Chapter 1
Introduction

1.1 MOTIVATION

Water resources engineering involves the planning, development and management of wa-
ter resources in order to meet the water needs of society and the environment. Of overall
concern is the hydrological cycle, as water moves from a natural source to its point of use
and back, taking into account the environmental processes that act on the system during
this cycle. Models play an integral part in water resources engineering; however, it is
very difficult to simulate the behaviour of these natural systems due to the innumerable
nonlinear and often poorly understood interactions that occur within them. Over the past
15 years, there has been a growing interest in artificial neural networks (ANNS) for simu-
lating, forecasting and predicting many different aspects of the hydrological cycle, as it is
often considered that they provide the best model of a water resource system in the face
of these difficulties.

ANNSs have the ability to extract a relationship between a number of causal input vari-
ables and a dependent variable of interest from available characterising data, without the
need for restrictive assumptions about the relationship under study. Their nonlinear and
flexible functional form makes it possible to model any continuous function to an arbi-
trary degree of accuracy, and as such ANNSs are often considered to be universal function
approximators. Furthermore, ANNs are relatively easy to use and have made it possible
for water resources practitioners to model complex nonlinear processes without the need
for sophisticated statistical techniques. The capability of ANNs to model hydrological
and water resources variables has been demonstrated in numerous applications, including
rainfall-runoff modelling Hsu et al, 1995;Dawson and Wilby1999; Dibike and Solo-
matine 2001; Anmala et al. 2000), streamflow predictiorZgaland et al. 1999;Imrie
et al,, 2000;Yitian and Gy 2003;Dolling and Varas 2003) and water quality forecast-
ing (Maier and Dandy 1996;Zhang and Stanleyl997; Whitehead et a].1997; Maier
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et al, 1998). A comprehensive review of such applications can be fouA®G@E Task
Committeg2000a,b)Maier and Dandy(2000a) and>awson and Wilby2001).

Despite the increasing use of ANNSs in water resources modelling, they are still viewed
with some scepticism by users of more conventional statistical and knowledge-based mod-
elling methodologies. The main premise in support of ANNSs is their ability to generalise
solutions to new examples from previous ones. However, this ability is reliant upon the
proper estimation of a governing set of parameters that characterise the underlying system.
These parameters have no physical interpretation and their values must be determined by
calibration with a finite set of noisy data, which itself is performed solely by minimi-
sation of predictive error and does not provide any means of incorporating knowledge
of the system into the model. Furthermore, calibration of ANNs is a multidimensional
nonlinear optimization problem, which is far from being straightforward. Determining
the optimum level of complexity required to model a given problem is one of the most
difficult tasks in the development of an ANN. Therefore, ANNSs typically contain many
more free parameters, or degrees of freedom, than conventional statistical or conceptual
models, and minimising the predictive error often results in a model that ‘overfits’ the
calibration data. Alternatively, optimisation algorithms used for calibration may become
trapped in one of the many local optima that typically exist on the complex error surface,
rather than finding the global minimum. To make matters worse, once an ANN has been
calibrated, any explanation of its internal behaviour is only revealed back to the user in
the form of an “optimal” parameter vector, which is difficult to interpret as a functional
relationship. Consequently, there is no direct way to validate the model in terms of its
physical plausibility.

Given these problems, it is very difficult to use ANNs confidently in any context other
than interpolation. However, when used for prediction and forecasting purposes, it is
generally inevitable that the model will also be required to extrapolate. In order to increase
the confidence in ANN predictions, and hence improve their usability in water resources
applications, it is necessary to acknowledge and quantify the uncertainty associated with
estimating appropriate parameter values. As statedlder and Dandy(2000a) in the
concluding paragraph of their review on the use of ANNSs for water resources modelling:

A further challenge is the incorporation of uncertainty into ANN models.
Until now, ANN models in the field of water resources have been almost
exclusively deterministic. However, it is well documented that many water
resources models are subject to inherent, model and parameter uncertainties.
Consequently, techniques for dealing with uncertainty should be considered
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in the development of ANN models.

