
Coordinated En-Route Transcoding Caching for Tree Networks

Keqiu Li and Hong Shen
Graduate School of Information Science

Japan Advanced Institute of Science and Technology
1-1, Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan

Abstract

As transcoding caching is attracting an increas-
ing amount of attention, it is important and necessary to
find methods to distribute multiple versions of the same me-
dia object in the Internet. In this paper, we first present a
mathematical model for the problem of optimally determin-
ing the locations in which to place multiple versions of the
same media object in tree networks such that the speci-
fied objective is achieved. This problem is formulated as an
optimization problem. Second, we propose a low-cost dy-
namic programming-based solution for solving this prob-
lem, by which the optimal locations are obtained. Finally,
we evaluate our model on different performance met-
rics through extensive simulation experiments and com-
pare the results of our model with those of existing models
that consider transcoding caching either on a path or at in-
dividual nodes only.

Key words: Transcoding caching, Internet, tree network,
dynamic programming, optimization problem.

1. Introduction

Transcoding is a transformation that is used to convert a
media object from one form to another, frequently trading
off object fidelity for size. As audio and video applications
have proliferated on the internet, it is definitely important
to find methods to distribute multiple versions of the same
media object in the Internet, which is defined as transcod-
ing caching in this paper. Transcoding caching is attract-
ing more and more attention since it plays an important
role in the functionality of web caching [4,12,18]. En-route
caching is a recently developed caching architecture [14,22]
in which caches are placed on the access path from the user
to the server. Each en-route cache intercepts any request that
passes through its associated node, and either satisfies the
request by sending the media object to the client or forwards
the request upstream along the path to the server until it can
be satisfied. Transcoding can be executed by various com-

ponents in the network such as server, proxy, and client. In
the case of the client, it can preserve the original seman-
tics of system architecture and transport protocols. How-
ever, this solution is extremely expensive when the clients
are mobile users, due to connection bandwidth and power
limitations. In the case of the server, it is not necessary to
perform transcoding during the time between the client is-
suing a request and the server’s response to it; thus, no addi-
tional transcoding delay will be incurred. At the same time,
it will take too much storage space to keep all the versions
of the same media object on the server. Further, this method
is not flexible in dealing with changing clients’ needs. For
these reasons, it will be better to transcode the media objects
in intermediate proxies. Much research has been focused
on exploring the advantages of this approach [8, 11, 12],
in which an intermediate proxy is capable of transcoding
the requested media object to a proper version according to
the client’s specification before sending the media object to
the client. In this paper we refer to the cache attached to
an intermediate proxy as a transcoding cache. Cooperative
caching, in which caches cooperate to fulfill each other’s re-
quests and make storage decisions, is a powerful paradigm
to improve cache effectiveness [10, 15, 16].

Existing caching schemes for transcoding caching con-
sider distributing multiple versions of the same media ob-
ject either on a path or at each node. In this paper, we ad-
dress the problem of optimally deciding the locations in
which to store multiple versions of a media object among
the en-route caches for coordinated en-route transcoding
caching in tree networks such that the specified objective
is achieved. To solve this problem, we present an original
model, which makes caching decisions on all the en-route
caches along the routing path in a coordinated way. In our
model, cache status information along the routing path of
a request is used to optimally determine the locations for
caching multiple versions of the same media object. We
formulate this as an optimization problem and a low-cost
dynamic programming-based solution is developed to ob-
tain the optimal locations. We also extend this solution to
solve the problem of optimally determining the locations in

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



which to place a fixed number of multiple versions of the
same media object in tree networks. We implement our al-
gorithms and evaluate our model on various performance
metrics through extensive simulation experiments. The im-
plementation results show that our model significantly out-
performs existing models that consider transcoding caching
either on a path or only at individual nodes.

This paper is organized as follows. We generalize the
mathematical model in Section 2. Section 3 presents and
discusses the dynamic programming-based solution. The
simulation model and the performance evaluation are de-
scribed in Section 4. Section 5 concludes the paper.

