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ABSTRACT

Ancient DNA (aDNA) research has long depended on
the power of PCR to amplify trace amounts of
surviving genetic material from preserved speci-
mens. While PCR permits specific loci to be targeted
and amplified, in many ways it can be intrinsically
unsuited to damaged and degraded aDNA tem-
plates. PCR amplification of aDNA can produce
highly-skewed distributions with significant contri-
butions from miscoding lesion damage and non-
authentic sequence artefacts. As traditional
PCR-based approaches have been unable to fully
resolve the molecular nature of aDNA damage over
many years, we have developed a novel single
primer extension (SPEX)-based approach to gener-
ate more accurate sequence information. SPEX
targets selected template strands at defined loci
and can generate a quantifiable redundancy of
coverage; providing new insights into the molecular
nature of aDNA damage and fragmentation. SPEX
sequence data reveals inherent limitations in
both traditional and metagenomic PCR-based
approaches to aDNA, which can make current
damage analyses and correct genotyping of ancient
specimens problematic. In contrast to previous
aDNA studies, SPEX provides strong quantitative
evidence that C > U-type base modifications are the
sole cause of authentic endogenous damage-
derived miscoding lesions. This new approach
could allow ancient specimens to be genotyped
with unprecedented accuracy.

INTRODUCTION

Traces of genetic material preserved within ancient speci-
mens can provide a unique and important real-time record
of the past (e.g. 1-4). However, this record is compro-
mized because ancient DNA (aDNA) is invariably
damaged and degraded to some extent, initially by
endogenous nucleases and microorganisms after death,
and subsequently by hydrolysis and oxidation reactions
that can fragment the DNA backbone and chemically
modify bases (5,6). Spontaneous base-loss events, creating
non-coding abasic sites (6,7), and certain base modifica-
tions (8,9) can block the amplification of aDNA templates
by halting DNA polymerase-mediated primer extension.
In contrast, other base modifications can create damage-
derived miscoding lesions (DDMLs) which do permit
polymerase extension but which have altered base-pairing
properties, leading to altered sequences in newly amplified
DNA (7).

Almost all aDNA studies to date have been PCR-based,
as this method can generate sequence data from the trace
amounts of DNA preserved in ancient specimens.
However, PCR can generate incorrect sequence data
from aDNA for a number of reasons. In addition to an
intrinsic background rate of polymerase misincorporation
errors, the altered base-pairing properties of endogenous
DDMLs can cause considerable amounts of sequence
variation in PCR-amplified aDNA (10,11). ‘Jumping-
PCR’, where partially extended primers switch between
different damaged and degraded aDNA template strands
during the early cycles of PCR amplification, has been
shown to create non-authentic, recombinant, sequences
(12-14). ‘Jumping-PCR’ artefacts may also be com-
pounded by the tendency of many DNA polymerases to
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add a single nucleotide to the 3’-end of primer extensions
in a non-template directed fashion (10,14-19). PCR can
also generate additional, non-endogenous, sequence
artefacts such as so-called ‘Type 1 damage’ (20-22).
PCR amplification of low copy number templates is
known to create products with highly skewed representa-
tions (13,23). This means that sequence artefacts can easily
come to dominate the products of PCR-amplified aDNA
(10,11,13,14,23). Sequence accuracy is therefore a major
issue in aDNA research.

These factors have been recognized to varying degrees.
The overlapping ‘best-of-three” PCR amplification and
cloning strategy currently used when key ancient samples
are amplified by standard or multiplex PCR (10,24,25),
explicitly accepts the inherent shortcomings of PCR-
generated aDNA sequences and significantly increases the
chances of correctly inferring the original endogenous
DNA sequence. However, there are two essential pre-
requisites for a quantitative investigation into the molec-
ular nature of aDNA damage and its effects on sequence
accuracy. First, authentic endogenous DDMLs must be
disentangled from other non-endogenous, PCR-generated,
forms of sequence variation. Secondly, due to the
complementary double-stranded nature of DNA, the
template strand-of-origin of particular DDML base
modification events must somehow be unambiguously
specified. Exponential amplification from both strands of
a DNA template is intrinsic to PCR and this prevents the
strand-of-origin of particular base changes from being
determined (20). Together with the demonstrated poten-
tial for the generation of additional non-authentic
sequence variation, these limitations of PCR-based
methods have prevented full resolution of the molecular
nature of DDMLs in aDNA.

Although there has always been strong theoretical and
biochemical evidence that C > U-type DDMLs are a
major cause of Type 2 ‘damage’ (C > T/G > A) transi-
tions in PCR-amplified aDNA sequences (e.g. 5,6,10),
there has also been considerable debate about the
existence, or otherwise, of a genuine biochemical basis
for Type 1 ‘damage’ (T > C/A > G) transitions. However,
it has recently become clear that so-called Type 1
‘damage’, observed at significant levels by some tradi-
tional PCR-based studies (e.g. 20,26-28), disappears once
alternative techniques are employed (21,22; this study),
and this is now recognized as a non-endogenous, PCR-
generated, phenomenon (22).

The potential role(s) of aDNA templates that are
shorter than the target region in PCR amplifications is
an issue that requires closer examination. Following the
first cycle, only those initial primer extensions long enough
to cover the entire target region could be utilized directly
by both PCR primers. As we demonstrate however, as the
PCR target length increases so does the proportion of
shorter, abortive, primer extensions. These have the
potential to contribute to the creation of recombinant
and other non-authentic sequence artefacts in subsequent
cycles. These findings raise questions about the wide-
spread use of quantitative PCR (qPCR) methods to
estimate the numbers of aDNA templates contributing to
the products of PCR amplification reactions. qPCR

results give no information about the number of templates
below the target size that end up contributing to
amplification products via ‘umping-PCR’ and other
PCR-generated mechanisms. PCR amplification from
ancient extracts with template copy numbers estimated
by qPCR to be in the tens-of-thousands have been shown
to produce significant levels of non-endogenous ‘Type 1
damage’ artefacts (e.g. 27). Therefore the widespread
assumption that given a sufficiently high estimated starting
number, endogenous DDML sequence diversity in aDNA
templates will necessarily be reflected by the sequence
variation within PCR-generated products simply cannot
be sustained.