Accordingly, the primary motivation of this research is to incorporate uncertainty into
ANNSs used for water resources modelling. In recent years, Bayesian methods have been
increasing in popularity for this purpose in various fields, including water resources mod-
elling with more traditional models. However, a full Bayesian framework has not yet
been extended to ANNs used for water resources modelling and, therefore, this will be
the main focus of this thesis.

In addition to providing a confidence measure for the predictions, it is expected that
the Bayesian framework will also help to overcome the difficulties in selecting an “opti-
mal” set of model parameters and will aid in the design of a model with the appropriate
level of complexity. To properly investigate these advantages, the new Bayesian neural
network methodology presented in this research is compared to a “state-of-the-art” deter-
ministic ANN modelling approach. Therefore, current best practice deterministic ANN
development methods will be reviewed, and where limitations are identified, improve-
ments made, in order to devise a state-of-the-art deterministic approach. Furthermore, to
demonstrate the advantages of the new Bayesian neural network methodology in a prac-
tical setting, two water resources case studies are considered. These include forecasting
salinity and cyanobacteria concentrations in a river.

1.2 RESEARCH OBJECTIVES

The overall objective of this research is to use Bayesian methods to help overcome some
of the limitations that prevent ANNs from becoming more widely accepted and reaching
their full potential as reliable water resources models, namely the lack of consideration
of prediction uncertainty, the difficulty in estimating appropriate parameter values, the
difficulty in selecting the optimum complexity and the lack of an objective method to
properly validate the model and interpret the relationship modelled. In order to meet
this overall goal, a number of primary and secondary objectives will be addressed. The
primary objectives include:

e The development of a Bayesian framework applicable to ANNs used for water re-
sources modelling, that incorporates:

— a method to identify the distribution of plausible model parameters; and

— a method to identify the optimal (or near optimal) ANN structure for a given
case study.
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e Comparison of the Bayesian approach to state-of-the-art deterministic ANN devel-
opment approaches to determine the advantages and limitations of the developed
methods.

e Application of the Bayesian ANN development approach to real water resources
case studies to demonstrate the practical advantages and limitations of the Bayesian
methods.

The secondary objectives are those not directly related to the Bayesian framework includ-
ing:
e The assessment, comparison and, if necessary, improvement of currently used de-
terministic ANN development methods to devise a state-of-the-art approach.

e The development of an objective validation framework based on the modelled rel-
ative contributions of the predictor variables in generating the response variable.
This should involve the comparison and, if necessary, improvement of existing in-
put importance measures for use in the framework.
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1.3 LAYOUT AND CONTENTS OF THESIS

A background to this research is presented in Chapter 2. This includes background in-
formation on ANN concepts (Sections 2.2.1 to 2.2.3) and Bayesian methodology (Sec-
tion 2.3.1), as well as a discussion of current practices, strengths and limitations in both
of these areas resulting from a review of the relevant literature (Sections 2.2.4t0 2.2.5 and
2.3.310 2.3.6).

In Chapter 3, deterministic methods applied to ANNs used for water resources mod-
elling are reviewed and, if necessary, improved, in order to devise a state-of-the-art de-
terministic ANN approach. Methods currently employed at each stage of the model de-
velopment process are reviewed in Section 3.2 to determine best practice approaches and
identify any areas requiring improvement or further assessment. The state-of-the-art ap-
proach adopted throughout this research is summarised in Section 3.3, together with the
model development steps identified as requiring further analysis. Various methods for
carrying out these steps are investigated and compared in Section 3.4 using three syn-
thetic data sets. Finally, the conclusions made based on the investigations conducted are
presented in Section 3.4.7

The new Bayesian ANN framework developed in this research is presented in Chap-
ter 4. The ‘training and prediction’ component of the framework is discussed in Sec-
tion 4.2, which includes a background to the use of Markov chain Monte Carlo (MCMC)
methods for estimating parameter distributions (Section 4.2.1), a review of MCMC meth-
ods previously used for ANN training (Section 4.2.2) and, finally, an outline of the pro-
posed Bayesian training and prediction approach (Section 4.2.3). In Section 4.3, the
‘model selection’ component of the framework is proposed, based on a review of avail-
able Bayesian model selection methods (Section 4.3.1) and those previously applied for
selecting the optimum complexity of an ANN (Section 4.3.3). In Section 4.4, the details
of each of these components are determined and the overall proposed methodology is
assessed through investigations carried out on synthetic data.

