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AbstratWithin the framework of lattie QCD we investigate di�erent aspets ofQCD in Landau gauge using Monte Carlo simulations. In partiular, wefous on the low momentum behavior of gluon and ghost propagators. Thegauge group is that of QCD, namely SU(3). For our study of the lattiegluodynami, simulations were performed on several lattie sizes ranging from
124 to 484 at the three values of the inverse oupling onstant β = 5.8, 6.0and 6.2.Di�erent systemati e�ets on the gluon and ghost propagators are stud-ied. We demonstrate that the ghost dressing funtion systematially dependson the hoie of Gribov opies at low momentum, while the in�uene on thegluon dressing funtion is not resolvable. Also the eigenvalue distribution ofthe Faddeev-Popov operator is sensitive to Gribov opies.We show that the in�uene of dynamial Wilson fermions on the ghostpropagator is negligible at the momenta available to us. For this we haveused gauge on�gurations whih were generated with two dynamial �avorsof lover-improved Wilson fermions. On the ontrary, fermions a�et thegluon propagator at large and intermediate momenta, in partiular wherethe gluon propagator exposes its harateristi enhanement ompared tothe free propagator.We also analyze data for both propagators obtained on asymmetri lat-ties. By omparing these results with data obtained on symmetri latties,we �nd that both the gluon and the ghost propagator su�er from systematie�ets at the lowest on-axis momenta available on asymmetri latties.We ompare our data with the infrared exponents predited in studiesof trunated systems of Dyson-Shwinger equations for the gluon and ghostpropagators. We annot on�rm neither the values for both exponents northe relation whih is proposed to hold between them. In any ase, we demon-strate that the infrared behavior of gluon and ghost propagators, as foundin this thesis, is onsistent with di�erent riteria for on�nement. In fat,we verify that our data of the ghost propagator and also of the Kugo-Ojimaon�nement parameter satisfy the Kugo-Ojima on�nement riterion. TheGribov-Zwanziger horizon ondition is satis�ed by the ghost propagator. Alsothe gluon propagator seems to vanish in the zero-momentum limit. However,we annot judge without doubt on the existene of an infrared vanishinggluon propagator. Furthermore, expliit violation of re�etion positivity bythe transverse gluon propagator is shown for the quenhed and unquenhedase of SU(3) gauge theory.



The running oupling onstant given as a renormalization-group-invariantombination of the gluon and ghost dressing funtions does not expose a �-nite infrared �xed point. Rather the data are in favor of an infrared vanishingoupling onstant. This behavior does not hange if the Gribov ambiguityor unquenhing e�ets are taken into aount. We also report on a �rst non-perturbative omputation of the SU(3) ghost-gluon-vertex renormalizationonstant. We �nd that it deviates only weakly from being onstant in themomentum subtration sheme onsidered here.We present results of an investigation of the spetral properties of theFaddeev-Popov operator at β = 5.8 and 6.2 using the lattie sizes 124, 164and 244. For this we have alulated the low-lying eigenvalues and eigen-modes of the Faddeev-Popov operator. The larger the volume the moreeigenvalues are found aumulated lose to zero. Using the eigenmodes fora spetral representation of the ghost propagator it turns out that for oursmallest lattie only 200 eigenvalues and eigenmodes are su�ient to saturatethe ghost propagator at lowest momentum. We assoiate exeptionally largevalues ourring oasionally in the Monte Carlo history of the ghost propa-gator at larger β to extraordinary ontributions of the low-lying eigenmodes.

Keywords:Gluon and ghost propagators, lattie QCD, Landau gauge, on�nementiv



ZusammenfassungDiese Arbeit untersuht im Rahmen der Gittereihtheorie vershiedene As-pekte der QCD in der Landau-Eihung, insbesondere solhe, die mit denGluon- und Geist-Propagatoren zusammenhängen. Die Eihgruppe ist dieder QCD, SU(3), und wir untersuhen die Propagatoren bei kleinen Im-pulsen. Für unsere Untersuhungen der reinen Gluodynamik haben wirzahlreihe Monte-Carlo Simulationen auf diversen Gittergrössen durhge-führt. Die Gittergrössen variieren im Bereih von 124 bis 484. Als inverseKopplungskonstanten haben wir die Werte β = 5.8, 6.0 und 6.2 gewählt.Wir analysieren den Ein�uss untershiedliher systematisher E�ekte aufdas Niedrigimpulsverhalten der Gluon- und Geist-Propagatoren. Wir zeigen,dass der Formfaktor des Geist-Propagators bei kleinen Impulsen systematishvon der Wahl der Eihkopien (Gribov-Kopien) abhängt. Hingegen können wireinen solhen Ein�uss auf den Gluon-Propagator niht feststellen. Ebenfallswird die Verteilung der kleinsten Eigenwerte des Faddeev-Popov-Operatorsdurh die Wahl der Gribov-Kopien beein�usst.Wir zeigen auÿerdem, dass der Ein�uss dynamisher Wilson-Fermionenauf den Geist-Propagator für die untersuhten Impulse vernahlässigbar ist.Dazu haben wir Eihkon�gurationen betrahtet, die mit einer Nf = 2 lover-verbesserten Wirkung erzeugt worden sind. Für den Gluon-Propagator kön-nen wir jedoh einen deutlihen Ein�uss für groÿe und mittlere Impulse fest-stellen, insbesondere in dem Impulsbereih, wo der Gluon-Propagator imVergleih zum freien Fall seine harakteristishe Erhöhung aufweist.Zusätzlih wurden beide Propagatoren auf asymmetrishen Gittern gemessen.Der Vergleih dieser Daten mit denen, die auf symmetrishen Gittern gewon-nen wurden, zeigt, dass die Asymmetrie deutlihe systematishe E�ekte imBereih kleiner Impulse verursaht. Besonders deutlih wird das für die Dat-en, die bei Impulsen in Rihtung der elongierten Gitterlänge gemessen wordensind.Weiterhin vergleihen wir unsere Daten mit den Infrarot-Exponenten, diein Studien von abgeshnittenen (trunated) Systemen von Dyson-Shwinger-Gleihungen für den Gluon- und Geist-Propagator vorhergesagt wurden. ImRahmen unserer Messungen können wir weder die Werte der Exponentennoh die vorhergesagte Beziehung zwishen beiden bestätigen. In jedemFalle können wir aber zeigen, dass das in dieser Arbeit gefundene Nied-rigimpulsverhalten im Einklang mit vershiedenen Kriterien für Con�nement(Einshluss von Farbladungen) ist. Wir zeigen, dass unsere Daten sowohl fürden Geist-Propagator als auh für den Kugo-Ojima-Con�nement-Parameter



das Kugo-Ojima-Con�nement-Kriterium erfüllen. Auÿerdem ist die Gribov-Zwanziger-Horizontbedingung für den Geist-Propagator erfüllt. Der Gluon-Propagator sheint im Grenzfall vershwindender Impulse zu Null zu streben.Dennoh können wir niht endgültig darüber urteilen, ob dies der Fall ist.Wir zeigen zusätzlih, dass der transversale Gluon-Propagator explizit dieRe�ektions-Positivität verletzt. Das gilt sowohl mit als auh ohne den Ein-�uss dynamisher Fermionen.Wir berehnen die laufende (e�ektive) Kopplung, die sih alseine renormierungsgruppeninvariante Kombination der Gluon- und Geist-Formfaktoren ergibt. Unsere Ergebnisse zeigen deutlih, dass im Bere-ih kleiner Impulse die laufende Kopplung kleiner wird und so vermut-lih kein endliher Infrarot-Fixpunkt im Grenzfall Impuls Null angestrebtwird. Dieses Verhalten ist unabhängig vom Ein�uss der Gribov-Kopienoder von der Hinzunahme dynamisher Fermionen. Wir präsentieren auÿer-dem eine erste nihtstörungstheoretishe Berehnung der Renormierungskon-stante des SU(3) Ghost-Gluon-Vertex. Wir zeigen, dass in dem untersuhtenRenormierungsshema keine wesentlihe Abweihung von einem konstantenVerhalten gefunden wird.Wir berihten auÿerdem über Untersuhungen zu spektralen Eigen-shaften des Faddeev-Popov-Operators bei β = 5.8 and 6.2. Dazu habenwir eine Reihe der kleinsten Eigenwerte und Eigenvektoren dieses Opera-tors auf den Gittergröÿen 124, 164 und 244 berehnet. Wir sehen, dass sihumso mehr Eigenwerte nahe Null konzentrieren, je gröÿer das physikalisheVolumen ist. Anhand einer spektralen Entwiklung des Geist-Propagatorskönnen wir zeigen, dass für unser kleinstes Gitter a. 200 Eigenwerte undEigenvektoren genügen, um den Wert des Geist-Propagators beim kleinstenImpuls zu reproduzieren.Wir zeigen ferner, dass die selten auftretenden, exzeptionell groÿen Mess-werte, die für den Geist-Propagator im Verlauf der Monte-Carlo Simula-tion bei gröÿeren β Werten gefunden werden, durh auÿerordentlih starkeBeiträge der niedrigsten Eigenmoden zu den entsprehenden Fourierkompo-nenten hervorgerufen werden.
Shlagwörter:Gluon- und Geist-Propagatoren, Gitter-QCD, Landau-Eihung,Con�nement vi
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Introdution
A

t present we are reasonably on�dent that the physis of strong in-teration, i.e. the rih �eld of hadron physis, is ompletely desribedby a quantized nonabelian gauge �eld theory whih is based on the gaugegroup of SU(3) olor symmetry. This theory is alled Quantum Chromody-namis (QCD). Its fundamental onstituents are quarks and gluons. Quarksare spin 1/2 fermion �elds arrying frational eletri harge and the gluonsare nonabelian spin 1 gauge �elds whih interat with the quarks as well asamong themselves. Due to its nonabelian nature the renormalization grouptells us that QCD is asymptotially free at large Eulidean momentum. Inthis regime perturbative QCD is relevant and theoretial preditions havebeen suessfully onfronted with experiments. The experimental suessesof QCD and the partial progress towards a full understanding of the theoryform the basis for our present belief that QCD is the right theory desribingall strong interation physis.Beyond perturbation theory, however, QCD is still not ompletely un-derstood, even though � as far as we know � it is not in on�it withany existing phenomenology of the strong interation. Note that in ontrastto QED the elementary �elds in QCD, the quarks and gluons, do not de-sribe existing partiles and thus a partile interpretation in QCD has tobe ompletely divored from its elementary degrees of freedom. Aordingto QCD all strongly interating partiles, the hadrons, are olorless boundstates of quarks. This phenomenon is alled on�nement, but the mehanismwhih on�nes quarks and gluons has to be established yet from �rst prini-ples. Moreover, due to the omplexity of QCD, a full desription of hadronistates and proesses diretly in terms of QCD presents an exiting hallengesine many years.Many hadroni features have been investigated in the framework of phe-nomenologial models (see e.g. [VW91; Kle92; ERV94℄) whih mimi the es-sential properties of QCD, namely asymptoti freedom at short distane andon�nement at large distanes. This approah represents a rather pratialpoint of view and is su�ient if one is just interested in the e�etive theoryof hadrons at low energies. But if QCD is the theory of strong interations aoherent desription diretly based on the dynamis of on�ned quarks andgluons should be possible. 1



2 IntrodutionFor suh a desription a omplete piture for all propagators and vertexfuntions of QCD should be available. These Green's funtions may thenserve as input into bound state alulations based on the Bethe-Salpeterequations for mesons or the Faddeev equations for baryons. But also froma purely theoretial point of view a onsistent piture of all QCD Green'sfuntions is interesting. In partiular, their infrared momentum behavior pro-vides insight into the mehanism of quark and gluon on�nement [AvS01℄. Togive just one example: The realization of the Kugo-Ojima on�nement se-nario [KO79; Kug95℄ in QCD in ovariant gauges is enoded in the infraredbehavior of the ghost 2-point funtion. Therefore, the investigation of QCDGreen's funtion at low momentum is important for a oherent desription ofhadroni states and proesses and also for an understanding of on�nement.The infrared momentum region orresponds to strong oupling ratherthan weak oupling and hene perturbation theory is of no avail in studyingQCD at low momentum. Genuinely nonperturbative approahes have to beused to explore QCD in this area. The Eulidean spae, disretized, lattiegauge theory provides one possibility to study nonperturbative aspets ofQCD by using Monte Carlo (MC) simulations. Another approah is givenby solving trunated systems of the Dyson-Shwinger equations (DSEs) ofQCD. The DSEs are in�nite towers of oupled nonlinear integral equationsrelating di�erent Green's funtions of QCD to eah other. They are diretlyderived from a generating funtional whose existene beyond perturbationtheory still has to be assumed. In any ase, studying DSEs involves theintrodution of a gauge ondition whih is not neessary in the standardlattie approah to QCD.DSE studies have been performed in reent years with growing intensity(see [RW94; RS00; AvS01; MR03℄ for an overview). In partiular, for the aseof Landau gauge it has been shown [vSAH97; vSHA98℄ that ontributions ofghost �elds are ruial for a onsistent desription of the infrared behaviorof Landau gauge gluodynamis. In former studies [Man79; ADJS81; AJS82;BP89℄, ghost �elds have always been negleted.Di�erent trunations have been employed sine then to study the in-frared behavior of gluon, ghost and quark propagators and the orrespond-ing vertex funtions. Trunations are essential to manage the in�nite towersof DSEs. The solutions presented �rst in [vSAH97; vSHA98℄ and later in[AB98a; AB98b; Blo01; Blo02℄ and [FAR02; FA02; Fis03℄ all favor the pi-ture of an infrared diverging ghost propagator being intimately onnetedwith an infrared vanishing gluon propagator. In fat, both propagators areproposed to follow power laws at low momentum with intertwined infraredexponents [LvS02; Zwa02℄. Suh an infrared behavior is in agreement withthe Gribov-Zwanziger horizon ondition [Gri78; Zwa94; Zwa02; Zwa04℄ as



Introdution 3well as with the Kugo-Ojima on�nement riterion [KO79; Kug95℄. Notethat their satisfation is ruial for the realization of on�nement in QCDin Landau gauge. Unquenhing e�ets on the infrared behavior are foundto be small [FA03℄. Moreover, dynamial hiral symmetry breaking andgluon on�nement have been on�rmed from solutions of trunated DSEs[AvS01; FA03; ADFM04℄.Most of these DSE studies are done in Landau gauge. In this gauge,the ghost-gluon vertex was shown to not su�er from ultraviolet divergenesat any order in perturbation theory [Tay71; MP78℄. Assuming this to holdbeyond perturbation theory, it allows for a de�nition of a nonperturbativerunning oupling onstant that is solely given in terms of the gluon and ghostpropagators and has a �nite infrared �xed point, provided the mentioned in-frared power laws hold [vSAH97; vSHA98℄. In a reent DSE study [AFLE05℄of vertex funtions, the infrared �xed point has been on�rmed, too. It hasalso been shown that this oupling onstant enters diretly the kernels of theDSEs for the gluon, ghost and quark propagators [Blo01; Blo02℄.Even though Monte Carlo simulations of lattie QCD provide an alter-native possibility to study QCD at a nonperturbative level, at present, theyannot ompete with the DSE approah onerning the aessible region oflow momenta. However, lattie QCD is a �rst priniple approah to QCDthat does not require us to �simplify� the theory. Unlike trunations of DSEs,the approximations involved in lattie QCD are systematially removable.This possibility of ontrolling the systemati errors makes this approah in-valuable [BHL+05℄. Therefore, lattie simulations may provide an indepen-dent hek whether the results obtained in the DSE approah are realizedin lattie QCD, at least in the region of momenta available at present. Fur-thermore, lattie QCD enables us to study di�erent models for on�nement(see e.g. [Gre03℄) by mutilating the theory suh that on�nement is expli-itly lost. For example, removing vorties hanges the infrared behavior ofthe lattie ghost propagator in Landau gauge suh that it does not satisfyanymore aforementioned riteria for on�nement [GLR04℄.In reent years, di�erent groups have investigated di�erent aspets of lat-tie Landau gauge QCD. Some have studied the gauge group SU(2), others
SU(3). In partiular, the Adelaide Group has provided an impressive a-ount on numerial data for the SU(3) gluon [LSWP98; LSWP99; BBLW00;BBL+01℄ and quark propagators [SW01; SLW01; BBL+02; BHW02; ZBL+04;Z+05; B+05d; P+06℄ and for the quark-gluon vertex [SK02; SBK+03℄. Theirdata are based on quenhed and unquenhed SU(3) gauge on�gurationswhere the latter were generated with the AsqTad quark ation by the MILCollaboration.



4 IntrodutionFor the SU(3) ghost propagator there were not so many data availableuntil a few years ago, even though this propagator is expeted to be related tothe gluon propagator as mentioned above. The �rst lattie study of the SU(2)and SU(3) ghost propagators in Landau gauge was given in [SS96℄ and therewere several studies in Landau gauge whih have on�rmed the antiipatedbehavior for the ase of SU(2) [BCLM04; LRG02; GLR04; BCLM03℄. Similarinvestigations for the SU(3) ase at even lower momenta were not availableat that time.During the last three years, we have tried to bridge this gap by investigat-ing the SU(3) ghost and gluon propagators (and related objets) on quenhedand unquenhed SU(3) gauge on�gurations. Our set of unquenhed on�gu-rations were generated with lover-improved Wilson fermions by the QCDSFollaboration. We have found that for momenta lower than used in the SU(2)studies (see above) qualitative di�erenes to the antiipated infrared behaviorof ghost and gluon propagators and of the running oupling onstant appear.At the same time other groups have performed similar investigations fo-ussing on di�erent interesting aspets. See, for example, [FN04a; FN04b;FN05a; FN06b; FN06a℄ for investigations of the gluon, ghost and quarkpropagators and of the running oupling onstant using quenhed and un-quenhed on�gurations (provided by the MILC ollaboration). Studies ofthe SU(3) gluon propagator at very low momentum an be found in [OS05b;SO05b; OS05a; SO05a℄. There the infrared exponent has been determinedusing latties muh elongated in time diretion. A study of the SU(3) ghostpropagator at large momentum an be found in [B+05℄.Furthermore, reent DSE studies [FAR02; FA02; FGA06; FP06℄ show thatthe infrared behavior of the gluon and ghost dressing funtions and of therunning oupling onstant is hanged on a torus. In partiular, the runningoupling dereases at low momenta. These �ndings agree with lattie data asshown in this thesis, but they ontradit results obtained from DSE studies inthe ontinuum. It is still unknown what is the reason for this disagreement.Note that a solution to this problem has been proposed in [B+05b; B+06a℄.It is the intention of this thesis to give a summary of our results obtainedwithin the last three years. Some were already published, others are just�nished and being written up.We have strutured this thesis as follows: In the �rst hapter we intro-due the path integral formulation of QCD and disuss the speial problemsrelated to the neessity of gauge �xing the ation. A brief introdution tothe BRST formalism is given and the renormalization program is realled.In Chapt. 2 we disuss some aspets of nonperturbative QCD and intro-due riteria for on�nement whih are available for QCD in Landau gauge.



Introdution 5The lattie formulation of QCD in this gauge and a de�nition of all observ-ables analyzed in this thesis is given in Chapt. 3. We present our results forthe ghost and gluon propagators in Chapt. 4. Di�erent systemati e�etsare analyzed and their in�uene on the infrared behavior of the gluon andghost propagators is disussed. After this, we show that our data for bothpropagators satisfy neessary riteria for on�nement. In Chapt. 6 spetralproperties of the FP operator are analyzed. Finally, we draw our onlusionsand give an outlook. The appendix ontains some notes on algorithms andperformane. In partiular, we ompare two popular gauge-�xing algorithmsand show that the �nal ranking of gauge funtional values is already visibleat an intermediate iteration state. We also demonstrate how the inversion ofthe FP operator an be aelerated onsiderably.



6 Introdution



Chapter 1
The various olors of QCD

T
his hapter brie�y reviews the Eulidean formulation of QCD in the on-tinuum, mainly in order to �x notations used subsequently. Starting withthe lassial Lagrangian density and its quantization, the problems enountered by�xing to ovariant gauges are disussed. A short summary of the BRST formalismand renormalization is given.1.1 Quantization of QCDThe suess of quark-models in desribing hadrons as bound states of quarks,but also of quark-parton models in deep-inelasti lepton-hadron sattering, toname but a few, suggests that the strong interation should be desribed bya theory where the olor symmetry of eah quark �avor is a gauge symmetryand whih is also asymptotially free at high energy-momentum transfers orshort distanes. Sine asymptoti freedom is inherent in non-abelian gaugetheories, and experiments like, for instanes, the pion-deay π0 → 2γ suggestthe gauge group to be SU(3), we are reasonably on�dent at present that thestrong interation is ompletely desribed by a quantized non-Abelian gauge�eld theory based on the SU(3) gauge group.1.1.1 The lassial QCD LagrangianA ommon way to setup a quantum �eld theory is to de�ne �rst a Lagrangiandensity

L ≡ L[Φ1(x), . . . ,Φn(x); ∂µΦ1(x), . . . , ∂µΦn(x)] (1.1)that is a funtional of several �elds Φ1(x), . . . ,Φn(x) and their derivativesneessary to host (in a onsistent way) all the features and symmetries ob-served in experiments. This Lagrangian density or its spae-time integral,the ation
S[Φ] ≡

∫
d4xL , (1.2)7



8 Chapter 1 The various olors of QCDis then used subsequently for a quantization of the theory hoosing one of thewell-known quantization methods, namely the Canonial operator formalism,the Stohasti formalism or the Funtional-integral formalism [Mut98℄.The most general form of the QCD Lagrangian density that not onlyaommodates all those mentioned properties of QCD, but also is renormal-izable in any order of perturbation theory an be written (in Eulidean spae)as 1
Linv =

1

4
F a
µνF

µν,a − ψ̄(γµDµ −m0)ψ . (1.3)Coneived in general terms, this Lagrangian density desribes the interationof the quark and antiquark �elds, ψ and ψ̄, with the self-interating gluon orgauge �elds Aµ = Aaµ(x)T
a. The latter are hidden in both the de�nition ofthe �eld-strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g0f

abcAbµA
c
ν (1.4)(here in the adjoint representation, i.e. a = 1, . . . , N2

c − 1) and the ovariantderivative
Dkl
µ = ∂µδ

kl + ig0A
a
µ(T

a)kl (1.5)given in the fundamental representation (i.e. k, l = 1, . . . , Nc) of the Liegroup SU(Nc = 3) with the eight hermitian generators T a. Beside beinghermitian, these generators satisfy Tr
(
T aT b

)
= δab/2 and [T a, T b] = ifabcT cwhere fabc are the struture onstants of the Lie algebra su(3). The bareoupling onstant is labeled g0. For the sake of ompleteness, we also remindon the ovariant derivative in the adjoint representation:

Dab
µ = ∂µδ

ab + g0f
abcAcµ. (1.6)The quark �elds

ψ ≡ ψα,lf (x)and antiquark �elds ψ̄ ≡ ψ†γ0, of �avor f = 1, . . . , Nf are anti-ommutingspinor �elds that transform under the fundamental representation of the
SU(Nc = 3) olor group, i.e. the olor index runs over l = 1, . . . , Nc. TheDira matries γµ at upon the spinor indies α = 1, . . . , 4 of the quark �elds.The bare mass m0 is a free parameter (for eah �avor) of the theory as is g0.1Here and in the following, a sum over repeated indies is understood if not otherwisestated. We will see later that there is always the freedom to have multipliative renormal-ization onstants or to add BRST-exat terms, like e.g. gauge-�xing and ghost terms inovariant gauges to this density.



1.1 Quantization of QCD 9By de�nition, the Lagrangian density in Eq. (1.3) is invariant under loal
SU(3) gauge transformations

Aµ → ωAµ = gωAµg
†
ω +

ig0

gω∂µg
†
ω, (1.7a)

ψ → ωψ = gωψ, (1.7b)
ψ̄ → ωψ̄ = ψ̄g†ω (1.7)of gluon, quark and antiquark �elds. Here gω is an element of the group

SU(3). It an be parameterized by a set of real-valued funtions ωa(x), i.e.
gω ≡ gω(x) = e−ig0·ω

a(x)Ta ∈ SU(3). (1.8)In subsequent disussions we will frequently refer to the in�nitesimal formof those loal transformations. What is usually meant by that notion is thefollowing. If the �eld Φk = {ψ̄, ψ, A} transforms under a loal gauge transfor-mation Φk → ωΦk as given in Eq. (1.7) then the orresponding in�nitesimaltransformation is de�ned by [Col84℄:
δΦk(x) ≡ ωb

∂

∂ωb

ωΦk

∣∣∣∣
ω=0

=: ωbδbΦk(x) .Using Eq. (1.8) the in�nitesimal loal gauge transformations of the gluon andfermion �elds take the form:
δωA

a
µ = ∂µω

a + g0f
abcωbAcµ ≡ Dab

µ ω
b (1.9a)

δωψ = −ig0ω
aT aψ (1.9b)

δωψ̄ = +ig0ω
aψ̄T a (1.9)The invariane of the Lagrangian density Linv under loal gauge trans-formations, auses some extra di�ulties for the quantization using eitherthe funtional-integral or the anonial formalism. For example, the de�-nition of a funtional-integral over gauge �elds in the ontinuum requires agauge ondition to be introdued. As a onsequene additional terms areadded to Linv. In the resulting Lagrangian density, Le�, the gauge invari-ane is expliitly lost, but its partiular form � it is BRST invariant (seebelow) � guarantees that expetation values of gauge-invariant observablesare atually independent of the gauge ondition used.We note in passing that on the lattie suh a gauge ondition is super-�uous, as long as gauge-invariant observables are studied. Therefore, thegauge-invariant ation

Sinv =

∫
d4x Linv (1.10)is su�ient for a lattie disretization. See Chapt. 3 for a partiular lattiedisretization as used in this study.



10 Chapter 1 The various olors of QCD1.1.2 Funtional-integral quantization of QCDSo far the theory is a lassial �eld theory. To quantize it one hooses one ofthe well-known quantization methods, namely the Canonial operator formal-ism, the Stohasti formalism or the Funtional-integral formalism. Indeed,all three methods should lead to the same physial preditions. However, thehoie depends on the feasibility of the method for a partiular topi.A quantum �eld theory is ompletely haraterized by the in�nite hierar-hy of n-point funtions or Green's funtions. These are orrelation funtionsof the �elds Φi(x) and the three mentioned formalisms di�er in how Green'sfuntions are alulated. For example, in the anonial approah the �eldsare regarded as operators for whih anonial ommutation relations hold.The Green's funtions are alulated as vauum expetation values of timeordered produts of those operators. The stohasti formalism introdued byParisi and Wu [PW81℄ starts from the lassial equation of motion. The�elds are regarded as stohasti variables. See [DH87℄ for a omprehensiveaount on that subjet.The Funtional-integral approah was introdued by Feynman [Fey48℄.There the �elds are taken to be -numbers and the Lagrangian density takesits lassial form. The Green's funtions are given by funtional integrationsof produts of �elds over all of their (weighted) possible funtional forms.The present study fouses on the lattie regularization of QCD in Eulideanspae. Sine this approah relies on the funtional integral formalism wedemonstrate brie�y the general onept.2Funtional-integral formalism: Illustration of the general oneptThe funtional-integral formalism introdues generating funtionals Z, W ,and Γ whih generate, respetively, the full, onneted and one-partile irre-duible (1PI) Green's funtions. To get aquainted with the general oneptlet us assume that for the generi Lagrangian density (Eq. (1.1)) of n di�erent�elds Φi the generating funtional
Z[J ] =

∫
[DΦ] exp

{
−

∫
d4x

(
L[Φ(x)] + Jai (x)Φ

a
i (x)

)} (1.11)for the full Green's funtions an be de�ned, i.e. there exist a well-de�nedmeasure [DΦ]. Then a full Green's funtion 〈Φa1
1 (x1) · · ·Φan

n (xn)〉 is given by2Note that due to the work of Kugo and Ojima [KO79℄ a onsistent quantization ofnon-abelian gauge �elds is also available in the ovariant anonial operator formalism[Mut98℄. Some of their results, namely the Kugo-Ojima on�nement senario will also beinvestigated in this study. For the ovariant anonial operator formalism see also thebook by Nakanishi and Ojima [NO90℄.



1.1 Quantization of QCD 11funtional derivatives with respet to the soures Jai (x), i.e.
〈Φa1

1 (x1) · · ·Φan

n (xn)〉 =
δnZ[J ]

Ja11 (x1) · · ·Jan
n (xn)

∣∣∣∣
J

a1

1
,...,Jan

n =0

.Together with Eq. (1.11) and the generi ation S[Φ] (Eq. (1.2)) this yields
〈Φa1

1 (x1) · · ·Φan
n (xn)〉 =

1

Z[0]

∫
[DΦ] Φa1

1 (x1) · · ·Φan
n (xn) e

−S[Φ] .Gauge orbits and gauge onditionsFor a quantization of QCD within the funtional formalism it is neessary tode�ne the generating funtional Z[J ] that generates all the Green's funtionsof the theory. In partiular, the de�nition of a path-integral over gluon �eldsneeds speial are, beause it is ill-de�ned if done naively.In fat, hoosing a partiular gauge �eld 0Aµ(x) there are in�nitely manyothers ωAµ whih are related to this by loal gauge transformations as de�nedin Eq. (1.7a). The set of all those is usually referred to as the gauge orbit of
0Aµ, beause eah element ωAµ in the orbit is obtained by ating upon 0Aµwith a loal gauge transformation gω(x). The Lagrangian Linv is invariantunder suh a transformation by de�nition and so all (in�nite) elements ofone partiular orbit give rise to the same value of Linv. This spoils a naiveintegration over all gluon �elds, beause an integral of kind

∫
[DA] e−Sinv =

∫
[D 0A] e−Sinv ∫

[Dω]is divergent. Here Sinv denotes the ation in Eq. (1.10), but for simpliity wehave dropped fermioni �elds. The integration over the gluon �elds must bede�ned suh that it restrits to gauge-inequivalent on�gurations, i.e. theymust belong to di�erent gauge orbits.This an be ahieved by hoosing a gauge ondition
F [ωA; x]

∣∣∣
ω=ω̄

= 0 (1.12)at eah point x in spae-time. If this ondition is satis�ed for only onerepresentative on eah gauge orbit, i.e. the solution ω̄ is unique, then it isalled an ideal gauge ondition [Wil03℄. The set of those representatives isalled the fundamental modular region Λ. It is a hypersurfae de�ned byEq. (1.12) in the spae of all gauge �elds. If we an de�ne an integrationover this region, the integral
∫

Λ

[DA] e−Sinv



12 Chapter 1 The various olors of QCDdoes not su�er from loal gauge invariane, as does a naive integration.If the gauge ondition (Eq. (1.12)) is ambiguous, it is termed non-idealand an integration beyond perturbation theory may beome ill-de�ned. Thedi�erent solutions to a non-ideal gauge ondition belong to the same orbit andare alled Gribov opies in honor of its disoverer [Gri78℄. In the following,we assume the gauge ondition to be ideal. Note that even popular non-idealgauge onditions, like the Coulomb or Landau gauge, are su�ient withinthe framework of perturbation theory. This is beause in perturbation theoryonly small �utuations of Aaµ(x) around zero are neessary and with respetto in�nitesimal gauge transformations
gω(x; τ) = 1+ iτωa(x)T a +O(τ 2) (τ ≪ 1).even non-ideal gauge onditions are unique. The problems of Gribov opiesand nonperturbative quantization will be disussed in Se. 2.1.31.1.3 The Faddeev-Popov methodFrom ordinary alulus of disrete n-dimensional vetors it is known that

1 =

∫ [
n∏

i

dfi

]
δn(f ) =

∫ [
n∏

i

dωi

]
δn (f(ω))

∣∣∣∣det
∂fi
∂ωj

∣∣∣∣ (1.13)where the determinant in the last expression is the Jaobian determinant thatarise due to the substitution rule for integrals with multiple variables. If fis invertible near ω then its Jaobian determinant at ω is non-zero (inversefuntion theorem).If we assume in the following that Eq. (1.12) represents an ideal gaugeondition, the identity Eq. (1.13) may be generalized to an identity for fun-tional integrals 1 =

∫
[Dω] δ (F [ωA])∆FP[A] (1.14)whih was �rst proposed by Faddeev and Popov [FP67℄. In this relation,the Jaobian determinant4

∆FP[A] := detM [A] (1.15)3Gauge-�xing is also neessary in anonial quantization, but not for stohasti quan-tization. Therefore the latter has the advantage to do not su�er from Gribov opies.However, it is more ompliated than the other two methods. For the standard lattieapproah to QCD gauge-�xing is also not neessary. See also Chapt. 2 and 3.4In general the absolute value of the FP determinant has to be onsidered. However,the assumption of an ideal gauge ondition guarantees the determinant to be nonzero. Soit annot hange sign whih anels anyway due to normalization. See also the disussionin Se. 2.1.2.



