

short-duration transient event type is the weighting function-based type, as first derived by 

Zielke (1968).  Approximation of the weighting function with a sum of exponential terms 

allows for a considerable increase in computation speed using recursive algorithms.  A 

neglected topic in the application of such models is evaluation of numerical error.  This paper 

presents a discussion and quantification of the numerical errors that occur when using 

weighting function-based models for the simulation of unsteady friction in pipe transients.  

Comparisons of numerical error arising from approximations are made in the Fourier domain 

where exact solutions can be determined.  Additionally, the relative importance of error in 

unsteady friction modelling and unsteady friction itself in the context of general simulation is 

discussed. 

 

Introduction 

 

Slightly compressible unsteady pipe flow can be described by two equations that may be 

derived from the Reynolds transport theorem (Wylie and Streeter 1993).  The conservation of 

mass for unsteady pipe liquid flow is represented by 
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where H = head, V = average velocity, a = wave speed, g = gravitational acceleration, θ = 

inclination angle of the pipeline to the horizontal, t = time and x = distance.  The conservation 

of linear-momentum for unsteady pipe liquid flow is represented by 
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where hfS and hfU are the quasi-steady and unsteady components of the total unsteady head 

loss per unit length.  Eqs. 1 and 2 are two non-linear hyperbolic partial differential equations 

that are typically solved using the method of characteristics (MOC).  The convective 

acceleration terms (V.∂H/∂x and V/g.∂V/∂x) and the slope term (Vsinθ) are typically small for 

low Mach number flows and hence are neglected in the following analysis.  The term hfS in 

Eq. 2 is given by the Darcy-Weisbach relationship as hfS = fV|V|/2gD where D = pipe diameter 

and f = steady-state Darcy-Weisbach friction factor.  This paper is concerned with the 

accurate and efficient calculation of the term hfU in Eq. 2. 

 

Background 

 

Zielke (1968) developed an analytical solution for the unsteady shear stress in laminar flows 

in the Laplace domain.  The implementation incorporated a two-dimensional axi-symmetric 

laminar flow solution that had the desirable property that it could easily be applied to the one-

dimensional unsteady pipe flow equations and, in particular, in the widely used MOC.  The 

Zielke (1968) solution for the unsteady head loss per unit length, hf, is 
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where ν = kinematic viscosity, W = weighting function and ∗ represents convolution.  The 

unsteady head loss term is a convolution of past fluid accelerations with a weighting function.  

Herein, this type of model is referred to as a weighting function-based (WFB) model.  Zielke 

(1968) determined a weighting function applicable to laminar flows.  Weighting functions 

exist for smooth-pipe turbulent flows (Vardy and Brown 1995, 1996, 2003; Zarzycki 1997, 

2000) and rough-pipe turbulent flows (Vardy and Brown, 2004a). 

 

The WFB model takes into account the two-dimensional behaviour of the velocity profile that 

results in frequency-dependent attenuation and slight frequency-dependent dispersion of the 

transient.  Previous research has demonstrated the accuracy of WFB models for unsteady 

friction simulation.  Vardy and Hwang (1991) showed good matches between a two-

dimensional shell model of transient laminar flow and the Zielke weighting function.  

Ghidaoui and Mansour (2002) showed that the Vardy-Brown weighting function produced 

good matches with the quasi-2D model of Pezzinga (1999) for smooth pipe turbulent flow and 

with experimental data.  It should be noted that WFB models give good agreement for flows 

with strong transients, but less agreement when applied to continuous acceleration or 

deceleration in turbulent flows. 

 

Numerical Computation of hfU in Weighting Function-Based Models 

 

A number of different approaches have been proposed to evaluate the convolution in Eq. 3.  

Zielke (1968) implemented the weighting function for laminar flow as a full convolution in 

the MOC grid, and this implementation is herein called the full convolution method.  The 

convolution integral was approximated using the rectangular rule and the acceleration term 

was approximated using a centred finite difference as 
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where M = t/∆t − 1.  This implementation is very computationally intensive requiring a 

convolution at every point in the MOC grid in both space and time.  Additionally, as the 

simulation time increases the computational cost of the convolution (which uses increasingly 

longer time periods) increases dramatically. 

 

Trikha (1975) improved computation speed by approximating Zielke’s weighting function 

using a sum of three exponential terms and formulating an approximate recursive relationship 

that eliminated the need for convolution (discussed in more detail in the following sections).  

The unsteady head loss for Trikha’s formulation is 
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where the variables yk are defined as 

 ( ) ( ) ( )[ ] ( )tyetVttVmtty k
n

kk
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and where N = number of exponential terms (N = 3 for the Trikha 1975 formulation), ∆τ 

(= 4ν∆t/D2) is the dimensionless time step and nk and mk are coefficients of the exponential 

sum used to approximate the weighing function.  The method requires the storing of N 

additional variables yk at each space location in the MOC, but does not require costly 

convolutions.  Although the approximation improved computational speed, this was at the 

expense of solution accuracy. 

 

Following Trikha (1975), Kagawa et al. (1983) provided a more accurate solution by fitting a 

higher number of exponential terms (up to N = 10) to the weighting function for laminar flow.  
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The number of exponential terms used in the formulation depended on the value of ∆τ.  The 

Kagawa et al. (1983) formulation uses Eq. 5, but the recursive expression for yk is defined as 

 ( ) ( ) ( )[ ] ( )tyetVttVemtty k
nn

kk
kk τ∆−τ∆− +−∆+=∆+ 5.0  (7) 

 

Suzuki et al. (1991) noticed that the original weighting function of Zielke (1968) already 

comprised an exponential part for τ > 0.02.  Therefore, the full convolution method was used 

for τ < 0.02 and the Kagawa et al. (1983) approach was used for τ > 0.02.  However, for cases 

with ∆τ << 0.02 the majority of the analysis required full convolution for most applications, 

thus relinquishing efficiency gains.  The Suzuki et al. (1991) formulation is as follows 
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where the variables yk are defined as 
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and where M is equal to the maximum integer that does not exceed (0.02/∆τ + 0.5). 

