
Chapter 4

A New Bayesian Framework for

ANNs

4.1 INTRODUCTION AND MOTIVATION

The primary motivation for developing a Bayesian framework applicable to ANNs in the

field of water resources modelling is that Bayesian methods allow the uncertainty in in-

ferences made from data to be explicitly quantified (Gelman et al., 2004). As discussed

in Section 2.3.3, there are two levels of Bayesian inference that can be performed in ANN

modelling: inference of the network weights under the assumption that the selected ANN

architecture is correct (Bayesian training and prediction); and inference of the appropriate

model architecture given the estimated weight distributions (Bayesian model selection).

It is considered that the adoption of a Bayesian framework may lead to the wider accep-

tance of ANNs in the field of water resources modelling, as these two levels of inference

work hand in hand to help address the three most significant issues facing ANN mod-

ellers in this field; namely generalisability, interpretability and uncertainty, as discussed

in Section 2.2.5.

Firstly, the generalisability of an ANN may be improved through Bayesian training,

as a range of plausible weight vectors (in the form of the posterior weight distribution)

is considered when making predictions, rather than allowing a single, possibly incorrect,

weight vector to completely dominate. This, together with the incorporation of ‘regulari-

sation’ type priors, helps to overcome some of the difficulties associated with training an

ANN due to the existence of local minima on the error surface and the potential of being

overtrained. As it was seen in the previous chapter (and summarised in Appendix A), the

“optimal” weight vector obtained during training, and hence the predictions generated,

can be sensitive to the initial weights, the size of the network and the training method

used. However, since the weights do not have any physical interpretation, it is generally
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impossible to determine which set of weights results in the best representation of the data-

generating relationship. Simply finding the weight vector that provides the best fit to the

training data does not necessarily result in a correct model of the system, because, due

to the stochastic nature of hydrological systems, each different set of training data would

most likely yield a different set of weights. Bayesian training overcomes the need to de-

fine an “optimal” weight vector by accounting for all sets of weights that provide a good

fit to the training data; hence improving the likelihood of correctly describing the un-

derlying system. Additionally, Bayesian model selection, which automatically penalises

complexity, may help to improve the generalisability of an ANN by enabling the selec-

tion of the smallest network architecture suitable for modelling the data; thus, reducing

the potential of overfitting.

Secondly, the interpretability of an ANN may be improved under the Bayesian mod-

elling paradigm, as smaller, simpler models, chosen through Bayesian model selection,

are more transparent, or interpretable, than large complex models with many weights.

Furthermore, as it was shown in Section 3.4, input importance measures used to describe

the relationship modelled by an ANN can be sensitive to the weights obtained during

training. If a single incorrect weight vector is used in the assessment of a trained ANN,

misleading information about the underlying system may be extracted from the optimised

weights. Therefore, ANN interpretability can also be improved through Bayesian train-

ing, as the posterior weight distribution may be used to express the input importance

measures as probability distributions which quantify the uncertainty in these estimates.

Finally, Bayesian training allows uncertainty in the weight estimates to be explicitly

accounted for, which can significantly enhance the usability of the resulting predictions.

Relying on a single optimal weight vector overestimates the confidence of the model pre-

dictions, as the uncertainty associated with the weight estimates is not incorporated. Sub-

sequently, this can lead to inappropriate design and management decisions being made if

the predictions are taken as being 100% reliable. On the other hand, by accounting for

the full range of plausible weights, probabilistic predictions can be generated, enabling

prediction intervals to be assigned that quantify the level of confidence in the model pre-

dictions and allow decisions to be made based on a known level of reliability. Bayesian

model selection also helps to address the uncertainty issue by increasing the identifiability

of weights. The weights of larger models, and therefore, the resulting predictions of large

ANNs, have a higher degree of associated uncertainty than those of smaller models, since

the information contained in the training data is more sparse in relation to the number of

weights as the size of the network increases. Therefore, if the smallest model capable
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of fitting the training data can be selected, the information in the data can be used more

efficiently to estimate the values of the weights; thus, minimising the uncertainty in the

ANN weight estimates and the associated predictions.

In this chapter, a new Bayesian framework for ANNs, incorporating a “Bayesian train-

ing and prediction” component and a “Bayesian model selection” component, is proposed

and the methods comprising the framework are described. A review of some of the sta-

tistical methods commonly used in Bayesian analysis is also presented to aid the under-

standing of the methods proposed in this chapter and explain how the proposed methods

were arrived at. Based on this review, the methods adopted in the proposed framework

were selected for their ability to produce accurate results, while maintaining simplicity

and ease of implementation and coding. The simplicity of the framework is particularly

important for its adoption by practitioners in the field of water resources modelling, as

it is likely that the difficulties associated with coding the more complex Bayesian train-

ing methods proposed primarily in the statistical and computer sciences literature (see

Section 4.2.2) have hindered their use in this field, with practitioners opting to disregard

prediction uncertainty and relying on deterministic predictions, rather than apply such

methods. The finer details of the proposed methods are determined through investigation

and application of the methods on the three synthetic data sets used in the previous chap-

ter (see Section 3.4.1). Fine-tuning of these details was necessary to ensure the successful

implementation of the overall Bayesian approach.

4.2 BAYESIAN TRAINING AND PREDICTION

As discussed in Section 2.3.4, training an ANN and making predictions using Bayesian

methodology involves solving equations (2.14), (2.16) and (2.17). Possibly the most

straightforward way of doing this involves the use of Gaussian approximations, where the

posterior weight distribution is approximated by a Gaussian distribution centred on the

mode found (i.e. the optimal weight vector found using deterministic training methods)

with a variance that can be calculated from the Hessian. However, the hyperparameters

and the multimodal nature of ANN weights present a problem for such an approxima-

tion, as the resulting posterior is by no means Gaussian (Neal, 1993). Therefore, in this

research, only more sophisticated methods based on Markov chain Monte Carlo methods

will be considered.
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4.2.1 Markov Chain Monte Carlo Methods

Markov chain Monte Carlo (MCMC) methods provide a means for generating a sequence

of samplesθ1, θ2, . . . , θn from virtually any continuous distribution, ortarget density,

p(θ|y). This target density need only be known to within a multiplicative constant, as

follows:

p(θ|y) = p∗(θ|y)/Z (4.1)

wherep∗(θ|y) is the unnormalised density, which must be calculable for a given vector

θ, andZ is the (possibly unknown) normalising constant (Thyer, 2001). Such methods

are generally used when it is impossible (or computationally infeasible) to sample from

p(θ|y) directly and, although there are other methods available for generating samples

from p(θ|y) (e.g. uniform sampling, rejection sampling), when applied carefully, MCMC

methods are the easiest way to obtain reliable results (Gelman et al., 2004). When MCMC

methods are applied to simulate a Bayesian posterior distribution,p∗(θ|y) = p(y|θ)p(θ)

andZ is the normalising constantp(y). The fact that MCMC methods do not require

knowledge ofZ is a major advantage, since the calculation ofp(y) may be complicated.

To generate samples fromp(θ|y) using MCMC methods, the process is started at

an arbitrary pointθ0 and samples are drawn sequentially, using a transition distribution

T (θt|θt−1) to represent the probability of moving from pointθt−1 to point θt. Since the

transition distribution depends only on the previous stateθt−1, the generated sequence

forms aMarkov chain. After a large number of iterations, the samples generated from the

simulation converge to a stationary distribution corresponding to the target densityp(θ|y).

However, in order for this to be true, the following two conditions must be satisfied:

1. The generated sequence must beergodic, which means that the Markov chain must

converge to a stationary distribution. This will be the case if the Markov chain is

irreducible and aperiodic, which means that there must be a positive probability of

eventually reaching any state from any other state and that the number of moves

required to move from one state to another is not required to be a multiple of some

integer (Chib and Greenberg, 1995).

2. The target distributionp(θ|y) must be aninvariant distributionof the Markov chain

constructed under the transition distributionT (·). It has been shown byChib and

Greenberg(1995) that this will be the case ifT (·) satisfies thedetailed balance, or

reversibility, condition:

T (θa|θb)p(θb|y) = T (θb|θa)p(θa|y) (4.2)
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A variety of Markov chains may be constructed to meet these requirements. The three

simplest and most commonly used MCMC algorithms, namely the Metropolis-Hastings

algorithm, the Metropolis algorithm and the Gibbs sampler, are described in this sec-

tion, as well as a variation of the standard Metropolis algorithm known as the adaptive

Metropolis (AM) algorithm.

4.2.1.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is the most general of the MCMC

algorithms described in this section. The transition fromθt−1 to θt is determined, firstly,

by employing aproposal densityQ, conditional onθt−1, to generate a candidate stateθ∗,

whereQ may be any fixed density from which samples can be drawn (MacKay, 2003).

However, the use ofQ(θ∗|θt−1) alone will most likely not satisfy the reversibility condi-

tion necessary for the Markov chain to converge to the target distribution. Therefore, an

acceptance probabilityα is introduced to determine whether or not to accept the candidate

state, which corrects this condition and enables the Markov chain to continually adapt to

the target distribution (Chib and Greenberg, 1995). Thus, transitions fromθt−1 to θt are

made according to:

T (θt|θt−1) = Q(θ∗|θt−1)α(θ∗|θt−1) (4.3)

It is shown inChib and Greenberg(1995) that, in order to satisfy reversibility, the accep-

tance probability must be set to:

α(θ∗|θt−1) = min

[
p∗(θ∗|y)Q(θ∗|θt−1)

p∗(θt−1|y)Q(θt−1|θ∗)
, 1

]
(4.4)

Thus, the algorithm proceeds as follows (as adapted fromGelman et al.(2004)):

1. Initialise the algorithm with an arbitrary starting pointθ0 for whichp∗(θ0|y) > 0.

2. For t = 1, 2, . . .

(a) Sample a candidateθ∗ from the proposal distributionQ(θ∗|θt−1).

(b) Evaluate the ratiosp∗(θ∗|y)/p∗(θt−1|y) andQ(θ∗|θt−1)/Q(θt−1|y).

(c) Generateu from U(0, 1) and if:

u ≤ α(θ∗|θt−1) (4.5)

setθt = θ∗ (i.e. acceptθ∗), otherwise setθt = θt−1 (i.e. rejectθ∗).

3. Return the samples{θ1, θ2, . . . , θn}.
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The samples are only regarded as draws from the target distribution after the algorithm

has converged to a stationary distribution and once the effects of the initial starting value

θ0 are small enough to be ignored.

The Metropolis-Hastings algorithm is specified by its proposal densityQ(θ∗|θt−1),

which, as mentioned, can be any fixed density from which samples can be drawn. How-

ever, the rate of convergence to the stationary distributionp(θ|y) can crucially depend

on the form of the proposal distribution adopted. Some general families from whichQ

may be selected are discussed inChib and Greenberg(1995). Typically,Q is chosen such

that it can be easily sampled and evaluated and so that only few tuning parameters (e.g.

location and scale parameters) require specification.

4.2.1.2 The Metropolis Algorithm

The Metropolis algorithm (Metropolis et al., 1953) is a special case of the Metropolis-

Hastings algorithm, or rather, the latter is a generalisation of the former, since the Metropo-

lis algorithm was developed first. The Metropolis algorithm requires that the proposal

distributionQ(θ∗|θt−1) is symmetric, satisfying the conditionQ(θ∗|θt−1) = Q(θt−1|θ∗).
Therefore, the acceptance probability reduces to:

α(θ∗|θt−1) = min

[
p∗(θ∗|y)

p∗(θt−1|y)
, 1

]
(4.6)

Thus, if a jump fromθt−1 to θ∗ goes “uphill”, it is always accepted, whereas if the jump

goes “downhill”, it is only accepted with probabilityp∗(θ∗|y)/p∗(θt−1|y). This is illus-

trated in Figure 4.1, where a jump fromθ0 to θ1 would occur with certainty; however, a

jump fromθ1 to θ2 would occur with probabilityp∗(θ2|y)/p∗(θ1|y).

θ0 θ1 θ2 

p*(θ0|y) 

p*(θ1|y) 

p*(θ2|y) 

Figure 4.1 The probability of a jump using the Metropolis Algorithm
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A special case of the Metropolis algorithm can be defined by the relation

Q(θ∗|θt−1) = Q(θt−1− θ∗). Here, the candidates are drawn according to:

θ∗ = θt−1 + υ (4.7)

whereυ is called the increment random variable and follows the distributionQ (Chib

and Greenberg, 1995). As the candidates are equal to the previous value plus noise, the

sequence of samples generated forms arandom walkchain. The proposal distribution

employed by this very popular algorithm has a form that is indexed by a scale parameter

(Roberts, 1996). A simple Gaussian distribution centred on the current stateθt−1 with

fixed covarianceΣ is a common choice forQ(θ∗|θt−1) since the Gaussian distribution is

symmetric and is one of few high-dimensional densities from which it is easy to draw

samples (MacKay, 2003). The scale parameter chosen forQ has important implications

on the convergence properties and efficiency of the algorithm, particularly in the case of

complex models with correlated parameters. Shown in Figure 4.2 is an example of a bi-

variate target density together with two example proposal distributions,Q1 andQ2. Using

the larger proposal distributionQ1, denoted by the dashed line, it can be seen that a jump

made from the stateθt−1 in almost any direction will result in a decrease inp∗(θ|y), and

as such, a large proportion of jumps will be rejected leading to slow convergence of the

chain. On the other hand, if the smaller proposal distributionQ2 is selected, the accep-

tance rate will increase; however, the algorithm will take longer to traversep∗(θ|y), which

will again lead to slow convergence (Thyer et al., 2002). This problem is exacerbated in

problems where parameters in the target distribution are highly correlated, since the scale

p*(θ | y) 

θ 
t-1 

Q1(θ*|θ 
t-1) 

Q2(θ*|θ 
t-1) 

Figure 4.2 The effect of the scale of the proposal distribution used by the Metropolis al-

gorithm. Q1 and Q2 represent two proposal distributions having larger and smaller scale

parameters, respectively. Ellipses denote contours ofp∗(θ|y).
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of the proposal must be made very small to ensure sufficient acceptance of states. Many

iterations will therefore be required to move between effectively independent states.

4.2.1.3 The Gibbs Sampler

The Gibbs sampler (Geman and Geman, 1984) is the simplest form of MCMC algorithm

and is also a special case of the Metropolis-Hastings algorithm (Gelman et al., 2004). The

Gibbs sampler is defined in terms of subvectors ofθ and the transition distributions are the

conditional distributions of the joint distributionp∗(θ|y). If θ is divided intol subvectors

θ =
{
θ(1), θ(2), . . . , θ(l)

}
, the transition distribution for thejth subvector is:

T (θ
(j)
t |θ(j)

t−1) = p∗(θ
(j)
t |θ(−j)

t−1 ,y) (4.8)

where

θ
(−j)
t−1 =

{
θ

(1)
t , . . . , θ

(j−1)
t , θ

(j+1)
t−1 , . . . , θ

(l)
t−1

}
(4.9)

The acceptance probabilityα(θt|θt−1) is always equal to one due to theproduct of kernels

principle, which states that if the transition distributions are conditional distributions of

p∗(θ|y), then the product of the transition distributions hasp∗(θ|y) as its invariant dis-

tribution (Chib and Greenberg, 1995). A single iteration of the Gibbs sampler involves

l steps, where each subvector is drawn in turn conditional on the other subvectors, as

follows:

θ
(1)
t ∼ p∗(θ

(1)
t |θ(2)

t−1, . . . , θ
(l)
t−1,y)

θ
(2)
t ∼ p∗(θ

(2)
t |θ(1)

t , θ
(3)
t−1, . . . , θ

(l)
t−1,y)

θ
(3)
t ∼ p∗(θ

(3)
t |θ(1)

t , θ
(2)
t , θ

(4)
t−1, . . . , θ

(l)
t−1,y), etc. (4.10)

A requirement of the Gibbs sampler is that it is possible to generate samples directly

from the conditional distributions. For many problems, this will not be possible since

the conditional distributions may be complex with non-standard forms. However, for

problems where the conditional distributions have standard forms for which sampling

methods have been developed, the Gibbs sampler is attractive due to its simplicity in both

implementation and coding and is often the first choice of MCMC method. Additionally,

unlike most MCMC methods, the Gibbs sampler has no adjustable parameters, which is an

advantage in that it minimises the amount of tuning required to obtain good performance

of the algorithm. A disadvantage of the Gibbs sampler, however, is that it can be quite

inefficient if the subvectors ofθ are correlated, since many iterations are needed to move

from one state to another that is largely independent of the first. Moreover, like the random
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walk Metropolis algorithm, the Gibbs sampler explores the search space by a random

walk, which further slows the rate at which independent states are visited (Neal, 1993).