1.1 Quantization of QCD 13is known as the Faddeev-Popov (FP) determinant [FP67℄ of a matrix
Mab

xy [A] :=
δF [ωAa, x]

δωb(y)

∣∣∣∣
ω=0

(1.16)that represents the hange of F under loal gauge transformation at ω = 0.Inserting the identity in Eq. (1.14) now in the naive integration over gluon�elds we end up with
∫

[DA] ∆FP[A] δ(F [A]) e−Sinv[A]. (1.17)This represents an integration over the fundamental modular region, but ifand only if the gauge ondition Eq. (1.12) is unique.1.1.4 An e�etive Lagrangian density in ovariantgaugeA popular gauge ondition for pratial alulations is given by the family ofovariant gauges spei�ed by the ondition
Fa[A] := ∂µA

a
µ(x) −Ba(x) = 0. (1.18)Here Ba(x) is an arbitrary funtion5. Sine the work of Gribov [Gri78℄ itis well-known that loal gauge onditions of this type are ambiguous withrespet to �nite gauge transformations (see also [Sin78; Wil03℄), and so, inour notation, belongs to the lass of non-ideal gauge onditions. With respetto in�nitesimal gauge transformations, however, they are unique and may betreated as ideal ones.The family of ovariant gauges turns out to be useful in perturbativeexpansions in many appliations. It also allows us to represent the deltafuntion in the funtional integral Eq. (1.17) as a (funtional) integral overthe �elds B. Sine these �elds are arbitrary we an use a Gaussian weight ofwidth ξ0 to integrate over, i.e.

∫
DBa exp

{
− 1

2ξ0

∫
d4x (Ba)2(x)

}
δ
(
∂µA

a
µ(x) −Ba(x)

)
=: e−SGF[A;ξ0] .Here SGF[A; ξ0] is de�ned as the (Eulidean) spae-time integral of

LξGF =
1

2ξ0
[∂µAµ(x)]

2 (1.19)5In Minkowski spae Ba would transform as a Lorentz salar.



14 Chapter 1 The various olors of QCD
LξGF is known as the gauge-�xing term whih is added to the invariant La-grangian density Linv. It serves as a substitute for the delta-funtion thatspei�es the hypersurfae in the funtional integral Eq. (1.17). The param-eter ξ0 is the gauge parameter that spei�es the partiular gauge onditionin the family of ovariant gauges. The speial ase of ξ0 = 0 is known as theLandau or Lorentz gauge and ξ0 = 1 as the Feynman gauge.Never all a ghost stupid � A few good ghosts an helpAlthough the FP determinant (Eq. (1.15)) is not a loal funtion of thegauge �elds, the funtional integration in Eq. (1.17) an be extended suhthat the FP determinant is expressed by an additional (loal) term, LFP,added to Linv, too. This is done by the familiar devie of integrating6 overghost and anti-ghost �elds c and c̄ whih are independent Grassmann valued�elds. With the de�nition of the FP matrix M (Eq. (1.16)) we obtain inovariant gauge

Mab
xy [A] =

δ(∂µ
ωAaµ(x) −Ba(x))

δωb(y)

∣∣∣∣
ω=0

= ∂xµ
δωAaµ(x)

δωb(y)

∣∣∣∣
ω=0

= −∂xµDab
x,µ[A]δ4(x− y) . (1.20)Here Dab

x,µ denotes the ovariant derivative in the adjoint representation. Us-ing this, the term LFP, known as the ghost term, takes the form
LFP = −(∂µc̄

a)(∂µδab + g0f
abcAcµ)c

b . (1.21)Generating funtional for QCD in ovariant gaugeIn summary, we arrive at an e�etive Lagrangian density
Le� = Linv + LGF + LξFP (1.22)where the individual terms Linv, LGF and LξFP are de�ned in Eq. (1.3), (1.19)and (1.21), respetively. Le� an be used to de�ne the (Eulidean) generating6For any �nite N it holds that the determinant of a matrix M an be expressed as afuntional integral over anti-ommuting Grassmann numbers, i.e.

detM =

[
N∏

i

∫
dc̄idci

]
e−c̄jMjici .



1.1 Quantization of QCD 15funtional (see e.g. [AvS01℄)
Z[ja, η̄, η,σ, σ̄] =

∫
[DA][Dψ][Dψ̄][Dc][Dc̄]

· exp

{
−

∫
d4x

(
Lre� −Aaµj

a
µ − η̄ψ − ψ̄η − σ̄c− c̄σ

)}
. (1.23)Here η̄, η, σ and σ̄ refer to the Grassmannian soures, respetively, for thequark, anti-quark, ghost and anti-ghost �elds as introdued above. In ovari-ant perturbation theory this generating funtional is used for the alulationof Eulidean Green's funtions as power series expansions of the interationterms in Le�. Atually, for this the renormalized e�etive Lagrangian den-sity Lre� given in Eq. (1.27) must be used instead. Otherwise perturbativeexpansions beyond tree level would be rendered meaningless by divergentmathematial expressions. We have indiate this already in Eq. (1.23) bygiving the su�x r to Le�. The expliit form of Lre� and the renormalizationprogram is disussed in Se. 1.2.Note also that the existene of the generating funtional beyond pertur-bation theory rather has the status of being postulated than on�rmed. Sofar only the ontinuum limit of a lattie formulation of quantum �eld theoryprovides a safe de�nition of the measure in the Eulidean generating fun-tional, and thus the Eulidean Green's funtions as its moments [AvS01℄.Under the assumption of its existene, vauum expetation values of ob-servables are obtained from the generating funtional as funtional deriva-tives. For a general observable denoted as O this yields

〈O〉 ∝
∫

[DA][Dψ̄][Dψ][Dc̄][Dc] O e−Se�[A,ψ̄,ψ,c̄,c] (1.24)where Se� denotes the e�etive ation, i.e. the spae-time integral of thee�etive Lagrangian density. Note that this density also depends on thegauge parameter ξ0.Gauge independene and gauge invarianeFor gauge-invariant observables it an be shown (see e.g. [Wei96℄) that fun-tional integrals of type as given in Eq. (1.24) are independent (within broadlimits) of the gauge-�xing funtional F , i.e. of the gauge ondition. The dif-ferent types only result in irrelevant onstant fators whih are normalizedaway in the ratio of funtional integrals. On the ontrary, vauum expeta-tion values for gauge-variant observables dependent on the gauge ondition.We found it worth to quote in this ontext a note from Collins's book [Col84℄:



16 Chapter 1 The various olors of QCDIt is important to distinguish the onepts of gauge invariane andgauge independene. Gauge invariane is a property of a lassialquantity and is invariane under gauge transformations. Gauge inde-pendene is a property of a quantum quantity when quantization isdone by �xing the gauge. It is independene of the method of gauge�xing. Gauge invariane implies gauge independene, but only if thegauge �xing is done properly [Col84, p.31f℄.1.1.5 The BRST formalismIn the last setion we ended up with an e�etive Lagrangian density Eq. (1.22)that is no longer loal gauge invariant. Loal gauge invariane spoils a naiveintegration over gauge �elds and thus a gauge has to be �xed before thefuntional-integral formalism is appliable for quantization. However, it isa fundamental physial requirement that gauge-�xing is done in suh a waythat matrix elements between physial states are independent of the atualhoie of gauge ondition. The lass of e�etive Lagrangians Lξe� generatedby the FP formalism above, an be shown to ful�ll this requirement. Theyall yield the same unitary S-matrix7.If phrased in a modern language of quantum �eld theory, namely theBRST formalism, the e�etive Lagrangian must be BRST invariant in orderto have a renormalizable theory yielding a unitary S-matrix. This formalismtakes BRST invariane as a �rst priniple and an be even used as a substi-tute for the FP method, in partiular there where the FP method fails.8The BRST formalism goes bak to the disovery of Behi, Rouetand Stora [BRS75; BRS76℄ who �rst noted (independent also Tyutin[Tyu75; IT76℄), that even if Le� is no longer loally gauge-invariant, it isinvariant under a speial type of global symmetry transformation. This sym-metry is a supersymmetry that involves ghost �elds ca(x) in an essential way.Remember, in the FP approah ghost �elds are merely a tehnial devie toexpress the FP determinant in terms of a path integral. In the BRST formal-ism, however, they serve as parameters ωa(x) = δλca(x) of in�nitesimal loalgauge transformations of gauge and fermion �elds. Here δλ is an (in�nitesi-mal) x-independent Grassmann number. In fat, a BRST transformation isisomorphi to an in�nitesimal gauge transformation (Eq. (1.9)). They arewritten in the form
δBΦ = δλ s Φ where Φ = {Aaµ, ψ}.7See e.g. [Wei96℄ for a more details8For example, the BRST symmetry is a basis for developing the anonial operatorformalism. See the book by Nakanishi and Ojima [NO90℄ for a omprehensive aounton that.



1.1 Quantization of QCD 17Here s denotes the BRST operator that ats upon the gauge and fermion�elds aording to
sAaµ(x) = Dab

µ c
b(x), (1.25a)

sψ(x) = −ig0T
aca(x)ψ(x) . (1.25b)Upon the ghost �eld ca(x) the BRST operator s is de�ned to at as

s ca(x) = −g0

2
fabccb(x)cc(x) . (1.25)This and the Jaobi identity for the struture onstants fabc su�e to showthat the BRST operator s is nilpotent [KU82℄, i.e.

s(s Φ) = 0.In addition to the ghost �elds, the BRST formalism introdues antighost
c̄a and Nakanishi-Lautrup auxiliary �elds Ba [Nak66℄ that transform as

s c̄a(x) = iBa(x) , (1.25d)
sBa(x) = 0 . (1.25e)The introdution of the auxiliary �elds Ba linearizes the BRST transforma-tions and renders the operator s to be nilpotent also o�-shell.The BRST hargeSine the BRST symmetry is a global symmetry9 of Le� there exists a or-responding Noether urrent JB that is onserved, i.e. ∂µJBµ = 0. Its expliitform (see e.g. [NO90℄) is not of interest for the following disussions. Butthe existene of a orresponding unbroken harge QB is important (see be-low and the disussion onerning the Kugo-Ojima on�nement riterion inSe. 2.3.1).In general, the harge Q orresponding to a urrent Jµ is de�ned as thespatial integral of J0. It is a generator of the global symmetry, even if theintegral is not onvergent.10 If this is the ase, however, then the harge isill-de�ned and is a generator of a spontaneously broken global symmetry.9Note that the invariane of Linv is a trivial onsequene of its gauge invariane. Af-ter renormalization (see Se. 1.2) the BRST symmetry is still a global symmetry of Lre�(Eq. (1.27)) supposed the BRST transformations are substituted by the renormalized onesgiven in Eq. (1.30) and (1.31).10If the integral is not onvergent, the harge Q is an ill-de�ned operator, and heneneither eigenstates nor expetation values of Q an be onsidered. However, for any loal



18 Chapter 1 The various olors of QCDIt has been argued by Kugo and Ojima [KO79℄ that the BRST harge
QB is an unbroken harge and so we an onsider its eigenstates. In parti-ular, states Ψi belonging to the physial state spae Vphys are assumed to beBRST singlet states of QB, i.e. they are annihilated by QB

QB|Ψi〉 = 0 .This assumption plays an important role in the Kugo-Ojima on�nementsenario to be introdued in Se. 2.3.1. It is also related to the requirementof gauge-independene for physial matrix elements as we disuss now.Gauge-�xing and the BRST formalismWithin the BRST formalism gauge-�xing is neatly performed by onsideringthe BRST invariane as a �rst priniple, i.e. a Lagrangian density has tobe BRST invariant to have a renormalizable theory that yields a unitary
S-matrix. Sine the BRST operator s is nilpotent, BRST�exat (or BRST�oboundary) terms � those are of the form s(∗) � an freely be added tothe gauge invariant Lagrangian density Linv, i.e.

Le� = Linv[ψ̄, ψ, A] + s T [ψ̄, ψ, A, c, c̄, B] .This will not hange physis in any order of perturbation theory, but it anbe used to represent the sum LξGF+LFP of the gauge-�xing and ompensatingghost terms [KU82℄. In fat, one an show that LξGF + LFP is of the form
LξGF + LFP = s T [Fa[A], c̄a]where Fa was de�ned for ovariant gauges in Eq. (1.18).Any hange ∆T in the funtional T , for example in Fa, must not hangeany matrix element 〈Ψ1|Ψ2〉 of physial states [Wei96℄, i.e.

0 = 〈Ψ1| s∆T |Ψ2〉 . (1.26)With QB being a generator of the BRST symmetry
i s(∗) = [QB, ∗]∓quantity Φ(y) the (anti-)ommutator

[iQ,Φ(y)]∓ ≡
∫
d3x[J0(x),Φ(y)]∓an be onsidered, beause the integrand vanishes for su�iently large x. It follows that Qis an generator of in�nitesimal symmetry transformations. See [NO90, p13f.℄ for details.



1.2 Regularization and renormalization 19we obtain that Eq. (1.26) an only hold for arbitrary hanges in T if physialstates are in the kernel of QB, i.e.
0 = 〈Ψ1|[QB,∆T ]|Ψ2〉 ⇐⇒ 〈ψ1|QB = QB|ψ2〉 = 0Note that the BRST symmetry of the full quantum Lagrangian is a basisfor developing the anonial operator formalism. It also is very useful forderiving the Slavnov-Taylor-identities (STI). These are used for the proof ofrenormalizability of QCD.1.2 Regularization and renormalizationThe quantum �eld theory of the strong interation introdued so far is stillinomplete, beause perturbative expansions of Green's funtions beyond treelevel would be rendered meaningless by divergent mathematial expressions.In partiular, loop integrals produe ultraviolet divergenes when the uto�for the internal momentum integral is send to in�nity. This is known sinethe early days of QED (see e.g. [Opp30℄).Fortunately, QCD is a renormalizable theory to any �nite order in per-turbation theory.11 That is, all divergenes may be absorbed into a hangeof the normalization of the Green's funtions and a suitable rede�nition ofall parameters appearing in the Lagrangian. The renormalized theory thenyields only �nite expressions at any order of perturbation theory.1.2.1 RegularizationFor this to work, QCD needs to be regularized prior to renormalization,using, for example, the Pauli�Villar, the dimensional or the lattie regular-ization. Atually, the latter is the only known nonperturbative regularizationof QCD. In this regularization, the lattie spaing a serves as a regularizationparameter that renders all momentum loop integrations �nite via a gauge in-variant ultraviolet uto� Λ = a−1. Consequently, arbitrary n-point funtionsalulated within the lattie approah due not su�er from ultraviolet diver-genes as long as a > 0. We shall brie�y introdue the lattie regularizationof QCD in Se. 3.1. A list of referenes for detailed information an also befound there.11The �rst proof for non-abelian gauge theories to be renormalizable was given by'tHooft and Veltman [tH71b; tH71a℄ using Slavnov-Taylor identities (STI) [Sla72;Tay71℄. Modern proofs take advantage of the BRST formalism.



20 Chapter 1 The various olors of QCD1.2.2 RenormalizationAfter a suitable regularization has been arried out, for example by setting auto� Λ, the renormalization program introdues so alled Z-fators whihabsorb the �nite (beause of the uto�), but potentially divergent part in eahof the fundamental two and three-point funtions, i.e. those with tree-levelounterpart in the Lagrangian density [AvS01℄. These are the inverse gluon,ghost and quark propagators as well as the three-gluon, four-gluon, ghost-gluon and quark-gluon verties. The orresponding Z-fators are denoted by
Z3, Z̃3, Z2, Z1, Z4, Z̃1 and Z1F respetively, and are formally introdued bywriting the renormalized Lagrangian density as (see e.g. [AvS01℄)

Lre� = Z3
1

2
Aaµ

(
−∂2δµν −

(
1

Z3ξr
− 1

)
∂µ∂ν

)
Aaν

+ Z̃3 c̄
a∂2ca + Z̃1 grfabc c̄a∂µ (

Acµc
b
)
− Z1 grfabc (∂µA

a
ν) A

b
µA

c
ν

+Z4
1

4
g2
rf

abef cdeAaµA
b
νA

c
µA

d
ν + Z2 ψ̄

(
− γµ∂µ + Zmmr

)
ψ

−Z1F igr ψ̄γµT aψ Aaµ . (1.27)An additional fator, Zm, is neessary to adjust the mass of the quark prop-agator to the pole mass and gr refers to the renormalized oupling onstant.The latter is related to the bare parameter g0 by onsidering, for example,the ghost-gluon vertex. Using this,gr :=
Z

1/2
3 Z̃3

Z̃1

g0 . (1.28)Of ourse, any other vertex funtion ould be used instead to de�ne gr. If allrenormalization onstants were independent then eah vertex would de�neits own renormalized oupling onstant. For example, using the three-gluonor the quark-gluon vertex this is
gAAA :=

Z
3/2
3

Z1

g0 or gψψ̄A :=
Z

1/2
3 Z2

Z1F

g0 .But in order to guarantee that they all de�ne the same oupling onstant,i.e. gr = gAAA = gψψ̄A, the Z-fators are onstrained by the Slavnov-Tayloridentities (STI) [Sla72; Tay71℄ giving:
Z1

Z3
=
Z̃1

Z̃3

=
Z1F

Z2
=
Z4

Z1
=: ZgZ

1/2
3 . (1.29)Then the renormalized oupling onstant gr is universal and an be related tothe bare oupling onstant g0 by Zggr = g0 where Zg is de�ned in Eq. (1.29).



1.2 Regularization and renormalization 21Obviously, the renormalization onstants are not independent of eah otherand the STIs allow us to express the onstants for the verties by the �eldrenormalization onstants Z3, Z̃3, Z2 and an independent one Zg.Comparing Eq. (1.27) and (1.22), we see that the renormalized Lagrangian(Eq. (1.27)) is related to its bare expression (Eq. (1.22)) by resaling the �elds
Aaµ → Z

1/2
3 Aaµ, ψ → Z

1/2
2 ψ, ca → Z̃

1/2
3 caand by rede�ning the parameters appearing in the Lagrangian:g0 = Zggr, m0 = Zmmr, ξ0 = Z3ξr .In an analogous manner, this translates to the BRST transformationsintrodued in Se. 1.1.5. To be spei�, the renormalized Lagrangian density

Lre� is BRST invariant and all onsiderations made previously remain validif the (in�nitesimal) parameter of the BRST transformation is replaed by
δλr := Z

−1/2
3 Z̃

−1/2
3 δλ (1.30)and the renormalized �elds transform as (see e.g. [AvS01℄)

sr A
a
µ(x) = Z̃3D

ab
µ c

b(x) , (1.31a)
sr ψ(x) = −Z̃1igrT acaψ(x) (1.31b)
sr c

a(x) = −Z̃1
gr
2
fabccbcc(x) , (1.31)

sr c̄
a(x) =

1

ξr
∂µA

a
µ(x) . (1.31d)1.2.3 The MOM shemeAfter this rather formal resaling and renaming of �elds and parameters, anyunrenormalized, but regularized n-point or Green's funtion Gnreg is relatedto their renormalized one (in momentum spae) through

Gr(p1, . . . , pn; gr, mr, ξr) = ZG ·Greg(p1, . . . , pn; Λ, g0, ξ0, m0) (1.32)where ZG refers to the orresponding produt of Z-fators that appear inthe Green's funtion. To give two simple examples: for the gluon two-pointfuntion in momentum spae Dab
µν(p) := 〈Aaµ(p)Abν(−p)〉 this is ZG = Z3,whereas for the ghost-gluon vertex ZG is given by ZG = Z̃1 = ZgZ̃3Z

1/2
3 .The Z-fators have to be determined suh that the renormalized expres-sion on the left hand side of Eq. (1.32) is �nite. The way this is done is



22 Chapter 1 The various olors of QCDde�ned by the renormalization sheme. There are di�erent renormalizationshemes. In eah sheme the divergent part is absorbed into the Z-fators,but they di�er in how muh of the �nite part is absorbed, too [Mut98℄. Com-mon renormalization shemes are the subtration shemes MS, MS or MOM.The latter type is onsidered in this thesis, even though there are in�nitemany di�erent MOM shemes.AMOM sheme de�nes the Z-fators suh that the fundamental two-pointand three-point funtions equal their orresponding tree-level expressions atsome momentum µ2, the renormalization point.The two-point funtions that are relevant in this thesis are the gluonpropagator 〈Aaµ(x)Abν(y)〉 and the ghost propagator 〈ca(x)c̄b(y)〉 in Landaugauge. Atually, we are interested in the Fourier transform of these twoexpressions. In momentum spae the gluon propagator in Landau gauge hasthe following tensor struture:
Dab
µν(p, µ) = δab

(
δµν − pµpν

p2

)
Z(p2, µ2)

p2
(1.33)where Z denotes the form fator or the dressing funtion of the gluon prop-agator. It expresses the deviation of Dab

µν(p) from its tree-level form (Z ≡ 1).For the ghost propagator the orresponding tensor struture is given by
Gab(p, µ) = δab

J(p2, µ2)

p2
. (1.34)Here J denotes the dressing funtion of the ghost propagator.In aMOM sheme the renormalization onstants, for instane of the gluonand ghost �elds Z3 and Z̃3, are de�ned by requiring the renormalized expres-sions to equal their tree-level form at some (large) momentum µ2. That is,

Z3 is de�ned as
Dab
µν(p; Λ, g0, m0, ξ0)

∣∣∣
p2=µ2

=: Z3 δ
ab

(
δµν − pµpν

µ2

)
1

µ2
(1.35)where Dab

µν denotes the unrenormalized gluon propagator. Z̃3 is given by
Gab(p; Λ, g0, m0, ξ0)

∣∣∣
p2=µ2

=: Z̃3 δ
ab 1

µ2
(1.36)Therefore, a renormalization onstant an be determined by alulatingthe orresponding unrenormalized (regularized) Green's funtion. Its valuedepends on the renormalization point µ2 and also on the bare parametersof the regularized theory. For example: In our lattie simulations we have



1.3 The renormalization group 23alulated the bare (quenhed) gluon propagator using the bare parameters:g0(Λ
2) = 1, 1/m0 = 0 and ξ0 = 0. Requiring Eq. (1.35) to hold at somemomentum µ2, we have �xed Z3. The renormalized gluon propagator (at µ2)is then obtained via multipliative renormalization aording to Eq. (1.32).1.3 The renormalization groupObviously, a renormalized Green's funtion depends on the subtration point

µ whose hoie is not unique. Also the renormalized parameters gr, mr and
ξr depend (via the orresponding Z-fators) on µ. Keeping g0, m0, ξ0 and Λ�xed, we ould, of ourse, had hosen another point, say µ′. This would yielda new renormalized Green's funtion with the new values gr(µ′), mr(µ

′) and
ξr(µ

′). Even though both renormalized Green's funtions are di�erent, theyare related by a �nite multipliative renormalization, i.e.
Gr

(
pi; gr(µ′), mr(µ

′), ξr(µ
′), µ′

)
= z(µ′, µ)Gr

(
pi; gr(µ), mr(µ), ξr(µ), µ

)(1.37)where z is a �nite number depending on µ and µ′. The �nite renormalizationof Green's funtions forms an Abelian group alled the renormalization group(RG). Physially measurable quantities are invariant under renormalizationgroup transformations, i.e. they are independent of the subtration point µ.Green's funtions, are generally not renormalization-group invariant. Ananalyti expression of this property is given by the renormalization groupequation [Mut98℄.1.3.1 The renormalization group equationThe renormalization group equation is best derived by noting that the un-renormalized Green's funtion does not depend on the renormalization point
µ if all bare parameters (g0, m0, ξ0 and Λ) are �xed, i.e.

0 = µ
d

dµ
G(pi; g0, ξ0, m0,Λ) . (1.38)On the ontrary, the renormalized Green's funtion depends on µ not onlyexpliitly, but also impliitly due to the renormalized parameters. By us-ing the hain rule for di�erentiation, Eq. (1.38) yields for the renormalizedGreen's funtion

(
µ
∂

∂µ
+ β

∂

∂gr + βξ
∂

∂ξr
− γ +mrγm

∂

∂mr

)
Gr = 0. (1.39)



24 Chapter 1 The various olors of QCDHere a sum over the di�erent fermion �avors is implied and the (dimension-less) RG funtions are de�ned as (see e.g. [Mut98℄)
β

(gr, mr

µ
, ξr

)
:= µ

∂gr
∂µ

∣∣∣∣g0,m0,ξ0,Λ�xed (1.40a)
γm

(gr, mr

µ
, ξr

)
:=

µ

mr

∂mr

∂µ

∣∣∣∣g0,m0,ξ0,Λ�xed (1.40b)
γ

(gr, mr

µ
, ξr

)
:= µ

∂ lnZG
∂µ

∣∣∣∣g0,m0,ξ0,Λ�xed (1.40)
βξ

(gr, mr

µ
, ξr

)
:= µ

∂ξr
∂µ

∣∣∣∣g0,m0,ξ0,Λ�xed . (1.40d)The RG equation expresses how the renormalized Green's funtion, in parti-ular their parameters, hange under a variation of the renormalization point
µ. In the following we shall assume that µ ≫ mr always holds. Thus ap-proximately, the RG funtions do not depend on mr.12 The β-funtion hasalso been proven to be gauge independent [MP78℄, i.e.

β(gr, ξr) = β(gr) .To get rid of the gauge dependene of the other RG funtions, we shallrestrit ourselves in the following to the Landau gauge, beause the Landaugauge is a �xed point under the renormalization group. To see this note thatin general ovariant gauge we obtain for the RG funtion βξ (Eq. (1.40d))depending on the gauge parameter (Z3ξr = ξ0)
βξ(gr, ξr) = µ

∂ξr
∂µ

∣∣∣∣g0,ξ0,Λ�xed = − ξ0
Z2

3

µ
∂Z3

∂µ

∣∣∣∣g0,ξ0,Λ�xed = −ξr µ
∂ lnZ3

∂µ
.Therefore, given the initial ondition ξ0 = 0 the funtion βξ vanishes om-pletely in Landau gauge.We are left with the three RG equations β(gr), γm(gr) and γ(gr) (seeEq. (1.40a), (1.40b) and (1.40)) whih in our approximation only depend onthe renormalized oupling onstant gr(µ). They express how the renormal-ized parameters gr(µ), mr(µ) and the renormalized Green's funtion hangeunder a variation of µ. In fat, given the initial values gr(µ) and mr(µ) at arenormalization point µ, the values gr(µ′) and mr(µ

′) at µ′, are determined12Suh an approximation orresponds to using a mass-independent renormalizationsheme, like for example the MS sheme.



1.3 The renormalization group 25by the solution of the di�erential equations (1.40a) and (1.40b), respetively.That is
m(µ′)

m(µ)
= exp

{∫ gr(µ′)gr(µ)

dh
γm(h)

β(h)

}
, (1.41)

µ′

µ
= exp

{∫ gr(µ′)gr(µ)

dh

β(h)

}
. (1.42)Similarly, the hange of the renormalized Green's funtion under the RGtransformation µ→ µ′ is obtained. To see this, onsider Eq. (1.37). The RGequation (1.39) tells us that [Col84℄

µ′ d

dµ′
ln z = µ′ d

dµ′
ln

{
Gr(µ

′)

Gr(µ)

}
= −γ(gr).The funtion γ is known as the anomalous dimension for reasons that beomelear in Se. 1.3.4. A full solution to this RG equation is given by Eq. (1.37)where [Col84℄

z(µ′, µ) = exp

{∫ gr(µ′)gr(µ)

dh
γ(h)

β(h)

}
. (1.43)The values of gr(µ′) and mr(µ

′) are given in Eq. (1.41) and (1.42), respe-tively.Of ourse, the expliit form of the RG funtions are generally unknown,but approximations an be made by taking a �nite number of terms in theperturbation series for the RG funtions β, γm and γ. Sine this is an expan-sion in gr it is only valid at su�iently small gr. We shall see in Se. 1.3.3that for QCD this is realized in the asymptoti region of large Eulideanmomenta.Therefore, the most important appliation of the RG equation in QCDis to study the asymptoti behavior of Green's funtions at large Eulideanmomentum [Col84℄.1.3.2 Perturbative expansion of the β�funtionFor the β-funtion (1.40a) a power expansion in the oupling onstant gr anbe alulated by hoosing one of the four vertex funtions whih de�ne gr.Taking, for example, the three-gluon vertex the renormalized oupling on-stant gr is related to the bare oupling asgr = Z
3/2
3 Z−1

1 g0 .



26 Chapter 1 The various olors of QCDThe renormalization onstants, Z3 and Z1, are de�ned at a subtration point
p2 = µ2 in terms of the bare (transverse) gluon propagator and the bare three-point vertex, respetively. Extrating both Z-fators to two-loop order, thesolutions an be plugged into the RG equation Eq. (1.40a) for gr(µ). Aftersome algebra this gives an expansion for the β�funtion (see e.g. [Wei96℄)

β[gr(µ)] = −β0
g3
r(µ)

16π2
− β1

g5
r(µ)

128π4
+O

(g7
r(µ)

) (1.44)that holds at small gr(µ). The �rst two oe�ients are given by
β0 = 11 − 2

3
Nf , (1.45a)

β1 = 51 − 19

3
Nf . (1.45b)Here Nf is the number of quark �avors with masses below the energies ofinterest.13Sine the determination of the Z-fators generally depends on the renor-malization sheme used, the expliit form of β(gr) depends on the gaugeand on how the running oupling is preisely de�ned. However, it an beshown that the �rst two oe�ients, β0 and β1, are renormalization-shemeindependent, whereas those of higher loop-expansions are sheme-depended.1.3.3 The running oupling onstantUsing the expansion of the β funtion we an solve the RG equation Eq. (1.40a)for the oupling onstant gr(µ) to the given order. The general solution toEq. (1.40a) takes the form given in Eq. (1.41). As mentioned above, itdesribes the variation of gr under the hange µ → µ′ keeping the bare pa-rameters g0, m0 and Λ �xed. This is usually termed as the running of theoupling onstant gr hanging the energy or the momentum sale µ.It is ommon pratie to parameterize the running oupling onstant14gr(µ) by introduing a RG-invariant mass parameter Λ being the integrationonstant of a solution to the di�erential equation in Eq. (1.40a). It is de�ned13Note that in eah energy range between any two suessive quark masses we have adi�erent value ofNf , and also a di�erent Λ (see Se. 1.3.3), hosen to make g(µ) ontinuousat eah quark mass.[Wei96, p.157℄14In the literature sometimes the notation ḡ[gr(µ), ln(µ/µ′)] is used for the runningoupling onstant [GW73a; GW73b; Pol73℄. It is the same as gr(µ

′), beause ḡ is de�nedto be the value of the oupling onstant renormalized at µ′ (what we all gr(µ
′)) if it isknown to have the value gr(µ) at µ [CG79℄.



