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Scaling analysis of fat-link irrelevant clover fermion actions
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The fat-link irrelevant clover fermion action is a variant of the O�a�-improved Wilson action where the
irrelevant operators are constructed using smeared links. While the use of such smearing allows for the use
of highly improved definitions of the field strength tensor F��, we show that the standard 1-loop clover
term with a mean field improved coefficient csw is sufficient to remove the O�a� errors, avoiding the need
for nonperturbative tuning. This result enables efficient dynamical simulations in QCD with the fat-link
irrelevant clover fermion action
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I. INTRODUCTION

The fat-link irrelevant clover (FLIC) fermion action [1]
is an efficient [2] Wilson-style nearest-neighbor lattice
fermion action which incorporates both the thin gauge-
field links of the Markov chain and fat links—links created
via APE [3–6], HYP [7], or stout-link [8] smearing.
Through the use of fat links in the irrelevant operators of
the action, one achieves significant improvement in the
chiral properties of the action reflected in a narrowing of
the distribution of the critical Wilson mass [9]. One also
bypasses the fine-tuning problem typically encountered in
O�a� improvement, as the use of fat links in both the
irrelevant Wilson and clover terms suppresses the other-
wise large renormalizations of the improvement coeffi-
cients. At the same time, short-distance physics is
preserved completely in the action as the relevant operators
are constructed with thin links.

Previous work [10] established the good scaling proper-
ties of the FLIC fermion action when a highly improved
definition of the lattice field strength tensor F�� is used in
the clover term. In this work we demonstrate that the use of
the standard 1-loop definition of F�� with fat links in the
clover term is sufficient to provide O�a2� scaling for FLIC
fermions. The 1-loop variant has the advantage of main-
taining a simple force term when performing the molecular
dynamics portion of a hybrid Monte Carlo algorithm to
generate dynamical configurations.

In Sec. II we highlight the essential features of the FLIC
action with a particular emphasis on the various lattice field
strength tensors used in the simulations. In addition the
SU�3�-projection method used to create the fat links is
outlined. In Sec. III we describe the methods used to obtain
an accurate scale determination on each lattice considered.
Simulation parameters and scaling results are presented in
Sec. IV while correlation function properties are examined
in Sec. V. Conclusions are summarized in Sec. VI.

II. FLIC FERMIONS

The FLIC fermion action [1] is a variant of the clover
action where the irrelevant operators are constructed using

smeared links [3,4], and mean field improvement [11] is
performed. The key point is that short-distance physics is
suppressed in the irrelevant operators. This allows an ef-
fective mean-field improved calculation of the clover co-
efficient, required to match the Wilson and clover terms
such that O�a� errors are eliminated [10]. Further, the
improved chiral properties of FLIC fermion action allow
efficient access to the light quark regime [9].

The FLIC operator is given by

 DFLIC � r6 mfi �
1
2��

fl
mfi �

1
2� � F

fl
mfi� �m; (1)

where the presence of fat (or smeared) links and/or mean
field improvement has been indicated by the super- and
subscripts. The mean field improved lattice gauge cova-
riant derivative is defined by

 r6 mfi �
X
�

1

2u0
���U��x��x��̂;y �U

y
��x� �̂��x��̂;y�;

(2)

and likewise the (smeared link) lattice Laplacian is such
that

 �fl
mfi �

X
�

2�
1

ufl
0

�Ufl
��x��x��̂;y �U

fly
� �x� �̂��x��̂;y�:

(3)

We choose ��� �
i
2 ���; ���. For the clover term, one

usually selects a standard one-loop F��,

 F���x� � �
i
2
�C���x� � C

y
���x��; (4)

 C���x� �
1
4�U�;��x� �U��;��x� �U�;���x�

�U��;���x��; (5)

where U�;��x� � U��x�U��x� �̂�Uy��x� �̂�U
y
� �x� is the

elementary plaquette in the �, � plane. However, with the
use of fat links, one is also able to choose highly improved
definitions of F�� [12]. Let Cm	n�� �x� correspond to the sum
of the four m	 n loops at the point x in the clover
formation, and then define
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 Fm	n�� �x� � �
i
2
�Cm	n�� �x� � C

ym	n
�� �x��: (6)

