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Optimal Linear Estimation and Data Fusion

Robert J. Elliott and John van der Hoek

Abstract—Optimal mean square linear estimators are determined for
general uncorrelated noise. We allow the noise variance matrix in the ob-
servation process to be singular. This requires properties of generalized
inverses which are developed in Section II. The proofs appear to be new.
When there are two observation sequences the optimal method of recur-
sively fusing the two is determined.We derive a new formula for the covari-
ance of the two estimates which then provides exact dynamics for a fused
estimate.

Index Terms—Data fusion, optimal linear estimation.

I. INTRODUCTION

Much recent work in filtering has used particle filters, which are re-
ally Monte Carlo simulations; see, for example, [3]. However, the case
of singular noise still gives problems. We believe that the use of the
weak generalized inverse in filtering with singular noise is new.

Fusion problems have been extensively studied; see [2]. For the fu-
sion of information from two linear filters, ad-hoc combinations are
still often proposed as in [6]. In Section IV, we obtain the recursion for
the covariance of the noise in two linear filters. This is then used to ob-
tain the optimal fused estimate. This result appears to be new.

We consider a signal process fXkg with linear dynamics

Xk+1 = FkXk +GkWk+1:

Here, the noise termsWk+1 are a sequence of uncorrelated, zero mean,
(not necessarily Gaussian), random variables.

The X process is not observed directly, but through two noisy ob-
servation processes 1Y , 2Y with

1
Y k =

1
HkXk +

1
Vk

2
Yk =

2
HkXk +

2
Vk:

Again, the noise terms 1Vk, 2Vk are sequences of uncorrelated, zero
mean (not necessarily Gaussian) random variables.

We suppose variance matrices related to the observation processes
Y are possibly singular. This requires the use of a weak notion of gen-
eralized inverse which is discussed in Section II.

The optimal linear mean square filter is reviewed in Section III and
the fusion of two such filters for observation sequences f1Y kg and
f2Ykg is given in Section IV.

II. GENERALIZED INVERSES

Consider a probability space (
;F ; ). Vectors will be consid-
ered as column vectors. � will denote the transpose. L2(
; Rn)
will denote the set of random variables Y : 
 ! Rn such that
E[jY j2] =



Y �Y d < 1. This is a Hilbert space with inner

product


X�Y d .

Suppose P denotes an expectation, or a conditional expectation
operator.
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Definition II.1: A generalized inverse of a matrix A is a matrix A#

such that

AA
#
A = A: (1)

IfA is nonsingular thenA# = A�1. However, generalized inverses
need not be unique. The Moore–Penrose generalized inverse of A is a
matrix A+ such that

AA
+
A =A A

+
AA

+ = A
+

(AA+)� =AA+ and (A+A)� = A
+
A:

The Moore–Penrose generalized inverse is unique.
For details on generalized inverses, see [1], [4], and [5].
We will work with generalized inverses satisfying (1).
Notation II.2: Suppose X 2 L2(
; Rm), Y 2 L2(
; Rn). Con-

sider the covariance matrices

�XY =E[(X � P (X))(Y � P (Y ))�]

�Y Y =E[(Y � P (Y ))(Y � P (Y ))�]:

Suppose �#

Y Y
is any generalized inverse of �Y Y .

Notation II.3: Write �Y = �#

Y Y
(Y � P (Y )). Note P (�Y ) = 0.

Linear algebra establishes the following results.
Lemma II.4: Y = P (Y ) + �Y Y �Y a.s.
Lemma II.5: �XY�

#

Y Y
�Y Y = �XY .

Lemma II.6: �Y Y�
#

Y Y
(Y � P (Y )) = Y � P (Y ).

Lemma II.7: Suppose X 2 L2(
; Rm), Y 2 L2(
; Rn) and
�#

Y Y
is a generalized inverse of �Y Y . Then, if

C = ��XY�
#

Y Y

and Z =X � P (X) + C(Y � P (Y ))

we have E[Z(Y � P (Y ))�] = �ZY = 0 2 Rm�n.
Lemma II.8: For random variablesX : 
! Rm, Y : 
! Rn

E (X � P (X)�B(Y � P (Y )))�

(X � P (X)�B(Y � P (Y )))

is minimized when B = �XY�
#

Y Y
where �#

Y Y
is any generalized

inverse of �Y Y , that is, any matrix such that

�Y Y�
#

Y Y
�Y Y = �Y Y :

