
Chapter 5

Case Study 1 - Salinity Forecasting

in the River Murray

5.1 INTRODUCTION

In this chapter, the state-of-the-art deterministic and Bayesian ANN development ap-

proaches are each applied to develop a model for forecasting salinity concentrations in

the River Murray at Murray Bridge, South Australia, 14 days in advance. Considerable

research has previously been conducted using this case study (Maier, 1995;Maier and

Dandy, 1996, 1998a,b, 1999, 2000b;Bowden, 2003;Bowden et al., 2002, 2003, 2005b);

thus, it was considered to provide a good benchmark against which the methods proposed

in this research could be evaluated and compared. Furthermore, salinity is a major water

quality issue in Australia where there is a high dependence on river systems for consump-

tive uses; yet, significant negative impacts result due to the high salinity levels in these

rivers. Having a reliable model for forecasting salinity concentrations is an integral part

of this natural resources management issue.

5.2 BACKGROUND

The Murray-Darling Basin (MDB), shown in Figure 5.1, is Australia’s largest river sys-

tem, covering an area of over one million square kilometres and extending into Queens-

land, New South Wales, Victoria, South Australia and the Australian Capital Territory. It

supplies water for agriculture, domestic, industrial and environmental purposes and ac-

counts for approximately 75% of all irrigation water use in Australia (see Figure 5.1 for

irrigated areas within the MDB) (Crabb, 1997). The River Murray is the second longest

river in the Basin and is South Australia’s major surface water resource, providing 52% of

the state’s total annual water requirements on average (Crabb, 1997). In its natural state,
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NOTE:  This figure is included on page 216 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 5.1  Murray-Darling Basin (Source: Adapted from MDBMC (1999)). 
 
 
the flow regime of the River Murray is highly variable, which is typical of large 

semiarid lowland river systems. However, it is now regulated by a series of storages, 

locks and weirs in order to maintain relatively constant pool levels, which enables 

pumping for irrigation and water supply, as well as navigation. As shown in Figure 

5.2, water is diverted from the River Murray and supplied to many major South 

Australian towns, including the capital city of Adelaide, via five pipelines, with 

offtakes at Morgan, Swan Reach, Mannum, Murray Bridge and Tailem Bend. 

 
 
5.2.1 Salinity in the River Murray 
 
Salinity is a natural feature of the MDB. The groundwaters in the region through 

which the River Murray passes are generally highly saline, with levels not dissimilar 

to that of sea water (EWS, 1978). However, as a result of human activities and land 

use changes within the MDB since European settlement, the salinity levels in the 

River Murray have 
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NOTE:  This figure is included on page 217 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 5.2 Pipelines delivering River Murray water to South Australia (Source: Adapted 
from Crabb (1997)). 
 
 
been increasing, such that salinity is now a major water quality issue and a growing 

concern for users of the river’s water. Among the causes of the increased salinisation 

of the River Murray are the regulation of the river and changes to the natural flow 

regime, the increased diversion of water for consumptive uses, unsustainable 

irrigation practices and clearance of vegetation within a large proportion of the 

catchment. Drainage flows from irrigation areas and rising groundwater levels due to 

dryland farming have increased the natural saline groundwater accessions, particularly 

in the South Australian section of the river (Crabb, 1997). Under natural conditions, 

this saline water would be flushed out to sea; however, as a result of river regulation 

and the substantial diversions of water both within South Australia and in the 

upstream states, there is often a lack of flushing, which then leads to the accumulation 

of salt in the lower reaches of the river (MDBMC, 1999).  Consequently, there is a 

general increase in salinity with distance downstream. This is 
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indicated in Figure 5.3, which shows the 1998 mean salinity levels in the River 

Murray, in relation to the distance upstream from the Murray Mouth, together with 

salinity predictions for the years 2020, 2050 and 2100. These predictions were made 

as part of the Basin Salinity Audit of current and future threats of salinity to the MDB 

based on the salinity management strategies that were in place in 1998 (MDBMC, 

1999). The salinity concentration in water is most widely estimated by electrical 

conductivity, where one electrical conductivity unit, or EC unit, is defined as one 

micro-Siemen per centimetre, or 1µS/cm, at 25° Celcius. 

As the salinity of the River Murray increases, the options for consumptive uses of the 

water reduce due to the negative impacts on domestic, industrial and agricultural users 

at different salinity levels. In most cases, water with salinity concentrations greater 

than 700 EC is unsuitable for irrigating most horticulture crops and can lead to 

reductions in crop yields (Crabb, 1997), while from 800 EC, it becomes increasingly 

difficult to manage irrigation. A salinity concentration of 800 EC is also the upper 

limit for desirable drinking water quality set by the World Health Organization 

(WHO) (MDBMC, 1999), while 830 EC is considered to be the accepted maximum 

level for domestic supplies in large towns and cities (Crabb, 1997). For some small 

communities there is often no alternative water supply and although water with 

salinity concentrations greater than 800 EC may be safely consumed for short periods 

of time, the taste is objectionable (MDBMC, 1999). Other negative impacts due to 

high salinities include adverse biological effects, corrosion of pipes and infrastructure 

and increased consumption of soap and detergents due to the increased hardness of 

the water. 

 
 
NOTE:  This figure is included on page 218 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
Figure 5.3 Increasing salinity in the River Murray with distance downstream 
(Source:Adapted from MDBMC (1999)). 
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To address the salinity problem in the River Murray, in 1989 the Murray-Darling 

Basin Ministerial Council (MDBMC) adopted a Salinity and Drainage Strategy for 

the MDB. The aim of the Strategy was to provide a framework for reducing salinities 

in the river through cost effective salt interception and drainage diversion schemes 

(MDBC, 1999). Morgan, located some 320 km upstream from the Murray Mouth in 

South Australia, was selected as an indicator site to measure the performance of the 

Strategy, since Morgan is downstream of all major salt intakes and is the downstream 

limit of major horticultural and viticultural irrigation areas (EWS, 1978). The 

objective of the Strategy, which has been extended to 2015 (MDBC, 2001), is to 

maintain salinities less than 800 EC at Morgan for 95% of the time, as a 1 EC unit 

increase in Morgan salinity can result in significant economic impacts on downstream 

users. While, the impacts on various users of the River Murray water can vary 

depending on the locations of salt discharge, it has been estimated that more than 90% 

of both agricultural and non-agricultural impacts are borne by users in South Australia 

(MDBC, 1999). Figure 5.4 shows the estimated economic impacts incurred by river 

water users from various river reaches for a 1 EC unit increase at Morgan due to a salt 

discharge near Swan Hill in Victoria. 

