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Abstract

A recently proposed argument to explain the improved
performance of the eight-point algorithm that results from
using normalized data [IEEE Trans. Pattern Anal. Mach.
Intell., 25(9):1172–1177, 2003] relies upon adoption of a
certain model for statistical data distribution. Under this
model, the cost function that underlies the algorithm oper-
ating on the normalized data is statistically more advanta-
geous than the cost function that underpins the algorithm
using unnormalized data. Here we extend this explanation
by introducing a more refined, structured model for data
distribution. Under the extended model, the normalized
eight-point algorithm turns out to be approximately con-
sistent in a statistical sense. The proposed extension pro-
vides a link between the existing statistical rationalization
of the normalized eight-point algorithm and the approach
of Mühlich and Mester for enhancing total least squares es-
timation methods via equilibration. Our contribution forms
part of a wider effort to rationalize and interrelate founda-
tional methods in vision parameter estimation.

1. Introduction

In a version adapted for computation of the fundamental
matrix, the eight-point algorithm of Longuet-Higgins [12]
produces significantly more accurate estimates if normal-
ized rather than unnormalized image data are used as input
for the scheme. Hartley [7], who made this fundamental
discovery, attributed the improvement in performance re-
sulting from data normalization to the better numerical con-
ditioning of a pivotal matrix used in solving an eigenvalue
problem. Recently, an alternative explanation was proposed
based on a certain model for statistical data distribution [3].
Under this model, the summands of the cost function under-
lying the normalized version of the eight-point algorithm
are more balanced in terms of spread compared with the
summands of the cost function underlying the unnormal-
ized version. The improved statistical design of the associ-
ated cost function is seen as being conducive to the normal-

ized algorithm’s gains in accuracy. Here we reinforce this
line of argumentation by introducing a more refined, struc-
tured model for the data distribution. We show that under
the extended model the normalized eight-point algorithm is
approximately consistent in a statistical sense. This result is
then directly linked to the work of Mühlich and Mester [15],
where a similar argument is used to validate an algorithm
akin to Hartley’s. The study reported below forms part of a
wider effort to rationalize and interrelate foundational meth-
ods in vision parameter estimation (e.g., see [1, 2, 4, 9, 11]).

2. Algebraic Least Squares

A 3D point in a scene perspectively projected onto the
image plane of a camera gives rise to an image point repre-
sented by a pair (mx,my) of coordinates, or equivalently,
by the “homogeneous” vector m = [mx,my, 1]T . A 3D
point projected onto the image planes of two cameras en-
dowed with separate coordinate systems gives rise to a pair
of corresponding points. When represented by a pair of vec-
tors (m, m′), a correspondence satisfies the epipolar con-
straint

m′T Fm = 0, (1)

where F = [fij ] is a 3 × 3 fundamental matrix that incor-
porates information about the relative orientation and inter-
nal geometry of the cameras [5, 8]. In addition to (1), F
is subject to the singularity constraint (or, equivalently, the
rank-2 constraint)

det F = 0. (2)

Given a set {(mn,m′
n)}N

n=1 of measured correspondences,
a simple “linear” estimate of F providing an approximate
solution of the system

m′T
n Fmn = 0 (n = 1, . . . , N)

is obtained by minimizing the cost function

JALS(F ) = ‖F ‖−2
F

N∑
n=1

(m′T
n Fmn)2
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with ‖F ‖F = (
∑

i,j f2
ij)

1/2 the Frobenius norm of F .
Here, m′T

n Fmn is the signed algebraic distance between
the individual correspondence (mn,m′

n) and the candidate
matrix F . The minimizer of JALS constitutes the algebraic
least squares (ALS) estimate and is denoted F̂ ALS. F̂ ALS

is determined only up to scale, as the value of JALS(F )
does not change when F is multiplied by a nonzero scalar.
As a rule, F̂ ALS does not satisfy (2). However, this esti-
mate, like many other estimates not obeying (2), can further
be upgraded to a genuine rank-2 fundamental matrix by ap-
plying one of a variety of available methods [8, 9]. In this
paper, only the ALS method and its variant for normalized
data will be of concern and the singularity constraint will be
set aside.

