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Time-averaged acoustic energy density can be estimated using the auto- and cross-spectral densities
between two closely spaced microphones. In this paper, an analysis of the random errors that arise
using two microphone measurements is undertaken. An expression for the normalized random error
of the time-averaged acoustic energy density spectral density estimate is derived. This expression is
verified numerically. The lower and upper bounds of the normalized random error are derived, It is
shown that the normalized random error of the estimate is not a strong function of the sound field
properties, and is chiefly dependent on the number of records averaged. © 2004 Acoustical Society

of America. [DOI: 10.1121/1,1639334]

PACS numbers: 43.58.-¢, 43.60.Qv [JCB]
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I. INTRODUCTION

Acoustic energy density is defined as the sum of the
acoustic potential energy density and the acoustic kinetic en-
ergy density at a point. It has been shown'® that energy den-
‘sity provides a significantly better estimate of the total acous-
tic energy within an enclosure than does the acoustic
potential energy (estimated by microphones). Subsequently,
several authors have found energy density to be an effective
sensor for active noise control applications, as it measures
the total energy at a point, and generally outperforms
microphones.?

The Bias errors arising from the inherent and instrumen-

tation errors in energy density sensing have been thoroughly
investigated.” Additionally, the estimation of potential en-
ergy density and kinetic energy density in the frequency do-
main and the associated statistical errors have been discussed
by Elko.!” In this paper, the statistical errors associated with

the estimation of total acoustic energy density are analyzed. -

An expression for the estimation of time-averaged total
acoustic energy density in the frequency domain has been
previously derived,' In this paper, an expression for the nor-
malized random error of this estimate is derived. The method
here is similar to that used to derive the normalized random
error in the estimation of sound intensity.'?

A Simulink model will be used to simulate the estima-
tion of the time-averaged acoustic energy density.. The result-
ing measurements will be analyzed to verify the derived ex-
pression for the normalized random error.

It will be shown that the normalized random error does
not depend heavily upon the nature of the sound field being
measured. In fact, it is bounded between two functions de-
pendent only on n,, the number of records averaged to pro-
duce the “smooth” spectral density estimates used in the
expression for the time-averaged acoustic energy density
Spectral density estimate. As a.result, the averaging time re-
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quired to attain a desired level of accuracy can be chosen
without knowledge of any of the specifics of the experiment.

“Il. ANALYTICAL DERIVATION OF THE RANDOM

ERROR

The instantaneous acoustic energy density, Ep(2), at a
point. is defined as the sum of the acoustic potential energy
density, U(#), and the acoustic kinetic energy density, T(¢),

‘at that point, given by"
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where p(¢) and v(¢) are the instantaneous pressure and par-
ticle velocity magnitude, respectively, at that point, ¢ is'the

“speed-of sound, and p is the mean density of the fluid.

It has ‘been shown'! that, using the two-microphone
measurement method with a microphone separation distance
of 2h, the single-sided time-averaged acoustic energy den-
sity spectral density is approximated by

(Gu(w)'*‘Gzz(w))
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where Gj1(w) and Go(w) are the single-sided auto-spectral

densities, and G4(w) is the single-sided cross-spectral den-
sity, of the two microphone pressure signals. If the cross-.
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spectral density is separated into real and imaginary compo-
nents, Giy(w)=Co()+j012(w), Eq. (4) can be rewritten
as

E_D<w>~( 71 (G11(®) + G ()

+ e
8pc? 8pw’h

4 1
8pc?

An estimate of the time-averaged acoustic energy den-
sity spectral density is given by

m [ (2C 15()). (5)
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where én(w), ézz(w), and élz(w) are “smooth” estimates
of the auto-spectral densities and the real part of the cross-
spectral density, obtained by averaging n, statistically inde-
pendent “‘raw’ estimates.

Estimates of time-averaged potential energy density and
time-averaged kinetic energy density are given by

)+ G (@) +2Crp(w)), @)

= 1 A A A

T(w)~ zhz(G11(w)+G22(60)_2C12(w))- ®)
Elko!© derived the normalized random error of these es-

timates. While the derivations were based upon incorrect ex-

pressions for the estimates, the method and results remain
valid:

