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Abstract

Petri nets are a graph-based modelling formalism which
has been widely used for the formal specification and anal-
ysis of concurrent systems. A common analysis technique
is that of state space exploration (or reachability analysis).
Here, every possible reachable state of the system is gener-
ated and desirable properties are evaluated for each state.
This approach has the great advantage of conceptual sim-
plicity, but the great disadvantage of being susceptible to
state space explosion, where the number of states is simply
too large for exhaustive exploration. Many reduction tech-
niques have been suggested to ameliorate the problem of
state space explosion. In the case of timed systems, the state
space is infinite, unless analysis is restricted to a bounded
time period. In this paper, we present a Petri net formalism
based on the notion of relative time (as opposed to the tra-
ditional approach of dealing with absolute time). The goal
is to derive a finite state space for timed systems which have
repeating patterns of behaviour, even though time continues
to advance indefinitely.

1 Introduction

Petri nets [8] have been widely used for formally de-
scribing systems with a high level of concurrency. Hav-
ing both a formal mathematical definition and an intuitive
graphical notation, they are often able to capture a clear and
concise representation of a system, while still providing ac-
cess to a rich set of analysis techniques for exploring the
dynamic behaviour of the model.

However, even for very small systems there are often (a
great) many different states the system can reach, resulting
in what is known as the state space explosion problem [11].
This problem is acute for concurrent models due to the in-
creased number of possible orderings of the events (known
as interleavings).

Moreover, even if the Petri net model is of finite size, it
may give rise to an infinite sized state space, such as in Fig-

ure 1. In this case each firing of the transition t requires the
removal of one token from the place p, but then produces
two more tokens in p as well. Thus each firing of t strictly
increases the number of tokens in p, and so there will be
an infinite number of states corresponding to the number of
tokens in p. This particular problem can be solved with a
covering graph, but other situations are not so straightfor-
ward.
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Figure 1. A simple Petri net with an infinite
state space.

The addition of some form of global clock to a net can
have a similar effect on the state space [5]. In this case, as
the value of time monotonically increases, the state space
continues to expand.

While the original Petri net notation did not explicitly
include time as a feature of the net, a wide variety of ap-
plications rely heavily on a quantitative measure of time as
part of their specification. Hence, a number of extensions
to the basic Petri net notation have been proposed which
explicitly relate to some form of global timing [10, 14, 16].

One popular approach in timed Petri nets is to add time-
stamp to each token that can be used to determine when the
token is accessible [15]. Typically time-stamps are based
on some form of absolute global clock, which is monoton-
ically inceasing. Since the time-stamps only ever increase,
this results in an infinite state space for any non-deadlocking
system. By contrast, we consider instead a delay relative
to the time the preceding transition fired (or zero initially).
This process allows us to generate a state space where any
equivalences are automatically exposed, instead of requir-
ing a separate state space reduction step.

In addition, the delays in many practical problems are
neither fixed nor evenly distributed, making the expression
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of such delays within the net problematic at best. For this
reason, we will adopt the use of interval semantics, simi-
lar to those introduced by [7, 12, 13]. An interval allows
us to specify a range of times that may be valid for a par-
ticular task, without forcing the modeller to artificially con-
strain the exact distribution of those values (which may not
be known).

The paper commences with foundational concepts in
Section 2, including a traditional definition for Petri nets.
Relative time Petri nets are then introduced in Section 3,
while in Section 4 we consider properties of these nets. A
comparison with other approaches, together with the con-
clusions and further work are found in Section 5.

2 Foundations

We begin with a few necessary formal defini-
tions. For convenience we denote the set of natu-
ral numbers {0, 1, 2, . . .} by N, and the set of integers
{. . . ,−2,−1, 0, 1, 2, . . .} by Z.

2.1 Intervals of Uncertainty

Definition 2.1 Let φ(λ, t) ∈ [0, 1] be the probability that
property λ holds by time t. An interval of uncertainty for a
property λ is a pair of timing bounds [loλ, hiλ] such that:

1. loλ ≤ hiλ;

2. ∀k < loλ : φ(λ, k) = 0;

3. ∀k ≥ hiλ : φ(λ, k) = 1;

4. ∀k′ ≥ k : φ(λ, k′) ≥ φ(λ, k).

Our interval thus encapsulates the lower and upper tim-
ing bounds of a property, before which it does not hold, and
after which it does. The probabilities associated with the
times between the lower and upper bounds remain unde-
fined, provided they are monotonically increasing towards
the upper bound. While this may not be as ‘precise’ as
specifying the actual distribution function for each delay,
it is sufficient to prove best and worst case scenarios of a
model’s behaviour.