1.3 The renormalization group 27by
Λ := µ exp

{ −1

2b0g2
r(µ)

}
·
[
b0g2

r(µ)
]−b1/(2b20)

· exp

{
−

∫ gr(µ)

0

dh

[
1

β(h)
+

1

b0h3
− b1
b20h

]}
. (1.46)Here b0 and b1 are nothing but the �rst two oe�ients of the β-funtiongiven in Eq. (1.44), i.e.

b0 ≡
β0

16π2
and b1 ≡

β1

128π4
. (1.47)Speifying gr(µ) at one value of µ is exatly equivalent to �xing Λ [Col84℄.Thus if the β-funtion were known we ould alulate Λ from the knowledge ofgr(µ) at one value µ and vie versa. Note that renormalization has introdueda new parameter Λ of dimension mass into the theory that is not present inthe bare Lagrangian density. This is alled dimensional transmutation. Theparameter should be determined by omparing experimental data with QCDpreditions.The de�nition of Λ in Eq. (1.46) is sheme dependent, sine the ouplingonstant gr(µ) may have even di�erent meanings in di�erent renormalizationshemes. For example, on the lattie a sale is given by the lattie spaing aand the oupling is given by the bare oupling onstant g2

0(a) depending on a.The sheme dependent parameter Λ on the lattie is alled ΛLAT. In the MSsheme the Λ-parameter is usually alled ΛMS, whereas in MOM sheme it isalled ΛMOM. The knowledge of the ratio allows to relate results obtained indi�erent renormalization shemes. For example the ratio of ΛMOM and ΛMSis given by (see e.g. [CG79; MM94℄)
ΛMOM
ΛMS = 2.895655.Up to two-loop order the oe�ients of the β-funtion are sheme in-dependent. Using these oe�ients an expression for the running ouplingonstant an be given that is valid in any renormalization sheme as long as

µ≫ Λ is ful�lled in that sheme. De�ning
αs(µ) :=

g2
r(µ)

4π
, (1.48)the solution for the running oupling onstant αs(µ) in two-loop order is (seee.g. [Col84; E+04℄)

αs(µ) =
4π

β0 ln(µ2/Λ2)

[
1 − 2β1

β2
0

ln[ln(µ2/Λ2)]

ln(µ2/Λ2)

]
+O

(
ln2[ln(µ/Λ)]

ln3(µ/Λ)

)
. (1.49)



28 Chapter 1 The various olors of QCDThis two-loop result for αs(µ) will be used in Se. 4.4.1.We note in passing that a similar expression an be derived for the runningmass, but sine this will not be a subjet of this thesis we refer to standardtextbooks for it.1.3.4 The anomalous dimensionIt is interesting to have a look one more at Eq. (1.37) and (1.43). Assuminga renormalized Green's funtion Gr has been omputed at the momentum
λp using a large value for the sale fator λ. Setting µ′ = λµ, from Eq. (1.37)one knows that

Gr(λpi; gr, mr, µ) = z(µ, λµ)Gr(λpi; gr(λµ), mr(λµ), λµ) .Under the assumptionmr(λµ) does not get large and using dimensional anal-ysis15 one obtains [Col84℄
Gr(λpi; gr, mr, µ) ≈ z ·Gr(λpi; gr(λµ), 0, λµ)

= λD · z(µ, λµ) ·Gr(pi; gr(λµ), 0, µ) (1.50)where D is the dimension of G. This makes it evident that the relevant ou-pling onstant is the e�etive oupling at the sale of the momenta involved.A hange in all external momenta using a ommon sale fator λ is equivalentto hanging the oupling onstant. We see further from Eq. (1.50) that theoverall sale fator is not just λD, as one might expet from naive dimen-sional analysis (i.e. β(gr) ≡ 0), but that it inludes an extra fator z de�nedin Eq. (1.43). This is the reason why γ is alled the anomalous dimension.Note that this dimension arises from the fat that a sale hanges the renor-malization point, and G is not neessarily invariant under this operation.To lowest order in perturbation theory the anomalous dimension γ(gr) isgiven by the expansion γ(gr) = c0g2
r +O (g4

r) [Col84℄ where c0 is the zeroth-order oe�ient of the anomalous dimension. Using c0 and the orresponding15If one sales the momenta pi → λpi then using dimensional arguments, a Green'sfuntion behaves as:
Gr(λpi, gr, µ) = µDf(λ2pi · pj/µ

2)where D is the dimension of G and f is dimensionless. This is beause G is Lorentzinvariant, and hene an only be a funtion of the various dot produts pi · pj [Kak93℄.Hene
Gr(λpi, gr, λµ) = λDµDf(pi · pj/µ

2) = λDGr(pi, gr, µ).



1.3 The renormalization group 29oe�ient b0 (Eq. (1.47)) of the β-funtion, we obtain from the de�nition of
z(λ) = z(λµ, µ) (Eq. (1.43)) to lowest order in perturbation theory [Col84℄

z(λµ, µ) ≃ exp

{∫ gr(λµ)gr(µ)

c0
b0

dh

h

}
=

[gr(λµ)gr(µ)

]c0/b0 [
1 +O

(g2
r

)] (1.51)
∝ [lnλ]−δ λ→ ∞ (1.52)where δ := c0/(2b0). For the gluon and ghost propagators in the quenhedase (Nf = 0) these exponents are δD = 13/22 and δG = 9/44, respetively.Therefore, the orresponding dressing funtions, Z and J , behave in the farultraviolet momentum region like
Z(p2) ∼

(
ln
p2

Λ2

)−δD and J(p2) ∼
(

ln
p2

Λ2

)−δG

.
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Chapter 2
Infrared QCD and riteriafor onfinement

W
e disuss brie�y some problems and reent developments onerning non-perturbative quantization with a partiular fous on the infrared region ofQCD. We give a summary of results obtained by using the Dyson-Shwinger (DS)approah. Thereby we restrit ourselves to those results whih are of relevanefor the disussion of our lattie results presented in subsequent setions. In theseond part of this hapter we introdue di�erent riteria for on�nement that anbe formulated for QCD in ovariant gauges. Note that in Chapt. 5 we shall try toon�rm these riteria for lattie QCD in Landau gauge.2.1 Nonperturbative approahes to QCDIt should be lear from the disussion of the renormalization group that it ispossible to de�ne an e�etive (running) oupling onstant gr whih is a fun-tion of the momentum. This funtional dependene is intimately related tothe momentum dependene of the vertex funtions of QCD. For su�ientlylarge Eulidean momenta q, the oupling onstant beomes small and thusperturbation theory seems an appropriate alulation tool in this asymptotiregime. On the other hand, gr grows large with dereasing Eulidean mo-mentum and diverges at a ertain momentum, the so alled Landau pole. Itsposition signals the breakdown of perturbation theory. Even though signi�-ant progress has been ahieved in reent years in the perturbative alulationof higher order orretions to renormalization group funtions, like, for ex-ample, for the β funtion or the anomalous dimension1, perturbation theoryonly applies to the region of large Eulidean momenta. Note that there isno unique de�nition of the running oupling onstant, sine its de�nitiondepends on the renormalization sheme employed [CG79℄.1For details on the progress made and also for reent results see, for example, the workby Chetyrkin [CR00; Che97; Che05℄ and referenes therein.31



32 Chapter 2 Infrared QCD and riteria for onfinement2.1.1 Brief remarks on nonperturbative methodsIn any ase, the infrared region orresponds to strong oupling rather thanweak oupling, and hene is of interest for studying on�nement of QCD.Sine perturbation theory is of no avail in studying QCD at low momentum,this region an be explored only in genuinely nonperturbative approahes.One suh approah is the vast �eld of Monte Carlo simulations of lattieQCD. It is a �rst priniple approah that ontains the full nonperturbativestruture of QCD and has the striking feature of being manifestly gaugeinvariant. (For some details and a list of referenes see Chapt. 3).However, lattie simulations are limited by the enormous omputationale�ort they require and thus its appliation to a wider range of unresolvedproblems onneted with QCD an only be extended when omputer tehnol-ogy ontinues to improve. Moreover, lattie alulations are always a�itedwith unertainties in extrapolating to the in�nite volume and ontinuumlimit whih is neessary to onnet with the physial world. Therefore, it isworthwhile to pursue other approahes that preserve features of QCD thatthe lattie formulation laks. For example, lattie simulations annot madede�nite statements about the far infrared region of QCD due to �nite lattievolumes. Although, we did our best in this thesis to do so.In this ontext another omplementary nonperturbative approah basedon the in�nite tower of Dyson-Shwinger equations (DSE) has gained muhattention in reent years. In Se. 2.2 we give a brief overview about the reentdevelopments that are relevant for this thesis, but before we would like tostress a partiularly important point onerning the problem of Gribov opiesin the nonperturbative regime.2.1.2 The problem of Gribov opiesThe Dyson-Shwinger equations of QCD are derived from a generating fun-tional. In the ontinuum, this requires gauge-�xing for the de�nition of anintegration measure. For several reasons the gauge ondition is mostly ho-sen within the family of ovariant gauges whih are known to be not uniquebeyond perturbation theory due to the existene of Gribov opies. Remem-ber that in the asymptoti regime, where perturbative QCD is relevant, theproblem of Gribov opies ould be safely ignored. This is beause all Gribovopies { gAµ} of a partiular (gauge-�xed) gluon �eld Aµ arry an additional
1/gr dependene � they are related by a partiular loal gauge transfor-mation (Eq. (1.7)) � and hene an be negleted within the framework ofperturbation theory. Therefore, we an use the FP method or, even moreelegantly, the BRST formalism for the lass of ovariant gauges to obtain a



2.1 Nonperturbative approahes to QCD 33quantized gauge theory whih is manifestly Lorentz ovariant and for gauge-invariant observables gauge-independent. Moreover, there are elegant BRSTproofs of multipliative renormalizability and unitarity to any order of per-turbation theory [Bau85℄.Beyond perturbation theory we have to fae the problem of Gribov opies.Atually, it represents the main impediment to nonperturbative gauge-�xing.As pointed out in [Wil03℄, there is no known Gribov-opy-free gauge �xingwhih is a loal funtion of gluon �elds Aµ. Therefore, one has to adopteither a nonloal Gribov-opy free gauge or attempt to maintain loal BRSTinvariane at the expense of admitting Gribov opies [Wil03℄. Conerning thelatter point, there is, however, the well-known Neuberger problem of pairsof Gribov opies with opposite sign giving expetation values 0/0 [Neu87;Tes98℄. It is still unknown whether loal BRST invariane for QCD an bemaintained in the nonperturbative regime [Wil03℄.Of ourse, it is desirable to overome the Neuberger problem and el-evate the BRST formalism to the nonperturbative level. A �rst suess-ful step in that diretion was done reently for the massive Curi-Ferrarimodel [KvSW05℄. Also in a reent work [GKW05℄, a generalization of theFP method was given that is valid beyond perturbation theory and, mostnotably, irumvents the Neuberger problem. In fat, in [GKW05℄ a path in-tegral representation of the absolute value of the FP determinant in terms ofauxiliary bosoni and Grassmann �elds has been presented. Remember thatusually the absolute value of the FP determinant is dropped, but this an-not be done beyond perturbation theory using a gauge ondition that su�ersfrom the Gribov ambiguity. The resulting gauge-�xing Lagrangian density isloal and enjoys a larger extended BRST and anti-BRST symmetry, thoughit annot be represented as a BRST exat objet [GKW05℄.2.1.3 Nonperturbative quantization in Landau gaugeMoreover, progress has been made onerning the nonperturbative quanti-zation in Landau gauge. It fat, it has been argued by Zwanziger that anexat nonperturbative quantization of ontinuum gauge theory is providedby the FP method in the Landau gauge if the integration is restrited to theGribov region Ω [Zwa04℄. That is, the vauum expetation value of a gluoniobservable O is given by
〈O〉Ω =

1

Z

∫

Ω

δ(∂µAµ) detM [A]O(A)e−SYM[A] . (2.1)Here we have indiated the restrition to the Gribov region by giving a su�x
Ω to the expetation value.



34 Chapter 2 Infrared QCD and riteria for onfinementTo remind the reader, the Gribov region Ω is de�ned as the region in thespae of transverse gluon �elds where the FP operator, M [A] ≡ −∂µDµ[A],is positive, i.e. all its (nontrivial) eigenvalues are positive.
Ω := {Aµ : ∂µAµ = 0; −∂µDµ[A] > 0} .It an be shown that the Gribov region is onvex, it is bounded in everydiretion and it ontains the origin Aµ = 0 (see e.g. [Zwa04℄). The boundary

∂Ω of the Gribov region is alled the Gribov horizon. It onsists of transversegluon �elds for whih the lowest nontrivial eigenvalue of the FP operatorvanishes. Thus the FP determinant, being the produt of all eigenvalues
detM =

∏
n λn, is positive inside the Gribov horizon and vanishes on it.Due to the fat that the Gribov region is not free of Gribov opies [Zwa04,and referenes therein℄, Eq. (2.1) was generally abandoned to be used for anexat quantization in favor of an integration over the fundamental modularregion Λ [Zwa94℄

〈O〉Λ =
1

Z

∫

Λ

δ(∂µAµ) detM [A]O(A)e−SYM[A] . (2.2)(See Ref. [Zwa04℄ for a disussion). The fundamental modular region isthe set of unique representatives of every gauge orbit, i.e. its interior is freeof Gribov opies. The boundary of the fundamental modular region, ∂Λ,ontains di�erent points that are Gribov opies of eah other, but whihhave to be identi�ed topologially [vB92℄. Like Ω, the fundamental modularregion is onvex, bounded in every diretion and inluded in the Gribovregion [Zwa82; Zwa92℄. The boundary of the Gribov region, i.e. the Gribovhorizon ∂Ω, touhes ∂Λ at so alled singular boundary points.It is di�ult to give an expliit desription how to restrit the funtionalintegration to the fundamental modular region. One usually introdues thegauge funtional
FA[g] =

∫
d4xTr

[
gAµ

gA†
µ

] (2.3)
= FA[1] − i

∫
d4xTrω∂µAµ +

∫
d4xTrω∂µDµω +O

(
ω3

)to haraterize the di�erent regions. Here gAµ denotes a gluon �eld Aµ lo-ally gauge-transformed by g (see Eq. (1.7a)). The gauge transformation isparameterized by ω as given in Eq. (1.8). The Gribov region Ω orrespondsto the set of all relative minima of FA[g] with respet to loal gauge transfor-mations g. Those minima whih are absolute haraterize the fundamentalmodular region [Zwa04℄.



2.2 The Dyson Shwinger equations of QCD 35Returning to Eq. (2.1) and (2.2), it is of advantage if the integrationneeds not to be restrited to the fundamental modular region. That thisould be the ase, has been argued reently by Zwanziger in [Zwa04℄. Infat, in this referene it is stated that funtional integrals are dominated bythe ommon boundary of Λ and Ω. Thus, in the ontinuum, expetationvalues of orrelation funtions over the fundamental modular region Λ areequal to those over the Gribov region Ω, i.e.
〈O〉Λ = 〈O〉Ω , (2.4)even though the Gribov region is not free of Gribov opies. The Gribovopies inside Ω are argued to not a�et expetation values in the ontinuum.This is fortunate for many reasons. For example, in Monte Carlo sim-ulations of lattie QCD gauge-�xing is usually implemented by an iterativemaximization (or minimization depending on onventions) of a lattie ana-logue to the gauge funtional2 in Eq. (2.3). Therefore, lattie gauge-�xingautomatially restrits to the Gribov region. Note, however, that it has alsobeen pointed out in [Zwa04℄ that on a �nite lattie the distintion betweenthe fundamental modular region and the Gribov region annot be ignored,but hopefully in the thermodynami limit the relation Eq. (2.4) holds. Wehave found indiations in our data [SIMPS05d℄ that support this assumptionto be true. See Se. 4.2.3 for more details.For our disussion in the next setion it is worthwhile to mention that ifthe funtional integral is ut o� at the (�rst) Gribov horizon, both the (Eu-lidean) gluon and propagators have to be positive [Zwa03b℄. This is ful�lledby the solutions obtained for trunated systems of Dyson-Shwinger equa-tions for the gluon and ghost propagators summarized in the next setion.Therefore, they automatially restrit to the Gribov region, even though nodiret restrition to ∂Ω has been done [Zwa04℄.2.2 The Dyson Shwinger equations of QCDBefore we start to introdue the lattie approah to QCD (Chapt. 3) andreport on the results we have obtained in studying some infrared propertiesof Landau gauge gluodynamis (Chapt. 4 � 6), we summarize results ahievedin reent years within the DSE approah to QCD. Those results presentedhere will then be ompared to our lattie data in subsequent hapters.The Dyson-Shwinger equations (DSEs) of QCD are in�nite towers ofoupled nonlinear integral equations relating di�erent Green's funtions of2See Eq. (3.14) for a de�nition of the lattie gauge funtional as used in this study.



36 Chapter 2 Infrared QCD and riteria for onfinementQCD to eah other (see below for two examples). Generally speaking, theDSEs follow from the observation that an integral of a total derivate van-ishes. The DSEs an be diretly derived using the generating funtionalgiven in Eq. (1.23) where the existene of a well-de�ned integration measureis assumed.The relevant DSEs for the subsequent disussion are those for the ghostand gluon propagators. Therefore, these are brie�y realled, but for an ex-pliit derivation of all of the DSEs of QCD we refer to Ref. [AvS01℄ (see also[RW94℄). Following [AvS01℄, the DSE of the (inverse) ghost propagator takesthe form
(G−1)ab(k) = −δabZ̃3k

2 + g2
rf

acdZ̃1

∫
d4q

(2π)4
ikµG

ce(q)Γefbν (q, k)Ddf
µν(k − q)in momentum spae. G denotes the full ghost propagator, D the full gluonpropagator and Γefbν the full ghost-gluon vertex. For other notations usedherein we refer to Chapt. 1. In Fig. 2.1 we also give a pitorial representationof the ghost DSE. This DSE ontains the inverse of the tree-level propagator(dashed line), the tree-level ghost-gluon vertex (small �lled irle) and thefull ghost-gluon vertex (open irle). The latter is oupled to a fully dressedghost and gluon propagator (dashed and wiggled lines arrying a �lled irle,respetively).The gluon DSE is obtained

−1 −1
= −Figure 2.1: The ghost DSE [AvS01℄.in a similarmanner as the ghostDSE, but in omparison to that,it is muh more omplex. There-fore, we only give a pitorialrepresentation of the gluon DSE in Fig. 2.2. Please refer again to Ref. [AvS01℄for an expliit expression. As in Fig. 2.1, wiggled lines refer to the gluon prop-agator in Fig. 2.2, whereas a line and a dashed line refer to the quark andghost propagator, respetively. Lines arrying a full irle orrespond to fullydressed propagators. Open irles denote full vertex funtions.For the DSE of the quark propagator a similar diagram as for the ghostDSE an be given. See Ref. [AvS01℄ for both an expliit and a pitorialrepresentation.2.2.1 Infrared behavior of ghost and gluon propagatorsin Landau gaugeIf the full solution of QCD's Dyson-Shwinger equations were available itwould provide us with a solution to QCD. However, this has not been ob-tained so far. The main impediment is that the in�nite tower of oupled
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−1 −1

= + +

+ +

+ +

Figure 2.2: Diagrammati representation of the gluon DSE. Adapted from Ref. [AvS01℄.nonlinear integral DSEs has to be trunated in order to be manageable.Thereby, the hallenge is to use suitable trunations that respet as muh aspossible the symmetries of the theory. Doing so, solutions of the trunatedsystems might provide deep insights into many phenomena in hadron physis,beause they may serve as input into bound state alulations based on theBethe-Salpeter equations for mesons or the Faddeev equations for baryons.Studying DSEs has beome a subjet of growing interest in reent years.See Refs. [RW94; RS00; AvS01; MR03℄ for a omprehensive overview. In par-tiular, in Landau gauge or general ovariant gauges onsiderable progresshas been made in studying the low-momentum region for the oupled sys-tem of quark, gluon and ghost propagators. In ontrast to earlier attempts[Man79; ADJS81; AJS82; BP89℄ where ontributions of ghost �elds were ne-gleted, the more reent attempts, initiated by von Smekal et al. [vSAH97;vSHA98℄, have shown that the inlusion of ghost �elds is important for thegeneration of a onsistent infrared behavior of QCD [Blo01℄. In fat, it hasbeen shown in [vSAH97; vSHA98℄ that in the infrared momentum region adiverging ghost propagator is intimately related to a vanishing gluon propa-gator, both following a power law at low momentum.We have given expliit expressions for the gluon and ghost propagators inEq. (1.33) and (1.34), respetively. The orresponding renormalized dressingfuntions have been denoted by Z and J . Aording to [vSAH97; vSHA98℄



38 Chapter 2 Infrared QCD and riteria for onfinementthese dressing funtions are predited to follow the power laws
Z(q2, µ2) ∝ (q2/µ2)κD (2.5a)
J(q2, µ2) ∝ (q2/µ2)−κG (2.5b)in the limit q2 → 0 with infrared exponents, κD and κG, satisfying

κD = 2κG . (2.6)This has been on�rmed later by Atkinson and Bloh [AB98b; AB98a℄at the level in whih the verties in the DSEs are taken to be bare. Alsoinvestigations of the DSEs in �at Eulidean spae-time performed by Fis-her et al. [FAR02; Fis03; FA02℄ without angular approximations, as usedin the former studies, support suh an infrared behavior. The value of κGdepends on the trunation used, but in Landau gauge it has been argued that
κG ≈ 0.595 should be expeted [LvS02; Zwa02℄. Thus the ghost propagatoris supposed to diverge stronger than 1/q2 and the gluon propagator to bevanishing in the infrared regime.These �ndings are, as we shall see in Se. 2.3.1 and 2.3.2, in agree-ment with the Kugo-Ojima on�nement riterion [KO79℄ as well as withthe Zwanziger-Gribov horizon ondition [Zwa04; Zwa94; Gri78℄. Aordingto the latter ondition, a diverging ghost and a vanishing gluon propagatorresult from restriting the gluon �elds to the Gribov region Ω [Zwa04℄.Note, however, that quite reently Fisher et al. have investigated DSEson a torus. They have found quantitative di�erenes with the in�nite volumeresults at small momenta [FGA06; FP06℄. Moreover, Bloh has developedtrunation shemes for the DSEs of the ghost, gluon and quark propagators[Blo01; Blo02℄ whih preserve multipliative renormalizability, in ontrastto those shemes used in the referenes ited above. Furthermore, Blohhas demonstrated that a de�nite onlusion about the existene of infraredpower-behaved gluon and ghost propagators annot be reahed yet.We shall show in Se. 4.3 that our lattie data and also those by others donot on�rm Eq. (2.6), at least for the lattie momenta available at present.The values of the infrared exponents have been found to be di�erent. There-fore, we think it is still an open question whether the infrared behavior asfavored by urrent DSE studies is realized for lattie QCD in Landau gauge.However, if it is realized then it has interesting onsequenes for the runningoupling onstant disussed next.



2.2 The Dyson Shwinger equations of QCD 392.2.2 A nonperturbative running oupling onstantFrom the renormalization of the ghost-gluon vertex, the renormalized ou-pling onstant at the renormalization point µ is de�ned by
αs(µ

2) = α(Λ2)
Z3(Λ

2, µ2)Z̃2
3 (Λ2, µ2)

Z̃2
1(Λ

2, µ2)
. (2.7)Here α(Λ2) := g2

0(Λ
2)/4π denotes the bare oupling onstant that depends onthe ultraviolet uto� Λ and the multipliative onstants, Z3, Z̃3 and Z̃1, referto the renormalization onstants of the gluon and ghost propagators andof the ghost-gluon vertex, respetively. Long time ago, it has been shownby Taylor [Tay71℄ that to any order in perturbation theory the ghost-gluon vertex in Landau gauge is �nite (see Se. 2.2.3 for some disussions).Therefore, one may hose

Z̃1(Λ
2, µ2) = 1. (2.8)Based on this and by using the relation between the bare and renormalizedghost and gluon dressing funtions

J(q2, µ2) = Z̃−1
3 (Λ2, µ2) JB(Λ2, q2) (2.9a)

Z(q2, µ2) = Z−1
3 (Λ2, µ2) ZB(Λ2, q2) (2.9b)where J(µ2, µ2) = Z(µ2, µ2) = 1, one an show that the produt [vSAH97;vSHA98℄

αs(q
2) := αs(µ

2)Z(q2, µ2)J2(q2, µ2), (2.10)is renormalization group invariant and de�nes a running oupling onstantwithin the ontext of DSEs [AvS01; AFLE05℄. In fat, with Eq. (2.7), (2.8)and (2.9) it holds that
αs(µ

2)Z(q2, µ2)J2(q2, µ2) = α(Λ2)ZB(Λ2, q2)J2
B(Λ2, q2).Obviously, the right hand side does not depend on the renormalization point

µ2 and thus the ombination of (renormalized) ghost and gluon dressingfuntions on the left hand side is renormalization-group-invariant. Evaluatingthe left hand side one at an arbitrarily hosen µ2 and one at µ2 = q2 oneobtains the produt given in Eq. (2.10) [AFLE05℄.The de�nition of a running oupling onstant by Eq. (2.10) has been�rst derived in [vSAH97; vSHA98℄. Later it has been shown by Bloh[Blo01; Blo02℄ that after a reformulation of the DSEs for the ghost, gluonand quark propagators this oupling onstant enters diretly the kernel ofthe DSEs.



40 Chapter 2 Infrared QCD and riteria for onfinementAssuming multipliative renormalizability to hold beyond perturbationtheory, and assuming also the power laws (Eq. (2.5)) for the dressing fun-tion being realized at infrared momenta aording to the relation (2.6), then
αs(q

2) has a �nite infrared �xed point [vSAH97; vSHA98℄. The preise valueof αs(0) depends on κG, but under ertain assumption it has been shown tobe [LvS02℄
αs(0) ≈ 8.915/Nc for SU(Nc).However, we would like to stress already here that our lattie data for

αs(q
2 > 0) do not indiate the existene of a �nite value at zero momenta(see Se. 4.4.1). We have also found no indiations for deviations from Z̃1being onstant (Se. 4.4.2). Our lattie data presented in this thesis are inagreement with other lattie studies and, most notably, also agree qualita-tively with reent investigation of DSEs on a torus [FGA06; FP06℄. This,one more, puts the proposed form for infrared power laws into question.2.2.3 The �niteness of the ghost-gluon vertexArguments were given �rst by Taylor [Tay71℄ that in Landau gauge therenormalization onstant of the ghost-gluon vertex Z̃1 = 1. He showed thatin this gauge the ghost-gluon vertex is �nite in the ultraviolet momentumregion and stays bare for a vanishing inoming ghost momentum. To motivatethis we reall arguments given in Refs. [MP78; AFLE05℄ using the DSE forthe full ghost-gluon vertex. A pitorial representation of this DSE is shownin Fig. 2.3.Considering this �gure, the argument goes at follows [MP78; AFLE05℄:The bare ghost-gluon vertex in the interation diagram (rightmost diagram)is proportional to the internal loop momentum lµ. Sine in Landau gaugethe gluon propagator Dµν(l − q) is transverse, it holds that lµDµν(l − q) =

qµDµν(l − q) and thus the interation diagram vanishes in the limit qµ → 0[AFLE05℄. This implies (see Fig. 2.3)
T abcλµ (k, q) = gλµ(A

abcq2 +Babck2 + Cabcr2) +Dabckλkµ + et.as k2, r2 and q2 → 0 so that rλT abcλµ (k, q) vanishes [MP78℄. Therefore, thefull vertex equals the bare vertex at the subtration point p2 = k2 = r2 = 0and there is no renormalization. This, however, is not true if one renormal-izes at another point µ2 > 0, even though it remains true to lowest order inperturbation theory [MP78℄. Note also that this argument would be invali-dated if the two-ghost�two-gluon sattering kernel T abcλµ (k, q) had an infrareddivergene [AFLE05℄.
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µ (k, q) + rλT abcλµ (k, q)Figure 2.3: The Dyson-Shwinger equation of the ghost-gluon vertex.We shall show in Se. 4.4.2 that our lattie results for the renormalizationonstant Z̃1 do not support the existene of suh a divergene in the partiularMOM sheme p2 = r2 and k2 = 0. This was also seen by others [CMM04℄in a similar lattie study of quenhed SU(2) gauge theory. Furthermore,semiperturbative alulations of Z̃1 using either p2 = r2 = k2 = µ2 or p2 =

r2; k2 = 0 show that suh a divergene is absent. The analytial studypresented in [AFLE05℄ also shows that the dressing of the ghost-gluon vertexremains �nite if all external momenta vanish.We also refer to the reent study [B+05b℄ where arguments in favor of asingular infrared behavior of the ghost-gluon vertex funtion is given.2.3 Criteria for on�nement in linearovariant gaugesDespite the suess of QCD in desribing strong interation proesses at highenergies, there is still the unsolved and theoretially demanding problemwhat kind of mehanism on�nes QCD degrees of freedom, the quark andgluon states, and keeps them from being observed in the physial partilespetrum. In ontrast to QED, where a one-to-one orrespondene betweenbasi �elds and stable partiles an be assumed, in QCD it annot. Onlyhadroni amplitudes are physial and only olor singlets an ontribute tothe physial state spae of QCD.For QCD in ovariant gauges there is the additional subtlety that it re-quires a state spae with inde�nite metri. In order to allow for a quantummehanial interpretation there has to be some mehanism whih generates asubspae of (olorless) physial states that has a positive semi-de�nite metri.In the following three riteria for on�nement are brie�y introdued,namely the Kugo�Ojima on�nement senario, the Gribov�Zwanziger hori-



42 Chapter 2 Infrared QCD and riteria for onfinementzon ondition and the violation of re�etion positivity of propagators orre-sponding to on�ned partiles. These riteria are proposed to be su�ient toindiate on�nement; and we will see in sueeding hapters that our lattiesimulations show evidene for those riteria to be satis�ed in lattie QCD inLandau gauge.2.3.1 The Kugo�Ojima on�nement senarioIn this setion we temporarily swith from the funtional formalism to theovariant operator formalism whih is more suitable in the present ontext.This formalism takes �elds as operators, rather than as -numbers, and theysatisfy (anti-) ommutation relations. Also the notion of BRST symmetry isimportant for a formulation of a ovariant operator formalism. For a ompre-hensive aount of this subjet we refer to the book [NO90℄ by Nakanishiand Ojima where most of the material summarized below is exhaustivelydisussed.Requirements for a physial S-matrix to existCovariant quantum gauge theories require state spaes V with inde�nite met-ri. If one an show, however, that (a) the Hamiltonian operator of a theoryis hermitian so that a S-matrix S exists in V satisfying 〈SΨ1|SΨ2〉 = 〈Ψ1|Ψ2〉and (b) there is a subspae Vphys ⊆ V whih not only is invariant under timeevolution, but also () has a positive semi-de�nite inner produt 〈·|·〉, then aphysial S-matrix Sphys an be de�ned in the ompleted quotient spae3
Hphys ≡ Vphys/V0 .

Hphys denotes a Hilbert spae with positive de�nite inner produt, and Sphys isunitary with respet to this Hilbert spae struture. The subspae V0 ⊂ Vphysontains the zero-norm states of the positive semi-de�nite subspae Vphys andis orthogonal to it, i.e. V0 ⊥ Vphys [NO90, A.2℄.It an be shown that the �rst two requirements, (a) and (b), are satis�edautomatially for QCD in ovariant gauges if the Lagrangian density Lre�(Eq. (1.27)) is hermitian4 and the physial subspae Vphys is de�ned as thekernel of the BRST�harge QB, i.e.
Vphys = kerQB ≡ {Ψ ∈ V : QBΨ = 0} (2.11)3The overline denotes the ompletion of this spae, i.e. all the limiting states of Cauhysequenes are inorporated in this, too. For a proof and further details see [NO90, A.2℄.4For this the ghost �elds must satisfy ca† = ca and c̄a† = c̄a [NO90℄.



