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Abstract

Prototype and exemplar models form two extremes in a class
of mixture model accounts of human category learning. This
class of models allows flexible representations that can inter-
polate from simple prototypes to highly differentiated exem-
plar accounts. We apply one such framework to data that af-
ford an insight into the nature of representational changesdur-
ing category learning. While generally supporting the notion
of a prototype-to-exemplar shift during learning, the detailed
analysis suggests that the nature of the changes is considerably
more complex than previous work suggests.

Keywords: cognitive models, category learning, abstraction,
representational change.

Introduction
Classification tasks present people with stimuli and their
accompanying category labels, and require label prediction
for novel stimuli. Starting with seminal work in the 1970s
(Rosch, 1978), the psychology of categorization has been
assumed to be best thought of in terms of a kind of “fam-
ily resemblance”. For example, prototype theories (Reed,
1972) represent a category using a single prototypical stim-
ulus, which need not necessarily correspond to a real object.
Similarity to a category is defined as similarity to the proto-
type. In contrast, exemplar theories (Medin & Schaffer, 1978;
Nosofsky, 1986) represent a category as the set of all of its
previously observed members (its exemplars), and the cate-
gory similarity as the aggregated similarity to the exemplars.
More recently, it has been argued (Love, Medin, & Gureckis,
2004; Anderson, 1991; Rosseel, 2002; Vanpaemel, Storms,
& Ons, 2005) that exemplar representations and prototype
representations constitute the two extremes of a spectrum of
models. Although different authors have adopted slightly dif-
ferent formalisms to advance their viewpoint, they share the
common view that human conceptual structure is sufficiently
flexible to adopt simple, highly abstracted “prototype-like”
representations at times, but can also accommodate highly
differentiated “exemplar-like” representations at others.

An elegant experimental test of this idea was conducted by
Smith and Minda (1998), involving a series of categorization
experiments. In each experiment, prototype and exemplar ac-
counts were contrasted at different stages of the learning pro-
cess, to see which model provided a superior account. Al-
though the overall pattern of performance across experiments
is complex, the general finding was that exemplar models
tend to be favored late in learning, with the possibility that
prototype models are favored early in learning (but see, e.g.,
Nosofsky & Zaki, 2002 for a contrasting view). However,
one drawback to the study is that only prototype and exem-

plar models were evaluated, leaving the vast majority of po-
tential category representations unexplored. Since thesedata
provide a natural testing ground for exploring the flexibility
of category representations, the current paper undertakespre-
cisely this analysis. The plan of the paper is as follows. We
first introduce the formal modeling framework, and then dis-
cuss the data provided by Smith and Minda (1998). We then
analyze two key data sets from this paper, looking first to ex-
tract an explicit model for the individual differences in per-
formance (Webb & Lee, 2004) before analyzing the data set
using the Varying Abstraction Model (VAM) introduced by
Vanpaemel et al. (2005) which provides a much richer set of
potential category representations.

Treating Categories as Mixtures
In most theories of human concepts (e.g., Nosofsky, 1986;
Love et al., 2004), people are assumed to have some inter-
nal representation of a categoryC that provides a probability
distributionp(· |C) over possible objects in the world. When
translated into formal models, it is typical to assume that this
distribution is a mixture of several component densities, gen-
erally on the implicit assumption that each “element” of the
category representation constitutes a psychologically distinct
component of the category.

The General Approach
We begin by introducing the general approach, in which the
psychological representation of a category is modeled as a
mixture of simpler components. If the internal representation
containsq components, the probability assigned by category
C to theith stimulusxi is given:

p(xi |C) =

q
∑

j=1

wj p(xi | j), (1)

wherep(xi | j) is the density assigned by componentj to the
ith stimulusxi, andwj weights the contribution made by each
component. The general mixture formulation in Equation 1
is often translated into a specific statistical model by applying
the exponential law for generalization developed by Shepard
(1987). In view of this law, it is natural to treat each of the
component distributions as an exponential density,

p(xi | j) ∝ e−λd(xi,µj), (2)

whereµj denotes the internal representation of thejth com-
ponent to the category,λ is a scaling parameter that governs
the specificity of the generalization away from that represen-
tation, andd(·, ·) describes apsychological distance function.
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Figure 1: Category densities for the a one-dimensional category
consisting of items located atx = (−0.2,−0.1, 0, 0.3, 0.4) and
λ = 10. The density on the left is produced by the prototype model,
and the one on the right by the exemplar model. The middle density
belongs to a model that groups the three stimuli on the left and the
two stimuli on the right.