We can construct a 2-loop field strength tensor which is
free of O�a2� errors,

 F2L
�� �

5
3F

1	1
�� �

1
6�F

1	2
�� � F

2	1
�� �; (7)

or a 3-loop version which is free of O�a4� errors,

 F3L
�� �

3
2F

1	1
�� �

3
20F

2	2
�� �

1
90F

3	3
�� : (8)

The smeared links in the FLIC action can be equally
well constructed from standard APE smeared links, or the
more novel stout-link method [8]. As the smeared links
only appear in the irrelevant operators, the physics of the
action are essentially independent of the choice of smear-
ing method. The only requirement is that sufficient smear-
ing is done such that the mean field improvement becomes
an effective means of estimating the clover coefficient csw.
We typically find that four sweeps of APE smearing at � �
0:7 or four sweeps of stout smearing at � � 0:1 to be
sufficient for lattices with a spacing between 0.1 and
0.165 fm.

In this work we use APE smeared links Ufl
��x� con-

structed from U��x� by performing 4 smearing sweeps,
where in each sweep we first perform an APE blocking step
(at � � 0:7),

followed by a projection back into SU�3�, U�j�� �x� �
P �V�j�� �x��. We follow the ‘‘unit-circle’’ projection method
given in [13], which allows for dynamical simulations. The
projection is defined by first performing a projection into
U�3�

 U0�V� � V�VyV��1=2; (10)

followed by projection into SU�3�

 P �V� �
1�������������������

detU0�V�3
p U0�V�: (11)

It should be noted that the principal value of the cube root
(being that with the largest real part) is the appropriate
branch of the cube root function to choose. As noted in [13]
this choice provides the mean link which is closest to unity.

Mean field improvement is performed by making the
replacements

 U��x� !
U��x�

u0
; Ufl

��x� !
Ufl
��x�

ufl
0

; (12)

where u0 and ufl
0 are the mean links for the standard and

fattened links. We calculate the mean link via the fourth
root of the average plaquette

 u0 �

�
1
3Re TrU���x�

�
1=4

x;�<�
: (13)

III. SCALE DETERMINATION

The scale is determined using a 4-parameter ansatz

 V�r� � V0 � �r� e
�

1

r

�
� l

��
1

r

�
�

1

r

�
(14)

as in Ref. [14]. The tree-level lattice Coulomb term used in
the ansatz is given by

 

�
1

r

�
� 4�

Z d3k
2�3 cos�k � r�D00�0;k�: (15)

Here D00�0;k� comes from the tree-level gluon propagator
for the appropriate gluon action. For the Wilson gluon
action, we have at tree-level,

 D�1
00 �0;k� � 4

X3

��1

sin2
k�
2
; (16)

where on a lattice with extents L� the allowed momenta
are

 k� �
2�n�
L�

; �
L�
2
< n� 


L�
2
: (17)

For the Lüscher-Weisz gluon action, we have at tree-level,

 D�1
00 �0;k� � 4

X
�

�
sin2

k�
2
�

1

3
sin4

k�
2

�
: (18)

FIG. 1 (color online). The (infinite volume) tree-level lattice
Coulomb term (in lattice units) for the Wilson and Lüscher-
Weisz (IMP) gauge action.
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The lattice Coulomb term is constructed by calculating
on large lattice volumes and then extrapolating to infinite
volume. Explicitly, we choose L � 128 and L � 256 and
calculate �1r�L for an L3 spatial volume. On a finite volume,
the Coulomb term takes the form [15]

 

1

r
�

1

L� r
�

1

r
�

1

L
�O

�
r

L2

�
: (19)

In order to calculate the infinite volume tree-level lattice
Coulomb term �1r�, we extrapolate �1r�L linearly in 1

L to
1
L � 0.