For problems where some conditional distributions in a model can be sampled from

directly and some cannot, a combination of the Gibbs sampler and Metropolis algorithm

may be used, with the Gibbs sampler used where possible and the Metropolis algorithm

used otherwise.

4.2.1.4 The Adaptive Metropolis (AM) algorithm

The adaptive Metropolis (AM) algorithm, developed byHaario et al.(2001), is a variation

of the random walk Metropolis algorithm that was designed to overcome the problems

associated with selecting an appropriate scale parameter for the proposal distribution.

This algorithm employs an adaptation strategy that forces the proposal distribution to

approach an appropriately scaled Gaussian approximation of the target density, which

increases the efficiency of the algorithm and improves the rate of convergence to the

stationary distribution.

The proposal distribution used in the AM algorithm is a multivariate Gaussian distri-

bution centred on the current stateθt−1 with a covariance calculated based on all of the

previously sampled statesΣt = Σt(θ0, . . . , θt−1). This ensures that information gained

about the target distribution throughout the simulation is used to adapt the proposal to-

wards this distribution, allowing the algorithm to overcome the random walk properties

of the standard Metropolis algorithm. Apart from this, the definition of the algorithm is

the same as the general Metropolis process described in Section 4.2.1.2. However, since

Q(θ∗|θ0, . . . , θt−1) depends on all of the previous states, it is no longer symmetric, nor is

the process generated Markovian. Nevertheless, it was proven byHaario et al.(2001) that

the AM process still has the correct ergodicity properties, which enable it to converge to

a stationary distribution, under the assumptions that the target distribution has a compact

support and is bounded from above. These assumptions correspond reasonably well to

practical situations.

To initialise the algorithm, an arbitrary, positive definite covariance matrix,Σ0, is

selected. For an initial periodt0 > 0, the covariance of the proposal is fixed at the initial

covariance, after which time the adaptation strategy begins, as follows:

Σt =

{
Σ0 t ≤ t0
c2cov(θ0, θ1, . . . , θt−1) + c2eId t > t0

(4.11)

wherec is an adaptive scaling parameter used to maintain an appropriate acceptance rate,

e is a small constant used to ensure thatΣt will not become singular, andId is thed-
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dimensional identity matrix, withd being the dimension ofθ. It is worth mentioning that

the actual value ofe is not important for the performance of the algorithm. Fort > t0,

calculation ofΣt satisfies the following recursion formula:

Σt+1 =
t− 1

t
Σt +

c2

t

[
t θ̄t−1θ̄

T
t−1 − (t + 1) θ̄tθ̄

T
t + θtθ

T
t + eId

]
(4.12)

whereθ̄t = 1/(t+1)
∑t

i=0 θi. Therefore, the covariance may be updated at each iteration

with little additional computational cost. The choice of the initial fixed periodt0 should

reflect the confidence in the initial covarianceΣ0. The longer this period, the more slowly

the adaptation is felt and the greater the effect of the initial covariance on the simulated

draws. Therefore, if the initial fixed period is short, even a poor initial choice ofΣ0 should

only have a minor impact on the overall convergence of the algorithm.

The AM algorithm has been found to have a number of advantages over other vari-

ants of the Metropolis-Hastings algorithm in terms of efficiency, both computational and

statistical, and ease of use (Marshall et al., 2004). Unlike the conventional Metropolis

and Metropolis-Hastings algorithms, great care is not required in selecting an appropri-

ate proposal distribution and, in fact, the only requirement is that the initial covariance

Σ0 be strictly positive definite and scaled such that the algorithm moves at least a little

during the initial periodt0. Furthermore, by using the covariance matrix of the weights

to determine jumps to candidate states, interactions between the weights are automati-

cally accounted for, allowing the chain to move more efficiently through weight space.

However, although the AM algorithm has been successfully tested on problems with up

to 200 parameters (Haario et al., 2001), it has been noted byHaario et al. (2005), who

proposed a variation of the algorithm for high dimensional problems, that the AM algo-

rithm becomes less robust when applied to problems with greater than 50 parameters. As

the variation of the AM algorithm proposed byHaario et al.(2005) is based on updating

a single parameter at a time, this algorithm will not be considered in this research, since

the target function would need to be evaluated separately for each parameter, increasing

complexity and computational cost.

4.2.2 MCMC Methods Previously Applied to ANNs

When the MCMC methods discussed in Section 4.2.1 are applied to ANN training, the

generic parameterθ is substituted with the network weightsw and/or the hyperparameters{
σ2

w, σ2
y

}
. While the Gibbs sampler may be a convenient and simple way to sample the

hyperparameters, there appears to be no reasonable way of applying Gibbs sampling to

w, since the use of this method depends on the ability to easily sample from the full
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conditional distribution of one parameter, given the values of all other parameters and the

data, which is extremely messy and multimodal for ANN weights (Neal, 1996a). The

Metropolis algorithm, on the other hand, may be used to samplew; however, owing

to its random walk nature, many authors warn against the use of the simple Metropolis

algorithm for ANN training, as the generally high dimension ofw and the interactions

between the individual weights make this algorithm prohibitively slow (MacKay, 1995b;

Neal, 1996a;Rasmussen, 1996). A number of MCMC methods have been proposed for

training ANNs, of which the approach developed byNeal(1992, 1993, 1996a) is the most

widely advocated. In this approach, the hyperparameters are sampled using the Gibbs

sampler and the weights are sampled using the hybrid Monte Carlo (HMC) algorithm

of Duane et al.(1987), as mentioned in Section 2.3.4. In this algorithm, the stationary

distribution is defined byp(w|y) ∝ exp {−E(w)}, whereE(w) is referred to as the

potential energy function of the “position vector”w and is defined by (2.13). Each weight

is assigned a momentum variable, which collectively form the vectorv. Bothw andv are

updated together in a Metropolis step usingHamiltonian dynamics, where a jump tow∗

is determined largely by the momentumv, which is updated according to the gradient of

E(w). Therefore, successive jumps tend to be in the same direction, which overcomes the

random walk nature of simple Metropolis. The acceptance probability is employed to stop

movement when regions of low probability are reached, at which point the momentum is

altered until jumping can continue. The HMC method of Neal has been adopted in a

number of studies, including those ofRasmussen(1996),Vivarelli and Williams(1997,

2001),Husmeier et al.(1999),Vehtari et al.(2000) andLampinen and Vehtari(2001).

Müller and Rios Insua(1998) andRios Insua and M̈uller (1998) proposed a MCMC

method for training ANNs based on the reversible jump method ofGreen(1995). Using

this method, the model architecture is also treated as a variable parameter, which helps to

overcome inefficiencies due to multiple modes. At most,J∗ hidden nodes are considered

and indicatorsdj are associated with each nodej = 1, . . . , J∗ to determine whether

the nodes are included or not. If a nodej is included,dj = 1; otherwise,dj = 0.

A prior distribution is included on the indicators, which enables any number of hidden

nodesJ ≤ J∗ and favours parsimony. Additionally, the algorithm used to update the

weights treats the input-hidden weightsγ and the hidden-output weightsβ separately

(i.e. w = {γ, β}). This enables linearization of the model in terms ofβ and the matrix

of hidden node outputsZ, asy = βZ + β0, which in turn allows marginalisation over

β to compute a marginal likelihoodp(y|γ). It also enablesβ to be sampled using the

Gibbs sampler and allowsγ to be updated using the Metropolis algorithm, based only
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on the values of the hyperparameters. Combined with a variable model architecture, it is

claimed byMüller and Rios Insua(1998), that this algorithm allows for “fast and efficient

mixing over various local modes in the posterior distribution”.

de Freitas et al.(2000) proposed yet another sequential MCMC method to train ANNs.

This method is based on extended Kalman filter (EKF) weight updates, which incorporate

gradient information, and importance sampling, which is a precursor to the Metropolis

algorithm (Gelman et al., 2004). For each iteration of this algorithm, a sample ofn candi-

date weight vectorsw∗ is selected using an EKF step. These candidates are then assigned

corresponding importance ratios, calculated using the importance sampling method, and

each candidate is accepted based on the normalised importance ratios of the sample. If

a candidatew∗
i is not accepted,wt,i is selected by resampling a weight vector from the

setw∗
1, . . . ,w

∗
n based on its normalised importance ratio, such that vectors with larger

importance ratios end up with a greater number of copies in the samplewt,1, . . . ,wt,n. It

is claimed that this algorithm is an improvement over simple MCMC methods in terms of

computational time and accuracy (de Freitas et al., 2000).

Lee(2003) advocates the use of a simpler MCMC algorithm to those discussed above

and proposed a method similar, yet less complex, to that proposed byMüller and Rios In-

sua (1998). While this algorithm is also based on the linearization of the model in the

form of y = βZ + β0, which enablesβ to be sampled using the Gibbs sampler, it as-

sumes a non-variable architecture. A noninformative prior distribution in the form of

p(γ, β, σ2
y) ∝ 1/σ2

y on restricted weight space is also assumed, which significantly simpli-

fies the Metropolis step used to sampleγ. It was shown that this method was comparable

to the more complex MCMC algorithms applied to ANNs in terms of accuracy; however,

a noted disadvantage of the method is that weight regularisation is not incorporated and

overfitting may occur.

Recently,Liang (2005) proposed an evolutionary Monte Carlo (EMC) algorithm for

simultaneously training and selecting the complexity of an ANN by sampling from the

joint posterior of the weights and the network structure. Each connection in the network

is given an indicator function, which determines how effective the connection is. Collec-

tively, the indicator functions then determine the model structure; however, this requires

that a maximum number of hidden nodes be specified. The EMC algorithm involves using

genetic mutation and crossover operators to generate a new population of samples, which

are then accepted or rejected based on the Metropolis-Hastings rule. A disadvantage of

this algorithm is that it involves a number of user-defined parameters that may affect the

performance of the algorithm.

Page 148



Bayesian Training and Prediction – Section 4.2

4.2.3 Proposed Bayesian Training Approach

In this section, details of the Bayesian training approach proposed in this research are

presented, together with issues that require further investigation. The methods and de-

tails presented were selected based on a review of the available MCMC methods and

the approaches previously applied for ANN training, while keeping in mind that a major

objective of the proposed approach is simplicity.

4.2.3.1 Proposed Likelihood Function

Ideally, for a model to correctly describe a system, the model residuals should be inde-

pendently and identically distributed (i.i.d.) with zero mean and constant variance (i.e.

white noise) and should be independent of the model inputs. The likelihood function pro-

posed in this research is that given by (2.11), which makes the assumption that the model

residualsε correspond to additive, uncorrelated Gaussian noise in the observed response

data. This is a common choice forL(w), since its easy evaluation and few parameters (the

distribution is controlled by a single variance hyperparameterσ2
y) results in a simple anal-

ysis. However, apart from simplicity, there are other good reasons to assume a Gaussian

error model. Firstly, when the errors in the data are the sum of a large number of small

independent component errors, thecentral limit theoremstates that the distribution of the

errors should be approximately Gaussian (Bishop, 1995). Therefore, deviations from nor-

mality tend to indicate systematic errors which have been unaccounted for. Secondly, it

is often the case that data are roughly normally distributed, either in their original form or

in some simple transformation such as the logarithm (Box and Tiao, 1973); hence, if the

functional form of the model is appropriate, the residuals should also be roughly normally

distributed.

In many practical problems, the Gaussian residual model with fixed variance may be

inappropriate. As well as being subject to random disturbances in the response data, the

modelled outputs are affected by measurement and sampling errors in the input variables

and the lack of a correctly specified model. This may result in non-Gaussian residuals

and dependence between the residual variance and the inputs. Therefore, a more robust

choice forL(w) might be Student’st-distribution with unknown degrees of freedom, as

suggested byLampinen and Vehtari(2001), which has longer tails than the Gaussian

density, allowing it to accommodate occasional unusual observations. However, for sim-

plicity and consistency with standard Bayesian regression methods and the deterministic

error model used in this research (minimising the SSE is equivalent to maximising the

likelihood under the assumption of Gaussian residuals), the Gaussian likelihood function

Page 149



Chapter 4 – A New Bayesian Framework for ANNs

will be adopted. Transformations to approximate normality will be applied to the data if

necessary to help meet the assumptions of this error model (i.e. to decrease the effects of

outliers in the data - see Section 3.2.3.2).

4.2.3.2 Proposed Prior Distributions

In this research, three different forms ofp(w) will be investigated to determine the most

suitable prior distribution forw to use in the proposed Bayesian training approach. These

priors were selected by taking into account their simplicity, their effect on generalisability,

their provision of insight into the model, and how realistically they represent actual prior

knowledge of the weights. The different priors considered are described as follows:

Noninformative uniform prior: As ANN weights have no physical interpretation, little

can be known about the values of these parameters before observing the data. In

such cases, it is often recommended to choose anoninformativeprior distribution

that plays a minimal role in the posterior distribution (Lee, 1989). Such a prior

is said to ‘let the data speak for themselves’ as it does not restrict the estimation

of the posterior (Gelman et al., 2004). The use of a wide uniform prior distribu-

tion U(−a, a) specifies an equal likelihood of positive and negative values, but an

otherwise lack of prior knowledge about the values of the weights. The value of

a is fixed and is selected to incorporate a wide range of weight values for which

the likelihood may be appreciable. Therefore, this prior involves no variable hy-

perparameters, which results in the simplest MCMC training procedure. However,

a disadvantage of this prior is that, since the weights are effectively unrestricted,

no form of regularisation is incorporated into the training approach and overfitting

may occur. Nevertheless, as simplicity was of major importance in developing the

Bayesian training approach proposed in this research, this prior was considered re-

gardless of the fact that it does not incorporate weight regularisation.

Hierarchical prior: As an alternative to the use of a noninformative prior to define the

lack of prior knowledge about the weights, a hierarchical prior distribution, gov-

erned by unknown hyperparameters, may be used. The hyperparameters are then

given rather noninformative hyperprior distributions which allows their values, and

hence the prior distribution, to be determined from the data, as discussed in Sec-

tion 2.3.4.1. To reiterate, a suitable form of hierarchical prior forw is given by

(2.15), which is the product ofG independent normal distributions, defined by zero

means and different variance hyperparametersσ2
w1

, . . . , σ2
wG

, whereG is the num-

ber of weight groups considered. This type of prior is consistent with regularisation
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theory, allowing unnecessary connections to have smaller weights. It is also con-

sistent with the fact that the values of the weights have an equal likelihood of being

positive or negative and have a finite variance. Four weight groups were consid-

ered, corresponding to the input-hidden layer weights, the hidden layer biases, the

hidden-output layer weights and the output biases, as this is generally the minimum

requirement for suitable regularisation (Sarle, 2002).

