
Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
1

An Environment for Work
ow Applications
on Wide-Area Distributed Systems

H.A. Jamesy, K.A. Hawicky and P.D. Coddingtonz

yDistributed and High Performance Computing Research Group

School of Informatics, University of Wales Bangor

Dean Street, Bangor, Gwynedd LL57 1UT, Wales, UK

Email: fheath,khawickg@informatics.bangor.ac.uk

Tel: +44 1248 382717 Fax: +44 1248 361429

zDistributed and High Performance Computing Research Group

Department of Computer Science, University of Adelaide

Adelaide, SA 5005, Australia

Email: paulc@cs.adelaide.edu.au

Tel: +61 8 8303 4949 Fax: +61 8 8303 4366
Abstract|

Work
ow techniques are emerging as an impor-
tant approach for the speci�cation and management
of complex processing tasks. This approach is es-
pecially powerful for utilising distributed data and
processing resources in widely-distributed heteroge-
neous systems. We describe our DISCWorld dis-
tributed work
ow environment for composing com-
plex processing chains, which are speci�ed as a di-
rected acyclic graph of operators. Users of our sys-
tem can formulate processing chains using either
graphical or scripting tools. We have deployed our
system for image processing applications and decision
support systems. We describe the technologies we
have developed to enable the execution of these pro-
cessing chains across wide-area computing systems.
In particular we present our Distributed Job Place-
ment Language (based on XML) and various Java in-
terface approaches we have developed for implement-
ing the work
ow metaphor. We outline a number of
key issues for implementing a high-performance, re-
liable, distributed work
ow management system.

Keywords: Work
ow; DISCWorld; distributed
computing; Java; XML.
0-7695-0981-9/01 $1
I. Introduction

Work
ow is a technique by which a complex
process is expressed as an interconnected series of
smaller, less complicated, tasks. The concept of
work
ow [11] has successfully been used in many
areas of human endeavour, including industrial and
administrative process management, and also major
design tasks. Work
ow concepts are fundamental
to the theory of computation on many levels. The
most �ne-grained level is that of machine-level in-
structions, where commands are directly executed
by the computer's central processing unit, usually
causing modi�cation to the data stored in memory.
This style of work
ow is too �ne-grained for most
practical purposes. At a higher level work
ow is
used by both main styles of computer programming:
imperative and declarative. In imperative program-
ming the user speci�es a list of commands to be
executed on data and the control of execution lies
with the commands [3]. In contrast, the declara-
tive paradigm of computing known as functional, or
data
ow computing usually involves the speci�ca-
tion of a program as a series of higher-level instruc-
tions that execute as soon as the data they need
to work becomes available [1, 25]. These two ap-
proaches di�er in the emphasis they place on data:
the �rst views data as passive, being passed between
instructions, while the latter views data as the en-
abling mechanism, without which the instructions
could not �re.

The �eld of distributed computing is considerably
0.00 (c) 2001 IEEE 1

2

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
aided by the ability to express complex tasks in
terms of groups of component tasks. The current
pervasiveness of the Internet has led to a rapid in-
crease in the number and complexity of distributed
computing applications. When computations are to
be distributed across physically separate processing
nodes, care must be taken to ensure that the amount
of computation performed by each task is enough to
ameliorate the cost of inter-task and inter-node com-
munications. One of the ways in which work
ow can
aid the �eld of distributed computing is by allowing
the abstraction away from individual instructions to
that of high-level services. This provides a suitable
granularity of tasks (in which the ratio of computa-
tion to communication is high) that can be e�ciently
manipulated in the distributed system.

Work
ow ideas are particularly useful for design-
ing a software architecture for handling service-
based distributed computing. We have developed a
distributed computing environment, known as DIS-
CWorld, which is based on work
ow principles. DIS-
CWorld acts as distributed computing middleware,
providing transparent access to remote data stor-
age and compute servers, and handling issues such
as scheduling and placement of data access and pro-
cessing services. We have deployed this environment
in the development of decision support applications
involving processing and analysis of geospatial im-
agery such as satellite data [5{8,32].

In this paper we describe our DISCWorld envi-
ronment and how it can be used to construct work-

ow applications that may be executed across mul-
tiple computers distributed over a wide-area net-
work. DISCWorld allows complex processing chains
of services to be speci�ed, without the need to know
where each service is to be executed. We also de-
scribe the technologies we have developed to fa-
cilitate the work
ow abstraction, and discuss is-
sues arising from implementing a high-performance,
reliable, distributed work
ow management system.
DISCWorld, the distributed computing environment
that we have designed and implemented, is described
in section II. The use of work
ow metaphors, and
the technologies we have developed are described in
section III. Section IV describes an example appli-
cation we have developed using work
ow and DIS-
CWorld, and section V discusses some issues for im-
plementing a high-performance, reliable, distributed
work
ow management system. The paper is sum-
marised and future work is discussed in section VI.
0-7695-0981-9/01 $1
II. DISCWorld Distributed Computing

Middleware

Our approach to the problem of work
ow man-
agement in distributed computational environments
is called Distributed Information Systems Control
World, or DISCWorld [17]. This section provides a
general description of DISCWorld and describes the
way in which it helps with work
ow problem man-
agement.

DISCWorld is a service-based metacomputing [27]
(or grid computing [10]) environment, providing
high-level middleware to enables transparent access
to data and compute resources distributed over a
wide-area network. The fundamental ideas behind
the DISCWorld environment are very simple: it es-
sentially consists a collection of federated servers
with hosting a DISCWorld daemon which acts as
a broker to applications, or services, and data.