In Chapters 5 and 6, the proposed Bayesian and state-of-the-art deterministic ANN
development methods are compared when applied to two real-world water resources case
studies, which involve forecasting salinity and cyanobacteria concentrations in a river,
respectively. Both of these cases are considered to be good benchmark studies against
which the relative merits of each of the ANN development approaches can be assessed in
a real-world context.

Finally, the overall contributions, conclusions and recommendations of this research
are given in Chapter 7.
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Chapter 2
Research Background

2.1 WATER RESOURCES MODELLING

Models are required in almost all areas of water resources planning and management
(Wurbs 1995). They enable the response and behaviour of a system to be investigated
under various physical conditions, which is generally either impossible or infeasible to do
in the real world. Therefore, they play a vital role in areas such as river regulation and
management, hydraulic infrastructure design and water quality protection.

Water resources modelling will inevitably involve the use of some type of hydrolog-
ical model. The types of models currently used to model hydrological systems can be
broadly categorised into three main groups: physically-based, conceptual and empirical
(ASCE Task Committe2000a;Dawson and Wilby2001). Physically-based models aim
to represent the underlying physics of the system by using a series of partial differential
equations to describe, as best they can, the change of state (e.g. mass, energy) of the
system over time. In theory, once developed, these models should have a wide range of
applicability (e.g. on data outside the domain of those used to develop the model and
on ungauged systems with known or assumed characteristics), as they are based on fun-
damental physical relationships. The parameters of physically-based models are directly
related to catchment characteristics and, thus, give useful insight into the system under
investigation. However, the development of a physically-based model is very data in-
tensive, requiring catchment specific spatial and temporal data to describe the physical
characteristics of the systeriléier and Dandy 2000b;ASCE Task Committe2000a).

These types of data are generally not available; therefore, in many cases intensive data
collection programs are required which can be both costly and time consuming, while
in other cases typical parameter values are selected from manuals or textbooks and may
provide little reflection of the actual valueRéckhow1999). Furthermore, development

of a physically-based model requires that all of the physical processes occurring within
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the system are understood sufficiently well to be described mathematiktdigr(and

Dandy, 2000b). However, there still remain many components of hydrological systems
that are only poorly understood or are simply too complex to model accurately with math-
ematical relationships. Consequently, even the most complex physically-based models are
extreme simplifications of realityReckhow1999). Additionally, by attempting to simu-

late all of the processes that occur within a system, physically-based models are subject
to overparameterisatiorBéven 1989) and parameter redundandg (Vos and Rientjes
2005); thus the complexity of these models may, in fact, hinder model performance.

In order to overcome some of the limitations of physically-based models, conceptual
models only aim to represent key components of the hydrological system using simplified
descriptions of the physical mechanisms that ocder Yos and Rientje2005). Con-
ceptual models are therefore simpler than their physically-based counterparts, requiring
fewer parameters, and are also less data intensive. The hydrological system is commonly
conceptualised as a series of interconnected water stores, where empirical relationships
are used to describe the recharge and depletion processes that occur within and between
them Kokkonen and Jakema001). While still based on conservation of mass, albeit on
a larger temporal and spatial scale, calibration of conceptual models with historical data is
required to estimate the parameters that govern the empirical equations. In general, con-
ceptual models do not exploit previously measured values of the output (i.e. streamflow),
except for calibration purposes, and assume that observed values of the independent in-
puts (e.g. rainfall and evaporation), together with the model structure, are sufficient to
describe the evolution of the system over tirmieth and Brath 2002). However, errors
in the measured data, together with the various simplifying assumptions made concern-
ing the responses of the individual system components, introduce some level of error into
the predicted response of the system compon&wedn 1989). This error is then propa-
gated through the modelled evolution of the system and, thus, the lead time for predictions
made by conceptual models is limitetb(h and Brath2002). Furthermore, both concep-
tual and physically-based models require continuous data sets and cannot handle gaps in
the data. If data are missing, which is often the case, predicted values of the inputs must
be usedfleneker 2002), further adding to the errors introduced into the model.

