
Wavelength Assignment for Parallel FFT Communication Pattern on Linear
Arrays by Lattice Embedding∗

Yawen Chen, Hong Shen

Japan Advanced Institute of Science and Technology

Asahidai 1-8, Nomi-Shi, Ishikawa, Japan, 923-1292

Email:{yawen, shen} @jaist.ac.jp

Abstract

Fast Fourier Transform(FFT) represents a common com-

munication pattern shared by a large class of scientific and

engineering problems and wavelength assignment is a key

issue to increase efficiency and reduce cost in Wavelength

Division Multiplexing (WDM) optical networks. In this pa-

per, we propose a new scheme for the wavelength assign-

ment of parallel FFT communication pattern on WDM lin-

ear arrays. By lattice embedding, the number of wave-

lengths required to realize parallel FFT communication

pattern on WDM linear arrays significantly improves the

known result. Our proposed embedding method also pro-

vides a new approach to the hypercube layout problem con-

sidering connections dimension by dimension rather than

all connections as in the traditional approach.

1. Introduction

Fast Fourier Transform (FFT) plays an important role in

numerous scientific and technical applications. While the

application fields of FFT are growing rapidly, the amount

of data to be transformed is also increasing tremendously.

Hence, there has been a great interest in implementing FFT

on parallel computers and some parallel computers have

been specially designed to perform FFT computations [2].

With the increasing computation power of parallel comput-

ers, interprocessor communication has become an impor-

tant factor that limits the performance of supercomputing

systems. Optical communication, in particular, Wavelength

Division Multiplexing (WDM) technique, has become a

promising technology for many emerging networking and

parallel/distributed computing applications because of its

huge bandwidth [7].

As we know, parallel FFT is often implemented on dense

interconnection networks such as hypercube and shuffle-

exchange networks due to its topological properties [2].

Since WDM divides the bandwidth of an optical fiber into

multiple wavelength channels so that multiple devices can

transmit on distinct wavelengths through the same fiber con-

currently, these dense networks can be simplified to simple

regular topologies by realizing connections of parallel FFT

communication patterns in optical lightpaths.

To efficiently utilize the bandwidth resources and to

eliminate the high cost and bottleneck caused by opto-

electronic conversion and processing at intermediate nodes,

end-to-end lightpaths are usually set up between each pair

of source-destination nodes. A connection or a lightpath

in a WDM network is an ordered pair of nodes (x, y) cor-

responding to that a packet is sent from source x to des-

tination y. In this paper, we assume that no wavelength

converter facility is available in the network. Thus, a con-

nection must use the same wavelength throughout its path.

In this case, the lightpath is said to satisfy the wavelength-

continuity constraint.

RWA tries to minimize the number of channels to real-

ize a communication requirement by taking into consider-

ation both routing options and channel assignment options

which can be described as follows [6]: Given a set of all-

optical connections, the problem is to (a) find routes from

the source nodes to their respective destinations, and (b)
assign channels to these routes so that the same channel is

assigned to all the links of a particular route. (c) The goal of

RWA is to minimize the number of assigned channels. Nu-

merous research studies have been conducted on the RWA

problem. A review of routing and wavelength assignment

approaches for wavelength-routed optical WDM networks

was given in [8]. In [6], optimal routing and channel as-

signments for hypercube communication on optical mesh-

like processor arrays were studied. In [5], multicasting in

multi-hop optical WDM networks with limited wavelength

conversion was surveyed. In [4], routing and wavelength

assignment for parallel LU decomposition communication

pattern on WDM ring was studied.

In [3], the problem of wavelength assignment for realiz-

ing parallel FFT communication pattern on a class of regu-

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

lar optical WDM networks was addressed and two methods,

sequential mapping and shift-reversal mapping, were pro-

posed. In this paper, we design a new scheme for the wave-

length assignment of parallel FFT communication pattern

on WDM linear arrays. By lattice embedding, the number

of wavelengths required to realize parallel FFT communi-

cation pattern on WDM linear arrays significantly improves

the known result in [3]. Our results have a clear signifi-

cance for applications because FFT represents a common

communication pattern shared by a large class of scientific

and engineering problems and WDM optical networks as a

promising technology in networking has an increasing pop-

ularity. Our proposed embedding method also provides a

new approach to the hypercube layout problem considering

connections dimension by dimension rather than all connec-

tions as in the traditional approach.