 
 

 
NOTE:  This figure is included on page 219 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
    
Figure 5.4 Economic impacts borne by users of River Murray water for a 1 EC unit increase 
in Morgan salinity due to salt discharge near Swan Hill, Victoria (Source: MDBC (1999)). 
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5.2.2 Forecasting Salinity in the River Murray with ANNs

In the catchment water management plan for the River Murray in South Australia it is

stated that “addressing dryland and irrigation-induced salinity is the most obvious and

pressing problem that requires a significant, sustained commitment from the governments

and community within the Basin” (RMCWMB, 2003). While long term management

strategies take effect, an immediate option for reducing the economic impacts of high

salinities on South Australian users is to make short term adjustments to pumping policies,

allowing more water to be supplied in times of low salinity concentrations and less when

salinity concentrations are high (Dandy and Crawley, 1992). However, this requires an

accurate salinity forecasting model.

With this in mind,Maier (1995) andMaier and Dandy(1996, 1998a) developed the

first ANN models for forecasting salinity concentrations at Murray Bridge, 14 days in

advance. Murray Bridge was chosen as the site at which salinity forecasts were obtained,

since the offtake from the River Murray at Murray Bridge (see Figure 5.2) provides a

significant proportion of Adelaide’s water supply. Furthermore, as seen in Figure 5.4,

the economic costs to both agricultural and non-agricultural users due to salinity are high

when water is extracted from the river at Murray Bridge. The forecasting period of 14

days was selected, as this is the minimum time required to make short term adjustments

to the pumping schedule (Maier and Dandy, 1996). Of the models developed in these

original studies, it was found that a one hidden layer ANN containing 51 inputs and 30

hidden nodes, trained using backpropagation, had the best generalisability. The original

input set, consisting of 141 inputs, was selected based ona priori knowledge and then

reduced using the results of a sensitivity analysis (Maier and Dandy, 1996), while the

“optimum” number of hidden nodes was determined by trial and error, using the out-

of-sample RMSE to evaluate generalisability (Maier and Dandy, 1998a). The minimum

number of hidden nodes considered in these studies was 15.

Bowden et al.(2002) extended the salinity data set used byMaier (1995) andMaier

and Dandy(1996, 1998a), such that it was approximately twice the length of the origi-

nal, as shown in Figure 5.5. However, rather than increasing the sizes of the data subsets

used to train, test and validate the ANN model developed, only the original data were

used for model development, while the new data were reserved for simulating a real-time

forecasting situation using the developed ANN model. In each of the studies conducted

by Bowden(2003) andBowden et al.(2002, 2003, 2005b), greater efforts were made at

optimising the model development process and the new salinity data were used to assess

the generalisability of the ANN models developed, given the different approaches inves-
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Figure 5.5 Extended time series of salinity in the River Murray at Murray Bridge, showing

uncharacteristic data highlighted by regions 1 and 2.

tigated. It was found, in all of these studies, that each of the models developed performed

poorly in the same two regions when applied to the new data, regardless of the model de-

velopment methods used. These regions are highlighted by regions 1 and 2 in Figure 5.5.

To diagnose the models’ poor predictive performance in these regions,Bowden et al.

(2002) clustered the entire data set (including both the original and new data) into groups

of similar input/output patterns using a SOM (see Section 3.2.2). It was discovered that

data from region 1 were contained in six clusters, all of which only contained new data

(i.e. no data representative of region 1 had been used to develop the ANN models). Simi-

larly, data from region 2 were also contained in six clusters, five of which only contained

new data. Therefore, it was concluded that data contained regions 1 and 2 were uncharac-

teristic of the data used to develop the models and, consequently, the ANN models were

required to extrapolate during these periods, resulting poor predictive performance. By

inspecting the Fourier series for the seasonally varying mean salinity, developed using the

training data,Bowden et al.(2003) identified that fluctuations in this series did not follow

the seasonality of the new salinity data, as shown in Figure 5.6 (a), where the seasonal

mean is moving out of phase with the actual salinity time series, particularly in regions 1

and 2. It was also found that the uncharacteristic high salinity concentrations in regions

1 and 2 corresponded to uncharacteristic low flow events in the new data, as seen in Fig-

ure 5.6 (b), which compares the Fourier series for the seasonally varying mean flow to the

actual flow time series at Overland Corner, South Australia. This helps to explain why

the data in regions 1 and 2 are uncharacteristic of the model development data.
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NOTE:  This figure is included on page 222 of the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 
 
 
Figure 5.6 Fourier series seasonal mean versus actual time series for (a) salinity at Murray 
Bridge and (b) flow at Overland Corner (Source: Adapted from Bowden et al. (2003)). 
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In this research, an ANN model was developed for providing 14-day forecasts of salin-

ity at Murray Bridge, using both deterministic and Bayesian methods. This case study was

considered to be ideal for assessing the uncertainty associated with ANN predictions in a

real-time simulation situation, and investigating the advantages of the proposed Bayesian

training and model selection framework in comparison with state-of-the-art deterministic

methods, particularly when the model is required to extrapolate. While an ANN based

on a single weight vector may perform well in an interpolative context (on data similar to

those contained in the training data set), it cannot be expected to extrapolate well in situa-

tions dissimilar to those previously presented to the model. However, it was hypothesised

that, by accounting for the entire range of plausible weight vectors (those that provide a

good fit to the data) using Bayesian techniques, a more generalised mapping to the under-

lying system function should be obtained, thus improving the extrapolation capabilities

of the model developed.

5.3 AVAILABLE DATA AND MODEL INPUTS

Salinity in the River Murray at Murray Bridge is the sum of all salinity transported from

upstream locations and saline accessions along the length of the river (Maier and Dandy,

1996). Salinity transport depends on flow rates and upstream salinity levels, while saline

accessions, which are primarily due to inflows of saline groundwater, are a function of

river level, groundwater level and flow. With the exception of groundwater levels, each

of these variables are measured on a daily basis at various locations in the River Mur-

ray. Maier and Dandy(1996) considered that, because groundwater levels change very

slowly, they may be considered as constant and, therefore, unnecessary for modelling

salinity. Consequently, the available data set for this case study comprised daily salinity,

flow and river level data from various locations in the lower River Murray between 1 De-

cember 1986 to 1 April 1998. For the period 1 December 1986 to 30 June 1992, this data

set was compiled byMaier (1995) and supplied by the Engineering and Water Supply De-

partment of South Australia. The data set was then extended for the period 1 July 1992 to

1 April 1998 byBowden(2003) using data supplied by the Murray-Darling Basin Com-

mission and the South Australian Department for Water Resources. The available data

are summarised in Table 5.1 together with the abbreviations used for each variable, which

are consistent with those used byBowden(2003);Bowden et al.(2003) andBowden et al.