2.3 Criteria for onfinement in linear ovariant gauges 43where QB is assumed to be an unbroken generator of BRST symmetry.The proof of ondition (), the positive semi-de�niteness of the innerprodut in Vphys, however, is a nontrivial problem and requires a detailedanalysis of the inner produt struture of both the total state spae V andthe physial subspae Vphys [NO90℄.Representations of the BRST algebraSuh an analysis has been done by Kugo and Ojima [KO79℄ long ago fromthe viewpoint of the BRST�algebra given by
{QB, QB} = 0, [iQc, QB] = QB, [Qc, Qc] = 0.Here Qc denotes the FP�ghost harge whih is assumed to be unbroken5 asit is assumed for QB.The BRST�algebra has two types of irreduible representations, namelysinglet and doublet representations. While a doublet onsists of a so-alledparent state |π〉 and a daughter state |δ〉 ≡ QB|π〉 6= 0 (i.e. the BRST trans-form of |π〉), a BRST�singlet is a state that is annihilated by QB withouthaving a orresponding parent state in V.Kugo and Ojima have shown that to eah BRST�doublet there exists al-ways another being FP-onjugate to it, i.e. with opposite eigenvalues of iQc.This FP-onjugate pair of BRST�doublets is alled a BRST�quartet. Anystate in V an be lassi�ed to be either a BRST�singlet or to belong to aBRST�quartet and it an be shown that this exhausts all possible represen-tations of the BRST�algebra in spaes with inde�nite inner produt. Wewill see below that this lassi�ation is important, in that under ertain on-ditions, olorless asymptoti states are BRST�singlets whih then an beidenti�ed with physial partile states. On the other hand olored asymp-toti states are members of a BRST�quartet and, therefore, do not appearin S-matrix elements.To see this note �rst that daughter states |δ〉 and BRST�singlet states(with no parents) belong to the physial spae Vphys as de�ned in Eq. (2.11).However, daughter states are orthogonal to all states Ψ ∈ Vphys

〈Ψ|δ〉 = 〈Ψ|QB|π〉 = 0and so annot ontribute to any element of the physial S-matrix Sphys. Allthe physial ontent is ontained in the physial Hilbert spae
Hphys ≡ Vphys/V0 ≃ Vs. (2.12)5See also our disussion onerning the BRST�harge in Se. 1.1.5.



44 Chapter 2 Infrared QCD and riteria for onfinementwhih is isomorphi to the spae Vs of BRST�singlet states. Here
V0 = imQB = {|δ〉 ∈ V : |δ〉 = QB|π〉, |π〉 ∈ V}is the set of all zero-norm (daughter) states.Con�nement of olored asymptoti �eldsUnder the assumption of QB and Qc to be unbroken, the lassi�ation ofrepresentations of the BRST�algebra an be translated into the propertiesof reation and annihilation operators of asymptoti �elds. Intuitively, theseare understood to reate asymptoti partile states whih are observable insattering experiments long before and long after ollisions.Asymptoti states onstitute two Fok spaes, Vin and Vout. By the postu-late of asymptoti ompleteness they are equal to the whole Hilbert spae V,i.e.

Vin = V = Vout.This is an important postulate and in partiular it guarantees that any op-erator is expressible in terms of asymptoti �elds [NO90℄. For any two states
|f〉, |g〉 ∈ V an asymptoti �eld φas is de�ned as the weak limit

lim
x0→∓∞

〈f |φ(r)(x) − φas(x)|g〉 = 0of the orresponding renormalized operator φ(r) = Z−1/2φ.Due to on�nement there must be some mehanism that auses oloredasymptoti �elds, if any, not to ontribute to any physial S-matrix element.Suh a mehanism, the quartet mehanism, has been proposed by Kugo andOjima [KO79℄ for ovariant gauge theories.They have analyzed the total state spae V as the Fok spae of asymp-toti �elds and showed that any asymptoti �eld is either a BRST�singletor a quartet member, beause no other irreduible representation exists asthey have shown (see above). If ombined with the fat that under ertainonditions (spei�ed below) the harge Qa of global gauge transformation isBRST�exat6 and an be written as (see next subsetion)
Qa = {QB, C} where C :=

∫
d3x(D0c̄)

a(x). (2.13)then for any physial states |Ψ1〉, |Ψ2〉 ∈ Vphys it holds that
〈Ψ1|Qa|Ψ2〉 = 0.6An BRST-exat operator A is a BRST variation δB of another operator B, i.e. A isof the form: A = δBB ≡ {iQB, B}.



2.3 Criteria for onfinement in linear ovariant gauges 45The hargeQa vanishes in the physial Hilbert spaeHphys de�ned in Eq. (2.12).Consequently, if there were olored asymptoti �elds, they would belong tothe BRST�quartet representations. BRST�singlets, on the other hand, areneessarily olorless and thus an be identi�ed with physial partiles. Thisis known as on�nement by the quartet mehanism.One example is the so alled elementary quartet that an be easily de-dued from the BRST transformation of Aµ and c̄a (Eq. (1.25) or (1.31)).Obviously, it onsists of the parent states |Aaµ〉 and |c̄a〉 and of the daughterstates |Dab
µ c

b〉 and |Ba〉. As shown in [Kug95℄ the orresponding (massless)asymptoti states � they desribe longitudinally polarized gluons, ghost andantighosts � also form a BRST�quartet representation and are therefore notobservable in the physial spetrum.It is also expeted that the quartet mehanism applies to transverse gluonand quark states, as far as they exist asymptotially. A violation of (re�e-tion) positivity (see Se. 2.3.3) for suh states entails these are not observableeither [NO90; AvS01℄. In Se. 5.3 it is shown that the lattie gluon prop-agator in Landau gauge violates re�etion positivity expliitly whih thussupports this expetation.The Kugo-Ojima on�nement riteriaColor on�nement by the quartet mehanism an only take plae if there isan unbroken and BRST�exat olor harge Qa.In general, Qa is a generator of the global gauge symmetry that, in ad-dition to the BRST symmetry, is left in the gauge-�xed e�etive Lagrangiandensity Le�. The orresponding symmetry transformations are given inEq. (1.7) if there the parameters ωa are taken to be spae-time indepen-dent parameters. Being a global symmetry there exist Noether urrents Jaµwhih are onserved , i.e.
∂µJ

a
µ = 0 . (2.14)As pointed out �rst by Ojima [Oji78℄, these urrents enter the equationof motion for the gauge �elds in the form

gJaµ + ∂νF
a
νµ = {QB, Dµc̄

a}. (2.15)This equation is usually referred to as the quantum Maxwell equation inthe non-abelian ase, beause for any physial states |ψ1〉, |ψ2〉 ∈ Vphys thelassial Maxwell-type equation 〈ψ1|(∂νF a
νµ + gJaµ)|ψ2〉 = 0 holds.Sine the onservation law in Eq. (2.14) allows adding arbitrary terms ofthe form ∂µf

a
[µν] to Jaµ with fa[µν] being a loal antisymmetri tensor, one ould



46 Chapter 2 Infrared QCD and riteria for onfinementbe tempted to de�ne the global harge operators Qa as the spatial integralof the urrent
J

′a
µ = Jaµ +

1

g
∂νF

a
νµsuh that the BRST�exat expression in Eq. (2.13) is retrieved. But thisnaive de�nition of Qa is ill-de�ned due to massless one-partile ontributionsto Jaµ(x), ∂νF a

µν and {QB, Dµc̄
a} whih ause the integral to not onverge[Kug95℄.If however these ontributions are onsistently inorporated in the de�-nition of Qa, a well-de�ned expression is obtained (see [Kug95℄ for details).This is important, sine with the Goldstone theorem7 this automatially im-plies that ondition (B) formulated in the original work [KO79℄ of Kugoand Ojima, namely(B) Qa is not spontaneously broken,is satis�ed in the inde�nite metri spae V. If furthermore a ertain pa-rameter uab, the Kugo-Ojima on�nement parameter, turns out to satisfyondition(A) uab = −δab,then the olor harge Qa takes the BRST�exat form as given in Eq. (2.13)and olor on�nement by the quartet mehanism

〈Ψ1|Qa|Ψ2〉 = 0 Ψ1,Ψ2 ∈ Vphystakes plae. But this holds only if ondition (A) is ful�lled. Otherwise weannot identify BRST�singlet states in the physial Hilbert spae Hphys witholor singlets.To investigate whether ondition (A) is realized, the Kugo-Ojima on�ne-ment parameter uab an be obtained as the zero�momentum limituab := lim
p2→0

uab(p2) (2.16)of a funtion uab(p2) whih itself may be de�ned through the orrelationfuntion (see, for instane, [Kug95℄ or [AvS01℄)
∫
d4xeip(x−y)

〈
Dae
µ c

e(x)g0f
bcdAdν(y)c̄

c(y)
〉

=:

(
δµν − pµpν

p2

)
uab(p2). (2.17)7In Ref. [KO79℄ various versions of the Goldstone theorem are given whih altogetherstate that the following onditions onerning a onserved urrent Jµ and its globalharge Q are equivalent: (1) Q =

∫
d3xJ0 is a well-de�ned harge; (2) Q does not suf-fer from spontaneous symmetry breaking; (3) Jµ ontains no disrete massless spetrum:

〈0|JµΨ(p2 = 0)〉 = 0.



2.3 Criteria for onfinement in linear ovariant gauges 47To our knowledge a diret determination of uab in terms of a lattie al-ulation of uab(p2) has never been done. There are a few explorative lattiestudies [NF00b; NF00a; FN04a; FN04b℄, but these are based on data of theghost renormalization funtion Z̃3 (see below for the relation between Z̃3 andu.). The major problem is that in a lattie simulation uab(p2) an be alu-lated only at �nite momenta p and the data then have to be extrapolated to
p = 0 for whih a suitable ansatz has to be hosen.The ghost propagator in the infrared is related to u(p)In Landau gauge the alulation of the orrelation funtion in Eq. (2.17) anbe even irumvented, beause it has been shown [Kug95℄ that in this gaugethe ghost dressing funtion J is related to uab(p2) := δabu(p2) aording to

J(p2) =
1

1 + u(p2) + p2v(p2)
(2.18)and v(p2) is an arbitrary funtion (see [Kug95℄ for a de�nition). In the zero-momentum limit this yields

J(0) =
1

1 + u(0)
. (2.19)Therefore, if ondition (A) is realized in QCD then the ghost dressingfuntion in Landau gauge should diverge for vanishing momenta. Turningthe argument around, if the ghost propagator is found to be more singularthan a simple pole this may serve as a su�ient riterion for the Kugo-Ojimaon�nement senario to be realized.Based on this arguments the infrared behavior of the ghost propagator asextrated from the orresponding trunated systems of DSE, has been statedto realize the Kugo-Ojima on�nement senario for QCD in Landau gauge.In support of this, in Se. 4.3 we will show that also the ghost propagator asalulated in lattie simulations diverges stronger than a simple pole, albeitwith di�erent exponent ompared to the one found in DSE studies.More importantly, however, in Se. 5.2 we present data for the Kugo-Ojima on�nement parameter uab(p) at �nite momentum p and omparethese data to those of the ghost propagator. The data indiate uab(p) tobeome proportional to −δab in the limit of vanishing momenta. So theKugo�Ojima on�nement senario seems to be realized for QCD in Landaugauge.



48 Chapter 2 Infrared QCD and riteria for onfinement2.3.2 The Gribov�Zwanziger horizon onditionIn the previous setion we have seen that the infrared behavior of the ghostpropagator is intimately onneted to one ondition of the Kugo�Ojima on-�nement riteria. In fat, if ondition (A) is full�lled then the ghost dressingfuntion must be infrared divergent.In oinidene with this, there is another ondition, namely the Gribov�Zwanziger horizon ondition [Gri78; Zwa93℄, that also requires the ghostdressing funtion to diverge at vanishing momentum. In fat, the horizon on-dition states that the ghost propagator G in Landau gauge diverges strongerthan 1/p2 in the zero-momentum limit8, i.e. [Zwa02℄
lim
p2→0

[
p2G(p)

]−1
= 0. (2.20)Basially, this limit is a onsequene of the expetation that the infraredmodes of the gauge �elds are very lose to the Gribov horizon9 ∂Ω and henegive rise to an aumulation of small non-zero eigenvalues of the FP operator[Zwa94; Zwa93; Zwa91b℄. Sine the ghost propagator, essentially, is theinverse of this operator, it must diverge in the infrared.Remarkably, the horizon ondition as given in Eq. (2.20) allows us torenormalize the ghost propagator at p = 0 in the form of a nonperturbativeformula for the orresponding renormalization onstant Z̃3 (see [Zwa04℄ fordetails). This formula disagrees with the usual perturbative expression for

Z̃3, but it satis�es the perturbative renormalization-group �ow equation. Ifused together with the DSE for the ghost propagator it even yields an infraredanomalous dimension κG for it, suh that it behaves like [Zwa04℄
G(p) ∼ 1

p2

(
µ2

p2

)κGin the infrared. This is in agreement with the infrared behavior of theghost and gluon propagators extrated from their Dyson-Shwinger equa-tions [vSAH97; AvS01; LvS02℄.Furthermore, it has been argued by Zwanziger [Zwa91b; Zwa92℄ thatthe gluon propagator in Landau gauge vanishes in the infrared, i.e.
lim
p2→0

D(p) = 0,8But only, if the restrition to the Gribov region is done properly.9By de�nition, the Gribov horizon ours where the lowest nontrivial eigenvalue of theFP operator vanishes. For typial on�gurations on large Eulidean volumes this operatoris expeted to have a high density of eigenvalues near zero [Zwa04℄.



2.3 Criteria for onfinement in linear ovariant gauges 49beause the infrared omponents A(k) of the gluon �eld are suppressed bythe proximity of the Gribov horizon in infrared diretions [Zwa02℄.In our study we will not only hek for the infrared limits of both thegluon and ghost propagators as given above, but we will also show that theaumulation of near-to-zero eigenvalues of the FP operator inreases withenlarging the physial volume (see Se. 5.1, Se. 5.2 and Se. 6.2). Therefore,gauge on�gurations at the Gribov horizon seem to dominate the infraredproperties of lattie Landau gauge theory in the thermodynami limit.2.3.3 Violation of re�etion positivity as a riterion foron�nementThe mehanism for on�nement by Kugo and Ojima introdued in Se. 2.3.1relies on the existene of an unbroken BRST symmetry beyond perturbationtheory. This, however, has not been proven yet and thus the Kugo-Ojimasenario should not neessarily apply to QCD. Nevertheless, the numerialresults that we will disuss in Se. 5.2, but also reent studies of trunatedsystems of Dyson-Shwinger equations for the ghost and gluon propagators(see next setion) favor the Kugo-Ojima on�nement senario to be realizedfor QCD in Landau gauge.In any ase, there is another partiular riterion for on�nement that hasbeen proposed in reent years (see e.g. [AvS01; ADFM04℄) and is foused onin this study too, namely the violation of re�etion positivity. In fat, re�e-tion positivity is an essential part of the famous Osterwalder-Shrader axioms[OS73; OS75℄ for Eulidean quantum �eld theory10. Arbitrary partial sumsof Eulidean n-point funtions have to ful�ll those axioms to ensure theiranalyti ontinuation to the physially interesting funtions in Minkowskispae. They thus guarantee the reonstrution of a Gårding-Wightman rel-ativisti quantum �eld theory. This is important in order to arrive at aphysial interpretation.For the purpose of our study there is no need to go into detail about all theOsterwalder-Shrader axioms11. We will rather fous on the notion of re�e-tion positivity whih states that an Eulidean Green's funtion (Shwinger10Re�etion positivity of lattie gauge theory assures that gauge-invariant exitationshave a physial spetrum [Zwa92℄.11The justi�ation of this axioms is far from being trivial. For a omprehensive aounton this the reader is referred to the books by Haag [Haa92℄ or Glimm and Ja�e [GJ87℄



50 Chapter 2 Infrared QCD and riteria for onfinementfuntion) ∆ has to satisfy
∑

n,m

∫ [
n∏

i=1

d4xi

] [
n∏

j=1

d4yj

]
f ∗(Θx1, . . . ,Θxn)

· ∆(Θx1, . . . ,Θxn, y1, . . . , yn)f(y1, . . . , yn) ≥ 0. (2.21)Here f refers to a omplex valued test funtion12 with support for positive(Eulidean) times, i.e. f(x1, . . . , xn) = 0 for any x4
i < 0; and Θ is the re�e-tion operator that ats on xi aording to: Θxi = (xi,−x4

i ).In partiular for a generi (Eulidean) 2-point funtion ∆(x, y) = ∆(x− y),re�etion positivity is a neessary and su�ient ondition (see [AvS01℄) forthe existene of a Källen-Lehmann representation [Käl52; Leh54℄. This isa spetral representation of 2-point funtions13 with positive, but generallyunknown, spetral density ρ(m2) whih in momentum spae takes the form[AvS01; A+97; CMT05℄
∆(p) =

∫ ∞

0

dm2 ρ(m2)

p2 +m2
with ρ(m2) ≥ 0. (2.22)The absene of a Källen-Lehmann representation for a partiular 2-pointfuntion is a su�ient ondition for on�nement of the orresponding partile,beause then it annot be interpreted in terms of stable partile states.Considering the temporal orrelator C(t,p2), the absene of suh a rep-resentation an be even formulated more straightforward. In fat, C(t,p2) isthe Fourier transform of Eq. (2.22) and takes the form14 [AvS01℄

C(t,p2) =
1

π

∫ ∞

0

dp4 cos(p4t)

∫ ∞

0

dm2 ρ(m
2)

p2
4 + ω2

=

∫ ∞

0

dm2ρ(m2)
π

2ω
e−ωtwhere ω2 = m2 + p2. After substitution this gives

C(t,p2) =

∫ ∞

√p2

dω ρ(ω2 − p2) e−ωt. (2.23)One learly sees that if the spetral density ρ is a positive funtion thenthe temporal orrelator C(t,p2) is positive as well, but it does not hold in12Those funtions belong to the Laurent Shwartz spae of in�nitely often di�erentiablefuntions, dereasing together with their derivatives faster than any power as x moves toin�nity in any diretion [Haa92℄.13This representation is very helpful for desribing the analyti struture of propagators.Combined with the positivity requirements it yields bounds on their asymptoti behaviorand the magnitude of renormalization onstants. See e.g. [Wei95; PS95℄ for more details.14Note, ∆(p) is an even funtion of p4 whih simpli�es the Fourier transform.



2.3 Criteria for onfinement in linear ovariant gauges 51general the other way. If on the ontrary C(t,p2) is found to be negative fora ertain range in t, i.e.
C(t,p2) < 0 (2.24)there annot be a positive spetral density and thus re�etion positivity isviolated. This is an indiation for on�nement [AvS01; CMT05℄.For the gluon two-point funtion re�etion-positivity violation, of ourse,is expeted to happen. However, it has never be shown expliitly in lattiesimulations for the ase of SU(3). In three-dimensional pure SU(2) gaugetheory numerial evidene for re�etion-positivity violation of the lattie Lan-dau gluon propagators has been given [CMT05℄. This study shows that alsothe SU(3) gluon propagator in Landau gauge violates re�etion positivityfor the quenhed and unquenhed ase.We note in passing, that if the gluon propagatorD(p) in momentum spaewould be infrared vanishing, as expeted from the proximity of the Gribovhorizon (see the previous setion), then it would violate re�etion positivitymaximally. This an be seen from

0 = D(p = 0) =

∫
d4xD(x).This an only happen if the gluon propagator in oordinate spae, D(x),ontains positive as well as negative ontributions of equal integrated strength[ADFM04℄.The ghost propagator violates re�etion positivity trivially whih anbe dedued already from its bare expression. Hene ghosts are expliitly un-physial indeed. The unphysial spin�statisti relation of ghost �elds alreadysuggests this.
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Chapter 3
QCD Green's funtions inlattie Landau gauge

T
his hapter very brie�y introdues the lattie regularization of QCD. Weonentrate on the Wilson formulation of QCD with and without loverimproved Wilson fermions as employed for this study. After speifying some generalaspets we fous on lattie QCD in Landau gauge and de�ne all relevant gauge-variant observables whih are analyzed in the following hapters.3.1 Basis of lattie QCDWe know that the very de�nition of a quantum �eld theory, as QCD, requiresa regularization whih often breaks some of the underlying symmetries ofthe lassial theory and introdues a new sale into the theory [Has98℄. Atpresent the only known regularization of QCD beyond perturbation theory isthe lattie regularization whih disretizes Eulidean spae-time into a lattieof points. Thereby, the lattie spaing a serves as a regulator of the theorythat renders all ultraviolet divergenes, usually enountered in QCD, �nite.Unlike �eld theory with a naive ultraviolet uto�, the lattie formulationmaintains exat gauge invariane [Mut98; BHL+05℄. Furthermore, the lattieregularization o�ers the possibility to investigate nonperturbative aspets ofQCD in terms of numerial Monte Carlo (MC) simulations. Therefore, it is avaluable tool for ross-heking results obtained using other nonperturbativemethods, for example the DS approah to QCD.It is beyond the sope of this thesis to adequately desribe all aspets oflattie QCD. Therefore, we shall reall only some basi points important forthe following. For a omprehensive introdution on the subjet we refer tostandard textbooks [Cre83; MM94; Rot97; Smi02℄ as well as to the letures[Kog83; Lep00; Gup97; Dav02; Lüs03; Dav05℄, to name but a few. Mostof the material summarized below an be found there. To �nd out aboutthe most reent developments in the �eld the proeedings [AHI+04; B+05a;IMM05℄ of the yearly Lattie Conferenes provide a good starting point.53



54 Chapter 3 QCD Green's funtions in lattie Landau . . .3.1.1 The lattie and its �eldsVery brie�y, lattie QCD is a disretization of QCD in
u u u

u u u

u u u

-

Ux,µ

-¾

a

ψx
x + µ̂

x + ν̂
Eulidean spae. It replaes the four-dimensional spae-time ontinuum through a hyperubi lattie and restritsfermion and antifermion �elds, ψx and ψ̄x respetively, todwell on the lattie sites x. Rather than speifying thegauge �elds by gluon �elds Aµ(x), on the lattie gauge�elds are assoiated with links joining adjaent lattiesites, x and x + µ̂. Here and in the following µ̂ is a unit vetor in the
xµ diretion of spae-time. The lattie spaing a is the distane between ad-jaent lattie sites. The gauge �elds � also known as link variables or evenjust as links � are usually denoted by Ux,µ and take values in a ompatLie group, here SU(3). They are the lattie version of the parallel transportmatrix between adjaent sites and therefore are related to the ontinuumgluon �elds Aµ(x) by the line integral (see e.g. [LSWP99℄)

Ux,µ ≡ P exp

{
ig0

∫ 1

0

Aµ(x+ atµ̂) dt

}
≃ eiag0Aµ(x+µ̂/2) +O

(
a3

)
. (3.1)Here P denotes path ordering of the gluon �elds along the integration pathsuh that gluon �elds Aµ(x + atµ̂) with larger t stand to the left of thosewith smaller t. The gauge �elds U are taken in plae of the gluon �eldsfor the purpose of maintaining expliit gauge invariane on the �nite lattie[BHL+05℄. A gauge invariant formulation of lattie QCD diretly in termsof the gluon �elds is not possible [Lep00℄.Quantization of lattie QCD is done in the funtional integral formalism,i.e. expetation values of di�erent observables are given in terms of pathintegrals over the gauge and quark �eld variables [MM94℄

〈O〉 =
1

Z

∫
[DU,Dψ̄,Dψ]O[ψ, ψ̄, U ] e−SQCD [U,ψ̄,ψ] . (3.2)Here the partition funtion Z is hosen suh that 〈1〉 = 1 and O[ψ, ψ̄, U ]denotes an arbitrary funtion of the �eld variables, for instane, n pairs ofquark �elds and a produt of link variables

O[ψ, ψ̄, U ] = ψa1x1
· · · ψ̄b1y1 · · ·Uz1µ1

· · · .For simpliity, the indies ai and bi denote the set of all internal symmetryindies, like olor and spinor degrees of freedom. The olor indies of linkvariables are hidden. Lattie sites are denoted by xi, yi or zi and µi refers toone partiular diretion on the lattie.



3.1 Basis of lattie QCD 55In ontrast to any formulation in the ontinuum, the lattie ation SQCDmaintains exat gauge invariane. Sine the gauge �elds take values only inthe group SU(3), i.e. they are restrited to a ompat manifold, the fun-tional integration measure is well-de�ned and gauge-�xing is not neessary ifgauge-invariant observables O[ψ, ψ̄, U ] are onsidered. However, in this the-sis gauge-variant quantities are investigated, in partiular in Landau gauge.Therefore, gauge-�xing beomes neessary here as well. In Se. 3.2 this isdisussed in more detail.3.1.2 The Wilson ation with lover-improved fermionsApart from the requirement of loal gauge invariane the de�nition of SQCDis not unique. There are in�nite ways to de�ne a lattie ation of QCD, butany de�nition has to be suh that it takes the lassial ontinuum form forvanishing lattie spaing a. This freedom allows for a lever redution ofsystemati errors aused by �nite lattie spaings. Any reasonable formula-tion will give the same ontinuum theory up to �nite renormalizations of thegauge oupling and the quark masses [Lüs03℄.Common ations used in the literature onsist of two parts, a gauge SGand a fermioni part SF , i.e. they are of the general form
SQCD = SG[U ] + SF [U, ψ̄, ψ] . (3.3)Both parts depend on the gauge �elds U ≡ {Ux,µ} and the fermioni partontains in addition bilinear expressions in the fermion �elds ψ̄ and ψ on-struted suh that the whole ation is manifestly gauge invariant.For the gauge part we have employed the standard Wilson gauge ation[Wil74℄ throughout this study. It is given by the sum

SG[U ] := β
∑

x

∑

1≤µ<ν≤4

(
1 − 1

Nc

Re Tr �x,µν

) (3.4)over traes of plaquettes denoted here by
�x,µν := Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν . (3.5)It represents a square of four links on the lattie. The parameter β is de�nedsuh that SG takes its lassial ontinuum form in the limit a → 0, i.e. it isde�ned as

β :=
2Ncg2

0

(3.6)where Nc = 3 for SU(3) and g0 is the bare oupling onstant.



56 Chapter 3 QCD Green's funtions in lattie Landau . . .For the fermioni part SF there are various de�nitions in use whih ei-ther belong to the family of Wilson or of Staggered fermion ations or starttherefrom. For the purpose of this study fermions of the Wilson type havebeen employed. In fat, our hoie are lover�improved Wilson fermions[SW85; LSSW96℄. The orresponding part of the ation an be written as
SF [U, ψ̄, ψ] = a4

∑

f,x,y

ψ̄fx Qxy ψ
f
y (3.7)where for eah �avor f = 1, . . . , Nf the fermion matrix Q is de�ned to atupon the (Grassmann valued) fermion �elds, ψ̄x and ψy, aording to

∑

xy

ψ̄xQxyψy :=
∑

x

{
1

a
ψ̄xψx −

κ

a

∑

µ

ψ̄x U
†
x−µ̂,µ [1 + γµ]ψx−µ̂

− κ

a

∑

µ

ψ̄x Ux,µ [1 − γµ]ψx+µ̂

− κa

2
csw g0

∑

µν

ψ̄x σµνF
lover
x,µν ψx

} (3.8)(see e.g. [GHP+05℄). The fermion �elds are normalized suh that they or-respond to the ontinuum �elds by resaling ψ → 1/
√

2κψ. Due to the lastterm in Eq. (3.8), SF is su�ient to remove all O (a) errors for on-shell quan-tities1. The value of the parameter csw depends on g0 and has to be tunedappropriately. The lover �eld-strength tensor is given by
F lover
x,µν :=

1

8ig0a
2

∑

±µ,±ν

(
�x,µν − �

†
x,µν

)
, (3.9)where the de�nition of the plaquette (see Eq. (3.5)) has been extended suhthat the µ, ν diretions an be negative [GHP+05℄. The hopping parameter

κ is related to the (subtrated) bare quark mass via
m =

1

2a

(
1

κ
− 1

κc

) (3.10)where κc is de�ned as the value of κ at whih the pion mass vanishes. In thisstudy we onsider only the ases of either in�nite heavy quarks, i.e. no quarks(Nf = 0) or Nf = 2 mass degenerate quarks. The former ase is known asthe quenhed approximation of QCD, whereas the latter is an approximationto the real, unquenhed world of two light and a number of heavier quarksthat do respond to the gauge �eld.1For gauge dependent quantities it is an open question whether further, gauge non-invariant (but BRST invariant) terms must be added [SW01℄. However, one usually as-sumes any suh term to be small.



3.1 Basis of lattie QCD 573.1.3 Vauum expetation values from MC simulationsAfter having de�ned the lattie ation we now ome bak to the de�nitionof vauum expetation values in Eq. (3.2) and outline the way Monte Carlo(MC) simulations are employed to alulate them. First note that the integralover the fermioni variables an be done instantly due to their Grassmannnature. We obtain [MM94℄
〈O〉 ≡

〈
ψx1

ψ̄y1 · · ·ψxn
ψ̄yn

G[U ]
〉

=
1

Z

∫
[DU ] e−Se�[U ] G[U ]

∑

z1,...,zn

ǫz1,...,zn

x1,...,xn
Q−1
z1,y1

[U ] · · ·Q−1
zn,yn

[U ] (3.11)where the e�etive ation Se�[U ] (see Eq. (3.12)) depends only on gauge�elds. G[U ] denotes an arbitrary funtion depending on link variables only.The tensor ǫz1,...,zn
x1,...,xn

:= 1 (ǫz1,...,zn
x1,...,xn

:= −1) if z1, . . . , zn is an even (odd) permu-tation of the lattie sites x1, . . . , xn; or zero else. This tensor multiplied withelements of the inverse fermion matrix Q−1 appears due to the integrationover (Grassmann valued) fermion �elds present in the observable. It is absentif vauum expetation values of pure gluoni observables G[U ] are onsidered.Sine the fermioni part SF is usually of the form as given in Eq. (3.7),the e�etive ation an be written as
Se�[U ] = SG[U ] − log detQ[U ] (3.12)where in our ase the fermion matrix Q is de�ned in Eq. (3.8). The deter-minant in Eq. (3.12) is known as the fermion determinant. In the quenhedapproah to QCD this determinant is set to equal one. This simpli�es numer-ial alulations of expetation values enormously, however, at the expensenegleting quark loops.To evaluate the remaining integral in Eq. (3.11) we an perform numerialMC simulations whih allow us to estimate vauum expetation values asstatistial averages. Note that after disretization the generating funtional

Z of our lattie theory orresponds to a partition funtion of a statistialsystem.In a typial MC simulation of lattie QCD, sets of gauge �eld on�gu-rations U (1), U (2) . . . are suessively generated by an appropriately hosenMarkov proess. Ideally, this proess samples a large number of, say N ,independent on�gurations being a realization of the Boltzmann weight
1

Z
exp {−Se�[U ]} .