-~ 1
E(U(w))%\/—;—:, ©)
d
= 1
E(T(w))w\/—_. (10)
nyg

It can be shown that the variance of the estimate in Eq.
(6) is, to a first-order approximation,
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where the derivatives are evaluated at the true values . R |G @)]?
G(0)=G (), Gp(w)=Gp(w), and Cp(w)=Cp(w). cov{G (), Gxn(w)}= ng 13
Assuming stafionary Gaussian random signals, the rel- ‘
evant variances and covariances are'*
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(14) Therefore,
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Noting that
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Since C2,( @)+ 0%(0)=|G1y(0)|*= Y2y (0) G (@) G (), where y2,() is the coherence between the two microphone
pressure signals,

s 1
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Therefore, the normalized random error of the estimate E(w), defined as
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Since Re[Gyo(0)]=|G (@) |cos ¢o( @)= y12(@) VG 11(@) G @) cos ¢p(w), where ¢i,(w) is the phase angle between
the two microphone pressure signals and y,(w) is the positive square root of 'yfz(w), Eq. (4) can be rewritten as

(23)
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Substituting Eq. (24) into Eq. (23) and multiplying the numerator and denominator of the fraction by
(8pa)2h2)2/[4G11(w)G22(w)] yields

] 2(kh)2(1—y3,(@)) ”
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where the wave number is given by k= w/c, and
1| [6u(0) [Gplw | -
SN TONN =) 06
2 Gy(w) G(w) .
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FIG. 4. Estimates of the normalized random error of the acoustic energy
density spectral density estimates, obtained from the standard deviation of
measurements, compared with the calculated normalized random error as
predicted by the derived theoretical expression. Results are shown for (a) 10,
(b) 100, and (c) 1000 acoustic energy density spectral density estimates.
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The lower bound in Eq. (38) shows that the averaging
time resulting from this approach will exceed the minimum
necessary averaging time at most by a factor of v2.

V1. CONCLUSIONS

An expression for the normalized random error of the
time-averaged acoustic energy density spectral density esti-
mates has been derived. A simulation in Simulink was used
to validate the expression numerically. The estimates of the
normalized random error resulting from the simulated mea-
surements agree with the error predicted by the expression.

Because the normalized random error is only heavily
dependent on n,, an experiment can be designed to achieve
a desired normalized random error without measuring the
local properties of the sound field first.
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If the auto-spectral densities of the two microphone pressure signals are approximately equal, Gj(@)~Gpn(w), then

X=1, so
2(kh)* (1= yiy(w))

12

_ 1
e(Ep(w))~—|1—

Vg [((kRh)*+ 1)+ ((kh)*—=1)y1(w)cos pip(w)]?

The normalized random error for this case is plotted in Fig.
1, assuming that the phase between the two signals is solely
due to the propagation delay so that ¢,=2kh. It is impor-
tant to note that while the bias errors that occur when using
the two-microphone method are affected by spatial aliasing,
the random errors are not.

Iil. SIMULINK SIMULATION

A Simulink model (see Fig. 2) was created to simulate
the two-microphone method for estimating acoustic energy
density.

The two microphone pressure signals were calculated by
simulating two points in a free space pressure field generated
by a white noise point source. The transfer function from a
monopole point source to a sensor at distance r is

1
G(S): ;‘_e—(hlc)s, (28)

where c is the speed of sound. These transfer functions were
implemented using a second-order Padé approximation in
series with a gain. In order to vary the coherence between the
two pressure readings, an amount of incoherent noise was
introduced to one of the signals.

To compute a single estimate, a frequency spectrum of
each of the microphone pressure readings was obtained by
performing a 512 point fast Fourier transform (FFT) (see
Fig. 3). The auto- and the cross-spectral densities were then
calculated, and Eq. (4) was applied to produce an acoustic
energy density spectral density estimate with n,=1 (see Fig.

1.05 T T T T

Normalised Random Error

ﬁ2=0

07 L 1 L 1 L
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. Frequency (Hz)

FIG. 1. Normalized random error of the acoustic energy density estimate
(ng=1), for 2h=50mm, c=343 ms~!. It is assumed that G;(w)
- ~Gyy(w) and ¢,=2kh. When the microphone separation distance exceeds
N2, half the wavelength, the bias errors become very large, so the random
error is unimportant. In this case, this occurs at frequencies above 3430 Hz.
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27)

—

3). A number, N, of acoustic energy density spectral density
estimates were calculated, and the standard deviation of each
spectral line was divided by the mean value to produce an
estimate of the normalized random error.

The microphone pressure readings, p; and p,, were also
sampled in the time domain. Each time signal was divided
into overlapping 512 point sections, each of which was win-
dowed. The FFTs of these windowed sections were averaged
to obtain spectra estimates, which were then used to calculate
the auto- and cross-spectral densities, coherence and phase
angle. Equation (25) was applied to calculate the normalized
random error.