For the purpose of computing F̂ ALS, it is convenient to
use the joint image point x = [mx,my,m′

x,m′
y]T as a

compact descriptor of the single correspondence (m, m′).
For an m × n matrix A = [a1, . . . ,an] with ai the ith
column vector of length m, denote by vec(A) the vec-
torization of A, i.e., the column vector of length mn de-
fined by vec(A) = [aT

1 , . . . ,aT
n ]T . Let θ = vec(F T ) and

u(x) = vec(mm′T ). Then, as one easily verifies,

m′T Fm = θT u(x).

With this formula, JALS can be written as

JALS(θ) = ‖θ‖−2θT Aθ,

where

A =
N∑

n=1

u(xn)u(xn)T

and ‖θ‖ = (θ2
1 + · · · + θ2

9)
1/2. Now, an optimality con-

dition for the minimizer of JALS (expressed as the zeroing
of the gradient of the cost function) can be used to charac-
terize θ̂ALS as the normalized eigenvector of A associated
with the smallest eigenvalue (the smallest eigenvector). The
eigenvector is defined uniquely up to a sign [2]. In practice
θ̂ALS is found by performing singular value decomposition
(SVD) of the matrix

M = [u(x1), . . . ,u(xn)]T

and taking for the desired output the right singular vec-
tor of M associated with the smallest singular value (the
minimum right singular vector). In this form, the ALS
method is essentially identical to the eight-point algorithm
of Longuet-Higgins [12].

3. Normalized Algebraic Least Squares

ALS estimates are highly sensitive to image noise. To
curb noise-driven instabilities, Hartley proposed a simple

normalization of the input data to be performed prior to
running the ALS method [7]. The normalization process
involves two affine transformations

m̃n = Tmn, m̃′
n = T ′m′

n,

where T and T ′ are 3 × 3 data-dependent matrices
whose exact form will be presented shortly. The ALS
method is applied to the normalized data {(m̃n, m̃′

n)}N
n=1

and then the result is suitably back-transformed. More
specifically, if, for each n = 1, . . . , N , x̃n =
[m̃x,n, m̃y,n, m̃′

x,n, m̃′
y,n]T is the joint image point corre-

sponding to (m̃n, m̃′
n) and F̃ ALS is the ALS estimate

based on {x̃n}N
n=1, then the normalized algebraic least

squares (NALS) estimate of F , F̂ NALS, is defined by

F̂ NALS = T ′T ̂̃F ALST .

The matrices T , T ′ come in two variants depending on
whether the coordinates mx,n,my,n and m′

x,n,m′
y,n are

normalized separately or collectively. Let

m = [mx,my, 1] =
1
N

N∑
n=1

mn,

m′ = [m′
x,m′

y, 1] =
1
N

N∑
n=1

m′
n

be the centroids of the data points in each image. For the
data normalized separately, anisotropic scaling factors are
introduced by means of the formulae

sx =

(
1
N

N∑
n=1

(mx,n −mx)2
)1/2

,

sy =

(
1
N

N∑
n=1

(my,n −my)2
)1/2

,

s′x =

(
1
N

N∑
n=1

(m′
x,n −m′

x)2
)1/2

,

s′y =

(
1
N

N∑
n=1

(m′
y,n −m′

y)2
)1/2

,

and the matrices T and T ′ are defined by

T =

s−1
x 0 −s−1

x mx

0 s−1
y −s−1

y my

0 0 1

 ,

T ′ =

s′−1
x 0 −s′−1

x m′
x

0 s′−1
y −s′−1

y m′
y

0 0 1

 .
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For the data normalized individually, isotropic scaling fac-
tors take the form

s =

(
1

2N

N∑
n=1

(mx,n −mx)2 + (my,n −my)2
)1/2

,

s′ =

(
1

2N

N∑
n=1

(m′
x,n −m′

x)2 + (m′
y,n −m′

y)2
)1/2

,

and T and T ′ are given by

T =

s−1 0 −s−1mx

0 s−1 −s−1my

0 0 1

 ,

T ′ =

s′−1 0 −s′−1m′
x

0 s′−1 −s′−1m′
y

0 0 1

 .