2. Mathematical Model

The network we use in this paper is modelled as a tree
T = (V, E), where V = (v1, v2, · · · , vn) is the set of
nodes, and E is the set of network links. We denote the
set of all nodes that are the children of node v as C(v), the
set of all nodes that are the descendants of node v as D(v).
B(v) expresses the set of all branches of a tree rooted from
node v. Without loss of generality, we assume that there is
only one content server at the root by which all the me-
dia objects are maintained. In our analysis, we assume that
each node is associated with an en-route cache. Our analy-
sis can be easily extended to the case in which caches are as-
sociated with certain subset of nodes by only including the
nodes with caches in the graph. A client’s request for a me-
dia object goes along the path from the client to the server
until it is satisfied by the first node on the path whose cache
stores a more detailed version of that object. After transcod-
ing if necessary, the requested version will be sent back to
the client along the same path. We also assume in this paper
that the routing path is symmetric. For the asymmetric case,
we can consider a subset of V by excluding those noses
which are not on both upstream and downstream paths.
Such a simplification is validated in [22]. All the routing
paths from the clients form a tree topology [14, 22]. Fig-
ure 1 shows an example of such a tree topology.

Figure 1. Coordinated En-Route Transcoding
Caching

Let A = (A1, A2, · · · , Am) be the set of all the versions
of a media object. bAj is the size of Aj . We assume that
the access frequencies for Aj from vi, denoted by fAj,vi ,
are independent. The cost of transmitting a media object
between vi and vj is denoted by cvi,vj . If a request goes
through multiple network links, the cost is the sum of the
cost on all these links. The cost in our analysis is calcu-
lated from a general point of view. It can be different per-
formance measures such as delay, bandwidth requirement,
and access latency, or a combination of these measures. The
relationship among different versions of a media object can
be expressed by a weighted transcoding graph [9], which
can be viewed as an extension to the transcoding relation
graph [7]. An example of a weighted transcoding graph is
shown in Figure 2, where the original version A1 can be
transcoded to each of the less detailed versions A2, A3,
A4, and A5. It should be noted that not every Ai can be
transcoded to Aj when Ai is a more detailed version than
Aj since it is possible that Ai does not contain enough con-
tent information for the transcoding from A i to Aj . In our
example, transcoding can not be executed between A 4 and
A5 due to insufficient content information. The number be-
side each edge is the transcoding cost from one version to
another. The transcoding cost of a media object from A i to
Aj is given by the weight on the edge (Ai, Aj), which is
denoted by w(Ai, Aj). φ(Ai) is the set of all versions that
can be transcoded from Ai. If a version can not be directly
transcoded from the version cached, then the transcoding
cost is the least reachable transcoding cost from the version
cached.

Figure 2. A Weighted Transcoding Graph

A list of symbols used in this paper is given in Table 1.
Our mathematical model is formulated based on these sym-
bols.

The media object placement is trivial if the cache sizes
are infinite, in which case, all the versions of a media ob-
ject can be stored in every cache; thus, the total access cost
is minimized. Due to this reason, when a new version of a
media object is inserted into a cache, one or more objects
may need to be removed from the cache to make room for
it. Storing a media object at a node enables all the requests
previously passing it now to be satisfied at it (Transcoding

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



Symbol Decription
A = (A1, A2, · · · , Am) the set of versions of a media object

sAi the size of Ai

V = (v1, v2, · · · , vn) the set of nodes in a network
v+(Ai) the nearest higher level node of v

that stores a more detailed version than Ai

z−b (Ai) the nearest lower level node of v
that stores a less detailed version than Ai in branch b

Hv the version cached or to be cached at node v
fAj ,v the mean access frequency of Aj from v
cvi,vj the cost of transmitting a media object between vi and vj

w(Ai, Aj) the transcoding cost from Ai to Aj for a media object
φ(Ai) the set of all versions that can be transcoded from A i

B(v) the set of all branches of a tree whose root is node v
C(v) the set of all nodes that are the children of node v
D(v) the set of all nodes that are the descendants of node v