(2005b).

The inputs used in this research were those also used in the salinity forecasting model

developed byBowden et al.(2005b). These inputs were selected using the PMI selection
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Table 5.1 Daily data available for forecasting salinity in the River Murray at Murray Bridge.

Location Data Type Abbreviation

Murray Bridge Salinity MBS
Mannum Salinity MAS
Morgan Salinity MOS
Waikerie Salinity WAS
Loxton Salinity LOS
Lock 1 Lower Flow L1LF
Overland Corner Flow OCF
Lock 7 Lower Flow L7F
Murray Bridge River Level MBL
Mannum River Level MAL
Lock 1 Lower River Level L1LL
Lock 1 Upper River Level L1UL
Morgan River Level MOL
Waikerie River Level WAL
Overland Corner River Level OCL
Loxton River Level LOL

method described in Section 3.2.4, following a two step procedure. In the first step,

the PMI algorithm was run, in turn, for each of the 16 candidate input variables given

in Table 5.1, using time lagged values of the current variable as potential inputs. The

maximum lag that was considered for each variable was 60 days; thus, the potential input

set for variablexk included the past values (xk,t−1, . . . ,xk,t−60). In this bivariate stage,

PMI values were calculated between lagged values of each input variable and the output

variableMBSt+13, in order to determine the significant lags for each variable. The second

step was a multivariate stage, where the significant lags for each variable selected in the

first step were combined to form a new set of potential inputs. The PMI algorithm was

then run again to determine the final set of important predictors. These inputs are given

in Table 5.2, together with their PMI score, theRI values estimated based on the PMI

scores and the corresponding rank order of importance. As it can be seen, 13 inputs were

selected from the total set of 960 potential inputs (16 variables× 60 lags = 960).

As seen in Table 5.2, the salinity concentration at Mannum with a lag of 1 day

(MASt−1) was found to be the most important input for forecasting salinity concentra-

tions at Murray Bridge, 14 days in advance (MBSt+13). This was followed by salinity at

Waikerie, also with a lag of 1 day (WASt−1). During times of low flow (6500 ML/day),

the travel time (time taken for salt to travel from one location to another) between Man-

num and Murray Bridge is approximately 14 days, while, during times of intermediate

flow (16,000–17,000 ML/day), the travel time between Waikerie and Murray Bridge is

14–16 days (Maier and Dandy, 1996). Therefore, it is not surprising that these two inputs
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Table 5.2 Inputs used in salinity forecasting ANN model, together with the PMI scores,

PMI-basedRI estimates and rank order of importance.

Lag PMI RI Rank
Variable (days) Score (%) Importance

MAS 1 1.269 70.32 1
MOS 60 0.326 1.20 9
WAS 1 1.188 14.54 2
WAS 43 0.410 1.51 6
LOS 25 0.401 1.89 5
L7F 1 0.747 2.44 3
MBL 1 0.264 1.41 7
MBL 11 0.307 0.93 10
MBL 21 0.280 0.76 13
MBL 34 0.265 0.79 12
MBL 57 0.277 0.83 11
MAL 57 0.310 1.33 8
L1UL 1 0.357 2.05 4

were found to be the most important, as it would be expected that the most significant

inputs would have travel times between their upstream locations and Murray Bridge of

approximately 14 days. The next most significant inputs were flow at lock 7 (which is lo-

cated just upstream of the border between South Australia and Victoria) with a lag of 1 day

(L7Ft−1) and river level at lock 1 (located at Blanchetown) with a lag of 1 day (L1ULt−1),

which are significant variables involved in determining groundwater accessions and salin-

ity travel times. Although also found to be significant by the PMI algorithm, lags of river

level at Murray Bridge were found to be the least important predictors, with the exception

of a lag of 1 day.

Time series plots of the significant inputs versus salinity at Murray Bridge at time

t + 13 (MBSt+13) between 1987 and 1992 are shown in Figures 5.7 to 5.14. Where

more than 1 lag of an input variable was found to be significant (e.g. WAS, MBL),

only plots of the most significant lag, according to PMI score, are shown. It can be

seen in Figures 5.7 to 5.9 that salinity concentrations at Mannum, Morgan and Waik-

erie are generally similar (although slightly lower) to those at Murray Bridge, with the

same seasonal fluctuations. It can also be seen in Figure 5.10 that salinity concentra-

tions at Loxton are significantly lower than those at downstream locations, which in-

dicates that large saline accessions occur between Loxton and Waikerie. This may, in

part, be due to raised ground water levels resulting from the irrigation in this region

(see Figure 5.1). In Figure 5.11, a strong inverse relationship between flow at lock
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7 and salinity at Murray Bridge is evident. Figures 5.12 to 5.14 also display an in-

verse relationship between river level at various locations and salinity at Murray Bridge.
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Figure 5.7 Salinity at Mannum with a lag of 1 day (MASt−1).
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Figure 5.8 Salinity at Morgan with a lag of 60 days (MOSt−60).
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Figure 5.9 Salinity at Waikerie with a lag of 1 day (WASt−1).
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Figure 5.10 Salinity at Loxton with a lag of 25 days (MASt−1).
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Figure 5.11 Flow at lock 7 with a lag of 1 day (L7Ft−1).
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Figure 5.12 River level at Murray Bridge with a lag of 1 day (MBLt−1).
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Figure 5.13 River level at Mannum with a lag of 57 days (MALt−57).
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Figure 5.14 River level upstream of Lock 1 with a lag of 1 day (L1ULt−1).
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Similar to the studies byBowden(2003) andBowden et al.(2002, 2003, 2005b), in

this research, data from 1 December 1986 to 30 June 1992 were used for model develop-

ment, while data from 1 July 1992 to 1 April 1998 were reserved to simulate a real-time

forecasting situation. After accounting for the appropriate lags of the input and output

variables, there were 1964 data samples in the “model development” data and 2028 sam-

ples in the “real-time forecasting” data. The model development data were divided into

training, testing and validation subsets using the SOM data division method discussed in

Section 3.2.2. By comparing the average silhouette widths and discrepancy values (see

Section 3.2.2.2) for various SOM grid sizes ranging from1 × 2 to 12 × 12, it was found

that a grid size of8× 12 was optimal for clustering this data set. This resulted in 87 clus-

ters containing at least 3 samples, 2 clusters containing 2 samples and 1 cluster containing

only 1 sample (6 grid cells were empty). From these, 1257 (64%) samples were allocated

to the training data subset, 314 (16%) samples were allocated to the testing subset and

the remaining 393 (20%) samples were allocated to the validation subset, ensuring that at

least one sample from each cluster was allocated to each of the subsets where possible.