2.2 Multi-sets

Definition 2.2 A multi-set [2, 6], also known as a bag, is a
mapping from a set S to the naturals N. This may also be
represented as a formal sum: A =

∑
s∈S A(s)`s. We define

SMS as the set of all multi-sets over S.

A multi-set is essentially an unordered collection which
allows for multiplicity. Each mapping (s, n) in a multi-set

A corresponds to the element s ∈ S appearing n times in
A, written n`s. The usual set operations can be extended to
multi-sets in a straightforward manner.

Definition 2.3 Let A, B, C ∈ SMS, then:

1. An element s ∈ S is present in A (written s ∈ A) if
A(s) > 0.

2. The size of A (written �A) is equal to
∑

s∈S A(s).

3. A is a subset of B (written A ⊆ B) if ∀s ∈ S : A(s) ≤
B(s).

4. C is the sum of two multi-sets A and B (written C =
A + B) if ∀s ∈ S : C(s) = A(s) + B(s).

5. C is the difference of A and B (written C = A − B)
if B ⊆ A and ∀s ∈ S : C(s) = A(s) − B(s).

It is often useful to refer to a multi-set more generally
as an indexed collection of individual elements from S. In
particular, if we wish to compare two multi-sets over the
same domain where neither is a proper subset of the other,
then the formal notation can become cumbersome. For this
reason we define a short hand notation for such an indexed
collection of elements in a multi-set.

Definition 2.4 Let A ∈ SMS, then we write A as {ai}n
i=1,

where:

1. n = �A

2. ∀1 ≤ i ≤ n : ai ∈ A

3. ∀s ∈ S : if sub(s) = {m|am = s} is the set of indices
of the sequence which map to s, then �sub(s) = A(s).

In other words we choose some sequence for the ele-
ments present in A such that each of the elements s appears
in that sequence A(s) times. If an ordering relation exists
over the set S we may choose to use that relation to order
the elements of our sequence, but this is not assumed for the
general case.

2.3 Petri nets

We begin with the usual definitions for Petri nets.

Definition 2.5 A Petri net is a tuple (P, T, A, M0), where:

1. P is the set of places in the net; T is the set of transi-
tions in the net; and P ∩ T = ∅.

2. A ∈ ((P × T ) ∪ (T × P ))MS is the multi-set of arcs
of the net.

3. M0 is the initial marking, which is a mapping M :
P → N.
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A Petri net can be thought of as a directed graph. Its
nodes are places and transitions. Places contain some quan-
tity of tokens, and transitions represent the effect of various
events on the net. The definition of arcs is slightly unusual,
in assuming that there is one arc for each token consumed
or generated. This is more appropriate when we come to
associate intervals of uncertainty with the tokens consumed
and generated.

A marking for a Petri net is a mapping which indicates
how many tokens are currently within each of the places of
the net. We denote the set of all possible markings as M.
Some examples of simple Petri nets are in Figures 2 and 3.
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Figure 2. A Two Place, One Transition Petri
net.
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Figure 3. A Three Place, Two Transition Petri
net.

Arcs are the directed edges within the net. There are
edges which connect places to transitions, known as input
arcs, and edges which connect transitions to places, known
as output arcs. We say a transition is enabled when the cur-
rent marking contains a token in each of its input places for
each of the input arcs connecting that place to that transi-
tion. When an enabled transition is fired, it consumes one
token from each place for each input arc it has from that
place, and produces one token in each place for each output
arc it has to that place. We say the resulting marking pro-
duced is reachable from the previous marking by firing that
transition.

Definition 2.6 Let (P, T, A, M0) be a Petri net. The transi-
tion t ∈ T is enabled for a given marking M ∈ M , written
M [t〉, iff ∀p ∈ P : M(p) ≥ A(p, t).

If t ∈ T is enabled for a given marking M ∈ M then t
may fire to produce a marking M ′ ∈ M , written M [t〉M ′,
such that ∀p ∈ P : M ′(p) = M(p) − A(p, t) + A(t, p).

The (reachable) state space for a Petri net is then found
by recursively finding all of the new markings that may

be produced from firing enabled transitions in previously
reachable markings, starting from the initial marking M0.

2.4 State Spaces

A state space, also called a reachability graph, is a data
structure that represents the complete set of dynamic be-
haviours a system may exhibit. If a state space contains
all of the dynamic behaviours that can occur for a specific
model, then proving a property holds over every state in the
state space is equivalent to proving that the property always
holds for the system being modelled.

Definition 2.7 A state space [11] of a model is a tuple
(S, E, ∆, SI) where:

1. S is the set of states of the model.

2. E is the set of events which can occur in the model.

3. ∆ is the set of (semantic) transitions of the model, with
∆ ⊆ S × E × S.