ARD prior: Using the automatic relevance determination (ARD) method ofMacKay

(1995a) andNeal(1996a), the hierarchical prior discussed above is employed; how-

ever, the input-hidden layer weights are further divided into groups associated with

each input variable, such that the weights on connections exiting an input have a

prior distribution controlled by a hyperparameter associated with that input. Thus,

the number of weight groups and, hence, the number of hyperparameters consid-

ered isK +3, whereK is equal to the number of inputs. Since the hyperparameters

determine how closely the weights are distributed about the zero mean, the use of

this form of prior enables the relevance of each input to be determined automati-

cally from the data as the values of the hyperparameters are adapted (Neal, 1996a).

In terms of realistically describing prior knowledge of the weights, the ARD prior

can be considered correct, given the knowledge that some inputs may be less rel-

evant than others. However, of the prior distributions investigated in this research,

this prior results in the most complex MCMC training method, as it involves the

greatest number of hyperparameters, for which hyperprior distributions must also

be specified.

Neal (1996a) applied the following three levels of ARD prior to a number of test

cases to demonstrate that ARD was indeed able to suppress the values of weights

associated with irrelevant inputs:

• No ARD - corresponding to the hierarchical prior described above.

• 1-level ARD - all hyperparameters were independently given rather vague hy-

perpriors.

• 2-level ARD - an additional level of hierarchy was used, where atop-levelhy-

perparameter, common to all inputs, was used to control the lower level input-

hidden weight hyperparameters. The top-level hyperparameter was given a

very vague hyperprior, while lower level hyperpriors were less vague.

It was also shown that, in some cases, the use of ARD could lead to an improvement

in predictive performance.Husmeier et al.(1999) extended this investigation by
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applying the three levels of ARD priors to five different benchmark data sets in

order to compare the resulting predictive performances of the models developed and

evaluate the efficiency of the ARD scheme. However, the study was inconclusive,

since each level of ARD prior resulted in at least one best and one worst solution

for the different benchmark data sets, and no prior ever obviously resulted in better

performance than the others. However, it was confirmed that the use of either 1-

level or 2-level ARD resulted in the suppression of irrelevant input-hidden weights.

Since the 2-level ARD prior results in an increase in complexity, yet, provided no

obvious advantages in the comparisons, only 1-level ARD will be considered in this

research.

4.2.3.3 Proposed Hyperprior Distributions

For the likelihood and prior distributions considered in this research, the hyperparameters

(e.g. σ2
y andσ2

w =
{
σ2

w1
, . . . , σ2

wG

}
) are all Gaussian variances. A suitable prior for the

Gaussian variance is the scaled inverse chi-squared distributionχ−2(ν0, S0), whereν0 and

S0 are degrees of freedom and scale parameters, respectively, chosen to express the level

of prior knowledge (Lee, 1989). This is a naturalconjugate priorto the Gaussian likeli-

hood, which means that, for this likelihood, the posterior distribution will have the same

parametric form as the prior. Recall that the full conditional distributions ofσ2
w andσ2

y

are given by (2.19) and (2.20), respectively. Generating samples from these distributions

is relatively easy if conjugate priors are chosen, since it is then known thatp(σ2
y|w,y)

andp(σ2
wg
|wg) are also scaled inverse chi-squared distributions, given by:

p(σ2
y|w,y) ∼ χ−2

(
ν∗
y = ν0

y + N, S∗
y =

S0
yν

0
y + SyN

ν0
y + N

)
(4.13)

p(σ2
wg
|wg) ∼ χ−2

(
ν∗
wg

= ν0
wg

+ dg, S
∗
wg

=
S0

wg
ν0
wg

+ Swgdg

ν0
wg

+ dg

)
(4.14)

respectively, whereSy is equal to
∑N

i=1(yi − f(xi,w))2/N , Swg is equal to
∑dg

i=1 w2
i /dg,

N is the number of training samples anddg is the dimension of thegth weight group.

Draws from these distributions may be easily obtained by samplingX from theχ2
ν∗ dis-

tribution and lettingσ2 = ν∗S∗/X.

To enableσ2
y andσ2

wg
to be determined from the data, it is necessary that the respec-

tive hyperpriorsp(σ2
y) andp(σ2

wg
) are rather noninformative. In general, the smallerν0 is

relative toN anddg, the less informative is the scaled inverse chi-squared prior distribu-

tion (Gelman et al., 2004). This can be seen in Figure 4.3, which shows thatS0 affects the

Page 152



Bayesian Training and Prediction – Section 4.2

 

0.00 

0.05 

0.10 

0.15 

0.20 

0.25 

0.30 

0.0001 0.001 0.01 0.1 1 10 100 

S0 = 0.005 
S0 = 0.01 
S0 = 0.1 
S0 = 0.5 
S0 = 1 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.0001 0.001 0.01 0.1 1 10 100 

ν0 = 0.01 
ν0 = 0.1 
ν0 = 1 
ν0 = 5 
ν0 = 10 

σ2 

σ2  ×
 p

(σ
2 ) 

σ2  ×
 p

(σ
2 ) 

σ2 

(b) (a) 

Figure 4.3 Effect of (a) scaleS0 and (b) degrees of freedomν0 on the scaled inverse chi-

squared distributionχ−2(ν0, S0).

location of the scaled inverse chi-squared distribution, whileν0 affects the scale. Details

of the hyperpriors are typically uncritical unless extreme or unrealistic values are chosen

for their modes (Husmeier et al., 1999); however, bothNeal(1996a) andHusmeier et al.

(1999) caution that the use of very vague priors may slow convergence of the MCMC

sampling procedure, which may lead to poor predictive performance if the posterior has

not been adequately sampled.

4.2.3.4 Proposed MCMC Sampling and Prediction Approach

Given the advantages of the AM algorithm over the more straightforward MCMC sam-

pling procedures (e.g. the random walk Metropolis algorithm), and its simplicity in

comparison to some of the more complex methods discussed in Section 4.2.2, the AM

algorithm will be employed to sample the weight vectors in the proposed MCMC sam-

pling approach. Furthermore, since the use of conjugate hyperprior distributions enables

straightforward sampling from the full conditional distributions of the variance hyperpa-

rameters, the Gibbs sampler will be employed to sample the hyperparameters. Therefore,

the proposed MCMC Bayesian training approach follows a two-step iterative procedure,

where, in the first step, the hyperparameters
{
σ2

y, σ
2
w

}
are held constant while the weight

vectorw is sampled fromp(w|σ2
w, σ2

y,y) using the AM algorithm, while, in the second

step,w is held constant whileσ2
y andσ2

w are sampled their respective full conditional dis-

tributions (given by (4.13) and (4.14), respectively) using the Gibbs sampler. This is con-

sistent with the MCMC approach used byNeal(1996a) and discussed in Section 2.3.4.2,
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except that the complicated HMC algorithm has been substituted with the much simpler

AM algorithm. Due to the simplicity of both the AM algorithm and the Gibbs sampler,

programming errors are less likely in the implementation of this algorithm than if a more

complex approach was used.

To initialise the training procedure, arbitrary values ofw0, σ2
y,0, σ2

w,0 andΣ0 are re-

quired. Appropriate values ofσ2
y,0 andσ2

w,0 areSy andSw, respectively, which define the

location of the prior distributions for these hyperparameters.Haario et al.(2001) suggest

using maximum likelihood estimates ofw, which give a rough estimate of the location of

the posterior distribution, to avoid the AM algorithm starting slowly. Not only does this

increase convergence speed, but these values provide a useful check of the accuracy of the

Bayesian training algorithm. Therefore, in this research,w0 was set equal to the deter-

ministic estimatêw obtained by minimising the SSE (see Chapter 3).Haario et al.(2001)

also suggest that ifΣ0 is chosen to approximate the covariance of the target distribution,

the AM algorithm will be more efficient during the initial stages of the simulation. An ap-

proximation of the posterior covariance is described byMacKay(1995a), which involves

evaluating the Hessian matrix of the regularised error function, given by (2.13). However,

as discussed in Section 2.2.5.3, this Hessian matrix is often ill-conditioned, resulting in a

(nearly) singular covariance matrix. This, in turn, can cause instability of the AM algo-

rithm, as use of the recursion formula (4.12) means that the covariance is updated based

on an initial ill-conditioned matrix. Nevertheless, for the AM algorithm, the only actual

requirements for the choice ofΣ0 are that it is positive definite and allows the algorithm

to move at least a little in the initial fixed covariance stage. Therefore, in the proposed

implementation,Σ0 is defined by:

Σ0 = c2 ×


σ2

w1,0 0 · · · 0

0 σ2
w2,0 · · · 0

...
...

...
...

0 0 · · · σ2
wd,0

 (4.15)

Gelman et al.(2004) give a number of recommendations for achieving optimal efficiency

using a multinormal proposal distribution centred on the current weight state with the

same shape as the target distribution, such as that used by the AM algorithm. One of

these is that the optimal jumping rule has an acceptance rate of approximately23% (for

dimensiond > 5), with the most efficient scaling parameter beingc ≈ 2.4/
√

d. Gelman

et al. (2004) also recommend that this scaling parameter should be tuned up or down if

the acceptance rate is too high or low, respectively. However, since the AM algorithm

already incorporates an adaptation strategy, in this research,c will only be tuned in the
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initial part of the simulation, which is particularly important to ensure that sufficient states

are accepted whenΣ0 is fixed.

The algorithm is run for sufficient iterations,tF , firstly, to achieve convergence to

the stationary distribution and secondly, to sample enough weight states following con-

vergence to provide an adequate representation of the posterior distribution. However,

weight states simulated prior to when convergence is reached att = tb << tF will still

be influenced by the initial distribution, rather than the posterior distribution; therefore,

these simulations are discarded. The practice of discarding early iterations is commonly

referred to asburn-in. A conservative choice for the burn-in period is half of the total it-

erations (i.e.tF /2) (Gelman et al., 2004). The remainder of the simulations (or a smaller

representative subset) are used as the basis for making Monte Carlo estimates from the

predictive distribution of a data set. In this research, the predictive distribution will be

summarised by 95% prediction limits, which are useful for the visualisation of prediction

uncertainty, and the mean predictions, which enable a direct comparison of predictive per-

formance with that of a deterministic ANN (i.e. an ANN based on single valued weight

estimates).

Given the above considerations, the full Bayesian training procedure used in this study

was carried out as follows:

1. Setw0 = ŵ; σ2
y,0 = S0

y; σ2
w,0 = S0

w and evaluate

log p∗0(w0|y) =
[
log L(w0|σ2

y,0) + log p(w0|σ2
w,0)
]
. InitialiseΣ0 according to (4.15)

2. For t = 1, 2, . . . , tF

(a) If t ≤ t0,

let Σt = Σ0

(b) Sample a candidatew∗ from Q(w∗|wt−1) = N(wt−1, Σt)

(c) Evaluate

log p∗t (w
∗|y) =

[
log L(w∗|σ2

y,t−1) + log p(w∗|σ2
w,t−1)

]
,

and calculate

α(w∗|wt−1) = min
{
exp

[
log p∗t (w

∗|y)− log p∗t−1(wt−1|y)
]
, 1
}

(d) Generateu from U(0, 1), and ifu ≤ α(w∗|wt−1),

setwt = w∗,

otherwise,

setwt = wt−1

(e) Sampleσ2
y,t from p(σ2

y,t|wt,y) = χ−2
(
ν∗
y, S

∗
y

)
andσ2

w,t from

p(σ2
w,t|wt) = χ−2 (ν∗

w, S∗
w)
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(f) If t = t0,

calculateΣt+1 = c2cov (w0,w1, . . . ,wt0) + c2eId, where

cov (w0,w1, . . . ,wt0) = 1
t0

(∑t0
i=0 wiw

T
i − (t0 + 1)wt0w

T
t0

)
,

resetc = 2.4/
√

d

else ift > t0,

calculateΣt+1 according to (4.12), substitutingw for θ

3. Discard initial samples(w0, σ
2
y,0, σ

2
w,0), . . . , (wtb , σ

2
y,tb

, σ2
w,tb

) to diminish the ef-

fects of the initial distribution. Use samples
{
wtb+1, σ

2
y,tb+1, σ

2
w,tb+1

}
, . . . ,{

wtF , σ2
y,tF

, σ2
w,tF

}
for analysis.

4. For i = 1, 2, . . . , Ntestset

(a) calculate the network predictionsyi,tb+1, . . . , yi,tF based onwtb+1, . . . ,wtF

and input vectorxi.

(b) Rank predictionsyi,tb+1, . . . , yi,tF in ascending order and determine95% sim-

ulation limits.

(c) Calculate mean prediction

ȳi = 1/(tF − tb)
∑tF

t=tb+1 yt.

4.2.3.5 Diagnosing and Improving Convergence

The most critical issue associated with MCMC simulations is determining when conver-

gence to the posterior distribution has been achieved. Due to the generally high dimension

of w and the correlations between individual weights, convergence to the posterior weight

distribution is usually relatively slow, as mentioned in Section 4.2.2. Multiple chains can

be used to more widely explore the weight space and help to speed convergence to the

posterior distribution. Furthermore, multiple chains can be used to reveal problems with

convergence that cannot be seen by looking at a single chain (Kass et al., 1998). There-

fore, in this research, a number of parallel chains are simulated simultaneously using the

MCMC approach discussed above.

Gelman et al.(2004) recommend that the multiple chains should be initialised with

starting points drawn from a distribution believed to be overdispersed with respect to

the posterior distribution. However, to verify, or feel confident, that the points are in

fact overdispersed requires knowledge of the posterior distribution. Approximating the

posterior would generally involve evaluation of the Hessian matrix at the posterior mode,

which, as discussed, may be near singular for an ANN. Therefore, it is proposed that
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the multiple chains are each initialised at the maximum likelihood estimateŵ. As the

posterior distribution of ANN weights is often multimodal, it is acknowledged that this

initialisation may bias the resulting posterior distribution if the algorithm becomes trapped

in the vicinity of the local mode. However, it is hypothesised that the bias that may be

caused by this initialisation may be decreased if, for an initial periodtσ2
0
, σ2

y andσ2
w are

fixed in such a way that would allow the simulated chains to move more freely about

the weight space during this period. For example, ifσ2
y was to quickly adapt to some

value close tôσ2
y, whereσ̂2

y results in the (locally) maximum likelihood value, given̂w,

only small jumps around̂w would be accepted, making it difficult to move away from

the initial location. However, by fixingσ2
y > σ̂2

y such that the magnitude of the initial

likelihood is somewhat reduced, but the scale is increased, the acceptance rate of weight

vectors further fromŵ would be increased. To ensure that the weights are not restricted

during this period, it would also be important to fixσ2
w = 1. The effects that fixingσ2

y

andσ2
w have on the ability of the MCMC training algorithm to escape a local minimum

will be investigated in this research.

Müller and Rios Insua(1998) andNeal (1993, 1996b) discuss the multimodality of

ANN posterior distributions at length, as well as methods for efficiently sampling from

such distributions. While many of these “mode hunting” schemes are relatively compli-

cated, a rather straightforward simulated annealing method is discussed byNeal (1992,

1993). Using simulated annealing, the Metropolis acceptance probability is modified as

follows:

α(w∗|wt−1) = min

{
exp

[
log p∗t (w

∗|y)− log p∗t−1(wt−1|y)
]

T
, 1

}
(4.16)

whereT is referred to as thetemperature. Therefore, the sampled weight vectors asymp-

totically represent the distributionp∗(w|y)/T (Bishop, 1995). The idea is that forT >>

1, the MCMC sampling procedure may explore the weight space much more freely, allow-

ing it to converge to its stationary distribution more quickly and to escape local minima.

