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ABSTRACT 

Water distribution systems (WDSs) are costly infrastructure, and much attention has been given to the application of 

optimisation methods to minimise design costs. In previous studies, Ant Colony Optimisation (ACO) has been found to 

perform extremely competitively for WDS optimisation. In this paper, five ACO algorithms are tested: one basic algorithm 

(Ant System) and four more advanced algorithms (Ant Colony System, Elitist Ant System, Elitist-Rank Ant System (ASrank), 

and Max-Min Ant System (MMAS)). Experiments are carried out to determine their performance on four WDS case studies, 

three of which have been considered widely in the literature. The findings of the study show that some ACO algorithms are 

very successful for WDS design, as two of the ACO algorithms (MMAS and ASrank) outperform all other algorithms applied 

to these case studies in the literature. 
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1 INTRODUCTION 

Much research over the last 25 years has been dedicated to the development of techniques to minimise (optimise) the capital 

costs associated with water distribution system (WDS) infrastructure. Within the last decade, many researchers have shifted 

the focus of WDS optimisation from “traditional” techniques, based on linear and non-linear programming, to the 

implementation of “heuristics derived from nature” (HDNs) (Colorni et al. 1996), namely: genetic algorithms (GAs) 

(Simpson et al. 1994), simulated annealing (Cunha & Sousa 1999), and ant colony optimisation (ACO) (Maier et al. 2003). 

ACO is a HDN based on the foraging behaviour of ants (Dorigo et al. 1996). It has seen wide and successful application to 

many different optimisation problems (Dorigo & Gambardella 1999) and has recently been found to perform very 

competitively for WDS optimisation (Zecchin et al. 2005). Changes have been made to the initial and most simple 

formulation of ACO, Ant System (Dorigo et al. 1996), to improve the operation of the decision policy. The resulting 

algorithms provide different techniques for managing the trade-off between the two conflicting search attributes of 

exploration (the ability of the algorithm to search large areas of the solution-space) and exploitation (the ability of the 

algorithm to search more thoroughly near areas where good solutions have been found previously). These algorithms 

include: Ant Colony System (ACS) (Dorigo & Gambardella 1997); Elitist Ant System (ASelite) (Dorigo et al. 1996); Elitist-

Rank Ant System (ASrank) (Bullenheimer et al. 1999); and Max-Min Ant System (MMAS) (Stützle & Hoos 2000). In this 

paper, these five algorithms (AS, ACS, ASelite, ASrank, and MMAS) are applied to four WDS problems. The objective is to 

assess the performance of these algorithms and determine which are best suited for WDS optimisation. 

2 ANT COLONY OPTIMISATION 

Over a period of time an ant colony is able to determine the shortest path from its nest to a food source. This perceived 

‘swarm intelligence’ is achieved via an indirect form of communication between the colony members that involves them 

depositing and following a decaying trail of chemical substance, called pheromone, on the paths they travel. Over time, 

shorter paths are reinforced with greater amounts of pheromone, as they require less time to be traversed, thus becoming the 

dominant paths for the colony to follow. As a combinatorial optimisation algorithm, ACO is based on this analogy of the 

incremental learning of a colony by an iterative trial and error process. In the ACO algorithm, artificial ants construct 

solutions to the underlying combinatorial problem by probabilistically selecting options at each decision point. The 

probabilistic decision policy is governed by two weighting factors: one is the pheromone intensity (symbolised by ), which 

is representative of the learned information; and the other is desirability (symbolised by ), which acts as a bias against 
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higher cost options. At each iteration (i.e. generation of a new set of solutions by the colony), information from the previous 

iteration is used to alter the pheromone values and hopefully increase the probability of the optimum solution being found. 

In order to effectively use more recent information, the pheromone values are decayed with time (mimicking the 

evaporation of their real life counter part), thus placing more of an emphasis on recent information. For a more 

comprehensive formulation of ACO as a generalised metaheuristic, the reader is referred to Dorigo and Gambardella (1999). 