Table 1. A List of the Symbols

may be necessary); hence, the total cost, including transmis-
sion and transcoding costs, which is defined in this paper as
cost saving, is decreased. Similarly, removing the copy of
an object from a node increases its access cost, which is de-
fined as cost loss. The media object placement problem for
coordinated en-route transcoding caching is further compli-
cated due to caching dependencies, e.g. a placement deci-
sion at one node in the network affects the performance gain
of caching the same media object at other nodes. The opti-
mal locations for caching multiple versions of a media ob-
ject depend on the cost savings and the cost losses at all
the nodes along the routing path. Our objective is to min-
imize the total access cost of all the media objects in the
network. We begin with computing the cost saving and the
cost loss of caching a media object at a single node. Let
m(Ai, vj) be the miss penalty of version Ai with respect to
node vj , which is defined as the additional cost of access-
ing Ai if the version cached at node vj is removed. In our
model, m(Ai, vj) is given by the following definition.

Definition 1 m(Ai, vj) is a function for calculating the
miss penalty of Ai if the version cached at node vj is re-
moved, which is defined as

m(Ai, vj) = cvj ,v+
j (Ai)

+ w(Bv+
j (Ai)

, Ai) − w(Bvj , Ai)
(1)

where v+
j (Ai) is the nearest higher level node of vj that

stores a more detailed version than Ai (including Ai),
cvj ,v+

j (Ai)
is the additional access cost, w(Bv+

j (Ai)
, Ai) is

the new transcoding cost , and w(Bvj , Ai) is the original
transcoding cost.

Obviously, the cost saving of caching Ai at vj is defined
as follows.

Definition 2 s(Ai, vj) is a function for calculating the cost
saving of caching Ai at vj .

s(Ai, vj) =
∑

Ak∈D(Ai)∪{Ai}
fAk,vj · m(Ak, vj) (2)

Second, we consider the cost loss of caching a media ob-
ject at a node. Let l(Ai, vj) denote the cost loss of caching
Ai at vj . Computing l(Ai, vj) is a bit more complicated.
Obviously, the purged objects should introduce the least to-
tal cost loss while creating enough space to accommodate
the object to be cached. We apply the following greedy
heuristic to decide replacement candidates. Note that the
normalized cost loss (NCL, i.e., the cost loss introduced by
creating one unit of free space) of ejecting A i is s(Ai,vj)

bAi
.

The objects in the cache are ordered by their NCLs and
are selected sequentially, starting from the object with the
smallest NCL, until enough space is created. The cost loss
of caching a media object at a node is calculated by sum-
ming the cost losses caused by all the selected candidates.
Therefore, the cost gain of caching A i at node vj , denoted
by g(Ai, vj), is calculated by the following equation.

g(Ai, vj) =
∑

Ak∈D(Ai)∪{Ai}
fAk,vj · m(Ak, vj) − l(Ai, vj)

(3)

Based on the cost gain of caching a version of a media
object at a single node, the problem of coordinated en-route
web caching in transcoding proxies is defined as follows:

Definition 3 G(T, P ), the total cost gain of caching multi-
ple versions of a media object at nodes in P ⊆ V is defined

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



as

G(Tv, P ) =
∑
v∈P

∑
Ax∈Φ(Hv)

(fAx,v

−
∑

b∈B(v)

fAx,z−
b (Ax))m(Ax, vj) − l(Ax, v)

(4)

where v+(Ax) is the nearest higher level node of v that
stores a more detailed version than Ax (including Ax),
z−b (Ax) is the nearest lower level node of v that stores a
less detailed version than Ax (including Ax) in branch b,
Hv+

j (Ax) is the version cached at v+
j (Ax), and Hv is the

version to be cached at node v.