As traditional PCR-based approaches have proven
incapable of fully resolving the molecular nature of
DDMLs, we have developed a novel SPEX-based
approach (Figure 1) to generate detailed information
about post mortem DDML base modifications in aDNA.
In direct contrast to PCR, SPEX is an amplification
methodology that specifically targets only one of the
aDNA template strands at a locus-of-interest and imposes
no predefined target length. This allows the production of
first-generation copies of aDNA template molecules, with
quantifiable (up to 40-fold or more) coverage from a single
reaction. SPEX is shown to be capable of producing
sequence data of unprecedented accuracy from aDNA,
without the generation of additional, non-endogenous,
sequence artefacts over and above a background rate of
misincorporation errors common to polymerase-based
methodologies.

Recently, massively parallel metagenomic sequencing
approaches have also been used to investigate aDNA
damage. By inferring the sequences of individual single-
stranded DNA (ssDNA) templates generated from aDNA
via the 454-methodology (29), independent studies con-
cluded that in addition to C > U-type DDMLs, a
substantial proportion of Type 2 transitions were due to
modification(s) of G residues (by an unknown biochemical
process) that caused them to be read as A by polymerases
(21,22,30). Here, we use SPEX to overcome limitations
inherent to both traditional PCR- and current 454-based
approaches. The ability of SPEX to rigorously distinguish
between authentic aDNA and first-generation copied
sequences, whilst simultaneously quantitatively generating
highly accurate sequence data from designated loci, has
enabled the molecular nature of DDMLs to be fully
revealed for the first time.

MATERIAL AND METHODS
Samples

The main body of this study analyses data from SPEX
amplification experiments on fifteen aDNA extracts,
performed in a dedicated aDNA laboratory at the
Henry Wellcome Ancient Biomolecules Centre,
University of Oxford. DNA had previously been extracted
and analysed for each specimen using well-established
aDNA methods (as for 4,31). Each SPEX analysis
focussed on sections of the mitochondrial control region
where diagnostic SNPs or sequence ‘fingerprints’ were
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Figure 1. Single  primer extension (SPEX)  amplification.

(A) Denaturation and hybridization of a single biotinylated primer to
one target strand at the locus-of-interest. (B) Primer extension by a
thermostable DNA polymerase until halted at the physical end of an
aDNA template molecule; at a polymerase-blocking modified base [M];
or at an abasic site, some other non-coding lesion, or some kind of
physical block [X]. Miscoding lesions [U] do not block primer
extension, but result in altered sequences. Polymerases can catalyze
the non-directed addition of a single 3'-terminal nucleotide [N]
following primer extension to either the physical end of a fragmented
aDNA template, or to an abasic site or other non-coding lesion. Single
or multiple cycles of SPEX primer extension can be used. Biotinylated
molecules were then bound to Streptavidin-coated beads and stringent
washes removed everything else (e.g. aDNA template molecules,
enzymes, buffer, etc). (C) Biotinylated primers and extended primers
(with single-stranded, direct first-generation copies of individual aDNA
template molecules) were then polyC-tailed using terminal transferase
(TdT), followed again by bead-wash removal of TdT and buffer.
(D) Locus-specific, primer-extended, polyC-tailed ssDNA molecules
were then selectively amplified by PCR; using a partially-nested, locus-
specific, SPEX-2 forward primer (Tables S1 and S2) and a polyG-
based, 5" adapter-tagged, reverse primer (Tables S1 and S2). (E) These
products were amplified a final time by PCR using a further partially
nested, locus-specific, SPEX-3 forward primer (Tables S1 and S2) and a
5’-adapter reverse primer (Tables S1 and S2). (F) The final products of
SPEX amplification underwent restriction digestion, directional cloning
and sequencing.

known to characterize individual specimens. Samples
from three mammalian species (bison, human, Eurasian
cave lion) were selected to cover a broad range of ages,
environments, regions and types of site (Table S2).
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SPEX experiments using synthetic oligonucleotide tem-
plates were carried out independently at the Australian
Centre for Ancient DNA (ACAD) in Adelaide.

Design of SPEX amplification

The SPEX strategy for amplification of aDNA is shown
schematically in Figure 1. All polymerase-based meth-
odologies introduce a background level of polymerase
misincorporation errors. However, the use of a single
primer extension, followed by homopolymer tailing,
avoided the potential creation of additional PCR-gener-
ated artefacts. Any deviations from the known underlying
primary aDNA sequences in the first-generation copies of
aDNA were quantitatively analysed. Partially nested
SPEX primer sets are shown in Tables S1 and S2. SPEX
can access genetic information from highly fragmented
and damaged aDNA templates since, unlike PCR, it does
not have a pre-defined target size based on the primer pair.
SPEX primer extension continues until halted by aDNA
template fragmentation or a polymerase-blocking lesion.
After the primer extension stage, all aDNA templates were
completely removed by Strepavidin bead-washes and the
remaining, single-stranded, first-generation copies of
aDNA target strands were then permanently ‘trapped’
by polyC-tailing. Nested PCR amplification was then used
to amplify what were now effectively ‘modern’ ssDNA
template molecules, with minimal risk therefore of
subsequent ‘jumping-PCR’ events. A multi-cycle extension
variant of SPEX was also examined. Sequence data was
generated using SPEX from the following sequence
positions for the bison, human and cave lion samples.
Bison: equivalent position to 16 178 (single-cycle SPEX) or
16175 (multi-cycle SPEX) upwards on the Bos taurus
mitochondrial genome [Genbank V00654; (32)]. Humans:
from three parts of the human mitochondrial control
region (according to the revised Cambridge Reference
Sequence (33), Genbank J01415.2); 16223 upwards;
16364 downwards and 16267 downwards. Cave lions:
from the equivalent to position 95 onwards on the
Panthera leo spelaea partial mitochondrial sequence
(Genbank DQ899910).

Single-cycle primer extension

Reactions were performed in 50 ul volumes with 1-5 pul of
aDNA extract added to reactions comprising: 1 mg/ml
rabbit serum albumin (RSA; Sigma) to help overcome
polymerase inhibitors; 1x High Fidelity PCR buffer;
2mM magnesium sulphate; 200 uM of each dNTP; 1.5
Units (U) Platinum Taqg DNA Polymerase High Fidelity
(Invitrogen) and 0.2 uM of the appropriate 5'-biotinylated
SPEX-1 primer (Tables S1 and S2). Synthetic oligonucleo-
tide templates (Figure S3) were used at 0.25uM. The
thermocycling profile was: 95°C for 3°min, 53-57°C
(depending on primer) for 1min, 68°C for 10min; then
4°C until bead washing.