The rest of this paper is organized as follows. In Sec-

tion 2, we define the problem of wavelength assignment for

parallel FFT communication pattern on WDM linear arrays.

We then design lattice embedding and provide some results

of wavelength assignment for parallel FFT communication

pattern on linear arrays in Sections 3. Finally, we conclude

this paper in Section 4.

2. Problem Definition

FFT developed by Cooley and Tukey in the mid-60s is a

method of computing the discrete Fourier transform which

reduces the number of operations for an N-point complex

vector from O(N2) to O(Nlog2N). The data-flow graph

induced by an N-point FFT computation is usually de-

scribed by means of the so-called butterfly representation

[2]. The butterfly representation of FFT algorithm is a di-

agram made up of blocks representing identical computa-

tional units (butterflies) connected by arrows that show the

flow of data between the blocks. Assuming that N is the

length of the sequence to be transformed (N is an integer

power of two), then the diagram with N(log2N + 1) nodes

arranged in N rows and log2N + 1 columns is made of

log2N stages of N/2 butterflies each.

Generally, FFT is implemented stage by stage, i.e. any

stage of calculation cannot proceed until all the results of

its previous stage have been completed. In this paper, we

consider one dimensional data sequence of size N = 2n. If

each data is assigned a binary representation, the commu-

nications during the ith (1 ≤ i ≤ n) stage of the butterfly

must take place between the nodes whose binary represen-

tations differ in the ith bit. If the butterfly representation

is viewed as a process graph, i.e. each row of the butter-

fly is implemented by a process and each arrow by a com-

munication channel, it is apparent that the butterfly com-

munication pattern can map onto a WDM hypercube per-

fectly those links connecting the nodes having an address

that differs by only one bit at each stage. However, if a

WDM hypercube is used, only the ith dimensional links are

used with one wavelength during the ith stage whereas other

(n−1)×2n−1 links are vacant during this stage, which may

lead to wasting of wavelength channels. As we know, a con-

nection in the hypercube communication pattern is called a

dimensional i connection [6] if it connects two nodes that

differ in the ith bit position, where 1 ≤ i ≤ n. In a

network of size 2n, the set DIMi is defined as the set of

all dimension i connections and Hn is defined as the hy-

percube communication pattern which contains all connec-

tions in the hypercube. That is, Hn =
⋃n

i=1 DIMi and

DIMi = {(j, j + (−1)�j/2n−i� × 2n−i)|0 ≤ j ≤ 2n − 1}.

With input data distributed on processors, the set of all com-

munications during n stages of parallel FFT is equivalent

to Hn, and the set of communications during the ith stage

is equivalent to DIMi. Clearly, parallel FFT has a regular

communication pattern which we denote by FFTn(n ≥ 2).

We model a network as a directed graph G(V, E). Nodes

in V are switches and edges in E are links. In general, an

optical WDM network consists of routing nodes intercon-

nected by point-to-point fiber links, which can support a

certain number of wavelengths. In this paper, we assume

each link in the network is bidirectional and composed of a

pair of unidirectional links with one link in each direction.

For FFTn, if (x, y) ∈ FFTn, then (y, x) ∈ FFTn. As-

suming that these two communications can be realized by

two lightpaths in the same path of opposite directions pass-

ing through different fiber links, the same wavelength can

be assigned to these two lightpaths. In this case, we can

ignore the problem of communication directions in FFTn.

It should be noted that FFTn �= Hn because the num-

ber of wavelengths required to realize FFTn on the WDM

optical networks is not equal to that required to realize hy-

percube communications of Hn. Since the n stages of par-

allel FFT should be implemented stage by stage, the num-

ber of wavelengths required to realize FFTn on optical

WDM networks is the maximum number among the wave-

lengths required by the n stages. Let We(P, line) denote the

number of wavelengths required to realize communication

pattern P on linear arrays by embedding scheme e. Thus,

We(FFTn, line) = max1≤i≤n

(
We(DIMi, line)

)
.

