
Chapter 6

Case Study 2 - Cyanobacteria

Forecasting

6.1 INTRODUCTION

The case study considered in this chapter is that of forecasting concentrations of the

cyanobacteriumAnabaenaspp. in the River Murray at Morgan, South Australia, 4 weeks

in advance. Similar to the salinity problem considered in Chapter 5, cyanobacterial

blooms are a major water quality problem in the lower River Murray and, like the salin-

ity case study, there has been substantial research conducted previously into developing

ANNs for modelling this problem (Maier, 1995;Maier and Dandy, 1997;Maier et al.,

1998, 2000, 2001;Bowden, 2003). However, it was noted byBowden(2003) that the data

available for this case study possess a high degree of uncertainty, resulting from sam-

pling and counting errors, and consequently, the predictive performances of the models

developed have been limited. In this chapter, ANN models are developed using both the

state-of-the-art deterministic and Bayesian approaches proposed in Chapters 3 and 4, re-

spectively, and the results are compared to determine whether a superior predictive model

can be developed using the Bayesian ANN framework in the face of this data uncertainty.

A secondary aim of this case study is to determine whether or not it is possible, given the

poor quality of data, to develop an ANN model that is representative of the underlying

physical mechanisms that drive the development of cyanobacterial blooms, such that the

model can be used for hypothesis testing of different management scenarios.
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6.2 BACKGROUND

6.2.1 Cyanobacteria in the River Murray

Cyanobacteria, which are more commonly known as blue-green algae, are naturally oc-

curring in aquatic environments. In a balanced and healthy river system, they provide a

major sink for carbon, nitrogen and phosphorus and produce much of the world’s atmo-

spheric oxygen (Reynolds, 1984). However, when the natural balance of the system is

upset, the production of cyanobacteria can become excessive, resulting in toxic blooms

that have a destructive effect on the water body and inhibit the use of the water for irriga-

tion, drinking, livestock and recreational purposes. Decaying cyanobacteria cells deplete

the water body of oxygen, which causes stress to, or even death of, other aquatic organ-

isms, while the effects of the toxins produced by cyanobacteria on human and animal

health can range from skin and eye irritations to liver damage, tumour promotion and

death (Crabb, 1997). Furthermore, water supply operations may be disrupted, as large

numbers of cyanobacteria cells increase the suspended solids load in the water, thereby

blocking filters and reducing the effectiveness of disinfection.

The problem of cyanobacterial blooms is particularly significant in Australia due to

the generally arid climate, combined with the current land and water management prac-

tices that create conditions in which the cyanobacteria thrive. While such blooms are not

a new occurrence in Australian rivers, there has been increased attention on the effects of

cyanobacteria and the management of this problem since the wide publicity of the 1991

Darling River bloom, which was the largest cyanobacterial bloom ever recorded any-

where in the world (extending for over 1000 km) (Blue-Green Algae Task Force, 1992).

This bloom resulted in the death of an estimated 10,000 livestock, required emergency

water supplies for a number of towns and, consequently, caused the New South Wales

government to declare a state of emergency (MDBMC, 1994). Although not as extensive

as the Darling River bloom, significant cyanobacterial blooms have also occurred peri-

odically in the lower River Murray. Since European settlement, the River Murray has

been heavily regulated, primarily to aid navigation and facilitate diversion of water. The

number of weirs in the lower River Murray downstream of the South Australian border

(Figure 6.1) is such that this section of the river is now a series of continuous weir pools

and does not have the characteristics of a flowing river except under high flows (Thoms

et al., 2000). In summer, these weir pools often stratify creating conditions conducive to

the development of cyanobacterial blooms. This poses a significant threat to water supply

in South Australia since, as discussed in Section 5.2, the River Murray is essential for wa-

ter supply purposes in South Australia and a number of water supply offtakes are located
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Figure 6.1 Regulatory structures in the lower River Murray, South Australia.

in this stretch of the river (see Figure 5.2).

Several water authorities throughout Australia have adopted an Alert Levels frame-

work for managerial responses to outbreaks of cyanobacteria in drinking water supplies

(Jones et al., 2003). This framework is summarised in Table 6.1, where it can be seen that

advanced treatment processes (in addition to conventional treatment) are required for cell

concentrations exceeding 2,000 cells/mL, and concentrations above 15,000 cells/mL may

prohibit the use of the water for supply purposes. Advanced treatment processes, such as

oxidation or activated carbon filtration, can be very expensive (MDBMC, 1994); therefore,

management strategies that reduce the frequency and intensity of cyanobacterial blooms

may be a preferred option. However, in order to successfully implement preventative

management strategies, a better understanding of the factors that trigger cyanobacterial

blooms is required. Excessive cyanobacterial growth relies on a combination of calm

and stable water conditions, nutrient enrichment (in particular nitrogen and phosphorus),

warm temperatures and poor light attenuation. However, while a basic understanding of

the links between these factors and cyanobacterial growth is well documented, it is ex-

tremely difficult to attribute cyanobacterial growth to any specific set of factors, due to the

continual and complex interactions occurring between environmental variables (MDBMC,
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Table 6.1 National cyanobacterial Alert Level framework for managerial response (Source 
(Jones et al., 2003)). 
 
 

 
NOTE:  This table is included on page 258 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
 
1994), as illustrated in Figure 6.2. This is accentuated in rivers where the effects of 

flow alter each of the above mentioned environmental conditions that are conducive 

to cyanobacterial growth. In fact, flow is the only variable that is consistently 

(inversely) correlated with concentrations of cyanobacteria (MDBMC, 1994). 

 
 
6.2.2 Modelling Cyanobacteria Concentrations with ANNs 
 
As it is either impossible or infeasible to empirically investigate the direct response of 

a river system to changes in environmental variables, predictive models can be useful 

for determining which factors have an inhibitory effect on cyanobacterial bloom 

development and how best to exploit these factors, as a means of preventative control. 