As it can be seen in Figure 5.15, the salinity data were not normally distributed. However,

initially, the only transformation applied to the input and output data was linear standard-

isation, such that each variable had a mean of zero and standard deviation of one. The

appropriateness of this transformation was then checked once the preliminary models had

been developed.
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Figure 5.15 Histogram of Murray Bridge salinity data.
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5.4 DETERMINISTIC ANN DEVELOPMENT

The state-of-the-art deterministic ANN methodology, described and developed in Chap-

ter 3, was first applied to the salinity forecasting case study, taking into account the results

obtained in the investigations carried out on the synthetic data sets.

5.4.1 Methods

5.4.1.1 Model Selection

Using the 13 inputs given in Table 5.2,Bowden et al.(2005b) found that a 32 hidden node

ANN model containing 481 weights was optimal for producing 14-day salinity forecasts.

In this research, the optimal ANN geometry was re-investigated, using the trial-and-error

approach discussed in Chapter 3, in the attempt to obtain a more parsimonious model. The

number of hidden nodes selected byBowden et al.(2005b) was used to guide the trial-

and-error search for the optimal geometry; however, since a more parsimonious model

was sought in this research, only models containing less than 32 hidden nodes were con-

sidered. To minimise the number of networks that required training and testing, ANNs

containing 5, 10, 15, 20, 25 and 30 hidden nodes were initially considered, in order to

narrow down the search to a 10 hidden node range (e.g. 1–10, 11–20, or 21–30). Once

this range was determined, the trial-and-error approach was repeated, with the number

of hidden nodes increasing in increments of 2 (e.g. if the 10 hidden node range found

was 1–10, the next trial would include networks of 2, 4, 6, and 8 hidden nodes). Finally,

the search was reduced to single node increments, where the networks either side of best

network found in the previous trial were tested (e.g. if the model with the best generalis-

ability contained 8 hidden nodes, networks with 7 and 9 hidden nodes were also tested).

As mentioned in Section 3.3, all of the ANN models developed in this research contained

a single hidden layer with tanh hidden nodes and linear output nodes.

According to the findings of Section 3.4, the in-sample BIC and out-of-sample AIC

were used to assess the generalisability of the models developed. However, in Section 3.4,

it was inconclusive whether or not the in-sample BIC would adequately penalise model

complexity in order to select the optimal model structure when applied to a complex,

noisy real-world problem. This issue was further investigated in this study by comparing

the in-sample BIC values obtained when training was run to convergence and when it

was stopped early according to the test set error, in order to assess whether the degree of

overfitting that occurred affected the size of the ANN that was identified as having the

greatest generalisability. These values were also compared with the out-of-sample AIC

values, to determine whether or not there was agreement between the different values,
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resulting in the same optimal geometry being selected.

5.4.1.2 Training

The networks were trained with the SCE-UA algorithm, according to the results of the

training algorithm comparison carried out in Section 3.4. However, due the number of

inputs used in the salinity forecasting model, the dimension of the weight vector was rel-

atively large, even for networks containing few hidden nodes (e.g. a 5 hidden node ANN

contains 76 weights). As mentioned in Section 3.4.7, being a randomised search method,

the SCE-UA algorithm is likely to be relatively inefficient when applied to high dimen-

sional problems (a gradient-based search technique would generally be the first choice for

such problems when the objective function is differentiable, even if it were less robust).

It was recommended that, in order prevent excessively long training times, upper limits

should be considered for the SCE-UA algorithm parameters when the dimension of the

weight vectord is greater than 40. Therefore, the modifications given in Table 5.3 were

applied in this study. It is possible that these modifications may have reduced the opti-

misation capabilities of the SCE-UA algorithm; however, due to time and computational

requirements, training the large networks considered in this study (e.g. a 30 hidden node

ANN contains 451 weights) would have been infeasible without these modifications. To

increase the chances of obtaining a globally optimal solution, the algorithm was initialised

with three different sets of random weights for each network trained. Furthermore, to ver-

ify that the results obtained using the modified SCE-UA parameters were reasonable, they

were compared to those obtained byBowden et al.(2005b) using a 32 hidden node ANN,

trained by backpropagation.

Training was run until the stopping criterion given by (3.33) was met or after 10 mil-

Table 5.3 Modified parameter values for SCE-UA algorithm

Parameter Value

m

{
2d + 1 if d ≤ 40
2× 40 + 1 otherwise

q

{
d + 1 if d ≤ 40
40 + 1 otherwise

β

{
2d + 1 if d ≤ 40
2× 40 + 1 otherwise

p

{
d if d ≤ 40
40 otherwise
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lion error function evaluations, whichever was first. Cross-validation using the test data

set was also employed during training and the weights resulting in the minimum test set

error were saved, and the corresponding model outputs computed.

5.4.1.3 Validation

The optimal model structure selected was validated by subjecting it to the independent

validation data set that was not used for training or testing the model. The results obtained

for the training, testing and validation subsets were then compared to those obtained by

Bowden et al.(2005b). However, although the same proportions of data were allocated to

the respective subsets, the data division method used in this research was different to that

used byBowden et al.(2005b); thus, different training, testing and validation subsets were

produced. The selected model was also applied to the new “real-time forecasting” data,

which not only allowed an assessment of how the model would perform in a real-time

forecasting situation, but also enabled a comparison of the model’s predictive performance

to that of the 32 hidden node ANN model developed byBowden et al.(2005b) on the same

data set.

In order to assess how well the selected model had approximated the underlying input-

to-output relationship, the modified Connection Weight Approach (see Section 3.4.4.3)

was used to evaluateRI values for each of the model inputs, which were then compared

to the PMI-basedRI estimates given in Table 5.2.

5.4.2 Results

After the initial models containing5, 10, . . . , 30 hidden nodes were trained, the standard-

ised model residuals were inspected to determine whether or not a linear transformation

of the input and output data was sufficient. Histograms of the standardised residuals for

each of the networks developed are shown in Figure 5.16, in comparison to the standard

normal distribution. It can be seen that, in each case, the standardised residuals are ap-

proximately normal with no significant outliers; thus, it was concluded that no further

transformations of the data were necessary.