4. SI ⊆ S are the initial states in which the model may
begin.

A state space embodies a directed graph with nodes
given by the states S and arcs given by the transitions ∆.

Definition 2.8 Let s2, s1 ∈ S. We say s2 is directly reach-
able from s1 if there exists an event e ∈ E such that
(s1, e, s2) ∈ ∆. This may be written as either s1 →e s2

or simply s1 → s2.
Let sdest, ssrc ∈ S. We say sdest is reachable from ssrc

if there exists a sequence of events {ei}n−1
i=1 and a sequence

of states {si}n
i=1 such that:

1. ssrc = s1 and sdest = sn.

2. ∀1 ≤ i ≤ n − 1 : (si, ei, si+1) ∈ ∆.

This may be written as ssrc →∗ sdest.

We are normally concerned with proving that a property
holds for all reachable states of our model.

Definition 2.9 The state space for a Petri net (P, T, A, M0)
is the tuple (S, E, ∆, SI), where:

1. S = M .

2. E = T .

3. (M1, t, M2) ∈ ∆ iff M1[t〉M2.

4. SI = {M0}.
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The set of possible states that a Petri net may assume is
the set of reachable markings for that net, with the initial
marking M0 being the only initial state in the state space.
Then, there is an edge from the state M1 to the state M2

with label t iff t is enabled in M1, and the resulting marking
produced by firing t in M1 is exactly M2.

The state spaces for the models in Figures 2 and 3 are
shown in Figures 4 and 5 respectively. The initial state is
designated by an arrow without a source.

{1’P1} {1’P2}t1

Figure 4. The state space for Figure 2

{1’P1} t1 {1’P2,
  1’P3}

t2

Figure 5. The state space for Figure 3

3 Relative Time Petri Nets

3.1 Structure of Relative Time Petri-nets

We now propose our approach to adding time to Petri
nets, which we will call relative time Petri nets (RTPNs).
As mentioned previously we also add a time-stamp to each
token for denoting its accessibility, however our time-stamp
values are a delay relative to the time the preceding tran-
sition fired. By eliminating the requirement that the time-
stamps be monotonically increasing, we are thus able to rep-
resent the state spaces of cyclical timed systems in a finite
form.

Definition 3.1 A relative time Petri net is a tuple
(P, T, A, M0) where:

1. P is the set of places in the net; T is the set of transi-
tions in the net; and P ∩ T = ∅.

2. A ∈ (((P×T )∪(T×P ))×(N×N))MS is the multi-set
of arcs of the net.

3. M0 is the initial relative time marking; which is a map-
ping M : P → ZMS.

Some examples of relative time Petri nets are shown in
Figures 6, 7, and 8. We are thus extending the previous
definition of Petri-nets in three different ways.

Firstly, we extend the markings so that each token is
marked with a time-stamp d ∈ Z. This value represents
the amount of time that the token has been accessible since
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[1,2] [3,4](0)

Figure 6. A Two Place, One Transition RTPN.
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[1,2] [3,4]

[2,2] [0,0]

(0)

Figure 7. A Two Place, Two Transition RTPN.

the last transition firing. So tokens with a negative valued
time-stamp are not accessible yet. This delay is expressed
relative to the time at which the last transition fired (tran-
sitions still fire instantaneously). We denote the set of all
relative time markings as M

∗.
Secondly, we annotate each arc in the net with an interval

of uncertainty. This interval represents the range of possi-
ble delays each input and output of a transition may have in
the model. Input arc delays represent how long the required
input tokens of a transition must previously have been ac-
cessible before that transition can be enabled [7]. Output
arc delays represent how long it will be until the produced
tokens of that transition will first be accessible [12]. We
provide both kinds of arc delays for the sake of flexibility
and symmetry.

Lastly, we modify the transition binding and firing rules
to take into account this extra information in our model.
However, it will be helpful to define a few additional re-
lations between relative time markings first.

Definition 3.2 Let M1, M2 ∈ M
∗. We say M1 is a timed

subset of M2, written M1 � M2, iff ∀p ∈ P : M1(p) =
{xi}n

i=1, and ∃{yi}n
i=1 ⊆ M2(p) such that xi ≤ yi ∀ i.

If a marking M1 is a timed subset of a marking M2, it
means that M2 contains at least as many tokens as M1, and
those tokens have been available for at least as long as the

�
�
�
�
�
�
�

�
�
�
�
�
�
�

t1

p2

p3

�
�
�
�
�
�
�

�
�
�
�
�
�
�

t2

p1
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[3,3]

[3,4]

[0,0]

[1,2](0)

Figure 8. A Three Place, Two Transition RTPN.
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tokens in M1. In practical terms this means any transition
enabled in M1 will also be enabled in M2, since M2 has at
least as many tokens as old as M1 does.

