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ABSTRACT

Visual tracking is one of the key tasks in computer vision. The
particle filter algorithm has been extensively used to tackle this
problem due to its flexibility. However the conventional particle
filter uses system transition as the proposal distribution, frequently
resulting in poor priors for the filtering step. The main reason is
that it is difficult, if not impossible, to accurately model the target’s
motion. Such a proposal distribution does not take into account
the current observations. It is not a trivial task to devise a satis-
factory proposal distribution for the particle filter. In this paper
we advance a general augmented particle filtering framework for
designing the optimal proposal distribution. The essential idea is
to augment a second filter’s estimate into the proposal distribution
design. We then show that several existing improved particle filters
can be rationalised within this general framework. Based on this
framework we further propose variant algorithms for robust and
efficient visual tracking. Experiments indicate that the augmented
particle filters are more efficient and robust than the conventional
particle filter.

1. INTRODUCTION

Robust visual tracking is one of the core challenges in computer vi-
sion with many potential applications. Unfortunately development
of a robust and efficient tracking framework remains unsolved.
The particle filter (CONDENSATION [1] or sequential Monte Carlo
(SMC)) has been extensively studied and used for visual tracking
due to its flexibility. Compared with the Kalman filter, it relaxes
the linearity and Gaussianity requirements.

From the Bayesian filtering equation, it can be seen clearly that
two main components are involved in particle filter based track-
ing algorithms. One component is the likelihood formulation, i.e.
the object representation and matching. All approaches can be
classified into bottom-up [1], top-down [2] or a combination of
both [3, 4]. This issue has important effects on the tracker’s ro-
bustness. The other component is the importance sampling pro-
posal distribution, which determines the particle filter’s efficiency.
A typical disadvantage of Monte Carlo sampling based methods
is that they are often computationally demanding. For real-time
applications such as visual tracking, it is critically important to
improve the sampling efficiency so that fewer particles are needed
to represent the filtering distribution, thereby reducing the com-
putational burden. For the conventional particle filter, the sys-
tem transition is used as the proposal distribution for simplicity.
However it is not the “optimal” proposal sampling distribution. It
has been shown that the “optimal” importance sampling proposal
should utilise the most recent observations [5]. While the simple
system transition proposal does not take into account the current
observations, a more promising proposal distribution should be de-

vised for better sampling efficiency. It is not a trivial task to devise
a satisfactory proposal distribution for the particle filter. We shall
see that both of these two issues can be accommodated in our more
general augmented particle filtering framework.

Related work. Much effort has been expended to improve
the performance of the particle filter. Several strategies have been
advanced to relocate the particles to compensate for a poorly mod-
elled system transition prior. The works in [6–9] fall into this cate-
gory; all use hill-climbing (gradient ascent) algorithms to move the
particles towards the dominant modes in the likelihood or posterior
domain. Thus fewer particles are required to represent the distri-
bution well. We shall refer these algorithms as mode-climbing ap-
proaches, in contrast to a novel mode-hopping approach presented
here.

In order to take advantage of the most recent observations, the
Kalman filter has been integrated into the particle filter, resulting
in the so-called Kalman particle filter. Its variants include the Ex-
tended Kalman particle filter and the unscented particle filter. In a
Kalman particle filter, the Kalman filter generates Gaussian distri-
butions for each particle from which one performs the sampling.
It has been introduced into the visual tracking field and better per-
formances are observed [10, 11]. Nevertheless the price of this
improvement is much extra computation. The Kalman particle fil-
ter requires running N Kalman filters in parallel for each frame,
where N is the number of particles.

A related work is the Co-inference approach in [3]. Here, Wu
et al. formulate the multiple cue integration as a graphical model,
which is then factorised to achieve feasible inference. The core
idea is straightforward: the sampling of particles for one cue from
other cue’s filtering distributions. This process is iterated until
convergence. In this way, different cues support each other and
enhance the performance. One problem in [3] is that, each cue is
supposed to be reliable. In fact sampling from an unreliable cue’s
filtering distribution offers no benefit and might even be detrimen-
tal to the performance. In the following section we explain the
role of the Co-inference strategy in our framework and discuss it
in more detail.