Remark II.9: From Lemma II.8, we see, with this C , Z = X �
P (X)��XY�

#

Y Y
(Y �P (Y )) is the projection error when projecting

X � P (X) onto Y � P (Y ).
Corollary II.10: Suppose �#

Y Y
is another generalized inverse of

�Y Y and Z = X �P (X)��XY�
#

Y Y
(Y �P (Y )). Then, E[(Z �

Z)(Z � Z)�] = 0.
In particular, Z = Z a.e.
Notation II.11: E[Z(Y �P (Y ))�] = 0 implies that the projection

of Z on Y is 0 and we write PY (Z) = 0. As PY is to be linear, we
define

PY (Z) = 0 = PY (X)� P (X)��XY�
#

Y Y
(Y � P (Y )):

That is, for X 2 L2(
; Rm), Y 2 L2(
; Rn)

PY (X) = P (X) + �XY�
#

Y Y
(Y � P (Y )):

Remark II.12: PY (X) gives the projection of X onto Y and

PY (X) = E[X] + �XY �
#

Y Y
(Y � E[Y ]): (2)

In the sequel, the expectation is denoted either by E or P . If, further,
X and Y are Gaussian this expression gives the conditional expected
value of X given Y .
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Consider now the case where Y =
Y1

Y2
with Y1 2 L2(
; Rn ),

Y2 2 L
2(
; Rn ). Suppose, as before,X 2 L2(
; Rm). Then

�Y Y =E[(Y � P (Y ))(Y � P (Y ))�]

=
�Y Y �Y Y

�Y2Y1 �Y2Y2
=

A B

C D

say, where �Y Y = E[(Yi � P (Yi))(Yj � P (Yj))
�].

Lemma II.13: Write SA = D � CA#B

= �Y Y ��Y Y �#

Y Y �Y Y :

Then, SA is nonnegative and symmetric. Write SD = A�BD#C

= �Y Y ��Y Y �#
Y Y �Y Y :

Then, SD is nonnegative and symmetric.
Lemma II.14: AA#B = B and CA#A = C .
The following result is noted in Rohde [4].
Lemma II.15: If E = A# + A#BS

#

ACA
#

F = �A
#
BS

#

A

G = � S
#
ACA

#

H =S#A

then
E F

G H
is a generalized inverse of

A B

C D
.

III. OPTIMUM LINEAR FILTERS

Without the usual assumption that the observation noise is nonsin-
gular we now derive the optimum linear filter for linear dynamics in the
state and observation processes. The square integrable noise terms are
assumed uncorrelated. When the noise terms are Gaussian we obtain
the optimum least-square filter.

Model III.1: Suppose fXkg, k = 0; 1; 2; . . . is a sequence of square
integrable, Rm-valued random variables such that

Xk+1 = FkXk +GkWk+1: (3)

Here, fWkg is a sequence of uncorrelated random variables such that
for k, ` = 0; 1; . . .

E[Wk] = 0

E [WkW
�
` ] =Qk�k`

and E [X0W
�
k ] = 0:

Here, �k` = 0 if k 6= ` and �kk = 1.
The observations are given by a sequence fYkg, k = 0; 1; 2; . . . of

square integrable random variables with values in Rn. Further

Yk = HkXk + Vk: (4)

fVkg is a sequence of uncorrelated random variables such that for k,
` = 0; 1; . . .

E[Vk] = 0

E[VkV
�
` ] =Rk�k`

and E[X0V
�
k ] = 0:

Further, E [WkV
�
` ] = 0 for all k, `. TheHk , Fk , Gk are time varying

matrices of appropriate dimension.
Suppose X0 has mean m0 and variance �0. Define P (X0) =

E[X0] = m0 soP (Y0) = E[Y0] = E[H0X0 + V0] = H0m0. From
(2)

PY (X0) =E[X0] + �X Y �#Y Y (Y0 � E[Y0])

=m0 +�X Y �#Y Y (Y0 �H0m0):

Note �X Y = �0H
�
0 and �Y Y = H0�0H

�
0 + R0. Write P0 for

PY .
Recurrence III.2: Suppose P0(X0); . . . ; Pk(Xk) have been ob-

tained and the next observation Yk+1 is received

Yk+1 = Hk+1Xk+1 + Vk+1:

We wish to determine the projection Pk+1(Xk+1) of Xk+1 onto the
space spanned by Y0; Y1; . . . ; Yk+1.