The problem of wavelength assignment for FFTn on

WDM linear arrays can be regarded as the problem of em-

bedding the hypercube communications on linear arrays,

such that the maximum congestion of dimensional i con-

nections, for 1 ≤ i ≤ n, is minimized. This problem

arising from the wavelength assignment of FFTn, which

focuses on minimizing the congestion of each dimensional

connections, is different from the traditional embedding of

hypercube on linear arrays to minimize congestion which

considers all the connections on hypercube.

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

Figure 1. H5 represented as a lattice

3. Lattice Embedding of Parallel FFT on Lin-
ear Arrays

3.1. Lattice Embedding

We design a new embedding scheme on linear arrays,

lattice embedding, which is based on the lattice form of hy-

percube. Firstly, we introduce the following properties of

hypercube in a form of lattice.

Hypercube can be represented in a form of lattice, as

shown in Figure 1. As we know, for the hypercube with

2n nodes, each node corresponds to an n-bit binary repre-

sentation, and two nodes are linked with a connection if and

only if their binary representations differ in precisely one

bit. For the lattice form of 2n-node hypercube, there are

n+1 node rows connected by the hypercube connections. If

the rows are numbered from top to bottom in ascending or-

der starting from 0, the binary representations of the nodes

on the kth row, for 0 ≤ k ≤ n, have k 1s and n − k 0s.

In addition, hypercube connections only exist between the

nodes on two neighborhood rows. Such a lattice form of

hypercube also has the following properties:

Property 1: Hypercube with 2n nodes can be repre-

sented in a form of lattice with
(
n
k

)
nodes on the kth row

for 0 ≤ k ≤ n.

Proof: As the number of nodes whose binary represen-

tations have k 1s among n bits is
(
n
k

)
, it is easy to know the

number of nodes on the kth row of the hypercube lattice is(
n
k

)
.

Property 2: Hypercube with 2n nodes can be repre-

sented in a form of lattice with n× (
n−1

k

)
connections con-

necting the nodes of the kth row and the (k+1)th row, for

0 ≤ k ≤ n − 1.

Proof: Since the number of 1s on the kth row and (k+1)th

row are k and k + 1 respectively, node u on the kth row

connects with those nodes on the (k+1)th row whose binary

representations have k 1s on the same positions with u. As

the number of nodes on the (k+1)th row with k 1s on the

same positions with u is n − k, each node on the kth row

has n − k connections with the nodes on the (k+1)th row.

Therefore, the number of connections between the nodes of

the kth row and (k+1)th row is (n− k)× (
n
k

)
= n× (

n−1
k

)
.

Property 3: Hypercube with 2n nodes can be repre-

sented in a form of lattice with
(
n−1

k

)
dimensional i con-

nections, for 1 ≤ i ≤ n, connecting the nodes of the kth

row and the (k + 1)th row for 0 ≤ k ≤ n − 1.

Proof: If node u is on the kth row whose ith bit is 0, then

u must connect with one of the nodes on the (k+1)th row

by dimensional i connection. It is easy to know the number

of nodes on the kth row, whose binary representations have

k 1s and ith bit is 0, is
(
n−1

k

)
. Therefore, the number of

dimensional i connections, for 1 ≤ i ≤ n, connecting the

nodes of the kth row and the (k + 1)th row is
(
n−1

k

)
.

It can be seen from the above properties that the number

of dimensional i connections is identical with each 1 ≤ i ≤
n.

Assume that the nodes of WDM linear arrays are num-

bered from left to right in ascending order starting from 0,

and that the links are numbered from left to right starting

from 1. Define each node numbering of Hn by a function

η : VHn �→ {0, 1, ..., 2n − 1} which is a one-to-one map-

ping from the nodes of Hn to the nodes of an 2n-node lin-

ear array. Let R(u) = k if node u is on the kth row of

hypercube lattice. Embed the nodes of the 2n-node hyper-

cube lattice from row 0 to row n onto the 2n-node linear

array from left to right node by node. That is to say, if

R(u) < R(v), then η(u) < η(v). We call the above em-

bedding way lattice embedding. Let en(k) =
∑k

i=0

(
n
i

)
=(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ ... +

(
n
k

)
. By the definition of lattice

embedding, the node on the row 0 of hypercube lattice is

mapped onto node 0 of the linear array, and nodes on the

kth row of 2n-node hypercube lattice, for 1 ≤ k ≤ n, are

mapped between node en(k − 1) and node en(k) − 1 on

the 2n-node linear array. That is to say, if R(u) = k, then

en(k − 1) ≤ η(u) ≤ en(k) − 1.