3. Dynamic Programming-Based Solution

In this paper we use Tr = (Vr, Er) to denote a tree
whose root is r, where Vr and Er are the sets of nodes
and network links of tree Tr, respectively. Based Definition
3, the problem of coordinated en-route transcoding caching
for tree Tr is formally defined as an optimization problem
as follows:

max
Pr

G(Tr, Pr) = max
Pr

{
∑
v∈Pr

∑
Ax∈Φ(Hv)

(fAx,v

−
∑

b∈B(v)

fAx,z−
b

(Ax))m(Ax, v) − l(Ax, v)} (5)

where Pr ⊆ D(r)∪{r}, v+(Ax) is the nearest higher level
node of v that stores a more detailed version than Ax (in-
cluding Ax), z−

b (Ax) is the nearest lower level node of v
that stores a less detailed version than Ax (including Ax) in
branch b, Hv+(Ax) is the version cached at v+(Ax), and Hv

is the version to be cached at node v.
Before presenting the dynamic programming-based so-

lution, we give the following definition. Let Tr,w be a
subtree of Tr, whose node set is Vw , where w ∈ D(r).
Similarly, we define the problem of coordinated en-route
transcoding caching for tree Tr,w as an optimization prob-
lem as follows:

max
Pr,w

G(Tr,w, Pr,w) = max
Pr,w

{
∑

v∈Pr,w

∑
Ax∈Φ(Hv)

(fAx,v

−
∑

b∈B(v)

fAx,v−
b (Ax))m(Ax, v) − l(Ax, v)} (6)

where Pr,w ⊆ {w} ∪ D(w), v+(Ax) is the nearest higher
level node of v that stores a more detailed version than Ax

(including Ax), z−
b (Ax) is the nearest lower level node of v

that stores a less detailed version than Ax (including Ax) in
branch b, Hv+(Ak) is the version cached at v+(Ak), and Hv

is the version to be cached at node v.
Now we start to present a dynamic programming-based

solution to the optimization problem formulated in Equa-
tion (5). First, we give a theorem that indicates an impor-
tant property between the optimal solutions to tree Tr and

Tr,ri , where ri ∈ C(r). Due to space limitation, we do not
give the detailed proof of the theorems in this paper.

Theorem 1 For tree Tr, if C(r) = {r1, r2, · · · , rs}, then
we have

A∗
r = ∪s

i=1A
∗
r,ri

where A∗
r ⊆ D(r) is an optimal solution to Equation (5)

with respect to tree Tr, and A∗
r,ri

⊆ D(ri) ∪ {ri} is an
optimal solution to Equation (6) with respect to tree Tr,ri ,
i = 1, 2, · · · , s.

Theorem 1 shows that computing the optimal solution
to Equation (5) for tree Tr can be decomposed into com-
puting the optimal solutions to trees Tr,ri , where C(r) =
{r1, r2, · · · , rs}. Therefore, what we should do is to to find
an optimal solution to Equation (6).

Next, we present another theorem that describes an im-
portant property of the solution to Equation (6), by which
an optimal solution to Equation (6) can be obtained.

Theorem 2 For tree Tr,w, if C(w) = {w1, w2, · · · , wt},
then we have

A∗
r,w =

{ ∪t
i=1A∗

r,wi
G(Tr,w,∪t

i=1A∗
r,wi

) ≥ G(Tr,w, A∗
w ∪ {w})

A∗
r ∪ {w} G(Tr,w,∪t

i=1A∗
r,wi

) < G(Tr,w, A∗
w ∪ {w})

where A∗
r,w ⊆ D(w)∪ {w} is an optimal solution to Equa-

tion (6) with respect to tree Tr,w, A∗
w ⊆ D(w) is an opti-

mal solution to Equation (5) with respect to tree Tw, and
A∗

r,wi
⊆ D(wi) ∪ {wi} is an optimal solution to Equation

(6) with respect to tree Tr,wi , i = 1, 2, · · · , t.

Based on Theorems 1 and 2, the original problem can be
solved using dynamic programming with the following re-
currences.

1. Suppose a node v in tree Tr = (Vr , Er) has t children.
If t = 0, then A∗

v = φ; otherwise, A∗
v = ∪t

i=1A
∗
v,vi

, where
v1, v2, · · · , vt are the children of v.