 

Schohl (1993) proposed a different recursive convolution algorithm that was derived by 

assuming the acceleration term in the convolution integral is constant between time steps, thus 

allowing full integration of the weighting function between time steps.  The Schohl (1993) 

formulation uses Eq. 5, but the recursive expression for yk is defined as 
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Whereas the previous recursive formulations were only applicable to laminar flows, 

Vítkovský et al. (2004) defined accurate approximations of the weighting function for laminar 

(Zielke 1968), smooth-pipe turbulent flows (Vardy and Brown 1995, 1996, 2003; Zarzycki 
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1997, 2000) and rough-pipe turbulent flows (Vardy and Brown 2004a).  Like the Kagawa et 

al. (1983) approach, the number of exponential terms used in the weighting function 

approximation, N, depends on the value of ∆τ. 

 

Sources of Error in Weighting Function-Based Models 

 

One generally overlooked problem in the study of weighting function-based (WFB) unsteady 

friction models in pipe transients are the errors associated with the implementation of the 

WFB models and the effects of these errors on simulation.  A list of different error types in 

WFB model implementation is as follows: 

 

a) Weighting Function Approximation Error.  The computation of unsteady friction using 

WFB models is most efficiently performed using the recursive convolution method.  This 

method requires that the weighting function be approximated with a series of exponential 

functions.  Error occurs when approximating the weighting function in such a way. 

b) Convolution Approximation Error.  WFB models are implemented as a weighting 

function convoluted with past accelerations.  The integration in the convolution must be 

evaluated numerically in the finite difference grid and, therefore, is susceptible to error. 

c) Grid Separation Error.  Many formulations that apply WFB models in the MOC utilise a 

rectangular MOC grid.  In these cases the WFB model ties together the two separate 

diamond grids that comprise the rectangular grid and, because each diamond grid is 

exposed to slightly different boundary conditions, causes a numerical oscillation in the 

simulation results. 
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Although the predominant method of transient analysis is the MOC, it should be noted that 

error types (a) and (b) would be common to other numerical schemes used for transient 

analysis, such as the Preissmann scheme; however, error type (c) is specific to the MOC 

scheme. 

 

Finally, it should be noted that these error types are only related to the numerical application 

of WFB models in a finite difference grid.  Additional error is made in the approximation of 

the true physical behaviour during the derivation of the weighting function approach.  This 

error includes the applicability of the “frozen viscosity” assumption, the assumed viscosity 

profile, and the axi-symmetric flow assumption (Zielke 1968; Vardy and Brown 1995, 1996, 

2003, 2004a; Zarzycki 1997, 2000).  Additionally, error is generated when a simplified 

weighting function form is fitted to a wide range of Reynolds numbers and relative roughness 

(Vardy and Brown 1995, 1996, 2003, 2004a; Zarzycki 1997, 2000).  Although most papers 

specify some error tolerance that was achieved during the fitting of the simplified weighting 

function, it is unclear what the actual effect of the simplification is on simulation results. 

 

Weighting Functions used in Numerical Error Studies 

 

The numerical error analyses presented in this paper can be applied to any weighting function.  

However, for the purposes of the present paper, the weighting function considered for the 

studies of numerical error is of the Vardy-Brown type.  Vardy and Brown (1995) developed a 

weighting function in the form 

 ( )
τ

=τ
τ− ** B

true
eAW  (11) 

where A* and B* (= 1/C*, where C* is the shear decay coefficient) are fitted coefficients to a 

more complex theoretical weighting function.  For turbulent flows, A* and B* are dependent 
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on the Reynolds number (Re) of the instantaneous mean flow velocity and the relative 

roughness (ε/D).  Vardy and Brown (2003) developed their coefficients for smooth pipe 

turbulent flow by linking the linearly varied frozen turbulent viscosity in the shear-layer with 

a uniform, but finite, viscosity in the core.  The coefficients A* and B* were subsequently 

calculated as 

 
π
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2
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8612.
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The coefficients are valid for the range 2,000 < Re < 108.  Additionally, Vardy and Brown 

(2004a) developed coefficients for fully-rough turbulent pipe flow as 
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The coefficients are valid for the range 10−6 < ε/D < 10−2. 

 

Weighting Function Approximation Error 

 

Due to the almost prohibitively slow computation of hfU using the full convolution method 

(Zielke 1968), it is most advantageous to use the recursive convolution methods (Trikha 1975, 

Kagawa et al. 1983, Suzuki et al. 1991, Schohl 1993).  The recursive convolution method 

relies on the approximation of the weighting function by a sum of exponential terms.  The 

weighting function approximation is 

 ( ) ∑
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τ−=τ
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k
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kapp

kemW
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 (14) 

The coefficients of the exponential sum must be fitted such that the approximate weighting 

function resembles the true weighting function.  Vítkovský et al. (2004) presented such 

approximations for laminar, smooth-pipe turbulent and rough-pipe turbulent weighting 
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functions.  These approximations should be regarded as all-purpose or general in nature and 

have a high accuracy when an appropriate number of exponential terms are selected. 