Services can produce multiple outputs and can use
multiple inputs. Multiple services can use the same
output of a previous service. This has the logical
e�ect of copying the shared data. Data produced
by a service is immutable { once a data item is
created it cannot be modi�ed. The e�ect of a ser-
vice on data is the creation of new, or derived, data.
This immutability is achieved by canonically nam-

ing all data in DISCWorld; references to data are via
their name, not by any location-dependent memory
pointer [16].

Within the DISCWorld environment the use of
canonical names for objects (data and services) is
crucial. We make the assumption that if the same
service is executed with the same input data on mul-
tiple occasions, the output data is named the same
every time. Furthermore, we make the assumption
that if two separate DISCWorld objects have the
same name, they are de�ned to be two instances of
the same object. This assumption becomes vitally
important when we consider the topics of remote
data references.

Clients compose processing requests, which may
be very simple or quite complex, comprising of
a number of cooperating services. The process-
ing request is arranged as a directed acyclic graph
(DAG). DAGs are a standard mechanism for repre-
senting data
ow and work
ow processes. Connec-
tions (graph edges) between services (graph nodes)
represent data shared between the services. The
graph is directed since data
ows in a single di-
rection only. We do not allow cycles in the graph,
which would represent recursion. Users have two
ways of composing processing requests { through
0.00 (c) 2001 IEEE 2

3

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Fig. 1. Distributed work
ow calculator example. Requests
are formed as directed acyclic graphs of services. The
DISCWorld environment provides an execution context
for the user processing request.

a text-based scripting language (described in sec-
tion III-B) and via a graphical tool. The graphical
tool is shown in �gure 1. We allow remote refer-
ences to data and services in the DISCWorld; this is
described in section III.

Once a user has speci�ed their processing request
it is sent to their local DISCWorld daemon. The
daemon inspects the contents of the processing re-
quest and invokes a placement algorithm on the re-
quest. The placement algorithm assigns each of the
services to a processing node in a way that attempts
to minimise both the execution time of the whole
request and the amount of data that must be trans-
ferred between nodes. Due to the large number of
processors, and possible sources for data and ser-
vices, the placement process is may not be optimal.
A �tness heuristic is used on a \near" subset of avail-
able processing resources to produce a good (near-
optimal) solution. The federation of processing re-
sources which host the DISCWorld environment all
make their own placement and scheduling decisions
independent of each other. The DISCWorld envi-
ronment provides the necessary framework for the
seamless scheduling and execution of the component
parts of the users' requests across the distributed
system [21], and the necessary security and fault tol-
erance to ensure the request is ful�lled. The work-

ow metaphor is used to divide the problem into
smaller, discrete, services connected by data trans-
fer. Work
ow ideas are central to the architecture of
the DISCWorld distributed computing environment.

III. Workflow in DISCWorld

There are a number of applications in conven-
tional and distributed computing that use work-

ow techniques, including AVS [2], Ptolemy [12] and
0-7695-0981-9/01 $10
Khorus [22]. AVS and Khorus are tools for visual-
ising scienti�c data sets. Ptolemy is a tool for the
speci�cation and execution of low-level process net-
works in a distributed system. It is mainly used for
data
ow computation.

These applications allow the user to graphically
compose a graph of modules that are executed to-
gether to perform a processing request. Typically
users must be able to choose the input data to their
processing request via the �le system (whether the
�les are local or remotely accessed via NFS) and each
of the modules must be able to execute locally. Usu-
ally there is no facility whereby the user can specify
input data or processing modules that are stored in
a data archive on a remote machine. Furthermore,
systems like AVS are designed for short-running vi-
sualisations with a high degree of user interaction,
whereas the DISCWorld daemon is intended to be
a long-running process, even if individual process-
ing requests are relatively short. While AVS does
provide rudimentary support for distributed com-
puting, it is limited to use those machines that have
been con�gured to run prede�ned processing mod-
ules; no advanced heuristics are used to decide where
to place processes for e�cient execution.

DISCWorld aims to provide a fault-tolerant, re-
liable, distributed computing solution in wide-area
environments. We feel such a system must be adapt-
able to the following conditions:

� the services that make up the process network may
be remote;
� the data to be used may be remote, or stored
within a data archive;
� the data may have to be moved to the location
of the service, or vice versa, in order to execute the
process network;
� due to ownership or restricted usage conditions,
data or services may not be allowed to move between
physical machines; and,
� there may be multiple copies of the same module
in the distributed system, perhaps implemented in
di�erent ways, for example high-performance paral-
lel code which can only be run on a parallel com-
puter, or a portable lower-performance serial ver-
sion written in Java that can be easily transferred
between machines.

Work
ow techniques based on access to well-de�ned
services are fundamental to the design of DISC-
World. DISCWorld's abstraction over services al-
lows a greater
exibility than found in most other
distributed systems [17]. The remainder of this sec-
tion describes the work
ow techniques used within
DISCWorld and the abstractions we have developed
.00 (c) 2001 IEEE 3

4

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
to facilitate the metaphor.

In order to achieve a solution to the above prob-
lems, there must be some way in which data, that
may be on a local or remote processing node, can
be referenced. This is one of the hardest problems
in distributed or grid computing. Typical methods
for referencing data objects use pointers into a re-
mote process' memory space [4,13] or use an object
broker [24]. The fundamental limitation of these
approaches is that if the remote machine needs to
be restarted, then the object to which the reference
points may not be recreated, and if it is then it most
likely will not be recreated at the same memory lo-
cation. Therefore the pointer becomes useless. This
is known as the \dangling pointer problem".

In section III-A we describe our approach to the
problem of distributed remote object references, the
DISCWorld Remote Access Mechanism (DRAM). In
section III-B we describe the language used to rep-
resent complex processing requests in DISCWorld
and how these object references are used in request
execution.