The numerical motivation for the NALS method comes
from the fact that the matrix Ã =

∑N
n=1 u(x̃n)u(x̃n)T

serving to calculate ̂̃F ALS is better conditioned—in a cer-
tain sense—than the matrix A. The improved conditioning
leads to the smallest eigenvector of Ã being less sensitive
to small perturbations of the matrix entries than the smallest
eigenvector of A [7]. The NALS method can also be jus-
tified statistically [3]. The statistical argument exploits the
fact that F̂ NALS is the minimizer of the normalized alge-
braic least squares (NALS) cost function

JNALS(F ) = ‖T ′−T
FT−1‖−2

F

N∑
n=1

(m′T
n Fmn)2.

A fundamental observation is that different residuals

rn = m′T
n Fmn (n = 1, . . . , N)

carry, as a rule, different statistical weight. When the mn,
m′

n are treated as sample values of independent multivari-
ate random variables, the rn are realizations of (typically)
heteroscedastic random variables—that is, ones having dif-
ferent variances. The larger the variance of a particular
rn, the less reliable this residual is likely to be, and the
more it should be devalued. This suggests that, to account
for heteroscedasticity, the simple cost function

∑N
n=1 r2

n,
which effectively is identical to JALS, should be replaced
by the more complicated cost function

∑N
n=1 r2

n/var [rn],
where var [r] denotes the variance of r. As it turns out,
one can conceive a model for data distribution such that all
the var [rn] are equal to ‖T ′−T

FT−1‖2
F and consequently∑N

n=1 r2
n/var [rn] reduces to JNALS. Construed in this

fashion, JNALS has statistical advantage over JALS, lead-
ing to an improvement in performance of the normalized
version of the eight-point algorithm over the unnormalized
version.

The data distribution model that makes the above argu-
ment work is as follows. For each n = 1, . . . , N , one intro-
duces random variables

mn = m + ∆mn, m′
n = m′ + ∆m′

n,

where m and m′ are fixed, nonrandom points, and ∆mn =
[∆mx,n,∆my,n, 0]T and ∆m′

n = [∆m′x,n,∆m′y,n, 0]T

are random isotropic perturbations satisfying the following
conditions:

• the collection {∆mn,∆m′
n}N

n=1 is jointly indepen-
dent;

• E[∆mn] = E[∆m′
n] = 0 for each n = 1, . . . , N ;

• for some s, s′ > 0 and each n = 1, . . . , N ,

E[∆mn∆mT
n ] = diag(s2, s2, 0),

E[∆m′
n∆m′T

n ] = diag(s′2, s′2, 0).

Here, E denotes the expectation value. The observed loca-
tions mn and m′

n are viewed as realizations of mn and m′
n,

respectively.

4. Extended Statistical Model

A different approach to achieving improved ALS esti-
mates was proposed by Mühlich and Mester [15, 16]. The
idea is to search for 3 × 3 affine weight matrices W and

W ′ with the property that if ̂̃F ALS is the ALS estimate
based on the data obtained by applying the transformations
m̃ = Wm and m̃′ = W ′m′ on the raw data, then the
equilibrated ALS estimate, F̂ EQL, defined by

F̂ EQL = W ′T ̂̃F ALSW

is approximately unbiased in a statistical sense. The ma-
trices W and W ′ are analogs of the normalization matri-
ces T and T ′ used in the normalized eight-point algorithm.
Various choices of weight matrices are possible. The result-
ing equilibrated ALS methods are akin to, but not identical
with, Hartley’s technique.