The tree-level lattice Coulomb term �1r� for the Wilson
and Lüscher-Weisz gauge action is shown in Fig. 1. The
important finite lattice spacing artefacts are revealed at
small r & 3a. The O�a2� improvement in the Lüscher-
Weisz Coulomb term is also readily apparent.

IV. SCALING RESULTS

Calculations are performed on quenched mean-field im-
proved plaquette plus rectangle SU�3� Lüscher-Weisz lat-
tices. Lattice spacings determined using fits to Eq. (14)
above are given in Table I.

Gauge configurations are generated using the Cabibbo-
Marinari pseudo heat-bath algorithm with three diagonal
SU�2� subgroups looped over twice. Simulations are per-
formed using a parallel algorithm with appropriate link
partitioning [16].

For each of the lattices we calculate quark propagators
using the FLIC fermion action with a 1, 2 and 3-loop clover

term as described in Sec. II. We use ensembles of 50
configurations at a lattice size of 163 	 32.

The �, �, and N masses are calculated and interpolated
to a �=� mass ratio of 0.7, shown in Table II. The inter-
polation is performed by first calculating at two different
quark masses that are close to but either side of the desired
�=� mass ratio of 0.7 (typically the calculated mass have
�=� ratios between 0.67–0.73). The � andN mass are then
fitted linearly inm2

� (a valid ansatz in the heavy quark mass
region that we are studying). Having obtained m� and mN

as functions of m2
� it is then trivial to interpolate the

appropriate value of m� to achieve the desired �=� mass

TABLE I. The lattice spacing for pure Lüscher-Weisz glue
determined by the string tension

����
�
p
� 440 MeV and the

Sommer scale r0 � 0:49 fm for various couplings 	.

	 a����fm� a�r0��fm�

4.60 0.120(1) 0.113(1)
4.53 0.132(1) 0.124(1)
4.38 0.164(1) 0.152(1)

TABLE II. Results for the N and �masses on the three lattices,
for the scale determined by the string tension � and the Sommer
scale r0.

	 M�=
����
�
p

MN=
����
�
p

M�r0 MNr0

FLIC-1L 4.60 2.278(26) 3.347(33) 2.638(30) 3.875(39)
4.53 2.313(27) 3.368(41) 2.662(31) 3.876(47)
4.38 2.299(21) 3.323(32) 2.688(25) 3.886(38)

FLIC-2L 4.60 2.347(26) 3.394(33) 2.717(30) 3.929(39)
4.53 2.390(30) 3.453(44) 2.751(35) 3.974(51)
4.38 2.410(24) 3.450(35) 2.818(28) 4.034(41)

FLIC-3L 4.60 2.365(30) 3.461(37) 2.738(34) 4.006(43)
4.53 2.413(37) 3.478(48) 2.776(43) 4.003(55)
4.38 2.435(27) 3.474(38) 2.847(32) 4.062(44)

FIG. 2. The scaling of the N and � masses for various quark
actions in the quenched approximation according to the string
tension (upper) and the Sommer scale (lower).
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ratio and obtain the corresponding values of the nucleon
and � masses.

Scaling results are presented in Fig. 2. The lines of fit are
extrapolations in a2 constrained to pass through a single
point at the continuum limit. As this is quenched QCD at
nonphysical quark masses, we do not know a priori the
continuum value of the � and N masses and thus the
continuum values are fit parameters. The points labeled
FLIC1L, FLIC2L and FLIC3L are the result of this work,

TABLE III. Continuum extrapolated values for the � and N
mass obtained from the fits, for the string tension (�) and
Sommer scale (r0). Listed are the fit value, total 
2, degrees of
freedom and 
2 per degree of freedom.