Notice that for any timed multi-set M it is clear that ∅ �
M , and M � M .

Definition 3.3 Let M3, M2, M1 ∈ M
∗, and M1 � M3.

Then we say M2 is a timed difference between M3 and M1,
written M2 = M3\M1, iff M2 ⊆ M3, �M2 = �M3 − �M1

and M1 � (M3 − M2).
Let M3, M2, M1 ∈ M

∗, and M1 � M3. Then we say
M2 is the minimal timed difference between M3 and M1,
written M2 = M3\minM1, iff M2 = M3\M1, and ∀M4 ∈
M

∗ st M4 = M3\M1, then M4 � M2.

Notice that there may be multiple valid values for the
timed difference between two markings. For example if
A = {−3, 1} and B = {0, 1, 2} then the multi-sets {0},
{1} and {2} are all valid timed differences between A
and B. However, the minimal timed difference between
A and B is {2}, since {0} � {1} � {2}. In prac-
tice we can easily calculate the minimal difference between
any two finite markings A � B by iteratively removing a
pair of corresponding elements ai ≤ bi from each multi-
set. That is we calculate the (unique) sequences {Ai}n

i=0

and {Bi}n
i=0 such that A0 = A, An = ∅, B0 = B,

Ai = Ai−1 − {max(Ai−1)} and Bi = Bi−1 − {min{b ∈
Bi|b ≥ max(Ai−1)}}. In this case the resulting set Bn is
the minimal timed difference.

The purpose of the timed difference function is to allow
us to make a clear distinction between the possible transi-
tions defined in the net, and the changes that occur to the
marking when those transitions are fired. The � operator
determines when a transition is enabled, and the \ operator
calculates which tokens to remove as a consequence of that
firing (a non-trivial questions in timed nets since two tokens
in the same place are no longer indistinguishable).

The minimal timed difference will become important
later on, when we consider the semantics of relative time
Petri nets. In general, M3\minM1 can be thought of as re-
moving the subset of M3 which is ‘closest in time’ to M1,
leaving behind the oldest tokens possible.

Definition 3.4 Let M, M ′ ∈ M
∗. Then M ′ is equal to M

aged by δ, written M ′ = age(M, δ), iff ∀p ∈ P, d ∈ Z :
M ′(p, d + δ) = M(p, d).

Since we wish to retain the ability for transitions to fire
instantaneously, we will need some way to designate the
passage of time in the model. We do this by ‘aging’ the
marking of the net prior to the next transition becoming en-
abled, and then firing. It will become useful later on to no-
tice that ∀M ∈ M

∗, ε ≥ 0 : M � age(M, ε).
For example, let us consider a marking which has three

tokens with delays of -7, -5 and -3 respectively. Say we

need two available tokens for our next transition to be en-
abled (assuming for simplicity that the associated input arcs
have intervals [0, 0]), so we age the marking by 5 time units.
Hence, in the new marking we will have tokens with delays
of -2, 0 and 2 respectively. The first token has a negative
delay in the aged marking because it is still unavailable for
two more units of time, while the last token has a time-
stamp of two because it was only unavailable for the first
three time units. If our transition only needed to consume
a single token, then either of the 0 or the 2 time-stamped
tokens could be chosen, since they are both available in the
current marking.

We recall that our input and output arcs have each been
annotated with an interval of uncertainty, which describes a
range of times at which a transition can fire and a range of
different delays the produced tokens may have. To allow us
to identify each of the different possible cases we formally
define an event.

Definition 3.5 An event is a tuple (t, Mcons, Mprod),
where:

1. t ∈ T ; Mcons, Mprod ∈ M
∗ are (partial) relative time

markings.

2. ∀p ∈ P : let X = {(p, t, [ai, bi])}n
i=1 ⊆ A be the

complete multi-set of input arcs for t, then Mcons(p) =
{xi}n

i=1 where ai ≤ xi ≤ bi ∀i.

3. ∀p ∈ P : let X = {(t, p, [ai, bi])}n
i=1 ⊆ A be the com-

plete multi-set of output arcs for t, then Mprod(p) =
{xi}n

i=1 where −ai ≥ xi ≥ −bi ∀i.

Each event represents a single selection from each of the
input and output intervals that are defined for a given tran-
sition. The set of all events for a particular transition thus
represent the complete set of occurrences of that transition
in the system being modelled.