In this study, all models were developed using an Intel Xeon processor with 2 GB of

RAM running at 2.4 GHz. The resulting average training times for the initial network

sizes are given in Table 5.4. It can be seen that even with the upper limits placed on the

algorithm parameters, the training times for the different networks were long. However,

it was found that, for each training run, the algorithm was stopped according to the stop-

ping criterion given in (3.33), rather than because the number of function evaluations had
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Figure 5.16 Standardised model residuals.

exceeded 10 million, as was often the case when large networks were trained with the

SCE-UA algorithm without the modifications. This meant that training had always con-

verged to a stationary point of the error surface. In comparison to the RMSE of 29.3 EC

obtained byBowden et al.(2005b) for the training data using a 32 hidden node ANN, all

of the training data RMSE values obtained for the initial models were less than 29.0 EC,

even though most of the models were significantly less complex than that used byBow-

den et al.(2005b). Therefore, it was considered that the optimisation capabilities of the

SCE-UA algorithm with parameter modifications had not been significantly diminished

(although it should be kept in mind that the training sets were not exactly the same, as

mentioned in Section 5.4.1.3).

Table 5.4 Training times using the SCE-UA algorithm.

Hidden Nodes Training Time (hours)

5 3.279
10 4.939
15 7.613
20 9.597
25 11.123
30 17.416
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The the out-of-sample AIC values and in-sample BIC values obtained when training

was run to convergence, and when it was stopped early according to the test set error,

are plotted against one another in Figure 5.17 for the different network sizes. It can be

seen that the in-sample BIC values obtained when training was stopped early and when

it was allowed to converge are quite different. The “converged” BIC values indicate that

the models containing between 10 and 20 hidden nodes had the best generalisability,

whereas the “stopped” BIC values indicate that this was achieved with the 5 hidden node

ANN. It can also be seen that there is much better agreement between the out-of-sample

AIC values and the in-sample BIC values when overtraining was prevented. It is also

interesting to note that, for the 5 hidden node ANN, the “converged” and “stopped” in-

sample BIC values were approximately the same, which suggests that any overfitting that

occurred when training was run until convergence was relatively insignificant. Therefore,

it was concluded that the 5 hidden node ANN was a more optimal structure for the salinity

forecasting model than the larger network sizes. It was also concluded that, in order to

obtain correct results using the in-sample BIC, prevention of overtraining is important;

thus a test set is necessary when using this model selection criterion. Henceforth, the

in-sample BIC will refer to the value calculated when training was stopped early.

Given these results, the trial-and-error search for the optimal model structure was
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Figure 5.17 In-sample BIC and out-of-sample AIC values for5, 10, . . . , 30 hidden node

ANN models.
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narrowed down to the 1–10 hidden node range and the subsequent ANN models trained

and tested for their generalisability contained2, 4, . . . , 8 hidden nodes. The resulting in-

sample BIC and out-of-sample AIC values for these networks are plotted in Figure 5.18,

where it can be seen that the 4 hidden node ANN was identified as having the best gener-

alisability by each criterion. Finally, a 3 hidden node ANN was trained and tested, and the

in-sample BIC and out-of-sample AIC results were compared for the 3, 4 and 5 hidden

node ANNs. These values are plotted in Figure 5.19. It can be seen in this figure that,

again, both model selection criteria identified the 4 hidden node as having the best gen-

eralisability. From these results, it was concluded that the 4 hidden node ANN was the

optimal model structure for the salinity forecasting model and this model was therefore

subjected to the independent validation set for verification. The 4 hidden node ANN con-

tains 61 weights (i.ed = 61), which is significantly fewer than the 481 weights contained

in the ANN model developed byBowden et al.(2005b) for the same problem. Therefore,

the aim of developing a more parsimonious model in this research was achieved. The

optimal ANN structure was identified from a possible 30 different network sizes by only

training and assessing 11 ANN models.

Shown in Figure 5.20, are the model predictions versus the (a) training data, (b) test-

ing data and (c) validation data. It can be seen that the model provided a good fit to each
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Figure 5.18 In-sample BIC and out-of-sample AIC values for 2, 4, 6 and 8 hidden node

ANN models.
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Figure 5.19 In-sample BIC and out-of-sample AIC values for 3, 4 and 5 hidden node ANN

models.

of these data subsets; however, as seen in Figure 5.20 (a), salinity concentrations above

1000 EC units tended to be under-predicted by the model. Likewise, a number of points in

the 400–600 EC range were under-predicted. It can be seen in Figure 5.21, which shows

a time series plot of the 14-day forecasts against the recombined model development data
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Figure 5.20 Scatter plots of the 4 hidden node ANN model predictions versus the (a) train-

ing, (b) testing and (c) validation data.
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Figure 5.21 Time series plot of the 14-day salinity forecasts obtained with the 4 hidden

node ANN model against the “model development” data.

(training, testing and validation), that within this range there are a number of small peaks

in the observed salinity concentrations, which account for the under-predicted salinities.

Nevertheless, it can also be seen in this plot that, overall, the observed salinity concentra-

tions were predicted well by the model. The resulting MAE, RMSE and CE values for the

training, testing and validation data sets are given in Table 5.8. The RMSE measure was

used to assess model performance inBowden et al.(2005b), thus its use in this research

enabled a direct comparison of the results obtained using the 4 hidden node ANN model

with those given inBowden et al.(2005b) (also given in Table 5.8).

The model-basedRI values for each of the model inputs, calculated using the mod-

ified Connection Weight Approach, are given in Table 5.5, together with the resulting

rank order of modelled input importance. In comparison to PMI-basedRI estimates (also

given in Table 5.5), it can be seen that the inputs identified as being the most impor-

tant by the model-free approach, also provided the greatest contributions to predicting

the output using the ANN model. However, the model-basedRI values are generally

somewhat higher than the PMI-basedRI estimates, indicating that the model has given

greater importance to many of the inputs than the model-free estimation approach. It is

considered that this is primarily due to the fact that the model inputs are not indepen-

dent and that the model has shared the contributions of some inputs among a number of

correlated variables. In the first step of the PMI algorithm, before any inputs have been

selected, the mutual information (MI) between each of the inputs and the dependent out-
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Table 5.5 Model-basedRI estimates and order of input importance in comparison to the

PMI- and MI-basedRI estimates.
Rank RI (%)

Input Importance Model-based PMI-based MI-based

MASt−1 3 13.01 70.32 17.99
MOSt−60 11 3.90 1.20 6.36
WASt−1 1 17.23 14.54 16.33
WASt−43 10 3.91 1.51 9.64
LOSt−25 4 8.86 1.89 11.30
L7Ft−1 2 16.92 2.44 8.73
MBLt−1 13 1.76 1.41 5.21
MBLt−11 8 5.62 0.93 4.78
MBLt−21 7 6.18 0.76 4.50
MBLt−34 12 3.10 0.79 4.13
MBLt−57 9 4.37 0.83 3.69
MALt−57 6 6.83 1.33 4.02
L1ULt−1 5 8.31 2.05 3.31

put is computed. TheRI values calculated based on these MI values are also given in