Multi-cycle primer extension

Reactions were performed in 50 pl volumes with 1.0-5.0 pl
of aDNA extract added to reactions comprising: 1 mg/ml
bovine serum albumin (BSA; Sigma) for non-bison
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extracts (RSA for bison extracts) to help overcome
polymerase inhibtors; 1x AmpliTaq Gold buffer II;
2.5mM magnesium chloride; 200 uM of each dNTP; 1.5
U AmpliTaq Gold (Perkin Elmer) and 0.2uM of the
appropriate 5'-biotinylated SPEX-1 primer (Tables S1 and
S2). The thermocycling profiles were: 95°C for 5min;
followed by 50 cycles of 30s at 95°C, 30s at 54-60°C and
1 min at 72°C; then 4°C until bead washing.

Bead washing

Aliquots of 20 ul of Streptavidin magnetic beads (New
England Biolabs, S1420S) were pre-washed three times
with 2x BW buffer (34); resuspended in 50pul 2x BW;
mixed with the 50 ul SPEX primer extension reaction and
rotated at room temperature for 30min to immobilize
biotinylated molecules to the beads; then a series of
washes with 2x BW, 0.15M NaOH and 1x Tris/EDTA
(TE, pH 7.5) were carried out as described by Chen et al.
(34) to remove everything but biotinylated molecules. The
beads were resuspended to 14 ul with 0.1x Qiagen buffer
EB (10mM Tris-Cl, pH 8.5).

PolyC-tailing

PolyC-tailing was performed for 1h at 37°C in 20ul
reactions comprising: 15U of Terminal Deoxynucleotidyl
Transferase, Recombinant (rTdT) (Invitrogen,
10 533-065); 1x TdT reaction buffer; 500 uM dCTP;
and the 14 pl of resuspended beads. Washes with 1x TE
(pH 7.5) were carried out to remove everything but
polyC-tailed, biotinylated molecules. The beads were
resuspended to 15pul with 0.1x Qiagen buffer EB.

First partially nested PCR amplification

Resuspended beads were used in 50 pl reactions with:
1x High Fidelity PCR buffer; 2mM magnesium sulphate;
200uM  of each dNTP; 1.5U Platinum 7ag DNA
Polymerase High Fidelity and 0.2 uM of the appropriate
SPEX-2 (F & R) primers (Tables S1 and S2). The
thermocycling profiles were: 2min at 95°C; followed by
50 cycles of 30s at 95°C, 30s at 48-54°C and 1min at
68°C; with a final extension of 10min at 68°C. Excess
primers and nucleotides were removed with QIAprep PCR
purification columns (Qiagen).

Second partially nested PCR amplification

In order to ensure complete specificity prior to the
extensive cloning and sequencing of SPEX amplicons
required for quantitative aDNA damage analyses, a
second round of partially nested PCR amplifications
were performed. However, this additional step could be
omitted for general SPEX experiments. Reactions were
performed in 25 pl volumes comprising: a 100-fold dilu-
tion of the cleaned-up first-round products; 1x High
Fidelity PCR buffer; 2mM magnesium sulphate; 200 uM
of each dNTP; 0.75 U Tagq; and 0.2 uM of the appropriate
SPEX-3 (F & R) primers (Tables S1 and S2). The
thermocycling profiles were: 2min at 95°C; followed by
35 cycles of 20s at 95°C, 20s at 54-57°C, and 1 min at

68°C; with a final extension of 10min at 68°C. Excess
primers and nucleotides were removed as above.

Cloning, sequencing and sequence analysis

All steps followed standard protocols, according to
manufacturer’s instructions where appropriate, and are
described in detail as Supplementary Data.

Behaviour of platinum 7aq polymerase mix following
primer extension

To examine the behaviour of the Platinum 7ag DNA
Polymerase High Fidelity mix (commonly used in aDNA
research) upon completing primer extension to either the
physical end of a template molecule, or to an internal
abasic site, simplified systems of HPLC-purified synthetic
oligonucleotide templates were amplified by single-cycle
SPEX and cloned and sequenced as above. These
constructs used the same SPEX primers as the single
cycle SPEX amplification of bison aDNA to allow a direct
comparison between otherwise equivalent regions of
ancient and non-ancient DNA.

Distribution of Type 2 aDNA damage amongst 454-derived
molecules

We re-analysed 1449 Mammuthus primigenius mitochon-
drial sequences from a data set of ssDNA molecules
produced by the GS 20 Sequencing System (454 Life
Sciences, Branford, CT) as previously described (22,35) to
investigate whether Type 2 transitions are randomly
distributed across the molecules. A Kolmogorov—
Smirnov one sample test was used to test the hypothesis
that the positions of 514 C > T and 231 G > A transitions
were each distributed according to a uniform distribution
along the length of the sequence traces. A f-test and
Wilcoxon rank sum test were also performed to compare
the positions of the C > T and G > A transitions relative
to one another, along each trace. These tests allowed us to
accept or reject the null hypothesis that, respectively,
the mean and median relative positions of the two types
of mutation are the same. The summary data from
this analysis was compiled and represented using a
box-plot (36).

Distribution of C > U-type damage-derived miscoding
lesion events

The distribution of C > U-type DDML events (observed
as complementary G > A transitions on SPEX-derived
first-generation copied aDNA sequences) was investigated
for each of the six ancient bison extracts amplified with
single-cycle SPEX wusing a generalized linear model
(Poisson family, log link function) in the R statistical
package (http://www.r-project.org/): testing for a random
distribution of C > U-type events whilst taking into
account the lengths of each molecule. We calculated the
lack of fit to this model by treating the residual deviance as
a x* random deviate with the residual number of degrees
of freedom. We calculated (1-P) where P is the probability
of obtaining a random deviate as large, or larger, than that
observed. Small values of (1-P) suggest a lack of fit of the

0T0Z ‘¥ AInC uo aprejapy Jo Alsianiun 1e 610 sfeusnolplojxo:reu//:dny woly papeojumod


http://nar.oxfordjournals.org

model because of over-dispersion—a departure from a
Poisson distribution such that damaged sites are clustering
on particular strands within a sample, even when
differences in length are taken into account. Samples
that displayed a trend towards over-dispersion were
parametrically modelled using the negative-binomial
family version of the Generalized Linear Model (37).