When applying such models, it is typical to assume thatλ has
the same value for all components. While there are many
possibilities for a psychological distance function, a common
choice is to use one of the attention-weighted Minkowskir
metrics,

d(xi, µj) =

(

m
∑

k=1

ak |xik − µjk|
r

)
1

r

, (3)

whereak represents the proportion of attention applied to the
kth stimulus dimension. To provide a concrete illustration of
the approach, Figure 1 shows three different mixture repre-
sentations of the same category, corresponding to prototypes,
exemplars and an intermediate case. In order to describe hu-
man behavior in a two-alternative forced-choice task between
categoriesA andB, it is typical to apply a standard choice
rule,

P (xi ∈ A |xi) =
p(xi |A)

p(xi |A) + p(xi |B)
. (4)

A Simplified Framework
The general mixture model formulation is broad enough to
cover a range of approaches. However, the simplest proposal
is perhaps the one introduced by Vanpaemel et al. (2005).
Unlike some approaches (e.g., Love et al., 2004; Anderson,
1991) it makes no particular assumptions about how human
learning takes place, and it is much more constrained than
the mixture model formulation adopted by Rosseel (2002) in
terms of how the weightswj and probabilitiesp(xi | j) are
assigned. While the simplicity of this arrangement does not
necessarily make it a superior cognitive model, it providesa
very clean framework in which to ask questions about repre-
sentational structure without introducing any additionalpsy-
chological principles that could confound the analysis.

In Vanpaemel et al.’s (2005) Varying Abstraction Model
(VAM) the mixture componentsµj andwj that might other-
wise be treated as free parameters are fully determined by a
specific partition of category members into a set of clusters.
Each cluster implies a specific psychological representation
µj , that can be viewed as a kind of sub-prototype. Thus, a
category ofn exemplars represented in terms ofq clusters
can be described using the vectorc = (c1, . . . , cn), where

Table 1: Stimulus representations for the non-linearly separable cat-
egories used by Smith and Minda (1998), experiments 2 (panela)
and 3 (panel b). In both panels each column corresponds to a feature
(i.e., letter), and each row to a stimulus.

(a) A 0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 1 1 0 1

B 1 1 1 1 1 1
0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 0
0 0 0 1 0 0

(b) A 0 0 0 1
0 1 0 0
1 0 1 1
0 0 0 0

B 1 0 0 0
1 0 1 0
1 1 1 1
0 1 1 1

ci ∈ 1, 2, . . . , q indexes the representational cluster to which
theith stimulus belongs. As suchq can be interpreted as the
level of abstraction of the category representation. In the con-
strained framework, the representation of thejth cluster is
taken to be the average of the representations of its constituent
stimuli. Thus,µjk = (1/nj)

∑

i|ci=j xik wherenj denotes
the number of stimuli that belong to clusterj. Applying the
same logic, the mixture weights are constrained to reflect the
proportionwj = nj/n of category members that fall in the
cluster.

In this framework, the partitionscA andcB of categories
A and B define a particular model for these categories, with
an overall level of abstractionqA + qB. The model’s free
parameters are the attention weightsak and the specificity
λ (the metricr is taken to be a property of the stimulus
space itself, and is held fixed). This formulation ensures that
all models have the same number of free parameters. The
standard prototype and exemplar models are special cases
of the VAM: a category represented using a single-cluster
partition c = (1, 1, . . . , 1) has a prototype representation,
and a category represented using a cluster for every stimulus
c = (1, 2, . . . , n) has an exemplar representation. In between
these two extremes, however, lie a wealth of infrequently-
explored representational possibilities.