Standard weight matrices are obtained by exploiting a
measurement error model whereby noise is present in one
image only [15]. In the next section we shall establish an
unbiasedness property for the normalized eight-point algo-
rithm using a statistical model that incorporates noise in
both images. This model is an extension of the model de-
scribed in the previous section. We present the extended
model and operational entities related to it in this section.
The argument leading to the unbiasedness property draws
upon Mühlich–Mester’s approach. While tailored to elu-
cidate the utility of Hartley normalization for the eight-
point algorithm, it can also serve, with due modifications,
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to buttress Hartley normalization for other ALS methods
like those appropriate for conic fitting or homography es-
timation. A distinctive feature of our result is its asymptotic
character—only if the number of data points increases will
the bias in estimates decrease to zero.

We proceed to describe the extended model. A set of N
image correspondences is modeled statistically using a set
of pairs of random variables {(mn, m′

n)}N
n=1. The number

of corresponding pairs is not held constant but is allowed
to vary from 1 to infinity. Thus, effectively, the model in-
volves the infinite set of pairs of random variables {(mn,
m′

n)}∞n=1. The given data points mn, m′
n are viewed as

samples drawn from mn, m′
n, respectively. The mn, m′

n

are represented as

mn = nn + ∆mn, m′
n = n′n + ∆m′

n,

where nn, n′n are random variables describing “true”
locations and ∆mn = [∆mx,n,∆my,n, 0]T , ∆m′

n =
[∆m′x,n,∆m′y,n, 0]T are random variables representing
noise that corrupts the “true” locations. All the
nn,n′n,∆mn,∆m′

n are assumed mutually independent.
The ∆mn,∆m′

n encapsulate homogeneous anisotropic
noise with principal components aligned with the x and y
axes—they all have zero mean and satisfy

E[∆mn∆mT
n ] = diag(σ2

x, σ2
y, 0),

E[∆m′
n∆m′T

n ] = diag(σ′2x , σ′2y , 0)

for some σx, σy, σ′x, σ′y > 0. The nn, n′n capture various
possible arrangements of ideal data points and are assumed
to undulate anisotropically around some fixed, nonrandom
“centroids” c, c′:

nn = c + ∆nn, n′n = c′ + ∆n′n.

Here ∆nn = [∆nx,n,∆ny,n, 0]T , ∆n′n =
[∆n′x,n,∆n′y,n, 0]T are zero-mean random variables
satisfying

E[∆nn∆nT
n ] = diag(τ2

x , τ2
y , 0),

E[∆n′n∆n′Tn ] = diag(τ ′2x , τ ′2y , 0)

for some fixed τx, τy, τ ′x, τ ′y > 0. Note that under the
above model, all the ∆mn,∆m′

n,∆nn,∆n′n are mutually
independent. Note also that the nn, n′n being mutually
independent—an assumption that is part of the model—is
not compatible with the requirement that, for each N , there
exists a genuine random fundamental matrix FN such that
n′Tn FNnn = 0 for all n = 1, . . . , N . However, the nn, n′n
being independent is consistent with the mn, m′

n being in-
dependent. As the latter property underpins the statistical
model presented in the previous section, one that we aim
to extend, we accept the independence of the nn, n′n as the

leading feature. Let

mN =
1
N

N∑
n=1

mn, m′
N =

1
N

N∑
n=1

m′
n

and

sx,N =

(
1
N

N∑
n=1

(mx,n −mx,N )2
)1/2

,

sy,N =

(
1
N

N∑
n=1

(my,n −my,N )2
)1/2

,

s′x,N =

(
1
N

N∑
n=1

(m′x,n −m′x,N )2
)1/2

,

s′y,N =

(
1
N

N∑
n=1

(m′y,n −m′y,N )2
)1/2

.

Let

TN =

s−1
x,N 0 −s−1

x,Nmx,N

0 s−1
y,N −s−1

y,Nmy,N

0 0 1

 ,

T′N =

s′−1
x,N 0 −s′−1

x,Nm′x,N

0 s′−1
y,N −s′−1

y,Nm′y,N

0 0 1

 .