A. DISCWorld Remote Access Mechanism

The DISCWorld Remote Access Mechanism is
used to reference objects which may reside on lo-
cal or remote processing nodes. The DRAM is a
rich pointer because as well as containing an object
reference, it contains additional metadata that can
be used, for example, to decide whether the data can
be moved between machines, or whether it is more
feasible to move the data to a remote machine for
processing or move the service to the data. The dif-
ferences between the approached mentioned above
and DRAMs are discussed in [16].

Data and services within the DISCWorld are given
a canonical (global) name. This name re
ects the
\recipe" that can be used to reconstruct it, if nec-
essary. DRAMs created from data or services share
the canonical name. The canonical name makes no
reference to either a processing resource or memory
location. This enables us to avoid the \dangling
pointer problem" faced by other remote-reference
systems.

The basic structure of a DRAM is shown in �g-
ure 2. We have chosen to implement the DRAM
in Java [28]. This decision allows us to leverage o�
many of Java's useful features, including byte-code
portability, run-time byte-code veri�cation, and con-
sistent serialisation behaviour. Of particular impor-
tance to the work
ow metaphor is the use of the ob-
ject's size, global name and mobility in the DRAM.
0-7695-0981-9/01 $1
public abstract class DRAM implements Serializable

{

private String publicName; // descriptive name for GUI use

private String globalName; // internal ID

private Icon icon; // associated icon e.g. thumbnail image

private String description; // long free textual description

private String className; // queryable searchable text

// representation of class

private String remoteServer; // location of the Data to which

// the DRAM points

private int objectMobility; // whether the object being pointed to

// can be transferred across

// the network

private int objectSize; // size of the object being pointed

// to, in bytes

}

Fig. 2. DRAM Java base class. The DRAM provides a high-
level pointer to an object.

When data is created within the DISCWorld, or is
imported into DISCWorld, the data's size is �xed.
Any services that use the data as input result in new
data being created, which is logically separate from
the original. The className �eld in the DRAM
speci�cation allows us a rudimentary type system.

As DRAMs have the same names as the object
from which they originate, they can be passed be-
tween DISCWorld servers and clients in lieu of trans-
ferring the original, bulk, data. This avoids the
needless transfer of large data objects to servers that
may only need to pass the object on, unused. Fig-
ure 3 shows the situation where both servers possess
a remote pointer to the same data; both pointers
have the same name as they refer to the same ob-
ject. DRAMs are �rst-class objects; they can be sent
between DISCWorld servers in the distributed sys-
tem. Only when the original data is actually needed,
is a transfer performed.

Whether the transfer is able to proceed is deter-
mined by the object's mobility. As mentioned in
the previous section, some objects (data or services)
may be subject to restrictions on whether they may
be copied, or moved between machines. Such restric-
tions must be taken into consideration when mak-
ing the decision of where to place services and data
to ensure optimal (or at least near-optimal) perfor-
mance.

When the user has created their processing re-
quest, it is sent to a DISCWorld daemon for process-
ing. An approximation of the time the processing
request will take to execute is made, based on the
local DISCWorld node's current knowledge of the
available source of data and service byte codes. The
approximation takes into account the reported slow-
down in service execution time caused by multiple
services executing concurrently on a single process-
ing resource, and the time taken to transfer data or
service byte code to another machine. DRAMs are
used extensively in the process of setting up a pro-
0.00 (c) 2001 IEEE 4

5

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
Server 2

Server 3

"points to" "points to"

DRAM d

(Bulk) Data item D

D

d d

Server 1

j k

i

(could be a copy of d)
DRAM dk

j

i

data descriptions or recipes.

j

DRAMs are more than pointers, they also contain
The DISCWorld Remote Access Mechanism (DRAM).

Fig. 3. Many DRAMs may point to a given DISCWorld
object. Each copy of the DRAM has the same name.
A DRAM may be sent between machines. The data (or
service) a DRAM points to is only copied (or moved)
upon explicit request.

cessing request. The time estimate is used to create
a new set of DRAMs, which refer to the data that
will be created when the processing request is exe-
cuted. These are called DRAM Futures [20]. When
a request is made to retrieve the data to which a
DRAMF points, the processing request that even-
tuated in the DRAMF being created is actually ex-
ecuted. DRAMFs have allowed us to implement a
form of lazy evaluation in our DISCWorld work
ow
environment. Only the required services are exe-
cuted, thus saving on computational resources.

Optimisations are allowed on the DAG structure
submitted as a processing request. The server han-
dling the request may be aware of one or more
servers that already possess the data which is to be
created, or have previously supplied DRAM refer-
ences to the data sought. If the data is available,
and the time spent transferring it will not exceed
the time spent waiting until the DRAMF's data is
created and transferred, then the decision may be
made to transfer the data from an alternative source.
By the same reasoning, if there exists another ref-
erence pointing to a di�erent data source, and the
estimated time is lower than that returned, the al-
ternative reference may be followed in the expecta-
tion that either the computation has already been
requested by another holder of the reference, or the
data should be available sooner due to the lower esti-
mated arrival time. The method by which daemons
are made aware of DRAMs on di�erent servers is
beyond the scope of this paper [26].

DRAMFs can be sent between servers, and may
0-7695-0981-9/01 $1
also be used by clients in the composition of new pro-
cessing requests. What this means is that a DRAMF
may be copied or moved to many other servers. Sub-
sequently, it may be used as an input to a service by
the scheduler, and only when that processing request
is executed, will the data to which that DRAMF
points be copied to a remote machine. By using the
DRAM Futures mechanism, and more generally, the
DRAM mechanism, unnecessary bulk data transfers
are prevented.