Table 5.5. Unlike the PMI-basedRI estimates, these values measure the amount of infor-

mation about the output contained in each of the inputs, regardless of whether this same

information is also contained in any of the other inputs (i.e. they do not only measure the

additional information contained in each input). It can be seen in Table 5.5 that the MI-

basedRI estimates are similar in magnitude to the modelled input contributions, which

indicates that similar information from correlated inputs is indeed being used to model

the output. It can also be seen that the MI between inputsMASt−1 andWASt−1 and the

outputMBSt+13 is very similar; yet, becauseMASt−1 was selected as the most important

input, the PMI criterion estimated that over 70% of the information needed to predict

the output was provided by this input, while only an additional 14.5% was provided by

WASt−1. If the MI betweenWASt−1 andMBSt+13 had been slightly higher, it would

have been given the larger contribution, while only additional information provided by

MASt−1 would have been considered. It is clear that relative input importance, as esti-

mated by the PMI criterion, is very much dependent upon the order in which inputs are

selected, and this is, to some extent, dependent upon the available data and the calculation

of the PMI criterion. Nevertheless, as the model-basedRI values were of approximately

the same order as the PMI-basedRI values, and approximately the same magnitude as

the MI-based estimates, it was considered that the model had captured important physical

information about the underlying system.
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Being satisfied with the model validation results, the 4 hidden node ANN model was

applied to the “real-time forecasting” data to assess how well the model would perform

in a real-world application. A plot of the resulting 14-day forecasts obtained is shown in

Figure 5.22. It can be seen that the most notable regions of poor predictive performance

were regions 1 and 2, which were identified as being uncharacteristic byBowden et al.

(2002), but apart from these regions, the model was able to capture the variations in salin-

ity concentration over the forecasting period. However, the fact that the model was not

robust to the uncharacteristic data, means that poor management decisions could be made

if this model was relied on in a real-world application. The WHO 800 EC threshold for

desirable drinking water quality is also shown in this figure, as salinities above this level

can have significant negative impacts, as discussed in Section 5.2.1. It can be seen that

the actual salinity concentrations in regions 1 and 2 are greater than 800 EC units, while

the 14-day forecasts indicate salinity levels less than this threshold. If pumping schedules

were altered according to these forecasts in order to minimise the negative impacts due to

high salinity, it is possible that these alterations may, in fact, have had the reverse effect,

as more water would be pumped in times of high salinity concentrations. The major lim-

itation of these deterministic forecasts is that there is no measure of confidence provided

that indicates their quality, except for the fit to the model development data, which was

seen to be very good.
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Figure 5.22 Time series plot of 14-day salinity forecasts against the “real-time forecasting”

data.
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5.5 BAYESIAN ANN DEVELOPMENT

The Bayesian framework for ANN development, proposed in Chapter 4, was next applied

to the salinity forecasting case study, in order to compare the results obtained with those

obtained in the deterministic part of the study and assess the advantages of a probabilistic

modelling approach.

5.5.1 Methods

5.5.1.1 Model Selection

As the Bayesian training framework makes use of the network weights estimated using

deterministic training methods, it is sensible to use the information gained from the de-

terministic models to guide Bayesian model selection. Since the optimal model structure

was found to contain 4 hidden nodes in the deterministic part of this study, networks with

2, 4, . . . , 10 hidden nodes were initially considered for analysis with Bayesian techniques.

The -1/2BIC, G-D and C-J evidence estimators, discussed in Section 4.3.4, were used to

evaluate the evidence values of each network, in order to determine which of the initial

models had the greatest posterior probability. According to the findings of the assessment

carried out in Section 4.4.3.1, the -1/2BIC estimator was given the most weight in terms

of model selection, while the G-D and C-J estimators were used for more comparative

purposes. The marginal distributions for the hidden-output weights of the ANN model

with the highest posterior probability were then inspected to determine whether any of

the hidden nodes could be pruned from the model as described in Section 4.3.4.2. The

same distributions were also inspected for the model containing two more hidden nodes

than the ANN with the highest posterior probability, in order to verify that one or both of

the two additional hidden nodes was unnecessary and could therefore be pruned from the

network.

Similar to the deterministic model selection procedure carried out in this case study,

the evidence values for networks either side (i.e. containing one more and one less hidden

node) of the model with the highest posterior probability were also assessed. This is not

strictly necessary for the Bayesian model selection framework, since it should be possible

to identify how many hidden nodes are necessary by inspecting the marginal posterior

distributions as described above. However, this was done in this study to check the results

obtained and to further validate the proposed Bayesian model selection approach.
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5.5.1.2 Training

The models were trained with the MCMC training method developed and described in

Chapter 4, using a hierarchical prior distribution of the form given by (2.15). Four parallel

chains were simulated, each initialised with the weights obtained for the best models

developed in the deterministic part of this study. In Section 4.4, it was recommended

that the hyperparametersσ2
y andσ2

w be fixed for an initial periodtσ2
0

= 500, such that

the magnitude of the initial log likelihood is reduced by approximately 10%. For the

2, . . . , 10 hidden node ANN models developed using deterministic methods, the residual

variance valueŝσ2
y calculated at maximum log likelihood (based on scaled data) were

between approximately 0.01 (10 hidden node ANN) and 0.03 (2 hidden node ANN), with

corresponding log likelihood values between approximately 390 (2 hidden node ANN)

and 1130 (10 hidden node ANN). Thereforeσ2
y was initially fixed equal to 0.04 for each

MCMC simulation, which resulted in reductions in the log likelihood values between

approximately 8% and 35%. For each of the models developed, the MCMC algorithm was

initially run for 600,000 iterations and traces of the meanlog p∗(w|y), the meanlog L(w)

and the meanlog p(w) densities, calculated by taking the average of the four parallel

chains, were inspected to determine whether or not convergence had been achieved within

this time and to determine the appropriate number of burn-in iterationstb. Traces of the

log p∗(w|y), log L(w) andlog p(w) values obtained from the individual chains were also

inspected to assess convergence. A random sample of 10,000 weight vectors, simulated

after convergence was achieved, were then used to calculate predictive distributions for

the given input data. From these, the mean predictions and 95% prediction limits were

evaluated.