3.2. Wavelength Assignment of Parallel
FFT on Linear Arrays

Let ωij
l be the number of wavelengths required by lattice

embedding to realize FFTn on the jth link of the linear ar-

rays during the ith stage and ωi
l be the maximum number of

wavelengths required among all the links of the linear arrays

during the ith stage. Therefore, the number of wavelengths

required to realize FFTn by lattice embedding, denoted by

ωl, is

ωl = max
1≤i≤n

ωi
l = max

1≤i≤n
(max
1≤j≤2n−1

ωij
l)

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

By lattice embedding, the following results can be ob-

tained.

Theorem 1: By lattice embedding, the number of

wavelengths required to realize FFTn is not less than(
n−1

�(n−1)/2�
)
.

Proof: By Property 2 and 3, all the hypercube connec-

tions are only between the nodes of the kth row and the

(k + 1)th row with
(
n−1

k

)
dimensional i connections, for

0 ≤ k ≤ n − 1 and 1 ≤ i ≤ n. So, the number of dimen-

sional i connections passing through link en(k) are
(
n−1

k

)
.

Therefore, the number of wavelengths required to realize

FFTn by lattice embedding satisfies, ωl = max1≤i≤n ωi
l

= max1≤i≤n(max1≤j≤2n−1 ωij
l) ≥ max0≤k≤n−1

(
n−1

k

)
=(

n−1
�(n−1)/2�

)
.

Theorem 2: By lattice embedding, the number of wave-

lengths required to realize FFTn is not more than
(

n
�n/2�

)

.

Proof: On the kth row of the hypercube lattice for

1 ≤ k ≤ n − 1, there are
(
n−1
k−1

)
nodes, whose ith bit

is 1, connecting the nodes on the (k − 1)th row by di-

mensional i connections and
(
n−1

k

)
nodes, whose ith bit is

0, connecting the nodes on the (k + 1)th row by dimen-

sion i connections. Therefore, the number of dimensional i

connections passing thought the links from en(k − 1) + 1
to en(k) − 1 is not more than the sum of the maximum

number of dimensional i connections between the kth row

with its two neighborhood rows. Therefore, the number

of wavelengths required to realize FFTn satisfies, ωl =
max1≤i≤n(max1≤j≤2n−1 ωij

l) ≤ max1≤k≤n−1(
(
n−1

k

)
+(

n−1
k−1

)
) = max1≤k≤n−1

(
n
k

)
=
(

n
�n/2�

)

As n! ∼ √
2πn(n/e)n for large n according to Stirling’s

Formula, it can be calculated from Theorem 1 and 2 that re-

alizing FFTn requires O(2n/
√

n) wavelengths for large n.

It can be concluded that lattice embedding outperforms the

known embedding approaches in [3]. Theorem 1 and Theo-

rem 2 give a rough estimation of the number of wavelengths

required to realize FFTn on linear arrays. Furthermore, we

discuss a computation method for the lattice embedding.

Theorem 3: The minimum number of wavelengths re-

quired to realize FFTn on 2n-node linear array by lattice

embedding is
(

n−1
�(n−1)/2�

)
+ 1.

Proof: If en(k − 1) ≤ j ≤ en(k)− 1 for some 1 ≤ k ≤
n − 1, let ωij

l1 be the number of dimensional i connections

between nodes in U = {u|en(k − 1) ≤ η(u) ≤ j − 1}
and nodes in U ′ = {u′|R(u′) = k + 1}, and ωij

l2 be the

number of dimensional i connections between nodes in V =
{v|j ≤ η(v) ≤ en(k)− 1} and nodes in V ′ = {v′|R(v′) =
k − 1}. As the connections only take place between the

neighborhood rows, the number of dimension i connections

passing through the jth link on the linear array is ωij
l1 + ωij

l2 .