Lemma III.3: Pk+1(Xk+1) = FkPk(Xk)

+�k+1
XY (�k+1

Y Y )#(Yk+1 �Hk+1FkPk(Xk)):

Proof: Consider Zk+1 = Xk+1 � Pk(Xk+1)+Ck+1(Yk+1 �
Pk(Yk+1)). We wish to choose Ck+1 so that

E[Zk+1(Yk+1 � Pk(Yk+1))
�] = 0:

This is the case if

Ck+1 = ��k+1
XY (�k+1

Y Y )#

where

�k+1
XY =E[(Xk+1 � Pk(Xk+1))(Yk+1 � Pk(Yk+1))

�]

and

�k+1
Y Y =E[(Yk+1 � Pk(Yk+1))(Yk+1 � Pk(Yk+1))

�]:

(�k+1
Y Y )# is a generalized inverse of �k+1

Y Y . With this choice for
Ck+1 Pk+1(Zk+1) = 0 so

Pk+1(Xk+1) =Pk(Xk+1)

+ �k+1
XY (�k+1

Y Y )#(Yk+1 � Pk(Yk+1))

=FkPk(Xk)

+ �k+1
XY (�k+1

Y Y )#(Yk+1 �Hk+1FkPk(Xk))

as Pk(Wk+1) = 0 and Pk(Vk+1) = 0:

Pk+1(Xk+1) gives the best linear least squares estimate ofXk+1 given
Y0; Y1; . . . ; Yk+1. Pk(Xk) has already been determined and the new
information is provided by Yk+1.

We finally show how Ck+1 is updated. Write

�
kjk
XX = E[(Xk � Pk(Xk))(Xk � Pk(Xk))

�]

for the error covariance at time k.
Lemma 3.3: Ck+1 = ��k+1

XY (�k+1
Y Y )# where

�k+1
XY =�k+1

XXH
�
k+1

�k+1
Y Y =Hk+1�

k+1
XXH

�
k+1 +Rk+1

�k+1
XX =Fk�

kjk
XXF

�
k +GkQk+1G

�
k

�
k+1jk+1
XX =�k+1

XX ��k+1
XY (�k+1

Y Y )#(�k+1
XY )�:

IV. FUSION OF OPTIMAL LINEAR FILTERS

Suppose as in Section III fXkg, k = 0; 1; 2; . . . is a signal process
with dynamics

Xk+1 = FkXk +GkWk+1: (5)

However, suppose now we have two observation processes f1Y kg,
f2Ykg, k = 0; 1; 2; . . .. Write

Yk =
1Y k

2Yk
:
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We suppose iYk = iHkXk+
iVk , i = 1; 2, k = 0; 1; 2; . . .. The fiVkg

are sequences of zero-mean uncorrelated noises with

E[iVk] = 0

E[iVk
i
V

�
` ] =

i
Rk�k`

and E[X0
i
V

�
k ] = 0; i = 1; 2:

Further

E[1Vk
2
V

�
` ] = �k�k`:

However, we assume the �k are not known a priori. They are to be
modeled and estimated from the observations. This could be because
the observer has some control over 1Y and 2Y separately but not
jointly.

Notation IV.1: 12Pk denotes the projection onto fY0; Y1; . . . ; Ykg.
For i = 1; 2, iPk denotes the projection onto fiY0; iY1; . . . ; iYkg.
Write

Hk =(1H�
k ;

2
H

�
k)

�

Vk =(1V �
k ;

2
V

�
k )

�

so that Yk =HkXk + Vk
12�k+1

XY =E Xk+1 �
12
Pk(Xk+1)

� Yk+1 �
12
Pk(Yk+1)

�

=E Xk+1 �
12
Pk(Xk+1)

� 1
Y k+1 �

12
Pk(

1
Yk+1)

�

Xk+1 �
12
Pk(Xk+1)

� 2
Yk+1 �

12
Pk(

2
Yk+1)

�

12�k+1
Y Y =E Yk+1 �

12
Pk(Yk+1)

� Yk+1 �
12
Pk(Yk+1)

�
: (6)

Problem IV.2: With the combined observation process fYkg the re-
sult of Section III gives

12
Pk+1(Xk+1) =

12
Pk(Xk+1)

� 12
Ck+1 Yk+1 �

12
Pk(Yk+1)

=Fk
12
Pk(Xk)

� 12
Ck+1

� Yk+1 �Hk+1Fk
12
Pk(Xk) (7)

with 12Ck+1 = �12�k+1
XY

(12�k+1
Y Y

)# for some generalized inverse
(12�k+1

Y Y
)#.