Looking for Representational Shifts
It has been argued (Smith & Minda, 1998) that much of the
categorization literature is overly-reliant on experiments that
provide participants with a great deal of training before at-
tempting to measure the structure of their conceptual repre-
sentation. With that in mind, Smith and Minda (1998) con-
ducted a series of experiments aimed to show that the cate-
gory representation changes as learning progresses. In this
paper, we focus on their experiments 2 and 3, involving non-
linearly separable categories. For both experiments, the stim-
uli took the form of pronounceable nonsense words (e.g.,ga-
fuzi, daki), on the assumption that each letter corresponds to
a feature. In experiment 2, both categories consisted of seven
exemplars possessing six features each, and were designed
to be well-differentiated category structures even despite the
fact that both categories contain obvious exception items:the
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Table 2: The series of representations used to build models for ex-
periment 2. Each column corresponds to a partition, either of the
category A exemplars or the category B exemplars.

cA 1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 1 2 3
1 1 1 1 2 3 4
1 1 1 2 3 4 5
1 1 2 3 4 5 6
1 2 3 4 5 6 7

cB 1 1 1 1 1 1 1
1 1 1 1 1 1 2
1 1 1 1 1 2 3
1 1 1 1 2 3 4
1 1 1 2 3 4 5
1 1 2 3 4 5 6
1 2 3 4 5 6 7

logical structure of the categories is shown in Table 1(a). In
contrast, experiment 3 used the smaller, less differentiated
category structures shown in Table 1(b). Both experiments
involved 16 participants who were presented with 560 trials,
divided into 10 segments of 56 trials each. On each trial, one
of the stimuli was presented and the participant was asked to
classify it as a member of categoryA or categoryB. Feed-
back was provided after each trial. Smith and Minda (1998)
analyzed the data by fitting exemplar and prototype model to
each segment, in order to find evidence for representational
transitions during learning. They concluded that a shift had
occurred during experiment 2, but not during experiment 3.

Although the idea of a representational change is in agree-
ment with the spirit of the VAM, Smith and Minda (1998)
only considered prototype and exemplar models, which
makes it difficult to trace out these changes in any detail.
To address this, in the remainder of the paper, we reanalyze
the data from these experiments using the VAM, exploring
the full class of potential category representations. For the
smaller category, we fit all15 × 15 = 225 category models,
but for the larger category the877 × 877 = 769129 models
are too many to work with, particularly since model fitting
is required for 10 different trial segments. Accordingly, in
this case we used only a smaller set of7 × 7 = 49 mod-
els, with one model at each level of abstraction (i.e., number
of clusters) for each category. These 49 models were found
by applying a simple average-link clustering procedure to the
stimulus representations in Table 1(a), and are shown in Ta-
ble 2. Each model was fit to the observed classification ac-
curacies using maximum likelihood estimation, which means
that the values of the free parameters maximizing the likeli-
hood of observing the data were determined. The free param-
eters were the scaling parameterλ and five or three attention
weightsak in experiment 2 or 3 respectively.

A Varying Abstraction Analysis
Our analysis involves three stages. Firstly, we analyze the
individual differences in the data, in order to make sure that
we can draw sensible conclusions about what particular par-
ticipants were doing. Secondly, we reproduce Smith and
Minda’s (1998) prototype-to-exemplar result within the con-
text of the VAM. Finally, we use this framework to develop
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Figure 2: Empirical learning curves for all 16 participantsin the
experiment 2. The data segregate naturally into two groups.
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Figure 3: Empirical learning curves for all 16 participantsin the
experiment 3. The data segregate naturally into three groups.

a more detailed picture of the nature of the representational
changes.

Part 1: Individual Differences
Recent work (Webb & Lee, 2004) has emphasized the fact
that category learning tasks show strong individual differ-
ences, and highlighted the fact that averaging across peo-
ple may lead to substantial distortions. In Smith and Minda
(1998), this problem was solved by fitting models to each
participant independently. However, in addition to inflating
the risks of overfitting, this approach is unwieldy and time-
consuming. A faster and more robust approach emphasizes
both the similarities and differences between people, and
seeks to find groups of participants with similar patterns of
performance.