Define η−1(j) as the node of FFTn which is mapped onto

the jth node of the linear array. Let θi(u) = 1 if the ith

bit of u is 1 and θi(¬u) = 1 if the ith bit of u is 0. From

the properties of hypercube lattice, it is easy to know that

u connects with a node in V ′ = {v′|R(v′) = k − 1} by

dimensional i connection if θi(u) = 1, or with a node in

U ′ = {u′|R(u′) = k + 1} by dimensional i connection if

θi(¬u) = 1. Therefore, ωij
l1 =

∑η−1(j−1)
u=η−1(en(k−1)) θi(¬u)

and ωij
l2 =

∑η−1(en(k)−1)
u=η−1(j) θi(u).

As the number of nodes whose ith bit is 0 in U
⋃

V is(
n−1

k

)
, and that in U is ωij

l1 , the number of nodes in V whose

ith bit is 1 can also be calculated by ωij
l2 = (en(k) − j) −

(
(
n−1

k

) − ωij
l1) = en(k) − (

n−1
k

)
+ ωij

l1 − j.

Therefore, the number of wavelengths re-

quired to realize FFTn on linear arrays can

be calculated by the following equation: ωl =
max1≤i≤n,1≤k≤n−1(maxen(k−1)≤j≤en(k)−1(ω

ij
l1 +ωij

l2))=
max1≤i≤n,1≤k≤n−1(maxen(k−1)≤j≤en(k)−1(2ωij

l1 +
en(k) − (

n−1
k

) − j)) =
max1≤i≤n,1≤k≤n−1(maxen(k−1)≤j≤en(k)−1(2ωij

l1 +
en(k) − (

n−1
k

) − j)).

For n is even, ωl = max{2 ∑η−1(j−1)
u=η−1(en(n/2−1)) θi(¬u)+

en(n/2) − (
n−1
n/2

) − j : 1 ≤ i ≤
n, en(n/2 − 1) ≤ j ≤ en(n/2) − 1}. Since

each node has n/2 0s on the (n/2)th row,
∑n

i=1

∑η−1(j−1)
u=η−1(en(n/2−1)) θi(¬u) = n

2 ×(j−en(n/2−1)).

So, max1≤i≤n(
∑η−1(j−1)

u=η−1(en(n/2−1)) θi(¬u)) ≥

 n

2 ×(j−en(n/2−1))

n �. By the above equations, it can be cal-

culated that ωl ≥ max{2×
 n
2 ×(j−en(n/2−1))

n �+en(n/2)−(
n−1
n/2

)−j, en(n/2−1) ≤ j ≤ en(n/2)−1} =
(

n−1
n/2−1

)
+1.

Similarly, it can be calculated that for n is odd, ωl ≥(
n−1

(n−1)/2

)
+ 1.

From the proving of Theorem 3, it can be observed that

the minimum number of wavelengths required by lattice

embedding can be achieved if the 0s are distributed as much

as evenly among the n bits of the number of 0s on the nodes

before each node j for en(n/2 − 1) ≤ j ≤ en(n/2) − 1.

For n is even, the number of 0s of the nodes in U =
{u|en(n/2 − 1) ≤ η(u) ≤ en(n/2) − 1} is n/2. If

u is in U , ¬u must be in U . So, U = {ui

∨¬ui|1 ≤
i ≤ (

n
n/2

)
/2}. Thus, there are

(
n

n/2

)
/2 such node pairs

in U . The minimum number of wavelengths required by

lattice embedding can be archived by mapping the nodes

in U on the 2n-node linear array pair by pair. That is to

say, the number of wavelengths required is
(

n−1
n/2−1

)
+ 1 if

we map u1,¬u1, u2,¬u2, ..., u(n
n/2)/2,¬u(n

n/2)/2 onto the

node from en(n/2 − 1) to en(n/2) − 1 respectively. For

example, the number of wavelengths required to realize

FFT4 on 16-node linear array is 4, if the nodes 0011, 1100,

0101, 1010, 1001, 0110 on FFT4 are mapped onto the

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

Figure 2. Comparisons on the number of
wavelengths

nodes of 5,6,7,8,9,10 on the 16-node linear array respec-

tively. The minimum number by lattice embedding can

be discussed similarly for n is odd. For example, if n=5,

the nodes of FFT5 which are mapped onto the nodes of

6,7,8,9,10,11,12,13,14,15 on the 32-node linear array can

be 00011, 01100, 10001, 00110, 11000, 00101, 01010,

10100, 01001, 10010 respectively.