2.1 THE ACO ALGORITHMS 

Ant System (AS) is the original and simplest ACO algorithm (Dorigo et al. 1996). The decision policy used within AS is a 

probability function based on the relative weighting of pheromone intensity and desirability of each option at a decision 

point. It is parameterised by two parameters,  and , which indicate the relative importance of pheromone intensity and 

desirability, respectively, in the decision process. At the end of each iteration, each of the m ants adds pheromone to their 

path (set of selected options). The amount of pheromone added is inversely proportional to the objective function value of 

the path (i.e. for minimisation problems, lower cost solutions are better, hence they receive more pheromone). The 

pheromone updating process is parameterised by three parameters: 0, the initial pheromone value; Q, a scaling factor for 

the pheromone additions; and , the pheromone persistence factor, which is indicative of the relative importance of previous 

information (0 <  < 1). 

In an attempt to regulate the trade-off between exploitation of the current best solution and further exploration of the 

solution space, Dorigo and Gambardella (1997) presented ACS. ACS includes additional rules that probabilistically 

determine whether an ant is to act in an exploitative or explorative manner at each decision point (determined by a 

parameter 0 ≤ q0 ≤ 1). Another mechanism used within ACS is the “local” updating of the pheromone of an ant’s selected 

option immediately after it has generated its solution. This degradation discourages the re-selection of edges within an 

iteration and works to balance the exploitative decision policy by further encouraging exploration of alternate edges 

(governed by the local pheromone persistence l). 

To exploit information about the current global-best solution, Dorigo et al. (1996) proposed the use of an algorithm known 

as ASelite. This algorithm uses “elitist ants” (parameterised by , the number of elitist ants), which only reinforce the path of 

the current global-best solution after every iteration (analogous to elitism strategies used in GAs). The decision rule for 

ASelite is the same as that for AS. 

Proposed by Bullnheimer et al. (1999), ASrank further develops the idea of elitism used in ASelite to involve a rank-based 
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updating scheme. At the end of an iteration,  elitist ants reinforce the current global-best path, as in ASelite, and the ants that 

found the top   – 1 solutions within the iteration add pheromone to their paths with a scaling factor related to the rank of 

their solution. This formulation effectively uses only the best information in a weighted manner as greater importance is 

given to the higher-ranking ants’ solutions.  

To overcome the problem of premature convergence whilst still allowing for exploitation, Stützle and Hoos (2000) 

developed MMAS. The basis of MMAS is the provision of dynamically evolving bounds on the pheromone trail intensities 

such that the pheromone intensity on all paths is always within a specified lower bound and a theoretically asymptotic upper 

limit. As a result of the lower bound stopping the pheromone trails from decaying to zero, all paths always have a non-

trivial probability of being selected, and thus wider exploration of the search space is encouraged. As the bounds serve to 

encourage exploration, provision for exploitation is made in MMAS by the addition of pheromone only to the iteration-best 

ant’s path at the end of an iteration. To further exploit good information, the global-best solution is updated every Tgb 

iterations (Tgb = 10 is used here). MMAS also utilises another mechanism known as pheromone trail smoothing (PTS). This 

reduces the relative difference between the pheromone intensities, and further encourages exploration. The pheromone 

bounds and PTS are governed by parameters Pbest and , respectively (Stützle and Hoos 2000). 

2.2 APPLICATION OF ACO TO WATER DISTRIBUTION SYSTEM OPTIMISATION 

The optimisation of WDSs can be formulated as a constrained minimisation problem (Zecchin et al. 2005). Essentially, 

WDS optimisation involves the selection of the lowest cost set of diameters for pipes within a network such that the design 

pressure constraints are not violated. As ACO, like most HDNs, cannot account for constraints explicitly, the WDS problem 

was converted into an unconstrained problem by use of a penalty function (Zecchin et al. 2005). Additionally, as in Maier et 

al. (2003), the desirability for an option was defined as the inverse of the cost of its implementation. As in Zecchin et al. 

(2005), a ‘virtual-zero-cost’ was used for options that had zero cost. The ACO program developed for this study, primarily 

coded in FORTRAN 90, used EPANET2 as the hydraulic solver. 