Furthermore, as cyanobacterial bloom control is only effective if the management 

strategy is applied preventatively or in the very early stages of bloom development, a 

predictive model can be useful for providing advanced warnings of bloom 

occurrences (Recknagel, 1997). In the 1990s, French and Recknagel (1994); 

Recknagel (1997) and Recknagel et al. (1997) showed that, unlike a number of 

process-based and traditional statistical approaches, ANNs were a promising tool for 

the predicting the timing and magnitude of the incidence of cyanobacteria. 

The first ANN models for predicting cyanobacteria concentrations in the lower River 

Murray were developed by Maier (1995); Maier and Dandy (1997) and Maier et al. 

(1998). These models were developed to provide 2- and 4-week forecasts of a species 

 
 
 
 
Page 258 



Background – Section 6.2

PHOTOSYNTHESIS 

BIOSYNTHESIS 

RESPIRATION 

SEDIMENTATION 

GRAZING 

Metabolic 
Activity 

Cell Size 

Physiological 
Properties 

GROWTH 
RATE 

LOSS 
RATE 

POPULATION 
DYNAMICS 

Nutrient regeneration 

Surface irradiance 
Water transparency (Zeu) 

Mixing depth (Zm) 

Light; CO2 

Nutrients 
N; P; Si 

Temperature 

Day length 
Zeu/Zm 

Turbulent 
mixing 

Zooplankton 
density and 
composition 

PHYSIOLOGICAL 
CONTROL 

MULTIFACTORIAL 
CONTROL 

CONTROL BY 
LIMITING FACTOR 

Figure 6.2 Algal dynamics (adapted fromCapblancq and Catalan(1994)).

group of the cyanobacteriumAnabaenaspp. at Morgan, South Australia, sinceAnabaena

are the most prolific species of cyanobacteria in the lower River Murray and a major water

supply offtake and water filtration plant are located at Morgan (see Figure 5.2). As well

as providing forecasts of the onset, peak and duration of blooms ofAnabaena, one of the

main aims of the study conducted byMaier et al.(1998) was to investigate the strengths

of the relationships between the model inputs and outputs, by means of sensitivity anal-

yses, in order to establish the environmental factors which result in high incidences of

cyanobacteria. It was found that flow, temperature and colour (representing light avail-

ability) were the most important input variables for modelling the incidence of cyanobac-

teria at Morgan. Similar studies were conducted byMaier et al. (2000, 2001), where a

neurofuzzy approach was used to forecast cyanobacteria concentrations. The input-output

relationships modelled by the ANNs developed in these studies could be interpreted by a

set of fuzzy rules that were generated by the networks.

In each of these studies, it was assumed that once the predictive performances of

the ANN models developed had been validated, information about the underlying pro-

cess could then be gained from the models, either by fuzzy rules or sensitivity analyses.

However, validation of the ANN models in these studies was subjective, where predic-
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tive performance was assessed by visually inspecting plots of actual versus predicted cell

densities in terms of the models’ ability to forecast onset, peak and duration of growth

events, as it was considered that this assessment could describe model performance bet-

ter than a composite error measure (e.g. RMSE), which does not account for the timing

of the predictions (Maier et al., 1998). It was also known that the available data were

limited and the precision of theAnabaenacell count data was±20% or more (Maier

et al., 1998). Therefore, it is considered optimistic to have assumed the “validated” mod-

els could provide useful information about the general underlying relationship. This was

noted inMaier et al. (2001). In the present research, ANN models were developed for

providing 4-week forecasts ofAnabaenaspp. at Morgan, using both deterministic and

Bayesian methods. TheRI values (or distributions) were then calculated for each of the

model inputs and compared toa priori knowledge of the relationship underlying the in-

cidence ofAnabaenain the lower River Murray in order to validate the usefulness of the

model as a means of examining the implications for preventative management options.

The inputRI values provide similar information to the sensitivity analyses carried out by

Maier et al.(1998); however, sensitivity analyses involve manipulating the inputs one at

a time to determine their relative impacts on the output variable, which is not only time

consuming, but can not properly reflect the modelled relationship, nor the causality rela-

tions in the actual system, if the inputs are not independent, since interactions between

the inputs are not considered.

6.3 AVAILABLE DATA AND MODEL INPUTS

The available data for this case study are summarised in Table 6.2. As seen, the data

were supplied from a number of different sources, including the Australian Water Qual-

ity Centre (AWQC); the South Australian Department for Water Resources (DWR); and

the Murray-Darling Basin Commission (MDBC). All data were available for the period

8 January 1980 to 20 November 1996 and were collected at Morgan as part of routine

monitoring, with the exception of flow data, which were recorded at the border between

South Australia and New South Wales. Daily flow and river level data were converted to

weekly averages. It can be seen, in comparison with Figure 6.2, that the available data set

did not include all variables that may be significant in regulating the growth and loss rates

of cyanobacteria. For example, while colour and turbidity affect water transparency and

light penetration, there is no data available for surface irradiance. Furthermore, turbulent

mixing is a function of flow, river level and wind. The only wind data available for the

lower River Murray were subject to measurement errors and, as a result, contained an
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Table 6.2 Available data for forecastingAnabaenaspp. in the River Murray at Morgan.

Variable Units Sampling Interval Source

Anabaenaspp. cells/mL weekly AWQC
Flow ML/day daily DWR
River level m daily DWR
Temperature ◦C weekly MDBC
Colour Hazen Units (HU) weekly MDBC
Turbidity Nephelometric

Turbidity Units

(NTU)

weekly MDBC

pH – weekly MDBC
Silica mg/L weekly MDBC
Total Kjedahl Nitrogen (TKN) mg/L weekly MDBC
Total Phosphorus (TP) mg/L weekly MDBC
Soluble Phosphorus (SP) mg/L weekly MDBC

uncharacteristic trend and heteroskedasticity (Bowden, 2003). Therefore, these data were

not included in the study. Furthermore, the available data set excludes any information on

grazing pressure, such as zooplankton numbers.