RESULTS
Single primer extension amplification of aDNA

Sections of the mitochondrial control region were
amplified by single-cycle SPEX from six bison extracts
covering a wide range of ages and environments
(Table S2). A ‘total cloned” data set (TCDS) contained
all sequences obtained. A ‘conservative’ data set (CDS;
Figure S1) comprised inserts with discrete lengths and/or
primary sequences. Differences in SPEX length resulted
from differences in the sites of aDNA template fragmenta-
tion or polymerase-blocking lesions. Differences in pri-
mary sequence reflected contributions from endogenous
DDMLs, ‘non-directed’ polymerase activity at the 3’-end
following primer extension and polymerase misincorpora-
tion errors. Many polymerases can add a single nucleotide
in a non-directed manner when primer extension stalls at a
non-coding lesion, such as an abasic site (17-19), or halts
after reaching the physical end of a template molecule
(15,16). Fifty-two percent of 3'-terminal bases in the CDS
did not match the known underlying template sequence
(Figures S1 and S2), meaning at least 69% (Table S3)
of SPEX events must have undergone non-directed
nucleotide addition (NDNA) at the 3’-end. For this
reason, bases at the 3’-terminal position (immediately 5
to the polyC-tail) were excluded from all SPEX aDNA
damage analyses.

The single-cycle SPEX TCDS covered 10644 bases
from 548 amplicons, while the CDS covered 7654 bases
from 337 discrete sequences (Table 1). Most CDS sequen-
ces were distinguishable on the basis of length (Figure S1).
Of those with identical length, the vast majority of these
differed due to G > A transitions (i.e. largely from
endogenous C > U-type DDMLs on the template
strand) and/or NDNA at the 3’-end. Only 5/337 of the
CDS sequences differed from one another due solely to a
non-C > U-derived transition. Therefore, we estimate that
at least 98% of the SPEX amplicon sequences in the CDS
were ultimately derived from discrete SPEX events on
discrete aDNA template molecules (with <2% reflecting
polymerase errors). Single-cycle SPEX amplification
appears to be highly robust since, despite subsequent
partially nested amplification steps, 548 sequenced clones
did not produce a single example of cross-contamination
between any of the six individual bison specimens
(Figure S1). Multi-cycle SPEX gave essentially indistin-
guishable results to single-cycle SPEX (Table 2).

SPEX can access highly damaged and fragmented aDNA
template molecules

As single-cycle SPEX primer extension is functionally
equivalent to the first cycle of PCR, the observed lengths
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Figure 2. Graph showing the percentage of clones of the single-cycle
SPEX CDS and TCDS (Figure SI; Table 1) versus ‘template
amplifiable size’ (in bp) by PCR. The best-fit function that describes
the data is an exponential decay (ExpGauss) with formula
y = exp(a+bxx+cxx?); where: a=3.966; b=0.019 and ¢ = 0.050.
The best-fit line was obtained by non-linear least-square curve fitting
algorithms, and the curve shows the relationship between SPEX-
amplified aDNA product length (x) and the percentage of all clones for
each product length (y). Template amplifiable mean: 83.5bp and SD:
24.9 bp. The minimum size considered was 47 bp, which corresponds to
SPEX primer extension events that originally extended 1 base past the
3-end of the final SPEX-3 partially nested forward PCR primer
(Tables S1 and S2).

of first-generation copied aDNA were analysed to
estimate what proportion would, or would not, have
been available for subsequent exponential PCR amplifica-
tion with a reverse PCR primer placed at defined distances
away. When given the opportunity, PCR is known to
preferentially amplify shorter targets (38), meaning that
there is likely to have been at least some drift towards
SPEX amplicons representing shorter primer extension
events. Nevertheless, a plot of apparent ‘template amplifi-
able size’ by PCR (i.e. the maximal SPEX-amplified
aDNA product length) versus the percentage of all clones
for each product length (Figure 2) clearly shows that as
the size of the target PCR amplicon increased, the
production of directly PCR-amplifiable primer extensions
would dramatically decrease compared to the production
of shorter, abortive, primer extensions.

By analogy to the single-cycle SPEX data, the kinds of
sizes targeted in most PCR-based aDNA studies so far
(e.g. 4,10,20,26-28,39,40) should also have led to the
production of many times more abortive primer exten-
sions than directly PCR-amplifiable ones during the initial
PCR cycles. Abortive primer extensions like these would
be available to contribute to the creation of recombinant
“Jumping-PCR’ artefacts in subsequent cycles. Moreover,
the majority of these abortive primer extension events
could be expected to undergo NDNA at their 3’-end.
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various ancient extracts. SC = Single-cycle SPEX. MC = Multi-cycle
SPEX. Cons = CDS. Total = TCDS. TrV = transversions.
SC-Bison = 6 ancient bison extracts: (Cons) 7,654 bp, 337 discrete
sequences;  (Total)  10,644bp, 548 independent amplicons.
MC-Bison = 5 ancient bison extracts: (Cons) 4,187 bp, 171 discrete
sequences;  (Total)  4,934bp, 219  independent amplicons.
MC-Human = 4 ancient human extracts (at 3 loci): (Cons) 3304
nucleotides, 164 discrete sequences; (Total) 4,647 bp, 271 independent
amplicons. MC-Cavelion = 3 ancient Eurasian cave lion extracts:
(Cons) 4,086 bp, 111 discrete sequences; (Total) 4,470 bp, 141 indepen-
dent amplicons.

Therefore the potential contribution of molecular events
like these to the generation of non-endogenous
sequence artefacts in subsequent cycles during traditional
PCR-based aDNA studies is an area that needs further
investigation.

Physical fragmentation or non-coding lesions, like abasic
sites, halt most primer extension events on aDNA templates

Many polymerases can catalyse the non-templated addi-
tion of a single overhanging nucleotide (overwhelmingly
A) to blunt-ended double-stranded DNA (dsDNA),
following full primer extension to the physical end of a
template molecule (15,16). The requirement for blunt-
ended dsDNA is absolute as NDNA does not occur on
ssDNA (15). On the other hand, most known polymerase-
blocking base modifications do not result in non-authentic
nucleotides at the 3’-terminal position (8). Physical blocks
to polymerase extension (e.g. inter-strand crosslinks)
should also lead to correctly-paired 3’ nucleotides.