58 Chapter 3 QCD Green's funtions in lattie Landau . . .This is known as important sampling. On eah on�guration U (i) the observ-able of interest O is measured suh that the sample average
〈O〉U :=

1

N

N∑

i=1

O[U (i)]is an estimator of the ensemble average 〈〈O〉U〉. The latter is equal to theexpetation value 〈O〉. The di�erene between the ensemble average and itsestimator 〈O〉U is important, beause the latter is just an average over a �nitesample of N gauge �elds and therefore is naturally a�ited with a statistialerror of σO/√N . Only in the limit N → ∞ they would math. Here σOrefers to the (usually unknown) standard deviation of the observable O. Itan be estimated for example by the jakknife (e.g. [Wu86℄) or the bootstrapmethod [ET93℄.In addition to the statistial error an estimate is also a�ited by sys-temati errors due to the �nite volume V and the �nite lattie spaing a,respetively. To estimate those, MC simulations are usually performed ondi�erent lattie sizes and at di�erent setups of the parameter β (and eventu-ally κ). The latter two are related to the lattie spaing and the quark mass.With respet to all these e�et, ideally the ontinuum value is obtained bytaking the multiple limit
〈O〉 = lim

V→∞
lim
a→0

V=onst. lim
N→∞

〈O〉U .This limit, in this order, orresponds to the presription of an axiomati �eldtheory.3.2 The Landau gauge on the lattieThe major fous of this thesis is to investigate the infrared behavior of thegluon and ghost propagators and other observables in Landau gauge. Fortheir alulation gauge-�xing is neessary as well. In the following we disusshow the Landau gauge ondition is imposed in our lattie simulations andthen we de�ne all observables relevant for this study.Gauge-�xing in the ontinuum usually inludes a parameter, the gaugeparameter ξ, that auses the measure of the funtional integral to peakaround a partiular gauge �eld on the gauge orbit. Lattie gauge-�xingahieves the same by a two-step proess. First an ensemble of lattie gauge�eld on�gurations is generated using standard MC methods. Sine the lat-



3.2 The Landau gauge on the lattie 59tie ation Se� as de�ned in Eq. (3.12), is invariant under gauge transforma-tion
Ux,µ → gUx,µ = gx Ux,µ g

†
x+µ̂, (3.13)the ensemble generated does not satisfy any gauge ondition. Then in a se-ond step, for eah suh generated on�guration U ≡ {Ux,µ} a gauge trans-formation g = {gx} is hosen suh that gUx,µ satis�es the (lattie version ofthe) gauge ondition. In this way, a partiular on�guration on the gaugeorbit of Ux,µ is hosen.3.2.1 The gauge funtionalFor the partiular ase of Landau gauge, one usually searhes for a gaugetransformation g = {gx}, keeping U �xed, that maximizes a ertain fun-tional, the gauge funtional FU [g]. This typially reads

FU [g] =
1

4V

∑

x

4∑

µ=1

Re Tr gUx,µ (3.14)where V denotes the lattie volume. Obviously, in the trivial ase of U = 1the largest value FU [g] = 3 is obtained for g = 1. For any other U , hoosinga maximum of FU [g] makes all gUx,µ on average as lose to unity as possible.A ontinuum analog of the gauge funtional has been given in Eq. (2.3).The funtional FU [g] has many di�erent loal maxima whih an bereahed by inequivalent gauge transformations g, the number of whih in-reases with the lattie size. As the inverse oupling onstant β is dereased,inreasingly more of those maxima beome aessible by an iterative gauge�xing proess starting from a given (random) gauge transformation g. Inthis study we have employed two popular algorithms for gauge-�xing: over-relaxation [MO90a℄ and Fourier�aelerated gauge-�xing [D+88℄.2 The dif-ferent gauge opies orresponding to the maxima reahed are alled Gribovopies, due to their resemblane to the Gribov ambiguity in the ontinuum[Gri78℄. All Gribov opies {gU} belong to the same gauge orbit spanned bythe Monte Carlo on�guration U . They all satisfy the di�erential Landaugauge ondition (lattie transversality ondition) (∇µ
gAµ)(x) = 0 where

(∇µAµ)(x) ≡ (∇ ·A)(x) :=

4∑

µ=1

[
Aµ(x+ µ̂/2) − Aµ(x− µ̂/2)

]
. (3.15)2For a omparison of both algorithms see App. A.2.1



60 Chapter 3 QCD Green's funtions in lattie Landau . . .Here Aµ(x+µ̂/2) is the non-Abelian (hermitian) lattie gauge potential whihmay be de�ned at the midpoint of a link
Aµ(x+ µ̂/2) :=

1

2i

(
Ux,µ − U †

x,µ

)
− 1

6i
Tr

(
Ux,µ − U †

x,µ

)
. (3.16)In this way it is aurate to O (a2). Note that this assoiation between lattieand ontinuum gauge �elds is not unique, but the one hosen here representsthe maximally loal hoie for suh an assignment [MO87℄. The bare gaugeoupling g0 is related to the inverse lattie oupling via β = 6/g2

0 in the aseof SU(3) (see Eq. (3.6)).In the following, we will drop the label g for onveniene, i.e. we assume
U to satisfy the Landau gauge ondition suh that g ≡ 1 maximizes thefuntional in Eq. (3.14) relative to the neighborhood of the identity. Tosimplify notation we will also use a more ompat notation

Ax,µ := Aµ(x+ µ̂/2)for the lattie gluon �elds, but it is always understood that they dwell at themidpoint of a link.3 Additionally, we give the adjoint expression of a lattiegluon �eld
Aax,µ := Aaµ(x+ µ̂/2) = 2 · Im Tr{T aUxµ} (3.17)3.2.2 The Faddeev-Popov operatorBefore we an go further and introdue the observables relevant for this study,it is neessary to give �rst a lattie expression for the Faddeev-Popov (FP)operator in Landau gauge. This operator an be easily derived by onsideringa one-parameter subgroup of the loal SU(3) gauge group de�ned by (seee.g. [Zwa91a℄)
gω(τ, x) = exp {iτωcxT c} τ, ωcx ∈ R .The generators T c of the SU(3) group have been de�ned in Se. 1.1.1. Infat, if we assume U to represent a loal maximum of the gauge funtionalthen for any τ it holds that FU [1] ≥ FU [gω(τ)] for all ω. Consequently, at

τ = 0 the �rst derivative of the one-parameter funtion fω(τ) := FU [gω(τ)]with respet to τ should vanish. One an easily show that
0 =

∂

∂τ
fω(τ)

∣∣∣∣
τ=0

=
1

2

∑

x,c

ωcx
∑

µ

[
Acx−µ̂,µ − Acx,µ

]
,3This one should keep in mind if the Fourier transform of the gluon �eld has to bealulated.



3.2 The Landau gauge on the lattie 61and so any maximum of the gauge funtional automatially satis�es the lat-tie Landau gauge ondition. Then the seond derivative of fω(τ) at τ = 0de�nes a symmetri quadrati form
∂2

∂τ 2
fω(τ)

∣∣∣∣
τ=0

=
∑

x,y,c,d

ωcxM
cd
xy ω

d
ywhose kernel

Mab
xy = Aabx δx,y −

∑

µ

(
Bab
x,µ δx+µ̂,y + Cab

x,µ δx−µ̂,y
) (3.18)with

Aabx =
∑

µ Re Tr
[
{T a, T b}(Ux,µ + Ux−µ̂,µ)

]
, (3.19a)

Bab
x,µ = 2 · Re Tr

[
T b T a Ux,µ

]
, (3.19b)

Cab
x,µ = 2 · Re Tr

[
T a T b Ux−µ̂,µ

]
. (3.19)is the Hessian of FU [g]. M de�nes a real symmetri matrix that in the aseof U satisfying ∇ · A = 0 equals the FP operator

M [U ] = −∇ ·D[U ] = −D[U ] · ∇ ⇐⇒ ∇ ·A = 0where D[U ] refers to the ovariant derivative [Zwa94℄. A lattie de�nition for
D[U ] an be found, for instane, in the same referene. After some algebraone an show that in the adjoint representation this an be written in theform

(
Dµ[U ]

)ab
xy

= 2 ReTr
[
T bT aUx,µ

]
δx+µ̂,y − 2 Re Tr

[
T aT bUx,µ

]
δx,y . (3.20)3.2.3 De�ning Γ, Ω and Λ on the lattieOn the lattie the Gribov ambiguity of the Landau gauge ondition �nds itsexpression in the ambiguity to �nd a loal maxima of the gauge funtionalin Eq. (3.14). Therefore, terms like transversal plane, Gribov region andfundamental modular region also translate to the lattie formulation.The transversal plane is onstituted by all (gauge transformed) on�gu-rations U that satisfy the lattie Landau gauge ondition ∇·A(U) = 0 usingthe de�nition (3.15), i.e.

Γ := {U : ∇ · A(U) = 0} .



62 Chapter 3 QCD Green's funtions in lattie Landau . . .The subset of Γ whose elements in addition give rise to a semipositive de�niteFP operator M is alled the Gribov region
Ω := {U : U ∈ Γ,M [U ] ≥ 0} .Of ourse any element in Ω is a loal maximum of the gauge funtional,but only those whih are global maxima onstitute the fundamental modularregion

Λ := {U : FU (1) ≥ FU [g] for all g} .For a �nite lattie it has been proven that the interior of Λ onsists of non-degenerate absolute maxima (or minima depending on the de�nition). Gri-bov opies may only our on the boundary ∂Λ [Zwa94℄.3.3 Lattie de�nition of our observables3.3.1 The (inverse) FP operator in momentum spaeIn subsequent setions we shall derive expressions for the numerial alu-lation of the ghost propagator and the ghost-gluon-vertex renormalizationonstant in momentum spae. For theses purposes the following Fouriertransform (
M−1

)ab
(k) =

1

V

∑

x,y

e−ik·x
(
M−1

)ab
xy
eik·y (3.21)of the inverse FP operator M−1 is of interest. Here and in the following thesalar produt

k · x ≡
4∑

µ=1

2π
kµxµ
Lµ

(3.22)of lattie momentum k and lattie site x is understood. Lµ denotes the lattieextension in diretion µ.Due to its eight trivial zero eigenvalues the inverse M−1 needs to bede�ned with are. If we are just interested in non-zero momenta k we areautomatially in a subspae orthogonal to the spae spanned by the (spae-time onstant) zero modes. Hene, for non-zero momenta we an apply, forexample, the onjugate gradient method to solve the sparse linear system
[Mψb]

cz ≡
∑

a,x

Mcz,axψ
ax
b = ξczb (k) (3.23)using a �xed soure ξb with 8V omplex omponents ξczb (k) := δcbeik·z. Here

c and z label the vetor omponents of ξb, while index b spei�es the di�erent



3.3 Lattie definition of our observables 63soures on the right hand side of Eq. (3.23), i.e. whih of the olor omponentsare non-zero. The solution ψb to this linear system an then be used to writethe Fourier transform in Eq. (3.21) as the following salar produt in spae-time4 (
M−1

)ab
(k) =

1

V

∑

x

e−ik·x · ψaxb (k) . (3.24)With Eq. (3.23) it is lear that ψaxb represents the 8V vetor omponentswith respet to the matrix multipliation of M−1 with ξb, i.e.
ψaxb (k) =

∑

y

M−1
ax,by e

ik·y (k > 0).For the numerial alulation of ψaxb we rather solve the two independentlinear systems
[Mb(k)]cz = δcb cos(k · z) (3.25)
[Msb(k)]cz = δcb sin(k · z), (3.26)than that given in Eq. (3.23), beause ψaxb = axb + i saxb . With this notationwe an write the Fourier transform in Eq. (3.24) as

(
M−1

)ab
(k) =

1

V

∑

x,y

cos(k · x)axb (k) + sin(k · x)saxb (k)

+i [cos(k · x)saxb (k) − sin(k · x)axb (k)] . (3.27)We shall see subsequently that the alulation of both, b and sb, is evennot always neessary depending on the observable onsidered. For example,for the alulation the ghost-gluon-vertex renormalization onstant we onlyhave to solve Eq. (3.26). This, as we shall see later, relies on the fat thatthe FP operator is symmetri and thus
∑

x

cos(k · x) · saxb (k) =
∑

x,y

cos(k · x)M−1
ax,by sin(k · y)

=
∑

y,x

cos(k · y)M−1
ay,bx sin(k · x)

(M=MT )
=

∑

y,x

sin(k · x)M−1
bx,ay cos(k · y)

∑

x

cos(k · x) · saxb (k) =
∑

x

sin(k · x) · bxa (k) . (3.28)4For our onveniene, ψb arries the index b as well, in order to trae bak afterwardsthe olor index of non-zero omponents of ξb.



64 Chapter 3 QCD Green's funtions in lattie Landau . . .3.3.2 The gluon and ghost propagatorThe gluon propagatorStudying nonperturbatively gauge-dependent quantities on the lattie thegluon propagator is perhaps the simplest objet to start with. Given thede�nition for the lattie gluon �elds Aax,µ ≡ Aµ(x + µ̂/2) in Eq. (3.16), thegluon propagator is estimated in lattie simulations by the MC average ofthe orresponding two-point funtion
Dab
µν(x, y) = Dab

µν(x− y) =
〈
Aax,µA

b
y,ν

〉
U
.In this study we are in partiular interested in the Fourier transform of thistwo-point funtion whih on the lattie is given by

Dab
µν(q(k)) =

1

V

〈
∑

x,y

Aax,µA
b
y,νe

ik·(x+µ̂/2)e−ik·(y+ν̂/2)

〉

U

. (3.29)Note that the term Aax,µA
b
y,ν in general is not translational invariant. How-ever, we have imposed this invariane for the vauum expetation value bysumming over all di�erenes (x−y) available on the lattie. If we assume thatalso on the lattie the gluon propagator in Landau gauge has the ontinuumtensor struture

Dab
µν(q) = δab

(
δµν − qµqν

q2

)
D(q2) (3.30)then all the physial information is ontained in the salar funtion

D(q2) =
1

N2
c − 1

∑

aµ

Daa
µµ(q) (3.31)where Nc = 3 denotes the number of olors of SU(3).Conneting a lattie momentum to its ontinuum ounterpartBefore we proeed with the ghost propagator we an de�ne already here howthe lattie momentum k is related to its ontinuum ounterpart q. In fat, itis well-know that due to lattie artifats the tree-level gluon propagator D0does not simply reprodue its ontinuum expression, but rather has the form

D0ab
µν (k) = δab

(
δµν − qµ(k)qν(k)

q2(k)

)
1

q2(k)
. (3.32)



3.3 Lattie definition of our observables 65where qµ(k) is de�ned as
qµ(kµ) :=

2

a
sin

(
πkµ
Lµ

)
. (3.33)Therefore, one usually employes Eq. (3.33) for translating a lattie momen-tum kµ to the orresponding ontinuum momentum qµ. Even more impor-tantly, in Ref. [LSWP99℄ it has been veri�ed that the lattie gluon propaga-tor in Landau gauge shows saling at β = 6.0 and 6.2 in the entire range ofstudied momenta q2 if these are de�ned aording to Eq. (3.33). Also sys-temati e�ets with respet to the tensor struture of the gluon propagator(see Eq. (3.30)) are redued. So the de�nition in Eq. (3.33) is a reasonablede�nition of qµ though it beomes worse at larger kµ. Sine we are interestedmainly in the infrared properties of the gluon propagator we will use thisde�nition of qµ in our study.The ghost propagatorBeside the gluon propagator we are also interested in the Landau gauge ghostpropagator. Given the lattie de�nition of the FP operator in Eq. (3.18) thispropagator (in momentum spae) an be estimated in lattie simulations by

Gab(q2(k)) =
1

V

〈
∑

x,y

(
M−1

)ab
xy
eik·(x−y)

〉

U

.Although the inverse of the FP operator itself is not translational invariant,the vauum expetation value (here the ensemble average) has to be. There-fore, a sum over all possible di�erenes (x− y) at the same momentum k istaken here again.Sine the ontinuum ghost propagator is of the form Gab(q) = δabG(q2)we are interested in the salar funtion
G(q2(k)) =

1

N2
c − 1

∑

a

Gaa(q2(k)) =
1

N2
c − 1

〈
TrM−1(k)

〉
U

(3.34)where in the last step the expression (M−1)aa(k) as de�ned Eq. (3.21) hasbeen used. With respet to the disussion in Se. 3.3.1, the trae an bealulated by using Eq. (3.27) and (3.28) whih �nally yields
TrM−1(k) =

∑

a,x,y

cos(k · x) · axa + sin(k · x) · saxawhere axa and saxa are solutions to the two independent linear systems givenin Eq. (3.25) and (3.26).



66 Chapter 3 QCD Green's funtions in lattie Landau . . .In our lattie simulations we solved the two linear systems by applyingthe pre-onditioned CG algorithm (PCG) where as pre-onditioning matrixwe used the inverse Laplaian operator ∆−1 with diagonal olor substruture.This signi�antly has redued the amount of omputing time as it is disussedin more detail in App. A.3.Eigenmode expansion of the ghost propagatorFor a better understanding of the infrared behavior it is interesting to analyzethe ghost propagator also by exploiting the spetral representation of theinverse FP operator for a given gauge �eld U in terms of its real (asendent)eigenvalues λi and its (normalized) eigenvetors φi(x) in oordinate spae
[M−1(U)]abxy =

N∑

i=1

φai (x)
1

λi
φbi(y) . (3.35)Here φai (x) are the omponents of φi(x). Taking the Fourier transformedvetors Φi(k) at lattie momentum kµ and averaging over a Monte Carlo(MC) generated ensemble of gauge �eld on�gurations one an ompute theghost propagator from trunated mode expansions

Gn(q
2(k)) = 〈G(k|n)〉U (3.36)where

G(k|n) =
1

8

n∑

i=1

1

λi
Φi(k) · Φi(−k) (3.37)denotes the ontribution of the eigenvalues and eigenmodes on a given gauge�eld on�guration. Here the vetor and salar produt notation refers to theolor indies. The Fourier momenta kµ are related to the physial momenta

qµ(kµ) by Eq. (3.33).In fat, if the whole eigenvalue spetrum and all eigenvetors were knownthe ghost propagator would be determined ompletely. However, this is nu-merial too demanding. Nevertheless, restriting the sum in Eq. (3.37) tothe n lowest eigenvalues and eigenvetors (n ≪ N = 8V − 8), we an �gureout to what extent this sum saturates the full value G(q2) determined usingEq. (3.34). We will see in Chapt. 6 that at lowest momentum the low-lyingpart of the FP spetrum gives the major ontribution to G.



3.3 Lattie definition of our observables 673.3.3 The Kugo-Ojima on�nement parameterThe next observable we are interested in is the Kugo-Ojima on�nementparameter. Aording to Se. 2.3.1 this parameter uab = uab(0) is de�nedas the zero-momentum limit of some funtion uab(p2) whih itself has beenintrodued in Eq. (2.17) using a partiular orrelation funtion. On thelattie this requisite orrelation funtion is of the form
Uab
µν(k) :=

∑

x,y

∑

c,d,e

e−ik·(x−y)
〈
Dae
µ c

e
xf

bcdAdyν c̄
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〉
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=
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e−ik·xDae
µ

(
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)ec
xy
f bcdAdyνe

ik·y

〉

U

.Here the (adjoint) lattie ovariant derivative Dµ ats upon a olor-spaevetor as given in Eq. (3.20) and the lattie gluon �elds Ady,ν are de�nedaording to Eq. (3.17). With respet to the Lorentz-struture as given inEq. (2.17) the funtion uab(q2) is obtained by the sum
uab

(
q2(k)

)
=

g0

Nd − 1

∑

µ

Uab
µµ(k) (3.38)over Lorentz indies where g0 denotes the bare oupling onstant and Nd = 4is the number of dimensions. For the atual lattie alulation of uab(q2) wenote that the orrelation funtion Uab

µν(k) an be written as a salar produtof a plane wave and a vetor ψb,ν multiplied by the ovariant derivative
Uab
µν(k) =

〈
∑

x

e−ik·x [Dµψb,ν(k)]
ax

〉

U

.Here ψb,ν is the solution of the linear system Mψb,ν(k) = φb,ν(k) with Mbeing the FP matrix and a soure φb,ν(k) de�ned by the omponents
φcyb,ν(k) =

∑

d

f bcdAdyν e
ik·y .As for the ghost propagator the pre-onditioned onjugate-gradient algorithm(see appendix A.3) has been employed to extrat ψb,µ for eah non-zero mo-mentum k, separately. Then by using Eq. (3.38) the funtion uab(q2(k)) isdetermined.



68 Chapter 3 QCD Green's funtions in lattie Landau . . .3.3.4 Renormalization of propagatorsQuantities like gluon or ghost propagators as they ome out from typiallattie simulations have to be renormalized yet. Assuming multipliativerenormalization the renormalized ontinuum propagators DR and GR arerelated to the bare, dimensionless lattie propagators via
a2D(a2q2) = Z3(µ

2, a2)DR(q2;µ2) and
a2G(a2q2) = Z̃3(µ

2, a2)GR(q2;µ2).The renormalization onstant Z3 and Z̃3 are determined by imposing a renor-malization ondition at some hosen renormalization sale µ2. In this studywe apply the MOM sheme for renormalization aording to whih the renor-malized propagators equal there tree-level form at some momentum µ2. Herefor the salar funtions of gluon and ghost propagators it holds that
DR(q, µ)

∣∣∣
q2=µ2

=
1

µ2
(3.39)

GR(q, µ)
∣∣∣
q2=µ2

=
1

µ2
. (3.40)In the subsequent hapter we onsider in the majority of ases not thepropagators themselves but their dressing funtions Z and J (see Eq. (1.33)and (1.34)). They desribe the deviation of the propagators from their tree-level forms. With Eq. (3.39) and (3.40) it is lear that at the renormalizationpoint µ2 the dressing funtions equal one.3.3.5 The ghost-gluon-vertex renormalization onstantApart from the renormalization onstants of the gluon and ghost propagatorswe are also interested in Z̃1, the renormalization onstant of the ghost-gluonvertex. In Landau gauge, the most general tensor struture of this ver-tex with gluon momentum s and ghost momenta q and t is given by (seee.g. [SMWA05℄)

Γabcν (s; q, t) = ig0

[
qν

(
fabc + Aabc

(
s2; q2, t2

))
+ sνB

abc
(
s2; q2, t2

)]
.Here Aabc and Babc are salar funtions whih desribe the deviation fromthe tree-level from. They are assumed to have the same olor struture as inperturbation theory, i.e. Aabc =: fabcA(s2; q2, t2) and Babc =: fabcB(s2; q2, t2).In a MOM sheme the renormalized vertex ΓR = Z̃1Γ equals its tree-levelexpression Γ at a renormalization point µ2. Therefore, if we onsider the



3.3 Lattie definition of our observables 69partiular renormalization sheme M̃OM whih is de�ned by subtrating thevertex funtion at the asymmetri point t2 = q2 = µ2 and s2 = 0, then therenormalization onstant Z̃1 is de�ned by
Γabcν (0; q, t)

∣∣∣
q2=t2=µ2

= Z̃−1
1 · Γabcν (0; q, t)

∣∣∣
q2=t2=µ2where the tree-level expression is given by

Γ
abc
ν (0; q, t) = ig0 f

abcqν .Sine in this renormalization sheme the tensor struture of the ghost-gluon vertex boils down to
Γabcν (0; q) = ig0 f

abcqνΓ(0; q2)where Γ(0; q2) = 1 + A(0; q2, q2) we arrive at the (inverse) vertex renormal-ization onstant given by [CMM04℄
Z̃−1

1

(
µ2 = q2

)
=

1g0Nc(N2
c − 1)

1

q2

4∑

ν=1

qν
∑

abc

fabc Im Γabcν (0; q).On the lattie, the de�nition for Z̃−1
1 an be derived in a similar manneras in the ontinuum (see e.g. [CMM04℄). Only the tree-level expression ofthe vertex is di�erent. Using the tree-level expression known from lattieperturbation theory the de�nition of the ghost-gluon-vertex renormalizationonstant is given by [CMM04℄

Z̃−1
1

(
q2(k)

)
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a2q2(k)

∑

ν
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(
πkν
Lν

) ∑

a,b,c

fabc Im Γabcν (0, q(k)) (3.41)where the onstant c := 2/(g0Nc(N
2
c −1)) and qν(kν) is de�ned in Eq. (3.33).Here Lν refers to the number of lattie points in diretion ν and kν takesvalues in the interval (Lν/2, Lν/2] as usual.The vertex Γabcν an be obtained by amputating the external ghost andgluon legs from the three-point funtion of gluon, ghost and anti-ghost �elds.In the MOM sheme onsidered here this yields [CMM04℄

Γabcν (0, q) =
Gabc
ν (0, q)

D(0)G2(q2)
(3.42)where D and G refer to gluon and ghost propagators, respetively, and Gabc

νis given on the lattie by the MC average
Gabc
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(k)

〉
U
. (3.43)



70 Chapter 3 QCD Green's funtions in lattie Landau . . .In this expression Aa
ν(0) denotes the Fourier transform of the gluon �elds

Aax,ν at zero momentum, i.e.
Aa
ν(0) =

1

V

∑

x

Aax,νwith Aax,ν de�ned in Eq. (3.16). M−1 is the inverse of the FP operator inmomentum spae onsidered at non-zero momenta (see Eq. (3.21)). If om-bined with the de�nition in Eq. (3.41) the renormalization onstant Z̃−1
1 (q2)an be estimated by the MC average
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. (3.45)
Aa
ν(0) is the same as de�ned above and φa(k) is given by

φa(k) =
∑
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fabc Im

∑
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ik·y
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(
cos(k · x) · sbxc − sin(k · x) · bxc )

=
∑
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2fabc cos(k · x) · sbxc . (3.46)In the derivation we have used the antisymmetry of fabc, Eq. (3.27) and(3.28). We see that if we alulate the ghost propagator anyway we an usethe set of solutions sc (c = 1, . . . , 8), obtained at an intermediate step, toextrat the ghost-gluon-vertex renormalization onstant Z̃−1(q2) at the samemomenta as the ghost propagator.



Chapter 4
Results for lattie QCDGreen's funtions

I
n this hapter results for lattie QCD in Landau gauge, both in the quenhedand unquenhed ases, are presented. We start with a disussion of systematie�ets due to �nite volumes, disretization and the problem of Gribov opies. Forthis we restrit our attention to the quenhed approximation. The infrared behaviorof the gluon and ghost dressing funtions is analyzed then, along with a disussionof unquenhing e�ets. Subsequently, we report on results for the running ouplingonstant and the renormalization onstant of the ghost-gluon vertex.4.1 General prerequisites4.1.1 Spei�ation of our lattie samplesIn this study we have analyzed pure SU(3) gauge on�gurations, all ther-malized with the standard Wilson gauge ation at three values of the inverseoupling onstant β = 5.8, 6.0 and 6.2. The di�erent lattie sizes studied aregiven in Table 4.1. For thermalization an update yle of one heatbath andfour miro-anonial over-relaxation steps was used.In addition, we have analyzed dynamial SU(3) gauge on�gurations pro-vided to us by the QCDSF ollaboration1. Those on�gurations were gener-ated using the same gauge ation, supplemented with the interation withtwo �avors of lover-improved Wilson fermions. A de�nition of that ationwas given in Eq. (3.12). The di�erent pairs of ouplings (β, κ) are spei�edin Table 4.2 together with the lattie sizes that have been used.1We thank the QCDSF ollaboration, in partiular Gerrit Shierholz and DirkPleiter, for giving us aess to their on�gurations via the International Lattie DataGrid (ILDG). 71



72 Chapter 4 Results for lattie QCD Green's funtions4.1.2 Gauge��xingEah gauge on�guration U was transformed into Landau gauge by searh-ing for a loal gauge transformation g ≡ {gx} that maximizes the funtional
FU [g] de�ned in Eq. (3.14). For this purpose either one of the two algo-rithm ommonly used, namely the over-relaxation (RLX) [MO90a℄ methodor Fourier�aelerated gauge-�xing (FAG) [D+88℄ were employed. Both al-gorithms are iterative in nature and eah iteration-yle inreases the fun-tional FU [g] until a (loal) maximum is reahed2. As stopping riterion notthe funtional itself, but the violation of transversality (see Eq. (3.15)) wasused. In fat, the iteration proess stopped as soon as

max
x

Re Tr
[
(∇µ

gAx,µ)(∇µ
gAx,µ)

†
]
< ε := 10−14 (4.1)was ful�lled at eah lattie site, i.e. the lattie average was even lower. Forsome on�guration we used ε = 10−13 whih is also appropriate.4.1.3 The f-b strategyA subset of our quenhed gauge on�gurations (see Table 4.1) were gauge-�xed more than one in order to investigate the in�uene of the Gribovambiguity of gauge-dependent observables. In [SIMPS05d℄ we have investi-gated suh a dependene, following the strategy of hoosing for eah gaugeon�guration U the �rst (f) and the best (b) gauge opy amongNp opies.Eah opy has been �xed to Landau gauge always starting from a new ran-dom gauge opy of U . As best we have onsidered that opy with largestfuntional value among the Np gauge opies. Of ourse, the �rst gauge opyis as good as any other arbitrarily seleted gauge opy.For eah set of f and b opies we then have measured the ghost andgluon propagators as well as the eigenvalue spetrum of the FP operator (seeChapt. 6) to determine the systemati e�et aused by the Gribov ambiguity.In the following we all this partiular way of studying the dependene onGribov opies as the f-b strategy. Below we shall also motivate why wethink that our values for Np given in Table 4.1 are su�ient for this purpose.Of ourse, the more gauge opies one gets to inspet, the bigger the likelinessthat the opy labeled as b atually represents the absolute maximum of thefuntional in Eq. (3.14). But as it is disussed in more detail below, the ex-petation value of gauge variant quantities, evaluated on b representatives,is onverging more or less rapidly with inreasing number Np.2In App. A.2.1 we ompare both algorithms and analyze how the iteration numberssale with the lattie size.



4.1 General prerequisites 73no. β lattie a−1 [GeV℄ a [fm℄ #onf NpS-1 5.8 164 1.446 0.1364 40 30S-2 ... 244 ... ... 25 40F-1 ... 244 ... ... 40 30S-3 5.8 324 1.446 0.1364 34 1S-4 6.0 164 2.118 0.0932 40 30S-5 ... 244 ... ... 30 40S-6 ... 324 ... ... 40 1S-7 ... 484 ... ... 20 1A-1 ... 243× 48
... ... 30 1A-2 ... 323× 64
... ... 40 1A-3 ... 163× 128
... ... 30 1A-4 6.0 243× 128 2.118 0.0932 30 1F-2 6.2 124 2.914 0.0677 150 20F-3 ... 164 ... ... 100 30S-8 ... 164 ... ... 40 30F-4 ... 244 ... ... 35 30S-9 ... 244 2.914 0.0677 30 40Table 4.1: The β values and lattie sizes used in simulations of the quenhed ase. Alsonumbers of on�gurations used are given. Np spei�es the number of di�erent randomgauge opies onsidered for eah on�guration. The 5th (and 4th) row lists the (inverse)lattie spaings orresponding to β. Labels in the �rst row are used in the text.no. β κ κc ma a [fm℄ a−1 [GeV℄ #onfD-1 5.29 0.13500 0.13641(9) 0.03828 0.0957 2.063 90D-2 5.29 0.13550 0.13641(9) 0.02462 0.0898 2.196 60D-3 5.29 0.13590 0.13641(9) 0.01376 0.0850 2.320 55D-4 5.25 0.13575 0.13625(7) 0.01352 0.0904 2.183 60Table 4.2: The β and κ values of all dynamial gauge on�gurations used in this study.The κc values are taken from Ref. [G+06℄ where also the values for the Sommer sale inlattie units r0/a are spei�ed. The latter were used to assign physial units to a. We alsogive values for ma = 1/2(1/κ− 1/κc). The lattie size is 163 × 32 for the �rst (D-1) and

243 × 48 for the other three sets (D-2, D-3, D-4). The numbers of on�gurations used aregiven in the last row. For all sets Np = 1. Labels in the �rst row are used in the text.