TheAnabaenaspp. data represent a species complex, which primarily includes counts

of the speciesAnabaena circinalisand Anabaena flos-aquae(Maier et al., 1998). A

plot of theAnabaenaspp. concentrations in the River Murray at Morgan between Jan-

uary 1980 and November 1986 is shown in Figure 6.3. During this time, pulsed growth

events occurred in most years, predominantly in summer. It can be seen that there was

an absence ofAnabaenaspp. in the river between 1983 and 1985, which corresponded

to high and persistent turbidity levels, and hence, poor light attenuation in the water col-

umn. For the majority of the period for which data were available (88.5% of the time),

the concentration ofAnabaenaspp. remained below 500 cells/mL, which corresponds to

the lowest significant concentration in the Alert Levels framework (see Table 6.1). How-

ever, during this time, Alert Level 1 was triggered 77 times, Alert Level 2 was triggered

23 times and Alert Level 3 was triggered once, reaching a maximum concentration of

25,252 cells/mL.

TheAnabaenaspp. data used in this study were collected as grab samples at a fixed

depth and location in the river (0.3 m below the water surface and 10 m from the river

bank at a point where the river is 150 m wide). However, samples taken from a fixed

depth and location are unlikely to provide a representative sample of the population of

cyanobacteria in the river, as cyanobacteria tend to be patchy in both their horizontal

and vertical distributions (Jones et al., 2003). Furthermore, samples were taken early in
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Figure 6.3 Anabaenaspp. time series at Morgan.

the morning, which may have also affected how representative they were. Cyanobacterial

species such asAnabaenaare able to regulate their buoyancy in calm, stratified conditions.

Over night, cells tend to accumulate at the water surface, but as winds increase throughout

the day, they are dispersed and may be mixed back into the water column (Jones et al.,

2003). Therefore, by taking samples early in the morning, the concentration ofAnabaena

spp. in the river may have been overestimated, given that samples were taken from a fixed

location near the water surface.

The concentration ofAnabaenaspp. in a sample is calculated by counting the number

of colonies or trichomes ofAnabaenaunder a microscope using a calibrated counting

chamber and converting the count to cells/mL (Laslett et al., 1997). Therefore, estimates

in Anabaenaspp. concentration are not only subject to sampling errors, but also counting

errors, which may arise from bias in technique or random sources (Jones et al., 2003).

Laslett et al.(1997) derived the following formula for estimating counting precision:

Counting error (±%) = 100
√

2/n (6.1)

wheren is the number of units (colonies or trichomes) counted. This gives an estimate of

the variability about the observed mean value when repeated counts are made, but does not

account for other sources of error, such as unrepresentative sampling or cell losses after

sampling. Therefore, the overall error in estimated cell concentration is always greater

than the estimated counting error (Jones et al., 2003). During the period for which the
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data used in this study were collected, the number of trichomes counted did not remain

constant, and consequently the counting precision varied between approximately±20%

and±50% (Bowden, 2003).

The inputs used in this research were those used byBowden(2003) and were selected

using the two step PMI selection procedure described in Sections 3.2.4 and 5.3. These

inputs are given in Table 6.3, together with their PMI score, the PMI-basedRI values and

the corresponding rank order of importance. The maximum number of lags considered

for each of the variables in Table 6.2 was 26 weeks, as it was assumed thatAnabaenaspp.

concentrations would not be affected by conditions that occurred more than 6 months

previously. This resulted in a total of 286 candidate inputs, which were then reduced to 8

significant inputs, as shown in Table 6.3.

Table 6.3 Inputs used inAnabaenaforecasting ANN model, together with the PMI scores,

PMI-basedRI estimates and rank order of importance.

Lag PMI RI Rank
Variable (days) Score (%) Importance

Anabaena 1 0.296 28.25 1
Anabaena 7 0.178 16.97 2
Anabaena 21 0.076 7.21 7
Silica 1 0.150 14.28 3
Temperature 26 0.120 11.41 4
Flow 2 0.079 7.49 6
Flow 18 0.094 8.93 5
pH 16 0.057 5.44 8

Time series plots of the significant input variables versusAnabaenaspp. concentra-

tion at Morgan are shown in Figures 6.4 to 6.7. In Figures 6.4 and 6.5, it can be seen that

there is an inverse relationship between silica and flow with concentrations ofAnabaena

spp., respectively. Silica is not used forAnabaenagrowth itself; however, it is impor-

tant in determining phytoplankton succession (Sullivan, 1990). Silica is necessary for the

growth of diatoms and when large populations of diatoms occur, silica becomes depleted

from the water. After the silica supply has been exhausted, diatoms cease to grow, al-

lowing cyanobacteria become dominant (Harris, 1994). This explains why recent silica

concentration was found to be an important predictor ofAnabaenaspp. Furthermore, sil-

ica concentration is positively correlated with turbidity, so it is possible that this input not

only provides information about phytoplankton succession, but also provides information

about the relationship between light availability andAnabaenaspp. Two flow inputs were

found to be significant using the stepwise PMI selection procedure: a recent flow (at a lag
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Figure 6.4 Silica versusAnabaenaspp. at Morgan.

of 2 weeks), for which there was an inverse relationship withAnabaenagrowth, and an

earlier flow (at a lag of 18 weeks), for which there was a positive relationship withAn-

abaenagrowth. This is consistent with the results obtained byMaier et al.(1998, 2001),

who found thatAnabaenaspp. tend to occur during periods of low flow, following the

recession of a flood. It is believed that this is due to the advection ofAnabaenacells from

hydraulically connected lagoons adjacent to the river channel during periods of high flow

(Baker et al., 2000).
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Figure 6.5 Flow into South Australia versusAnabaenaspp. at Morgan.
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Figure 6.6 Temperature versusAnabaenaspp. at Morgan.

Figures 6.6 and 6.7 display positive relationships between temperature and pH with

Anabaenaspp. concentration, respectively. In both cases, the PMI algorithm found large

lags of these variables to be of more significance than recent values. High temperatures

increase growth rates and affect the solubility of dissolved gases in water, but more im-

portantly, when combined with calm conditions can lead to thermal stratification of the

river, which has been shown to be a necessary condition for bloom development (Sherman

et al., 1998). As seen in Figure 6.6, the temperature time series displays strong seasonal
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Figure 6.7 pH versusAnabaenaspp. at Morgan.
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variation; thus, there is an almost equally strong inverse relationship betweenAnabaena

concentration and temperature at a lag of 26 weeks (6 months) as there is a positive re-

lationship betweenAnabaenaconcentration and current temperature. Therefore, it is not

surprising that the PMI algorithm found temperature at a lag of 26 weeks to be signif-

icant. It is considered that this is also the reason why pH at a lag of 16 weeks, which

has an inverse relationship withAnabaenaconcentration, was selected as a significant in-

put. During photosynthesis,CO2 is consumed, which then raises the pH of the water. At

high pH levels and lowCO2 concentration, cyanobacteria can utilise bicarbonate in the

water and continue photosynthesising efficiently (Blue-Green Algae Task Force, 1992).