2. Suppose that node u is the descendent of node v in
tree Tr = (Vr, Er) and u has l children u1, u2, · · · , ul. If
l = 0, then

A∗
v,u =

{ {u} G(Pv,u, v) ≥ 0
{φ} G(Pv,u, v) < 0

where G(Pv,u) is the maximal cost gain on the path from
u to v and a version of a media object is stored at v; other-
wise,

A∗
v,u =

{
∪l

i=1A∗
v,ui

G(Tv,u,∪l
i=1A∗

v,ui
) ≥ G(Tv,u, A∗

u ∪ {u})
A∗

u ∪ {u} G(Tv,u,∪l
i=1A∗

v,ui
) < G(Tv,u, A∗

u ∪ {u})

Now we start to discuss the solution above. The follow-
ing theorem describes an important property of the algo-
rithm proposed above.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



Theorem 3 If A∗
r is an optimal solution to Equation (5)

with respect to tree Tr, then we have

m∑
i=1

fAi,v · cv,r − w(Hv , Ai) − l(Ai, v) ≥ 0 ∀ v ∈ A∗
r

Theorem 3 shows that we should only consider the nodes
where the local cost gain is beneficial, i.e. the cost sav-
ing outweighs the cost loss with respect to that single
node. It can be shown that the complexity of this dynamic
programming-based algorithm is O(n2m), where n is the
total number of nodes that are locally beneficial in the net-
work and m is the number of the versions that a media ob-
ject owns.

4. Simulation Model and Performance Evalu-
ation

We have performed extensive simulation experiments to
compare the results of our model with those of existing
caching models. The network in our simulation consists
of numerous nodes and content servers. To the best of our
knowledge, it is difficult to find true trace data in the open
literature to simulate our model. Therefore, we generated
the simulation model from the empirical results presented
in [1–3, 5, 9]. The system configuration is outlined in sec-
tion 4.1, and four existing caching models used for the pur-
pose of comparison are introduced in Section 4.2.

4.1. System Configuration

Table 2 lists the parameters and their values used in our
simulation.

The network topology was randomly generated by the
Tier program [5]. Experiments for many topologies with
different parameters have been conducted and it was found
that the performance of our model was insensitive to topol-
ogy changes. Here, only the experimental results for one
topology was listed due to space limitations. The character-
istics of this topology and the workload model is shown in
Table 2, which are chosen from the open literature and are
considered to be reasonable.

The WAN (Wide Area Network) is viewed as the back-
bone network to which no servers or clients are attached.
Each MAN (Metropolitan Area Network) node is assumed
to connect to a content server. Each MAN and WAN node
is associated with an en-route cache. The number of ob-
jects generated is N and these N objects are divided into
two types: text and media. Similar to the studies in [3, 6,
13, 21, 22], cache size is described as the total relative size
of all objects available in the content server. In our experi-
ments, the object sizes are assumed to follow a Pareto dis-
tribution and the average object size is 26KB. We also as-
sume that each media object has five versions and that the

transcoding graph is as shown in Figure 3. The sizes of each
version are assumed to be 100 percent, 80 percent, 60 per-
cent, 40 percent, and 20 percent of the original object size.
The transcoding delay is determined as the quotient of the
object size to the transcoding rate. In our experiments, the
client at each MAN node randomly generates the requests,
and the average request rate of each node follows the distri-
bution of U(1, 9), where U(x, y) represents a uniform dis-
tribution between x and y. The access frequencies of both
the content servers and the objects maintained by a given
server follow a Zipf-like distribution [3, 19]. Specifically,
the probability of a request for object O in server S is pro-
portional to 1/(iα · jα), where S is the ith most popular
server and O is the jth popular object in S. The delay of
both MAN links and WAN links follows an exponential dis-
tribution, where the average delay for WAN links is 0.46
seconds and the average delay for WAN links is 0.07 sec-
onds.