Our approach. In this paper we first propose a general aug-
mented particle filtering framework for designing an optimal pro-
posal distribution. The essential idea is to augment a second filter’s
estimate into the proposal distribution design. We shall see that
several existing improved particle filters can be unified into our
general framework. Based on this framework we further propose
novel variant algorithms for robust and efficient visual tracking.

2. THE AUGMENTED PARTICLE FILTERING
FRAMEWORK

Bayesian filtering. Denote the state vector as x and observations
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(a) (b)

Figure 1: Diagrams of: (a) the particle filter and (b) the augmented particle
filter. The predict step is also known as time update while correct means
measurement update.

z, the tracking problem is a Bayesian filtering inference problem:

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1), (1)

where the prior is the previous posterior propagated across the tem-
poral axis,

p(xt|z1:t−1) =

Z
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (2)

The filtering process can be represented by graphical models in
Figure 1(a). By propagating the prior p(xt−1|z1:t−1) through the
system dynamics model p(xt|xt−1), we obtain the output xt|t−1.
In Kalman filters, this step is named time update. The predicted
state is then corrected by the likelihood p(zt|xt). This is the mea-
surement update step.

The filtering can be realised by Kalman filters when the linear-
ity and Gaussianity conditions are satisfied. Otherwise we have to
approximate the integral in Equation (2) with numerical sampling
techniques. A typical sampling technique is importance sampling.
At each frame t, the posterior is approximated by a set of dis-
crete particles {x(n)

t
, w

(n)
t

}N

n=1, where
P

N

n=1 w
(n)
t

= 1 holds. If
we sample the particles from proposal density q(·), i.e. x

(n)
t

∼

q(xt|x
(n)
t−1, z1:t)(n = 1 . . . N), then each particle’s weight is set

to

w
(n)
t

∝
p(zt|x

(n)
t

p(x
(n)
t

|x(n)
t−1)

q(xt|x
(n)
t−1, z1:t)

. (3)

The deficiency of the standard importance sampling is well known.
Doucet et al. show that the “optimal” importance sampling pro-
posal is p(xt|x

(n)
t−1, zt) [5]. Therefore the most recent observa-

tions should be utilised.
Augmented particle filtering. Motivated by the success of

improved particle filters such as Kalman particle filters [10,11] and
Co-inference [3], we propose a general augmented particle filter-
ing framework in which a two-stage sampling approach is adopted.
We illustrate the framework with two filters being augmented. Ap-
parently it is straightforward to extended this framework to the
case of more than two filters. The key idea is that we augment a
particle filter (or a Kalman filter) to learn a sampling distribution
automatically at the first stage. At the second stage, the estimate
produced by the first-stage filtering is fed to the second particle
filter for constructing an optimal proposal. This process can be
iterated to yield better results.1

Figure 1(b) depicts this strategy. There are two filters running
iteratively. The first filter, which could be a Kalman filter2 or a
particle filter, is used to obtain a rough estimate of the state vec-
tor depending on the state estimate of the last step xt−1 and the

1The second particle can also be a Kalman filter. In visual tracking
applications, the system is always nonlinear and non-Gaussian, particle
filters give better results. We only consider the case that the second filter is
a particle filter in this work.

2A plain Kalman filter, extended Kalman filter or unscented Kalman
filter etc.

current observation zt. Specifically, according to the type of the
first-stage filter adopted, we study the algorithm in the following
two cases.

Case 1: The first-stage filter is a Kalman filter. After each
particle x

(n)
t−1 propagates through the system dynamics equation,

the sample mean ext|t−1 and covariance ePt|t−1 are readily avail-
able. Then, in the filtering step for the Kalman particle filter algo-
rithm [11, 12], a measurement update with a Kalman filter is ap-
plied to each particle. Thus N Kalman filters need to run. Clearly
it is computationally expensive, although such an approach might
better maintain multiple modes. For the Maximum A Posterior
(MAP) estimation, the purpose is to find the maximum in the pos-
terior space. Consequently we only use the sample mean ext|t−1

and associated covariance ePt|t−1 to perform the Kalman update.
This way we maintain only the main mode but significantly reduce
the computational demand. The Kalman measurement update pro-
cess writes:

ext = ext|t−1 + Kt(zt − Hext|t−1) (4)

ePt = ePt|t−1 − KtH
ePt|t−1 (5)

where H is the measurement matrix (for the extended Kalman fil-
ter, H is a linearised Jacobi measurement matrix) and the Kalman
gain Kt is Kt = ePt|t−1H