This additional step is important, because it is ambigu-
ous simply to talk about a transition t being enabled for a
relative time marking M . It is not clear whether that means
there are some combinations of input delays that are satis-
fied by M , or whether every combination of the input delays
are satisfied by M . To avoid this ambiguity we will treat
each case as a separate event, so that we can clearly distin-
guish which of the possible occurrences of t are enabled for
a particular marking.

For example, in Figure 6 the transition t1 has an input de-
lay of [1, 2] and an output delay of [3, 4]. Thus there are four
possible events which correspond to t1, which are (infor-
mally) (t1, {1}, {−3}), (t1, {1}, {−4}), (t1, {2}, {−3})
and (t1, {2}, {−4}); each of which represents a valid oc-
currence of t1 according to our model.

We can now define our enabling and firing rules.
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Definition 3.6 An event E = (t, Mcons, Mprod) is enabled
for a marking M ∈ M

∗ after delay δ, written M [δ, E〉, iff
Mcons � age(M, δ).

If the event (t, Mcons, Mprod) is enabled for the marking
M ∈ M

∗ after a delay of δ then the marking M ′ ∈ M
∗

produced by firing that event, written M [δ, E〉M ′, is: M ′ =
age(M, δ)\minMcons + Mprod.

The requirement for enabling says that after the marking
has been aged by δ the input requirements for t are satis-
fied. The firing rule states that the specific tokens that we
consume must be chosen as those which are the minimal
timed difference to Mcons. In practice they will be those
applicable tokens which have been available for the short-
est amount of time, that is, a LIFO-like behaviour. This is
an important requirement for maintaining the diamond rule
[4] for our state space. Without this requirement the choice
of ordering for a particular interleaving might result in dif-
ferent behaviours from the net.

In the case of concurrently enabled transitions (including
auto-concurrency), after the initial choice of delay for aging
the net there may then be many additional events that occur
immediately (ie. with zero delays). As with most timed
systems, exploration may be performed with an initial aging
of the current marking followed by exhausting all of the
possible events that can occur from the resulting marking.

We note that since this is a relative time marking, it is
the tokens which do not participate in the transition that age
rather than the ones which are produced. This is the reason
why our token time-stamps may go above zero, as those
tokens have now been available for some time before the
firing of the preceding transition.

We can construct a state space for a particular relative
time Petri net in a similar way as we do for normal Petri
nets. Beginning with the initial marking M0 we find the
resulting marking produced by firing each enabled transi-
tion, and then repeat the process of firing transitions until
we have explored all of the markings reachable from M0.

3.2 Behaviour of Relative Time Petri Nets

We now provide the formal definitions for constructing
a state space for relative time Petri nets, using the same ap-
proach as we did for Section 2.4.

Definition 3.7 The state space for a relative time Petri net
(P, T, A, M0) is the tuple (S, E, ∆, SI), where:

1. S = M
∗.

2. E = N × T .

3. (M1, (δ, t), M2) ∈ ∆ iff ∃Mcons, Mprod ∈ M
∗ :

M1[δ, (t, Mcons, Mprod)〉M2.

4. SI = {M0}.

So, we extend the previous definition for an un-
timed Petri net state space by including the amount of
time the previous marking was aged in order to enable
(t, Mcons, Mprod). Our reachable state space is now those
states which can be reached by a sequence of transitions,
and a sequence of delays after which there are correspond-
ing events for that transition enabled in the current marking.

Note that we do not include the particular choices for
Mcons and Mprod as labels on the edges in the figures. This
abstraction allows us to combine the arcs corresponding to
different events for the same transition and delay, provided
they produce the same marking when fired. We note that
once we know the current marking, the choice of delay
used to age the current marking and the destination marking
reached, it is trivial to compute which set of events for t all
produce that destination marking when fired.

Figures 9, 10, and 11 provide (partial) state spaces for the
previous relative time Petri nets in Figures 6, 7 and 8 respec-
tively. We have also removed some redundant edges from
the diagram, as discussed below. Notice that in these exam-
ples there is a corresponding outgoing arc labelled with a
delay for each choice from the input arc intervals. In gen-
eral, transitions which consume tokens from multiple places
will not however have an exponential set of outgoing arcs,
as it will tend to be the token which becomes available last
that will dominate the enabling of that transition.

{1’P1@0}
(2,t1)

(1,t1)

(1,t1)

(2,t1)

{1’P2@−4}

{1’P2@−3}

Figure 9. The state space for Figure 6

{1’P1@0}
(2,t1)

(1,t1)

(1,t1)

(2,t1)

(4,t2)

(3,t2)

(4,t1)

(3,t1)

(3,t1)

(4,t1)

{1’P2@−3}

{1’P2@−4}

{1’P1@−2}

Figure 10. The state space for Figure 7

We note that our original goal was to provide an exten-
sion to the Petri net formalism which allowed for the ex-
pression of quantitative timing delays without automatically
resulting in an infinitely large state space. However, in the
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Figure 11. The partial state space for Figure 8

state space of Figure 11 we see that this is not the case.
This is because one of the tokens in the model will never be
consumed by a transition. If the token is never consumed
then the inevitable consequence of aging the token is that its
time-stamp will continue to increase monotonically without
limit.