 

Allowing a small decrease in solution accuracy can save computational time.  Consider the 

example pipeline in Figure 1 with the parameters for “Case #1” from Table 1.  A transient 

event is generated by the instantaneous full closure of the valve from a fully open position. 

Two approximations of the weighting function are tested using three (N = 3) and ten (N = 10) 

exponential terms fitted in accordance with the procedure outlined in Vítkovský et al. (2004).  

The weighting function for each approximation is shown in Figure 2(a).  The head response at 

the valve is shown in Figure 2(b) and demonstrates that even though a greatly reduced number 

of exponential terms are used in the N = 3 case, the simulation results are reasonable with 

respect to the true results. 

 

The effect of the weighting function approximation error can be separated from the behaviour 

of the pipeline system by considering the unsteady head loss component of hfU in the 

frequency domain.  This error, EA, is the ratio of the Fourier transforms of the approximate hfU 

to the true hfU and is 

 ( ) ( )
( )true

app
A W

W
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ω′

ω′
=ω′ ˆ

ˆ
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where ω′ = dimensionless angular frequency (= ωD2/4ν) and “^” represents a Fourier 

transformed variable.  The Fourier transforms of the true weighting function and the 

approximate weighting function are 
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The magnitude of EA represents the amount of damping caused by the approximation, while 

the argument of EA represents the difference in phase.  Figure 3 shows EA for the N = 3 and 
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N = 10 approximations of the weighting function and shows that W is well approximated by 

the N = 3 case for small ω′ (i.e., low frequencies), but not for large ω′ (i.e., high frequencies).  

However, transient events, such as a valve closure, comprise predominantly low frequency 

components with less significant magnitude high frequency components.  Therefore, for a 

valve closure event, errors in the weighting function in the high frequency range have less 

effect than errors in the weighting function in the low frequency range.  This behaviour is 

explained in more detail later in the paper. 

 

While the approximation of the weighting function shown in Vítkovský et al. (2004) applied 

over a large τ range and for up to 10 exponential terms, it is possible to tune the 

approximation of the weighting function (in terms of the τ range and number of exponential 

terms) to a particular problem for both accuracy and efficiency.  Because there are two 

competing objectives, namely the approximation accuracy and computational efficiency, a 

single solution does not exist.  Rather, there is an optimal front of solutions.  The number of 

exponential terms (N) used in the weighting function approximation is a good surrogate for 

the computational efficiency.  The accuracy of the weighting function approximation can be 

defined in a number of different ways, two of which are considered in this paper.  The first 

measure of accuracy is the sum of the squares of the relative errors in the weighting function 

(EW), 
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where Wtrue = true weighting function, and Wapp = approximate weighting function.  The 

measure EW is the objective function used to fit the parameters of the approximate weighting 

function (Eq. 14).  The second measure of accuracy is the sum of the squares of the 

standardised head response error (EH), 
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where Htrue = true head response using Wtrue, Happ = approximate head response using Wapp, 

and Href = reference head that is non-zero and representative of the pressure in the system.  

Essentially, the difference between EW and EH is that fitting with EW does not assume 

anything about the transient event, while on the other hand; fitting with EH depends on the 

characteristics of the transient event.  Hence, an optimal weighting function fitted with EH for 

one transient event will be sub-optimal for different transient event.  Fitting the weighting 

function with EW generally gives more robust results in terms of the simulation of a range of 

transient events.  The parameters for the approximation of the weighting function are the 

number of exponential terms (N) and the τ range [τmin, τmax].  For a particular transient 

problem, the lower bound of the τ range is defined by the time step used in the simulation 

(i.e., τmin = 4ν∆t/D2).  The upper bound of the τ range τmax may be based on the total 

simulation time (i.e., τmax = 4νT/D2, where T is the total simulation time), but this results in an 

overly conservative estimate (as shown later).  Subsequently, the upper bound τmax and N 

remain to be determined. 

 

For the transient problem under consideration, an investigation into the approximation 

accuracy and computational efficiency has been performed.  The reference head Href is chosen 

as the initial pressure at the valve preceding the transient event.  The lower bound of the τ 

range is set as τmin = 10−6.  The exponential coefficients are fitted for all combinations of 

N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and τmax = {10−5, 10−4, 10−3, 10−2, 10−1}.  Figure 4(a) shows 

the values of EW for different values of N and τmax.  Generally speaking, the greater the 

number of exponential terms, and the smaller the τ range, the better the weighting function 

approximation (i.e., the lower EW). 
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A more interesting set of curves is found in Figure 4(b), in which the accuracy of the head 

response is considered (using EH) based on the fits using EW.  Ultimately, the accuracy 

measure based on the head response (EH) is the more important for transient simulation.  

Figure 4(b) shows that given a particular number of exponential terms there exists a 

maximum accuracy (minimum value of EH) when τmax ≈ 10−3.  This value corresponds to the 

point at which W(τmin)/W(τmax) ≈ 103, and suggests that contributions to unsteady friction for 

large τmax are small given that W(τmin)>>W(τmax).  Therefore, since τmin is defined by the 

computational time step, τmax can be defined by the point at which W(τmin)/W(τmax) ≈ 103.  The 

main factor that influences the ratio W(τmin)/W(τmax), and hence the determination of τmax, is 

the parameter B* in the weighting function (Eq. 11).  Figure 5(a) shows the variation of B* 

with the Reynolds number (Re) of the flow and the relative roughness (ε/D) of the pipe.  As 

Re and ε/D increase, the value of B* increases, with the resulting weighting function 

becoming steeper, and thus reducing the size of the τ range required.  Figure 5(b) shows the 

relationship between τmin and τmax (and hence the τ range) for a given value of B* such that 

W(τmin)/W(τmax) = 103.  Together, Figure 5(a) and Figure 5(b) define a reasonable τ range for 

transient simulation.  An adequate number of exponential terms can be determined by 

increasing from N = 1 until a prescribed level of accuracy has been achieved (see Figure 

4(b)).  A procedure to tune the parameters of the weighting function approximation for both 

efficiency and accuracy for a particular transient event is: 

 

1. Define τmin as equal to the dimensionless time step ∆τ. 

2. Calculate B* from Re and ε/D for the particular initial flow conditions and pipe roughness 

using the appropriate Eq. 12 or 13. 