The process is started at a high initial temperatureT , which is gradually cooled (reduced)

throughout the simulation until it reachesT = 1, wherep∗(w|y)/T represents the desired

target distribution. It is hoped that, as the temperature is reduced, the algorithm will settle

into a region of high posterior probability. This process is illustrated in Figure 4.4, which

shows a multimodal distributionp∗(w|y)/T that may be sampled from relatively freely,

given thatT is large, but is represented by two disjointed modes whenT = 1. The suc-

cess of simulated annealing, however, depends on whether or not the distribution at higher

temperatures is a good guide to the distribution at lower temperatures; therefore, good re-
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T = 1 

T >> 

Tp /)|(* yw

Figure 4.4 The effect of different temperaturesT on the distributionp∗(w|y)/T using sim-

ulated annealing.

sults cannot be guaranteed in all cases (Neal, 1993). The effect of simulated annealing on

convergence will also be investigated in this research.

There are numerous diagnostic tools available to help determine whether or not an

MCMC sampling procedure has converged, many of which are reviewed byCowles and

Carlin (1996) andBrooks and Roberts(1998). However, caution is needed when using

any of these tools because, in general, although the diagnostics may often succeed at de-

tecting convergence failure, they may also fail at doing this (Cowles and Carlin, 1996).

The most commonly used diagnostics of convergence are trace plots of sample MCMC

values versus iteration (Kass et al., 1998). Traces of various important quantities, such as

log posterior probability, log likelihood, log prior probability, and important hyperparam-

eters, can be visually inspected to determine when or whether approximate convergence

has been reached. For example, as stated inKass et al.(1998), if the log posterior proba-

bility is increasing, the main mode has yet to be reached, whereas if it is decreasing, the

algorithm was initialised near a tall, narrow mode and is moving towards a more repre-

sentative part of the distribution. Therefore, it can be assumed that convergence has been

reached when this plot flattens out. By overlaying traces obtained by different chains on a

common graph, it is generally easier to detect convergence or failure thereof. However, a

limitation of MCMC posterior simulation, particularly when applied to multimodal prob-

lems like ANNs, is that it can never be guaranteed that convergence to the true posterior

has been obtained, as there may still be modes that have been undiscovered.
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4.3 BAYESIAN MODEL SELECTION

As discussed in Section 2.3.5, Bayesian model selection (BMS) involves the comparison

of a set ofH competing models{Hi; i = 1, . . . , H} based on the posterior probability

that each modelHi is the “true” model of the system, given the observed data, which

is calculated by (2.21). When the prior probabilities assigned to the different models

are approximately equal, as is generally the case, this simplifies to (2.22), which states

that the relative probabilities of the competing models can be compared based on their

evidencep(y|H). The evidence of a model can be evaluated by the integral given by

(2.6); however, except for the simplest of models, this integral is analytically intractable.

Therefore, alternative methods are needed to estimatep(y|H). A number of methods have

been proposed for this (Gelfand and Dey, 1994;Kass and Raftery, 1995); however, given

that MCMC posterior simulation is used for the proposed Bayesian training approach,

only methods for estimatingp(y|H) based on sampled draws from the posterior will be

considered in this research.

4.3.1 Computation of Evidence via Posterior Simulation

While this section by no means provides an exhaustive discussion of methods available

for approximating the evidence based on sampled draws from the posterior distribution

(DiCiccio et al. (1997) gives a review of such methods), several methods with general

applicability, which use samples from the posterior directly, are described. These meth-

ods include the Newton-Raftery estimator (Newton and Raftery, 1994), the Gelfand-Dey

estimator (Gelfand and Dey, 1994) and the Chib-Jeliazkov estimator (Chib and Jeliazkov,

2001).

4.3.1.1 Newton-Raftery Estimator

The Newton-Raftery estimator forp(y|Hi) is based on sampled draws from the posterior

distribution and importance sampling. Importance sampling is a useful method for com-

puting the expectation of a function using samples generated from a densityQ∗, known as

the importance sampling function(Geweke, 1989;Newton and Raftery, 1994). In terms

of a model’s evidence, it can be used to provide an estimate of the integral in (2.6) in the

form of:

p̂(y|H) =

∑ns
i=1 qip(y|θi,H)∑ns

i=1 qi

(4.17)

wherens is the number of samples generated fromQ∗ andqi = p(θi)/Q
∗(θi).
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When the samples are drawn from the posterior distribution ofθ, the importance sam-

pling function isQ∗ = p(y|θ,H)p(θ|H)/p(y|H), which, when substituted into (4.17),

gives the estimator:

p̂(y|H) =

{
1

ns

ns∑
i=1

p(y|θi,H)−1

}−1

(4.18)

which is the harmonic mean of the likelihood values. Asns →∞, this estimate converges

to the correct value. However, although (4.18) is very easy to calculate, it is unstable, with

occasional values of small likelihood having a large effect on the final result (Newton

and Raftery, 1994). Therefore,Newton and Raftery(1994) proposed that the importance

sampling function be a mixture of the prior and posterior densitiesQ∗ = δp(θi|Hi) +

(1 − δ)p(θi|y,Hi), where0 < δ < 0.5 such that the estimator is based mostly on high

likelihood values ofθ. This estimator overcomes the instability of that given by (4.18)

and, asns → ∞, also converges to the correct value. However, this method has the

disadvantage that the prior must be sampled from, as well as the posterior.

4.3.1.2 Gelfand-Dey Estimator

Gelfand and Dey(1994) also proposed a modification of the harmonic mean estimator

given by (4.18). The Gelfand-Dey estimator is given by:

p̂(y|H) =

{
1

ns

ns∑
i=1

τ(θi)

p(y|θi,H)p(θi|H)

}−1

(4.19)

whereτ(θ) is any proper density, which is sometimes called atuning function(Chib,

1995) and plays the role of the importance sampling function. This is an unbiased and

consistent estimator ofp(y|H), which is stable, provided the tails ofτ(θ) are sufficiently

thin to prevent occasional small likelihood values from significantly influencing the fi-

nal estimate. Furthermore, for̂p(y|H) to have a small variance,τ(θ) must be similar to

p∗(θ|y,H) = p(y|θ,H)p(θ|H) (DiCiccio et al., 1997). A natural choice forτ(θ) would

therefore be a multivariate normal with mean and covariance computed from the sampled

draws from the posterior distribution{θ1, . . . , θns} (Gelfand and Dey, 1994). In a com-

parison of the Gelfand-Dey and Newton-Raftery estimators for selecting an appropriate

annual rainfall model,Frost (2004) found the Gelfand-Dey estimator to be more accurate

and consistent between simulations than the Newton-Raftery estimator.
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4.3.1.3 Chib-Jeliazkov Estimator

By rearranging the general Bayes’ theorem expression given by (2.5) and taking the log-

arithm at some fixed point̂θ, the following expression forlog p(y|H) is obtained:

log p(y|H) = log p(y|θ́,H) + log p̂(θ́|H)

− log p(θ́|y,H) (4.20)

Thus, if θ̂ is a sampled draw from the posterior, the only unknown in this equation is

log p(θ̂|y,H). The estimator proposed byChib and Jeliazkov(2001) is based on es-

timating the posterior density at a single pointθ́ sampled from the posterior using the

Metropolis-Hastings algorithm (see Section 4.2.1.1), in order to solve (4.20). This is

done using the following equation:

p(θ́|y,H) =
ns−1

1

∑ns1

i=1 α(θ́|θi)Q(θ́|θi)

ns−1
2

∑ns2

j=1 α(θj|θ́)
(4.21)

whereθi are sampled draws from the posterior distribution,θj are sampled draws from

the proposal distributionQ(θi|θ́) used by the Metropolis-Hastings algorithm andα(·) is

given by (4.4).Chib and Jeliazkov(2001) note that while the choice ofθ́ is arbitrary, for

estimation efficiency it is appropriate to choose a point that has high posterior density.

Furthermore, they state that althoughns1 andns2 may be different, in practice they are

set to be equal (i.e.ns = ns1 = ns2). In a study conducted byMarshall et al.(2005), the

Chib-Jeliazkov estimator was used for selecting the appropriate level of complexity for

a conceptual rainfall-runoff model, given MCMC samples from the posterior parameter

distributions of various competing models. Using synthetically generated data, it was

shown that this estimator was able to successfully identify the model by which the data

were generated as having the highest evidence.

4.3.2 Bayes Factors

The evidence ratio of a pair of competing models is known as theBayes’ factor(BF ),

defined by:

BFj,k =
p(y|Hj)

p(y|Hk)
, (4.22)

which is interpreted as the evidence of modelHj in favour of modelHk. Regardless of

the value of the prior odds (i.e. the prior probability ofHj in favour ofHk), the Bayes

factor is the ratio of the posterior odds ofHj to its prior odds, given by:

BFj,k =
p(Hj|y)

p(Hk|y)
÷ p(Hj)

p(Hk)
(4.23)
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likelihood is large should only have a small impact on Bayes factors. An advantage of

using hierarchical priors is that a subjective choice of prior distribution is not required, as

it is determined by the data.

4.3.3 BMS Previously Applied to ANNs

Although not in relation to ANNs,Berger and Rios Insua(1998) stated that the Bayesian

approach to model selection is less widely used than the Bayesian approach to parameter

estimation in hydrological applications. This is also true in the case of ANNs, where, apart

from the evidence approach ofMacKay(1992a, 1995a) and the automatic model selection

methods proposed byMüller and Rios Insua(1998) andLiang (2005), there have been

very few applications of BMS, particularly using methods relying on sampled draws from

the posterior weight distribution.Neal(1993) discusses a number of methods for estimat-

ing the Bayes factor based on posterior simulation in terms of “free energy estimation”,

as proposed in the statistical physics literature. All of these methods, however, require

analytical effort to tailor them to a particular application (Kass and Raftery, 1995). Later,

Neal (1994, 1996a) advocated the use of ANN models with unrestricted complexity and

suitably chosen hierarchical prior distributions to prevent overfitting, thereby ignoring the

problem of model selection.

Lee (2001) proposed a BMS approach using the Metropolis-Hastings algorithm to

sample from the model space (where the free parameters included inputs and hidden

nodes) in order to find models with high posterior probability. To do this, minus half

the BIC, given by (3.8), was used to approximatelog p(y|Hi) for each of the models

visited by the Metropolis-Hastings algorithm, as it has been shown that (Schwarz, 1978):

p(y|H) = exp

(
−1

2
BIC

)
+ OP (1) (4.24)

While this may not seem to be a great approximation (since the errorOP (1) does not

decrease for a large sample sizeN ), the BIC has been shown to be asymptotically con-

sistent for model selection and has been found to work well in practice (Lee, 2001).

The acceptance probability used for the Metropolis-Hastings algorithm was, therefore,

α(H∗|Ht−1) = min {1, exp(−1/2BIC∗ + 1/2BICt−1)}. However, while MCMC was

used to sample from the model space, this method did not use samples from the posterior

weight distribution. Instead, a standard algorithm was used to train each of the sampled

models and MCMC was only used at the end of the process to estimate the posterior

weight distribution for the best selected model. However,Lee (2002) then compared a

number of methods for approximatingp(y|H) based on sampled draws from the poste-
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rior distribution, together with the BIC approximation. The methods were applied to two

data sets: one real and one simulated. Overall, all of the methods had difficulty in ap-

proximatingp(y|H), particularly on the real data, where the methods did not agree at all.

It was found that the sample-based methods (i.e. all methods except the BIC) were very

sensitive to the MCMC sample, showing highly variable results for a given model size,

based on different MCMC samples. It was concluded that the BIC, which was able to

correctly indicate the best model structure for each data set, was reasonably stable and

reliable and was apparently a more useful approximation for standard data set sizes than

methods based on MCMC samples.

Vehtari and Lampinen(2002) proposed a framework for using the “expected utilities”

of two models for model comparison. If the utility of a model is the posterior predictive

distribution ofy given inputxi, in other words the utility of a model is a measure of how

good its predictions are,Vehtari and Lampinen(2002) suggested that the expected utility

can then be used to assess how good the model is. Importance sampling was employed to

estimate the leave-one-out predictive densities for a given model, which were then used

to calculate the expected utility of the model and the expected utility distribution. The

difference between the expected utilities of two modelsHj andHk can be used for model

selection, where the expected utility distributions of the models are used to determine the

probability that the expected utility ofHj is greater than that ofHk.

4.3.4 Proposed BMS Framework

4.3.4.1 Evaluating the Evidence

In this research, three methods will be investigated for their ability to estimatep(y|H).

These include the Gelfand-Dey (G-D) and Chib-Jeliazkov (C-J) estimators described in

Sections 4.3.1.2 and 4.3.1.3, respectively, since these estimators have been used success-

fully for hydrological model selection (Marshall et al., 2005;Frost, 2004), as well as a

BIC approximation, sinceLee(2002) found the BIC to be a more stable approximation

than sample-based methods. The G-D, C-J and BIC estimators are easy to program and

only require a relatively simple step after training with MCMC. The Newton-Raftery es-

timator, on the other hand, is more difficult to apply, since sampled draws from the prior

distribution are required, as well as sampled draws from the posterior. Therefore, this

method is not considered further in this research.

Each of the estimators investigated has relative merits over the others. The G-D esti-

mator uses sampled draws directly and requires no further samples to be generated from

any other distribution. It has also been shown to be very accurate, provided that the tun-
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ing functionτ is chosen appropriately (Kass and Raftery, 1995). However, this method

may also produce very poor results given a bad choice ofτ . Nevertheless, this estima-

tor seems well suited for application in conjunction with AM training. For good results

with the G-D estimator,τ should be chosen so that it approximates the posterior distri-

bution and, since the proposal distribution is adapted towards the posterior throughout

the AM simulation, a good choice forτ is determined automatically. Therefore, in this

research,τ(wi, σ
2
y, σ

2
w) = Q(wi|w̃) = N(w̃, Σf ), wherew̃ is the median of the posterior

distribution andΣf is the value covariance of the proposal (estimated by (4.12)) at the

final iteration of the AM algorithm. If values ofp(y|wi, σ
2
y,H)p(wi|σ2

w,H) are recorded

throughout the AM simulation, onlyτ(wi) requires evaluation fori = 1, . . . , ns in order

to calculatêp(y|H).

The C-J estimator has an advantage over the G-D method in that a tuning function is

not required. However, samples are required from the proposal distribution, as well as

from the posterior. This step is simple, since sampling from the proposal is carried out

throughout the AM simulation; however, it increases the computational cost of the overall

algorithm. Furthermore, evaluation ofα(ẃ|wi), Q(ẃ|wi) andα(wj|ẃ) are required for

i, j = 1, . . . , ns in order to calculatêp(y|H). In this research,́w was set equal to the

median of the posterior distributioñw.

For the proposed BIC estimator,−1/2BIC values are evaluated for sampled weight

vectorsw1, . . . ,wns, resulting in a distribution of−1/2BIC values, which roughly ap-

proximates a distribution of̂p(y|H) values. This is different to the BIC approximation

used byLee(2002), where only a single−1/2BIC value was evaluated for each network.

Although it was shown in Chapter 3 that the in-sample BIC was a promising model se-

lection tool, it was also concluded that, when applied deterministically, its value could be

sensitive to the weights obtained; thus, affecting the results. By evaluating the−1/2BIC

distribution, this variability is accounted for. The−1/2BIC is given by:

− 1

2
BIC = log p(y|wi, σ

2
y,H)− d

2
log N (4.25)

whered is the dimension ofw andN is the size of the training data set. If the likeli-

hood valuesp(y|wi, σ
2
y,H) are recorded throughout the AM simulation, subtraction of

the constantd
2
log N from each log likelihood value is all that is required to evaluate the

distribution for p̂(y|H). This distribution can then be used to evaluate a meanp̂(y|H)

value for use in Bayes factor calculations. This is much simpler than either the G-D or

the C-J estimators; however, it is not expected to be as accurate due to the error in (4.24).
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4.3.4.2 Checking Bayes Factors with Posterior Weight Distributions

As discussed inDiCiccio et al.(1997) andLee(2002), it can be difficult to obtain accurate

estimates ofp(y|H) based on posterior simulations, particularly in the case of ANNs.