In the DISCWorld model, the partial results of
processing requests are deemed to be as signi�cant
as the �nal results. Therefore, in addition to send-
ing the DRAMFs to the nodes that may use them,
they are also sent to the daemon or client which
submitted the processing request. In the case of the
user client, DRAMFs corresponding to all the par-
tial products are returned { if the user wishes to
view the contents of the DRAMF, they can request
the DRAM's contents. As a DRAMF represents the
result of a remote computation that has not begun
execution, when the results are requested the service
is started, and the result is returned when available.
When the DRAMF is inspected by the user client or
any other daemon, a request is sent to the producing
daemon, which initiates the computation.

Using partial or �nal data products of previous
processing requests allows the possibility of pruning
the execution schedule for the current processing re-
quest. Thus, if there is no need to re-compute a
data product, then the system will avoid it if possi-
ble. Of course, the situation may arise where a user
has followed a reference corresponding to a �nal data
product, causing the computation to be started, and
at the same time following a reference to a partial
data product. If the reference that is an input to
the service which is to produce the �nal data prod-
uct has an estimated time greater than a cheaper
source of the same output data, then the data may
be retrieved from the alternate source, even though
by following a partial-product reference, the user has
dramatically reduced the time it would take to re-
trieve the data. This case is not addressed in the
current implementation of the DISCWorld environ-
ment { we simply make a best-estimate of the exe-
cution times, and settle for that.

When a daemon creates DRAMFs to some future
data, the service does not automatically begin ex-
ecuting. The agreement by a daemon to execute a
service with given parameters is, however, binding.
The daemon has acknowledged that if requested, it
will perform the computation and return the result
to any requesters. If the input data required by
0.00 (c) 2001 IEEE 5

6

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
a service is to be created by a previous service on
perhaps a remote machine, then the DRAMFs for
the current service cannot be made until the input
DRAMFs are received. They are needed in order to
estimate the time at which the data, to which the
DRAMFs point, should become available. It is in
this way that a complex processing request may be
set up. This allows resource reservations to be made
for daemons that will participate in the processing
of a request. Thus, while a processing request may
be expressed as a network of services connected by
data transfer, culminating in the production of some
desired data, its execution is constructed in reverse
order. Unlike other models of resource reservation,
multiple services can be reserved on a single DISC-
World node simultaneously.

A mechanism is needed to express the services
and the data that comprise the processing request.
We call our mechanism for this the Distributed Job
Placement Language (DJPL). It is designed as a
platform-independent speci�cation language.

B. Distributed Job Placement Language

One of the fundamental mechanisms that sepa-
rates grid computing environments from most batch
queueing systems or simple client-server systems is
the ability to specify a number of operations that are
to be performed on some data, and have the oper-
ations individually scheduled in a set of distributed
compute servers. This can be done without the in-
tervention of the user at every step of the processing,
whether that intervention is the initialisation of the
next processing step, or the submission of raw or de-
rived data to a new program. The mechanism used
to express processing requests in DISCWorld is the
Distributed Job Placement Language (DJPL) [14].

In a high-level distributed system, user requests
are represented as process networks of metacomput-
ing services linked together by the sharing of data.
Such sharing of data may be due to the services' re-
liance on the same input data, or the sharing may be
more explicit, as in a producer-consumer relation-
ship. Such process networks may be speci�ed and
their services statically assigned to hosts in the dis-
tributed system. This approach can lead to optimal
solutions in the case where the characteristics of the
distributed system are known in advance, but espe-
cially if all characteristics are not known in advance,
the dynamic allocation of services to hosts and the
optimisation of execution schedules can produce the
best near-optimal solution [21].

This section describes the DJPL, and how it
0-7695-0981-9/01 $1
is used to specify a complex chain of processing
steps on behalf of the client, whether the client
is a human user or another DISCWorld daemon.
DJPL is implemented in XML [33]. XML pro-
vides a platform-independent, unambiguous, exten-
sible mechanism with which structured data can be
represented within a text �le. Furthermore, there
are a number of freely available XML parsers (e.g.
IBM's XML4Java parser [18]) which will validate
the input against a Document Template De�nition
(DTD). Relevant parts of the current DJPL DTD
are shown in �gure 4.

The DJPL is designed to encapsulate all the infor-
mation necessary for a client's request to be executed
by a daemon within the DISCWorld environment.
The client can be either a human user or another
DISCWorld daemon that is making an execution re-
quest. At a minimum the information required by
the DISCWorld daemon in order to execute the re-
quest is: the user's identi�cation; the location from
which this request is being submitted; and a list of
instructions that comprises the user's processing re-
quest.

An example of the DJPL is shown in �gure 5. This
script shows a processing request to invoke three ser-
vices on a series of integer inputs. While the actual
services do not matter, the example illustrates that
the user's DAG has been
attened, and is able to
be reconstructed by any program that can access
the DTD and input script; we are not bound to any
particular implementation language as we would be
if we had simply serialised the Java DAG represen-
tation.

Close inspection of the DTD in �gure 4 will reveal
that the user identi�cation section is not needed for
a script to be syntactically correct. This is done in
order to allow recon�guration of processing requests
at runtime, and also to allow the \factoring out" of
common services into \meta-services".

The service abstraction used within DISCWorld is
of a software \black box", where nothing is known
about the implementation of the service except its
gross characteristics, as represented in its DRAM.
It does not matter to the DISCWorld environment
whether the service is implemented as: a single-
or multi-threaded Java application; a Java wrapper
around a high-performance legacy application [32];
an interface to a cluster-based parallel solution [15];
or as a group of services cooperating to produce
the advertised e�ect. In fact, the service named
generalAdder in �gure 5 is implemented by the
script shown in �gure 6. Part of our ongoing re-
0.00 (c) 2001 IEEE 6

7

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
search is the development of tools to allow is to splice
together the individual scripts and also factor out
common groups of services.