5.5.1.3 Validation

The optimal model structure, as selected using the BMS approach, was validated by sub-

jecting it to the independent testing and validation subsets, not used for training. As the

test data set was not required for cross-validation under the Bayesian framework, it could

have been combined with the training data to form a larger training data set. However, in

order to perform a fair comparison of the Bayesian forecasts obtained with the determin-

istic forecasts, this was not done in this study.

TheRI distributions for each input were determined by applying the modified Con-

nection Weight Approach to the weight vectors sampled from the posterior distribution.

These were then compared to the PMI-basedRI estimates to evaluate whether the un-

derlying physics had been captured by the model and to assess how uncertain the input
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contributions were.

5.5.2 Results

It was found that 600,000 iterations were insufficient to achieve convergence of the MCMC

simulations for all of the network sizes. Therefore, the algorithm was run for an addi-

tional 600,000 iterations for each ANN. It can be seen in Figures 5.23 and 5.24, which

show traces of the meanlog p∗(w|y), log L(w) andlog p(w) densities and the individual

log p∗(w|y) densities, respectively, that apart from the 6 hidden node ANN, the MCMC

algorithm converged after approximately 600,000 iterations. For the 6 hidden node ANN,

convergence was achieved after approximately 900,000 iterations. Therefore, the number

of burn-in iterations that were discarded for the 2, 4, 8 and 10 hidden node ANNs was

600,000, while this number was 900,000 for the 6 hidden node model. The MCMC al-

gorithm was run for an additional 300,000 iterations for the 6 hidden node ANN so that

the number of weight vectors sampled after burn-in was the same for each of the mod-

els. Training took between 1.5 and 11.4 hours for the different network sizes, which was

comparable to the training times taken by the SCE-UA algorithm (see Table 5.4).
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Figure 5.23 Mean log p∗(w|y), log L(w) and log p(w) traces for the2, 4, . . . , 10 hidden

node ANNs.
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Figure 5.24 Log p∗(w|y) traces obtained from the 4 parallel MCMC chains for the

2, 4, . . . , 10 hidden node ANNs.

The evidence values estimated with the -1/2BIC, G-D and C-J estimators are plot-

ted in Figure 5.25, where it can be seen that the 4 hidden node ANN had the greatest

evidence according to all 3 of the estimators. TheBFRank1,i results, calculated based

on the−1/2BIC evidence values and presented in Table 5.6, indicate that there is very

strong evidence in favour of the 4 hidden node ANN over the other network sizes. To

check this result, the marginal posterior distributions for the hidden-output weights of the

4 and 6 hidden node ANNs were inspected. These are shown in Figures 5.26 and 5.27,

respectively. It can be seen that for the 4 hidden node model, all of the hidden nodes

are necessary, as zero is not included within the 95% highest density regions of any of

the weight distributions. It can also be seen that, for the 6 hidden node model, zero is

included in the 95% highest density regions of the distributions for hidden-output weights

2 and 6 (Figure 5.27 (b) and (f)), indicating that at least one of the corresponding nodes

could be pruned from the network. By inspection of the scatter plot for hidden-output

weight 2 versus hidden-output weight 6, shown in Figure 5.28, it was evident that both
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Figure 5.25 Evidence estimates for the2, 4, . . . , 10 hidden node ANNs.

nodes could be pruned, as the joint distribution was found to pass through the origin; thus

leaving a network with 4 hidden nodes.

To verify that the 4 hidden node ANN was indeed the optimal structure for providing

14-day salinity forecasts, networks with 3 and 5 hidden nodes were trained and assessed

using the Bayesian approach. The resulting evidence values estimated with the -1/2BIC,

G-D and C-J estimators are plotted in Figure 5.29, in comparison to the values of the five

original models. It can again be seen that the 4 hidden node ANN had the greatest overall

evidence according to all of the estimators. The marginal posterior distributions for the

hidden-output weights of the 3 and 5 hidden node ANNs are shown in Figures 5.30 and

5.31, respectively. It can be seen that all of the hidden nodes are necessary for the 3 hid-

den node model, as none of the distributions are close to zero. However, the distribution

Table 5.6 Log Bayes Factors in favour of the highest ranked model.

Rank Hidden loge BF in Favour
Nodes of Rank 1 Model

1 4 –
2 6 74.690
3 8 175.286
4 10 277.341
5 2 295.372
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Figure 5.26 Marginal posterior hidden-output weight distributions of the 4 hidden node

ANN.
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Figure 5.27 Marginal posterior hidden-output weight distributions of the 6 hidden node

ANN.
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Figure 5.28 Scatter plot of hidden-output weight 2 versus hidden-output weight 6 for the 6

hidden node ANN.
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Figure 5.29 Estimated evidence values including those estimated for the 3 and 5 hidden

node ANNs.
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for hidden-output weight 3 (Figure 5.31 (c)) does include zero with the 95% highest den-

sity region, indicating that the corresponding hidden node is unnecessary, and hence a 4

hidden node ANN is more optimal.
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Figure 5.30 Marginal posterior hidden-output weight distributions for the 3 hidden node

ANN.
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Figure 5.31 Marginal posterior hidden-output weight distributions for the 5 hidden node

ANN.
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Figure 5.32 Scatter plots of the 4 hidden node ANN model mean predictions and 95%

prediction limits versus the (a) training, (b) testing and (c) validation data.

Shown in Figure 5.32 are scatter plots of the mean model predictions and 95% pre-

diction limits obtained using the 4 hidden node ANN versus the training, testing and

validation data. It can be seen in this figure that the mean predictions provide a good fit

to the measured data and are, in fact, very similar to the deterministic forecasts shown in

Figure 5.20. Greater than 95% of the observed salinity concentrations were accounted for

by the 95% prediction limits for the training, testing and validation data sets. Shown in
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Figure 5.33 Time series plot of the mean 14-day salinity forecasts and 95% prediction limits

obtained with the 4 hidden node ANN model against the “model development” data.
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Figure 5.33 is a time series plot of the mean 14-day salinity forecasts and 95% prediction

limits against the recombined model development data (training, testing and validation).

From the width of the prediction limits, there appears to be relatively little uncertainty

associated with these forecasts.

The RI distributions for each input are shown in Figure 5.34, while the minimum,

maximum and mean values of these distributions are presented in Table 5.7, together with

the PMI- and MI-basedRI estimates and the order of input importance according to the

mean model-basedRI values. The mean values in Table 5.7 are relatively similar to those

that were calculated based on deterministic weights in Table 5.5, and are of similar order

of importance as the PMI-basedRI values, and approximately the same magnitude as the

MI-based estimates. While it is apparent in Figure 5.34 that most of theRI values are

fairly uncertain, it is still obvious from these distributions which are the important inputs

for forecasting salinity concentrations at Murray Bridge, as these inputs haveRI values

that are not distributed about zero. As discussed previously, all deterministicRI estimates

are subject to uncertainty, including the PMI-based estimates. TheRI distributions have

the advantage of identifying which inputs are important predictors and those which are

not, without trying to pin-point exact values for their importance to the overall model.