Therefore, incidences of cyanobacteria are favoured by high pH.

Overall, the most important input selected using the PMI algorithm was the most re-

centAnabaenaspp. concentration, indicating that this input yields significant information

about concentrations ofAnabaenaspp. 4 weeks in advance. This was not surprising, as

the concentration ofAnabaenaspp. depends not only on the growth rate, but also on the

initial population size. However, due to the rapidly varying nature ofAnabaena, it is con-

sidered unlikely that the concentrations ofAnabaenaspp. at lags of 7 and 21 weeks would

significantly affectAnabaenaspp. concentrations 4 weeks into the future. It is possible

that these inputs were selected by the PMI procedure due to spurious correlations in the

data or the inappropriate use of the Gaussian reference bandwidth in calculating the PMI

score of non-normally distributed data (see Section 3.2.4).

The SOM data division method discussed in Section 3.2.2 was used to divide the

available data into training, testing and validation subsets. After accounting for the ap-

propriate lags of the input and output variables, there were 851 available data samples. A

comparison of the average silhouette widths and discrepancy values (see Section 3.2.2.2)

for various SOM grid sizes ranging from1 × 2 to 15 × 15 showed that a grid size of

12× 12 was optimal for clustering this data set. This resulted in 89 clusters containing at

least 3 samples, 17 clusters containing 2 samples and 13 clusters containing only 1 sam-

ple (25 grid cells were empty). From these clusters, 545 (64%) samples were allocated

to the training data subset, 136 (16%) samples were allocated to the testing subset and

the remaining 170 (20%) samples were allocated to the validation subset. All clusters

containing only 1 sample were allocated to the training set, while the first sample of each

2-sample cluster was also allocated to the training subset and the other was allocated to

the testing subset. A histogram displaying the probability density of theAnabaenaspp.

data is shown in Figure 6.8. As it can be seen, the data are highly non-normal, positively

skewed and appear to have several outliers. Logarithmic transformations are commonly
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used in microbiological studies where the data are distributed in this manner and there is

the potential for exponential growth and decay. Therefore, it was expected that a linear

transformation would be insufficient for the SSE to be an appropriate error model. How-

ever, to check this, the input and output data were initially only linearly standardised, and

the resulting residuals were inspected after the preliminary models had been developed.
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Figure 6.8 Probability density of the availableAnabaenaspp. data.

6.4 DETERMINISTIC ANN DEVELOPMENT

The state-of-the-art deterministic ANN methodology, described in Chapter 3, was first

applied to develop an ANN model for forecastingAnabaenaspp. in the River Murray at

Morgan, 4 weeks in advance.

6.4.1 Methods

6.4.1.1 Model Selection

The trial-and-error approach discussed in Chapter 3 was used to determine the optimal

model structure for this case study. Given the findings of Section 3.4 and Chapter 5, the

in-sample BIC and out-of-sample AIC, calculated based on the weights obtained when

training was stopped early to prevent overfitting, were used to assess the generalisability

of the models developed. InBowden(2003), only ANNs with two hidden layers were

considered for this case study, given the inputs in Table 6.3. The best model developed

contained 10 hidden nodes (7 in the first hidden layer and 3 in the second), which resulted

in 91 weights. For a single hidden layer network, this corresponds to an ANN with 9

hidden nodes, which also has 91 weights. However, two hidden layer ANNs generally

require fewer weights to obtain an equivalent solution to a single hidden layer network

(Bebis and Georgiopoulos, 1994); therefore, the upper limit for the number of hidden
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nodes considered in this research was 20. Similar to the salinity case study presented in

Chapter 5, ANNs containing 5, 10, 15 and 20 hidden nodes were initially included in

the trial-and-error search in order to narrow down the search to a 10 hidden node range

(i.e. 1–10 or 10–20). Following selection of this range, the trial-and-error approach was

repeated, with the number of hidden nodes increasing in increments of 2. Finally, the

search was reduced to 1 hidden node increments, where ANNs containing one fewer and

one more hidden node than the best network selected in the previous trial were tested.

6.4.1.2 Training

The SCE-UA algorithm was used to train the models, subject to the parameter constraints

given in Table 5.3. For each network, the SCE-UA algorithm was initialised with three

different sets of random weights and the best results obtained were used for further anal-

ysis. Training was run until the stopping criterion given by (3.33) was met or after 10

million error function evaluations, whichever occurred first. Cross-validation using the

test data set was also employed during training and the weights resulting in the minimum

test set error were saved, and the corresponding model outputs computed.

6.4.1.3 Validation

Similar to the studies carried out byMaier et al.(1998, 2000, 2001) andBowden(2003),

the optimal model selected was validated by inspecting plots of the predictedAnabaena

spp. concentrations versus the observed concentrations, to assess the model’s ability to

forecast the onset, peak and duration of growth events. These are the three most important

characteristics describing a cyanobacterial bloom; however, the error measures described

in Section 3.2.1 are unable to properly describe model performance in terms of these

factors (Maier et al., 1998). For example, the RMSE is a good measure of general model

performance and fit; however, two models may have very similar RMSE values, but may

differ significantly in terms of the usefulness of their predictions. If the predictions of

one model lead the actual event, while the other model’s predictions lag it, the former is a

more useful model. However, in order to compare the models developed in this research

to those developed byBowden(2003), the RMSE was also evaluated for the training,

testing and validation subsets.