Fit 
2 DoF 
2=DoF

m�=
����
�
p

2.32(2) 8.76 11 0.796
mN=

����
�
p

3.44(3) 13.4 11 1.22
m�r0 2.50(4) 0.0693 5 0.0139
mNr0 3.72(5) 0.980 5 0.195

FIG. 3. �-meson effective mass functions at two approximately matched quark masses for the 1-loop (top), 2-loop (middle), and 3-
loop (bottom) FLIC actions. Two lattices at 163 	 32 are shown, 	 � 4:60 (left) and 	 � 4:53 (right).
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all other points are obtained from the literature or previous
work [10].

Examining the string tension plot in Fig. 2, we can see
from the Wilson and MF-clover points that the presence of
any O�a� errors causes significant deviation from the con-
tinuum result. Given the proximity of the FLIC results to
the NP-clover results, we fit the FLIC results using an
O�a2� term as the leading error. The subsequent extrapo-
lated masses and corresponding 
2 values are given in
Table III. We successfully fit straight lines for the non-
perturbatively improved clover action and all FLIC ac-
tions, indicating O�a2� scaling, that is the effective
elimination of O�a� errors.

The second plot in Fig. 2 shows the scaling of the three
FLIC actions against the Sommer scale, r0. This is inter-
esting because r0 is the preferred measure of setting the
scale in dynamical simulations. The presence of the string
breaking in full QCD makes using the string tension to set
the scale undesirable. We see that on this plot the O�a2�
errors are smallest for the 1-loop FLIC action for both the �
and N masses.

Thus, 1-, 2- and 3-loop fat-link formulations of F�� in
the FLIC fermion action all provide O�a� improvement as
expected. The different formulations differ at the level of
O�a2�. Remarkably, the 1-loop action is actually the pre-
ferred action. First, it is the cheapest to perform molecular
dynamics with, which is important for Hybrid Monte Carlo
dynamical simulations. Second, when using r0 to set the
scale, the 1-loop action has the smallest residual O�a2�
errors in the quantities we have studied here. We will also
see that correlation functions have smaller fluctuations.

V. CORRELATION FUNCTIONS

Finally, we compare the �-meson correlation function
on the fine 	 � 4:60 and coarse 	 � 4:53 lattices at
approximately matched pion masses for the three different
FLIC actions. The source is at time slice 8. Two masses are
calculated for each action on each lattice. The lighter mass
has m�=m� � 0:68 and the heavier mass has m�=m� �

0:72.
The effective mass plots are given in Fig. 3. We note that

the greater the degree of statistical fluctuation in the corre-

lation function on a given time slice, the larger the error bar
on the estimate of the central value at that point. The main
effect that we observe from Fig. 3 is that as the Euclidean
time index progresses into the latter half of the lattice, the
1-loop FLIC correlators show reduced fluctuations, as in-
dicated by the reduced error bars when compared with the
2-loop and 3-loop FLIC results. The difference is particu-
larly clear on the coarser 	 � 4:53 lattice. We understand
this to be due to the 1-loop action having a more local field
strength F���x� than the 2- and 3-loop actions making it
less susceptible to large fluctuations. The reduced fluctua-
tions in the more local action means that a larger range of
time slices are potentially available to choose for a fit
window.

VI. CONCLUSIONS

We have examined the role of improvement in the lattice
field strength tensor of the FLIC fermion action. Our
results demonstrate that the standard 1-loop choice of for
the lattice clover term in the FLIC fermion action provides
O�a2� scaling.

Remarkably the 1-loop action provides results that
are preferable to those obtained from the 2-loop
O�a2�-improved lattice field strength tensor or those ob-
tained from the 3-loop O�a4�-improved definition. The 1-
loop results provide

(1) Smaller residual O�a2� errors (using the r0 scale),
(2) Stable hadron correlators with reduced fluctuations,
(3) Smaller statistical uncertainties, and
(4) A more efficient action suitable for dynamical fer-

mion simulations.
This result enables efficient and effective dynamical

QCD simulations with FLIC fermions. Simulations are
currently under way.
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