3 CASE STUDIES AND RESULTS 

The four case studies used in this research are: the Two Reservoir Problem (TRP); the New York Tunnels Problem (NYTP); 

the Hanoi Problem (HP); and the Doubled New York Tunnels Problem (2-NYTP). Selected details are given in Table 1, and 

the reader is referred to relevant references for further information (e.g. Simpson et al. (1994) for the TRP and Zecchin et al. 

(2005) for the others). The parameter settings used for the fundamental parameters , , , 0, and m were based on the 
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guidelines developed in Zecchin et al. (2005) with the following changes: for ACS, preliminary analysis showed that, due to 

a more complicated decaying behaviour arising from the dual effect of  and l, the Zecchin et al. (2005) heuristic for  was 

not applicable and hence  was calibrated; for ASelite and ASrank, the Zecchin et al. (2004b) heuristic for 0 was scaled up by 

. The remaining parameters for each algorithm were calibrated for each case study, based on extensive preliminary 

analyses. The resulting parameters are summarised in Table 1. 

Table 2 contains a comparison of the results obtained using the five ACO algorithms considered with those obtained from a 

selection of other best performing algorithms for the four case studies. It is important to note that other authors have 

proposed lower cost solutions to the NYTP and HP (Savic & Walters 1997; Lippai et al. 1999; Cunha & Sousa 1999; Wu et 

al. 2001), however, these solutions were assessed as being infeasible by EPANET2, which was the benchmark hydraulic 

analysis tool used for this work. The performance of the algorithms is based on solution quality (i.e. best-cost meaning the 

minimum cost found in a run) and search efficiency (i.e. search-time meaning the number of function evaluations required 

to find the best-cost for each run). As the algorithms represent stochastic processes, statistics for the ACO algorithms are 

based on 20 runs (each with different random number generator seeds). Statistical t-tests are performed to determine the 

significance of the deviation of the algorithms’ mean best-cost from the optimum or the known best-cost (depending on 

whether the optimum is known or not). 

For the TRP, all considered ACO algorithms found the optimum solution for all runs, except ACS, whose mean 

performance was statistically significantly different from the optimum. ASelite and ASrank were more efficient than all of the 

other algorithms, including ACOAi-best (Maier et al. 2003), which was the current best algorithm for solving the TRP. The 

influence of the exploration encouraging mechanisms of MMAS is reflected by its relatively long search-times. AS, ASelite, 

ASrank, and MMAS performed better than GAprop and ACOA, based on all measures of solution quality and efficiency. The 

four stated ACO algorithms yielded a similar quality performance to GAtour and ACOAi-best, but more efficiently. Based on 

these results, ASrank, ASelite, AS, and MMAS yield the current best and most efficient performance (in the stated order) for 

the TRP in the literature. As this case study represents a relatively small problem, it is seen that the increased exploitative 

mechanisms of ASelite and ASrank result in the increased efficiency of these algorithms without a reduction in solution quality. 

As can be seen from Table 2, AS was the only tested ACO algorithm unable to find the known-optimum for the NYTP. 

ACS, ASelite, ASrank, and MMAS all found the known-optimum solution but only MMAS’s mean best-cost was not 

significantly different to that of ASrank, the best performing algorithm for this case study. As MMAS performed better than 

ASelite, it can be deduced that, as opposed to the smaller TRP, the shift in emphasis away from exploitation yields an 

improved performance for MMAS for this case study. The greater emphasis on exploration in the pheromone update 
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scheme of ASrank (i.e. the inclusion of the top  – 1 ranking ants, as opposed to only the top “elitist” ant) can be seen as a 

better-suited compromise between exploration and exploitation. Again, the relationship between exploitation and search-

time is seen, in that the exploitive algorithms (ASelite and ASrank) have relatively shorter search-times. In comparison with 

the other algorithms from the literature, four of the tested ACO algorithms perform better than GAimp in terms of both 

solution quality and efficiency. Only the minimum cost found by ACOAi-best is given, but it is known that ACOAi-best did not 

find the optimum in all runs. ASrank and MMAS were able to produce a better average performance than ASi-best, the current 

best performing algorithm for the NYTP. Based on its greater robustness and efficiency, ASrank produces the current best 

performance for the NYTP. 