The modified Connection Weight Approach (see Section 3.4.4.3) was used to evaluate

RI values for each of the model inputs, which were then compared to the PMI-basedRI

estimates given in Table 6.3. As mentioned in Section 3.4.4, absoluteRI values are used

in such an evaluation, as the PMI approach does not give directions of the input-output
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relationships. On the other hand, the actualRI values calculated using the modified

Connection Weight Approach do give directions of the input-output relationships and can

be useful for comparing the modelled function toa priori knowledge of the underlying

physical relationship. For this case study,a priori knowledge of the physical relation-

ship is vague; however, as discussed in Section 6.3, there is a known inverse relationship

between flow and silica withAnabaenaspp. concentration and a positive relationship be-

tween temperature and pH withAnabaenaspp. concentration. If it could be shown that

the model had successfully approximated these relationships, there would be the potential

to use the model for hypothesis testing of preventative management options, such as flow

management.

6.4.2 Results

Histograms of the 5, 10, 15 and 20 hidden node ANN models’ standardised residuals are

shown in Figure 6.9, in comparison to the standard normal distribution. Similar to theAn-

abaenaspp. data, the residuals were found to be highly non-normal and positively skewed

when a linear transformation was applied to the data, confirming that a nonlinear transfor-

mation was required. A logarithmic (base 10) transformation was therefore applied to the

observedAnabaenaspp. data in order to compress the distribution and reduce the impact
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Figure 6.9 Residuals resulting from linearly scaled data.
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of the largeAnabaenacounts on the model error. Histograms of the resulting standard-

ised model residuals for the 5, 10, 15 and 20 hidden node ANNs, using log transformed

output data, are shown in Figure 6.10. While still not normal, the residual distributions

are much more compact, with all values lying within the[−5, 5] range (unlike the distri-

butions shown in Figure 6.9, which contained values as high as 18.8). Therefore, it was

considered that this transformation resulted in more appropriate processing of the data.

The the out-of-sample AIC and in-sample BIC values, obtained when training stopped

early according to the test set error, are plotted against one another in Figure 6.11 for the

different network sizes. There is good agreement between the different criteria, with both

indicating that the 5 hidden node ANN had the best generalisability when used to model

theAnabaenaspp. data. Therefore, the trial-and-error search for the optimal structure was

reduced to the 1–10 hidden node range and the subsequent ANN models trained and tested

for their generalisability contained2, 4, . . . , 8 hidden nodes. The resulting in-sample BIC

and out-of-sample AIC values for these networks are plotted in Figure 6.12. Once again,

it can be seen that there is reasonable agreement between these criteria; however, the AIC

shows a more definite preference for the 2 hidden node model, whereas the BIC indicated

the 2 and 4 hidden node ANNs had similar generalisability. Consequently, ANN models

containing 1 and 3 hidden nodes were also trained and tested for their generalisability

and the resulting in-sample BIC and out-of-sample AIC values were compared to those
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Figure 6.10 Residuals resulting from log transformed data.
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Figure 6.11 In-sample BIC and out-of-sample AIC values for 5, 10, 15 and 20 hidden node

ANN models.
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Figure 6.12 In-sample BIC and out-of-sample AIC values for 2, 4, 6 and 8 hidden node

ANN models.
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Figure 6.13 In-sample BIC and out-of-sample AIC values for 1, 2, 3, 4 and 5 hidden node

ANN models.

obtained for the 2, 4 and 5 hidden node models, as shown in Figure 6.13. As can be

seen, both criteria indicate that the 1 hidden node ANN had the best generalisability of

the models tested; however, the out-of-sample AIC appears to be more consistent. This is

likely due to the fact that the BIC values were calculated based on the training set error

when training was stopped early, which may result in various degrees of overfitting or

underfitting the training data. In order to identify the 1 hidden node ANN as optimal from

the possible 20 network sizes considered, only 10 ANNs required training and testing.

The selected 1 hidden node model was then subjected to the independent validation

data and the resulting RMSE values for the (log transformed) training, testing and valida-

tion subsets are shown in Table 6.4, in comparison to those obtained byBowden(2003)

with a two hidden layer ANN containing 10 hidden nodes. This was not the best per-

forming ANN developed byBowden(2003) for this case study; however, it was the best

MLP developed using the inputs given in Table 6.3 (general regression neural networks

(GRNNs) were also developed byBowden(2003), which outperformed this MLP). The

1 hidden node ANN selected in this research contains 11 weights, compared to the 91

weights contained in the two hidden layer ANN developed byBowden(2003). However,

as it can be seen in Table 6.4, the models’ performances, in terms of fit to the observed

data, were comparable.
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Table 6.4 RMSEs for the 1 hidden node ANNAnabaenaspp. forecasting model developed

using deterministic methods, in comparison toBowden(2003) results.

Model Train Test Validation

1 hidden node ANN 0.746 0.790 0.809
10 hidden node ANNBowden(2003) 0.733 0.699 0.852

A time series plot of the 4-week forecasts obtained for the recombined training, testing

and validation data is shown in Figure 6.14. It can be seen that the model was able

to forecast the onset and duration of growth events ofAnabaenaspp. reasonably well;

however, it tended to under-predict the peak concentrations. Not once was the model

able to predict a significant growth event (i.e. concentration> 500 cells/mL, shown in

Figure 6.14 in log scale). The model performance in terms of forecasting peak, onset and

duration of growth events, was also assessed based only on the independent validation

data, as shown in Figure 6.15. These results show that, while the model was able to

forecast the occurrence (and absence) of growth events, the predictions often slightly

lagged the actual values.

The model-basedRI values for each of the model inputs, calculated using the modi-

fied Connection Weight Approach, are given in Table 6.5, together with the resulting rank

order of modelled input importance and, for comparison, the PMI-basedRI estimates.
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Figure 6.14 Time series plot of the 4-weekAnabaenaspp. forecasts obtained for the train-

ing/testing/validation data using the 1 hidden node ANN model.
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Figure 6.15 4-weekAnabaenaspp. forecasts obtained for the validation data using the 1

hidden node ANN model.

The magnitudes of the model-basedRI estimates are relatively close to the magnitudes

of the PMI-based estimates, indicating that the model was able to adequately capture the

information contained in the data.