The major bene�t of allowing services and meta-
services to be logically equivalent is the ability to
optimise request execution at runtime. As a meta-
service is represented by a DRAM, which has a mean
run-time, a notion of run-time variance, and an orig-
inating server, the scheduler/placement mechanism
can use this information to both reduce the com-
plexity of the scheduling process, and also to op-
tionally choose the best implementation of the ser-
vices for the user request's characteristics. For ex-
ample, if the server scheduling the script in �g-
ure 5 �nds a more economical implementation of the
generalAdder service, or perhaps one which is on
the same server as the data to be used, it is able
to transparently substitute the new service. This
is possible only if the names of the services are the
same. This is illustrated in �gure 7, where two meta-
services share the same name, although they are im-
plemented as di�erent task graphs.

IV. Example Applications

An example work
ow application that has been
implemented within the DISCWorld framework is
imagery exploitation and analysis [5]. In general
terms, this problem involves the manipulation and
processing of satellite imagery to identify features of
interest. The results from the feature detection al-
gorithm are overlayed on the image which has been
enriched with relevant geospatial data stored in an-
other database. The image can then be passed to a
user or a client application such as an environmen-
tal monitoring application or a defence command
and control system. The problem lends itself to the
work
ow metaphor as most of the processing de-
composes quite naturally into a series of individual
processing steps. The program was implemented in
Java, which allowed us to use the Java Advanced
Imagery (JAI) [29] application programming inter-
face (API), which supports image processing chains
described using DAGs, and therefore �ts in well with
the DISCWorld work
ow approach.

Consider the following example. A satellite im-
age is captured and sent to a ground-based receiv-
ing station. The image is ingested into an image
archive that is registered with the DISCWorld en-
vironment [8], thus becoming available for exploita-
tion. A processing request is submitted either by
a human image analyst or by an automatic process
noticing the availability of a new image.
0-7695-0981-9/01 $10
<?xml encoding="US-ASCII"?>

<!ELEMENT DJPL (USER?,JOB?,ALIASES?,INPUTS,OUTPUTS,(INSTRUCTION|FOREACH)+)>

<!-- USER, JOB, ALIAS sections are optional. INPUTS, OUTPUTS and at

least one INSTRUCTION or FOREACH is required -->

<!ATTLIST DJPL NAME CDATA #REQUIRED>

<!ELEMENT INPUTS (#PCDATA)> <!-- Lists necessary input parameters to script -->

<!ELEMENT OUTPUTS (#PCDATA)> <!-- Lists the minimum necessary output

parameters to this script (there may me more in actuality) -->

<!ELEMENT USER (GROUP?,PERMISSION?)>

<!ATTLIST USER ID CDATA #REQUIRED>

<!ELEMENT GROUP (#PCDATA)>

<!ELEMENT PERMISSION (#PCDATA)>

....

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT PORT (#PCDATA)>

<!ELEMENT FOREACH (VARIABLE,RANGE,BODY)>

<!-- Prototype looping mechanism which avoids recursion in implementation -->

<!ELEMENT VARIABLE (#PCDATA)>

<!ELEMENT RANGE (#PCDATA)>

<!ELEMENT BODY (FOREACH?,INSTRUCTION+)>

<!ELEMENT INSTRUCTION (PARAMETER+,NODE?)> <!-- Each Instruction is a

service. It has a name, input and output parameters, and

possibly a processing node to which it has been assigned -->

<!ATTLIST INSTRUCTION SERVICE CDATA #REQUIRED>

<!ELEMENT NODE (#PCDATA)>

<!ELEMENT PARAMETER (#PCDATA)>

<!ATTLIST PARAMETER TYPE CDATA #REQUIRED>

<!ATTLIST PARAMETER NAME CDATA #REQUIRED>

Fig. 4. Document Template De�nition (DTD) for the proto-
type DISCWorld Distributed Job Placement Language
(DJPL). The DTD allows DJPL scripts to be syntac-
tically veri�ed at run-time. There are no DISCWorld-
dependent features in the language's de�nition in order
for it to be used by other systems.