3. Determine a reasonable τmax using Figure 5(b). 
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4. Using Eq. 18 to define an error for the particular transient event, increase the number of 

exponential terms from N = 1 until a prescribed level of accuracy, as defined by the 

engineer or required by the application, is attained. 

 

While the original version of this paper was under review, Vardy and Brown (2004b) 

presented a paper that also considered the trade-off between the number of exponential terms 

and the accuracy of the weighting function approximation.  Their approach for fitting the 

exponential terms was quite efficient and did not require the use of a minimization algorithm.  

However, their approach did require an assumption as to the location of the points of 

coincidence between the true and approximate weighting functions (knots).  The approach 

used in the present paper for the fitting of the exponential terms was based on a minimization 

algorithm and, although more time consuming, does not make such an assumption.  It should 

be noted that the weighting function approximation in Vítkovský et al. (2004) uses a scaling-

approach and does not require re-fitting (by minimisation) for different Reynolds numbers 

flows and pipe relative roughnesses, whereas the Vardy and Brown (2004b) approach does 

require re-fitting. 

 

Convolution Approximation Error 

 

A source of numerical error in the implementation of WFB models that is typically 

overlooked is the approximation of the convolution of the weighting function with the fluid 

acceleration.  Evaluation of error in the convolution is fundamental, since even the most 

brilliantly derived weighting function can be rendered useless by poor convolution 

implementation.  This error is best assessed in the frequency domain where the convolution 

integral can be evaluated exactly and used as a benchmark.  A measure of the convolution 
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error, EC, can be defined as the ratio of the “approximate” and “true” Fourier transforms of 

the unsteady head loss component hfU (see Eq. 3) as 

 ( ) ( )
( )truefU

appfU
C

h

h
E

ω

ω
=ω ˆ

ˆ
 (19) 

The quantity EC represents the convolution approximation error and is a function of the 

frequency of disturbance, grid spacing in time and the weighting function.  The absolute value 

and argument of EC define the magnitude and phase errors associated with the convolution 

approximation error.  Determination of EC requires that hfU(t)app for the recursive convolution 

algorithms be written in a full convolution form.  This is achieved by successively 

substituting yk into hfU resulting in an infinite sum that, in the limit, does not depend on yk. 

 

The convolution approximation error for the Zielke (1968) convolution algorithm is 
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where sinc(x)=sin(πx)/(πx) and is commonly termed the “sampling function.”  The 

convolution approximation error for the Trikha (1975) recursive algorithm is 
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The convolution approximation error for the Kagawa et al. (1983) and Suzuki et al. (1991) 

recursive algorithms is 
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The convolution approximation error for the Schohl (1993) recursive algorithm is 
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Note that all formulae for hfU and EC are given in terms of a generic weighting function W 

even though all recursive algorithms are only designed for weighting functions comprising a 

sum of exponential terms. 

 

As an example, the smooth-pipe turbulent weighting function (Eq. 12) with a Reynolds 

number of 10,000 is used for calculation of EC.  Figure 6 shows both the magnitude and phase 

errors of the convolution approximation error for the different convolution algorithms.  The 

analysis is given in terms of the dimensionless frequency ratio ω/ωgrid where ωgrid is the 

angular frequency of the grid (ωgrid = 2π/∆t). 

 

The Trikha (1975) algorithm performs poorly and approaches the error of the other algorithms 

only for the smallest dimensionless time step (∆τ = 10–6).  The Zielke (1968) algorithm 

performs slightly worse than the Kagawa et al. (1983) and Suzuki et al. (1991) algorithms.  

This is because the Zielke (1968) algorithm is applied at double the time step.  The Schohl 

(1993) algorithm performs the best out of all the algorithms and exhibits nearly zero 

magnitude error for most frequencies other than those at the high end of the range 

(ω/ωgrid > 2×10–2). 

 

The analysis outlines an important point when using the Zielke (1968), Kagawa et al. (1983) 

and Suzuki et al. (1991) algorithms, in that having a coarsely discretised grid, such as in large 

pipeline or network analysis, will result in the unsteady head loss being artificially reduced 

due to approximation in the convolution integral. 
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Grid Separation Error 

 

The Trikha (1975), Kagawa et al. (1983), Suzuki et al. (1991), and Schohl (1993) 

formulations are all implemented on rectangular MOC grids.  The rectangular grid comprises 

two interlaced diamond grids, each of which experience slightly different boundary 

conditions.  The different boundary conditions imposed on each diamond grid results in a 

slightly different transient response in each grid.  An unsteady friction model that utilises 

points from both diamond grids ties together the two separate diamond grids.  The mismatch 

in the transient response between each diamond grid (within the rectangular grid) results in a 

grid separation problem that induces a numerical error near sharp features in the transient with 

a frequency of the grid spacing.  A time-domain representation of grid separation error was 

presented in Vítkovský et al. (2004).  Ideally, errors resulting from grid separation should be 

avoided. 