>(HePt|t−1H
> + Rt)

−1. Rt is the
covariance matrix of the observation noise at time t. Then we ob-
tain the filtered estimate ext and its covariance ePt which are more
accurate than their predicted version ext|t−1 and ePt|t−1. For the
unscented Kalman filter, Equations (4) and (5) are slightly differ-
ent. See [12] for details.

At the second step, we need to take full advantage of the suf-
ficient Gaussian statistics produced at the first step. We construct
a Gaussian proposal N (xt; ext, ePt) from which we sample N par-
ticles x

(n)
t

for the second particle filter. The second particle filter
yields the second-stage posterior estimate xt with a weighting cal-
culation, as the standard particle filter does. Note that since the
one-to-one mapping relationship between a particle at time t − 1,
x

(n)
t−1 and its corresponding offspring x

(n)
t

at time t has been bro-
ken, the weighting equation (3) needs to be modified.

We have drawn N samples {x(n)
t

, w
(n)
t

}N

n=1 from the pro-
posal N (xt; ext, ePt), and from Equation (1), each particle’s weight
is

w
(n)
t

=
p(zt|x

(n)
t

)p(x
(n)
t

|z1:t−1)

N (x
(n)
t

; ext, ePt)
. (6)

We already have a set of discrete particles {x(m)
t−1,

1
N
}N

m=1 to rep-
resent the posterior at time t−1 after re-sampling, therefore Equa-
tion (2) can be rewritten as

p(x
(n)
t

|z1:t−1) =
1

N

NX

m=1

p(x
(n)
t

|x(m)
t−1). (7)

Combining Equations (6) and (7), we obtain the weight calculation
equation,

w
(n)
t

=
1

N

p(zt|x
(n)
t

)
P

N

m=1 p(x
(n)
t

|x(m)
t−1)

N (x
(n)
t

; ext, ePt)
, n = 1 . . . N. (8)

Note that this two-step iteration does not necessarily run once.
Multiple loops might be implemented if necessary. The essential
point is that these two filters carry out the estimation in a coop-
erative way: each one utilises the output of the other one at the
previous step (or at the previous iteration).
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Compared with the Kalman particle filter, we only use a single
Kalman filter to construct a Gaussian proposal distribution. This
idea is similar but not identical to the Kalman particle filter al-
gorithm. Assume that the computational bottleneck is the likeli-
hood calculation and ignore the Kalman filter’s matrix operation,
our strategy reduces the Kalman particle filter’s computation com-
plexity from O(2N) to O(N + 1). When using this framework
for tracking, it is also different from the ICONDENSATION tra-
cker [13], in which a colour tracker is used as an auxiliary tracker
to roughly estimate the tracked object’s state. Then the estimated
state is used to generate a proposal for the main tracker. The lim-
itation is that their method is ad hoc and it is rather difficult to
estimate the covariance uncertainty.

Case 2: The first-stage filter is a particle filter. In theory, the
particle filter is more general than the Kalman filter. Its shortcom-
ing is that it is more computationally demanding than the Kalman
filter. When the first-stage filter is also a particle filter, this al-
gorithm is quite similar to the Co-inference algorithm [3] when
the two different cues are used. Instead of deducing this algo-
rithm with a structured variational approximation on a factorised
graphical model, we intuitively invent this algorithm based on Fig-
ure 1(b).

The particles {x(n)
t−1,

1
N
}N

n=1 at time t−1 are input to the first-
stage particle filter, and after a standard particle filtering, we obtain
the weighted particle set {ex(n)

t
, ew(n)

t
}N

n=1 which are a rough rep-
resentation of the posterior. More specifically, for the first loop (if
multiple loops are adopted as in [3]), we use the system dynamics
transition as the proposal and obtain the discrete representation of
the posterior with the Equations (2) and (3). Then the second-stage
particle filter samples from this discrete density. After finishing the
first loop, each filter samples the other one’s estimated posterior.
In contrast with the Kalman filter which estimates the posterior
up to second-order statistics, one can easily calculate higher order
statistics from the discrete particles.