<?xml version="1.0"?>

<!DOCTYPE DJPL SYSTEM "djpl.dtd">

<DJPL NAME="myAdder">

<USER ID="heath"> <GROUP>dgis</GROUP>

<PERMISSION>unrestricted</PERMISSION> </USER>

<JOB ID="00005" PRIORITY="5">

<COST> <SOFT>100</SOFT> <MAX>120</MAX>

<ESTIMATE>90</ESTIMATE> </COST> <TIME>360</TIME>

<SERVER> <NAME>geronimo.cs.adelaide.edu.au</NAME>

<PORT>6668</PORT> </SERVER> </JOB>

<INPUTS></INPUTS> <OUTPUTS>SUMS</OUTPUTS>

<INSTRUCTION SERVICE="generalAdder">

<PARAMETER TYPE="INPUT" NAME="LHS">Integer:2</PARAMETER>

<PARAMETER TYPE="INPUT" NAME="RHS">Integer:3</PARAMETER>

<PARAMETER TYPE="OUTPUT" NAME="SUMS">

generalAdder:SUMS(Integer:2,Integer:3)</PARAMETER>

</INSTRUCTION>

<INSTRUCTION SERVICE="generalAdder">

<PARAMETER TYPE="INPUT" NAME="LHS">Integer:4</PARAMETER>

<PARAMETER TYPE="INPUT" NAME="RHS">Integer:5</PARAMETER>

<PARAMETER TYPE="OUTPUT" NAME="SUMS">

generalAdder:SUMS(Integer:4,Integer:5)</PARAMETER>

</INSTRUCTION>

<INSTRUCTION SERVICE="generalAdder">

<PARAMETER TYPE="INPUT" NAME="LHS"></PARAMETER>

<PARAMETER TYPE="INPUT" NAME="RHS"></PARAMETER>

<PARAMETER TYPE="OUTPUT" NAME="SUMS">

generalAdder:SUMS(generalAdder:SUMS(Integer:2,Integer:3),

generalAdder:SUMS(Integer:4,Integer:5))</PARAMETER>

</INSTRUCTION>

</DJPL>

Fig. 5. Example DJPL code. The instruction section of
the code represents the user's processing request as a
DAG. Data is shared between instructions by the use of
its name. Because services can have multiple outputs,
each output has a di�erent name; the data produced has
the speci�c name as part of its \recipe".

<?xml version="1.0"?>

<!DOCTYPE DJPL SYSTEM "djpl.dtd">

<DJPL NAME="generalAdder">

<INPUTS>LHS, RHS</INPUTS>

<OUTPUTS>OUTPUT</OUTPUTS>

<INSTRUCTION SERVICE="addSomething">

<PARAMETER TYPE="INPUT" NAME="input_lhs">LHS</PARAMETER>

<PARAMETER TYPE="INPUT" NAME="input_rhs">RHS</PARAMETER>

<PARAMETER TYPE="OUTPUT" NAME="sum">addSomething:sum(LHS,RHS)</PARAMETER>

</INSTRUCTION>

</DJPL>

Fig. 6. DJPL script representing a DISCWorld compound (or
meta-) service. The service represented by this script can
be substituted for a single service that matches the same
description and has the same number of inputs/outputs.
.00 (c) 2001 IEEE 7

8

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
could be replaced with

... as long as there are the

A DISCWorld service may represent any

are used and outputs produced.
does not matter as long as the same inputs
The implementation of compound services
number of nested compound services.

same number of inputs
and at least the same
number of outputs and
both compound services
perform the same
advertised function.

Fig. 7. Services with the same name need not necessarily
be implemented in exactly the same way. The circled
services are interchangeable i� they advertise the same
purpose, accept the same number of inputs, and produce
at least the same number of outputs as the required ser-
vice.

Service

Threshold

Co−ord Warp

Load Image

Image Warp

Overlay Geo Data

Annotate

Callback

Vector Data

Affine Transform

Params

Params

Image name

Parameter Parameter use

Control flow

Legend

Feature Detect

Fig. 8. A work
ow imagery exploitation and analysis exam-
ple which has been implemented within the DISCWorld
framework. Each part of the process can be represented
by a DISCWorld service; links between services represent
data
ow. Intermediate data products can be stored for
re-use in future processing requests.

The analysis script performs a number of quality-
checking routines on the data and then passes the
data to two separate forks in the request tree. One
fork performs a simple feature detection algorithm
on the image, creating annotations that can be over-
layed on the image, while the other fork transforms
the image to a common spatial coordinate system
so that geospatial data stored in a database can be
overlayed. This may involve the translation and ro-
tation of the image. Once the feature detection and
transformation processes are complete, the annota-
tions produced by the detection algorithm are trans-
0-7695-0981-9/01 $1
formed and overlayed onto the resultant image. This
process is shown in �gure 8, where it is clear that
the two arms of the fork can be executed in parallel.

This application was based on the United States
National Imagery and Mapping Agency (NIMA)
Geospatial and Imagery eXpoitation Service speci�-
cation (GIXS) [31]. The speci�cation is published as
CORBA [23] Interface De�nition Language (IDL).
In conjunction with Australia's Defence Science and
Technology Organisation we have adapted this spec-
i�cation in order to implement a federated version
using the DISCWorld work
ow environment. Java's
Advanced Imagery (JAI) [29] application program-
mer interface (API) is used to supply the imagery ex-
ploitation services. A GIAS-compliant [30] imagery
archive [8] is accessed through a CORBA interface.

V. Workflow Architecture Issues

The problem of providing a high-performance, re-
liable, distributed work
ow management system is
not easy. There are a number of systems that pro-
vide partial solutions to some of these problems, but
no one system presents a complete solution. DISC-
World is a research project, in which partial solu-
tions to each of these aspects are addressed.

The problem of (high) performance is tied with ef-
�ciency of the services. For a single service this can
be done by placing it on a computer that is most
closely matched to the service's execution charac-
teristics; when many services and a large amount
of data must be matched to a wide array of possible
computers, the problem of service placement and ex-
ecution scheduling becomes non-trivial [21]. We be-
lieve the use of DRAMs and meta-services reduces
the sheer complexity of the problem by introducing
some levels of abstraction.

Reliability in a distributed system is an impor-
tant issue even when the pool of available computa-
tional resources is under local control. As soon as
the user (or the user's IT manager, for example) runs
their program across a set of physically distributed
computational resources, the probability of a single
machine failing, due to hardware failure or network
failure, becomes signi�cant. We address this prob-
lem in three ways: by creating redundancy wher-
ever possible in the system, for example, replicating
services across di�erent machines; by federating the
control and execution mechanisms across each server
in the DISCWorld; and by canonically naming de-
rived data and DRAMs with the \recipe" needed
for reconstructing them. This ensures that when a
server fails (or becomes unavailable), the most no-
0.00 (c) 2001 IEEE 8

9

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
ticeable e�ect of \missing" derived data is the la-
tency caused by reconstructing it on the
y.