It can be seen that lattice mapping outperforms the

known embedding approaches to realize FFT communica-

tion pattern on linear arrays on the number of wavelengths,

as shown in Figure 2.

4. Concluding Remarks

In this paper, we propose a new scheme for the wave-

length assignment of parallel FFT communication pattern

on WDM linear arrays. By lattice embedding, the num-

ber of wavelengths required to realize parallel FFT com-

munication pattern on WDM linear arrays significantly im-

proves the known result in [3]. Our proposed embedding

method also provides a new approach to the hypercube lay-

out problem considering connections dimension by dimen-

sion rather than all connections as in the traditional ap-

proach. Our results have a clear significance for applica-

tions because FFT represents a common communication

pattern shared by a large class of scientific and engineer-

ing problems and WDM optical networks as a promising

technology in networking has an increasing popularity.

Since there are different communication patterns accord-

ing to different parallel algorithms, how to realize these

communication patterns on optical networks is a hot re-

search field. Future work may include other type of opti-

cal networks and other RWA problems. More researches on

RWA considering various parallel communication patterns

for parallel algorithms may be a worthwhile effort.

Another interesting issue is to find the number of wave-

lengths required on other types of WDM optical networks

such as ring, mesh and torus based on the result in this pa-

per. An open problem is to find the lower bounds for this

problem and the improving schemes which can achieve the

lower bounds.

References

[1] A. Averbuch, E. Ozdaglar and Dimitri P. Bertsekas.

Routing and wavelength assignment in optical net-

works. IEEE/ACM Transactions on Networking, 11(2):

259-272, 2003.

[2] F. T. Leighton. Introduction to Parallel Algorithms

and Architectures: Arrays, Trees, Hypercubes. Morgan

Kaufmann Publishers, Inc., 1992.

[3] Fangai Liu and Yawen Chen. Wavelength Assignment

of Parallel FFT Communication Pattern in a Class of

Regular Optical WDM Network. Proceedings of the

IEEE International Symposium on Parallel Architec-

tures, Algorithms, and Networks, pp.495-500. IEEE

Computer Society. Hong Kong, 2004.

[4] Yawen Chen and Fangai Liu. A Wavelength As-

signment Algorithm of Parallel LU Decomposition

Communication Pattern On WDM Ring Interconnec-

tion Network. International Symposium on Distributed

Computing and Applications to Business, Engineering

and Science, pp. 366-370. Wuhan, China, 2004.

[5] H. Shen, Y. Pan, J. Sum and S. Horiguchi, Multicasting

in multihop optical WDM networks with limited wave-

length conversion. IEICE Transactions on Information

and Systems, E86-D(1):3-14, 2003.

[6] Yuan X and Melhcm R. Optimal Routing and Chan-

nel Assignments for Hypercube Communication on

Optical Mesh-like Processor Arrays. Proceedings of

the 5th International Conference on Massively Parallel

Processing Using Optical Interconnection, pp.110-118.

IEEE Computer Society Press. Las Vegas, NV, 1998.

[7] Yuanyuan Yang and Jianchao Wang. Cost-Effective De-

signs of WDM Optical Interconnects. IEEE Transac-

tions on Parallel and Distributed Systems, 16(1): 51-

66, 2005.

[8] Hui Zang, Jason P. Jue, and Biswanath Mukherjee.

A review of routing and wavelength assignment ap-

proaches for wavelength-routed optical WDM net-

works. SPIE Optical Networks Magazine, 1(1):47-60,

2000.

Proceedings of the Sixth International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT’05)
0-7695-2405-2/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