For the HP, it can be seen in Table 2 that AS was unable to find a single feasible solution in any of the 20 runs. The 

difficulty of finding feasible solutions for this problem has been recognised by other authors (Eusuff & Lansey 2003), and is 

mainly attributed to the relatively small feasible region of the search space (Zecchin et al. 2005). ACS was able to find 

feasible, albeit poor, solutions. ASelite was able to find better solutions than ACS, however, they were still relatively poor. 

ASrank was able to find relatively good solutions. MMAS was found to be the best performing algorithm for this case study, 

as it was able to find a new lowest cost feasible solution, 0.78% less than the previous lowest cost solution, found by 

fmGA1 (Wu et al. 2001) (this result is in accordance with the findings of Zecchin et al. (2006): the reader is referred to that 

paper for the solution details). MMAS achieved the lowest mean best-cost from the known optimum (the t-tests showed that 

the performance of MMAS was significantly different to that of all the other tested ACO algorithms), but also had the 

longest mean search-time (but still shorter than that of the GAs). In general, the performances of ACS, ASelite, ASrank, and 

MMAS were much more sensitive to their respective parameter settings for this case study, such that only moderate 

variations from the selected parameters resulted in the inability to find feasible solutions for some runs. The best parameter 

settings for this case study vary greatly from those of all the other case studies. A common thread is that the optimal 

parameter settings for this case study increased each of the algorithm’s emphasis on exploitation. For example: for ACS, q0 

= 0.6, which means that 60% of decisions made were exploitative as opposed to 0% for the other case studies (q0 = 0); for 

ASelite, the number of elitist ants for this case study was far greater than for the other case studies; and for MMAS, the fact 

that Pbest had a greater value indicates looser pheromone bounding and consequently reduced exploration potential (similarly, 

 being set to a low value also indicates a reduction in MMAS’s exploration potential). Despite this notable sensitivity, the 

parameter heuristics proposed by Zecchin et al. (2005) resulted in extremely good performance for MMAS and, to a lesser 

extent, ASrank. The observed importance of exploitation, for searching in the infeasible region, can be attributed to the 

necessity of the algorithm to effectively use information provided by the best, albeit infeasible, solutions to lead the search 
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to the feasible region. This fact also highlights the importance of the penalty function to give an accurate indication of the 

distance of a solution from the feasible region. 

For the NYTP-2, only ACS, ASrank, and MMAS were able to find the optimum. ASelite was unable to perform as well as 

ASrank (and MMAS), despite its longer average search-time. The increased exploration capability of MMAS yielded an 

improved performance for this larger case study. This emphasis on exploration is reflected in the greater search time of 

MMAS (over 2.5 times greater than that of ASelite and over 3 times greater than that of ASrank). In comparison with ASi-best, 

only MMAS was able to achieve a lower mean best-cost, but at a far longer mean search-time. As MMAS achieved a better 

mean than ASi-best, it provides the current best performance for the 2-NYTP within the literature. The t-tests showed that 

MMAS performed significantly better than all of the other tested ACO algorithms, except ASrank. 

A comparison of the results of the experiments for the case studies shows that a greater emphasis on exploitation is 

important for the smaller case studies and a greater emphasis on exploration for the larger case studies. The implications of 

these findings are that an algorithm that encourages exploration will perform better for larger case studies, as a greater 

spread of candidate solutions will be achieved across the search space. However, this behaviour can have adverse effects, in 

terms of computational efficiency, for smaller case studies, where a more focused search process, utilizing exploitation, 

performs more efficiently. 