DISCWorld relies on two basic tenets in order to
function successfully in the distributed environment:
DISCWorld servers are peer-based; and the global
naming scheme allows request optimisation. Having
a peer-based system allows the system to function
more-or-less normally even in the presence of mas-
sive machine failures because all the control and job
scheduling mechanisms for each machine are local.

A signi�cant problem in the wide-area distributed
computing (or grid computing) community is the
lack of proper standards. For example, many re-
search groups around the world are creating good,
but piecemeal, solutions to the problems of de-
scribing both remote data and complex processing
tasks. The lack of standards means that in many
cases these e�orts will be replicated, often with the
net e�ect that the technologies will be incompati-
ble. In addition, di�erent research groups are ap-
proaching the problems from vastly di�erent per-
spectives. For example, the approach taken by
the Globus/Nexus [9] and Legion [13] projects is
that of a single program which is able to use dis-
tributed resources, and the underlying software pro-
vides such services as: security, remote data access,
and scheduling. This is in direct contrast to the DIS-
CWorld which, as previously described in section II,
is a service-based approach to grid computing.

VI. Summary and Future Work

Work
ow applications are proving to be an ex-
tremely versatile metaphor for describing real-world
processes. This metaphor allows one to de�ne an
application in terms of smaller, manageable, compo-
nents that themselves may be further broken down.
We �nd that for a certain class of applications, the
work
ow metaphor has advantages in the process of
speci�cation and managing complex tasks, particu-
larly when using distributed computing.

We have introduced a distributed computing en-
vironment, DISCWorld, which allows users to com-
pose a complex processing request consisting of a
directed acyclic graph of high-level services. These
services are connected by the sharing of data in a
system that is able to span a high-latency compu-
tational environment. Furthermore, we have intro-
duced the technologies we have developed to express
and implement the work
ow metaphor. We have
developed a high-level pointer mechanism, DRAMs,
which we can use to make intelligent scheduling and
placement decisions on large distributed data items
0-7695-0981-9/01 $1
and services. We have also introduced a general,
yet powerful, scripting language called DJPL that is
used to encapsulate and describe a user's processing
request for use between machines in the distributed
system. Although the DRAM and DJPL mecha-
nisms have been developed within the context of the
DISCWorld environment they are general enough to
be used within any distributed system that features
a canonical naming strategy for objects.

We have described one of the applications we
have successfully implemented using the work
ow
metaphor within the DISCWorld environment, and
we have discussed a number of key issues for im-
plementing a high-performance, reliable, distributed
work
ow management system.

Key areas we are addressing in our current work,
among which are those of DISCWorld policies,
user and data security mechanisms, processing re-
quest exception handling and performance monitor-
ing tools. We wish to express policies, such as the
inclusion or exclusion of a user, group of users, ser-
vices, and data, on either a local or global scale. The
problem is one of a suitable language for expression
and a logic engine for the enforcement of such poli-
cies. In addition, careful checks must be made to
ensure consistency between policies.

The current DISCWorld prototype has little in
terms of user and data security. We are investigat-
ing the use of LDAP [19] in order to implement a
distributed user namespace mechanism. Data se-
curity can be quite simple { one such scheme may
rely on a user's membership of a hierarchically-
arranged group structure, and having data (both
raw and derived) belong to that group. The com-
plication becomes evident when members from dif-
ferent, unrelated groups wish to share data. Fur-
thermore, the problem of service namespace man-
agement is not trivial, especially when users are able
to add their own services into the DISCWorld envi-
ronment's namespace.

The current mechanism by which exceptions are
reported is not very robust: the local DISCWorld
daemon recognises that a service has stopped abnor-
mally and sends a message back to the user client
for recti�cation. Any resources which had been re-
served by virtue of a DRAMF being created are not
released { there is no need as DRAMFs are not ac-
tively consuming processor cycles. We wish to im-
plement two possible improvements to this: �rstly to
de�ne a hierarchy of exceptions with default recti�-
cation behaviour; and secondly to further annotate
the user DJPL script with su�cient information to
0.00 (c) 2001 IEEE 9

10

Proceedings of the 34th Hawaii International Conference on System Sciences - 2001
express the appropriate behaviour for that process-
ing request.

References

[1] Paul W. Abrahams, James H. Andrews, Jim Blandy,
Robert J. Chassell, Daniel J. Edwards, Timothy P. Hart,
Brian Harvey, Michael I. Levin, John McCarthy, and Jim
Veitch. Handbook of Programming Languages Vol. IV
Functional and Logic Programming Languages. Macmil-
lan Technical Publishing, IN, USA, 1998. ISBN 1-57870-
011-6.

[2] Advanced Visual Systems (AVS). AVS Developer's
Guide. Advanced Visual Systems Inc, release 4 edition,
May 1992.

[3] Walt Brainerd, Ron Cytron, Ralph E. Griswold, Glenn
Grotzinger, Dennis M. Ritchie, and Steve Summit.
Handbook of Programming Languages Vol. II Imperative
Programming Languages. Macmillan Technical Publish-
ing, IN, USA, 1998. ISBN 1-57870-009-4.

[4] K. Mani Chandy and Carl Kesselman. CC++: A Declar-
ative Concurrent Object-Oriented Programming Nota-
tion. Technical report, Caltech, 1993. MIT Press.

[5] P. D. Coddington, G. Hamlyn, K. A. Hawick, J. F. Her-
cus, H. A. James, D. Uksi and D. Weber. A Software
Infrastructure for Federated Geospatial Image Exploita-
tion Services. Technical Report DHPC-092, Distributed
and High Performance Computing Group, Department
of Computer Science, University of Adelaide, June 2000.