To apply this idea, we took the learning curves for each
participant, and partitioned them into meaningful groups.To
do so, we applied the Minimum Description Length (MDL)
clustering technique pioneered by Kontkanen, Myllymäki,
Buntine, Rissanen, and Tirri (2005) and extended to learn-
ing curves by Navarro and Lee (2005). This method, which
is based on information theoretic ideas, assigns two observa-
tions to the same group only if this allows a better compres-
sion of the overall data set. Although the technical detailsare
complicated (see Grünwald, 1998, for details on MDL), what
matters for the current purposes is that the approach allows
us to find a statistically-optimal method of grouping people’s
data. Applying this method, we were able to extract three
strikingly different types of performance for the experiment
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Figure 4: The rank of the prototype and exemplar models at each
segment for experiment2.
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Figure 5: The rank of the prototype and exemplar models at each
segment for experiment3.

3 data (Figure 3) and two probably-distinct groups for the ex-
periment 2 data (Figure 2). Due to space constraints, we re-
strict the analyses in this paper to the largest groups, indicated
by the solid lines in both figures.

Part 2: Comparing Prototypes to Exemplars
Our approach to analyzing the prototype-to-exemplar shift
differs from Smith and Minda’s in several ways. Firstly, we
fit a much broader range of models to the data (225 for ex-
periment 3, and 49 for experiment 2), and used a maximum
likelihood estimation rather than the least squares approach
adopted in the original paper. Secondly, we fit data that were
aggregated in an optimal fashion, as discussed in the previous
section. Finally, unlike Smith and Minda (1998), we did not
include a “guessing parameter”.

Despite the very substantial differences in representational
possibilities considered, the choice of loss function, individ-
ual differences, and guessing behavior, the basic pattern of
exemplar and prototype performance remains intact. This is
most naturally shown by looking at how well the two mod-
els fared at different stages of learning, when compared to
all (225 or 49) models under consideration, as illustrated in
Figures 4 and 5. In one key respect, this pattern is far more
compelling in the current analysis than in the original: in
Smith and Minda (1998), the exemplar and prototype models
are evaluated without consideration of the other representa-
tional possibilities. Happily, when a broad spectrum of rep-
resentational possibilities are included to provide an appro-
priate context, the substantive finding remains unchanged.In
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Figure 6: The level of abstraction of the best model at different
stages of learning during experiment 2.
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Figure 7: The level of abstraction of the best model at different
stages of learning during experiment 3.

experiment 2, there is an early advantage for the prototype
model, and a late advantage for the exemplar model, with the
changeover point located between segments four and five. In
experiment 3, only during the first segment does the proto-
type model outrank the exemplar model, and the extent of the
exemplar advantage grows throughout the experiment.

The dramatic shift in the relative fortunes of the prototype
and exemplar models illustrated in Figure 4 and 5 suggests
that some kind of representational shift has taken place dur-
ing the learning process, particularly with respect to the larger
category structure used in experiment 2. This was essentially
the conclusion in Smith and Minda (1998), but our applica-
tion of the VAM allows us to gain further insight in the nature
of the representational shift, a topic which we turn to in the
next section.

Part 3: A Richer View of Representational Change
The analyses reported by Smith and Minda (1998) and shown
in our Figures 4 and 5 imply that the representational shift in-
volves a jump from a prototype representation to an exemplar
representation. However, this is somewhat misleading, in the
sense that the shift appears to be considerably more complex.
To illustrate this, we classified every model in terms of its
overall level of abstraction (i.e.,qA+qB). Figures 6 and 7 dis-
play, at all 10 segments, the level of abstraction of the model
that best accounts for the behaviorial data. For both experi-
ments, the level of abstraction of the best model changes sys-
tematically across trials. Experiment 2 in particular shows

1602



2 4 6 8
−275

−270

−265

F
it

segment 1

2 4 6 8
−265

−260

−255
segment 2

2 4 6 8
−270

−265

−260
segment 3

2 4 6 8
−270

−265

−260
segment 4

2 4 6 8
−265

−255

−245
segment 5

2 4 6 8
−250

−200

−150

F
it

segment 6

2 4 6 8
−250

−175

−100
segment 7

2 4 6 8
−250

−175

−100

Level of Abstraction

segment 8

2 4 6 8
−250

−150

−50
segment 9

2 4 6 8
−250

−150

−50
segment 10

Figure 8: Scatterplot of the fit of all the225 models (y-axes) versus the level of abstractionqA+qB (x-axes) at each segment for experiment 3.
Over the first three segments, the best models tend to be more prototype-like (though the prototype model itself performspoorly). As learning
progresses, the profile of good models shifts, and from segments 5-10 it is clear that the best models all have a differentiated, exemplar-like
structure.
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Figure 9: Fit of all the 49 models at each level of abstractionfor both categories at each segment in experiment 2. In each subplot, the
dependent variable is the model fit, measured in terms of the log-likelihood. The independent variables are the levels ofabstraction for each
category,qA andqB . As is clear from inspection of the plot, there is a fairly sharp change in the profile of models at around segment 4-5.