Given the inputs included in the model, it is acknowledged that, at best, a very sim-

plified picture of the physical process could be obtained. The model-basedRI values

were used to determine whether this simplified picture would be sufficient for hypothesis

testing of management strategies that could potentially be used to control the occurrence

Table 6.5 Model-basedRI estimates and order of input importance in comparison to the

PMI-basedRI estimates.
Rank RI (%)

Input Importance Model-based PMI-based

Anabaenat−1 5 13.59 28.25
Anabaenat−7 8 3.95 16.97
Anabaenat−21 7 7.62 7.21
Silicat−1 1 -20.09 14.28
Temperaturet−26 2 -16.93 11.41
Flowt−2 3 14.23 7.49
Flowt−18 6 9.44 8.93
pHt−16 4 14.15 5.44
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of cyanobacterial blooms. As it can be seen in Table 6.5, the ANN correctly modelled

the inverse relationship betweensilicat−1 and Anabaenat+3 discussed in Section 6.3.

The positive relationship betweenAnabaenat−1, which provides information about the

initial population size, andAnabaenat+3 was also correctly modelled by the ANN. As

discussed in Section 6.3, it was considered that longer lags ofAnabaena would not be

important predictors ofAnabaenat+3 and may have been selected by the PMI procedure

due to either spurious correlations in the data or the inappropriate use of the Gaussian

reference bandwidth in calculating the PMI scores. As seen in Table 6.5, these inputs

were given the least importance by the model. Although the inverse relationship be-

tweentemperaturet−26 andAnabaenat+3 was correctly estimated, it would have been

more physically plausible to substitutetemperaturet−1 for temperaturet−26 and allow

the model to derive the correct positive relationship between temperature andAnabaena

growth. Nevertheless, as temperature cannot be controlled, this was considered to be of

relatively minor significance to the usefulness of the model as a means of hypothesis test-

ing. Of greater importance was the fact that the ANN incorrectly modelled a positive

relationship between recent flow conditions and the incidence ofAnabaena, as seen by

the positiveRI value given toflowt−2. Flow management strategies involve increasing

flows to disrupt thermal stratification or flush blooms or potential blooms (Senate Stand-

ing Committee, 1993). However, the model indicates that if current flows are increased,

the concentration ofAnabaenaspp. will also increase in 4 weeks time. Therefore, this

model is considered not to be useful for investigating the direct response ofAnabaena

spp. to changes in the flow regime.

6.5 BAYESIAN ANN DEVELOPMENT

The Bayesian ANN framework, proposed in Chapter 4, was also applied to develop a

probabilistic ANN model for forecasting Anabaena spp. at Morgan. The results obtained

were then compared to those presented in Section 6.4.2, to determine whether a more use-

ful model could be developed using the Bayesian ANN framework, given the uncertainty

associated with the available data.

6.5.1 Methods

6.5.1.1 Model Selection

In the deterministic part of the case study it was found that a 1 hidden node ANN was

the optimal model structure for forecastingAnabaenaspp. concentrations. Therefore,
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networks containing2, 4, . . . , 10 hidden nodes were initially developed and their evidence

values compared, in order to determine the most appropriate structure under the Bayesian

framework. The -1/2BIC, G-D and C-J evidence estimators, discussed in Section 4.3.4,

were used to evaluate the evidence values of each network. The hidden-output weight

distributions for the ANN model with the maximum evidence value were then inspected

to determine whether any of the hidden nodes could be pruned from the most probable

model, as described in Section 4.3.4.2. These distributions were also inspected for the

model containing two more hidden nodes than the ANN with the maximum evidence, in

order to verify the results obtained for the highest evidence model.

6.5.1.2 Training

The MCMC training algorithm, described and developed in Chapter 4, was used to train

each of the models developed. Four parallel chains were simulated using this algorithm,

initialised using the weights obtained in the deterministic part of this study when train-

ing was stopped early. A hierarchical prior distribution in the form given by (2.15) was

assumed for the network weights. For the first 500 iterations (tσ2
0

= 500), theσ2
y hyper-

parameter was fixed equal to 0.8, as the residual variance valuesσ̂2
y calculated at maxi-

mum log likelihood (based on scaled data) were between approximately 0.33 (10 hidden

node ANN) and 0.41 (2 hidden node ANN), with corresponding log likelihood values

between approximately -530 (2 hidden node ANN) and -470 (10 hidden node ANN). Fix-

ing σ2
y = 0.8 resulted in reductions in the log likelihood values between approximately

9% and 17%. The MCMC algorithm was initially run for 600,000 iterations and traces

of the meanlog p∗(w|y), the meanlog L(w) and the meanlog p(w) densities, calculated

by taking the average of the four parallel chains, were inspected to determine whether

or not convergence had been achieved within this time and to determine the appropriate

number of burn-in iterationstb. Traces of thelog p∗(w|y), log L(w) andlog p(w) values

obtained from the individual chains were also inspected to assess convergence. Predictive

distributions, from which mean predictions and 95% prediction limits were evaluated,

were calculated based on 10,000 weight vectors, randomly sampled after approximate

convergence had been achieved.

6.5.1.3 Validation

The optimal model structure selected using the BMS approach was validated by subject-

ing it to the independent testing and validation subsets, not used for training. Similar

to the deterministic part of this study, plots of the mean predictedAnabaenaspp. con-
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centrations and the 95% prediction limits were inspected, to assess the model’s ability

to forecast the onset, peak and duration of growth events. The RMSE values were also

evaluated based on the mean forecasts for the training, testing and validation subsets and

compared to those obtained in the deterministic part of the study and those obtained by

Bowden(2003).

TheRI distributions for each input were determined by applying the modified Con-

nection Weight Approach (without taking absolute values) to the weight vectors sampled

from the posterior distribution. Similar to the deterministic part of this study, these dis-

tributions were compared toa priori knowledge of the underlying physical relationship,

in order to assess the usefulness of the model as a means for investigating the response of

Anabaenaspp. to different management strategies.