Here and in the following, the additional subscript N serves
to emphasize the dependence on N of various quantities
involved. Using the strong law of large numbers one can
show that, with N increasing to infinity, the sequences
{TN}∞N=1 and {T′N}∞N=1 converge with probability 1 to
certain nonrandom matrices T and T ′ explicitly express-
ible in terms of σx, σy, τx, τy and σ′x, σ′y, τ ′x, τ ′y . Now, for
each n = 1, . . . , N , m̃n,N = TNmn and m̃′

n,N = T′Nm′
n

are the normalized noisy image points derived from mn

and m′
n, with the normalization based on {(mn, m′

n)}N
n=1.

We define ñn = Tnn, ñ′n = T ′n′n for every n ranging
from 1 to infinity. Let xn = [mn,x,mn,y,m′n,x,m′n,y]T

and yn = [nn,x, nn,y, n′n,x, n′n,y]T be the joint im-
age points derived from (mn,m′

n) and (nn,n′n), respec-
tively. Let x̃n,N = [m̃n,N,x, m̃n,N,y, m̃′n,N,x, m̃′n,N,y]T

and ỹn,N = [ñn,N,x, ñn,N,y, ñ′n,N,x, ñ′n,N,y]T be the cor-
responding transformed joint image points. Let

ÃN =
1
N

N∑
n=1

u(x̃n,N )u(x̃n,N )T ,

B̃N =
1
N

N∑
n=1

u(ỹn,N )u(ỹn,N )T .
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Here, the common normalizing factor 1/N is introduced to
maintain an overall statistical balance—a quality of impor-
tance in performing revelant calculations. Crucially, this
factor does not affect the eigenvectors of the matrices in-
volved. For each j = 1, . . . , 9, let aj,N be the jth normal-
ized eigenvector of ÃN (defined uniquely up to a sign) with
a corresponding eigenvalue aj,N , and let bj,N be the jth
normalized eigenvector of B̃N with a corresponding eigen-
value bj,N . The eigenvalues are assumed to be arranged in
descending order. The random eigenvectors a9,N and b9,N

can be restructured to form random matrices ̂̃FALS,N and
F̃N such that

a9,N = vec(̂̃FT

ALS,N ), b9,N = vec(F̃
T

N ).

Then, clearly,

F̂NALS,N = T′TN
̂̃FALS,NTN

is the NALS estimate based on {xn}N
n=1. The matrix

FN = T ′T F̃NT

will in what follows constitute a reference value
against which to compare F̂NALS,N . Obviously, if the
{(nn,n′n)}N

n=1 were genuine correspondences bound by a
fundamental matrix FN , then FN would be a natural “true”
value with which to gauge F̂NALS,N . Since, generally, no
such FN exists, we use FN instead. The significance of this
choice can only be fully appreciated once the whole argu-
ment is complete.

With AN = {nn,n′n}N
n=1, let E[F̂NALS,N |AN ] be the

conditional expectation of F̂NALS,N given AN . We adopt

DN = ‖E[F̂NALS,N |AN ]− FN‖

as a measure of bias in the F̂NALS,N estimates. The ran-
dom variable DN captures the bias conditional on any par-
ticular arrangement of the “true” data points {nn,n′n}N

n=1.
Assuming that all the {nn,n′n,mn,m′

n}∞n=1 are uniformly
bounded random variables carried on a single probability
space, we shall outline an argument to show that a certain
approximation to DN tends to 0 as N → ∞ with proba-
bility 1. This asymptotic approximate unbiasedness will be
referred to as approximate consistency. It can be viewed as
one of advantageous effects of data normalization. The es-
tablishment of the property parallels similar findings related
to other methods [10, 14, 18].

5. Approximate Consistency

Let A∞ =
⋃∞

N=1 AN = {nn,n′n}∞n=1. Since both
sequences {TN}∞N=1, {T′N}∞N=1 are uniformly bounded

(given that the family {mn,m′
n}∞n=1 is uniformly bounded)

and pointwise converge to T , T ′ almost surely1 (a.s.), an
application of the conditional form of the dominated con-
vergence theorem [17, Sec. 2, §7, Thm. 2] implies that

lim
N→∞

E[T′TN
̂̃FALS,NTN − T ′T

̂̃FALS,NT |A∞] = 0.