Figure 3. Transcoding Graph for Simulation

The cost for each link is calculated by the access delay.
For simplicity, the delay caused by sending the request and
the relevant response for that request is proportional to the
size of the requested object. Here, we consider the average
object sizes for calculating all delays, including the trans-
mission delay, and transcoding delay. The cost function is
taken to be the delay of the link, which means that the cost
in our model is interpreted as the access latency in our sim-
ulation.

4.2. Existing Caching Models

In addition to the model presented in Section 2, we also
consider the following caching models for comparison pur-
poses.

• LRU : Least Recently Used (LRU ) evicts the web
object which is requested the least recently. The re-
quested object is stored at each node through which the
object passes. The cache purges one or more least re-
cently requested objects to accommodate the new ob-
ject if there is not enough room for it.

• LNC − R [20]: Least Normalized Cost Replacement
(LNC − R) is an model that approximates the opti-

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



Parameter Value
Number of WAN Nodes 200
Number of MAN Nodes 200

Delay of WAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.45 Sec)

Delay of MAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.06 Sec)

Number of Servers 100
Number of Web Objects 1000 objects per srever

Web Object Size Distribution
Pareto Distribution

p(x) = aba

a−1 (a = 1.1, b = 8596)

Web Object Access Frequency
Zipf-Like Distribution

1
iα (i = 0.7)

Relative Cache Size Per Node 4%
Average Request Rate Per Node U(1, 9) requests per second

Transcoding Rate 20KB/Sec

Table 2. Parameters Used in Our Simulation

mal cache replacement model. It selects for replace-
ment the least profitable documents. The profit func-
tion is defined as profit(Oi) = (ci · fi)/si, where ci

is the average delay to fetch document Oi to the cache,
fi is the total number of references to Oi, and si is the
size of document Oi. Similar to LRU , the requested
object is cached by all nodes along the routing path.

• AE [9]: Aggregate Effect (AE) is a model that ex-
plores the aggregate effect of caching multiple ver-
sions of an object in the cache. It formulates a gen-
eralized profit function to evaluate the aggregate profit
from caching multiple versions of the same media ob-
ject. When the requested object passes through each
node, the cache will determine which version of that
object should be stored at that node according to the
generalized profit.

• TCLT [17]: Transcoding Caching for Linear Topol-
ogy (TCLT ) is an algorithm that optimizes caching
multiple versions of an object on the path from the
client to the server.

4.3. Performance Evaluation

We compare the performance results of our model with
that of those models introduced above in terms of several
performance metrics. The performance metrics employed in
our simulation include delay-saving ratio (DSR), which is
defined as the fraction of communication and server delays
which is saved by satisfying the references from the cache

instead of the server, average access latency (AST ), request
response ratio (RRR),which is defined as the ratio of the ac-
cess latency of the target object to its size, object hit ratio
(OHR), which is defined as the ratio of the number of re-
quests satisfied by the caches as a whole to the total number
of requests, and highest server load (HSL), which is de-
fined as the largest number of bytes served by the server per
second. In the following figures, LRU , LNC−R, AE, and
TCLT denote the results for the four models introduced in
Section 4.2, and TCTN shows the results for the model of
coordinated en-route transcoding caching for tree networks
proposed in Section 2. Table 3 lists the notations used in this
section.

In our experiments, we compare the performance results
of different models across a wide range of cache sizes, from
0.04 percent to 15.0 percent.

The first experiment investigates DSR as a function of
the relative cache size at each node and Figure 4 shows the
simulation results. As presented in Figure 4, we can see that
our model outperforms the other models since our model
consider en-route transcoding caching by optimally deter-
mining the locations in which to place multiple versions
of a media object in a coordinated way, whereas existing
models, including LRU , LNC − R, and AE, consider en-
route web caching either on a path or only at a single node.
Specifically, the mean improvements of DSR over TCLT ,
AE, LNC − R, LRU are 4.3 percent, 21.3 percent, 29.7
percent, and 31.7 percent, respectively.