Borrowing the idea from the Gaussian particle filter [14], and
also making the sampling process consistent with the Kalman first-
stage filter, we fit the discrete particles with a single Gaussian
distribution N (xt; ext, ePt|t−1) from which N particles are sam-
pled for the next iteration. The Gaussian is calculated before re-
sampling so as to suppress the bias produced in re-sampling.

To summarise we present the complete augmented particle fil-
ter algorithm in Figure 2.

Remarks. Compared with mode-climbing approaches (e.g.
[6–9]) in which a gradient-ascent optimisation method is usually
applied to move the particles towards the modes (peaks) in the
likelihood space, our filtering-based optimisation method can be
regarded as a mode-hopping process. Due to the nature of the
gradient-ascent based algorithms, the optimisation process is slow
and one has to preset the move step. The augmented particles filter
finds a Gaussian proposal distribution quickly through one step fil-
tering which is usually close to the main mode.3 Another require-
ment of the gradient-ascent optimisation is that the likelihood sur-
face must be smooth, i.e. differentiable. If Hessian information is

3For high-dimensional application, the manifold of the likelihood dis-
tribution is extremely complex. Both gradient-ascent optimisation and our
augmented particle filter algorithm still might fail if the number of particles
is not sufficiently large. The problem of how to tackle the curse of dimen-
sionality when sampling in a high-dimensional space remains unsolved.

− Initialisation:
Set t = 1. Sample N particles {x

(n)
t−1, w

(n)
t−1}

N

n=1 from the prior
p(x0).

− Re-sampling:
Re-sample to obtain N replacement particles {x(n)

t
, 1

N
}N

n=1, accord-

ing to the weights w
(n)
t

.
− First-stage filtering:

Given {x
(n)
t−1, w

(n)
t−1}

N

n=1 (or the output particles of the previous loop)
and the current measurement zt, update the particles either with a
Kalman filter using Equations (4) and (5) or with a particle filter using
Equations (2) and (3). Compute the mean ext and covariance ePt.

− Second-stage filtering:
1. Sample N particles {x

(n)
t

, w
(n)
t

}N

n=1 from the proposal
q(xt|x

(n)
t−1, z1:t) = N (xt; ext, ePt).

2. Calculate the weight for each particle according to Equation (8). Then
normalise the weights.

− (Optional) If necessary, go to the Re-sampling step to perform another it-
eration. Note that this time the input is the output particles of the second-
stage particles filtering, instead of {x(n)

t−1, w
(n)
t−1}

N

n=1.
− Set t = t + 1, go to the Re-sampling step to process the next frame.

Figure 2: The augmented particle filtering algorithm.

(a) (b)

Figure 3: (a) The gradient-ascent based mode-climbing optimisation
needs many steps to drive the particles to the modes, while (b) the filtering
based mode-hopping method finds a Gaussian distribution nearby the main
mode through single one step filtering.

utilised, it is further required that the likelihood function’s second
derivatives exist everywhere. In visual tracking, many similarity
measurement criteria do not satisfy the smooth conditions. This
means one has to carefully devise the likelihood function. The
augmented particle filter relaxes these restrictions. The difference
between these two methods is depicted in Figure 3.

In the two-stage filtering process, the observations z1:t can
arise from different cues. This way multiple cues are integrated
together seamlessly: different cues support each other during the
inference. As we have stated, when the two filters are both par-
ticle filters, the framework presented in this paper is identical to
the Co-inference algorithm in [3]. However, to adopt a Kalman
filter in the first-stage filtering can save significant computational
resources. To our knowledge this is the first proposal to use an effi-
cient hybrid Kalman/particle filtering framework to integrate mul-
tiple cues in the visual tracking. Although one can also integrate
multiple cues in the Kalman particle filter algorithm, our algorithm
is more computationally efficient. One problem for a multiple cue
integration strategy based on Co-inference is that only when both
of the cues are reliable is this cooperative sampling strategy help-
ful. Otherwise, e.g. when one cue is completely invalid, sampling
from its posterior will mis-guide the particles into the wrong area
of the posterior and damage the inference. A naı̈ve approach has
been adopted in [4] to alleviate this problem. Still more elegant
approaches are required. Due to the space limit, we shall not dis-
cuss the multiple cue integration issue in more detail in this paper.
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3. EVALUATION
We examine the performance of the augmented particle filter in
two experiments. One is a Kalman/particle filtering approach on
a 1D tracking simulation with synthetic data. The other one is a
particle/particle filtering approach on a real video tracking appli-
cation. Note that in this experiment only a single cue is used.