The high proportion of positions exhibiting a non-
authentic 3'-terminal A (Figures S1 and S2; Table S3)
might suggest full primer extension and NDNA following
a fairly random and extensive fragmentation of aDNA
template molecules. However at abasic sites, polymerases
can also ‘non-instructionally’ add A as well as lower levels
of G, T or C, nucleotides (17-19). Purine (A or G) bases
are known to be released from aDNA at a higher rate than
pyrimidines (C or T) to create abasic sites (6). If abasic
sites played a significant role in NDNA, we would expect
to find higher levels of non-authentic 3'-terminal bases
opposite A and G sites on the complementary strand. All
six bison specimens shared an identical sequence over the
first 17 bases of single-cycle SPEX primer extension
(Figure S1). Over this region, 62 non-authentic 3’-terminal
A, G or T bases were observed opposite the sites of the
eight purines on the complementary strand, while only 24
were observed opposite the sites of the nine pyrimidines
(Figure S2). (The use of polyC-tailing prevents an analysis
of NDNA events involving C.) These findings point
towards a significant contribution from abasic sites. A less
likely alternative, given the significant levels of non-
authentic G and T bases at the 3’-terminal position, is that
there is an elevated rate of strand breakage immediately 3’
to purine bases, due to some unknown mechanism.

Single-cycle SPEX was used to amplify synthetic
oligonucleotide templates (Figure S3) in a detailed
analysis of the behaviour of the Platinum Tag DNA
Polymerase High Fidelity mix; both at an abasic site and
when primer extension reached the physical end of a
template. The level of NDNA on aDNA templates (69%)
lies between the levels observed at an abasic site (94%)
and following full primer extension (50%) in the test
system (Table S3). Overall, the NDNA data is therefore
consistent with the great majority of primer extension
events on aDNA templates being halted due to either
template fragmentation or an abasic site, with these being
the major factors limiting the effective amplifiable size of
aDNA. This evidence contradicts other studies that have
argued that crosslinks play the major role (41). However,
the elevated levels of G and T at the 3’-terminal position
with aDNA templates (Figure S2) suggests that the
detailed picture may be more complicated than the test
system and that other non-coding lesions, as well as abasic
sites, may also play a role.

SPEX strongly suggests post mortem C > U-type base
modification events are solely responsible for damage-derived
miscoding lesions in aDNA

The single-cycle SPEX sequences provided no evidence for
so-called Type 1 (T > C/A>G) ‘damage’ events
(Figure 3; Table 1). If the previously proposed A > HX
(hypoxanthine) lesion (39) plays a role in aDNA, then
significant levels of complementary T > C transitions
should have been observed on first-generation copied
SPEX sequences. These results concur with the findings of
recent large-scale 454-based aDNA studies, which also
precluded the possibility of ‘jumping-PCR’-type events,
and similarly produced no evidence of Type 1 transition
artefacts (21,22,30).
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Table 1. Transitions and transversions observed after single-cycle® SPEX amplification of six ancient bison extracts

A Type 1 Type 2

Observed transitions® A>G T>C G>A C>T

aDNA DDMLs?¢ T>C? A > HX C>U G>X

Conservative data set¢ 9 3 210 2

Total cloned data set® 10 3 279 2

B

Observed transversions C>A C>G G>C G>T T>G T>A A>T A>C
Conservative data set 1 0 0 1 0 0 1 1
Total cloned data set 1 0 0 1 0 0 1 5

“Each SPEX primer extension reaction initially comprising a single cycle of primer annealing and extension using Platinum 7ag DNA Polymerase
High Fidelity (Invitrogen), followed by bead clean-up and polyC-tailing. "Every SPEX-amplified sequence is derived from an initial direct first-
generation copy of an aDNA template strand, so the observed transitions represent the complement of DDML events that actually existed on the
original aDNA templates. The base composition amongst those nucleotides common to all specimens (i.e. non-fingerprinting’ positions; Figure S1)
across the first 56 bp of this locus (completely encompassing 94% of observed primer extension events) was: G = 13 (27%); A = 10 (20%); T =8
(16%); C = 18 (37%). “A > HX, C > U and G > X are base modifications that have previously been suggested as the causes of particular DDMLs
(10,21,39). “The conservative data set only considered discrete sequences derived from primer extension events which differed in length, primary
sequence, or 3'-terminal NDNA and covered 7654 nucleotides from 337 discrete SPEX-derived amplicons. “The total cloned data set represents every
sequence obtained after extensive cloning and covered 10644 nucleotides from 548 SPEX-derived amplicons.

Table 2. Transitions and transversions observed after multi-cycle® SPEX amplification of five ancient bison, four ancient human and three ancient
Eurasian cave lion extracts

Type 1 Type 2 Transversions
Observed transitions® A>G T>C G>A C>T
aDNA DDMLs?¢ T>C? A > HX C>U G>X
Five ancient bison extracts; one locus
Conservative data set? 2 0 91 1 5
Total cloned data set® 2 0 111 1 5
Four ancient human extracts; three loci
Conservative data set’ 0 1 50 1 1
Total cloned data set® 0 1 57 1 1
Three ancient cave lion extracts; one locus
Conservative data set" 2 1 25 0 0
Total cloned data set' 2 1 26 0 0
Combined multi-cycle SPEX data
Conservative data set’ 4 2 166 2 6
Total cloned data set* 4 2 194 2 6

#Each SPEX primer extension reaction initially comprising 50 cycles of single primer annealing and extension using AmpliTaq Gold (Perkin Elmer),
followed by bead clean-up and polyC-tailing. ®“Observed transitions and proposed miscoding lesions are explained in Table 1. %4187 nucleotides
from 171 discrete SPEX-derived amplicons. 4934 nucleotides from 219 SPEX-derived amplicons. 3304 nucleotides from 164 discrete SPEX-derived
amplicons. #4647 nucleotides from 271 SPEX-derived amplicons. 14086 nucleotides from 111 discrete SPEX-derived amplicons. 4470 nucleotides
from 141 SPEX-derived amplicons. 911577 nucleotides from 446 discrete SPEX-derived amplicons. 14051 nucleotides from 1121 SPEX-derived
amplicons.

G > A transitions (from C > U-type DDMLs on the
original aDNA template strand) account for >90% of
observed base changes in the single-cycle SPEX sequence
data (Figures 3 and S1; Table 1). The remaining <10% are
distributed between the other 11 possible transitions and
transversions with an overall level of ~2.5x 107> base
changes per nucleotide per cycle - an error rate compar-
able to that observed with Platinum 7agq High Fidelity on
non-aDNA templates (42,43). A comparison between the
percentage of base changes per site over the first 17 bases
of primer extension, for both bison control region aDNA
and an equivalent synthetic oligonucleotide, also strongly
suggests that aside from C > U-type DDMLs, base
changes in aDNA are at background levels consistent
with polymerase misincorporation errors (Figure S4).