 

Consideration of the unsteady head loss due a sharp step-change in velocity leads to an 

analytically derived error associated with grid separation.  Ideally, the velocity series used in 

numerical convolution algorithms would be written as 

 ( ) ( ) ( ) ( ) ( ) ( ){ }K ,4 ,3 ,2 , ,~ ttVttVttVttVtVtV ∆−∆−∆−∆−=  (24) 

However after a sharp step-event, the velocity series resembles two identical series sampled at 

2∆t (corresponding to each interlaced diamond grid that comprises the rectangular grid) that 

are out of phase by ∆t (the step-change is registered by one rectangular grid one time step 

later than the other).  Such a velocity series can be written as 

 ( ) ( ) ( ) ( ) ( ) ( ){ }K ,4 ,4 ,2 ,2 ,~
1 ttVttVttVttVtVtV ∆−∆−∆−∆−=  (25) 

One time step later the velocity series becomes 

 ( ) ( ) ( ) ( ) ( ) ( ){ }K ,4 ,2 ,2 , ,~
2 ttVttVttVtVtVtV ∆−∆−∆−=  (26) 
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Substitution of the velocity series 1
~V  and 2

~V  into the unsteady head loss equation (Eq. 3) 

results in two alternate magnitudes of unsteady frictional loss ( )tVh fU ,~
1  and ( )tVh fU ,~

2 , 

respectively.  The mismatch in these alternate head loss magnitudes is observed as an 

oscillation with a period of 2∆t (equal to the highest frequency possible in a rectangular grid).  

Similar to EC, the determination of EG requires that hfU(t)app for the recursive convolution 

algorithms be written first in a full convolution form.  The grid separation error, EG, can be 

defined as the ratio of the Fourier transforms of the unsteady head loss for velocity series 1
~V  

and 2
~V , and is written as 

 ( )
( )
( )appfU

appfU
G

Vh

Vh
E

ω

ω
=ω

,~ˆ
,~ˆ

1

2  (27) 

 

The grid separation error for the Trikha (1975) algorithm is 
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The grid separation error for Kagawa et al. (1983) and Suzuki et al. (1991) algorithms is 
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The grid separation error for the Schohl (1993) algorithm is 

 ( )
( )

( )∑ ∫

∑ ∫
∞

=

∆

∆−∆

∆ω−

∞

=

∆

∆−∆

∆ω−∆ω













=ω

K

K

,5,3,1

**

,6,4,2

**

j

tj

ttj

tji

j

tj

ttj

tjiti

G

dttWe

dttWee
E  (30) 

 



 19

It should be noted that the full grid separation error is realised for a short period after a sharp 

change in the boundary conditions.  The error resembles a high frequency oscillation with a 

period of 2∆t, however, the effect of unsteady friction is to attenuate those high frequency 

components of a transient and hence the grid separation error persists only for a short amount 

of time (generally three or four transient cycles). 

 

Figure 7 shows plots of EG versus the dimensionless frequency ratio ω/ωgrid.  Because each 

velocity series relates to each diamond grid, the maximum possible frequency is limited to 

ω/ωgrid = ¼ (even though the grid separation error is observed with a frequency of 

ω/ωgrid = ½).  The results show that the Trikha (1975) algorithm produces the greatest grid 

separation error and approaches the behaviour of the Kagawa et al. (1983) and Suzuki et al. 

(1991) algorithms for the smallest dimensionless time step (∆τ = 10–6).  The Schohl (1993) 

algorithm shows more grid separation error (both in magnitude and phase) than the Kagawa et 

al. (1983) and Suzuki et al. (1991) algorithms. 

 

An interesting observation is that more finely discretising the MOC grid (decreasing ∆τ) does 

not affect the magnitude of the error as the error magnitude approaches a limit for small ∆τ.  

More finely discretising the MOC grid only causes the frequency of the grid separation 

disturbance to increase. 

 

Improvement to Recursive Algorithms 

 

A simple approach to reduce errors associated with grid separation is to apply the Kagawa et 

al. (1983) and Schohl (1993) formulations (Eqs. 7 and 10, respectively) on a diamond grid 

rather than on a rectangular grid (i.e., a time step of 2∆t).  Doing this eliminates grid 



 20

separation error at the expense of a small increase in convolution approximation error.  The 

Kagawa et al. (1983) recursive formulation applied to a diamond grid is 

 ( ) ( ) ( )[ ] ( )tyetVttVemtty k
nn

kk
kk τ∆−τ∆− +−∆+=∆+ 222  (31) 

The Schohl (1993) recursive formulation applied to a diamond grid is 

 ( ) ( ) ( ) ( )[ ] ( )tyetVttV
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em
tty k
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n
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=∆+ 2

2

2
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2  (32) 

Both formulations still use Eq. 5 for the summation of the yk terms. 

 

The convolution approximation error for Eqs. 31 and 32 give similar performance to their 

rectangular grid counterparts (Eqs. 22 and 23 respectively).  The convolution approximation 

error for the Kagawa et al. (1983) algorithm applied to a diamond grid is identical to that of 

Zielke (1968), and hence given by Eq. 20.  The convolution approximation error for the 

Schohl (1993) algorithm applied to a diamond grid is 

 ( )
( )

( )ω
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Significance of Weighting Function-Based Model Error in Transient 

Systems 

 

The previous section in this paper dealt with the different types of errors that afflict the 

implementation of WFB unsteady friction models.  However, in terms of the transient 

analysis of a complete pipeline system, the effect of any numerical errors in unsteady friction, 

and indeed unsteady friction itself, might be less important than first imagined.  The following 

sections consider the magnitude of quasi-steady friction, input bandwidth, system bandwidth 
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and system component dominance with respect to unsteady friction in a complete pipeline 

system. 