Comparisons of the results between the two methods for
estimating the normalized random error for various values of
N are shown in Fig. 4. As the number, N, of acoustic energy
density estimates used in the average increases, the estimate
of the normalized random error converges to that predicted
by the derived equation (25). This would seem to confirm the
validity of the expression for the normalized random error of
the acoustic energy density spectral density estimate.

IV. BOUNDS OF THE RANDOM ERROR

Since the fraction in Eq. (25) is always non-negative, the
normalized random error is bounded above by

_~ 1
e(Ep(w))<s—= (29)

g

and equality occurs when yi,(w)= 1.
The denominator of the fraction in Eq. (25) can be rear-
ranged as

[((kh)2+1)X+((kh)?>—=1) y1(w)cos ¢1p(w)]>
=[(X+ yp(w)cos ¢12(w))(kh)2
+ (X = y12(@)cos o @) ] (30)

Since the arithmetic mean of

(X+y(w)cos gy ) (kh)?

and

(X—yip(@)cos ()

is greater than or equal to their geometric mean,

[+ 71a(@)c0s pia( @) (kh)>+(X = ia(@)eos ro(@))
=4(X2 = yiy(w)cos” ¢y @) (kh)?. (31
Since cos? ¢y (w)=<1,

4(X7 = yhy(w)cos® pip(w)) (kh)*=4(X*— ﬁz(w>)(kh)2(.3 )
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FIG. 2. The simulated sound field. The microphones
(separation distance, 27 =50 mm) are placed at dis-
tances r;=5.00m and r,=5.05m from the noise
sources. The primary noise source produces continuous
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Fiiter - 10 Hz

To Workspace 2

" Equation (30) and inequalities (31) and (32) yield
[((kR)*+1)X+((kh)*~1)y1x(w)cos ¢1p(®)]*
=4(X"— v ) (kh)*. (33)
Therefore,
1= ?’%2(‘0’)
2(X*= ¥ @))
_ 2(kh)* (1= 7i(w))
[((kR)?+ 1)X+((kh)2=1) y1p(@)cos ¢1p(@)]*
(34)

so that the normalized random error is bounded below by

12
= 1 1- ()
e(Ep(0))=—|1- ——=—— (35)
S Nl 20 yh(w)
Equality occurs in inequality (31) when (X

+ y12(w)cos ¢12(w))(kh)2= (X = y12(w)cos ¢rp(w)), and
equality occurs in inequality (32) when cos® ¢pp(w)=1.
Therefore, equality occurs in inequality (35) either when
$12(w)=0 and (X+ yy5(®))(kh)*= (X~ y12(®)), or when
$1o(@) =7 and (X~ y1o())(kh)*= (X + y15()).

~ Inequalities (29) and (35) together yield

1 [2x2-1-yw)|"? ey
—_ =€ W)= —,
Vnal 2X2=27}(w) P

When Gy(@)=Gxn(w), X=1 so that the lower bound
in Eq. (36) becomes 1/y/2n,. The definition of X (26) shows

(36)

ED white noise of 1.0 Pa at 1 m (94 dB re 20 uPa). The
secondary (contaminating) noise source produces con-
tinuous white noise of 0.010 Pa at 1 m (54 dB re 20
uPa). Speed of sound, c=343 ms™!, and density of air,
p=1.21 kg m™3. The “energy density calculation” sub-
model is shown in Fig. 3.

To Workspace

that X=1 always, since the arithmetic mean of
VG11(0)/Gap(w) and Gpy(0)/Gyi(w) is greater than or
equal to their geometric mean. Therefore,

2X°—1=yh(0) 1= yi(w)
2X> =2y w) 2(X* = v}y @))
1= yh(e) 1

21— Yyw) 2 7

This shows that the lower bound for the normalized random
error is minimum at 1/4/2xn,; when G (@)= Gy(w). Indeed,

o 1
<e€(Ep(w))<-—=. (38)

1
V2ng \/"Td

V. DISCUSSION

The expression (36) shows that the normalized random
error of time-averaged acoustic energy density spectral den-
sity estimates is always bounded within a narrow tolerance.
As the upper bound in Eq. (29) is dependent only on Vg,
the number of records averaged, it can be ensured that the
normalized random error is no greater than a specified toler-
ance by an appropriate choice of n,, without the need to
know any other information about the measurement. Thus it
is not in fact necessary to first estimate the coherence or
phase angle.
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FIG. 3. Model for the calculation of the time-averaged acoustic energy density estimate using the frequency domain expression in terms of the auto- and

cross-spectral densities of the two pressure readings.
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