74 Chapter 4 Results for lattie QCD Green's funtions4.1.4 Seletion of momentaOur implementation of the lattie gluon propagator �rst onstruts the lat-tie gauge �elds Aax,µ aording to Eq. (3.17) and then Fourier-transformsthese using a Fast-Fourier transformation (FFT) algorithm3. Beause a FFTprovides us with all lattie momenta kµ at one, the data for the gluon prop-agator D(q2(k)) have been determined for all momenta available.It is obvious from Eq. (3.33) that di�erent lattie momenta kµ give rise tothe same value q2(k). Naively, one would average over all data of D(q2(k))at di�erent kµ but same q2(k). This however leads to systemati errors dueto �nite volume and disretization e�ets. It has been shown [LSWP99℄ thatboth of these systemati errors an be redued by applying two uts on thedata, i.e. only a subset of momenta is used. But within this subset, all datawith same q2(k) are then averaged over all di�erent realizations of kµ andon�gurations.One of these uts, known as the ylinder ut [LSWP99℄, redues errorsdue to �nite lattie spaings. Coneived in general terms, it selets data of
D(k) = D(q2(k)) with k lying in a ylinder with radius of one momentumunit along one of the (lattie) diagonals n̂ = 1/2(±1,±1,±1,±1). To bespei�,

[
4∑

µ=0

(
kµ
Lµ

)2
]
−

[
4∑

µ=0

kµnµ
Lµ

]2

≤ 1

L2
s

(4.2)where Ls is the extension in spatial diretion. In the speial ase of LT = Ls,Eq. (4.2) redues to ∑
µ k

2
µ − (

∑
µ kµn̂µ)

2 ≤ 1. In agreement with [LSWP99℄this reipe has drastially redued lattie artifats for the gluon propagator,in partiular for larger momenta.The other of the two uts is known as the one ut [LSWP99℄. It addresses�nite volume errors by removing all data D(k) with one or more vanishingmomentum omponents kµ. We have applied this ut to our data only forsmaller lattie volumes. In the next setion we shall show in more detailhow �nite volume e�ets have in�uened our data at lower momenta. Inpartiular, if asymmetri lattie geometries are used the one ut is neessary.For the ghost propagator and some other quantities onsidered in thisthesis, the numerial alulation involves an individual inversion of the FPoperator for eah vetor k. Due to limited omputing time we did not hadthe hane to obtain data for all momenta allowed by the uts. However, ourseletion of di�erent k were guided by either uts.3For all FFTs we have employed the FFTW-library [FJ98℄, see also online:http://www.fftw.org.



4.2 Systemati effets on gluon and ghost . . . 754.1.5 Mapping to physial unitsThe β values hosen for the quenhed ase allow us to apply the results ofRef. [NS02℄, giving a parameterization of the funtional dependene of thelattie spaing a, or better of ln(a/r0), on β. Using suh parameterization andthe Sommer sale r0 = 0.5 fm [Som94℄ we obtain for the three values β = 5.8,6.0 and 6.2 a−1 = 1.446 GeV, 2.118 GeV and 2.914 GeV or a = 0.1364 fm,
0.09315 fm and 0.0677 fm, respetively. In our opinion, this mapping between
a and β is more appropriate as another one formerly used by us and others(see [SIMPS05a; SIMPS05b; SO04; LSWP99℄).For our sets of unquenhed gauge on�gurations the values of r0/a wereprovided to us by the QCDSF ollaboration (see Table II in Ref. [G+06℄).Using again r0 = 0.5 fm we an assign to eah pair of β and κ a lattiespaing in physial units. These are given in Table 4.2 together with otherspei�ations.Finally, with the help of Eq. (3.33) we an then map lattie momenta k,or better a2q2(k), to physial momenta q2. If not otherwise stated, q2 isalways given in GeV2.4.2 Systemati e�ets on gluon and ghostpropagators at low momentumIn this setion di�erent systemati e�ets on the gluon and ghost propagatorsare disussed. We start with e�ets due to �nite volume and �nite lattiespaings, followed by a warning to refrain from using quite asymmetri lattiegeometries. Finally, attention is paid to the dependene on Gribov opies.4.2.1 Finite volume and disretization e�etsPreisely beause we have applied the above-mentioned uts to our data,it is quite natural to analyze here the di�erent systemati e�ets on thegluon and ghost propagators of hanging either the lattie spaing a or thephysial volume V . However, due to the preseleted set of momenta for theghost propagator and the three hosen β values, our study is partial andlimited to a region of intermediate momenta. For the gluon propagator thishas been done in more detail by other authors (see e.g. [BBL+01℄).



76 Chapter 4 Results for lattie QCD Green's funtionsFinite volume e�etsKeeping �rst the lattie spaing �xed we have found that both the ghostand gluon dressing funtions alulated at the same physial momentum
q2 derease as the lattie size is inreased. This is illustrated for variousmomenta in Fig. 4.1. There both dressings funtions versus the physialmomentum are shown for di�erent symmetri lattie sizes at β = 5.8, 6.0and 6.2. In ontrast to our study [SIMPS05d℄ here we show data obtainedon f gauge opies, beause the larger lattie sizes were manageable onlywithout repeating gauge-�xing several times.In this �gure we have not dropped data with vanishing momentum om-ponents kµ (i.e. those exluded by the one ut) to emphasize the in�ueneof a �nite volume on those (low) momenta. We also show data from simula-tions on a 84 and 124 lattie. One learly sees that the lower the momentathe larger the e�et due to the �nite volume. In omparison with β = 5.8and 6.0 this is even more drasti at β = 6.2. At this β the lattie spaing isabout a = 0.06 fm. Thus the largest volume onsidered at β = 6.2 is about
(1.4 fm)4, whih is even smaller than the physial volume of a 164 lattie at
β = 5.8.In summary we an state that for both dressing funtions �nite volumee�ets are learly visible at volumes smaller than (2.2 fm)4, whih orrespondsto a 164 lattie at β = 5.8. The e�et grows with dereasing momentum ordereasing lattie size (see the right panels in Fig. 4.1). At larger volumes,however, the data for q > 1 GeV oinide within errors for the di�erentlattie sizes (left and middle panels). For q < 1 GeV we �nd only small �nitevolume e�ets for both dressing funtions at the lowest momentum if dataobtained on a 244, 324 and a 484 lattie at β = 5.8 and 6.0 are onsidered.Disretization errorsBased on our hosen β values and lattie sizes we an pik up equal physi-al volumes (with di�erent oarseness) only approximately. Hene also thephysial momenta are only approximately the same if the ghost and gluondressing funtions are ompared at di�erent β, i.e. at di�erent lattie spa-ings. Therefore, it is di�ult to analyze the systemati e�et of hanging a iffor both dressing funtions this leads to small hidden variations in q2. Conse-quently, in Fig. 4.2 we show data for the ghost and gluon dressing funtionsobtained at approximately the same physial volume V ≈ (2.2 fm)4 for twodi�erent a as funtions of q2. This allows us to disentangle by inspetiona hange of data due to varying a, given the physial dependene of thepropagators on q2. Looking at Fig. 4.2 one onludes that the gluon dressing
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80 Chapter 4 Results for lattie QCD Green's funtionslattie geometries at not so small momenta whih are slightly larger (lower)ompared to those for the ghost (gluon) propagator on symmetri latties.With respet to our disussion of �nite volume e�ets above, we an, however,interpret this observation more generally as a �nite volume e�et aused bythe lower spatial volumes of these asymmetri latties.4.2.3 Faing the problem of Gribov opiesApart from the systemati e�ets inherent in any lattie study, it is knownthat the presene of Gribov opies may also auses a systemati error on thedata of gauge-variant quantities. Below it is shown that this is indeed thease for the ghost propagator, while the in�uene on the gluon propagatorseems to be negligible (i.e. hidden in the statistial noise). In [SIMPS05d℄ wehave investigated this following the f-b strategy introdued in Se. 4.1.3.For eah set of f and b opies we have measured the ghost and gluonpropagator to determine the systemati error aused through the Gribovambiguity.Estimating the number of gauge opiesIn pursuing the f-b strategy, at some stage one has to �gure out how large
Np has to be approximately. This does not mean that we an be on�-dent that the set of best opies then in any respet represents the real ones,i.e. those whih give rise to the absolute maximum of the gauge funtional
FU [g] (Eq. (3.14)) for eah U . It turns out, however, that for eah gauge-variant observable there exists a ertain Np that warrants the onvergeneof that partiular observable.Numerially, it turns out that the dependene of the ghost propagatoron the hoie of the best opy is most severe for the smallest momentum.In addition, this sensitivity depends on the lattie size and β. Therefore westudied �rst the dependene of the ghost and gluon propagators at lowestmomentum (ignoring the one ut) on the (same) best opies as funtion ofthe number of gauge opies Np under inspetion. This was done at β = 6.2where we used 124, 164 and 244 latties. The number of thermalized on�g-urations used for these three lattie sizes are given in [Table 4.1: F-2 to F-4℄.To hek the dependene on β also a simulation at β = 5.8 on a 244 lattiewas performed [Table 4.1: F-1℄.The results of this investigation are shown in Fig. 4.4 and 4.5. Whilethere the ghost propagator is shown as an average over the two realizations
k = (1, 0, 0, 0) and k = (0, 1, 0, 0) of the smallest lattie momentum a2q2(k),



4.2 Systemati effets on gluon and ghost . . . 81
7.2

7.6

8.0

G
(k

)

124 β = 6.2

k=([1,0],0,0)

12

13

14

D
(k

)

k=([1,0,0,0])

0

1

0 5 10 15 20

δF
×

10
−

4

Ncp

12.8

13.2

13.6

G
(k

)

164 β = 6.2

k=([1,0],0,0)

24

26

28

D
(k

)

k=([1,0,0,0])

0

1

0 5 10 15 20 25 30

δF
×

10
−

4

NcpFigure 4.4: The upper panels show the ghost propagator G(k) as average over tworealizations k = (1, 0, 0, 0) and k = (0, 1, 0, 0) of the smallest lattie momentum, measuredalways on the best gauge opy amongNp opies. In the middle panel the same dependeneis shown for the gluon D(k) propagator, however, as average over all four permutationsof k = (1, 0, 0, 0). The lower panels show the relative di�erene δF = 1 − F b/F b ofthe orresponding urrent best funtional values F b to the value F b of the overall bestopy. The data are obtained at β = 6.2 using the lattie sizes 124 (left) and 164 (right).
31

32

33

34

35

G
(k

)

244 β = 6.2

k=([1,0],0,0)

52

54

56

58

60

D
(k

)

k=([1,0,0,0])

0

1

0 5 10 15 20 25 30

δF
×

10
−

4

Ncp

41

42

43

44

G
(k

)

244 β = 5.8

k=([1,0],0,0)

23

24

25

26

D
(k

)

k=([1,0,0,0])

0

1

2

0 5 10 15 20 25 30

δF
×

10
−

4

NcpFigure 4.5: The same as in Fig. 4.4, however, the data refer to β = 5.8 and 6.2 on a 244lattie.



82 Chapter 4 Results for lattie QCD Green's funtions
95

100

105

110

0.1 1 10 100

J
f
c
/J

bc
in

%

q2 [GeV2]

β = 5.8 164

244

β = 6.0 164

244

β = 6.2 164

244

95

100

105

110

0.1 1 10 100

Z
f
c
/Z

bc
in

%

q2 [GeV2]

β = 5.8 164

244

β = 6.0 164

244

β = 6.2 164

244
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Np for the di�erent simulations are given.Gribov opies may ause systemati errorsHaving spei�ed the neessary amount of gauge opies we fous now on thein�uene the Gribov ambiguity might have on the gluon and ghost propaga-tors. To investigate this a ombined study of the gluon and ghost propagatorson the same sets of f and b representatives of our thermalized gauge �eldon�gurations has been performed (see [SIMPS05d℄). This has allowed us toassess the importane of the Gribov opy problem for the ghost propagatorsin the low-momentum region.



4.2 Systemati effets on gluon and ghost . . . 83To be spei� we have generated di�erent sets of quenhed gauge on-�guration using the inverse oupling onstants β = 5.8, 6.0 and 6.2 and thelattie sizes 164 and 244. The orresponding entries in Table 4.1 are S-1,S-2, S-4, S-5, S-8 and S-9. Following our f-b strategy, eah gauge on-�guration U has been �xed to Landau gauge a number of Np times usingover-relaxation and starting always from an random gauge opy of U . Thenfor eah U the �rst (f) and the best (b) gauge opy (among Np opies)form the two ensembles for measurements of the ghost and gluon propagator.In Fig. 4.6 we illustrate the e�et of the di�erent Gribov opies by plottingthe ratios Jf/Jb and Zf/Zb of the ghost and gluon dressing funtions,respetively. Jf and Zf refer to values determined on �rst (f) gauge opies,whereas Jb and Zb to those on best (b) opies. Obviously, in Fig. 4.6 thereis no in�uene visible for the gluon propagator within the statistial noise. Onthe ontrary, for the ghost propagator the Gribov problem an ause O (5%)deviations in the low-momentum region (q < 1 GeV). For better gauge opiesthe ghost dressing funtion beomes less singular in the infrared. This analso be seen in Fig. 4.7 and 4.8 where both f and b data for the ghostpropagator are shown.A loser inspetion of the data in Fig. 4.6 and 4.8 indiates that the in�u-ene of Gribov opies on the ghost propagator beomes weaker for inreasingthe lattie size. In fat, omparing in Fig. 4.6 ratios for the ghost dressingfuntion at q < 1 GeV, the rise at β = 6.0 is obviously larger than that at
β = 5.8. In both ases the data are from simulations on a 244 lattie. Thus,it seems that by inreasing the physial volume (lower β) the e�et of theGribov ambiguity gets smaller if the same physial momentum is onsidered.This we an also dedue from Fig. 4.7 and 4.8. There obviously the di�er-ene between Jf and Jb at lower momentum redues when β dereases. Wethink this observation is not biased by a too small number Np of inspetedgauge opies sine, judging from Fig. 4.4 and 4.5, Np = 40 as spei�ed inTable 4.1 seems to be on the safe side. However, in a future projet oneshould de�nitely hek the ratios on a 324 lattie at β = 6.2 to eliminate thelast doubts.We onlude: the ghost propagator systematially depends on the hoieof Gribov opies, while the impat on the gluon propagator is not resolvablewithin our statistis. However, there are indiations that the dependeneon Gribov opies dereases with inreasing physial volume. This is also inagreement with the data listed in the two lattie studies [BIMMP04; Cu97℄of the SU(2) ghost propagator G, while it is not expliitly stated there. Infat, in Ref. [BIMMP04℄ the ratio Gf/Gb at β = 2.2 on a 84 lattie is largerthan that on a 164 lattie at the same physial momentum. In [BBMPM05℄
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4.3 The infrared behavior of gluon and ghost . . . 85similar indiations have been found for SU(2) taking non-periodi Z(2) trans-formations into aount.Note also that this observation is in agreement with a reent laim byZwanziger aording to whih in the in�nite volume limit averaging overgauge on�gurations in the Gribov region should lead to the same result asaveraging over on�gurations in the fundamental modular region [Zwa04℄.4.3 The infrared behavior of gluon and ghostpropagator in the quenhed andunquenhed aseAfter disussing di�erent systemati e�ets on the gluon and ghost prop-agators or on the orresponding dressing funtions we onentrate now onthe infrared behavior. Thereby, however, we shall study a further system-ati e�et, namely the hange of data at lower momenta due to unquenhingthe theory. As we shall see below, this hange is negligible for the ghostpropagator, but onspiuously large for the gluon propagator at not so smallmomenta.4.3.1 The gluon propagatorFrom the material presented above it is lear that the gluon propagator inLandau gauge does not su�er from the Gribov ambiguity, at least in the mo-mentum range onsidered. Therefore, if we restrit ourselves in the followingto onsider only f gauge opies, the systemati e�et involved will stay mostprobably within statistial errors. This has the advantage of allowing us touse data obtained on larger lattie sizes even though they have been olletedonly from the ensemble of f gauge opies.Just as a reminder, in our simulations the gluon propagator was deter-mined for all momenta at one. However, only a subset of data was used forthe �nal analysis. For details see Se. 4.1.4 where our seletion of momentais spei�ed. The way how lattie momenta are onneted to physial onesis disussed in Se. 4.1.5. Beside this, it is also lear that all data obtainedin lattie simulations have to be subjet to a renormalization, disussed inSe. 3.3.4. In the following the data presented for the gluon and ghost dress-ing funtions, Z and J , are renormalized suh that at the renormalizationpoint µ = 4 GeV they are �xed to Z(µ2, µ2) = J(µ2, µ2) = 1.



86 Chapter 4 Results for lattie QCD Green's funtionsThe quenhed gluon propagatorIn Fig. 4.9 the dressing funtion of the gluon propagator is olleted fromdata at di�erent β values as a funtion of the (physial) momentum q2. Basedon the experienes gained in previous setions only data obtained on largerlattie sizes are presented there. Beside of a ylinder ut applied to all data,a one ut has been imposed to data related only to the lattie sizes 164and 244. Sine �nite volume errors on the larger latties are small, it is notneessary to impose this ut there.Obviously, the data surviving all uts lie along a smooth urve whih notonly is nonperturbatively enhaned around q = 1 GeV as expeted, but alsodereases in a su�iently large range of low momenta. Therefore, it appearsnatural trying to �t the ansatz
fD

(
q2

)
= AD ·

(
q2

)κD (4.3)to the data at lower momenta. As mentioned above, from studies of trunatedDSE for the gluon propagator an infrared exponent κD = 2κ with κ ≈ 0.595is expeted to desribe the infrared behavior [LvS02; Zwa02℄.We have tried to �t this ansatz to the data by imposing a upper-momentumut q2 < q2
i that has been varied. The parameters AD and κD extrated andthe values of q2

i used are listed in Table 4.3. As an be seen in this tableshifting q2
i to larger momenta a �t with ansatz (4.3) beomes worse. Theparameters of our best �t to the data have been given in bold letters and inFig. 4.9 we have plotted the orresponding �tting funtion fD(q2). Althoughthis �t supports the onjeture of an infrared vanishing gluon propagator ourvalue of κD = 0.83(2) is lower than expeted from the DSE studies. However,there is a tendeny for κD to rise as the interval of momenta, ontributing tothe �t, is shrinking towards the infrared. Therefore, we annot exlude theexpeted infrared behavior to beome realized at muh lower momenta.The unquenhed gluon propagatorBeside of our measurements in the quenhed approximation we have alsodetermined the gluon propagator on gauge-�xed opies (gauge-�xed onlyone) of dynamial gauge on�gurations spei�ed in Table 4.2. The resultsof the orresponding dressing funtions are shown in Fig. 4.10. With respetto �nite volume e�ets reported above for the quenhed ase we have plottedin this �gure only data obtained on a 243 × 48 lattie, nevertheless for threedi�erent pairs of β and κ (see D-2, D-3 and D-4 in Table 4.2). Note, the datarelated to the 163 × 32 lattie (D-1) turn out to exhibit similar �nite volumee�ets as reported for quenhed on�gurations.
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Figure 4.9: The dressing funtion of the gluon propagator renormalized at µ = 4 GeVis shown as a funtion of momentum q2 using various lattie sizes. All data have beenobtained from �rst gauge opies in quenhed simulations (see Table 4.1). The line refers toan infrared �t on the data as explained in the text. The momentum q2i marks the largestmomentum used for this �t.
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Figure 4.10: The same as in Fig. 4.9, inluding now data obtained on �rst gauge opies ofunquenhed on�gurations (see D-2 to D-4 in Table 4.2). For omparison some quenheddata at β = 6.0 [Table 4.1: S-6, S-7℄ have been inluded in this �gure as well. A dottedline onneting quenhed data is drawn to guide the eye.



88 Chapter 4 Results for lattie QCD Green's funtionsIn order to perform a omparison with our quenhed data with the great-est of ease some of the quenhed data have been inluded in this �gure aswell, namely the results at β = 6.0 assoiated with a 324 and a 484 lattie.The lattie spaing assoiated with this β is omparable to those of the dy-namial on�gurations. As above the dressing funtions were renormalizedat µ = 4 GeV.As an be seen from Fig. 4.10, the unquenhing e�et beomes learlyvisible for the gluon dressing funtion, in partiular around q2 ≃ 1GeV2.There the non-perturbative enhanement, harateristi to this funtion, isdrastially redued ompared to the quenhed data (ma = ∞). It also be-omes softer as the quark mass is dereasing, even though this is a small ef-fet. This has been observed also in reent lattie omputations of the gluonpropagator using on�gurations generated with dynamial AsqTad-improvedstaggered quarks [BHL+04℄ as well as from unquenhing studies for the ghostand gluon propagators within the DSE approah [FAC+06; FWC05; FA03℄.We refer also to reent lattie studies with dynamial Kogut-Susskind andWilson fermions [FN05a; FN05b℄. The di�erene between quenhed and un-quenhed data in the ultraviolet asymptoti tail is onsistent with what isexpeted from perturbation theory (see Se. 1.3.4).Unfortunately, the amount of data olleted for momenta in the range
q2 < 1GeV2 does not allow for a �t to the ansatz given in Eq. (4.3). In-tuitively, one may guess, looking at the low�momentum tendeny of theunquenhed data points in Fig. 4.10, that in the infrared the unquenhedgluon dressing funtion might math that of the quenhed ase.4.3.2 The ghost propagatorIn the disussions of di�erent systemati e�et we have found that the Gribovambiguity has an in�uene on the ghost propagator. Nevertheless, in Fig. 4.8we have also seen that even though the e�et is visible in the data, thesystemati error one would enounter by negleting the Gribov opy problemis not that large. Sine at present our data olleted on f gauge opies overmuh lower momenta, we analyze in the following only those. Inidentally,this also allows for a fair omparison of our quenhed and unquenhed data.The quenhed ghost propagatorThe ghost dressing funtion has been determined on the same gauge on-�gurations as that of the gluon propagator disussed above. However, thelist of momenta studied is muh shorter than that of the gluon propagator.Anyway, we have tried to over as muh as possible the whole range of mo-



4.3 The infrared behavior of gluon and ghost . . . 89menta with speial fous on the infrared region. The seletion of momentawas guided by the ylinder ut and for smaller latties sizes sharpened bythe one ut.Our results for the quenhed ghost dressing funtion are shown in Fig. 4.11.As for the gluon dressing funtion we used µ = 4 GeV as renormalizationpoint suh that J(µ2, µ2) = 1. The data all lie along a smooth urve. Thuswe may onlude that both ylinder and one ut work well also for the ghostpropagator. Note that in ontrast to the gluon dressing funtion here a oneut has not been imposed on a 244 lattie.As expeted the ghost dressing funtion seems to diverge with dereasingmomenta and we have tried to �t the infrared behavior again by an ansatzmotivated through the mentioned studies of the ghost propagator within theDSE approah. To be spei�, we �tted the ansatz
fG

(
q2

)
= AG ·

(
q2

)−κG (4.4)to the data at lower momenta. From the mentioned studies one usuallyexpets to get κG ≈ 0.595 [LvS02; Zwa02℄. Even more importantly, oneexpets κG = 2κD to hold. See below for a disussion about that.The ansatz (4.4) has been �tted to our data by imposing an upper mo-mentum ut q2 < q2
i . However, in ontrast to the gluon dressing funtion,here the parameter AG and κG turn out to be more robust against shifting

q2
i . This an be seen in Table 4.3 where the parameters obtained are given.In Fig. 4.11 we show the orresponding �tting funtion. Even though dataat the lowest three momenta available on a 244 lattie are shown in Fig. 4.11they do not ontribute to the �t. We also have used data only at β = 6.0,beause inluding data at β = 5.8 in the �t makes it even worse.Our �ts to the data suggest that κG = 0.20(1) whih is far away fromvalues larger than 0.5. Therefore, we annot on�rm the expeted infraredexponent κ ≈ 0.595 on the basis of our data. Also the not so small valuesfound for χ2/ndf indiate that the power ansatz (4.4) seems to be not reason-able for the range of momenta onsidered. Note also that the linear rise ofthe data in Fig. 4.11 (momentum log-axis) for dereasing momenta suggestthe ghost dressing funtion might diverge logarithmially at least in the on-sidered range of momenta. However, we do not know arguments that wouldsupport this.Together with our results for the gluon dressing funtion we an neitheron�rm the expeted values of the infrared exponents nor that there therelation

κD − 2κG = ∆holds with ∆ = 0, at least from the data available to us. Our �ts yield
∆ ≈ 0.43. Furthermore, one should remark here that even though we have



90 Chapter 4 Results for lattie QCD Green's funtionsghost gluon
q2
i AG κG χ2/ndf AD κD χ2/ndf0.16 � � � 5.0(3) 0.83(2) 1.20.20 � � � 5.1(3) 0.84(3) 3.20.25 1.55(5) 0.20(2) 3.8 4.4(2) 0.77(3) 8.60.35 1.53(3) 0.20(1) 4.0 4.0(1) 0.72(2) 9.80.55 1.53(1) 0.20(1) 3.1 3.3(1) 0.62(3) 38.00.70 1.51(1) 0.21(1) 4.3 � � �Table 4.3: Parameter extrated orresponding to the �tting Ansätze (4.4) and (4.3) forthe ghost and gluon dressing funtion, respetively. The �rst row spei�es the upper-momentum uto� q2i , i.e. q2 < q2i . Bold letters indiate parameters used for the �ttingfuntion shown in Fig. 4.11 and 4.9, respetively.�tted the Ansätze (4.4) and (4.3) to the orresponding dressing funtions, the�ts are quite unstable. For the ghost dressing funtion the �tting funtiondoes even not really desribe the tendeny of data towards the infrared (seeFig. 4.11).The unquenhed ghost propagatorIn Fig. 4.12 we present our full QCD result for the ghost dressing funtions.There we have not disard data at the lowest on-axis momentum in order toillustrate the systemati e�et enountered through the asymmetri lattiegeometry. For omparison, seleted data of the quenhed ase (i.e. for in�nitequark mass) are also shown, namely those on 324 and 484 lattie at β = 6.0.As in the quenhed ase the dressing funtion has been renormalized suhthat J(µ2, µ2) = 1 at µ = 4 GeV.In ontrast to the gluon dressing funtion, in Fig. 4.12 the unquenhinge�et is very small. In the ultraviolet the unquenhed data are slightly lowerand at lower momenta they are slightly larger than the quenhed data, butaltogether the e�et stays within error bars and thus an be negleted inthe region of momenta onsidered here. Negligible unquenhing e�et are inagreement with what is expeted from unquenhing studies for the ghost andgluon propagators within the DSE approah [FAC+06; FA03℄. We refer alsoto reent lattie studies with dynamial Kogut-Susskind and Wilson fermions[FN05a; FN05b℄. Thus, even though we annot on�rm the predited infraredexponent (from the DSE studies), we a�rm that the in�uene of fermions onthe infrared behavior of the ghost propagator is negligible.
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Figure 4.11: The dressing funtion of the ghost propagator renormalized at µ = 4 GeVis shown as a funtion of momentum q2 using data from various lattie sizes. All datahave been obtained from �rst gauge opies in quenhed simulations (see Table 4.1). Theline refers to an infrared �t to the data as explained in the text. The momentum q2i marksthe largest momentum used for this �t.
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Figure 4.12: The same as in Fig. 4.11, however, most of the data are obtained on �rstgauge opies of unquenhed on�gurations using a 243 × 48 lattie (see D-2 to D-4 inTable 4.2). For omparison, some quenhed data at β = 6.0 [Table 4.1: S-6, S-7℄ havebeen inluded into this �gure as well. A dotted line onneting quenhed data is drawn toguide the eye. The unquenhed data at lowest momentum refer to the lattie momentum
k = (0, 0, 0, 1) on a 243 × 48 lattie and are most probably a�eted by lattie-asymmetrye�ets.



92 Chapter 4 Results for lattie QCD Green's funtions4.4 The running oupling and the ghost-gluonvertexAfter extensively reporting on results obtained for the gluon and ghost dress-ing funtions, now we fous on the running oupling onstant αs(q2). Asexplained in Se. 2.2.2, αs(q2) may be de�ned by a renormalization-group-invariant ombination of the gluon and ghost dressing funtions (Eq. (2.10))
αs(q

2) = αs(µ
2)Z(q2, µ2)J2(q2, µ2). (4.5)Remember that this de�nition relies on the assumption that the ghost-gluonvertex in Landau gauge stays bare also beyond perturbation theory. Belowwe give numerial evidene on�rming Z̃1 ≈ 1 in a MOM sheme where thegluon momentum equals zero. This we show for both the quenhed and un-quenhed ase of SU(3). Similar results indiating this, diretly [CMM04℄and indiretly [BCLM04℄, were presented in studies of the quenhed SU(2)gauge theory, but also in semiperturbative alulations within the DSE ap-proah [SMWA05℄.4.4.1 Results for the running oupling onstantBased on our data for the renormalized gluon and ghost dressing funtions,we have estimated the produt in Eq. (4.5) using the bootstrap method withdrawing 500 random samples. Sine the ghost-gluon-vertex renormalizationonstant Z̃1 has been set to one, there is an overall normalization fator whihhas been �xed by �tting the data for q2 > q2

c to the well-known perturbativeresults of the running oupling α2-loop at 2-loop order (see also [BCLM04℄).De�ning x ≡ q2/Λ22-loop, the 2-loop running oupling is given by
α2-loop(x) =

4π

β0 ln x

{
1 − 2β1

β2
0

ln(ln x)

ln x

}
. (4.6)The β-funtion oe�ients β0 and β1 have been de�ned in Eq. (1.45a) and(1.45b). They are independent of the renormalization presription. Thevalue of Λ2-loop has been �xed by the same �t. The lower bound q2

c has beenhosen suh that an optimal value for χ2/ndf has been ahieved.The results are shown in Fig. 4.13. There also the 1-loop ontributionis shown where we used the lower bound q2
c = 50 GeV2. The best �t of the2-loop expression to the data gives Λ2-loop = 1.15(15) GeV (χ2/ndf = 7.5),while Λ1-loop = 0.75(30) GeV is obtained (χ2/ndf = 5.2) using just the 1-looppart. For the 2-loop expression we used q2

c = 30 GeV2. The value for Λ2-loop
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Figure 4.13: The running oupling αs(q
2) as a funtion of the momentum q2. The datarefer to �rst (f) gauge opies of quenhed on�gurations.
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Figure 4.14: The running oupling αs(q
2) as a funtion of momentum q2 determined ongauge-�xed on�gurations in the unquenhed ase. For omparison, we also show quenheddata (rosses) obtained at β = 6.0 on a 324 and 484 lattie.