 

Quasi-Steady Friction vs Unsteady Friction Dominance 

 

The relative magnitudes of quasi-steady and unsteady friction is a topic of importance since it 

provides a basis upon which to decide whether or not it is necessary to model unsteady 

friction accurately or even at all.  During a transient event many different frequency 

components are present.  Unsteady friction affects the higher frequency components through 

extra attenuation and dispersion.  Those transient events whose energy spectrum is distributed 

in the higher frequency range are susceptible to greater attenuation and dispersion caused by 

unsteady friction.  It therefore becomes important to define which frequency components are 

affected by unsteady friction. 

 

The effect of the unsteady friction component in the total unsteady head loss (comprising 

quasi-steady and unsteady frictional components) is a function of frequency and can be 

demonstrated by determining the ratio of the Fourier transforms of the total unsteady head 

loss and the quasi-steady head loss.  This ratio, RF, is 

 ( ) ( ) ( )
( )

( )ω′
ω′

+=
ω′

ω′+ω′
=ω′ 0

00

ˆ321ˆ

ˆˆ
W

f
i

h

hh
R

fS

fUfS
F Re

 (34) 

Note that the quasi-steady friction term has been linearised as hfS = (f0|V0|/2gD)V.  The Fourier 

transform of the weighting function has been previously given in Eq. 16.  The absolute value 

of RF represents the ratio of the total unsteady head loss to the quasi-steady friction 

component head loss.  The argument of RF represents the phase difference between the 

average velocity and the unsteady friction component (since the quasi-steady friction 
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component is exactly in-phase with the average velocity).  Note that as the frequency ω′ 

approaches zero RF approaches a value of one.  Thus the total unsteady dissipation approaches 

the steady-state dissipation and becomes increasingly in-phase with the average velocity.  

Figure 8 shows the variation of RF with dimensionless frequency for a range of Reynolds 

numbers (the smooth-pipe turbulent weighting function formula is used, Eq. 12—note that a 

similar, but different, set of curves can be generated for rough pipes using Eqs. 34 and 13).  

Components with higher dimensionless frequencies and lower Reynolds numbers experience 

significant extra attenuation caused by unsteady friction.  The value of RF can be used to 

define which type of friction is dominant. 

 

In terms of the example pipeline shown in Figure 1, after the valve closure the fluid freely 

vibrates until a zero flow condition is reached.  The dimensionless fundamental frequency, 

ω′th, of the transient response for an open-closed pipeline system is 

 
ν

π
=ω′

L
aD

th 8

2

 (35) 

The dimensionless fundamental frequency represents the lower end of the frequency range in 

the transient response and therefore gives a conservative estimate of the unsteady friction 

damping.  For Case #1 (Re0 = 6,564) the dimensionless fundamental frequency is 6,765 rad, 

which corresponds to a total unsteady/quasi-steady friction ratio of approximately six (see 

Figure 8), meaning that the system is indeed unsteady friction dominant.  It should be noted 

that larger diameter pipelines tend to have larger dimensionless fundamental frequencies, 

which suggests that larger pipelines will have greater unsteady friction damping.  However, 

this is true only if the flow in the larger pipeline has a low Reynolds number and the length of 

the pipeline is short.  As the Reynolds number of the flow increases the total unsteady/quasi-

steady friction ratio decreases.  A similar behaviour is observed for pipelines with increasing 

relative roughness.  An interesting observation from Eq. 35 is that ω′th ∝ ν−1, thus for higher 
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viscosity liquids the relative affect of unsteady friction compared to quasi-steady friction 

lessens. 

 

Limited Input Bandwidth 

 

For a given pipeline system, an input to the system and an output from the system can be 

identified.  Treating the pipeline system in such a way can aid in the interpretation of unsteady 

friction with regard to system input.  For small perturbations a transient system can be 

approximated as a linear system.  For a linear system the input and output are related by the 

impulse response function as 

 ( ) ( )( )tVtH ∗Θ=  (36) 

where (in this case) the input is the velocity V, the output is the head H, and Θ is the impulse 

response function.  A property of a linear system is that if the input is decomposed into a 

number of different frequency sinusoids, then the system acts on each sinusoidal component 

independently and the output can be recomposed from these modified components.  The 

Fourier transform of the input performs such decomposition in the frequency domain.  

Consequently, if a system input is deficient in high frequency components, then the output 

will be generally deficient in high frequency components too.  This behaviour has 

implications with respect to the potential effect of unsteady friction.  As shown in the 

previous section, the effect of unsteady friction becomes greater as the frequency of the 

disturbance increases (Figure 8).  If the system input has limited input bandwidth then the 

effects of unsteady friction lose importance in the system response. 

 

Input bandwidth relates to the spectrum of the input in the frequency domain and is the 

frequency range that contains the majority of the input power.  The effect of limited input 
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bandwidth is best illustrated by example.  An example pipeline system, as shown in Figure 1, 

has the velocity at the valve as an input and the head at the valve as an output.  This 

arrangement was chosen because the system comprises only linear components except for, 

ironically, quasi-steady friction that is non-linear.  The parameters for this system are shown 

in Table 1 as “Case #2” and the system arrangement resembles Figure 1.  The input to the 

system is an initially steady velocity that is reduced to zero with a cosine profile over the time 

periods 0.1 and 4.0 seconds.  The time-domain representation and frequency-domain 

representations of the input are shown in Figure 9.  As observed, the input with a 0.1 s time 

period has greater amplitude high frequency components than the signal with a 4.0 s period, 

and are named the high bandwidth and low bandwidth respectively.  Figure 10 shows the 

output produced from the high and low bandwidth inputs.  The output from the high 

bandwidth input shows a relatively higher unsteady friction effect than the output from the 

low bandwidth input.  In fact, for the low bandwidth input and this particular system 

configuration, good simulation results could be computed with quasi-steady friction alone.  