6.5.2 Results

Shown in Figure 6.16 are traces of the meanlog p∗(w|y), log L(w) and log p(w) den-

sities obtained for the2, 4, . . . , 10 hidden node ANNs during training with the MCMC

algorithm. It can be seen that, apart from the 10 hidden node ANN, the MCMC algorithm

had reached approximate convergence within 300,000 iterations for each of the network

sizes. For the larger models (containing 6–10 hidden nodes), there was greater variation
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Figure 6.16 Mean log p∗(w|y), log L(w) and log p(w) traces for the2, 4, . . . , 10 hidden

node ANNs.
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in thelog p∗(w|y), which can be seen more clearly in Figure 6.17, which shows traces of

the log p∗(w|y) densities obtained from the individual MCMC chains for each network

size. Also seen more clearly in this figure is the non-convergence of the MCMC algo-

rithm when applied to train the 10 hidden node ANN. However, it is considered that this

was primarily due to the increasing prior probabilities as a result of the still decreasing

weight magnitudes, rather than non-convergence about the most appropriate likelihood.

It can be seen in Figure 6.16 that the meanlog L(w) densities had roughly converged to

an approximate value of around -550 for all of the network sizes. As the -1/2BIC evi-

dence estimator used in the proposed BMS approach does not depend on the values of

log p∗(w|y) or log p(w), but only on the value oflog L(w), it was considered unneces-

sary to train the networks for longer in order to achieve accurate results when selecting

the most appropriate model structure. Therefore, the number of burn-in iterations that

were discarded for all of the ANNs was 300,000, while the remaining 300,000 were used

for further analysis.

Shown in Figure 6.18 are plots of the evidence values estimated with the -1/2BIC,

G-D and C-J estimators for the2, 4, . . . , 10 hidden node ANNs (however, due to the simi-

larity between the G-D and C-J evidence estimates, these are difficult to distinguish from
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Figure 6.17 Log p∗(w|y) traces obtained from the 4 parallel MCMC chains for the

2, 4, . . . , 10 hidden node ANNs.
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Figure 6.18 Evidence estimates for the2, 4, . . . , 10 hidden node ANNs.

one another). As can be seen, there was a significant negative relationship between the

estimated evidence values and the number of hidden nodes in the network. This was as

expected, since approximately the samelog L(w) values had been obtained by each of

the networks. Also as expected was the fact that the -1/2BIC estimator is apparently unaf-

fected by the inappropriate convergence of the 10 hidden node ANN. However, this would

not have been the case if the non-convergence was due to an increasing or decreasing trend

in thelog L(w) values, rather than in thelog p(w) values. It is also apparent that the G-D

and C-J estimators were sensitive to the inappropriate convergence, which is understand-

able, as calculation of these values also depends on the prior density. Nevertheless, the 2

hidden node ANN was found to have the highest posterior probability according to each

of the estimators. TheBFRank1,i results, calculated based on the -1/2BIC evidence values,

and presented in Table 6.6, indicate that there is very strong evidence in favour of the 2

hidden node ANN over the other network sizes, according to the interpretive scale given

in Table 4.1.

To check these results, the marginal posterior distributions of the hidden-output weights

of the 2 hidden node ANN were inspected. These are shown in Figure 6.19, where it can

Table 6.6 Log Bayes Factors in favour of the highest ranked model.

Rank Hidden loge BF in Favour
Nodes of Rank 1 Model

1 2 –
2 4 68.232
3 6 131.543
4 8 197.078
5 10 270.676
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Figure 6.19 Marginal posterior hidden-output weight distributions for the 2 hidden node

ANN.

be seen that the distributions of both hidden-output weights include zero within the 95%

highest density regions, indicating that at least one of the hidden nodes was unnecessary.

The scatter plot of the weights, shown in Figure 6.20, indicates that only one of the hidden

nodes could be removed from the network, as the joint distribution of the weights does

not pass through the origin. However, as discussed in Section 4.4.3.2, when there are only

two hidden nodes in the network, the joint distribution of the hidden-output weights will

never pass through the origin unless there is no relationship between the model inputs and

outputs, since the inputs would then be disconnected from the output. The relationship

between environmental variables andAnabaenaspp. growth is known to be highly non-

linear (even if there is insufficient data to properly describe this nonlinearity); therefore,

a linear model, resulting from an ANN with no hidden layer, was not considered in this

research. The strong correlation between the two hidden-output weights is also evident in

Figure 6.20. This is a symptom of overparameterisation, which may be difficult to see in

higher dimensional models. It was therefore concluded that a 1 hidden node network was
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Figure 6.20 Scatter plot of hidden-output weight 1 versus hidden-output weight 2 for the 2

hidden node ANN.
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the most appropriate structure for forecastingAnabaenaspp. concentrations.

In order to verify this result, the marginal posterior distributions for the hidden-output

weights of the 4 hidden node ANN were also inspected and are shown in Figure 6.21.

It can be seen that all four of the distributions include zero within the 95% highest den-

sity regions. However, to determine how many hidden nodes could be pruned from the

network, scatter plots of every possible hidden-output weight pair had to be inspected.

This resulted in six scatter plots, as shown in Figure 6.22. It can be seen in this figure

that all but one (subplot (c)) of the joint distributions passed through the origin, indicat-

ing that three of the hidden nodes were unnecessary in the model and could therefore be

pruned. This would result in a 1 hidden node ANN; thus, confirming the results obtained

above.This example also highlights why it is useful to first evaluate the evidence values

of competing models in order to identify the model with the highest posterior probability.

If inspection of hidden-output weight distributions alone was relied upon to find the most

appropriate structure, the process could become very time consuming when considering

larger models, since the joint distributions of all possible hidden-output weight pairs that

include zero would need to be inspected.
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Figure 6.21 Marginal posterior hidden-output weight distributions for the 4 hidden node

ANN.
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Figure 6.22 Scatter plots of the hidden-output weights for the 4 hidden node ANN.

Given the results of the BMS procedure, a 1 hidden node ANN was trained using the

MCMC algorithm. It was found that convergence of the algorithm was easily achieved

within 300,000 iterations; thus, this number of iterations was still appropriate for burn-in.

As a final check that the 1 hidden node ANN was the most appropriate structure for this

problem, the evidence values were estimated using the -1/2BIC, G-D and C-J estimators.