The multi-fold coverage of first-generation copies from
a known strand of origin provided by SPEX clearly
suggests C > U-type base modification events are the only
significant cause of authentic endogenous DDMLs in
aDNA.

Comparison between single-cycle SPEX with Platinum 7agq
High Fidelity and multi-cycle SPEX with AmpliTaq Gold

aDNA damage studies using traditional PCR with either
Platinum Tagq High Fidelity or AmpliTaq Gold polymer-
ase systems have often produced strikingly different
findings (cf. 10,11,20-22,26-28,39). Multi-cycle SPEX
was used with AmpliTag Gold to perform repeated
cycles of single primer annealing and extension with: five
bison extracts (at one mitochondrial locus); four human
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extracts (at three mitochondrial loci—each with key
identifying SNPs to monitor modern contamination) and
three Eurasian cave lion extracts (at one mitochondrial
locus). Figure 3 and Table 2 show the results for all three
groups of samples (11577 nucleotides from 446 discrete
sequences for the CDS and 14051 nucleotides from
1121 independently cloned sequences for the TCDS). All
species and loci examined again showed ~90% of
observed base changes were G > A transitions (due to
C > U-type DDMLs in template aDNA), with an overall
spectrum of base changes from multi-cycle SPEX using
AmpliTaq Gold essentially indistinguishable from single-
cycle SPEX using Platinum Taq High Fidelity.

Distribution of C > U-type base modification events

The spectrum of observed G > A transitions on discrete
single-cycle SPEX first-generation copied strands
(Figure S1) strongly suggests that particular individual
aDNA templates had undergone multiple, clustered,
C > U-type DDML event ‘hits’. Statistical analyses
confirm that the distribution of G > A transitions is
non-random, with three of the four most highly damaged
extracts (BS143; BS477, BS569) exhibiting clustering
(over-dispersion) of hits onto certain strands independent
of sequence length (P = 0.02, 0.09 and 0.01, respectively).
The dispersion parameter [f] of the negative binomial
distribution fitted by GLM (37) reported for all three
samples shows low values of 6 and relatively narrow
standard errors (0.89, SE 0.54; 1.49, SE 1.06; 0.83, SE
0.37, respectively), indicating a better fit than to a Poisson
model (which is a special case of the negative binomial,
when 6 tends to infinity). Further investigation into
possible post mortem mechanisms for the creation of this
intra-molecular clustering of C > U-type DDML base
modification events is required.

Post mortem G > A-type base modification events
inferred from 454-derived data

The conclusions about aDNA damage processes reached
from the SPEX data directly contradict those reached by
two recent large-scale 454-based aDNA damage analyses
(21,22). High-throughput pyrosequencing on the 454
platform can generate sequence data from thousands of
individual ssDNA molecules derived from ‘enzymatically
polished’, adapter-tagged, DNA (29). In contrast to
SPEX, 454-based aDNA damage analyses generated
both C > T and G > A Type 2 transitions (21,22). Since
the sequence data was generated from ssDNA templates,
both studies independently concluded that in addition to
C > U-type events, distinct DDMLs must also be causing
some G residues to be read as A. To further investigate
this apparent contradiction over the existence of endo-
genous ‘G > A’ DDMLs, we examined whether an
inability of the 454 approach to clearly distinguish
between regions of authentic aDNA sequence and regions
of sequence derived from first-generation copied
aDNA might be an issue. The specific combination of
the conditions used in the pre-PCR ‘polishing’ steps of
454-based studies so far and the damaged, fragmented,

nature of the aDNA template molecules suggested a
potential mechanism (Figure S5).

A significant proportion of ssDNA starting templates
would originally have been double-stranded aDNA
templates with 3’ recessed ends, filled in by T4 DNA
polymerase (30) or both T4 DNA polymerase and the
Klenow fragment of E. coli DNA polymerase I (21,35).
Due to its strong strand displacement activity, the Klenow
enzyme would also extend from any single-stranded
breaks (SSBs) or nicks with 3’-OH ends within dsDNA
(44), displacing ‘downstream’ 3’ regions of endogenous
aDNA and replacing these with a newly synthesized first-
generation copy of the complementary aDNA template
strand (Figure S5B). The subsequent ‘nick repair’ step
(21,29,30,35) by the strand-displacing Bst DNA polymer-
ase would similarly replace 3’ regions downstream of
suitable SSB sites in cases where Klenow had not been
used (30).

As seen with SPEX-derived sequence data, first-
generation copied aDNA naturally produces high levels
of G > A transitions derived from authentic C > U-type
DDML events on the template strand (Figures 3, S1 and
S4). If these mechanisms were responsible for creating the
G > A transitions observed in 454-based aDNA studies,
then there are several explicit, testable, predictions. First,
under the model in Figure S5, the 5 > 3’ direction of
DNA synthesis should strongly skew G > A transitions
towards the 3’ ends of individual 454-derived ssDNA
templates in a highly non-random distribution. Secondly,
since authentic aDNA should always be 5 to newly
synthesized first-generation copies of aDNA in enzymati-
cally modified molecules, then all damage-derived C > T
transitions should be 5 to all G > A transitions in any
sequence which contained both. On the other hand,
genuine DDMLs of G residues should produce a
distribution of G > A transitions wholly independent of
the distribution of C > T miscoding lesions.