The results of Section III give update formulas for i = 1; 2

i
Pk+1(Xk+1) = Fk

i
Pk(Xk)

�i
Ck+1

i
Yk+1 �

i
Hk+1Fk

i
Pk(Xk) (8)

with

i
Ck+1 = � i�k+1

XY (i�k+1
Y Y )#

i�k+1
XY =E Xk+1 �

i
Pk(Xk+1)

i
Yk+1 �

i
Pk(

i
Yk+1)

�

and
i�k+1

Y Y =E Yi+1 �
i
Pk(Yk+1) Yk+1 �

i
Pk(Yk+1)

�

:

The fusion problem is to determine a recursive expression for
12Pk(Xk) in terms of 1Yk , 2Yk , 1Pk(Xk), and 2Pk(Xk).

Suppose 12Pk(Xk) is known and we wish to determine
12Pk+1(Xk+1). From (7), we see we need only determine

12
Ck+1 = �12�k+1

XY (12�k+1
Y Y )#:

Now 12Pk(Xk+1) = Fk
12Pk(Xk) is known and

12
Pk(Yk+1) =

12
Pk(

1
Yk+1)

�
;
12
Pk(

2
Yk+1)

� �

= 1
Hk+1Fk

12
Pk(Xk)

�

2
Hk+1Fk

12
Pk(Xk)

�
�

is known. Therefore, for i = 1; 2

E Xk+1 �
12
Pk(Xk+1)

i
Yk+1 �

12
Pk(

i
Yk+1)

�

= E Fk Xk �
12
Pk(Xk) +GkWk+1

� Xk �
12
Pk(Xk)

�

F
�i
k H

�
k+1

+W
�
k+1G

�i
k H

�
k+1 +

i
V

�
k+1

= Fk
12�

kjk
XX

F
�i
k H

�
k+1 +GkQk+1G

�i
k H

�
k+1:

From (6)

12�k+1
XY = Fk

12�
kjk
XX

F
�
k

1
H

�
k+1 +GkQk+1G

�
k

1
H

�
k+1

Fk
12�

kjk
XXF

�
k

2
H

�
k+1 +GkQk+1G

�
k

2
H

�
k+1

and 12�k+1
XY

is known if

12�
kjk
XX

= E Xk �
12
Pk(Xk) Xk �

12
Pk(Xk)

�

is known.

12�k+1
XX =E Xk+1 �

12
Pk(Xk+1)

� Xk+1 �
12
Pk(Xk+1)

�

=Fk
12�

kjk
XX

F
�
k +GkQk+1G

�
k

and is known if 12�kjk
XX

is known. As in Section III, the update for
12�

k+1jk+1
XX

is given by

12�
k+1jk+1
XX

= 12�k+1
XX � 12�k+1

XY (12�k+1
Y Y )#(12�k+1

XY )�:

The only remaining term is

12�k+1
Y Y =E Yk+1 �

12
Pk(Yk+1) Yk+1 �

12
Pk(Yk+1)

�

=E
1Yk+1 �

12Pk(
1Yk+1)

2Yk+1 �
12Pk(

2Yk+1)

� 1
Yk+1 �

12
Pk(

1
Yk+1)

�

2
Yk+1 �

12
Pk(

2
Yk+1)

�

=
A B

C D
; say, (dropping the k + 1 suffix):
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Now