Also, though it is common in many other formalisms to
do so, we have not yet introduced any requirement that the
delay be chosen so that it is minimal. In other words, if a
particular transition t has some events enabled for a marking
M after a delay δ, then by our definition it will also have
some events enabled for the marking M after a delay of
δ + ε ∀ ε ≥ 0. Hence we could conceivably have an infinite
number of edges for each transition with labels (k, t) ∀ k ≥
δ. For brevity however, this possibility has been omitted
from the previous figures.

In the next section we provide techniques for eliminating
these problems whilst still retaining a complete set of the
dynamic behaviours of the model. As part of this process
we provide definitions for the ‘earliest’ choice of delay, al-
though we note that the ‘truncation’ technique is alone suf-
ficient to limit the number of states in the state space to a
finite number.

4 Properties of Relative Time Petri Nets

4.1 Equivalence Reduction by Truncation

We now consider what happens when a token has been
available for binding long enough that it satisfies the com-
plete range of all of the guards on the available input arcs.
In particular, we will prove that aging a token beyond a cer-
tain delay does not change which events are enabled for a
given state. This allows us to stop tracking each token’s de-
lay past a particular upper bound, without losing any of the
behaviours of the model.

Definition 4.1 A time cap for a relative time Petri net
(P, T, A, M0), is a mapping ω : P → N such that ∀ p ∈
P : ω(p) = max{b | ∃ a ∈ N, t ∈ T : [a, b] ∈ A(p, t)}.

The time cap for a net defines an upper bound for each
of the places on that net. In particular, the value of this up-
per bound is greater than or equal to any of the values in an

input arc interval leading from that place. So if a token in
place p has been available for at least ω(p) units of time, it
can participate in firing any event related to that place. We
notice also that the time cap ω is in fact a structural prop-
erty of the model as it makes no reference to any particular
marking of the net.

Definition 4.2 Let M ∈ M
∗ be a marking for a net

(P, T, A, M0), with time cap ω. We define M |ω ∈ M
∗ as

the truncation of M , iff ∀p ∈ P, d ∈ Z :

M |ω(p, d) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M(p, d) d < ω(p)
∞∑

i=ω(p)

M(p, i) d = ω(p)

0 d > ω(p)

That is, each time-stamp in the truncation of M is
‘capped’ once it reaches ω(p). This is the reason why the
number of tokens with time-stamp greater than ω(p) is zero,
as they are all counted towards the tokens with time-stamp
exactly ω(p) instead. We note that M |ω � M , as the val-
ues in the truncation will either be equal to (uncapped) or
less than (capped) those in M .

Theorem 4.3 Let M ∈ M
∗ be a marking for the net

(P, T, A, M0). Then every event enabled for M is enabled
for M |ω, and vice versa.
PROOF:

⇐ Let (t, Mcons, Mprod) be enabled for M |ω after de-
lay δ. Since M |ω � M and Mcons � age(M |ω, δ) �
age(M, δ), then Mcons � age(M, δ) since the time-
stamps in M are greater than those in M |ω. Hence,
(t, Mcons, Mprod) is enabled in M after delay δ.

⇒ Let (t, Mcons, Mprod) be enabled for M after delay δ.
Then Mcons � age(M, δ) ⇒ Mcons|ω � age(M |ω, δ).
But Mcons = Mcons|ω, as the tokens in Mcons must
be within the input intervals for t. Therefore Mcons �
age(M |ω, δ), so (t, Mcons, Mprod) is enabled in M |ω af-
ter delay δ.

�

Given that the events enabled at M are exactly the same
as those enabled at M |ω, the state space formed by truncat-
ing all markings will be an equivalence-reduced version of
the non-truncated state space. In this way, we can achieve
a finite state space even though some token time-stamps
would otherwise increase without limit.

We also observe that there is a minimum possible time-
stamp that a token in a marking will ever attain. If we de-
fine Ω(p) as the maximum upper bound on the output arcs
leading into p, then every token in p will have a time-stamp
greater than or equal to −Ω(p). This is because the aging
function of our relative time net always increases the token’s
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time-stamp. Thus, we only need to track the time-stamp of
each token within the range of [−Ω(p), ω(p)], for each place
p, to retain a complete set of behaviours of the net.