Therefore, in this framework, it is proposed that the Bayes factors calculated using the

approximated evidence values be used as a guide for model selection, but a final check of

the model rankings be carried out using the posterior weight distributions. If the marginal

posterior distribution of a hidden-output layer weight includes the value zero within the

95% highest density region, this suggests that the associated hidden node may be pruned

from the network, with a 95% level of confidence that model performance will not be

affected. If there are more than one hidden-output layer weights with marginal posterior

distributions that include zero within the 95% highest density region, scatter plots of pairs

of these weights should be inspected to determine whether the joint distribution of the

weights passes through the origin (0,0), which would indicate that both weights in the

pair, and the corresponding hidden nodes, may be pruned from the network. Otherwise,

if the joint distribution does not pass through (0,0), only one of the hidden nodes may

be pruned. This is illustrated in Figure 4.5, which shows two different examples of a

pair of hidden-output layer weights for which the marginal posterior distributions include

zero within the 95% highest density regions. In the example shown in Figure 4.5 (a), the
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Figure 4.5 Examples of a pair of hidden-output layer weights with marginal posterior dis-

tributions that include zero within the 95% highest density regions, where (a) the joint distri-

bution passes through (0,0) and (b) where it does not.
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scatter plot of hidden-output weight 1 versus hidden-output weight 2 passes though (0,0),

indicating that both hidden nodes are unnecessary in the model. However, in the example

illustrated in Figure 4.5 (b), the scatter plot does not pass through the origin, indicating

that at least one of the hidden nodes in the pair is necessary. In this research, histograms

of the hidden-output weight probability density functions were constructed, from which

the 95% highest density regions were estimated.

4.4 FINE-TUNING AND ASSESSMENT OF BAYESIAN TECHNIQUES

WITH SYNTHETIC DATA

4.4.1 Bayesian Training and Prediction

Fine-tuning of the proposed Bayesian training and prediction method involved selection

of the user-defined parameters for the AM/Gibbs sampler algorithm, determination of the

most appropriate form of prior distribution and investigation and recommendation of the

best way to improve convergence of the algorithm. Investigations were carried out on

synthetic data sets I, II, and III, described in Section 3.4.1.

4.4.1.1 User-Defined Parameters

The user-defined parameters required for the basic AM/Gibbs sampler algorithm (exclud-

ing additional parameters required for improving convergence) include the hyperprior

parametersSw, νw, Sy, andνy; the number of chains simulated; the adaptive scaling

parameterc; the total number of iterationstF ; the number of burn-in iterationstb; and

the initial fixed periodt0. Values of these parameters were selected primarily based on

recommendations or typical values used in the Bayesian ANN literature and then were ad-

justed, if necessary, to suit the application of the proposed Bayesian training framework

on the synthetic data sets. Although the number of iterations required for convergence

is highly problem dependent, the number of iterations necessary to achieve approximate

convergence was investigated when the proposed MCMC algorithm, using the hierarchi-

cal prior distribution (since it results in intermediate complexity), was used to train the

2-, 6- and 10-hidden node networks applied to data set II (since this was considered to

have intermediate nonlinearity and noise properties of the data sets considered), in order

to provide a rough guide for the other data sets and network sizes.

The hyperprior parameters were selected based on those used byNeal (1996a). For

the input-hidden layer weights and the hidden layer biases,Sw = 0.01 andνw = 0.1.

For the hidden-output layer weights,Sw = ( 1
100J

)2, whereJ is the number of hidden
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layer nodes, andνw = 0.1. A fixed Gaussian prior withσ2
w = 1 was used for the output

bias. For the noninformative uniform prior distribution, the lower and upper bounds of

the distribution were set to -100 and 100, as it was considered that this range would easily

incorporate all of the possible weight values (although it does not account for cases where

the weights can take any real value due to correlations between the weights). It was de-

cided to simulate four parallel chains based on the number of chains generally used by

Cowles and Carlin(1996), which is between 3-5. The maximum number of iterations

used byHaario et al.(2001) andMarshall et al.(2004) for the AM algorithm was 80,000

and 100,000, respectively. However, in each of these studies, only fairly low dimensional

problems were considered (no greater than a dimension of 8). For the higher dimensional

problems considered in this research, it was expected that the AM algorithm would take

longer to converge; therefore,tF was initially set to 400,000. Traces of the log prior den-

sity (log p(w|σ2
w)), the log likelihood (log L(w|σ2

y)) and the log unnormalised posterior

density (p∗(w|y) = log L(w|σ2
y) + log p(w|σ2

w)) were then inspected to determine when

or whether convergence had been reached for the 2-, 6- and 10-hidden node ANNs ap-

plied to data set II. The number of burn-in iterationstb was then determined from these

plots based on the point when the traces became approximately flat. The adaptive scaling

parameterc was initially set equal to2.4/
√

d, as recommended byGelman et al.(2004),

and was scaled up or down during the initial fixed periodt0 to ensure that the chains

moved away from the initial position during this time. The initial periodt0 was selected

so that it was short relative to the total number of iterationstF , yet long enough to allowc

to be appropriately scaled such that a sufficient number of candidate states were accepted

within this period. The value oft0 was therefore set equal to 1000.

4.4.1.2 Escaping Local Modes

It is considered that the prior distribution adopted may not only influence the potential

of the MCMC algorithm to overfit the data, but also the ability of the simulated chains

to escape local modes in the posterior distribution. It is expected that the ability to es-

cape local modes could be increased using the hierarchical and ARD priors described in

Section 4.2.3.2, since the simulated chains are encouraged to move to different regions

of the posterior not only based on the likelihood value, as is the case for the noninforma-

tive uniform prior. Therefore, if the weight vector was initialised at a locally maximum

likelihood value, there would be a greater chance of moving away from this mode, as can-

didate states with lower likelihood values would more easily be accepted if they have a

higher prior density. However, both the hierarchical and ARD priors result in an increase
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in complexity of the MCMC algorithm than when the uniform prior distribution is used.

Therefore, the ability of the MCMC algorithm to move away from a poor initialisation of

w0 was investigated to determine whether the increase in complexity is warranted, given

the advantages gained by using either a hierarchical or ARD prior.

This investigation has been carried out using data sets II and III, as examples of poor

local mode solutions were evident when ANNs were developed to model these data sets

in Chapter 3. In contrast, no poor local mode solutions were obtained when ANNs were

developed to model data set I, making it unsuitable for this investigation. For data set II,

the most obvious example of a poor local mode was found using a 3 hidden node ANN,

where each of the deterministic training algorithms obtained a MSE value that was at

least 20% worse than the best MSE value obtained (see Tables A.4-A.6 in Appendix A).

For data set III, the most obvious example of a poor local mode was found when a 4

hidden node ANN was used to model this data set. In this case, each of the deterministic

training algorithms obtained a MSE value that was at least 60% worse than the best MSE

value obtained (see Tables A.7-A.9 in Appendix A). These examples are illustrated in

Figures 4.6 and 4.7, which show trace plots of the training and test set SSE values when

the SCE-UA algorithm, initialised with different sets of random weights, was used to

train the 3 hidden node ANN applied to data set II and the 4 hidden node ANN applied

to data set III, respectively. In each of these figures, it can be seen that both the training

and test set errors obtained in plot (a) are significantly greater than those obtained in plot

(b), indicating that the algorithm became trapped in a local minimum when starting from

the weight initialisations shown in (a). In this investigation, the MCMC algorithm was

initialised with the weights obtained when the SCE-UA algorithm became trapped in these
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Figure 4.6 Training and test set SSE traces obtained when (a) local minimum and (b) global

minimum solutions were converged to when a 3 hidden node ANN was developed to model

data set II, using different weight initialisations.
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Figure 4.7 Training and test set SSE traces obtained when (a) local minimum and (b) global

minimum solutions were converged to when a 4 hidden node ANN was developed to model

data set III, using different weight initialisations.

local minimum solutions, in order to investigate the ability of the MCMC algorithm to

escape poor local modes, under the assumptions of noninformative uniform, hierarchical

and ARD prior distributions.

Simulated annealing and the effect of fixingσ2
y > σ̂2

y andσ2
w = 1 for a periodtσ2

0
were

also investigated using these weight initialisations. For data set II, the residual varianceσ̂2
y

calculated at the local maximum likelihood (based on scaled input and output data) was

approximately equal to 0.45, corresponding to a log likelihood value of approximately

-727.5. For data set III,̂σ2
y was approximately equal to 0.18 when calculated at the locally

maximum log likelihood value of -680.6. Values of 0.5, 1.0, 2.0 and 3.0 were therefore

considered forσ2
y,0, as these values all produce flatter, wider likelihood functions in each

case. An additional value ofσ2
y,0 = 0.3 was considered for data set III, since the value

of σ̂2
y obtained was somewhat smaller than that obtained for data set II. To prevent the

covariance of the AM proposal distribution, calculated at iterationt0 + 1, from becoming

overly large as a result of the altered posterior distribution, it was considered thattσ2
0

should be less thant0. However,tσ2
0

also needs to be long enough such that the chains

have a chance to move away fromw0. Therefore,tσ2
0

was set equal to halft0 (i.e. 500).

The results obtained by fixing the hyperparameters were compared to the results obtained

when the hyperparameters were updated immediately after the first weight updates, rather

than being fixed for any period of time. In this case, the values ofσ2
y,0 andσ2

w,0 were set

equal to the hyperprior parametersSy andSw, respectively. However, these values have

little consequence, since they are updated straight away.

The success of simulated annealing is vitally dependent upon the schedule of temper-

atures used. A commonly used and simple schedule is the geometric annealing schedule
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given byTt+1 = (1 − ϕ)Tt, where the initial temperatureT0 is set high enough so that

the initial rejection rate is very low andϕ is chosen such that the temperature is reduced

slightly after each iteration (Neal, 1993). In this research, appropriate values forϕ andT0

were found by trial-and-error using the values ofϕ = 5.0 × 10−5 andT0 = 15 adopted

by Neal(1992) to guide the range of values considered, which includedT0 = 5, 15, 30, 50

andϕ = 1.0× 10−3, 1.0× 10−4, 5.0× 10−5. By reducingϕ by a factor of 10, the number

of iterations required for the temperature to cool to one is increased by a factor of 10,

whereas a reduction inϕ by a factor of 2, means that the number of iterations required is

approximately doubled. Values ofϕ less than5.0×10−5 were not considered, as the num-

ber of iterations required for the temperature to cool to one was too great (e.g.> 390, 000

for T0 = 50, ϕ = 1.0 × 10−5). To maintain an approximately constant acceptance rate,

Neal (1993) recommends scaling the width of the proposal distribution byT
1/2
t ; how-

ever, this recommendation is based on the use of a constant proposal distribution, unlike

the adaptive proposal used by the AM algorithm. At high temperatures, the width of

the adaptive proposal will automatically become wider due to the acceptance of a wider

range of weight vectors. Therefore, in this research, the proposal distribution was scaled

by (Tt/T0)
1/2, in order to maintain adequate acceptance rates as the temperature cooled.

Neal(1993) also suggests that the prior should be exempt from the effect of temperature,

as the prior beliefs should guide the search for the weight values even in the initial stages

of the MCMC algorithm and should not be scaled down. This was achieved by modifying

(4.16) as follows:

α(w∗|wt−1) = min
{

exp [log L(w∗)− log L(wt−1)] /T

+ exp [log p(w∗)− log p(wt−1)] , 1
}

(4.26)

4.4.1.3 Prevention of Overfitting

The primary advantage of the hierarchical and ARD priors over the noninformative uni-

form prior described in Section 4.2.3.2 is the automatic incorporation of weight regulari-

sation and the prevention of overfitting. As the ARD prior was proposed as a method for

automatically determining the relevance of ANN inputs, it was originally considered that

the ARD prior had this additional advantage over the other forms of prior distribution con-

sidered in this research. However, it was shown byLampinen and Vehtari(2001) that the

nonlinearity of an input has the largest effect on the relevance score of the ARD and that

inputs with a large, but linear, effect on the output are given a low relevance measure. This

is because when an ANN models a linear relationship, the input-hidden layer weights are

small, such that they lie on the linear part of the hidden layer sigmoidal activations, and
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the strength of the relation is determined by scaling the hidden-output weights. Therefore,

the input-hidden weights do not measure a linear input-output relationship regardless of

its importance. This means that ARD is not appropriate for selecting, removing or rank-

ing ANN inputs according to the ARD relevance measures. Nevertheless, the ARD prior

is the most correct form of prior of those considered, as it does not assume that the input

weight groups all have the same variance, which was shown byLampinen and Vehtari

(2001) to correspond to nonlinearity.

As the hierarchical prior distribution results in a more complex MCMC training algo-

rithm than when the uniform prior is assumed, and as the ARD prior results in a further

increase in complexity above that, the different forms of prior were assessed to determine

whether or not the additional complexity is warranted given their ability to prevent overfit-

ting. To do this, the MCMC algorithm was initialised with the optimised weights obtained

from networks identified as overtrained in the investigations carried out in Chapter 3.

Similar to the local modes case discussed in Section 4.4.1.2 above, obvious examples of

overtraining were only observed for two of the three synthetic data sets. It was found

that overtraining did not occur when ANNs were trained to model data set III, which is

likely due to the fact that this data set had the greatest signal-to-noise ratio and was also

the longest of the three data sets considered (see Section 3.4.1). For data sets I and II, the

most obvious examples of overfitting were observed when 10 hidden node ANNs were

trained to fit these data sets. This can be seen in Figures 4.8 and 4.9, respectively, which

show trace plots of the training and test set SSE values obtained when data sets I and

II were modelled with (a) the corresponding optimal ANN structures and (b) 10 hidden

node ANNs. As can be seen, the final training set SSE values obtained using the 10

hidden node ANNs were somewhat lower than those obtained using the optimal network
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Figure 4.8 Training and test set SSE traces obtained when (a) a 1 hidden node ANN (opti-

mal structure) and (b) a 10 hidden node ANN (overfitted) were trained to fit data set I.
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Figure 4.9 Training and test set SSE traces obtained when (a) a 3 hidden node ANN (opti-

mal structure) and (b) a 10 hidden node ANN (overfitted) were trained to fit data set II.

sizes (i.e. a 1 hidden node ANN for data set I and a 3 hidden node ANN for data set

II); however, the corresponding test set SSE values were significantly higher than those

obtained using the optimal network sizes. In this investigation, the MCMC algorithm was

initialised with two different sets of weights obtained when 10 hidden node ANNs were

trained to fit data sets I and II: (1) the weights obtained when training was stopped early

before overfitting of the data had begun; and (2) the weights obtained when the training

algorithm was allowed to run to convergence. The first set of weights was used to assess

the abilities of the prior distributions to prevent overfitting, given a set of weights where

overfitting could, but has not yet, occurred, while the second set of weights was used to

assess the ability of the MCMC algorithm to find a more generalised fit to the data, given

a set of weights that result in an overfitted model, under the assumptions of the different

prior distributions.

To determine whether the 10 hidden node models trained using the MCMC algorithm

were overfitting the data or not, the likelihood values were compared to those obtained

for the optimal network sizes, trained with the MCMC algorithm using a uniform prior

distribution (since overtraining was not expected for these networks). If the likelihood

values for the 10 hidden node models were less than those for the optimal ANN structures,

it was considered that overfitting was occurring to some extent.

4.4.2 Bayesian Model Selection

The MCMC algorithm was used to train 10 networks containing between 1 and 10 hidden

nodes, applied to data sets I, II and III, given the optimal configuration of the algorithm

determined by the investigations described in Section 4.4.1. For each network size, the

MCMC algorithm was initialised with the optimised weights obtained when the SCE-UA
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algorithm was used for training and early stopping was employed to prevent overfitting.