These are plotted in Figure 6.23, in comparison to the evidence values estimated for the

2, 4, . . . , 10 hidden node ANNs, where it can be seen that the -1/2BIC evidence estimate

confirmed that the 1 hidden node ANN was the most appropriate structure.

A time series plot of the mean 4-weekAnabaenaspp. forecasts and 95% prediction

limits for the recombined training, testing and validation data is shown in Figure 6.24 (in

log scale). It can be seen from the width of the prediction limits that there is significant

uncertainty associated with the forecasts. However, it can also be seen that, unlike the

deterministic model, the majority of peak concentrations have been accounted for within

these limits (91.3% of the recombined data set was accounted for). Furthermore, the

model was able to correctly forecast the occurrence, or absence, of significant growth
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Figure 6.23 Estimated evidence values including that for the 1 hidden node ANN.
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Figure 6.24 Time series plot of the mean 4-weekAnabaenaspp. forecasts and 95% predic-

tion limits obtained for all data with the 1 hidden node ANN model.
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events (i.e. concentration> 500 cells/mL) in each year. However, while the duration

of growth events were also forecast well, the predicted onset of these events sometimes

slightly lagged the actual onset. Shown in Figure 6.25 are the mean forecasts and 95%

prediction limits for the independent validation data only. This plot also shows that the

model was able to forecast peak, onset and duration of growth events reasonably well,

with predicted onset sometimes lagging actual onset.
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Figure 6.25 Time series plot of the mean 4-weekAnabaenaspp. forecasts and 95% predic-

tion limits obtained for validation data with the 1 hidden node ANN model.

Presented in Table 6.7 are the RMSE values obtained based on the mean forecasts

for the training, testing and validation subsets, in comparison to those obtained using the

1 hidden node deterministic ANN and the 10 hidden node ANN developed byBowden

(2003). It can be seen that the mean performance of the Bayesian ANN was slightly worse

than that of the deterministic model developed in this research. This was not surprising

given the width of the prediction limits and the fact that the mean forecasts account for this

entire range. However, overall, the usability of the forecasts obtained using the Bayesian

ANN is considerably greater than the deterministic forecasts, as the model was able to

successfully indicate the occurrence (and non-occurrence) of all significant growth events.

Furthermore, the width of the prediction limits provides information about the level of

confidence that should be placed in the mean forecasts, and in this case, suggest that these
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Table 6.7 RMSEs for the 1 hidden node deterministic and Bayesian ANNAnabaenaspp.

forecasting models, in comparison toBowden(2003) results.

Model Train Test Validation

1 hidden node ANN (deterministic) 0.746 0.790 0.809
1 hidden node ANN (Bayesian) 0.747 0.790 0.812
10 hidden node ANNBowden(2003) 0.733 0.699 0.852

forecasts should be relied upon with caution.

The RI distributions for each input, calculated by applying the modified Connec-

tion Weight Approach to the weight vectors sampled from the posterior distribution, are

shown in Figure 6.26. These distributions give very similar results to the single-valued

RI estimates obtained from the weights of the deterministic ANN. By accounting for

the entire range of plausible weights (those that provided a good fit to the data), a posi-

tive relationship between recent flow conditions and growth ofAnabaenaspp. was still

modelled. Therefore, the discussion given in Section 6.5.2 regarding the usefulness of

the ANN model as a means for investigating the response ofAnabaenaspp. to different

preventative management strategies also applies to the Bayesian ANN model developed.

Even though the usefulness of the Bayesian model was an improvement over that of the

deterministic model in terms of providing forecasts of the occurrence ofAnabaenaspp.

at Morgan, the model was still found to be insufficient as a hypothesis testing tool. In

the attempt to develop an ANN model that can be used as such a tool, it is hypothesised

that the silica input could be left out of the model, in which case, the inverse relationship

betweenAnabaenaspp. and current flow may be modelled correctly. While silica was

found to be the most important predictor ofAnabaenaoccurrence, it is also positively cor-

related with flow. Therefore, it is possible that the model is partially accounting for the

inverse relationship between current flow conditions andAnabaenaoccurrence through

the inverse relationship modelled between current silica concentration andAnabaenaspp.

However, it is also acknowledged that, by omitting the input variable found to provide

the greatest amount of information about the incidence ofAnabaenaspp., the predictive

performance of the resulting ANN would likely be diminished. Such an investigation is

beyond the scope of this thesis, as its main purpose is the development and testing of an

improved methodology for ANN development and implementation.
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6.6 CONCLUSIONS

There are generally two main goals associated with model development: (1) to provide

predictions of a system response, and/or (2) to gain understanding about the system. How-

ever, these two goals place emphasis on different parts of the modelling procedure. If the

goal is to predict, then emphasis is placed on the predictive accuracy of the model. On the

other hand, if the goal is to gain understanding, emphasis is placed on finding the smallest

model able to adequately describe the data and examine the relationship modelled (Omlin

and Reichert, 1999). In this research, and previous research conducted using this case

study, the aim was to develop an ANN model with both of these goals in mind. How-

ever, unlike previous studies, the usefulness of the models developed in this research for

meeting both of these objectives was checked, rather than assumed. The models were de-

veloped using purely data-driven methods and, given that there was a significant amount

of noise associated with the available data and that these data were not collected with the

purposes of this study in mind, it was not surprising that the resulting models performed

neither task well. However, using Bayesian methods, the usefulness of the resulting ANN

model was considerably greater than that of the deterministic model, purely because it

gave an indication of the high level of uncertainty associated with the model forecasts and

was, therefore, able to forecast the possibility of significant growth events ofAnabaena

spp., whereas the deterministic model was not. It is hypothesised that the usefulness of

the models developed, in terms of investigating the response ofAnabaenaspp. to different

flow management strategies, may be increased if the silica input is omitted, which may

result in the inverse relationship between current flow conditions andAnabaenaspp. be-

ing modelled correctly. However, this would also likely result in a reduction in predictive

performance. Therefore, it may be better to develop two different models, each with its

own distinct goal, rather than attempting to achieve both goals at once and resulting in a

model that does neither well.
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