Table 3 provides a ranking of each algorithm’s performance for all four case studies. AS (ranked fourth) performed 

extremely well for the smallest case study, but was the worst performing algorithm for the larger case studies. ACS (ranked 

last) performed significantly worse than all other algorithms for the smallest case study, and performed relatively 

moderately for the other case studies (with a consistently high variability in its solution quality). ASelite (ranked third) 

performed consistently well for all case studies and achieved the second highest efficiency ranking. ASrank (ranked second) 

was the most efficient algorithm and performed best (or statistically equivalent to the best) for all case studies except for the 

HP. ASrank’s performance for the TRP and NYTP are the best found in the literature, subject to hydraulic feasibility 

determined by EPANET2. MMAS (ranked first), despite being ranked second to last for all case studies in terms of 

efficiency, provided the best (or statistically equivalent to the best) performance for all case studies and was the only 

algorithm to find the best known optimum for the HP. MMAS’s performances for the HP and 2-NYTP are the best found in 

the literature, subject to hydraulic feasibility determined by EPANET2. 

4 SUMMARY AND CONCLUSIONS  

Five Ant Colony Optimisation (ACO) algorithms have been applied to four water distribution system (WDS) optimisation 
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problems: the Two-Reservoir Problem (TRP); the New York Tunnels Problem (NYTP); the Hanoi Problem (HP); and the 

Doubled New York Tunnels Problem (2-NYTP). Four of the algorithms—Ant Colony System (ACS), Elitist Ant 

System (ASelite), Elitist-Rank Ant System (ASrank), and Max-Min Ant System (MMAS)—are current state-of-the-art ACO 

algorithms that have been applied successfully to a variety of combinatorial optimisation problems. The other algorithm—

Ant System (AS)—is the most basic and original form of ACO. The parameter guidelines given in Zecchin et al. (2005) 

were used effectively, where appropriate, for all algorithms tested.  

The results obtained indicate that, ASrank and MMAS stand out from the other ACO algorithms in terms of their consistently 

good performances. Compared with MMAS, ASrank was more efficient but it is important to note that ASrank did not perform 

as well as MMAS for the larger, and hence more difficult, case studies. The better performance of MMAS with these case 

studies could be largely attributed to its greater ability to explore (resulting, however, in longer search-times). The results, 

based on only four case studies from the literature, are extremely promising, but a wider experimentation of ACO 

algorithms applied to more case studies is required to determine their utility for real world WDS design problems. 
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7 TABLE CAPTIONS AND TABLES 

Table 1 Case study details and calibrated parameter values for the ACO algorithms. 

Table 2 Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other algorithms from the literature applied to 

the four case studies. Results for AS, ACS, ASelite, ASrank, and MMAS are based on 20 runs. Note: NA means that 

the information was not available, N/A means not applicable, NFS means no feasible solution was found, and STD 

means standard deviation. 

Table 3 Relative ranking and performance summary in terms of solution quality (i.e. mean best-cost) and efficiency (i.e. 

mean search-time) of the five ACO algorithms AS, ACS, ASelite, ASrank, and MMAS applied to the four WDS case 

studies TRP, NYTP, HP, and 2-NYTP. The total score is the sum of the ranks for each case study and the overall 

rank for each algorithm is ordered in ascending order of the total score. 
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Table 1 Case study details and calibrated parameter values for the ACO algorithms. 

 

Case 

study 

No. of 

pipes 

No. of 

nodes 

Search space 

size 
Imax 

ACS 

{, l, q0} 

ASelite 

 

ASrank 

 

MMAS 

{Pbest, } 

TRP
 

14 32   3.78 x 10
7
    400 {0.9, 0.98, 0}   4 10 {0.5, 10

-6
} 

NYTP
 

20 21    1.93 x 10
25

    500 {0.98, 1, 0}   8   8 {0.05, 5x10
-5

} 

HP
 

34 32 ~ 2.87 x 10
26

 1,500 {0.8, 0.7, 0.6} 40 20 {0.5, 0} 

2-NYTP
 

40 41  3.741 x 10
50

 3,000 {0.999, 1, 0}   3   8 {0.001, 0} 
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Table 2 Comparison of performance of AS, ACS, ASelite, ASrank, MMAS, and other algorithms from the literature applied to 

the four case studies. Results for AS, ACS, ASelite, ASrank, and MMAS are based on 20 runs. Note: NA means that the 

information was not available, N/A means not applicable, NFS means no feasible solution was found, and STD means 

standard deviation. 