Each of the evidence estimators discussed in Section 4.3.4 was used to evaluate the evi-

dence of each model, from which Bayes factors were then calculated and used to rank the

models in order of posterior probability. The models’ rankings were then compared to the

knowledge that a 1 hidden node network is best for data set I, a 3 hidden node network

is most suitable for data set II and a 5-6 hidden node network is optimal for modelling

data set III (see Section 3.4.5.2), in order to determine which estimator, if any, is most

appropriate for BMS within the proposed framework. Inspection of marginal posterior

distributions was carried out, as described in Section 4.3.4.2, to check or confirm the

results of the Bayes factor comparisons.

4.4.3 Results

4.4.3.1 Fine-Tuning of Bayesian Training Algorithm

Detecting convergence

The trace plots in Figure 4.10 show the mean values of thelog p∗(w|y), thelog L(w)

and thelog p(w) densities, calculated by taking the average of the four parallel chains,

over the 400,000 iterations of the MCMC simulation for (a) the 2 hidden node ANN,

(b) the 6 hidden node ANN and (c) the 10 hidden node ANN applied to data set II. As

can be seen, these traces all become approximately flat roughly within 100,000 iterations.

However, while it may appear as though the algorithm has converged, it is difficult to trust

a single trace (even if it is the average of a number of chains) for each of these MCMC

quantities. In Figure 4.11, traces of thelog p∗(w|y) values for the individual chains are
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Figure 4.10 Mean log p∗(w|y), log L(w) and log p(w) traces for the2, 6, . . . , 10 hidden

node ANNs applied to data set II.
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Figure 4.11 Log p∗(w|y) traces obtained from the 4 parallel MCMC chains for the

2, 6, . . . , 10 hidden node ANNs applied to data set II.

shown over the final 200,000 iterations of the MCMC algorithm. It can be seen that

these plots give a better picture of whether or not the chains are sampling from the same

distribution. For the 2 hidden node network, it is evident that the chains were mixing well,

indicating that the algorithm had converged (at least to a stationary distribution, if not to

the true posterior) within the first 200,000 iterations of the simulation. Thelog p∗(w|y)

traces for the 6 and 10 hidden node ANNs, on the other hand, are a little more spread

out. For the 6 hidden node ANN, it appears as though one of the chains is still increasing,

indicating that the algorithm had not properly converged within 400,000 iterations, while

it is apparent that the chains simulated for the 10 hidden node ANN were not mixing

properly until around 300,000 iterations. However, as the chains were not obviously

different from one another, nor were they obviously increasing or decreasing for any of the

2-, 6- or 10 hidden node ANNs, it was considered that 400,000 iterations is a good rough

guide for the synthetic test cases considered in this research as to the number of iterations

required, firstly, to achieve convergence and, secondly, to sample an appropriate number

of draws from the stationary distribution. Therefore, 400,000 iterations were used for

the remainder of the investigations presented in this section, as these investigations were

exploratory of the performance of the MCMC algorithm, but the results did not depend

on convergence. However, for the BMS investigations, of which the results are presented

in Section 4.4.3.2, more care was taken to achieve convergence, as these results were

dependent on convergence of the MCMC algorithm.

As well as being useful for detecting convergence, or failure thereof, the plots shown

in Figures 4.10 and 4.11 also provide interesting information about the models. It can
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be seen that the log prior probability of the weights of the 2 hidden node ANN is sig-

nificantly higher than the corresponding log prior densities for the 6 and 10 hidden node

ANNs. This is due to the use of the hierarchical prior distribution, which incorporates

weight regularisation and favours fewer weights. It can also be seen that the log likeli-

hood values for the 2 hidden node ANN are significantly lower than those of the 6 and 10

hidden node ANNs, which have approximately equal log likelihood values. This indicates

that the 2 hidden node network provides a significantly worse fit to the data than either

the 6 or 10 hidden node models. Overall, the weights of the 10 hidden node ANN, with

high likelihood, but low prior, have approximately the same log unnormalised posterior

density as the 2 hidden node ANN weights, which have a high prior probability but low

likelihood. The weights of the 6 hidden node ANN have the highest overall unnormalised

posterior density, which provides useful information about the level of complexity re-

quired for modelling data set II, since the evidence of a model is also proportional to the

unnormalised posterior density.

Escaping local modes

Shown in Figures 4.12 and 4.13 are the meanlog p∗(w|y), log L(w) and log p(w)

traces resulting from each form of prior distribution investigated when the MCMC algo-

rithm was applied to train the 3 and 4 hidden node ANNs used for modelling data sets II

and III, respectively, with poor (local minimum) weight initialisations, and when the hy-

perparameters were updated immediately (i.e. were not held constant for any period). For

the uniform prior, thelog p∗(w|y) values correspond to thelog L(w) values, as the value
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Figure 4.12 Mean log p∗(w|y), log L(w) and log p(w) traces resulting from the (a) uni-

form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with un-

fixed hyperparameters was used to train the poorly initialised data set II model.
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Figure 4.13 Mean log p∗(w|y), log L(w) and log p(w) traces resulting from the (a) uni-

form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with un-

fixed hyperparameters was used to train the poorly initialised data set III model.

of the prior was disregarded since it was constant across the range of weights considered.

It can be seen in these figures that the uniform prior resulted in the highestlog p∗(w|y)

values in each case, primarily because it does not account for a negative log prior proba-

bility as the otherlog p∗(w|y) values do. However, for the data set II model, the uniform

prior was the only form of prior which enabled the likelihood value to obviously increase

above its initial value, indicating that at least one of the simulated chains was able to move

away from the initial weights. On the other hand, the log likelihood traces resulting from

the hierarchical and ARD priors were flat throughout the simulation, indicating that the

chains were unable to escape the local mode. Thelog p∗(w|y) traces for these models did

increase throughout the simulation, but as a result of the increasing log prior densities,

rather than increasing likelihood values (see Figure 4.12). It is possible that these forms

of priors may have constrained the weights too much in the initial stages of the simula-

tion, making it difficult for the chains to move very freely throughout the weight space.

For the data set III model, it can be seen in Figure 4.13 that none of the prior distributions

assumed resulted in increasing log likelihood traces, indicating that the MCMC algorithm

was unable to escape the local mode regardless of the prior distribution. Traces of the

log p∗(w|y) values of the individual chains are shown in Figures 4.14 and 4.15 for the

models applied to data sets II and III, respectively. It can be seen in Figure 4.14 (a) that

only one chain was able to escape the local mode when the uniform prior was assumed

for the data set II model, whereas, for the data set III model, thelog p∗(w|y) traces of the

individual chains remained flat throughout the simulation, as shown in Figure 4.13.
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Figure 4.14 Individual log p∗(w|y) traces resulting from the (a) uniform, (b) hierarchical

and (c) ARD prior distributions when the MCMC algorithm with unfixed hyperparameters

was used to train the poorly initialised data set II model.
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Figure 4.15 Individual log p∗(w|y) traces resulting from the (a) uniform, (b) hierarchical

and (c) ARD prior distributions when the MCMC algorithm with unfixed hyperparameters

was used to train the poorly initialised data set III model.
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For the data set II model, the log likelihood value atŵ was reduced to−732.1 (0.6%),

−817.2 (11%),−984.9 (26%) and−1103.3 (34%) by fixingσ2
y equal to 0.5, 1.0, 2.0

and 3.0, respectively. Overall, it was found that the best results were obtained by fixing

σ2
y = 1.0, indicating that the log likelihood need not be reduced by a large amount for

the chains to move more freely in the vicinity of the local mode. Traces of the resulting

meanlog p∗(w|y), log L(w) and log p(w) values whenσ2
y was fixed equal to 1.0 for

tσ2
0

= 500 are shown in Figure 4.16. As can be seen, thelog L(w) traces resulting from

the assumption of hierarchical and ARD priors significantly increased above the initial

value, whereas this trace remained relatively flat for the uniform prior. These results

show that, by fixing the hyperparameters of a regularisation type prior (i.e. hierarchical or

ARD) for a short initial period, the chains are better able to move more freely around the

search space, giving them a better ability to escape poor weight initialisations and discover

new modes. Shown in Figure 4.17 are thelog p∗(w|y) traces of the individual chains,

where it can be seen that the MCMC simulations using uniform and hierarchical priors

had both converged to a stationary distribution (although about different modes), whereas

the chains were still moving between modes at the end of the simulation when the ARD

prior was used. These plots highlight that the stepped nature of the mean traces shown

in Figure 4.16 was due to different chains finding new modes at different times. Overall,

it can be seen that when the hierarchical prior was used, the chains were most successful

at exploring the weight space, obtaining a meanlog L(w) value of approximately -695.0

and converging to a stationary distribution within 200,000 iterations.
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Figure 4.16 Mean log p∗(w|y), log L(w) and log p(w) traces resulting from the (a) uni-

form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with ini-

tially fixed hyperparameters was used to train the poorly initialised data set II model.
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Figure 4.17 Individual log p∗(w|y) traces resulting from the (a) uniform, (b) hierarchical

and (c) ARD prior distributions when the MCMC algorithm with initially fixed hyperparam-

eters was used to train the poorly initialised data set II model.

By fixing σ2
y equal to 0.3, 0.5, 1.0, 2.0 and 3.0, the log likelihood value atŵ for

poorly initialised data set III model was reduced to−748.6 (9%),−903.5 (25%),−1225.6

(44%),−1592.1 (57%) and−1820.3 (63%), respectively. It was found that the best results

were obtained whenσ2
y was fixed equal to 0.3, which resulted in a similar reduction in

the log likelihood value as the best results obtained for data set II (approximately 10%).

Traces of the resulting meanlog p∗(w|y), log L(w) and log p(w) values are shown in

Figure 4.18, while thelog p∗(w|y) resulting from the individual MCMC chains are shown

in Figure 4.19. As can be seen in Figure 4.18, the hierarchical prior distribution resulted

in the greatest increase inlog L(w) value above the initial value, indicating that, again,

the MCMC algorithm was best able to escape the poor local mode when this form of prior

was assumed. However, it can also be seen in Figure 4.19 that only one of the chains was

able to move away from the initial weights and discover a better mode and that, by the

end of the simulation, one of the chains resulting from the assumption of a uniform prior

was also able to do this. Therefore, the MCMC simulation was run for another 400,000

iterations to determine whether the MCMC algorithm did, in fact, have the greatest ability

to escape the poor local mode when a hierarchical prior was assumed. The mean MCMC

output traces resulting from the longer simulation are shown in Figure 4.20, where it can

be seen that this was indeed the case. The stepped nature of the mean traces shown in

this Figure 4.16 was again found to be the result of different chains finding new modes at

different times throughout the simulation.

Page 180



Assessment of Bayesian Techniques with Synthetic Data – Section 4.4

 

Uniform Prior  

Iteration (×1000) 

Hierarchical Prior  

0 100 200 300 400

Iteration (×1000) 

ARD Prior  

Iteration (×1000) 

(b) (a) (c) 

log p*(w|y) 
log L(w) 
log p(w) lo

g 
p*

(w
|y

),
 lo

g 
L

(w
) 

log p(w
) 

-750 

-740 

-730 

-720 

-710 

-700 

-690 

-680 

-670 

-660 

-650 

0 100 200 300 400 0 100 200 300 400

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0 

Figure 4.18 Mean log p∗(w|y), log L(w) and log p(w) traces resulting from the (a) uni-

form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm with ini-

tially fixed hyperparameters was used to train the poorly initialised data set III model.
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Figure 4.19 Individual log p∗(w|y) traces resulting from the (a) uniform, (b) hierarchical

and (c) ARD prior distributions when the MCMC algorithm with initially fixed hyperparam-

eters was used to train the poorly initialised data set III model.
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Figure 4.20 Meanlog p∗(w|y), log L(w) andlog p(w) traces obtained for the data set III

model with a longer simulation.

For both the data set II and data set III models, it was found that the standard de-

viations of the weights, calculated immediately after the initial periodtσ2
0

for which the

hyperparameters of the hierarchical prior had been fixed, were greater than those calcu-

lated when they were unfixed, confirming that the chains were able to move more freely

around the weight space when the hyperparameters were fixed for a short time. However,

although the MCMC algorithm, given the combination of a hierarchical prior and fixed

hyperparameters, had some success in finding new modes, it was unable to find the max-

imum likelihood values obtained with the deterministic training algorithms. The MCMC

algorithm was also initialised with the best weights obtained for the 3 hidden node ANN

applied to data set II and the 4 hidden node ANN applied to data set III using the SCE-

UA algorithm. Traces of the resulting meanlog p∗(w|y), log L(w) andlog p(w) values

are shown in comparison to the best results obtained for the poor weight initialisation in

Figures 4.21 and 4.22, respectively.

In the attempt to improve the results obtained with a hierarchical prior and initially

fixed hyperparameters, simulated annealing was also employed. Several general observa-

tions were made regarding the simulated annealing parameters for the models developed

for data sets II and III. Overall, it was found that the best combination of simulated an-

nealing parameters wasϕ = 5.0 × 10−5 andT0 = 15, which were also the values used

by Neal (1992). For initial temperatures ofT0 = 5 andT0 = 30, the best results were

obtained whenϕ = 5.0× 10−5, indicating that simulated annealing was most successful

when the temperature was cooled slowly. However, simulated annealing was found to

be least successful whenT0 = 50, regardless of the value ofϕ. For T0 = 5, the best
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Figure 4.21 Mean log p∗(w|y), log L(w) and log p(w) traces obtained for the data set II

model with (a) a poor weight initialisation and (b) a good weight initialisation.
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Figure 4.22 Meanlog p∗(w|y), log L(w) andlog p(w) traces obtained for the data set III

model with (a) a poor weight initialisation and (b) a good weight initialisation.

results obtained withϕ = 5.0× 10−5 were similar, although slightly worse than when no

annealing was applied. It was found that the steps in the meanlog p∗(w|y) trace became

smoother for the data set II model, whereas, for the data set III model, the transition be-

tween modes became less smooth than when no annealing was applied. The simulated

annealing algorithm was somewhat successful withT0 = 30 when applied to the data set

II model, although it did not give as good results as whenT0 = 15, as the simulation

had yet to converge within 400,000 iterations. On the other hand, the results obtained

whenT0 = 30 for the data set III model were significantly worse than when no anneal-

ing was applied. Traces of the meanlog p∗(w|y), log L(w) andlog p(w) values obtained

with the best combination of simulated annealing parameters (i.e.ϕ = 5.0 × 10−5 and

T0 = 15) are shown in Figure 4.23 for (a) the data set II model and (b) the data set III

model. In comparison to Figure 4.16 (b), it can be seen that simulated annealing resulted
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in a smoother transition between different modes when applied to the data set II model,

whereas, for the data set III model, slightly faster location of new modes was achieved, as

seen in comparison to Figures 4.18 (b) and 4.20 (b). However, overall, the best results ob-

tained with simulated annealing were approximately the same as when annealing was not

employed. The MCMC algorithm was still unable unable to find the maximum likelihood

values obtained with the deterministic training algorithms, as shown in Figures 4.21 (b)

and 4.22 (b).
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Figure 4.23 Mean log p∗(w|y), log L(w) and log p(w) traces obtained using simulated

annealing withϕ = 5.0× 10−5 andT0 = 15 for (a) the data set II model and (b) the data set

III model.