Figure 5 shows the simulation results of ASL as a func-
tion of the relative cache size at each node; we describe the

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



Item Notation Decription
DSR Delay-Saving Ratio (%)
ASL Average Access Latency (Second)
RRR Request Response Ratio (Second/MB)Performance Metrics

OHR Object Hit Ratio (%)
HSL Highest Server Load (MB/Second)

TCTN Transcoding Caching for Tree Networks
TCLT Transcoding Caching for Linear Topology

AE Standing for Aggregate EffectPerformance Results

LNC − R Least Normalized Cost Replacement
LRU Least Recently Used

Table 3. Notations Used in Performance Analysis

0 5 10 15
35

40

45

50

55

60

65

70

Relative Cache Capacity (%)

DS
R 

(%
)

TCTN
TCLT
AE
LNC−R
LRU

Figure 4. Experiment on DSR

results of RRR as a function of the relative cache size at
each node in Figure 6. Clearly, the lower the ASL or the
RRR, the better the performance. As we can see, all mod-
els provide steady performance improvement as the cache
size increases. We can also see that TCTN significantly
improves both ASL and RRR compared to TCLT , AE,
LNC − R and LRU , since our model determines the opti-
mal locations for tree networks in a coordinated way, while
the others place multiple versions of a media object for lin-
ear topology or at each en-route cache. For ASL to achieve
the same performance as TCTN , the other models need 2
to 12 times as much cache size.

Figure 7 shows the results of OHR as a function of the
relative cache size for different models. By computing the
optimal locations, we can see that the results for our model
can greatly outperform those of the other models, especially
for smaller cache sizes. We can also see that OHR steadily
improves as the relative cache size increases, which con-
forms to the fact that more requests will be satisfied by the
caches as the cache size becomes larger.

Figure 8 shows the results of HSL as a function of the
relative cache size. It can be seen that HSL for our model
is lower than that of the other models. We can also see that
HSL decreases as the relative cache size increases.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

1.5

2

2.5

3

3.5

4

Relative Cache Capacity (%)

AS
L (

Se
c)

TCTN
TCLT
AE
LNC−R
LRU

Figure 5. Experiment on ASL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Relative Cache Capacity (%)

RR
R 

(S
ec

/M
B)

TCTN
TCLT
AE
LNC−R
LRU

Figure 6. Experiment on RRR

5. Conclusion

In this paper, we studied the problem of optimally de-
termining the locations in which to place multiple versions
of the same media object in tree networks. We presented
a novel model for this problem and formulated this prob-
lem as an optimization problem. The implementation re-
sults show that our model can significantly outperform ex-
isting models that consider transcoding caching on a path or
at individual nodes. Our methods make significant contribu-

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10

20

30

40

50

60

70

80

90

100

Relative Cache Capacity (%)

OH
R 

(%
)

TCTN
TCLT
AE
LNC−R
LRU

Figure 7. Experiment for OHR

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Relative Cache Capacity (%)

HS
L (

MB
/S

ec
)

TCTN
TCLT
AE
LNC−R
LRU

Figure 8. Experiment for ASL

tions to transcoding caching, since the locations for placing
copies of an object among the en-route caches in tree net-
works can be optimally obtained.

References

[1] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the World
Wide Web. IEEE Transaction on Knowledge and Data Engi-
neering, Vol 11, No. 1, pp, 94-107, 1999.

[2] P. Barford and M. Crovella. Generating Representive Web
Workloads for Network and Server Performance Evaluation.
Proc. ACM SIGMETRICS’98, pp. 151-160, 1998.

[3] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
Caching and Zip-like Distributions: Evidence and Implica-
tions. Proc. IEEE INFOCOM’99, pp. 126-134, 1999.

[4] E. A. Brewer, R. H. Katz, E. Amir, H. Balakrishnan, Y.
Chawathe, A. Fox, S. D. Gribble, T. Hodes, G. Nguyen, V.
N. Padmanabhan, M. Stemm, S. Seshan, and T. Henderson.
A Network Architecture for Heterogeneous Mobile Comput-
ing. IEEE Personal Comm., Vol. 5, No. 5, pp. 8-24, Oct.,
1998.