Case 

study 
Algorithm 

Best-cost ($M) (% deviation from optimum) 

Comparison of mean 

best-cost with 

optimum or best 

algorithm
a
 

Search-time 

(evaluation 

number10
3
) 

Minimum Mean Maximum STD t statistic
b
 (P-value) Mean STD 

TRP 

AS   1.750 (0.00)   1.750 (0.00)   1.750 (0.00) 0.000 N/A   2.1     0.6 

ACS   1.750 (0.00)   1.770 (1.13)   1.904 (8.81) 0.050  1.774
c 

(0.046)   5.0     2.3 

ASelite   1.750 (0.00)   1.750 (0.00)   1.750 (0.00) 0.000 N/A   1.8     0.8 

ASrank   1.750 (0.00)   1.750 (0.00)   1.750 (0.00) 0.000 N/A   1.5     0.5 

MMAS   1.750 (0.00)   1.750 (0.00)   1.750 (0.00) 0.000 N/A   3.0     0.9 

GAprop
d 

  1.750 (0.00)   1.759 (0.51)   1.812 (3.54) 0.020 1.335
 

(0.106)   23.6   13.9 

GAtour
e 

  1.750 (0.00)   1.750 (0.00)   1.750 (0.00) 0.000 N/A   8.7 NA 

ACOA
f
   1.750 (0.00)   1.769 (1.09)   1.813 (3.60) 0.030  1.964

c 
(0.039)   12.5   NA 

ACOAi-best
f 

  1.750 (0.00)   1.750 (0.00)   1.750 (0.00) 0.000 N/A   8.5 NA 

NYTP 

AS
g 

39.204 (1.47) 39.910 (3.29) 40.922 (5.91) 0.552  8.413
c 

(O{10
-10

})   35.9     6.7 

ACS 38.638 (0.00) 39.629 (2.57) 41.992 (8.68) 0.803  4.488
c 

(O{10
-10

})   24.0     5.6 

ASelite 38.638 (0.00) 38.988 (0.91) 39.511 (2.26) 0.323  2.415
c 

    (0.021)   21.9     3.2 

ASrank 38.638 (0.00) 38.777 (0.36) 39.221 (1.51) 0.200 N/A   19.3     2.4 

MMAS
g 

38.638 (0.00) 38.836 (0.51) 39.415 (2.01) 0.305 0.694    (0.492)   30.7     6.0 

GAimp
h
 38.796 (0.41) NA NA NA 

 
NA    96.8

g
 NA 

ACOAi-best
f
 38.638 (0.00) NA NA NA NA   13.9    8.2 

ASi-best
i
 38.638 (0.00) 38.849 (0.55) 39.492 (2.21) NA NA   22.0 NA 

HP 

AS
g
 NFS NFS NFS - - - - - 

ACS   7.754 (26.41)   8.109 (32.20)   8.462 (37.96) 0.198  32.191
c 

(O{10
-29

})   61.3   34.3 

ASelite   6.827 (11.30)   7.295 (18.93)   8.187 (33.48) 0.346  10.709
c 

(O{10
-13

})   59.9     9.6 

ASrank   6.206  (1.17)   6.506  (6.07)   6.788 (10.66) 0.150    2.527
c 

    (0.016)   75.3   12.1 

MMAS
g
   6.134  (0.00)   6.394  (4.24)   6.635  (8.17) 0.122 N/A   85.6   22.3 

GA No. 2
j
   6.195  (1.00) NA NA NA NA       10

3 k
 NA 

fmGA1
l
   6.182  (0.78) NA NA NA NA   113.6

k
 NA 

ASi-best
i
   6.367  (3.80)   6.842 (11.54)   7.474 (21.95) NA NA   67.1 NA 

2-

NYTP 

AS
 

80.855 (4.63) 83.572 (8.15) 85.267 (10.34) 1.291 16.788
c 

(O{10
-19

}) 131.8   19.2 

ACS 77.275 (0.00) 80.586 (4.28) 86.682 (12.17) 2.656   3.822
c 

(O{10
-4

}) 472.0   30.2 

ASelite 77.922 (0.84) 79.806 (3.28) 81.986  (6.10) 1.248   5.141
c 

(O{10
-6

})   90.4   34.7 

ASrank
m 

77.434 (0.21) 78.492 (1.58) 79.863  (3.35) 0.599  1.538   (0.132)   72.3   12.6 

MMAS 77.275 (0.00) 78.213 (1.21) 79.353  (2.69) 0.518 N/A 238.3 122.9 

ASi-best
i
 77.275 (0.00) 78.302 (1.33) 79.922  (3.43) NA NA   75.8 NA 

a