94 Chapter 4 Results for lattie QCD Green's funtionsis similar within errors to the SU(2) result given in Ref. [BCLM04℄. Notethat we have imposed again a one ut to data obtained on a 164 and 244lattie.Approahing the infrared limit in Fig. 4.13 one learly sees αs(q2) inreas-ing for q2 > 0.4 GeV2. However, after passing a maximum at q2 ≈ 0.4 GeV2

αs(q
2) dereases again. The same behavior is found on our sets of dynam-ial gauge on�gurations. These results are presented in Fig. 4.14 wherequenhed data (β = 6.0: 324 and 484) are also shown for omparison. Infat, looking at Fig. 4.14 we learly see that the same turnover, as found inthe quenhed ase, an be assumed for the unquenhed ase, even thoughthe data at the lowest (on-axis) momenta have to be taken with speial are.(See our disussion onerning systemati e�ets due to asymmetri latties.)Therefore, the data points at q2 ≃ 0.1GeV2 have to be heked arefully onlarger symmetri latties, in order to eliminate the last doubts.We observe a quite lear unquenhing e�et for αs(q2) extending from theperturbative range down to the infrared region. We think that this is ausedin the majority due to unquenhing e�ets as found for the gluon propagatorin Se. 4.3.1.Note that a similar infrared behavior of αs(q2) as presented here hasbeen observed in other lattie studies [FN04a; FN04b℄. But opposed toRef. [FN04b℄ we argue that the existene of a turnover is independent onthe hoie of Gribov opies. In fat, qualitatively we have found the samebehavior if αs(q2) is alulated on b gauge opies. To illustrate this, inFig. 4.15 we show the orresponding data extrated in b opies. There wehave not impose the one ut on data assoiated with the 244 lattie. Ob-viously, αs(q2) dereases also in this ase and a dereasing running ouplingonstant is not due to restriting to f gauge opies. The values for Λ1-loopand Λ2-loop are the same within error bars as obtained on f gauge opies.We should remark here that our observation of an infrared dereasingrunning oupling is in agreement with reent studies of DSE results ob-tained on a torus [FAR02; FA02; FGA06; FP06℄. In those studies αs(q2)was shown to tend to zero for q2 → 0 in one-to-one orrespondene withwhat one �nds on the lattie. This would indiate very strong �nite-sizee�ets and a slow onvergene to the in�nite-volume limit. However, on thelattie we do not �nd any indiation for suh a strong �nite-size e�et, ex-ept the onvergene to the in�nite-volume limit would be extremely slow.An alternative resolution of this problem has been proposed by Bouaudet al. [B+05b℄. These authors have argued4 that the ghost-gluon vertex inthe infrared might ontain q2-dependent ontributions whih ould modify4We thank A. Lokhov for bringing us the arguments in [B+05b℄ to our attention.
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Figure 4.15: The running oupling αs(q
2) as a funtion of momentum q2 determined onbest (b) gauge opies of quenhed on�gurations.the DSE results for the mentioned propagators. Note, however, that reentDSE studies of the ghost-gluon vertex did not provide hints for suh a modi-�ation [SMWA05; AFLE05℄. Thus, at present there seems to be no solutionof the puzzle.For ompleteness we mention that running oupling onstants dereas-ing in the infrared have also been found in lattie studies of the 3-gluonvertex [BLM+98a; B+03℄ and the quark-gluon vertex [SK02℄.4.4.2 The vertex renormalization onstantFor disussing the infrared behavior of the running oupling it is interestingto have an independent hek of whether the renormalization onstant Z̃1really stays onstant for all renormalization points. Remember, this is alwaysassumed if renormalization-group invariane is demonstrated for the produtof gluon and ghost dressing funtions in Eq. (4.5) and hene is important forthis partiular de�nition of a nonperturbative running oupling onstant.In priniple the �niteness of Z̃1 has to be heked in eah renormalizationsheme separately. A �rst attempt to alulate Z̃1 on the lattie was madein [CMM04℄ for quenhed SU(2) gauge theory using the partiular renormal-ization sheme of zero gluon momentum (see also [BCLM04℄ for an indiretdetermination). To on�rm these �ndings also for the gauge group SU(3) in
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Figure 4.17: The same as in Fig. 4.16, butthe data are obtained on unquenhed gaugeon�gurations using a 243×48 lattie. Thepoints at the lowest momentum refer to theon-axis momentum k = (0, 0, 0, 1) on thatlattie. Labels refer to the parameters κand β given in Table 4.2.the quenhed and unquenhed ase, we have used the same renormalizationsheme as in [CMM04℄ for a alulation of Z̃1. The neessary observable tobe estimated on the lattie has been derived in Se. 3.3.5 (see Eq. (3.44)).Sine this is a ombination of MC averages for the ghost and gluon propa-gators and for the 3-point funtion Gabc
µ of gluon, ghost and anti-ghost �elds(see Eq. (3.43) and (3.45)) we used again the Bootstrap method to estimateerrors.Our data for the inverse of Z̃1 from quenhed simulations are shown inFig. 4.16. To simplify matters, we have restrited ourselves to present onlydata obtained on the largest lattie available at β = 5.8 and 6.0. For dataon smaller latties we refer to our reent onferene proeeding [SIMPS06℄.The data there agree within errors with those presented here.In Fig. 4.16 we learly see that Z̃1 stays onstant in the region of momentaonsidered. This holds for the data at both β = 5.8 and β = 6.0. Onlya slight variation is visible in the interval 0.3 GeV2 ≤ q2 ≤ 2 GeV2, butthis remains within error bars. The same an be onluded from our dataobtained on unquenhed on�gurations using a 243 × 48 lattie. These areshown in Fig. 4.17 for three di�erent settings of κ and β (see the data setentries D-2, D-3, D-4 in Table 4.2). For all three ases, the renormalizationonstant Z̃1 does not di�er beyond error bars from being onstant, but thereis a ertain trend of deviation from unity whih systematially depends on



4.4 The running oupling and the ghost-gluon vertex 97the parameter setting (β, κ).For eah tuple there is also one data point at the lowest (on-axis) mo-mentum available on a 243 × 48 lattie (i.e. k = (0, 0, 0, 1)) whih is muhlower than unity. This partiular deviation we also �nd at the lowest on-axismomentum in our data obtained on quenhed on�gurations at β = 6.0 whenusing a 243 × 48 and 323 × 64 lattie (not shown). Sine the data taken insimulations on a 484 lattie at the same β do not show suh a deviation,see Fig. 4.16, this e�et is most probably aused by the asymmetri lattiegeometry as it was reported also for the propagators in Se. 4.2.1. Dataat this momentum on an asymmetri lattie would have to be ignored. Toeliminate the last doubts we have also inspeted our data for Z̃1 obtainedat the lowest on-axis momenta on a 243 × 128 lattie at β = 6.0. We �ndfor these data that this partiular deviation is even more dramati. Hene,asymmetri latties are not appropriate for studying the ghost-gluon-vertexrenormalization onstant at very low momentum.In summary, our results for the quenhed and unquenhed ase of SU(3)are in full agreement with those presented in [CMM04℄ for the ase of SU(2).Even though there is a weak deviation of Z̃1 from being onstant this will nothave a dramati in�uene on the running oupling. Together with our datafor the running oupling we an thus on�rm that in the speialMOM shemeonsidered here (gluon momentum equals zero) the produt in Eq. (4.5) isindeed renormalization-group invariant and thus de�nes a nonperturbativerunning oupling whih monotonously dereases with dereasing momentumin the range q2 < 0.3 GeV2.It is worthwhile to ontinue the lattie alulations of Z̃1 using otherrenormalization shemes, for example the sheme with a symmetri subtra-tion point. This has been undertaken in a reent study [SMWA05℄ where asemiperturbative alulation of Z̃1 within the DSE approah has been pre-sented. There are also data shown for the same renormalization sheme asused by us whih qualitatively agree with our results and those in [CMM04℄.
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Chapter 5
Confinement riteria underthe lattie mirosope

H
ere we disuss data for the SU(3) Landau gauge gluon and ghost propagatorsin the light of the Gribov-Zwanziger horizon ondition and the Kugo-Ojimaon�nement senario. For the latter we also present reent data for the funtion

u(q2) whose zero-momentum limit u(q2 = 0), the Kugo-Ojima on�nement param-eter, is expeted to be minus one. Note that our lattie estimate of the funtion
u(q2) is (to our knowledge) the �rst presented in the literature. The data have beenrenormalized using a minimization proess, developed here for the �rst time. Weshow that, under the assumption the ghost dressing funtion being divergent in theinfrared, the funtion u(q2) will reah minus one at zero momentum. Finally, wedisuss numerial evidene for the gluon propagator violating re�etion positivityexpliitly.5.1 Is the Gribov-Zwanziger horizon onditionsatis�ed?The Gribov�Zwanziger horizon ondition has been introdued in Se. 2.3.2.It states that on the one hand the ghost propagator in Landau gauge divergesin the limit of vanishing momenta more rapidly than 1/q2, whereas on theother hand the gluon propagator vanishes in the same limit.It should be lear from the disussion in the previous hapter that ourdata support the piture of a diverging ghost propagator, even though weannot on�rm an infrared exponent κG > 0.5, a value expeted from studiesof the ghost DS equation. Therefore, the Gribov�Zwanziger horizon onditionappears to be satis�ed with respet to our data of the ghost propagator inLandau gauge.Conerning the gluon propagator, however, we annot give a onlusivestatement of whether it vanishes or stays �nite in the infrared. We havetried to �t the ansatz given in Eq. (4.3) to our data for the gluon dressing99



100 Chapter 5 Confinement riteria under the lattie . . .funtion. As mentioned in Se. 4.3.1 this ansatz is reasonable only if appliedto data at the lowest momenta available to us. We also ould not on�rmthe orresponding value of the infrared exponent as expeted from studies ofthe gluon DS equation. In any ase, with respets to the range of momentaavailable to us we annot state without doubt whether a power law as thatgiven in Eq. (4.3) really desribes the behavior of the gluon dressing funtionat muh lower momenta. Therefore, we annot judge on the existene of aninfrared �nite or vanishing gluon propagator, even though our �t with ansatzEq. (4.3) supports the latter option.There have been attempts in the reent literature [BBL+01; B+06℄ toargue for a �nite gluon propagator in the infrared based on lattie data forthe gluon propagator at zero four-momentum, i.e.
D(0) =

1

4V (N2
c − 1)

∑

µ,a

∑

x,y

〈
Aax,µA

a
x+y,µ

〉
U
.Here Aax,µ refers to the lattie gluon �eld as de�ned in Eq. (3.17) and Vrepresent the volume in lattie units. For notations we refer to Chapt. 3. Inorder to estimate the orresponding value D∞(0) in the in�nite volume limit,in the Refs. [BBL+01; B+06℄ the ansatz [BBL+01℄

D(0) =
c

V
+ D̂∞(0) (5.1)has been applied to the data of D(0) for di�erent volumes1. To set thesale for D(0), the gluon propagator D(q2, µ2) has been renormalized inMOM sheme hoosing as renormalization point µ = 4 GeV. In doing so,both studies [BBL+01; B+06℄ independently on�rm a manifest �nite value,namely

D̂∞(0;µ = 4 GeV) =

{
7.95(13) GeV−2 [BBL+01℄
9.10(30) GeV−2 [B+06℄ .An extrapolation of our data yields the estimate

D̂∞(0;µ = 4 GeV) = 8.27(10) GeV−2that approximately agrees with those of these studies. See also Fig. 5.1. Notethat for c we obtain c = 102(18) fm4GeV−2 whih agrees within errors withthat in [B+06℄, but not with [BBL+01℄. In [BBL+01℄ the tree-level, mean-�eld improved gauge ation of Lüsher and Weisz [Wei83; WW84; LW85℄has been employed, while in [B+06℄ and in this thesis the standard Wilson
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Figure 5.1: The gluon propagator at zero four-momentum, D(0), plotted as a funtionof the inverse lattie volume. For omparison, data of the Adelaide group given in[BBL+01℄ have been inluded into this �gure, too. The line refers to a �t of the linearansatz given in Eq. (5.1) to the data at β = 5.8 and 6.0.gauge ation has been used. This might be the reason for the deviation in c.It is important to note that estimates of D̂∞ have to be taken with au-tion, beause these atually do not represent the true in�nite volume limit
D∞(0). It is also not lear whether a linear ansatz is orret [BBL+01℄. Inthis ontext, it is worthwhile to reall a omment already made in [BBL+01℄onerning the in�nite volume limit. This annot be taken suh simple asoutlined above. In fat, the in�nite volume limit is given by

D∞(0) = lim
V→∞

lim
a→0

V=onst. D(0). (5.2)That is, the ontinuum limit (at �xed physial volume) has to be taken beforethe in�nite volume limit. This was not done for the given estimates of D̂∞ andthus a omplete systemati extrapolation to the in�nite volume limit remainsto be arried out yet [BBL+01℄. For this one would �rst need to alulate
D(0) using di�erent lattie spaings a, while keeping the physial volume�xed. The results would then have to be extrapolated to the ontinuum limit.Repeating this for a variety of lattie volumes the di�erent ontinuum limits1Note that we distinguish between D̂∞(0) and D∞(0). See below for a disussion.



102 Chapter 5 Confinement riteria under the lattie . . .obtained one ould try to extrapolate to the in�nite volume limit D∞(0).This, of ourse, is the essene of the limit in Eq. (5.2).Therefore, we think a onlusive statement of whether in Landau gaugethe gluon propagator at zero momentum is �nite or not annot be madeneither from our data at zero and non-zero momentum nor from the dataavailable in the literature at present.5.2 The Kugo-Ojima on�nement parameterIn setion Se. 2.3.1 we have introdued the Kugo-Ojima on�nement se-nario. Aording to this senario, olored asymptoti states, if any, are on-�ned from the physial state spae of QCD in ovariant gauges by the quar-tet mehanism, if for the funtion u(q2)δab := uab(q2), with uab(q2) de�ned inEq. (2.17), the zero-momentum limit
u := lim

q2→0
u(q2) = −1 (5.3)is realized. As pointed out by Kugo [Kug95℄, in Landau gauge this limit isonneted to an infrared diverging ghost dressing funtion J . This an beeasily seen from Eq. (2.18) whih yields

1

J(q2)
= 1 + u(q2) + q2v(q2)

q2→0−→ 1 + u(0) .We have made an attempt to on�rm the realization of the limit inEq. (5.3) � here for lattie QCD in Landau gauge � not only by givingnumerial evidene for a diverging ghost dressing funtion (see Se. 4.3.2),but also by estimating the funtion u(q2) for di�erent momenta q2 from ourlattie simulations.5.2.1 Expeted infrared behaviorBefore disussing numerial results it is interesting to �gure out �rst whatan be expeted for the momentum dependene of u(q2) in the infrared. Infat, due to Eq. (2.18) we know that in the limit of vanishing momenta thefuntion u(q2) approahes the asymptote
ũ(q2, µ2) :=

1

J(q2, µ2)
− 1 . (5.4)If we assume that, for example, the power law J(q2, µ2) ∝ (q2/µ2)−κ de-sribes the ghost dressing funtion at very low momenta, then the asymptote
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Figure 5.2: The asymptote −ũ(q2, µ2) at low momentum (see Eq. (5.4)) is illustratedin logarithmi and linear momentum sale. As ansatz for the ghost dressing funtion weused J(q2, µ2) = (q2/µ2)−κ with µ = 4 GeV. The κ values are 0.2, 0.4 and 0.6.
ũ(q2, µ2), and so the funtion u(q2, µ2), should expose an infrared behavior asillustrated in Fig. 5.2 for di�erent infrared exponents κ. Even if suh a powerlaw will turn out not to be appropriate for J(q2, µ2) � the results presentedin Se. 4.3.2 at least give rise to some doubt � it is ommonly believed (andin agreement with our results) that the ghost dressing funtion diverges inthe infrared; and this of ourse independent of the renormalization point µhosen. Therefore, based on Eq. (2.18) the funtion u(q2, µ2) is expeted toreah minus one and to join ũ(q2, µ2) at vanishing momentum, irrespetiveof the hosen µ2.To on�rm this point with numerial data, in Fig. 5.3 we show ũ(q2, µ2)as obtained from our data for the ghost dressing funtions renormalized atdi�erent momenta µ. In this �gure we learly see that the di�erent urvesreferring to di�erent µ approah eah other slowly with dereasing momen-tum. With respet to Fig. 5.2 we expet that all these urves run slowlytowards minus one in the zero momentum limit by de�nition (see Eq. (5.4))if the ghost dressing funtion diverges in the infrared no matter how.5.2.2 Expliit lattie data for the funtion u(q2)Apart from the asymptotes ũ relying solely on data for the ghost dressingfuntions we have also alulated on the lattie the funtion

uL(q
2) =

1

N2
c − 1

N2
c −1∑

a=1

uaa(q2)expliitly in terms of MC averages for uab(q2) at di�erent q2 (see Eq. (3.38)).These estimates were obtained on 324 lattie from our (quenhed) gauge-�xed
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Figure 5.3: The asymptote −ũ(q2, µ2) as de�ned in Eq. (5.4) is shown as a funtionof momentum q2. For the ghost dressing funtion we used our data at β = 5.8 and 6.0renormalized either at µ = 3, 4 or 7 GeV. The lattie size is 324. Lines are drawn to guidethe eye.on�gurations thermalized at β = 5.8 and 6.0 (see runs labeled as S-3 andS-6 in Table 4.1).RenormalizationAs for other observables the lattie data of uL(q2) ≡ uL(q
2, a2) have to berenormalized yet, i.e. assuming multipliative renormalizability we have tode�ne a fator Zu that relates the bare estimate uL to a renormalized one

u(q2, µ2) = Zu(µ
2, a2) · uL(q2, a2) .For this we have made use again of Eq. (2.18). It relates the renormalizedghost dressing funtion J(q2, µ2) to the renormalized funtion u(q2, µ2) at�nite q2.

1

J(q2, µ2)
= 1 + u(q2, µ2) + q2v(q2) (5.5)As in Se. 4.3.2, we have renormalized the ghost dressing funtion at therenormalization point µ = 4 GeV and so with Eq. (5.5) we an renormalize

u(q2, µ2) at the same point. However, the funtion v(q2) (see [Kug95℄) is notavailable to us, ausing some di�ulties for the determination of Zu(µ2, a2).
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Zu A B C χ2/ndf1.146(7) 0.22(3) -0.21(5) 0.06(3) 0.59Table 5.1: The parameters obtained by MINUIT after minimization of the funtion χ2de�ned in Eq. (5.6). For this we used our data of uL(q2) and J(q2, µ2 = (4 GeV)2) for

q2 < 2 GeV2 at β = 5.8 and 6.0. The value Zu has been used to renormalize u at µ = 4 GeVin Fig. 5.4.Nevertheless, we know that for small momenta q2 the term q2v(q2) be-omes less dominant in Eq. (5.5). With the ansatz of a Taylor expansion
v(q2) = A+Bq2 + Cq4 + . . .we have made a χ2 �t using 2

χ2 :=
∑

q2i

(
1 + ZuuL(q

2
i ) −

1

J(q2
i , µ

2)
+ Aq2

i +Bq4
i + Cq6

i

)2 (5.6)and our lattie data for uL(q2) and for J(q2, µ2) renormalized at µ = 4 GeV.By applying the momentum ut q2
i < 2 GeV2 we have gained in this way Zuand the other parameters A, B and C. The parameters are given in Table 5.1together with a value for χ2/ndf.Of ourse, the number of terms in the Taylor expansion depends on the re-gion of momenta onsidered. We have found that the given order is neessary,but also su�ient in our ase. Note that due to the number of parametersand the amount of data available for q2 < 2 GeV2 in the minimization pro-ess we have not distinguished between data at β = 5.8 and 6.0. In general,the fator Zu(µ2, a2) di�ers for the two β values, but due to multipliativerenormalization there is an additional fator that relates both. From datainspetion we found that we an approximate this to be one in our ase.Disussion of numerial resultsIn Fig. 5.4 we show data for the renormalized funtion u(q2, µ2) at β = 5.8and 6.0 as a funtion of momentum q2. Sine the ghost dressing funtionwas renormalized at µ = 4 GeV so was the funtion u(q2, µ2) mediated bythe minimization proess mentioned above. In this �gure we also show datafor the asymptote ũ(q2, µ2) renormalized at the same µ. Note that only Zuhas been of relevane for providing this �gure.2For minimization we used the new C++ implementation of the library MINUIT [JW04℄
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Figure 5.4: Data for the funtion u(q2, µ2) at β = 5.8 and 6.0 are shown using full andopen squares. Additionally, data of the asymptote ũ(q2, µ2) are shown at the same βvalues (irles). All data refer to the same quenhed on�gurations on a 324 lattie andare renormalized at µ = 4 GeV as desribed in the text. Lines are drawn to guide the eye.We learly see that ũ(q2, µ2) and u(q2, µ2) approah eah other with de-reasing momenta. Therefore, as the ghost dressing funtion is expeted todiverge in the infrared, we expet u(q2, µ2) to approah minus one as doesthe asymptote ũ(q2, µ2) by de�nition. In Fig. 5.4 the growth of −u(q2, µ2)beomes slower as the momentum dereases, but this behavior we antiipatefrom our disussion above (see Fig. 5.2) onerning the infrared behaviorexpeted for ũ.Although we annot give a reasonable extrapolation of u(q2, µ2) towardsthe zero momentum limit, our results for both ũ(q2, µ2) and u(q2, µ2) on-�rm that in the infrared the realization of the limit given in Eq. (5.3) anbe studied solely in terms of the ghost propagator. As this propagator wehave found to diverge stronger than 1/q2, the funtion u(q2, µ2) will reahminus one at zero momentum. This is beause in the infrared the di�erene
|u(q2, µ2) − ũ(q2, µ2)| seems to vanish as we have on�rmed in this study forthe �rst time (see Fig. 5.4).Here a remark is in order. The studies of Furui and Nakajima [NF00b;NF00a; FN04a; FN04b℄) yield as a limit for u(q2, µ2) values ranging between
−0.7 and −0.83. We annot on�rm these results in our study, beausewith respet to our data suh limits would orrespond to linear or quadrati



5.3 The gluon propagator expliitly violates . . . 107extrapolations towards the zero momentum limit in a �gure using a linearmomentum sale. However, linear or quadrati extrapolations would not bevalid in this ontext.5.3 The gluon propagator expliitly violatesre�etion positivityIn this setion we will show that our data for the gluon propagator presentedin Se. 4.3 show evidene for a violation of re�etion positivity. To substanti-ate this, a subset of data obtained on our larger latties has been seleted forboth the quenhed and the unquenhed ase and then the temporal orrela-tor C(t,p2 = 0) of the gluon propagator has been alulated. The ontinuumexpression of this orrelator is de�ned in Eq. (2.23); and the lattie equivalentis given by
C(t) ≡ C(t,p2 = 0) :=

1√
V

LT−1∑

k4=0

D(k4, 0) exp

{
2πik4t

LT

} (5.7)where LT denotes the number of lattie points in µ = 4 (time) diretion and
D refers to the gluon propagator in momentum spae.Starting with the quenhed gluon propagator at β = 6.0, the results of theorrelator are shown in Fig. 5.5 for the lattie sizes 324 and 484. It is obviousfrom this �gure that the gluon propagator violates re�etion positivity in a�nite range of t. The same holds for the gluon propagator in the unquenhedase as an be seen in Fig. 5.6. There we made use of our measurementsof the gluon propagator on a 243 × 48 lattie at di�erent values of β and κ.These values are given in Table 4.2 and the labels D-2, D-3 and D-4 refer tothese.Following Refs. [AvS01; A+97; CMT05℄, the statement of re�etion-posi-tivity violation an be made even more lear by onsidering the quantity

G(t, a) :=
C(t)C(t+ 2a) − C2(t+ a)

a2
. (5.8)This is a disretized expression of the ontinuum quantity G(t)[C(t)]2 where

G(t) :=
d2

dt2
lnC(t) =

C(t)C ′′(t) − [C ′(t)]2

[C(t)]2
=

〈
(ω2 − 〈ω〉2)

〉
.Here we adopted the notation [A+97; CMT05℄

〈·〉 :=

∫
(·)e−ωtρ(ω2)dω .
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me�(t) := − log

{
C(t+ a)

C(t)

} (5.9)where C(t) again refers to the real spae propagator of the gluon �elds(Eq. (5.7)). Already in the �rst numerial study of the gluon propagator[MO87℄ this e�etive mass was observed to rise with inreasing distane t(see also [BPS93; MMST93℄). In fat, the de�nition of me� in Eq. (5.9)yields that [CMT05℄
eme�(t) − eme�(t+a) = a2G(t, a)eme�(t+a).If re�etion positivity were satis�ed, then G(t, a) would be positive semi-de�nite and therefore me�(t) ≥ me�(t+ a). However, for the gluon propaga-tor in Landau gauge the opposite was found. This has suggested from the
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Chapter 6
Spetral properties of theFaddeev-Popov operator

S
petral properties of the Landau gauge FP operator are important for under-standing many aspets of QCD in Landau gauge. In this hapter we report ona study of some of these properties, restriting ourselves to the quenhed approxi-mations of lattie QCD. We shall start with a disussion of the low-lying eigenvaluedistribution where the impat of the Gribov ambiguity is shown in partiular. Con-erning the infrared behavior of the ghost propagator disussed above here we willanalyze the ontribution of the di�erent eigenvalues and eigenmodes of the FP op-erator to the ghost propagator at low momentum. Loalization properties of theeigenmodes analyzed in addition.6.1 Spei�ation of lattie samplesOur investigation of the infrared behavior of ghost and gluon propagators (seeSe. 4.3) has revealed that unquenhing e�ets are negligible within errors forthe ghost propagator. We expet the same to hold for the FP operator itself.Therefore, we have analyzed its spetral properties solely in the quenhedapproximation of QCD.For this analysis we have used a subset of our pure SU(3) gauge on�g-urations thermalized with the standard Wilson ation at β = 5.8 and 6.2using the lattie sizes 124, 164 and 244. To study the in�uene of the Gribovambiguity we followed again our f-b strategy introdued in Se. 4.1.3 andhave generated two ensembles of �rst (f) and best (b) gauge-�xed on�g-urations. On those ensembles the low-lying eigenvalues λ of the FP operatorand the orresponding eigenmodes have been separately extrated. For thiswe used the parallelized version of the ARPACK pakage [LMSY℄, PARPACK.To be spei�, the 200 lowest (non-trivial) eigenvalues and their orre-sponding eigenfuntions have been alulated at β = 6.2 using the lattiesizes 124 and 164 (see Table 6.1). Due to restrited amount of omputingtime only 50 eigenvalues and eigenmodes have been extrated on the 244111



112 Chapter 6 Spetral properties of the FP operatorNo. β lattie # onf # opies # eigenvaluesF-1 5.8 244 25 40 90F-2 6.2 124 150 20 200F-3 6.2 164 100 30 200F-4 6.2 244 35 30 50Table 6.1: Statistis of data used in our analysis. The last olumn lists the number ofeigenvalues extrated separately on f and b opies of U . At β = 6.2 the orrespondingeigenmodes were alulated, too. Labels given in the �rst row refer to the orrespondingentries in Table 4.1.lattie at the same β. In addition, 90 eigenvalues have been alulated on a
244 lattie at β = 5.8 providing us with an even larger physial volume. Thisallows us to hek whether low-lying eigenvalues are shifted towards λ → 0as the physial volume is inreased. The eight (trivial) zero eigenvalues withthe orresponding onstant zero modes have always been disarded.6.2 The low-lying eigenvalue spetrumWe start the disussion with the two lowest (nontrivial) eigenvalues of the FPoperator and then give an estimate for the density of low-lying eigenvalues.6.2.1 The lowest and seond lowest eigenvaluesThe distributions of the two lowest-lying eigenvalues, λ1 and λ2, of the FPoperator are shown for di�erent volumes in Fig. 6.1. There h(λ, λ + ∆λ)represents the average number (per on�guration) of eigenvalues found inthe interval [λ, λ+∆λ]. To disentangle the distributions for the two di�erentsets of gauge opies, open (full) bars refer to the distribution on f (b)gauge opies.It is obvious from this �gure that both eigenvalues, λ1 and λ2, are shiftedto lower values as the physial volume is inreased. In onjuntion the spreadof λ values is shrinking. This would be even more obvious, if we had shownboth distributions as funtions of λ in physial units.It is also visible that the two low-lying eigenvalues λfi (i = 1, 2) onf gauge opies tend to be lower than those on b opies. However, thisholds only on average as an be seen from Fig. 6.2. There the di�erenes
λb1 − λf1 of the lowest eigenvalues on f and b gauge opies are shown fordi�erent lattie sizes at β = 6.2 and 5.8. It is evident that there are only fewases where λb1 < λf1 , even though F b ≥ F f always holds for the gauge
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Figure 6.1: The frequeny h(λ) per on�guration of the lowest (left panels) and seondlowest (right panels) eigenvalue λ of the Faddeev-Popov operator is shown. Filled boxesrepresent the distribution obtained on best (b) gauge opies, while open ones representthose on �rst (f) opies.funtional.In addition we have heked how the average values 〈λ〉 of the respetiveeigenvalue distributions tends towards zero as the linear extension aL of thephysial volume is growing. For this the lattie spaing a has been spei�edin physial units. As in Chapt. 4 we followed Ref. [NS02℄ to �x a. For
β = 5.8 and 6.2 we used a−1=1.446 GeV and 2.914 GeV, respetively, usingthe Sommer sale r0 = 0.5 fm.If the low-lying eigenvalues are supplemented with physial units it turnsout that the average values of their distributions tend towards zero stronger
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a2f(aL) C ǫ χ2/ndf
〈λ1〉 0.120(3) 0.16(4) 0.7
〈λ2〉 0.165(4) 0.24(5) 1.8
〈λ5〉 0.290(1) 0.45(4) 3.5

〈λ2〉 − 〈λ1〉 0.045(2) 0.47(9) 0.4
〈λ3〉 − 〈λ2〉 0.051(1) 0.88(8) 0.2
〈λ4〉 − 〈λ3〉 0.033(1) 0.62(33) 2.0
〈λ5〉 − 〈λ4〉 0.037(1) 0.89(1) 0.003Table 6.2: The parameters C and ǫ from �tting either the averages 〈λi〉/a2 or the dif-ferenes of adjaent average values 〈λi+1〉/a2 − 〈λi〉/a2 of the orresponding eigenvaluedistributions to the ansatz f(aL) = Ci/(aL)2+ǫi .than by volume saling proportional to 1/(aL)2. In fat, using the ansatz

f(aL) =
C

(aL)2+ε
(6.1)to �t the data of 〈λi〉/a2 for di�erent (aL), always a positive ε is found. Theparameter of these �ts are given in Table 6.2 and in Fig. 6.3 we show the dataand the orresponding �tting funtions. There one learly sees, the low-lyingeigenvalues not only approah zero, but also beome loser to eah other withinreasing aL. The latter issue has been addressed by �tting the di�erenes

(〈λi+1〉−〈λi〉)/a2 of adjaent average values using the same ansatz Eq. (6.1).In Table 6.2 we give the parameter of suh �ts.
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ρ(λ) =
h(λ, λ+ ∆λ)

N∆λ
, (6.2)i.e. the average number h of eigenvalues per gauge-�xed on�guration withinthe interval [λ, λ + ∆λ] divided by the bin size ∆λ. For normalization thedenominator N = 8V has been hosen, sine the FP matrix is a N×N sparsesymmetri matrix with N linearly independent eigenstates. The trivial zeromodes would be desribed by a term 8δ(λ) in ρ(λ) (not shown).The estimates for the density ρ are shown in Fig. 6.4 for the di�erentvolumes used. The bin sizes have been reasonably adjusted for eah volumeseparately. In Fig. 6.4 one learly sees the eigenvalue density lose to λ = 0beomes steeper as a funtion of λ as the physial volume beomes larger. Itis remarkable that the inrease going from β = 6.2 to β = 5.8 on a 244 lattieis larger than going from 124 to 244 at β = 6.2 �xed, although in both asesthe physial volume is inreased by a fator of about 16.