Definition 4.4 If the event (t, Mcons, Mprod) is enabled for
the marking M ∈ M

∗ after a delay of δ, then the truncated
marking M ′ ∈ M

∗ produced by firing that event is: M ′ =
age(M, δ)|ω\minMcons + Mprod.

We can now revisit one of our previous examples in Fig-
ure 8 which produced an infinite state space in Figure 11
under the original ‘unbounded’ semantics. Using truncation
we can instead generate a state space with a finite number
of states, shown in Figure 12, which still retains all of the
behaviours of the original model. We note that there may
still be an infinite number of edges with strictly increasing
delays specified, but we may abstract them out of the figure
since they no longer refer to distinct states.

{1’P1@0}
(2,t1)

(1,t1)

(1,t1)

(2,t1)

(6,t2)

(5,t2)

{1’P2@0,

{1’P2@0,
  1’P3@−3}

  1’P3@−4}

Figure 12. The truncated state space for Fig-
ure 8

Clearly a relative time Petri net with all arc intervals
[0, 0] will have an isomorphic state space under truncation
to an untimed Petri net, as all of the markings will simply
map onto a 0 time-stamp.

Henceforth we assume that we are always referring to
the truncated markings of a relative time net.

4.2 Eager Transition Semantics

Previously in this paper we have not attempted to con-
strain events to firing at the earliest opportunity, ie. for min-
imal δ. We now provide definitions for limiting the state
space under eager transition semantics. That is, we only
explore the dynamic behaviours available in each state up
to the earliest time at which we can guarantee an event will
occur.

Definition 4.5 An event (t, Mcons, Mprod) is certain iff:
∀p ∈ P : let {(p, t, [ai, bi])}n

i=1 ⊆ A be the complete multi-
set of input arcs for t, then Mcons(p) = {bi}n

i=1.
The earliest certain events for a marking M ∈ M

∗, is the
set of certain events which are enabled in M for a minimal
delay δ0. That is, for any other certain event enabled in M
after a delay δ1, then δ1 ≥ δ0.

The earliest certain event time for a marking M , is the
delay δ after which its earliest certain events are enabled.

That is, a ‘certain’ event is one which satisfies the up-
per bound of all of its input intervals, so that there is no
longer any uncertainty over whether this transition may be
fired once this event becomes enabled. Similarly, the set of
earliest certain events are those which can be enabled with
the smallest possible delay from the present marking, and so
can be used as the ‘upper limit’ on the delay for a particular
state when considering eager transition semantics.

4.3 Absolute Time

We now describe a general procedure for generating the
corresponding absolute time state space from a relative time
state space.

Definition 4.6 Let (S, E, ∆, SI) be a state space. A trace is
a sequence of (strictly) alternating states and events, written
[s0, e1, s1, e2, s2, . . . ], where ∀i : (si, ei+1, si+1) ∈ ∆.

We define the set of all relative time traces as TR.

In the case of relative time Petri nets, we know that each
of the members of E in a trace also contains a delay. This
is the key to building absolute state spaces from our relative
states.

Definition 4.7 The aggregate delay function is a map-
ping clock : TR × N → N, where ∀ξ =
[s0, (δ1, t1), s1, . . . ], n ≤ |ξ|/2 : clock(ξ, n) =

∑n
i=1 δi

Recall that the annotation of a delay on an edge in a rel-
ative time state space represents the amount of time that the
marking was aged from the previous marking, before the fir-
ing of the specified transition. Hence, the sum of all of the
delays that have occurred prior to a particular state in a trace
represents the total ‘global clock’ time that has passed since
the initial marking. We can now simply combine the clock
time with the relative value on each of the tokens in our cur-
rent marking to immediately obtain an equivalent absolute
marking.

Definition 4.8 Let ξ∗ = [s0, (δ1, t1), s1, . . . ] be a relative
time trace. Then the corresponding absolute time trace is
defined as:
absolute(ξ∗) =

[s0, (clock(ξ∗, 1), t1),
age(s1, clock(ξ∗, 1)), (clock(ξ∗, 2), t2),
age(s2, clock(ξ∗, 2)), . . . ]

We can then construct an absolute time state space for
our relative time Petri net by combining all of the absolute
traces generated. This demonstrates that no information is
lost when using a relative time representation. See Figure
13 for an example, which is based on the relative time Petri
net from Figure 7 which had a relative state space repre-
sented in Figure 10.
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Figure 13. A portion of the absolute state
space for Figure 7

5 Discussion and Conclusions

In this paper, we have proposed an approach to the defi-
nition of timed Petri nets using relative time instead of ab-
solute time. Tokens in a marking have an associated time-
stamp which indicates the time at which the token becomes
accessible relative to the time that the previous transition
occurred. The use of relative time means that tokens which
are not consumed by transitions may have a time-stamp
which becomes monotonically increasingly. We have de-
fined a time cap beyond which there is no point in increas-
ing the time-stamps. The recognition of the time cap allows
us to produce an equivalence-reduced state space for our
relative time Petri nets. In this way, we are able to capture
repeated patterns of behaviour in a timed system as a finite
state space. We have also shown that it is possible to recover
an absolute time state space from the relative time version.