However, this result is particular to this system configuration and may not be applicable to 

others for a similar low bandwidth input.  Ultimately, modelling with unsteady friction 

regardless of the input bandwidth is always preferable to modelling with quasi-steady friction 

only. 

 

Limited System Bandwidth and System Component Dominance 

 

There are two ways the system can affect unsteady friction.  The first is by effectively 

applying a bandwidth to the system behaviour.  The second is by having system components 

that produce behaviour that is more dominant than unsteady friction.  In these cases it could 

be argued that if there exists a more dominant system component than unsteady friction or the 
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system effectively limits the bandwidth (by damping out the high frequency components) of 

the transient then unsteady friction need only be approximately modelled.  Again, the linear 

system approach can be used to demonstrate these effects.  The Fourier transform of Eq. 36 is 

 ( ) ( ) ( )ωωΘ=ω VH ˆˆˆ  (37) 

where Θ̂  is the transfer function of the system.  In a linear system the transfer function acts 

on each frequency component of the input independently to form the output.  Therefore, the 

transfer function for the system can show the behaviour of the system irrespective of the input 

to the system. 

 

System component dominance is demonstrated by numerical example using the pipeline 

system from the previous section (Case #2).  The high bandwidth input is used from the 

previous section, but the pipeline material has been changed to that which exhibits 

viscoelastic behaviour.  The creep compliance function for the pipe material used in the 

numerical example is for medium density PVC at 25°C from Galley et al. (1979).  Figure 11 

shows the transfer function for the pipeline system for the cases of (a) unsteady friction only, 

(b) viscoelastic material only and (c) unsteady friction and viscoelastic material together.  The 

results that contain the viscoelastic material show significant damping above a frequency of 

20 rad/s and effectively limit the output bandwidth to approximately 20 rad/s.  The transfer 

function for both unsteady friction and the viscoelastic material together is similar to that of 

the viscoelastic material alone.  These observations from the transfer function are confirmed 

in the head response at the valve, as shown in Figure 12.  In this particular case, the 

viscoelastic material damping behaviour is much more dominant than that of unsteady 

friction.  Additionally, the viscoelastic material limits the system bandwidth further reducing 

the affect of unsteady friction by eliminating the higher frequency components of the 



 26

transient.  It could be argued that in this case the unsteady friction need only be modelled 

approximately, although this may not be the case generally. 

 

Conclusions 

 

A topic of research that has been generally neglected in the literature is the analysis of error in 

the numerical implementation of weighting function-based unsteady friction models.  This 

paper has presented an analysis of error with respect to the numerical implementation of 

weighting function-based models and the significance of that error in the context of modelling 

transients in a pipeline system.  All error analyses have been performed in the frequency 

domain where analytical solutions can be determined. 

 

The performance of a number of different numerical unsteady friction implementation 

schemes has been considered, including those of Zielke (1968), Trikha (1975), Kagawa et al. 

(1983), Suzuki et al. (1991) and Schohl (1993).  Three new measures of numerical error have 

been defined: (i) weighting function approximation error, (ii) convolution approximation error 

and (iii) grid separation error.  The first two error measures are applicable to any finite 

difference scheme, whereas the third error measure is only applicable to the method of 

characteristics. 

 

The use of efficient recursive algorithms requires the approximation of the weighting function 

by a number of exponential terms.  The weighting function approximation error has been 

found to be a trade-off between number of computational terms and accuracy of the weighting 

function approximation.  A procedure has been defined to fit the exponential sum to the 

weighting function based on an optimisation approach.  Also, the fitting of the weighting 
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function could be performed using either in the time domain or frequency domain criteria 

depending on the desired result. 

 

The convolution approximation error analysis for each implementation scheme showed that 

the Schohl (1993) algorithm showed the least amount of error, and only produced small error 

for large dimensionless frequency ratios.  The Trikha (1975) algorithm produced the worst 

errors, while the Zielke (1968), Kagawa et al. (1983) and Suzuki et al. (1991) algorithms 

showed problems when using larger dimensionless time steps.  It should be acknowledged 

that the unsteady friction modelling field is indebted to Trikha for initiating the study of 

efficiency in simulation.  That said, Trikha’s algorithm is not suitable for systems with 

realistic time steps and better algorithms have existed for an amount of time, but many 

researchers still persist with Trikha’s algorithm without realising the error they are 

introducing into their work. 

 

The grid separation error analysis for each implementation (those applied on a rectangular 

grid system) showed that the Kagawa et al. (1983) and Suzuki et al. (1991) algorithms 

showed the least error, followed by the Schohl (1993) and Trikha (1975) algorithms.  Simply 

applying each algorithm on a diamond grid system solved grid separation problems. 

 

Four different effects have been defined to explain the significance of errors in unsteady 

friction computation in the context of pipeline systems.  The effects were (i) unsteady/quasi-

steady friction dominance, (ii) limited input bandwidth, (iii) limited system bandwidth, and 

(iv) system component dominance. 
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The ratio of unsteady to quasi-steady friction losses showed that unsteady friction could be far 

more dominant than quasi-steady friction for even low dimensionless frequencies given a low 

Reynolds number.  The fundamental dimensionless frequency of closed-open pipelines could 

be used to test whether or not a pipeline is dominated by quasi-steady or unsteady friction. 