Kolmogorov—Smirnov one sample tests on the relative
positions of 514 C > T and 231 G > A transitions from
1449 454-derived Mammuthus primigenius mitochondrial
sequences (Table S4) allowed us to reject the null
hypothesis that their relative positions are uniformly
distributed along the DNA strand (C > T, D = 0.1904,
P <0.001; G > A, D=0.2014, P <0.001). The two sided
t-test and Wilcoxon rank sum test performed on the
relative 5 > 3’ positions of both C>T and G > A
transitions also allowed us to reject the null hypothesis
that the mean and median relative positions of the two
types of mutation are the same (¢t = —10.96, nCT = 515,
nGA =231, P<0.001; W =32337, nCT =515,
nGA = 231, P <0.001, Wilcoxon test). G > A transitions
are skewed towards the 3’ end with a median location of
67.8% from the 5" end (Figure 4). As this effect evidently
occurred in enough molecules to also similarly skew
the distribution of authentic endogenous C > U-type
DDMLs (resulting C > T transitions have a median
location of 33.6% from the 5" end; Figure 4), a significant
proportion of double-stranded aDNA templates
must originally have possessed extendable recessed
3’-ends and/or SSBs (Figure S5). An analogous reciprocal
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Figure 4. Box-plot showing the 5 to 3’ distribution of Type 2 (C > T/
G > A) transitions following the PCR amplification of 454-generated
ssDNA molecules (514 C>T and 231 G > A). The plot comprises
a box and whiskers. A line is drawn across the box to represent the
median; the bottom of the box is the first quartile (Q1) and the top is
the third quartile (Q3). The lower whisker extends to the lowest value
within the lower limit, whilst the upper whisker extends to the highest
value within the wupper limit. The limits are defined by:
Q1 —1.5(Q3 — Q1) (lower limit) and Q3 + 1.5(Q3 — Q1) (upper limit).
The exact position of each type of damage was normalized to allow
comparison between molecules of different lengths where 0% corre-
sponds to the 5'-terminal base and 100% the 3'-terminal base. The
horizontal line represents the median of the relative position of the
damage and the box represents the middle 50% (the inter-quartile) of
the relative position of each type of damage from all ssDNA molecules
combined.

skewing of Type 2 transitions is also observed with
454-derived sequences from a Neanderthal specimen (30).

To graphically illustrate this effect, Figure S6 shows all
17 sequence reads which had both C>T and G > A
transitions, but otherwise had a 100% match to the
Mammuthus  primigenius ~ mitochondrial  consensus
sequence (i.e. no other transitions, transversions, indels,
etc). In 16 of these 17 reads, all C > T transitions are 5’ to
all G > A ones. This result is also significantly non-
random: G = 45.73, df =1, P<0.001. We assume that
the single exception to the predicted pattern (1/24G > A
transitions) is due to a polymerase misincorporation error,
although this cannot be proven.

This re-analysis of 454-derived aDNA sequence data
strongly supports both the general conclusions on the
molecular nature of DDMLs from the SPEX data, and the
hypothesis that 454-derived G > A transitions are actually
generated opposite authentic endogenous C > U-type
DDML events on the complementary aDNA strand by
polymerase activity. These findings have serious implica-
tions for aDNA damage analyses using current 454-based
approaches.

DISCUSSION

SPEX versus traditional PCR-based approaches to
aDNA damage

The well-characterized samples and loci chosen for
this study provided a stringent test for SPEX, as any
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generation of either endogenous DDML or artefactual
sequence changes could easily be identified and quantified.
Aside from C > U-type DDML events (Figures 3 and S4),
SPEX amplification of aDNA produced both a spectrum
and level of sequence differences typical of the background
level of polymerase misincorporation errors on non-
ancient specimens. SPEX-amplified sequences also pro-
vided a simple means to estimate the minimum number of
aDNA templates contributing to product sequences,
thereby permitting the molecular nature of miscoding
and other lesions to be assessed on a quantifiable basis.

With standard PCR methods, the lengths of target
amplicons are pre-defined by the primer pair. In order to
gain as much data as possible, most phylogenetic and
aDNA damage studies so far (e.g. 4,10,20,26-28,39,40)
have tended towards the analysis of amplicons that are
larger, sometimes significantly larger, than the smallest
possible amplifiable fragments from given extracts (but
that are nevertheless ‘reliable’ according to currently
accepted aDNA criteria; e.g. 11,45). Figure 2 makes it
clear that unless the PCR primer pair directly abutted one
another, then during the initial cycles of PCR-based
aDNA studies like these the numbers of primer extensions
of directly PCR-amplifiable length would generally be
greatly exceeded by the numbers of short, abortive,
primer extensions. As Figure S1 and Table S3 demon-
strate, the majority of primer extensions also undergo the
addition of non-authentic 3’-terminal bases and any of
these products could serve as potential protagonists in
Jumping-PCR’ events in subsequent PCR amplification
cycles. Whether these processes play a role in creating
PCR-generated sequence artefacts, like so-called “Type 1
damage’ (observed at significant levels in several
PCR-based studies of aDNA damage; e.g. 20,26-28,39),
is currently unclear and requires further analysis.
However, this class of artefact is strikingly absent from
SPEX- or 454-derived sequences, where ‘jumping-PCR’
should not be an issue.

It has long been observed that analysing the products of
a single PCR amplification from aDNA can lead to wholly
incorrect inferences about the underlying endogenous
sequence (e.g. 10,11,40). One explanation of this phenom-
enon might be that the absolute number of initial primer
extensions of directly PCR-amplifiable length was small or
zero (for the particular target size) in amplifications like
these. Primer extension steps that created only one or a
small number of molecules that traversed both PCR
primer binding sites, perhaps containing authentic endo-
genous DDMLs or polymerase-generated/‘jumping-PCR’
artefacts, could then undergo a form of positive selection
and come to dominate the exponentially amplified
products (cf. 13,23). However, aDNA extracts with
high estimated copy numbers (according to qPCR) can
still generate significant levels of non-endogenous,
PCR-generated, ‘Type 1 damage’ (e.g. 27). Therefore,
perhaps the relative proportions of intact, directly
PCR-amplifiable, templates versus fragmented, damaged,
templates may be key. Further investigation is required.

Until now, a 3-fold redundancy PCR amplification and
cloning strategy has been employed to attempt to generate
credible consensus sequences from key ancient samples
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(e.g. 25,46), but this approach is both labour and sample
intensive and has been shown to be fallible even with high-
quality, frozen, aDNA templates (24). Overall, traditional
and multiplex PCR can probably be relied upon to
produce correct consensus sequences over the great
majority of nucleotide positions in non-human samples
by the ‘best-of-three’ strategy, provided that enough
suitable aDNA templates are available and appropriate
care is taken (e.g. 11,24,25,45,46). However, despite many
years of effort, the inherent features of the methodology
discussed above have meant that no PCR-based study has
been able to fully resolve the molecular nature of DDMLs.