On the other hand,

E[T′TN
̂̃FALS,NTN |A∞] = E[T′TN

̂̃FALS,NTN |AN ]

E[T ′T ̂̃FALS,NT |A∞] = T ′T E[̂̃FALS,N |AN ]T

because TN , T′N , and ̂̃FALS,N being expressible in
terms of {mn,m′

n,nn,n′n}N
n=1 are jointly independent of

{nn,n′n}∞n=N+1. Therefore the difference

E[F̂NALS,N |AN ]− FN

= E[T′TN
̂̃FALS,NTN |AN ]− T ′T F̃NT

differs from

T ′T E[̂̃FALS,N |AN ]T − T ′T F̃NT

by an expression tending to zero almost surely. We see that
the asymptotic behavior of DN is fully controlled by the
bias dN defined by

dN = ‖E[̂̃FALS,N |AN ]− F̃N‖

or, equivalently, by

dN = ‖E[a9,N |AN ]− b9,N‖.

The value of dN is difficult to estimate because of the
lack of a simple expression for a9,N . We shall get around
this problem by considering a first-order approximation to
a9,N . Specifically, we shall use the following approximate
formula for aj,N

aj,N = bj,N +
9∑

k=1
k 6=j

bT
k,N (ÃN − B̃N )bj,N

bj,N − bk,N
bk,N

holding for each 1 ≤ j ≤ 9 [6, Sec. 7.2]. We shift the focus
from the exact bias dN to an approximate bias d∗N defined
by

d∗N =

∥∥∥∥∥
8∑

k=1

bT
k,N (E[ÃN |AN ]− B̃N )b9,N

b9,N − bk,N
bk,N

∥∥∥∥∥ .

1Recall that the phrase “almost surely” is a concise, precise way to
state “except on an event of probability zero”. It is equivalent to “with
probability 1”.
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Now, it can be shown that

g = lim
N→∞

(b8,N − b9,N )−1 < ∞ a.s.

for a generic choice of σx, σy, τx, τy and σ′x, σ′y, τ ′x, τ ′y .
This condition automatically implies that

lim sup
N→∞

(bj,N − b9,N )−1 ≤ g < ∞ a.s.

for all 1 ≤ j ≤ 8. It can be also shown—and this is the
main computational step, details of which we omit due to
space limitations—that

lim
n→∞

E[ÃN |AN ] = I9 a.s.,

where, for each n = 1, 2, . . . , In denotes the n×n identity
matrix. Hence, with probability 1,

lim sup
N→∞

d∗N ≤ g lim sup
N→∞

8∑
k=1

|bT
k,N (I9 − B̃N )b9,N |‖bk,N‖.

Since ‖bk,N‖ = 1 and

bT
k,N (I9 − B̃N )b9,N = (1− b9,N )bT

k,Nb9,N = 0

for 1 ≤ k ≤ 8, it follows that limN→∞ d∗N = 0 with
probability 1. We thus see that, when quantified with
limN→∞ d∗N , the asymptotic approximate bias in the nor-
malized eight-point algorithm is zero almost surely. This is
our sought-after approximate consistency result.

6. Conclusion

A new argument has been proposed to explain the im-
provement in performance of the eight-point algorithm that
results from using normalized data. The argument relies
upon adoption of a structured model for statistical data dis-
tribution. In the framework of this model, the advantage
of using normalized data is attributed to a systematic in-
crease in the consistency of estimates as the number of data
points mounts. The proposed approach merges the previous
statistical argument explaining the advantageous character
of data normalization with the approach of Mühlich and
Mester for enhancing total least squares estimation meth-
ods via equilibration. As such it contributes to a wider effort
to gain a deeper understanding of the rationale underlying
foundational methods in vision parameter estimation.
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