 

The effect of input bandwidth could be assessed based on the spectrum of the transient input.  

If the input bandwidth to the pipeline system is low then errors in the unsteady friction for 

high frequencies affected the simulation results less.  In some cases, if the input bandwidth is 

very low then the impact of unsteady friction, as a whole, is almost negligible. 

 

It was observed that the characteristics of the pipeline system could affect the significance of 

unsteady friction and its approximation.  The transfer function of the pipeline system was 

utilised for this purpose.  Systems that contained components with large associated damping 

behaviour could dominate unsteady friction.  Additionally, system components, such as a 

viscoelastic pipe material, could effectively apply a bandwidth to the transient reducing the 

effect of unsteady friction at higher frequencies (where unsteady friction is more dominant). 

 

Finally, the study of the significance of unsteady friction errors in pipeline systems showed 

that the need to model unsteady friction should be assessed on a case-by-case basis depending 

on the input and system characteristics before deciding to neglect it from analysis. 
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Notation 

 

 A*, B* = Vardy-Brown weighting function coefficients; 

 a = wave speed; 

 D = pipe diameter; 

 EA = weighting function approximation error; 

 EC = convolution approximation error; 

 EG = grid separation error; 

 EH = standardised error in head response; 

 EW = relative error in weighting function; 

 f = Darcy-Weisbach friction factor; 

 g = gravitational acceleration; 

 H = head; 

 hfS = quasi-steady component of total unsteady head loss per unit length; 

 hfU = unsteady component of total unsteady head loss per unit length; 

 i = imaginary unit ( )1−= ; 

 L = pipe length; 

 M = number of points in EW and EH calculation; = t/∆t − 1; = int(0.02/∆τ + 0.5); 

 N = number of exponential terms; 

 nk, mk = exponential sum coefficients; 

 Re = Reynolds number; 
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 RF = frequency domain total unsteady/quasi-steady head loss ratio; 

 T = total simulation time; 

 t = time; 

 V = average velocity; 

 W = weighting function; 

 yk = extra coefficient for proposed method; 

 ε = pipe wall roughness; 

 ∆t = time step; 

 ∆τ = dimensionless time step (= 4ν∆t/D2); 

 ν = kinematic viscosity; 

 ρ = mass density of liquid; 

 τ = dimensionless time (= 4νt/D2); 

 τmin = lower bound for dimensionless time range; 

 τmax = upper bound for dimensionless time range; 

 θ = angle of inclination of the pipe to the horizontal; 

 Θ = system impulse response function; 

 ω = angular frequency; 

 ωgrid = grid angular frequency (=2π/∆t) 

 ω′ = dimensionless angular frequency (= ωD2/(4ν)); 

 ω′th = dimensionless angular fundamental frequency for an open-closed pipeline 

system; 

Subscripts: 

 0 = initial or steady-state quantity 

 app = approximate quantity 
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 ref = reference quantity; 

 true = true or exact quantity 

Superscripts: 

 ^ = Fourier transformed quantity 

 ~ = Representing a series 
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Table 1.  Parameters for example pipeline systems 

Case #1 Parameters Case #2 Parameters Common Parameters 
D = 22.1 mm D = 50.0 mm g = 9.81 m/s2 
L = 37.2 m L = 200.0 m ρ = 998.2 kg/m3 

a = 1319.0 m/s a0 = 366.7 m/s ν = 1.01×10−6 m2/s 
ε = 0.0015 mm ε = 0.005 mm V0 = 0.3 m/s 

Re0 = 6,564 Re0 = 14,851 H0 at Tank 2 = 30 m 
 

 

 

 

 

 

Tank 1 Tank 2 
Valve

Pressure Measurement

 

 

Figure 1.  Example pipeline definition 
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Figure 2.  Example of (a) weighting function and (b) head response for weighting 

function approximation using 3 and 10 exponential terms 
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Figure 3.  Behaviour of weighting function approximation error: (a) magnitude and (b) 

phase errors 

 



 38

 

 

 

 

10-10

10-8

10-6

10-4

10-2

100

102

10-5 10-4 10-3 10-2 10-1

E W

τ
max

N=1
N=2
N=3
N=4
N=5
N=6
N=7
N=8
N=9
N=10

(a)
10-6

10-4

10-2

100

102

10-5 10-4 10-3 10-2 10-1
E H

τ
max

N=1

N=2
N=3
N=4
N=5

N=6
N=7
N=8

N=9
N=10

(b)

 
Figure 4.  Trade-off curves between accuracy and efficiency: (a) relative weighting 

function error and (b) standardised head response error 
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Figure 5.  Investigation of variation of (a) B* with Re and ε/D, and (b) τ range (= τmax –
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Figure 6.  Convolution approximation error: (a) magnitude and (b) phase errors 
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Figure 6(continued).  Convolution approximation error: (a) magnitude and (b) phase 

errors 
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Figure 7.  Grid separation error: (a) magnitude and (b) phase errors 
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Figure 8.  Behaviour of total unsteady/steady friction ratio: (a) attenuation ratio and (b) 

phase difference 
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Figure 9.  Input for limited input bandwidth example: (a) time domain and (b) 

frequency domain 
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Figure 10.  Time domain simulation for limited input bandwidth example 
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Figure 11.  System transfer functions for limited system bandwidth and system 

component dominance example 
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Figure 12.  Time domain simulation for limited system bandwidth and system 

component dominance example 

 