Table 5.7

Rank Model-based

Input Importance Minimum Maximum Mean PMI-based MI-based

MASt−1 4 0.02 31.24 11.62 70.32 17.99
MOSt−60 12 0.00 10.51 3.15 1.20 6.36
WASt−1 1 9.04 31.21 17.14 14.54 16.33
WASt−43 10 0.00 23.53 4.66 1.51 9.64
LOSt−25 9 0.00 20.12 7.17 1.89 11.30
L7Ft−1 3 0.04 25.20 14.78 2.44 8.73
MBLt−1 11 0.00 20.21 3.76 1.41 5.21
MBLt−11 10 0.00 21.13 4.44 0.93 4.78
MBLt−21 8 0.00 22.11 4.69 0.76 4.50
MBLt−34 13 0.00 18.06 2.79 0.79 4.13
MBLt−57 7 0.00 21.57 5.00 0.83 3.69
MALt−57 6 0.00 19.14 5.03 1.33 4.02
L1ULt−1 2 0.12 31.75 15.77 2.05 3.31

Finally, the 4 hidden node ANN model was applied to the “real-time forecasting” data

and a plot of the mean output time series and 95% prediction limits can be seen in Fig-

ure 5.35. For most of the forecasting period, the 95% prediction limits are approximately

the same width as those calculated for the “model development” data; however, the width
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Figure 5.35 Time series plot of the mean 14-day salinity forecasts and 95% prediction limits

obtained with the 4 hidden node ANN model against the “real-time forecasting” data.

of these limits increases to some extent in regions 1 and 2. During these periods the ANN

has to extrapolate beyond the range of the training data and the resulting uncertainty in

the forecasts due to the uncharacteristic data is reflected in the expanded prediction limits,

indicating to the modeller that single valued forecasts (e.g. mean predictions) should be

used with caution. Salinity levels were under-predicted in each of these regions; however,

unlike the deterministic model, the mean predictions in region 1 were above the 800 EC

threshold; thus providing better single valued forecasts of the actual salinity concentra-

tions. However, it can also be seen in this figure that the 95% prediction limits failed to

include all of the observed salinity data in regions 1 and 2. While this may, in part, be

due to inappropriate convergence to the true posterior, uncertainty in the ANN weights

is only one source of prediction uncertainty and the fact that all of the data in these re-

gions were not accounted for by considering this source may suggest inadequacies in the

model used to forecast the salinity data, possibly due to the omission of important inputs,

errors in the data or limitations in the model structure. Nevertheless, the Bayesian ANN

provides a significant improvement over the deterministic ANN, and apart from the two

periods of uncharacteristic data, almost all data points fall within the 95% limits. If this

model was used in a management situation, the manager would be able to decide, based

on the information provided in the mean forecasts and in the predictions limits, what is

the likelihood that the salinity concentration in the river will exceed 800 EC units, which

should ultimately lead to better management of the resource.
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Table 5.8 presents the results obtained using the deterministic and Bayesian ANNs in

comparison to the results obtained byBowden et al.(2005b). These results show that the

performance of the Bayesian model is significantly better than the other models in the

real-time forecasting scenario. This highlights the importance of accounting for the entire

range of plausible weight vectors when making predictions, rather than relying on the sin-

gle weight vector that provides the best fit to the training data. By estimating the posterior

weight distribution, the Bayesian ANN has achieved a more generalised mapping of the

underlying relationship, which is influenced less by the minimum error of the training

data and influenced more broadly by the overall information contained in the data. This

can be seen by the fact that the Bayesian ANN had the poorest performance on the model

development data; yet, as seen in the real-time forecasting results, enabled better extrap-

olation. It can also be seen in this table that both the deterministic and Bayesian ANNs

developed in this research had similar performance to the 32 hidden node ANN developed

by Bowden et al.(2005b), even though these models contained 420 fewer weights. This

highlights the importance of appropriate model selection techniques, as smaller models

are less susceptible to overfitting, more efficient to train, have a smaller degree of un-

certainty associated with the weights and resulting predictions and are easier to interpret.

Table 5.8 Performance of 4 hidden node ANN salinity forecasting model developed using

deterministic and Bayesian methods.

Performance Model Development Data Real-Time

Measure Train Test Validation Forecasting Data

Deterministic
MAE 19.3 26.1 29.5 63.0
RMSE 26.7 39.0 39.3 105.7
CE 0.98 0.95 0.96 0.79

Bayesian
MAE 23.3 29.5 30.6 62.1
RMSE 31.9 43.6 41.2 88.4
CE 0.98 0.94 0.95 0.85

Bowden et al. (2005b)
RMSE 29.3 30.8 34.0 95.0
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5.6 CONCLUSIONS

The results of the salinity forecasting case study presented in this chapter highlight the im-

portance of accounting for the uncertainty associated with ANN predictions and demon-

strate the advantages of the proposed Bayesian training approach over deterministic ANN

development techniques. While the performance of the ANN model developed using the

Bayesian approach was similar to that of a deterministic ANN in an interpolative context,

it was shown that the Bayesian ANN was more robust in a real-time forecasting scenario,

particularly when the model was required to extrapolate. Not only were the average fore-

casts obtained using the Bayesian ANN an improvement over the single valued forecasts

obtained using the deterministic ANN, but prediction limits, indicating the quality of the

forecasts, were produced using the Bayesian approach, which was shown to be particu-

larly important in situations when forecasts were made outside the range of the calibration

data.

The deterministic and Bayesian model selection methods were both able to select the

most appropriate structure; however, it was shown that prevention of overfitting using a

test data set was still necessary for the deterministic approach. On the other hand, a test

data set is not required for the Bayesian approach, which means that a greater amount of

data, and hence information, is available for training the model.

It was shown that even with modifications to the SCE-UA parameters, the resulting

training times can still be excessively long in complex real-world cases, involving numer-

ous inputs. In this research, the aim of using this algorithm for training was to provide the

best deterministic results for comparison with the Bayesian approach, in order to properly

evaluate the advantages of using the proposed Bayesian methodology. However, if the

Bayesian framework was to be used for developing an ANN model in a high dimensional

real-world application, it is recommended that a simpler, gradient-based training algo-

rithm, such as backpropagation, be used to obtain rough initial estimates of the mode of

the posterior distribution.
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