A =E 1
Y k+1 �

12
P k(

1
Yk+1)

1
Y k+1 �

12
P k(

1
Yk+1)

�

=E 1
Hk+1Fk Xk �

12
P k(Xk)

+ 1
Hk+1GkWk+1 +

1
V k+1

�
1
Hk+1Fk Xk �

12
P k(Xk)

+ 1
Hk+1GkWk+1 +

1
V k+1

�

= 1
Hk+1Fk

12�
kjk
XXF

�
k

1
H

�
k+1

+ 1
Hk+1GkQk+1G

�
k

1
H

�
k+1 +

1
Rk:

Similarly

D = 2
Hk+1Fk

12�
kjk
XX

F
�
k

2
H

�
k+1

+2
Hk+1GkQk+1G

�
k

2
H

�
k+1 +

2
Rk:

The interesting term is

C
� =B

=E 1
Hk+1Fk Xk �

12
P k(Xk)

+ 1
Hk+1GkWk+1 +

1
V k+1

�
2
Hk+1Fk Xk �

12
P k(Xk)

+ 2
Hk+1GkWk+1 +

2
V k+1

�

= 1
Hk+1Fk

12�kjk
XXF

�
k

2
H

�
k+1

+ 1
Hk+1GkQk+1G

�
k

2
H

�
k+1 +E

1
V k+1

2
V

�
k+1 :

Remarks IV.3: If �k+1 = E 1Vk+1
2V �

k+1 is known then B and

C are known. Consequently, a generalized inverse 12�k+1
Y Y

#
of

12�k+1
Y Y

=
A B

C D
is given by Lemma II.17 and the update

12�
k+1jk+1
XX

= 12�k+1
XX �

12�k+1
XY

12�k+1
Y Y

#
12�k+1

XY

�

is determined, as is

12
Ck+1 = �

12�k+1
XY

12�k+1
Y Y

#

:

Consequently, 12Pk+1(Xk+1) is then given.
In summary, given 12�

kjk
XX

we can compute 12�k+1
XY

and 12�k+1
XX

.
If we also know �k we can find

12�k+1
Y Y ; giving 12�k+1

Y Y

#

and then 12Ck+1. The unknown quantity is the covariance �k+1 =
E 1Vk+1

2V
�
k+1 between the noise terms in the two observations.

We shall investigate the relation between�k+1 and the covariance of

1
Yk+1 �

1
Pk(

1
Yk+1) and 2

Yk+1 �
2
Pk(

2
Yk+1) :

Notation IV.4: Write �k+1 = E 1Yk+1 �

1Pk(
1Yk+1)

2Yk+1 �
2Pk(

2Yk+1)
�

. In Section V, we discuss
how � might be described.

Write

Mk+1 = E Xk+1 �
1
Pk+1(Xk+1)

� Xk+1 �
2
Pk+1(Xk+1)

�

:

Recall that for i = 1; 2 from Section III

i
Pk+1(Xk+1) = Fk

i
Pk(Xk)�

i
Ck+1

i
Yk+1 �

i
Pk(

i
Yk+1)

with iCk+1 = �
i�k+1

XY

i�k+1
Y Y

#
.

The recurrences for iCk+1 are known for i = 1; 2.We can then show
the following.

Lemma IV.5: The recurrence forM is given by

Mk+1 =FkMkF
�
k + 1

Ck+1
1
Hk+1FkMkF

�
k

+ FkMkF
�
k

2
H

�
k+1

2
C

�
k+1 +GkQk+1G

�
k

+ 1
Ck+1�k+1

2
Ck+1:

Lemma IV.6: From the definition given in Notation IV.4, it is easily
checked that

�k+1 =
1
Hk+1Mk+1

2
H

�
k+1 +E

1
Vk+1

2
V

�
k+1 :

Remarks IV.7: If �k+1 is given andMk is known then the result of
Lemma IV.5 gives Mk+1.

Lemma IV.6 then gives E 1Vk+1
2V �

k+1 . The terms B and C are
then determined allowing the recursion to proceed, as described in Re-
marks IV.3.

To initialize the process, consider

M0 =E X0 �
1
P 0(X0) X0 �

2
P 0(X0)

�

=E X0 �E[X0]� �X Y �#
Y Y

(1Y 0 � E[
1
Y 0])

� X0 � E[X0]� �X Y

� �#
Y Y

(2Y 0 � E[
2
Y 0])

�

=�0XX � �X Y �#
Y Y

� Y X

� �X Y �#
Y Y

� Y X

+�X Y �#
Y Y

� Y Y �#
Y Y

� Y X :

This can be computed if we assume

� Y Y = �0

is known. In fact

�X

i
Y 0 =�0XX

i
H

�
0; i = 1; 2

� Y Y = i
H0�

0
XX

i
H

�
0 +

i
R0

where iR0 =E[
i
V 0

i
V

�
0]:

Knowing these quantitiesM0 is determined.
If �k is specified at each timeMk and the E 1Vk

2V �
k are known

then the recursion is complete.
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