5.1 Related Work

We note a great deal of similarity between our approach
and interval timed coloured Petri nets (ITCPN) [13]. This is
predominately due to our decision to time-stamp the tokens
within each marking and also to adopt interval semantics
to represent abstract delay distributions. However, despite
their similar structure, ITCPN events play a slightly differ-
ent role than ours do. Without input delays it is much easier
to maintain well-formedness under interleaving, so that the
‘input requirement’ specified by ITCPN events is actually
the binding of tokens to be consumed. However, we choose
to limit our events to represent a strictly contained instance
of each of the involved intervals, and instead calculate the
appropriate binding based on the current marking and the
minimal difference function.

We note that there is little difference between the two ap-
proaches in terms of the overall complexity of the enabling

condition and firing rules (when considered together). For
example, we apply our aging function to the tokens not con-
sumed, while ITCPNs must apply their scaling function to
the produced tokens of the transition which fired.

Other work that is also based on interval semantics in-
cludes [7], as explored by [1]. In particular, their approach
also uses relative time semantics instead of a global clock.
However, we have extended our marking with the current
delay information for each state, while they create an auxil-
iary structure to contain this information instead. They call
this a firing interval set.

A firing interval set expresses a collection of delays
for each of the transitions enabled in the current marking,
which are in essence the labels for each of the possible out-
going transitions from the current state. When they fire an
enabled transition, say t1, they modify the current firing in-
terval set in three ways. Firstly they remove an entry for t1,
and each of the entries corresponding to transitions which
were in conflict with t1, as the input tokens they will have
needed were consumed by t1 instead. They then decrement
each of the delays for the remaining transition entries, to
signify the passage of time. Lastly, they add new entries
for each new enabling that was not possible in the previous
marking, or was disabled by the consumption of tokens by
t1 and then re-enabled by the production of tokens by t1.

Our firing rule is similar to this process, as we age the
current marking, remove the consumed tokens and then add
the produced tokens with their selected delays. We then
calculate for the new state which events are enabled for the
new marking after certain delays, but this is in principle no
more work than in [1], as they must also recalculate all of
the enablings in order to update the firing interval set. We
say ‘in principle’ because we have chosen to assign delays
to the arcs of the net, allowing a larger collection of possible
behaviours to potentially be expressed for each transition in
a relative time Petri net.

We also note that despite requiring delays before the
firing of transitions, they have a different interpretation of
the interleaving problem discussed in Section 3.1. Because
their approach does not differentiate between the times at
which multiple tokens arrive in the same place, they can-
not talk about which tokens arrived earliest to a particular
place. They must say instead that there has been at least
one token in that place since the earliest arrival. Provided
a new token is produced at that place moments before a to-
ken is consumed, the contribution that place makes to each
of the other binding delays in the firing interval set remains
unchanged. In our model we differentiate between the spe-
cific times at which the tokens arrive in each place. Hence if
firing one transition consumes the ‘older’ token in the place,
in the new state previously conflicting transitions may have
their delays increased while they wait for ‘younger’ tokens
instead.
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Other work on incorporating relative time into reachabil-
ity analysis has been carried out particularly in the area of
asynchronus circuit design [3, 9]. The construction of lazy
transition systems is used during synthesis to prune a pre-
viously explored untimed state space of those areas which
cannot be reached due to the timing constraints of the sys-
tem. In this case the goal is to optimise the construction pro-
cess by exploiting any inherent timing characteristics which
may, in practice, simplify the actual operation of the sys-
tem. In this case the amount of timing information retained
for the system depends upon the discovery of useful causal
relations between the system’s components, rather then a
permanent part of the initial specification of the system.

5.2 Future Work

The next step in this research is to gain practical ex-
perience in the application of our proposals to non-trivial
case studies. Another high priority is to identify the kind
of system properties that can be specified for relative time
Petri nets, and then to implement analysis algorithms that
can evaluate these properties on the finite relative time state
spaces that we have generated.

We also plan to consider the extension of this work from
integral time to other granularities, even to real-valued time.
In this regard, we anticipate adopting the notion of state
classes along the lines considered in [13].
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