Unlike PCR, single-cycle SPEX synthesizes a first-
generation copy from only one of the aDNA template
strands, thereby precluding any ‘jumping-PCR’-type
mechanisms. Multi-cycle SPEX also did not exhibit any
obvious indications of these kinds of artefacts (e.g.
repeated characteristic DDML motifs in SPEX amplicons
of different lengths or enhanced levels of base changes not
due to endogenous DDMLs). Multi-cycle SPEX produced
a spectrum of transitions and transversions indistinguish-
able from single-cycle SPEX (Figure 3). The linear mode
of multi-cycle SPEX primer extension amplification (as
opposed to the exponential mode of PCR amplification)
meant that the single SPEX-1 primer should have
remained at vast molar excess to aDNA targets and
extended primers throughout the reaction. The absence of
a reverse PCR primer in the multi-cycle SPEX primer
extension stage meant there was no potential for the
positive selection of ‘jumping-PCR’-type events (13).

Another potential source of non-authentic sequence
diversity is the cloning of heteroduplexes. When 50 or 60
PCR cycles are used (e.g. 10,21), high levels of exponen-
tially amplified product can drastically reduce primer-
to-template ratios during the final cycles, favouring
self-annealing of complementary PCR-amplified strands
over productive primer-template binding (47). With
heterologous starting sequences, the subsequent cloning
of heteroduplexes has been shown to allow the Escherichia
coli mismatch repair system to generate further non-
authentic sequence microvariation (48-50). As PCR-
amplified aDNA is known to have extensive sequence
variation, due to both endogenous DDMLs and PCR-
generated artefacts, this issue should not be neglected by
PCR-based studies. SPEX minimizes potential hetrodu-
plex formation prior to cloning by amplifying a wide
range of insert sizes for only 35 cycles.

Damage-derived miscoding lesions

Quantitative damage analyses on both the CDS and
TCDS for both single- and multi-cycle SPEX amplified
sequences from three separate species support the same
two conclusions. First, that Type 1 (T > C/A > G)
‘damage’ transitions are non-endogenous, PCR-generated,
sequence artefacts. Secondly, C > U-type base modifica-
tion events appear to be the only DDMLs present at
significant levels in ancient DNA. Comparing SPEX-
amplified sequences from bison aDNA and an equivalent
synthetic oligonucleotide template also emphasizes that
C > U-type DDMLs occur at a remarkably consistent

level (~11-12% per site), regardless of local sequence
context (Figure S4). Therefore, the increased accuracy of
this quantitative SPEX sequence data provides no support
for the DDML ‘hotspots’ inferred by some traditional
PCR-based aDNA studies (e.g. 28,39).

Recent 454-based aDNA studies (21,22,30) argued that
a currently unknown DDML must be causing some G
residues to be read as A during PCR amplification from
individual ssDNA templates. The quantitative demonstra-
tion of the predicted highly non-random distribution of
G > A transitions towards the 3’ ends of 454-derived
sequences, coupled with the skewing of C > T transitions
towards the 5" ends, strongly supports the hypothesis that
G > A transitions are generated during the pre-PCR
‘enzymatic polishing’ and/or subsequent ‘nick repair’
steps, from C > U-type DDML events on the comple-
mentary aDNA strand (Figure S5). Re-interpreted in this
way, 454-generated metagenomic sequence data supports
the central finding from the SPEX aDNA studies that post
mortem C > U-type base modification events are effec-
tively the sole cause of authentic DDMLs in aDNA.

This identifies significant methodological issues for 454-
based aDNA studies, as 454-derived sequence variation
does not reflect the authentic underlying pattern of
DDMLs in an aDNA extract. The 454 sequence traces
contain DDML sequence variation from both of the
original aDNA template strands (in the form of variable
and unquantifiable proportions of 5" regions of authentic,
endogenous, aDNA and 3’ segments of first-generation
copied DNA derived from the complementary strand).
Until input ssDNA templates can be unequivocally
produced from single strands-of-origin in 454-based
studies this will remain a key issue. Theoretically, multiple
overlapping traces could allow correct consensus
sequences to be inferred, enabling Type 2 miscoding
lesion transitions (whether observed as C > T or G > A)
to be clearly discounted. However, with most aDNA
specimens, current 454-based methodologies appear
unlikely to regularly generate a sufficient depth-
of-coverage to allow the accurate SNP-typing of key
sites in this way.

CONCLUSION

SPEX has shown why almost 20 years of PCR-based
approaches have not been able to fully resolve the
molecular basis of DDMLs. Traditional PCR and current
454-based aDNA studies cannot unambiguously resolve
the template strand-of-origin for any particular endogen-
ous Type 2 DDML. Moreover, the production of
significant levels of non-endogenous PCR-generated
sequence artefacts, such as so-called ‘Type 1 damage’ in
some PCR-based investigations (e.g. 20,26-28,39), clearly
demonstrates that any firm inferences and conclusions
about authentic endogenous DDMLs from these studies
are now questionable. In contrast, PCR-based strategies
using the ‘best-of-three’ approach are likely to yield
correct consensus sequences most of the time, particularly
in studies of well-preserved ancient specimens with
reasonably high template copy numbers.
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The development of the SPEX approach to aDNA has
allowed the processes of post mortem aDNA damage to be
disentangled from PCR-generated sequence artefacts, and
revealed the molecular nature of DDMLs. Although much
work remains to be done before SPEX could be more
widely used in high-throughput situations, a far greater
and quantifiable, depth-of-coverage could potentially
be achieved compared to other current aDNA methodol-
ogies. Sequence data of unprecedented accuracy can
be produced from single aDNA target strands with
only a single aliquot of extract, a simple system and
no specialized equipment. By allowing post mortem
C > U-type base modification events to be unambiguously
identified as the sole significant cause of DDMLs in
ancient specimens, SPEX also shows that potential
miscoding lesions at key sites could be avoided altogether
in future SNP-typing studies by simply targeting the
appropriate aDNA strand. This could reduce SNP-typing
errors in aDNA studies down towards the theoretical limit
of the background rate of polymerase misincorporation
errors and, at the same time, introduce quantifiable
genotyping from many other kinds of low copy number,
damaged, DNA such as forensic, environmental or fixed
clinical samples.

Note added after completion

During the review process of this paper, we became aware
of a study submitted after ours by the research group of
one of our referees. This study presents an equivalent
model for the skewing of C > T and G > A transitions in
454-based data and infers the molecular nature of aDNA
miscoding lesion damage from statistical evidence (51).

SUPPLEMENTARY DATA
Supplementary data is available at NAR Online.
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