[6] P. D. Coddington, K. A. Hawick, and H. A. James. Web-
Based Access to Distributed, High-Performance Geo-
graphic Information Systems for Decision Support. Tech-
nical Report DHPC-037, Distributed and High Perfor-
mance Computing Group, Department of Computer Sci-
ence, University of Adelaide, June 1998.

[7] P. D. Coddington, K. A. Hawick and H. A. James. Web-
based Access to Geospatial Image Archives. Technical
Report DHPC-089, Distributed and High Performance
Computing Group, Department of Computer Science,
University of Adelaide, May 2000.

[8] P. D. Coddington, K. A. Hawick, K. E. Kerry, J. A.
Mathew, A. J. Silis, D. L. Webb, P. J. Whitbread, C. G.
Irving, M. W. Grigg, R. Jana, and K. Tang. Imple-
mentation of a Geospatial Imagery Digital Library us-
ing Java and CORBA. In Proc. Technologies of Object-
Oriented Languages and Systems Asia (TOOLS 27).
IEEE, September 1998.

[9] Ian Foster and Carl Kesselman. Globus: A meta-
computing infra-structure toolkit. Int. J. Supercomputer
Applications, 1996.

[10] Ian Foster and Carl Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, Inc., 1999. ISBN 1-55860-475-8.

[11] D.Georgakopoulos, M.Hornick, A.Sheth. An Overview
of Work
ow Management: From Process Modelling to
Work
ow Automation Infrastructure. Distributed and
Parallel Databases, 3:119{153, 1995.

[12] Mudit Goel. Process Networks in Ptolemy II. Mas-
ter's thesis, University of California, Berkeley, December
1998.

[13] Andrew S. Grimshaw and Wm. A. Wulf and the Le-
gion team. The Legion Vision of a Worldwide Virtual
Computer. Communications of the ACM, 40(1), Jan-
uary 1997.

[14] K. A. Hawick and H. A. James. A Distributed Job Place-
ment Language. Technical Report DHPC-070, Depart-
ment of Computer Science, The University of Adelaide,
May 1999.

[15] K. A. Hawick and H. A. James. A Java-Based Parallel
Programming Support Environment. In Proc. High Per-
formance Computing and Networking (HPCN) Europe
0-7695-0981-9/01 $1
2000, volume 1823 of Lecture Notes in Computer Sci-
ence, pages 363{372. Springer-Verlag Berlin Heidelburg,
May 2000.

[16] K. A. Hawick, H. A. James, and J. A. Mathew. Re-
mote Data Access in Distributed Object-Oriented Mid-
dleware. To appear in Parallel and Distributed Comput-
ing Practices, 2000.

[17] K. A. Hawick, H. A. James, A. J. Silis, D. A. Grove,
K. E. Kerry, J. A. Mathew, P. D. Coddington, C. J.
Patten, J. F. Hercus, and F. A. Vaughan. DISCWorld:
An Environment for Service-Based Metacomputing. Fu-
ture Generation Computing Systems (FGCS), 15:623{
635, 1999.

[18] International Business Machines Corporation. XML
Parser for Java v3.0.1. Available from http://www.-
alphaWorks.ibm.com/, last visited May 2000.

[19] Internet Engineering Task Force (IETF). Lightweight
Directory Access Protocol (LDAP) Speci�cation version
3. Released 1997.

[20] H. A. James and K. A. Hawick. Data futures in DIS-
CWorld. In Proc. High Performance Computing and
Networking (HPCN) Europe 2000, volume 1823 of Lec-
ture Notes in Computer Science, pages 41{50. Springer-
Verlag Berlin Heidelburg, May 2000.

[21] Heath A. James. Scheduling in Metacomputing Systems.
PhD thesis, Department of Computer Science, The Uni-
versity of Adelaide, July 1999.

[22] Khoral Research, Inc. Khorus. Available at http://-
www.khoral.com, last visited May 2000.

[23] Object Management Group (OMG). The Common Ob-
ject Request Broker: Architecture and Speci�cation (re-
vision 2.0). Framingham, MA, July 1995.

[24] Object Management Group (OMG). CORBA/IIOP
2.2 speci�cation. Available from http://www.omg.org/-
corba/cichpter.html, July 1998.

[25] John A. Sharp. Data Flow Computing. Ellis Horwood
Limited, 1985. ISBN 0-85312-724-7.

[26] Andrew Silis and K. A. Hawick. The DISCWorld Peer-
To-Peer Architecture. In Proc. Fifth IDEA Workshop,
February 1998.

[27] Larry Smarr and Charles E. Catlett. Metacomputing.
Communications of the ACM, 35(6):44{52, June 1992.

[28] Sun Microsystems. Java products homepage. Available
from http://www.javasoft.com/products/.

[29] Sun Microsystems. Java products homepage. Available
from http://java.sun.com/products/java-media/jai/.

[30] United States National Imagery and Mapping Agency
(NIMA). USIGS Geospatial and Imagery Access Service
(GIAS) Speci�cation. Version 3.1, February 1998.

[31] United States National Imagery and Mapping Agency
(NIMA). USIGS Geospatial and Imagery Exploitation
Service (GIXS) Speci�cation. Version 2.0, June 1999.

[32] Derek Weber and Heath James. A Federated GIXS
Model. Technical report DHPC-088, Defence Science
and Technology Organisation (DSTO) and The Univer-
sity of Adelaide, February 2000.

[33] World Wide Web Consortium (W3C). eXtensible
Markup Language (XML). Available at http://www.-
w3.org/XML/, Last visited May 2000.
0.00 (c) 2001 IEEE 10