a steady progression from prototypes to exemplars. In the
first two trial segments, the very best model is the prototype
model, and in the last segment the best model is very nearly
an exemplar model (having an level of abstraction of 12, out
of a maximum possible of 14). However, the transition here
is steady, very nearly linear. In other words, while the ex-
emplar model improves so dramatically against the prototype
model that the shift looks discrete (as in Figure 4), the inclu-
sion of a broader class of models suggests that the change is
somewhat more gradual across the best fitting models (as in
Figure 6). Moreover, examination of Figure 7 suggests that a
small shift takes place in experiment 3, which was not evident
in the original analysis.

The analysis presented above suggests a representational
shift in which conceptual structures smoothly move from pro-
totypes to exemplars via a range of intermediate models. To

get a more detailed picture of the pattern of changing model
fits during the course experiment 3, instead of looking at the
best fitting models only, we can look at all 225 possible rep-
resentational models. This is illustrated in Figure 8 which
shows 10 scatterplots, one for each trial segment. Each plot
displays the level of abstraction and the data fit for each of all
the 225 possible representational models. In the first four seg-
ments, highly abstract representations are able to accountfor
the data relatively well (though notably the prototype model
itself fits poorly), while very detailed exemplar-like represen-
tations perform poorly. In contrast, from segment five on-
wards the profile reverses: in order to provide a good account
of human performance, the category representation requires
at least four clusters across the two categories. Although not
shown, a similar change occurs for the 49 models analyzed in
experiment 2, also at segment five.
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Another detailed picture of the shift is shown in Figure 9,
this time looking at all 49 models used in experiment 2. In
this figure, the overall level of abstractionqA + qB is split
in its two constituent parts. Each plot displays the number
of clusters required to represent category A, the number re-
quired to represent category B, and the data fit for each of the
49 models considered. The prototype model sits at the(1, 1)
level of abstraction, while the exemplar model is at(7, 7).
Figure 9 shows the maximized log-likelihood for each model
at each level of abstraction per category, at each stage of ex-
periment 2. It shows that, like in experiment 2, an abrupt shift
takes place after segment four. Until that segment, models
with a highly abstract representation are clearly the best,but
from segment four onwards the models with a more detailed
representation are dominant.

Discussion
Neither prototypes nor exemplars appear to provide a suffi-
cient account of human category learning, at least for large
categories (Smith & Minda, 1998), since neither model ac-
counts for changes in representational structure, and there are
very clear signs that these changes occur in empirical data.
On top of this, when we consider the fact that prototypes and
exemplars are two extremes in the class of mixture represen-
tations (Rosseel, 2002), a prototype-to-exemplar shift should
be expected to pass through the kind of intermediate models
that are encompassed by VAM introduced by Vanpaemel et
al. (2005). To demonstrate that this does in fact occur, we re-
analyzed the data from two experiments in Smith and Minda
(1998), replicating their results (Figures 4 and 5). Our analy-
sis indicated that such changes are somewhat more complex
than previously suggested. Firstly, unlike Smith and Minda
(1998), we are able to find evidence of a small shift in experi-
ment 3, as well as the large changes in experiment 2. Also, al-
though the overall level of abstraction of the best-fitting mod-
els moves smoothly from abstract, prototype-like models to-
wards differentiated, exemplar-like models (Figures 6 and7),
when we look at the performance of all possible models (Fig-
ures 8 and 9) there appear to be some much sharper transi-
tions, as the performance of previously good models can de-
teriorate rapidly. In light of these findings, it appears that the
current trend toward developing and applying mixture mod-
els for categorization can provide useful insights, by allowing
us to trace changes in representation in more detail than pre-
viously possible.
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