[5] K. L. Calvert, M. B. Doar, and E. W. Zegura. Modelling In-
ternet Topology. IEEE Comm. Magazine, Vol. 35, No. 6, pp.
160-163, 1997.

[6] P. Cao and S. Irani. Cost-Aware WWW Proxy Caching Al-
gorithms. Proc. First USENIX Symp. Internet Technologies
and Systems (USITS), pp. 193-206, 1997.

[7] V. Cardellini, P. Yu, and Y. Huang. Collaborative Proxy Sys-
tem for Distributed Web Content Transcoding. Proc. ACM
Int’l Conf. Information and Knowledge Management, pp.
520-527, 2000.

[8] C. Chandra and C. S. Ellis. JPEG Compression Metric as
a Quality-Aware Image Transcoding. Proc. USENIX Sec-
ond Symposium Intenet Technology and Systems, pp. 81-92,
1999.

[9] C. Chang and M. Chen. On Exploring Aggregate Effect for
Efficient Cache Replacement in Trancoding Proxies. IEEE
Transactions on Parallel and Distributed Systems, Vol. 14,
No. 6, pp. 611-624, June, 2003.

[10] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A. Pat-
terson. Cooperative Caching: Using Remote Client Memory
to Improve File System Performance. Proc. First Symp. Op-
erating Systems Design and Implementations, pp. 267-280,
1994.

[11] R. Floyd and B. Housel. Mobile Web Access Using Network
Web Express. IEEE Personal Comm., Vol. 5, No. 5, pp. 47-
52, Dec., 1998.

[12] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, and
J. Rubas. Dynamic Adaption in an Image Transcoding Proxy
for Mobile Web Browsing. IEEE Personal Comm., Vol. 5,
No. 6, pp. 8-17, Dec., 1998.

[13] S. Jin and A. Bestavros. Greeddual* Web Caching Algorithm
Exploiting the Two Sources of Temporal Locality in Web Re-
quest Streams. Computer Comm., Vol. 4, No. 2, pp. 174-183,
2001.

[14] P. Krishnan, D. Raz, and Y. Shavitt. The Cache Location
Problem. IEEE/ACM Transaction on Networking, Vol. 8,
No. 5, pp. 568-582, 2000.

[15] M. R. Korupolu and M. Dahlin. Coordinated Placement
and Replacement for Large-Scale Distributed Caches. IEEE
Transaction on Knowledge and Data Engineering, Vol. 14,
No. 6, pp. 1317-1329, 2002.

[16] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Place-
ment Algorithms for Hierarchical Coorperative Caching.
Proc. 10th Ann. ACM-SIAM Symp. Discrete Algorithms,
pp. 586-595, 1999.

[17] K. Li and H. Shen. Coordinated En-Route Web Caching in
Transcoding Proxies. Submitted for Publication.

[18] R. Mohan, J. R. Smith and C. Li. Adapting Multimedia Inter-
net Content for Univeral Access. IEEE Transaction on Mul-
timedia, Vol. 1, No. 1, pp. 104-114, March, 1999.

[19] V. N. Padmanabhan and L. Qiu. The Content and Access
Dynamics of a Busy Site: Findings and Implications. Proc.
ACM SIGCOMM’00, pp.111-123, August, 2000.

[20] P. Scheuermann, J. Shim, and R. Vingralek. A Case for
Delay-Conscious Caching of Web Documents. Computer
Network and ISDN Systems, Vol 29, No. 8-13, pp, 997-1005,
1997.

[21] J. Shim, P. Scheuermann, and R. Vingralek. Proxy Cache Al-
gorithms: Design, Implementation, and Performance. IEEE
Transaction on Knowledge and Data Engineering, Vol 11,
No. 4, pp, 549-562, 1999.

[22] X. Tang and S. T. Chanson. Coordinated En-Route Web
Caching. IEEE Transactions on Computers, Vol. 51, No. 6,
pp. 595-607, June, 2002.

Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS’04) 
1521-9097/04 $ 20.00 IEEE 