1D simulation. For this simulation, we choose a nonlinear
and bimodal model: xt = 0.5xt−1 + 25

xt−1

1+x2
t−1

+ 8 cos(1.2(t −

1))+ut and zt =
x
2
t

20
+vt, where ut is the system noise following

a Gaussian N (ut; 0, 0.62) and vt is the measurement noise, also
a Gaussian N (vt; 0, 12). Data are generated with x0 = 0.1, t =
1 . . . 100.

In this simulation, we implement an augmented particle fil-
ter which uses an unscented Kalman filter as the first-stage filter
to construct the proposal distribution. The parameters for scaled
unscented transformation are α = 1, β = 0, and κ = 2. These
parameters are optimal for 1D applications [12]. 100 independent
simulations are performed to compare the two algorithms. Only 10
particles are used for this simple 1D simulation. In Figure 4(a) we
plot the 100 true states and the estimates obtained with the aug-
mented particle filter and the conventional particle filter respec-
tively. The Mean Square Error (MSE) between tryth and the esti-
mates are shown in Figure 4(b) for the 100 simulations. The MSE
and the variance of our algorithm is 6.095 and 1.049 respectively
which are better than the generic particle filter (MSE mean 7.798
and variance 1.039).
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Figure 4: (a) Plot of the true state and estimates generated by the conven-
tional particle filter and the augmented particle filter algorithm. (b) Per-
formance comparison of the conventional particle filter and the augmented
particle filter. Mean Square Error is plotted for 100 random realisations.
For most of the simulations, the augmented particle filter (solid line) out-
performs the conventional particle filter (dashed line).

Visual Tracking. We have implemented the probabilistic col-
our based trackers as in [2]. This time for the augmented particle
filter framework, the first-stage filter is a particle filter as well. For
both trackers, the state is represented by a 4D vector, i.e. the loca-
tion and scale of the tracked object. The calculation of the likeli-
hood function is based on the colour histogram similarity measure-
ment between the target and the candidate. In order to eliminate
the affects of changing illumination, we calculate the histogram
in the HSV colour space and only the values of HS are adopted.
For 8-bit depth RGB input pictures, the dimension of the HS co-
lour histogram is 16 × 16. Refer to [2, 4] for the implementation
details.

For this video, the motion of the basketball is hard to model.
50 particles are used for the first-stage particle filter and 150 parti-
cles for the second-stage main particle filter. With 50 particles,

Figure 5: Basketball tracking. The frame numbers are 12, 36, 48, 72 re-
spectively out of a total of 78 frames. Our tracker tracks the whole se-
quences accurately. The black line indicates the basketball’s moving tra-
jectory. See the video at www.cs.adelaide.edu.au/∼vision/demo/.

the first-stage filter estimates the location of the basketball and
provides a promising proposal distribution. Note that although
only one iteration is adopted in the augmentation, encouraging im-
provements are observed over the generic particle filter.

4. CONCLUSION
We have presented a more general augmented particle filter frame-
work for visual tracking, which can flexibly integrate different fil-
ters and perform inference in a cooperative way. It is also easy
to implement a multiple cue tracker similar to the Co-inference
algorithm [3]. Experiments on synthetic data and real video se-
quences reveal its efficiency. Notice that the weight calculation in
this framework involves a computationally expensive O(N 2) prior
computation. We will modify the framework to avoid this calcula-
tion, making it more efficient with the importance sampling trick
as in [9]. Future work will also test multiple cue tracking with
more real videos in our framework.
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