116 Chapter 6 Spetral properties of the FP operator6.3 Eigenmode expansion of the ghostpropagatorAlong with the alulation of the low-lying eigenvalues, the orrespondingeigenvetors φ(x) have been determined as well. These are of partiularimportane for the infrared behavior of the ghost propagator as it beomeslear from Eq. (3.37). In fat, if all eigenvalues λi of the FP operator andthe orresponding eigenvetors Φi(k) in momentum spae were available theghost propagator ould be onstruted out of them aording to Eq. (3.37)and (3.36). Unfortunately, their determination for eah on�guration is nu-merially too demanding.However, restriting the sum in Eq. (3.37) to the n lowest eigenvaluesand eigenvetors (n≪ N = 8V − 8), we an �gure out to what extent thesemodes, i.e. the orresponding estimator Eq. (3.36) and (3.37)
Gn(q

2(k)) = 〈G(k|n)〉MCwhere
G(k|n) =

1

8

n∑

i=1

1

λi
Φi(k) · Φi(−k)saturates the full ghost propagator G(q2). The latter is obtained, of ourse,independently for a set of momenta by inverting the FP matrix on a set ofplane waves. See Se. 4.3.2 for the orresponding data of G(q2).The degree of saturation is shown in Fig. 6.5 for the lowest q2

1 and theseond lowest momentum q2
2 available on di�erent lattie sizes for β = 6.2.There the values of Gn(q

2) have been presented relative to the values for thefull propagator G(q2) in order to assess the saturation for di�erent volumes.Sine Φi(k) has been obtained by a fast Fourier transformation of the eigen-vetor φi(x), all lattie momenta k are available. Thus Gn(q
2) refers to theaverage over all k giving raise to the same momentum q2. The full propagatorvalues G(q2) at q2

1(k) and q2
2(k), however, refer to the averages over lattiemomenta k = ([1, 0], 0, 0) and to k = (1, 1, 0, 0), respetively.Let us onsider �rst the lowest momentum q2

1. We observe from Fig. 6.5that the approah to onvergene di�ers, albeit slightly, for the three di�erentlattie sizes. The relative de�it for n < 50 rises with the lattie volume. For
n > 100 the rate on a 164 lattie is even a bit larger than that on a 124 lattie.We ould not a�ord to get data for n > 50 on the 244 lattie. However, forthe 124 and 164 latties the rates of onvergene are about the same. Forexample, taking only 20 eigenmodes one is de�nitely far from saturation (byabout 50%) whereas 150 to 200 eigenmodes are su�ient to reprodue the
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124 and 164 lattie. However, a very low eigenvalue is not su�ient to obtainlarge MC values for G(k) as an be seen in the same �gure. It is possible, ofourse, that suh gauge opies with extremely small eigenvalues would turnout to be exeptional for another realization of lowest momentum q2(k) thanthose two we have used. This might explain why some on�gurations withextremely small lowest eigenvalues were not found to be exeptional withrespet to the ghost propagator at k = (1, 0, 0, 0) and k = (0, 1, 0, 0).In the light of Eq. (3.37) it is not adequate to onentrate just on thelowest eigenvalues. Instead, one an monitor the ontribution of a ertainnumber of eigenvalues λi and eigenmodes Φi(k) to the ghost propagator at
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Figure 6.7: Satter plots of MC time history values of the ghost propagator G(k) at
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120 Chapter 6 Spetral properties of the FP operatorsome momentum in question. Therefore, we have ompared the trunatedsums G(k|n) aording to Eq. (3.37) with the MC history values of the fullghost propagator G. In fat, we show in the satter plots in Fig. 6.8 theratios G(k|n)/G(k) versus G(k) for n = 10 and for various lattie sizes.Obviously there is a strong orrelation between the hosen group of low-lying modes and the MC time history values of the full ghost propagator.Indeed, if we onsider values G(k) > 15 to be exeptional in the left-mostpanel (124 lattie) we �nd that the ontribution of the 10 lowest modesamounts to more than 75% of the atual value of the ghost propagator. Onthe opposite, for low G(k) values the main ontributions ome neessarilyfrom the higher eigenmodes, while the 10 lowest modes ontribute a minorpart only. A similar but less dominant ontribution of the 10 lowest modesis found for the time histories produed on larger latties (164, 244).6.5 Loalization properties of low-lyingeigenvetorsIn reent years a good deal of attention has been direted to the loalizationproperties of various operators (Dira operator, ovariant Laplaian) in thehope to understand more about on�nement beyond heavy quark probes.The �rst quantity of interest is the inverse partiipation ratio (IPR). Givenan eigenvetor φ(x) the IPR is de�ned asIPR = V
∑

x

|φ(x)|4 with V = L4.Although a diret physial meaning for this quantity is laking yet, it isa measure for the loalization of an eigenvetor. It enables us to distin-guish between eigenmodes with approximately uniformly distributed modu-lus squared |φ(x)|2 (IPR ≈ 1 . . . 2) and more spei� ones with a small numberof sites x having large intensity |φ(x)|2 (IPR ∼ O(100)) where they might bepinned down by speial loal gauge �eld exitations. Note, the eight (trivial)zero modes (λ = 0) of the FP operator are onstant and have IPR = 1.In Fig. 6.9 the relative distribution h of IPR values per gauge-�xed on�g-uration are shown, separately for ertain groups of eigenstates. Again open(full) histogram bars refer to the distribution on f (b) gauge opies. Fromthis �gure we learn that the majority of eigenvetors of the Faddeev-Popovoperator is not loalized independent of the hoie of gauge opies. In anyase, the rare ases of large IPR values have been found among the 10 lowestnon-zero eigenmodes. This beomes more likely as the physial volume is in-
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Conlusions and outlook
I

n this study we have foused on the infrared properties of SU(3) gluody-namis in Landau gauge using the framework of lattie QCD. We havetried to over as muh as possible the di�erent aspets relevant within thisontext and to verify several assumptions made in reent years. In doing so,we hope to have provided a onsistent analysis of several issues that have ane�et on the infrared behavior of gluon and ghost propagators, and that, inturn, the behavior we have found satis�es neessary riteria for on�nementwhih apply to QCD in Landau gauge.The methodFor this study we used the Wilson formulation of lattie QCD with andwithout dynamial lover-improved Wilson fermions. The gauge group was�xed to SU(3). The quenhed gauge on�gurations were generated at thethree values β = 5.8, 6.0 and 6.2 using a variety of di�erent symmetri andasymmetri lattie geometries. In the symmetri ase we used the lattiesizes 124, 164, 244, 324 and 484, whereas the asymmetri latties were hosento be of size 243×48, 323×64, 163×128 and 243×128. To study unquenhinge�ets we have analyzed gauge on�gurations provided to us by the QCDSFollaboration. These on�gurations were thermalized on a 243 × 48 lattie inthe presene of two �avors of lover-improved Wilson fermions using threedi�erent pairs of β and κ. The orresponding lattie spaings are omparableto that at β = 6.0 in the quenhed ase.Both the quenhed and unquenhed on�gurations were transformed suhthat they satisfy the lattie Landau gauge ondition. For gauge-�xing weused either over�relaxation or Fourier�aelerated gauge-�xing. A subset ofour quenhed on�gurations was gauge-�xed even more than one, alwaysstarting from a di�erent random gauge opy of the initial (un�xed) on�gu-ration. This has allowed us to examine how the Gribov ambiguity a�ets thegluon and ghost propagators and the eigenvalue spetrum of the FP operator.The resultsIn the following we give a summary of our results presented in previoushapters. Then we draw our onlusions and give reommendations for futurestudies. 123



124 Conlusions and outlookThe in�uene of the Gribov ambiguityWe have demonstrated that the presene of Gribov opies systematiallya�ets the ghost propagator at low momentum, whereas for the gluon prop-agator suh an e�et stays within error bars (see also [SIMPS05d℄). To bespei�: Measuring the ghost propagator and ignoring the Gribov ambiguity,the ghost propagator near the momentum q2 = 0.2GeV2 (1GeV2) turns outto be overestimated by about 5% (2%) ompared to an estimate obtained ona ensemble of best gauge opies. As best we have onsidered that gauge-�xedopy whih gave rise to the largest gauge funtional value for a partiulargauge on�guration. Our results orroborate previous �ndings for the SU(2)gluon and ghost propagators [Cu97; BIMMP04; NF04a℄, but ast doubt onthose for the SU(3) gluon propagator (β = 5.8, 124 lattie) in [SO04℄.Additionally, our data are in favor of the piture promoted in [Zwa04℄.Aording to this, ontinuum vauum expetation values of orrelation fun-tions obtained from a funtional integration over the fundamental modularregion Λ are equal to those over the Gribov region Ω. Gribov opies inside
Ω should not a�et expetation values in the ontinuum, beause funtionalintegrals are dominated by the ommon boundary of Λ and Ω. We havefound some numerial evidene that the in�uene of Gribov opies on theghost propagator dereases at the same (physial) momentum if the physialvolume is enlarged. Note that very reently [BBMPM05℄ similar indiationshave been found for the SU(2) gauge group taking non-periodi Z(2) trans-formations into aount. In order to eliminate the last doubts, a futurestudy should ontinue and follow our f-b strategy (explained in the text)on lattie sizes larger than 244.To make the study of the Gribov-opy dependene more omplete, wehave also shown that the Gribov ambiguity is re�eted in the low-lying eigen-value spetrum of the FP operator. We have found that, on average, thelow-lying eigenvalues extrated on b gauge opies are larger than those onf opies. Thus better gauge-�xing (in terms of the gauge funtional) has thetendeny to keep gauge-�xed on�gurations slightly away from the Gribovhorizon.Other systemati e�ets on the propagatorsUsing di�erent latties sizes at three di�erent β values, we have tried toanalyze the systemati e�ets on the gluon and ghost propagators of hangingeither the lattie spaing a or the physial volume V . We have found thatfor both, the gluon and ghost dressing funtions, �nite volume e�ets arelearly visible at volumes smaller than (2.2 fm)4, whih orresponds to a
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164 lattie at β = 5.8. The e�et grows with dereasing momentum ordereasing lattie size. At larger volumes, however, the data for q > 1 GeVoinide within errors for the di�erent lattie sizes. For q < 1 GeV we havefound only small �nite volume e�ets for both dressing funtions at the lowestmomentum. This is based on data obtained on the lattie sizes 244, 324 and
484 using β = 5.8 and 6.0. Conerning disretization e�ets our study isonly partial and limited to a region of intermediate momenta. In any ase,�xing the physial volume to V ≈ (2.2 fm)4 we have found that the gluondressing funtion at onstant physial momentum inreases with dereasingthe lattie spaing. A similar e�et (beyond error bars) is not observable forthe ghost dressing funtion.We have ombined this investigation of lattie artifats with an analysisof e�ets aused by asymmetri lattie geometries. We ould demonstratethat the more asymmetri the lattie size has been hosen, the larger arethe systemati errors indued by that. In fat, data obtained for the ghost(gluon) propagator on asymmetri latties are less enhaned (suppressed)than those obtained on symmetri latties geometries. The same e�ets havebeen reported reently for the gluon propagator in three-dimensional pure
SU(2) gauge theory [CM06℄. Therefore, extrations of an infrared exponentfor the gluon propagator using only on-axis momenta on asymmetri lat-ties [SO05b; SO05a℄ (without adapting the lattie spaing in the di�erentdiretions to ompensate this) should be taken with aution.Infrared behavior of gluon and ghost propagatorsStudying the momentum dependene of the gluon and ghost dressing fun-tions, we have applied uts on our data, namely the ylinder and the one ut[LSWP99℄. They have muh redued the lattie artifats mentioned above.In fat, our data for the renormalized dressing funtions surviving these utslie on smooth urves if onsidered as funtions of the momentum.We have ompared these renormalized data with reent solutions of trun-ated system of DSEs for the gluon and ghost propagators and have tried toextrat the infrared exponents, κD and κG, for the gluon and ghost dressingfuntions, respetively. From �ts with the orresponding power laws to ourdata we annot on�rm the relation κG = 2κD as expeted from DSE studiesin the ontinuum [vSAH97; vSHA98℄. Also, both exponents are found to besigni�antly lower than expeted in [LvS02; Zwa02℄. Suh a onlusion wasalso drawn in other lattie studies [B+05b; B+06a; FN04b℄.Moreover, our �ts suggest that power-behaved gluon and ghost propaga-tors are not the best desription of the momentum dependene of our data,at least in the region of lower momenta onsidered here. The data for the



126 Conlusions and outlookghost propagator seem to depend logarithmially on the momenta in thisregion. This observation has been on�rmed very reently in [B+06a℄, eventhough in this referene also arguments for an infrared �nite ghost dressingfuntion have been put forward.Studying unquenhing e�ets on the gluon and ghost propagators we havefound that these e�ets are small for the ghost propagator, but are learlyvisible for the gluon propagator at intermediate momenta. Conerning theinfrared limit of both propagators, the in�uene of two fermion �avors seemsto beome less towards lower momenta. This all agrees with the �ndings inDSE studies (e.g. [FA03; FAC+06℄).From our data, we annot judge without doubt on the existene of aninfrared vanishing gluon propagator.The running oupling onstant and the ghost-gluon vertexIn onnetion with the infrared behavior of the gluon and ghost dressingfuntions, we have determined the running oupling onstant based on theghost-gluon vertex. This oupling onstant is found to math the RG-invariant two-loop expression onsidering data at large momenta. However,for q2 < 0.4 GeV2 the running oupling onstant dereases with dereas-ing momentum. The same is observed onsidering data for the unquenhedase. Also an in�uene of Gribov opies annot be made responsible for this.Therefore, we annot on�rm an infrared �xed point for this oupling on-stant as it has been proposed in DSE studies [vSAH97; vSHA98℄ (see also[AFLE05℄). This re�ets one more the di�erent infrared exponents we havefound for the gluon and ghost propagators.In any ase, our data are in qualitative agreement with reent studies ofDSEs on a torus [FAR02; FA02; FGA06; FP06℄. There a similar behaviorfor the gluon and ghost propagators and for the running oupling onstantat low momentum has been presented. Also other lattie studies agree withour results for this oupling onstant [FN04a; FN04b; B+05b℄.In order to verify that the assumption of a bare ghost-gluon vertex is validbeyond perturbation theory, we have alulated the orresponding renormal-ization onstant Z̃1 using a MOM sheme with zero gluon momentum. Ourdata show that in this sheme Z̃1 is approximately equal to one within errorbars for all momenta onsidered here. Only a slight deviation is visible in theinterval 0.3 GeV2 ≤ q2 ≤ 2 GeV2. Unquenhing e�ets are not resolvable.We thus agree with a reent DSE study [SMWA05℄ where a semiperturbativealulation of Z̃1 has been presented using a MOM sheme with asymmetri(the same as used by us) and symmetri subtration points. Furthermore,our results are in full agreement with those presented in [CMM04℄ for the



Conlusions and outlook 127ase of SU(2). It is worthwhile to ontinue the lattie alulation of Z̃1 usingother renormalization shemes, for example with a symmetri subtrationpoint.Together with our data for the running oupling onstant we an thuson�rm that the produt in Eq. (2.10) is renormalization-group invariant inthe partiular MOM sheme onsidered here and de�nes a nonperturbativerunning oupling onstant whih, as shown here, dereases monotonouslywith dereasing momentum q2 < 0.4 GeV2.Results on the on�nement riteriaIn addition we have presented results whih support the Kugo�Ojima on-�nement senario [KO79℄ to be realized for lattie QCD in Landau gauge. Toon�rm this, one has to show that the funtion uab(q2) = u(q2)δab de�ned viathe Green's funtion in Eq. (2.17) [Kug95; AvS01℄ has the zero-momentumlimit: u(0) = −1. Alternatively, if this limit is realized then the (renormal-ized) ghost dressing funtion J(q2) must diverge in the same limit. This isbeause at zero momentum it holds that 1 + u(0) = 1/J(0) [Kug95℄.In this thesis we have shown that the ghost dressing funtion seems todiverge at zero momentum whih is in favor of the Kugo�Ojima on�nementsenario and also satis�es the Gribov-Zwanziger horizon ondition [Gri78;Zwa93; Zwa02℄. Moreover, we have measured the funtion u(q2) at di�erentmomenta q2. To our knowledge a diret alulation of u(q2) has never beendone before. Conlusions in other studies [FN04a; FN04b; WA01; AvSW01℄were drawn on results obtained for the ghost dressing funtions only. Forthe renormalization of u(q2) we have developed a new ansatz using a min-imization proess (see Se. 5.2.2 for details). Our renormalized data forboth the ghost dressing funtion and the funtion u(q2) are onsistent with
u(q2) − J−1(q2) approahing minus one in the limit of vanishing momenta,even though this onvergene is very slow. Therefore, as the ghost dressingfuntion diverges we expet u(q2) to reah minus one. Hene the Kugo-Ojimaon�nement riterion is realized.Based on our data obtained on larger lattie sizes we are also in the for-tunate position to present numerial evidene that not only the quenhedbut also the unquenhed SU(3) gluon propagator in Landau gauge violatesre�etion positivity expliitly. Thus, on one hand, we agree with other lattiestudies for quenhed SU(3) [MO87; BPS93; MMST93; FN04b℄ and for three-dimensional SU(2) [CMT05℄ gauge theory. On the other hand, we on�rmpresently available solutions to the orresponding DSE of the gluon propa-gator [ADFM04℄, even though our data suggest a di�erent infrared exponentfor the gluon propagator.



128 Conlusions and outlookSine re�etion positivity is violated by the gluon propagator and theKugo�Ojima on�nement riterion seems to be satis�ed, we agree with theonjeture that transverse gluon states are on�ned by the quartet meha-nism [KO79℄.Spetral properties of the FP operatorWe have also investigated the spetral properties of the FP operator andtheir relation to the ghost propagator in SU(3) Landau gauge [SIMP06℄. Asexpeted from Ref. [Zwa04℄ we have found that the low-lying eigenvalues areshifted towards λ = 0 and the eigenvalue density ρ(λ) beomes a steeperrising funtion as the volume is inreased.On average, the orresponding FP eigenmodes are not loalized, however,a few large IPR values have been seen among the lowest eigenmodes.We ould demonstrate that the ghost propagator at low momentum isdominated by the low-lying eigenvalues and eigenmodes of the FP operator.For example, the value of the ghost propagator at lowest momentum (on a
124 lattie at β = 6.2) an be estimated using a number of 200 low-lyingeigenvalues and eigenmodes of the FP operator. In other words, a fration ofabout 0.12% of the whole spetrum is su�ient to reonstrut the asymptotiresult. For larger volumes the number of neessary eigenmodes seems to besomewhat larger. Also for the next higher momentum, saturation needs amuh bigger part of the low-lying spetrum.Conluding remarksWe hope to have presented a areful numerial study of di�erent aspets of
SU(3) Landau gauge gluodynamis, a subjet whih has been the fous ofmuh attention in reent years. We have onentrated on the low momentumregion and have lari�ed the in�uene of di�erent systemati e�ets on theinfrared behavior of gluon and ghost propagators in Landau gauge. We haveshown that the momentum dependene of both propagators is onsistentwith di�erent riteria for on�nement. Considering also our results for therunning oupling onstant and for the ghost-gluon vertex we agree with the�ndings of other lattie studies and of DSE studies on a torus. However,there is some disagreement with DSE studies in the ontinuum. At presentthere seems to be no solution of this puzzle.We think, it is interesting to look in a future study also at the momentumdependene of other vertex funtions and of the quark propagator in Lan-dau gauge. In partiular, for lover-improved Wilson fermions this has notbeen done before. It is also worthwhile to perform a similar study using an-



Conlusions and outlook 129other gauge ondition, for example, the Coulomb gauge. Suh investigationsmight provide further valuable information towards a full understanding ofnonperturbative QCD (see e.g. [Zwa98; CZ02; Zwa03a; GO03℄).In the same way, the larger momentum region should be investigatedfurther. Note that our study has foused only on the infrared momen-tum region. Sine omputing time was restrited, the amount of data forthe ghost propagator and for the running oupling onstant in the ultra-violet momentum region is not as large as in the low momentum region.It is worthwhile, however, to ontinue and to perform additional measure-ments at larger momenta onsidering di�erent loop-expansions of the orre-sponding asymptoti form. In partiular, an investigation of nonperturbativepower orretions to the ghost and gluon propagators in Landau gauge (seee.g. [B+00b; B+00a; B+01; B+06b℄) due to non-zero values of QCD onden-sates ould be an interesting topi in future lattie studies.
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Appendix A
Some details on algorithmsand performane

W
e list algorithms and numerial libraries used in this study for the di�er-ent purposes and we give referenes for further details. Then we reporton some experienes we gained with gauge-�xing. In partiular, we ompare theperformane of over-relaxation and Fourier-aelerated gauge-�xing. After this,we analyze gauge funtional values obtained by following our f-b strategy anddemonstrate that the �nal ranking of funtional values is already visible at an in-termediate iteration step. We show that the inversion of the FP matrix an beaelerated by using a pre-onditioned onjugate gradient algorithm.A.1 A note on the algorithms usedFor the generation of our quenhed on�gurations we employed the hybridover-relaxation algorithm. It has beome standard for the simulation of puregauge theory and is a ombination of several, say Nov, miro-anonial over-relaxation steps [BW87; Cre87℄ and one heatbath [FH84; KP85℄ step. Inboth steps a deomposition of SU(3) link variables into SU(2) matries, asproposed by Cabbibo andMarinari [CM82℄, was applied. We have alwaysused Nov = 4. Further details on these algorithms an be found, for examples,in the PhD theses [Kne99; Geh02℄.All sets of our unquenhed SU(3) gauge on�gurations were provided tous through the QCDSF ollaboration whih generated them using the hybridMonte Carlo algorithm [DKPR87; GLT+87℄ with even-odd preonditioning[G+89℄.Both the quenhed and unquenhed on�gurations were transformed suhthat they satisfy the lattie Landau gauge ondition (see Eq. (4.1)). Forgauge-�xing we have employed two popular algorithms: over-relaxation (RLX)[MO90a℄ and Fourier�aelerated gauge-�xing (FAG) [D+88℄. For Fourier�aelerated gauge-�xing we used the implementation as introdued in [D+88℄.131



132 Chapter A Some details on algorithms and . . .For future studies, however, we reommend to use the multigrid implementa-tion of FAG as proposed in [CM98℄. This implementation is better suited fora parallel omputing environment with distributed memory (see App. A.2.1).Fourier transforms, for example of the gluon �elds, were alulated usingan algorithm that performs a Fast-Fourier transformation (FFT). For allFFTs, we have employed the FFTW-library [FJ98℄. We an reommend thislibrary (see also online: http://www.fftw.org).For observables whih involve the inverse of the FP operator we appliedthe pre-onditioned onjugate gradient algorithm to solve the orrespondinglinear systems. As pre-onditioning matrix we used the inverse Laplaianoperator∆−1 with diagonal olor substruture. This signi�antly has reduedthe amount of omputing time as it is disussed in more detail in App. A.3.The eigenvalues and eigenmodes of the FP operator were alulated usingthe ARPACK pakage, PARPACK [LMSY℄. For minimization of χ2 funtions weused the new C++ implementation of the library MINUIT [JW04℄. We anreommend both libraries too.A.2 Experiene report on lattie Landaugauge �xingIn this setion we report on some experienes we made with gauge-�xing.Sine e�ieny of gauge-�xing algorithms is an important issue in studyinggauge-dependent quantities, this report might help in future studies.A.2.1 Over-relaxation versus Fourier�aeleratedgauge-�xingFor the purpose of this study we have employed two di�erent algorithmsfor �xing thermalized gauge on�gurations to Landau gauge. These areover-relaxation (RLX) [MO90a℄ and Fourier�aelerated gauge-�xing (FAG)[D+88℄. Both algorithms are ommonly used in the lattie ommunity, butusually either of them is hosen. The reason why we used two is simple:Initially, we had started with over-relaxation, but later we heked whetheromputing time an be saved using FAG instead. Now this puts us in thefortunate position to provide an expliit ross-hek on the performane ofboth algorithms. This might be interesting for future studies, in partiularwhen writing appliations for omputing time.Even though both algorithms are quite di�erent, they are both iterativein nature. After eah iteration-yle the funtional FU [g] (Eq. (3.14)) is
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Θ < 10−14 with

Θ := max
x

Re Tr
[
(∇µ

gAx,µ)(∇µ
gAx,µ)

†
] (A.1)was ful�lled at eah lattie site x. The number of neessary iterations de-pends on the lattie sizes, but usually it also varies quite strongly for di�erenton�gurations using the same lattie size. To get an impression about thesevariations have a look at Fig. A.2. There Θ is shown versus the numbers ofiterations for two di�erent random gauge opies of the same gauge on�gu-ration.In any ase, the mean iteration number Niter and the mean iterationtime Titer (until the �nal preision is reahed) sale with the lattie size

V = L3
S × LT aording to

Niter(V ; a, b) = a · V b , (A.2a)
Titer(V ; c, d) = c · V d . (A.2b)

LS and LT denote the number of lattie points in spatial and temporal dire-tion, respetively. That this saling holds for both algorithms an be seen in
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Niter Titera b χ2/ndf  d χ2/ndfrlx 4.5(2) 0.53(1) 1.6 3.2(4) · 10−5 1.55(1) 5.6fag 19(2) 0.38(1) 3.0 5.0(9) · 10−5 1.51(2) 8.1Table A.1: The parameters of the funtions iter(V ; a, b) and pu(V ; c, d) �tted to theaverage number of iterations and average CPU time, respetively.Fig. A.1. There in the upper (lower) panel we show Niter (Titer) as a funtionof the lattie size. The parameters from �ts of the Ansätze in Eq. (A.2) tothe data are given in Table A.1. Obviously, FAG performs better on largerlattie sizes than RLX.The reason why in our implementation the atual amount of omputingtime for FAG is omparable to that of RLX is just beause we have performedtwo Fast-Fourier transformations (FFTs) in eah iteration yle of FAG. Ofourse, in a parallel omputing environment with distributed memory FFTroutines usually do not sale well if the number of proessors in inreased.Therefore, for future studies we rather reommend to use the multigrid im-plementation of FAG as proposed by Cuhieri and Mendes [CM98℄.A.2.2 A way to preselet best gauge opiesWe have seen above that �x-
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ing gauge on�gurations to Lan-dau gauge might beome a CPUtime intensive task on large lat-ties. This was even more inten-sive for us when we followed ourf-b-strategy (see Se. 4.1.3).For this, several random gaugeopies for eah gauge on�gura-tion U were gauge-�xed. Thenwe have seleted the �rst gaugeopy and that with the largest (�-nal) funtional value (Eq. (3.14))to study the in�uene of Gribovopies on di�erent observables.Obviously, it would be quite help-ful if the �nal ranking of fun-tional values were known, without atually doing all the neessary itera-
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Figure A.3: The loal maximum of violation oftransversality, Θ, is shown as a funtion of the num-ber of iterations for over-relaxation (rlx) and Fourieraelerated gauge-�xing (fag). The lattie size is 324and β = 6.0.

dom gauge opy of U we an-not foreast the �nal fun-tional value, beause thoseiterative gauge-�xing algo-rithms behave like a haotisystem under hange of ini-tial onditions. For ex-ample, if the order of go-ing through the lattie ishanged, a di�erent fun-tional value might beenreahed. Also heking theranking of funtional valuesafter a �xed number of itera-tions is not very reasonable,sine iteration proesses arequite di�erent as is illus-trated in Fig. A.2. There the funtional values F and the maximal violationof transversality Θ (Eq. (A.1)) are shown at intermediate iteration steps fortwo sample gauge opies. Although both iteration proesses started from a(di�erent) random gauge opy of the same on�guration, the ways to onver-gene di�er substantial. For one proess, labeled as opy 15, the funtional
F reveals more often irregular jumps to larger values during the iteration loopthan for the other proess. This happens always in onjuntion with suddeninreases of Θ. However, inspeting Fig. A.3 suh non-monotonous behavioris seen in the majority only for larger values of Θ. Thus it seems that for Θbelow some threshold the �nal ranking of funtional values is already �xed.From our study we know the �nal and a list of intermediate funtionalvalues for eah gauge-�xed opy of U , beause we atually have gauge-�xedeah opy until the gauge ondition was reahed. Therefore, we an hek nowif the �nal ranking of funtional values is already visible at an intermediateiteration state, i.e. at �xed, but larger values of Θ.To be spei�, in Fig. A.4 we show the probability of whether that opywith the largest funtional value at an intermediate value of Θ is that withthe largest funtional value (best opy) after gauge-�xing has �nished. Ofourse, for Θ below the onvergene riteria this holds and for Θ > 1 (not�xed) it does not.Looking at Fig. A.4 we easily see that the probability of having foundthose opies whih will result in the largest funtional values inreases with



136 Chapter A Some details on algorithms and . . .lowering Θ. For Θ ≈ 10−4 the probability is almost 100%, independent of βand the lattie size. In other words, to selet the best gauge-�xed opy foreah on�guration U , it is enough to gauge-�x several random opies of Uuntil the value Θ = 10−4 has been reahed and then ontinue the proess onlyfor that with the largest intermediate funtional value among all. In this wayopies are singled out whih will de�nitely not reah a larger funtional valueompared to others. If we had used this strategy we would have saved about40% (57%) of the total number of iterations for the 244 lattie at β = 5.8(6.2), whih is quite a lot.
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Figure A.4: In this �gure we show the probability of having found (at intermediate valuesof Θ) those opies whih will result in the largest funtional values after the gauge-�xingproess has onverged.A.3 Speeding up the inversion of the FPoperatorFor the solution of the linear systemMφ = ψc with symmetri matrixM , theonjugate gradient (CG) algorithm is the method of hoie. Its onvergenerate depends on the ondition number, the ratio of largest to lowest eigenvalueof M . When all Ux,µ = 1 obviously the FP operator is minus the Laplaian
∆ with a diagonal olor substruture. Thus instead of solvingMφ = ψc onerather solves the transformed system

[M∆−1] (∆φ ) = ψc



A.3 Speeding up the inversion of the FP operator 137CG PCG speed uplattie iter CPU[se℄ iter CPU[se℄ iter CPU[se℄
84 1400 3.7 570 2.4 60% 35%

164 3900 240 1050 130 73% 46%
324 9900 13400 2250 3900 77% 71%Table A.2: The average number of iterations and CPU time per proessor (PE) using theCG and PCG algorithm to invert the FP operator are given for di�erent lattie sizes. Allinversions have been performed at β = 5.8 with soure δbc exp(i k·y) where k = (1, 0, 0, 0).To ompare the di�erent lattie sizes 4 PEs have always been used.In this way the ondition number is redued, however, the prie to pay isone extra matrix multipliation by ∆−1 per iteration yle. In terms of CPUtime this should be more than ompensated by the redution of iterations.The pre-onditioned CG algorithm (PCG) an be desribed as follows:initialize:

r (0) = ψ −Mφ (0), p (0) = ∆−1 r (0),

γ(0) = (p (0), r (0))start do loop: k = 0, 1, . . .

z (k) = Mp (k), α(k) = γ (k)/(z (k),p (k))

φ (k+1) = φ (k) + α(k)p (k)

r (k+1) = r (k) − α(k)z (k)

z (k+1) = ∆−1 r (k+1)

γ(k+1) = (z (k+1), r (k+1))if (γ(k+1) < ε) exit do loop
p (k+1) = z (k+1) +

γ(k+1)

γ(k)
p (k)end do loopHere (·, ·) denotes the salar produt.To perform the additional matrix multipliation with ∆−1 we used twofast Fourier transformations F , due to (−∆)−1 = F−1 q−2(k)F . The perfor-mane we ahieved is presented in Table A.2. We onlude that on largerlattie sizes the redution of iterations is about 70-75%, while the resultingredution of CPU time depends on the lattie size. This is beause we areusing the fast Fourier transformations in a parallel CPU environment. If theratio of used proessors to the lattie size is small (see e.g. the data for 324



138 Chapter A Some details on algorithms and . . .lattie at this table), almost the same redutions of CPU time as for thenumber of iterations is ahieved.Further improvement may be ahieved by using the multigrid Poissonsolver to solve ∆z (k) = r (k). This method is supposed to perform betteron parallel mahines. Perhaps a further improvement is possible by usingas pre-onditioning matrix M̃−1 = −∆−1 − ∆−1M1∆
−1 + . . . whih is an ap-proximation of the FP operatorM = −∆ +M1 to a given order [Zwa94℄ (seealso [FN04a℄). However, the larger the order, the more matrix multipliationsper iteration yle are required. This may redue the overall performane.We have not heked so far whih is the optimal order.
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