Tests are made against optimum value for the TRP, ASrank mean best-cost for NYTP, and MMAS mean best-cost for HP and 

2-NYTP. 
b
For the TRP, test is a one sided t-test for H0: mean best-cost > optimum, test based on 19 degrees of freedom for AS, 

ACS, ASelite, ASrank, and MMAS and 9 for others, and for the NYTP, HP and 2-NYTP, test is an unpaired, two-sample t statistic 

with 38 degrees of freedom for H0: the respective algorithm’s mean best-cost is equivalent to that of ASrank (for NYTP) and 

MMAS (others). 
c
Significant at a 5% significance level for the relevant test. 

d
Simpson et al. (1994). 

e
Simpson & Goldberg 

(1994). 
f
Maier et al. (2003). 

g
The results for these algorithms are in agreement with Zecchin et al. (2004a), who conducted 

similar trials. 
h
Dandy et al. (1996). 

i
Zecchin et al. (2005). 

j
Savic & Walters (1997). 

k
Only value reported. 

l
Wu et al. (2001). 

m
ASrank was able to find the known-optimum solution for other parameter settings but at a poorer mean best-cost. 
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Table 3 Relative ranking and performance summary in terms of solution quality (i.e. mean best-cost) and efficiency (i.e. 

mean search-time) of the five ACO algorithms AS, ACS, ASelite, ASrank, and MMAS applied to the four WDS case studies 

TRP, NYTP, HP, and 2-NYTP. The total score is the sum of the ranks for each case study and the overall rank for each 

algorithm is ordered in ascending order of the total score. 

 

Case 

Study 

ACO Algorithms relative rank in terms of 

Solution quality and (efficiency) 

 AS ACS ASelite ASrank MMAS 

TRP   1
b, c, e 

  (3)     5
c 
  (5)     1

b, c, e
 (2) 1

a, c, e
 (1) 1

b, c, e 
  (4)  

NYTP   5         (5)     4
c 
  (3)     3

c
     

 
(2) 1

a, c, e
 (1) 1

b, c, e
   (4)  

HP   5
d
        (5)     4    (3)     3       (1) 2       (2) 1

a, c
     (4)  

2-NYTP   5         (3)     4
c 
  (5)     3       (2) 1

b, c, e 
(1) 1

a, c, e
   (4)  

Total  16       (16)  17 (16)  10      (7) 5       (6) 4       (16)  

Overall 

rank 
  4         (3)

e 
   5    (3)

e
    3       (2) 2       (1) 1         (3)

e
 

a
Algorithm yields best performance in literature for given case 

study subject to feasibility determined by EPANET2. 
b
Algorithm yields statistically equivalent performance to best 

performing algorithm. 
c
Optimum or known-optimum was 

found. 
d
No feasible solutions were found. 

e
 Numerous 

algorithms “drew” for this rank. 
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ENDNOTES FROM TABLE 2. 

INTENTIONALLY BLANK 

                                                 
a
 Algorithm  

b
 t-test 

c
 significance 

d
 GAprop

a
 

e
 GAtour 

f
 ACOA 

g
 MODSIM paper 

h
 Dandy 96 

i
 Zec 05 

j
 GA No. 2 

k
 Only value 

l
 fmGA 

m
 Asrank 