Prevention of overfitting

Shown in Figures 4.24 and 4.25 are the meanlog p∗(w|y), log L(w) and log p(w)

traces resulting from each form of prior distribution when the MCMC algorithm, ini-

tialised with weights obtained when the SCE-UA training algorithm was stopped early,

was applied to the 10 hidden node ANNs used for modelling data sets I and II, respec-

tively. Also shown for comparison in these figures are the meanlog L(w) traces obtained

using the optimal ANN structures (i.e. 1 hidden node ANN for data set I and 3 hidden

node ANN for data set II). Given the results presented in the previous section, the hyper-

parameters were fixed atσ2
y = 1.0, σ2

w = 1.0 for tσ2
0

= 500. It can be seen by comparing

the log L(w) traces with those obtained using the optimal ANN structures that, although

the 10 hidden node models had the potential of becoming overtrained, overfitting did not

begin during any time in the MCMC simulation using any of the prior distributions, in-

cluding the noninformative uniform prior, which does not incorporate weight regularisa-

tion. It can also be seen that, for both the data set I and data set II models, thelog p∗(w|y)
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Figure 4.24 Mean log p∗(w|y), log L(w) and log p(w) traces resulting from the (a) uni-

form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used

to train the 10 hidden node data set I model, initialised with weights obtained when overfitting

was prevented.
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to train the 10 hidden node data set II model, initialised with weights obtained when overfit-

ting was prevented.
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traces were continually increasing throughout the simulations when hierarchical and ARD

priors were assumed, as a result of this regularisation.

Figures 4.26 and 4.27 display the meanlog p∗(w|y), log L(w) and log p(w) traces

resulting from each form of prior distribution when the MCMC algorithm was initialised

with weights obtained when the SCE-UA training algorithm was run until convergence

and applied to the data set I and data set II models, respectively. It can be seen that the

log L(w) traces obtained using the 10 hidden node models started off significantly higher

than those obtained using the optimal ANNs, but came back towards the optimal models’

traces during the simulations. For the data set I model (Figure 4.26), this happened quickly

within 9,000 and 32,000 iterations, using the hierarchical and ARD priors, respectively.

For the data set II model (Figure 4.27), convergence to the optimallog L(w) traces was

somewhat slower; however, in each case the results indicate that hierarchical and ARD

priors are able to prevent overfitting, even when initialised with weights where overfitting

had already occurred. On the other hand, although thelog L(w) traces obtained using the

uniform prior distribution also decreased slightly throughout the simulations, this process

was slow, such that by the end of the simulation, the model was still overfitting the data,

indicating that the uniform prior is not appropriate for preventing overfitting.
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Figure 4.26 Mean log p∗(w|y), log L(w) and log p(w) traces resulting from the (a) uni-

form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used

to train the 10 hidden node data set I model, initialised with weights obtained when the model

had been overtrained.
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form, (b) hierarchical and (c) ARD prior distributions when the MCMC algorithm was used

to train the 10 hidden node data set II model, initialised with weights obtained when the model

had been overtrained.

The effect of each form of prior distribution on the magnitude of the weights was

also investigated by inspecting plots of the average magnitudes of different weight groups

throughout the MCMC simulations. These plots are shown in Figures 4.28 and 4.29,

for the models applied to data sets I and II, respectively, and were obtained over the

last 200,000 iterations of the MCMC simulations initialised with weights obtained when

the SCE-UA algorithm was run until convergence. As expected, it was found that the

magnitudes of the weights were not suppressed at all using the noninformative uniform

prior, whereas the weights became significantly smaller when the hierarchical and ARD

prior distributions were used. For the data set I model, the input-hidden layer weights had

average magnitudes close to zero when hierarchical and ARD prior distributions were

assumed. This is appropriate, since these inputs are all linear and, therefore, their input-

hidden weights need to be small in order to lie on the linear part of the tanh hidden layer

activation functions. However, it is important to note that, although the weights associated

with these inputs lie close to zero with little variance, the inputs are not irrelevant to the

model; thus, highlighting the shortcomings of ARD as an input selection or importance

measure when the problem involves linear inputs. For the data set I model, the variance

hyperparameters associated with the input weight groups had mean values of 0.925, 0.375

and 0.271 for inputsyt−1, yt−4 andyt−9, respectively, while, for the data set II model, the

mean variance hyperparameters associated with inputsyt−1, yt−4, yt−9 andxt were 6.603,

53.155, 2.357 and 31.622, respectively. These results confirmed the shortcomings of

ARD, as the more important the input, the greater the value ofσ2
w should be. For data set
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Figure 4.28 Average magnitude of the (a)-(c) input-hidden, (d) hidden layer bias and (e)

hidden-output weights for the data set I model, given each form of prior.
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Figure 4.29 Average magnitudes of the (a)-(d) input-hidden, (e) hidden layer bias and (f)

hidden-output weights for the data set II model, given each form of prior.
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I, input yt−1 has the lowest importance, as does inputxt for data set II, which contradict

the findings of the ARD.

Finally, using the mean predictions generated by each of the models developed with

the MCMC algorithm, the SSE values were estimated for both the “measured” and “true”

training data. The SSE values for the “true” data were used to determine the extent of

overfitting, since if no overfitting had occurred, these values should be close to zero.

The SSE values are given in Table 4.2, in comparison to the SSE values obtained with

the optimised deterministic weights for the optimal ANN structures, the 10 hidden node

ANNs when the training algorithm was stopped before overfitting had begun and when

the algorithm was allowed to run until convergence. The SSE values for the optimal

Table 4.2 SSE values obtained for each model developed in the overfitting investigation.

ANN Model “Measured” SSE “True” SSE

DATA SET I

Deterministic weights

1 hidden node 250.254 1.075
10 hidden nodes - early stopped 249.647 1.960
10 hidden nodes - converged 215.657 37.184

Bayesian weights - 10 hidden nodes, early stopped initialisation

Uniform prior 248.442 1.624
Hierarchical prior 250.377 1.585
ARD prior 250.237 1.636

Bayesian weights - 10 hidden nodes, converged initialisation

Uniform prior 225.239 11.322
Hierarchical prior 250.325 1.838
ARD prior 250.720 2.570

DATA SET II

Deterministic weights

3 hidden nodes 343.447 12.794
10 hidden nodes - early stopped 319.786 35.298
10 hidden nodes - converged 319.210 34.817

Bayesian weights - 10 hidden nodes, early stopped initialisation

Uniform prior 334.838 17.251
Hierarchical prior 343.488 15.438
ARD prior 346.975 13.578

Bayesian weights - 10 hidden nodes, converged initialisation

Uniform prior 301.615 42.545
Hierarchical prior 322.080 24.748
ARD prior 325.377 23.503
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ANN structures are shown in italics, as these are approximately the values expected if

the models were not overtrained. The best “true” SSE values obtained using the Bayesian

ANNs are highlighted by bold font and, as can be seen, the hierarchical prior was the most

successful at preventing overfitting when applied to the data set I models, whether or not

it had already occurred, whereas, the ARD prior was the most successful at achieving this

when applied to the data set II models. However, as seen in Table 4.2, the SSE values

obtained for the models trained with the MCMC algorithm under the assumptions of

hierarchical and ARD prior distributions were very similar, indicating that the additional

complexity of the ARD prior, over the hierarchical prior, is not warranted, given its ability

to prevent overfitting.

4.4.3.2 Assessment of Evidence Estimators

Given the results of Section 4.4.3.1, the models considered in this investigation were

trained with the MCMC algorithm using the hierarchical prior distribution, as this prior

gave the best results in terms of prevention of overfitting, escaping local modes and min-

imising the complexity of the algorithm. To ensure convergence of the algorithm, the

simulations were run for a total of 800,000 iterations (tF = 800, 000), where the first

600,000 were discarded (tb = 600, 000) and the final 200,000 iterations were assumed to

be sampled draws from the posterior and were used in the evidence calculations.

The model evidence results for data set I, calculated using the G-D, C-J and -1/2BIC

estimators, are given in Table 4.3 for the 10 different network sizes considered. It should

be noted that these values were estimated based on the scaled model outputs and target

data; therefore, there is a discrepancy between the mean -1/2BIC values presented here

and the BIC values presented in Table 3.12, which were calculated based on unscaled

data. The maximum evidence values estimated using each method are highlighted by bold

italics and, as it can be seen, each of the methods correctly estimated that the 1 hidden

node model had the greatest evidence. It can also be seen that each of the estimators gave

similar evidence values for all of the 10 different network sizes, particularly the G-D and

C-J estimators, as better seen in Figure 4.30. However, while the G-D and C-J estimates

are very similar, they appear to be incorrect for some of the network sizes. It would be

expected that any additional complexity over that required (in this case, 1 hidden node)

would result in a reduction in the evidence. As it can be seen in Figure 4.30, this was not

the case for the 6, 7 and 8 hidden node networks, which were all estimated to be more

probable than the 5 hidden node model, with the 8 hidden node ANN having the greatest

evidence of the three. It is apparent that the evidence of the 5 hidden node model was
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Table 4.3 Evidence estimates for data set I ANN models.

Hidden G-D C-J Mean
Nodes Estimator Estimator -1/2BIC

1 -528.328 -524.105 -530.787
2 -529.071 -527.261 -547.129
3 -543.961 -544.036 -562.981
4 -559.238 -559.601 -577.994
5 -612.856 -609.773 -594.086
6 -592.344 -592.258 -610.465
7 -605.279 -601.050 -625.885
8 -580.660 -581.054 -641.425
9 -624.230 -618.985 -657.127
10 -687.408 -688.531 -674.091

underestimated, whereas the evidence of the 8 hidden node network was overestimated,

resulting in an incorrect ordering of the models. The mean -1/2BIC estimates, on the

other hand, indicate a more logical ordering of the models considered.

The Bayes factors calculated based on the -1/2BIC evidence estimates for the highest

ranked model (Rank 1) against each other model considered (i.e.BFRank1,i) are presented

in Table 4.4. It can be seen in this table, by comparison with Table 4.1, that the evidence

in favour of a 1 hidden node ANN is very strong. While it is known that this result is

correct, since the data are synthetic, in a real world study this would not be the case. Due

to the difficulties associated with estimating the evidence, it is worthwhile to check the

Bayes factor results against the marginal posterior weight distributions for the hidden-
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Figure 4.30 Evidence estimates for the1, . . . , 10 hidden node ANNs applied to data set I.
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Table 4.4 Log Bayes Factors in favour of the highest ranked model for data set I.

Rank Hidden loge BF in Favour
Nodes of Rank 1 Model

1 1 –
2 2 16.342
3 3 32.194
4 4 47.206
5 5 63.299
6 6 79.678
7 7 95.098
8 8 110.638
9 9 126.340
10 10 143.304

output weights, which can be used to determine whether all hidden nodes in the model

are necessary, as discussed in Section 4.3.4.2. The marginal posterior distribution for the

hidden-output weight of the 1 hidden node model is displayed in Figure 4.31. As this

distribution does not include the value zero, it is indicated that this node is necessary

to model data set I. On the other hand, the 95% highest density regions of the marginal

posterior distributions shown in Figure 4.32 (a) and (b), which are the hidden-output

weights of a 2 hidden node network, do include zero, indicating that at least one of the

nodes is not necessary. The scatter plot in Figure 4.32 (c) does not pass through the

origin; therefore, it can be determined that only one of the hidden nodes may be removed

from the network. This leaves a 1 hidden node network, which means that the Bayes

factor results were correct. However, it was known that a network with no hidden nodes

was, in fact, optimal for this data set; yet, this was not determined by inspecting the

marginal hidden-output distributions. When there is only one hidden node in an ANN,
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Figure 4.31 Marginal posterior hidden-output weight distribution for the 1 hidden node

ANN.
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Figure 4.32 Marginal posterior distributions for (a) hidden-output weight 1 and (b) hidden-

output weight 2, together with (c) the scatter plot of the joint hidden-output weight distribu-

tion.

the marginal posterior hidden-output weight distribution will never include zero unless

there is no relationship between the model inputs and outputs, since the inputs would then

be disconnected from the output. Similarly, when there are only two hidden nodes in the

network, the joint distribution of the hidden-output weights will never pass through the

origin for the same reason. While it is possible to build a network with no hidden layer,

with the inputs connected directly to the output, this would result in a linear model and,

as mentioned in Section 3.4.2.4, only nonlinear models were considered in this research.

Table 4.5 gives the model evidence results for data set II. Again, the values calculated

using the different methods correctly estimated the 3 hidden node ANN to have the great-

est evidence (highlighted in bold italics). The evidence values are plotted in Figure 4.33,

Table 4.5 Evidence estimates for data set II ANN models.

Hidden G-D C-J Mean
Nodes Estimator Estimator -1/2BIC

1 -760.390 -757.601 -764.402
2 -766.520 -766.606 -783.648
3 -723.427 -717.256 -705.040
4 -745.980 -745.118 -725.317
5 -771.298 -759.791 -745.451
6 -853.902 -844.695 -763.963
7 -803.790 -798.116 -783.247
8 -842.126 -839.281 -802.007
9 -896.673 -895.476 -822.855
10 -981.232 -982.163 -843.845
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Figure 4.33 Evidence estimates for the1, . . . , 10 hidden node ANNs applied to data set II.

where it appears that some of the evidence values calculated using the G-D and C-J esti-

mators are erroneous, as there is no logical reason why the 6 hidden node network should

be less probable than the 7 and 8 hidden node ANNs. As is the case for data set I, the

mean -1/2BIC evidence estimates appear to be the most consistent and rational.

TheBFRank1,i results, calculated based on the -1/2BIC evidence estimates, are pre-

sented in Table 4.6. The evidence in favour of the 3 hidden node ANN is very strong

according to the Bayes factors, which was verified by inspection of Figures 4.34 and

4.35, which display the marginal posterior distributions of the hidden-output weights of

the 3 and 4 hidden nodes networks, respectively. In Figure 4.34, it can be seen that none

of the distributions include zero, indicating that all of the nodes are necessary for mod-

Table 4.6 Log Bayes Factors in favour of the highest ranked model for data set II.

Rank Hidden loge BF in Favour
Nodes of Rank 1 Model

1 3 –
2 4 20.278
3 5 40.412
4 6 58.923
5 1 59.362
6 7 78.208
7 2 78.608
8 8 96.967
9 9 117.816
10 10 138.805

Page 194



Assessment of Bayesian Techniques with Synthetic Data – Section 4.4

elling data set II, whereas the 95% highest density region of the distribution shown in

Figure 4.35 (b) does include zero, which indicates that this node may be removed from

the network without loss of predictive performance.
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Figure 4.34 Marginal posterior hidden-output weight distributions for the 3 hidden node

ANN applied to data set II.
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ANN applied to data set II.

Page 195



Chapter 4 – A New Bayesian Framework for ANNs

Table 4.7 Evidence estimates for data set III ANN models.

Hidden G-D C-J Mean
Nodes Estimator Estimator -1/2BIC

1 -1181.973 -1178.764 -1187.835
2 -979.765 -974.182 -969.696
3 -807.071 -806.271 -785.296
4 -241.059 -235.593 -177.878
5 -193.011 -193.503 -133.750
6 -235.465 -236.286 -154.014
7 -303.281 -299.990 -181.012
8 -408.727 -408.916 -211.591
9 -404.002 -404.919 -243.774
10 -457.596 -455.242 -257.550

The evidence results obtained for data set III are presented in Table 4.7 and Fig-

ure 4.36. The highest evidence values estimated using each method (highlighted in bold

italics in Table 4.7) correctly indicate that the 5 hidden node model provides the optimal

complexity. Similar to the results obtained for data sets I and II, some of the G-D and

C-J estimates seem erroneous. For example, the 8 hidden node ANN was estimated to

be less probable than the 9 hidden node network by both methods and the 4 hidden node

network was estimated as being more probable than the 6 hidden node ANN, which con-

tradicts the results obtained in Chapter 3 and the evidence values estimated using the G-D

and -1/2BIC methods. Again, the BIC estimator is the most consistent of the methods

investigated.
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Figure 4.36 Evidence estimates for the1, . . . , 10 hidden node ANNs applied to data set III.
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Table 4.8 Log Bayes Factors in favour of the highest ranked model for data set III.

Rank Hidden loge BF in Favour
Nodes of Rank 1 Model

1 5 –
2 6 20.263
3 4 44.128
4 7 47.261
5 8 77.840
6 9 110.023
7 10 123.799
8 3 651.546
9 2 835.945
10 1 1054.084

TheBFRank1,i results presented in Table 4.8 indicate that there is very strong evidence

in favour of the 5 hidden node ANN over the 6 hidden node network. However, inspection

of the marginal posterior distributions of the hidden-output weights of the 5 and 6 hidden

node ANNs, shown in Figures 4.37 and 4.38, respectively, indicates that this is not the

case, as none of these distributions for either of the models include zero. There may be a
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Figure 4.37 Marginal posterior hidden-output weight distributions for the 5 hidden node

ANN applied to data set III.
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Figure 4.38 Marginal posterior hidden-output weight distributions for the 6 hidden node

ANN applied to data set III.

number of reasons why the Bayes factor results suggest strong evidence in favour of the 5

hidden node ANN, when it is, in fact, difficult to choose between the 5 and 6 hidden node

ANN models. For example, the interpretive scale given in Table 4.1 may not be appro-

priate for ANNs, where the addition of each hidden node increases the complexity of the

model by several dimensions; the evidence approximation given by the -1/2BIC may be

poor; or the MCMC algorithm may not have converged properly (although inspection of

output MCMC traces indicated that it had). By inspection of the marginal posterior distri-

butions for the hidden-output weights of the 7 hidden node model, shown in Figure 4.39,

it was seen that only 6 hidden nodes were necessary, as the marginal posterior distribution

displayed in subplot (e) included zero and was therefore considered redundant. It was

concluded from these plots that the 6 hidden node ANN may be more appropriate for

modelling data set III than the 5 hidden node ANN, as it is apparent that there may be

some increase in model performance by including the additional hidden node.
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Figure 4.39 Marginal posterior hidden-output weight distributions for the 7 hidden node

ANN applied to data set III.

4.4.4 Evaluation of Best Models

As with the deterministic ANNs developed in Chapter 3, the best models developed using

the Bayesian framework were evaluated by assessing their performance against the “mea-

sured” and “true” training, testing and validation data subsets for synthetic data sets I, II

and III. It should be noted that the testing data subset was unnecessary for the Bayesian

training approach, as cross validation is not required in the Bayesian context; therefore,

it could have been combined with the training data. However, in order to provide a fair

comparison with the results obtained using the deterministic models, this was not done.

Shown in Figure 4.40 are scatter plots of the mean model predictions and 95% prediction

limits of the 1 hidden node ANN found most suitable for modelling data set I versus the

“measured” and “true” training, testing and validation data. It can be seen in this figure

that the mean predictions provide a very good fit to the “true” data and that the majority of
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Figure 4.40 Scatter plots of the 1 hidden node ANN model mean predictions and 95%

prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data

for data set I.

the “measured data” are contained within the 95% prediction limits. In fact, these limits

contain 100% of the “true” data points and 94.8% of the “measured” data.

A time series plot of the mean model predictions and 95% prediction limits is shown in

Figure 4.41 against the “measured” and “true” recombined training, testing and validation

data. The first 100 points of this plot are shown in Figure 4.42 to better illustrate the model

fit to the data. It can be seen that the mean predictions provide a near perfect fit to the

“true” data and that the prediction limits, while relatively narrow, account for almost all

of the “measured” data.

Shown in Figure 4.43 are theRI distributions for each input of the 1 hidden node

ANN used for modelling data set I. These were calculated by evaluating theRI values

for each of the weight vectors sampled from the posterior distribution using the modified

Connection Weight Approach. The minimum, mean and maximum values of these dis-

tributions are summarised in Table 4.9 in comparison to the PMI-basedRI estimates. It

can be seen here that there is reasonable agreement between the meanRI values and the

PMI-based estimates and that these estimates are each incorporated within the bounds of

the estimatedRI distributions, indicating that the model developed had approximated the

underlying relationship well.
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Figure 4.42 Plot of the first 100 mean model predictions and 95% prediction limits against

the combined training/testing/validation “measured” and “true” data for data set I.
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Figure 4.43 EstimatedRI distributions for the inputs of data set I.

Table 4.9 Minimum, mean and maximumRI values (%) for the inputs of the 1 hidden node

ANN developed for modelling data set I.

RI Estimation Method yt−1 yt−4 yt−9

Minimum 13.81 34.88 29.64
Mean 21.00 41.67 37.33
Maximum 27.04 48.20 44.90

PMI-based 22.33 45.07 32.60
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Figure 4.44 Scatter plots of the 3 hidden node ANN model mean predictions and 95%

prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data

for data set II.

A 3 hidden node ANN was found to be best for modelling data set II and the scatter

plots of the resulting mean model predictions and 95% prediction limits versus the “mea-

sured” and “true” training, testing and validation data are shown in Figure 4.44. In this

case, the 95% prediction limits incorporate 100% of the “true” data points and 96.3% of

the “measured” data.

Figures 4.45 and 4.46 show time series plots of the mean model predictions and 95%

prediction limits against the “measured” and “true” data for the first 100 points of the

recombined training, testing and validation data set and for the entire data set, respectively.

It can be seen in Figure 4.45 that although the mean predictions do not accurately predict

all of the “true” data points, all of these data are contained well within the 95% prediction

limits.
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Figure 4.45 Plot of the first 100 mean model predictions and 95% prediction limits against

the combined training/testing/validation “measured” and “true” data for data set II.
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Figure 4.47 EstimatedRI distributions for the inputs of data set II.

TheRI distributions for each input of data set II, estimated with the modified Con-

nection Weight Approach, are shown in Figure 4.47, while the minimum, mean and max-

imum RI values are summarised in Table 4.10. For inputsyt−1, yt−4 andyt−9, there is

good agreement between the meanRI values and the PMI-basedRI estimates, which

are also given in Table 4.10. While the meanRI value is significantly less than the PMI-

basedRI estimate for inputxt, the maximum of theRI distribution is approximately

equal to the PMI-basedRI estimate; thus, it was considered that the model obtained a

Table 4.10 MeanRI values (%) for the inputs of the 3 hidden node ANN developed for

modelling data set II.

RI Estimate yt−1 yt−4 yt−9 xt

Minimum 16.93 29.39 16.15 0.00
Mean 25.73 37.71 33.14 3.42
Maximum 38.66 50.82 43.09 11.12

PMI-based 21.62 36.13 30.82 11.44
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good approximation of the data-generating function.

Similar to the deterministic case, it was inconclusive using Bayesian model selection

whether a 5 hidden node ANN or a 6 hidden node ANN was better for modelling data set

III. Scatter plots of the 5 hidden node ANN model mean predictions and 95% prediction

limits versus the “measured” and “true” data are shown in Figure 4.48, while Figure 4.49

shows the same plots for the 6 hidden node ANN model. The 95% prediction limits of

both the 5 and 6 hidden node models include 100% of the “true” data and include 95.0%

and 95.4% of the “measured” data, respectively.
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Figure 4.48 Scatter plots of the 5 hidden node ANN model mean predictions and 95%

prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data

for data set II.
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Figure 4.49 Scatter plots of the 6 hidden node ANN model mean predictions and 95%

prediction limits versus “measured” and “true” (a) training, (b) testing and (c) validation data

for data set II.
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Shown in Figures 4.50 and 4.51 are output plots of the 5 hidden node ANN model

mean predictions and 95% prediction limits against the “measured” and “true” data for

the entire recombined training, testing and validation data set and for the first 100 points

of this data set, respectively. The prediction limits are relatively narrow about the mean

predictions, yet the “true” data are still well contained within the bounds, indicating that

the model predictions have little associated uncertainty. This is a result of the high signal-

to-noise ratio of the data, which enabled the model to extract relatively noise free infor-

mation from the data to estimate the underlying relationship. The output plots for the 6

hidden node ANN model are not shown, as they are almost identical to those presented in

Figures 4.50 and 4.51.
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Figure 4.51 Plot of the first 100 mean predictions and 95% prediction limits against the

combined training/testing/validation “measured” and “true” data for the 5 hidden node ANN

applied to data set III.

TheRI distributions for each input of data set III, estimated with the modified Con-

nection Weight Approach using the weights of the 5 and 6 hidden node ANN weights,

are shown in Figures 4.52 and 4.53, respectively. The minimum, mean and maximum

RI values of these models are summarised in Table 4.11 together with the PMI-basedRI

estimates. It can be seen in this table that there is better agreement between theRI distri-

butions estimated for the 6 hidden node ANN and the PMI-basedRI estimates, indicating

that this model obtained a better approximation of the data-generating function than the 5

hidden node ANN.
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Figure 4.52 RI distributions for the inputs of data set III estimated using the 5 hidden node

ANN weights.

Table 4.11 Minimum, mean and maximumRI values (%) for the inputs of the 5 and 6

hidden node ANN developed for modelling data set III.

RI Estimation Method x1 x2 x3 x4 x5

5 hidden nodes - minimum 0.06 3.80 16.55 26.22 13.33
5 hidden nodes - mean 9.39 10.91 29.43 32.83 17.42
5 hidden nodes - maximum 16.60 16.35 41.14 41.91 22.02
6 hidden nodes - minimum 13.42 27.71 0.00 21.97 11.46
6 hidden nodes - mean 19.80 34.19 3.31 27.47 15.23
6 hidden nodes - maximum 26.02 40.40 15.09 33.58 19.92

PMI-based 20.07 22.65 10.65 30.80 15.83

Page 209



Chapter 4 – A New Bayesian Framework for ANNs

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

13 15 17 19 21 23 25 27 

x1 

RI (%) 

P
ro

ba
bi

lit
y 

D
en

si
ty

 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

27 29 31 33 35 37 39 41 

x2 

RI (%) 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0 2 4 6 8 10 12 14 16

x3 

RI (%) 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

21 23 25 27 29 31 33 

x4 

RI (%) 

P
ro

ba
bi

lit
y 

D
en

si
ty

 

0.000 

0.050 

0.100 

0.150 

0.200 

0.250 

0.300 

0.350 

0.400 

0.450 

11 12 13 14 15 16 17 18 19 20 

x5 

RI (%) 

Figure 4.53 RI distributions for the inputs of data set III estimated using the 6 hidden node

ANN weights.

Performance criteria are given in Table 4.12 to summarise the mean performance (i.e.

calculated based on the mean predictions) of the ANN models developed when applied

to the “measured” and “true” validation data for all three synthetic data sets. The results

obtained using the deterministic development approach, as well as the actualσ2
y and MAE

values (shown in italics), are given for comparison. As can be seen, the mean performance

of all of the ANN models developed using Bayesian methods was slightly better than the

performance of the corresponding deterministic ANN models on the “true” validation

data. This indicates that each of the data-generating functions was slightly better ap-

proximated using the Bayesian approach. Performance of the Bayesian and deterministic

models on the “measured” validation data was similar; however, in general, the Bayesian

models also performed slightly better on this data.
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Table 4.12 Mean performance of the ANNs developed using Bayesian methods in compari-

son to the performance of the corresponding deterministic ANNs when applied to “measured”

and “true” validation data.
Performance Deterministic Bayesian

Measure “Measured” “True” “Measured” “True”

DATA SET I
σ̂2
y 1.020 0.010 1.104 0.008

MAE 0.814 0.075 0.817 0.070
RMSE 1.010 0.098 1.012 0.091
CE 0.703 0.996 0.702 0.997
Actualσ̂2

y 1.035 0.000 1.035 0.000
Actual MAE 0.816 0.000 0.816 0.000

DATA SET II
σ̂2
y 0.922 0.059 0.917 0.055

MAE 0.766 0.190 0.760 0.182
RMSE 0.960 0.243 0.958 0.234
CE 0.682 0.974 0.684 0.976
Actualσ̂2

y 0.852 0.000 0.852 0.000
Actual MAE 0.733 0.000 0.733 0.000

DATA SET III - 5 hidden node ANN
σ̂2
y 0.924 0.068 0.922 0.055

MAE 0.768 0.201 0.768 0.181
RMSE 0.961 0.262 0.960 0.234
CE 0.947 0.996 0.948 0.997
Actualσ̂2

y 0.869 0.000 0.869 0.000
Actual MAE 0.752 0.000 0.752 0.000

DATA SET III - 6 hidden node ANN
σ̂2
y 0.909 0.059 0.905 0.050

MAE 0.769 0.185 0.766 0.173
RMSE 0.953 0.242 0.951 0.224
CE 0.948 0.997 0.949 0.997
Actualσ̂2

y 0.869 0.000 0.869 0.000
Actual MAE 0.752 0.000 0.752 0.000
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4.4.5 Conclusions

4.4.5.1 Bayesian Training and Prediction

It was seen that the best training results in terms of the estimated posterior weight dis-

tribution, given overfitted and poor initial conditions, were obtained when a hierarchical

prior distribution was used. The use of an ARD type prior, although possibly more repre-

sentative of actual prior knowledge, did not provide any significant additional benefits to

the simulation and only served to increase the complexity of the algorithm, whereas the

noninformative uniform prior, whilst retaining the simplicity of the algorithm, was unable

to prevent overfitting or enable the chains to efficiently explore the search space. The

hierarchical prior distribution enabled both the prevention and correction of overfitting

when the MCMC algorithm was used to train overparameterised models. Furthermore,

when the hyperparameters of the hierarchical prior were fixed for a short initial period,

the results of the MCMC simulation, given poor initialisation of the weights, were sub-

stantially improved, with the chains being better able to explore the search space and

discover new modes. On the other hand, simulated annealing was unable to achieve any

significant improvement in the results of the MCMC simulation, as no further modes of

higher posterior probability were discovered than when simulated annealing was not ap-

plied. It is possible that, with a greater number of iterations and more optimal values ofϕ

andT0, simulated annealing could have been more successful; however, it is considered

that the increase in complexity of the MCMC algorithm as a result of the additional tun-

ing parameters is not warranted. Therefore, simulated annealing will not be considered

further in this research. Overall, it was concluded that, although helpful in “forgetting”

initial conditions, the use of a hierarchical prior with initially fixed hyperparameters is no

substitute for a good weight initialisation. It is therefore recommended that extra care be

taken in finding appropriate weightŝw to initialise the MCMC algorithm. Thus, if the

algorithm does become stuck in the vicinity of a local mode, there will at least be some

confidence that it is a “good” mode (i.e. the best estimate of the maximum likelihood

value given by a rigorous search algorithm that tries to thoroughly search the space). The

use of a hierarchical prior with initially fixed hyperparameters will help to lessen the bias

that may be caused by this initialisation.

4.4.5.2 Bayesian Model Selection

The -1/2BIC estimator of the ANN models’ evidence values was found to be the most

consistent and logical of the estimators investigated. For each of the three synthetic case

studies considered, the -1/2BIC values followed a similar pattern to the theoretically more
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correct G-D and C-J estimators, yet did not suffer from the same instabilities due to the

prior distribution assumed or the proposal distribution used to sample draws from the pos-

terior distribution. Furthermore, a distribution of -1/2BIC values is obtained, which may

be better to estimate the strength of the evidence for or against a given model (by assess-

ing overlap, if any, of -1/2BIC distributions and the difference between maximum and

minimum values). Inspection of marginal posterior hidden-output weight distributions

was shown to be useful for checking the results obtained from the -1/2BIC Bayes factors,

as these distributions indicate whether or not similar results could be obtained if one or

more of these connections was set equal to zero; thus, removing it from the network.

4.4.5.3 Overall

The models developed using the Bayesian training and model selection framework per-

formed slightly better than those developed using the deterministic approach presented in

Chapter 3. The 95% prediction limits generated successfully accounted for approximately

95% of the “measured” data and 100% of the “true” data for each of the synthetic data

sets, while the probabilisticRI values provided a better approximation of the true relative

contributions of the models’ inputs than the deterministic estimates did.
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