Empirical models are data-driven with the aim being prediction rather than explana-
tion (Grant et al, 1997). In other words, these models are developed primarily to extract
information contained in a set of observed data and use it to characterise system response,
rather than directly attempting to represent the physical processes occurring within the
hydrological systemKokkonen and Jakema&001; Toth and Brath 2002). Empirical
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models are often referred to as “black-box” models, as inputs are presented to the model
and outputs are generated, with little regard given to the actual mechanisms being mod-
elled (ASCE Task Committe2000a;Toth and Brath2002). However, as these models do

not require in depth consideration of the underlying physical laws, they do not suffer from
the same drawbacks as physically-based and conceptual models, that arise due to an in-
adequate description of the physical processes. Furthermore, empirical models typically
use historical values of the target variable as inputs and are thus less affected by error
propagation through the moddidth and Brath2002). Therefore, empirical models are
suited to modelling complex systems where the underlying relationships are unknown or
difficult to describe and where observed data are abun@irand Zhang2001). Tradi-
tionally, the types of empirical techniques used for hydrological modelling have included
Box-Jenkins time series methods, and linear and nonlinear regrebiiah &nd McLeod
1994;Maier and Dandy2000b). More recently, machine learning techniques with routes

in artificial intelligence, which include, for example, model trees (MTs), support vector
machines (SVMs) and artificial neural networks (ANNS), have proven to be successful
empirical methods for many water resources applicati@mofmating 2002). Of these
techniques, ANNs are by far the most popular and have received considerable attention
as a water resources modelling approach since the first publications in this field appeared
in 1992 French et al, 1992;DeSilet et al. 1992). The promising results of these initial
studies led to numerous comparisons between ANNs and more conventional hydrological
modelling methods, where in most cases it was shown that ANNs can perform at least as
well as, if not better than, many traditional moddhs( et al, 1995;Shamseldin1997;

Tokar and Johnsqgri1999;Dawson and Wilby1999;Toth et al, 2000;Thirumalaiah and

Deg, 2000). As a result, the popularity of ANNSs in the field of water resources modelling
has increased dramatically since their first introductidaiér and Dandy2000a).

2.2 ARTIFICIAL NEURAL NETWORKS (ANNS)

2.2.1 Background and Description

ANNSs were first developed in the 1940s when they were originally designed to mimic the
functioning of the brainNIcCulloch and Pitts1943). However, it has only been in the

last 20 or so years, since the development of new calibration techniques and the increase
in computational power, that their popularity in various fields as prediction tools has blos-
somed Maier and Dandy 2000a;de Vos and Rientje2005). ANNs are mathematical
models composed of a number of highly interconnected processing units called “nodes” or
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“neurons”, which, individually, carry out rather simple and limited computations. How-
ever, collectively as a network, complicated computations can be performed due to the
connectivity between the nodes and the way in which information is passed through and
processed within the networklpod and Kartam 1994). ANNs are nonparametric, or
“model free”, and as such are able to model both linear and nonlinear functions without
prior specification of the functional form of the mod€&li(and Zhang2001). Therefore,
when used for prediction, which is the focus of this thesis, ANNs can be considered as a
very general form of nonlinear regression modghsgtellano-Mndez et a).2004).

There are many different types of ANNSs in terms of structure and mode of operation
(Flood and Kartam1994). These are generally classified according to network topology
and type of connectivity between the nodes, the type of data used, the way in which
the network ‘learns’ the underlying function and the computations performed by each
node Sarle 2002). Multi-layer perceptrons (MLPs) are the most popular and widely
used ANN structure for regression probler@héng and Titteringtarnl994;Zhang et al,

1998), including those relating to water quality and quanfiigier and Dandy 2000a;
Dawson and Wilby2001). Therefore, MLPs are the focus of this research and throughout
this thesis the term “ANN" will refer to an MLP unless stated otherwise.

2.2.2 Multi-Layer Perceptrons (MLPSs)

Multi-layer perceptrons, as the name suggests, are made up of several layers of nodes.
As shown in Figure 2.1, the nodes are arranged into an input layer, an output layer and
one or more intermediate layers, called ‘hidden’ layers. Information in the form of a

Figure 2.1 Layer structure of a multi-layer perceptron.
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vector of observed data values is passed through the network, generally in a forward
direction (feedforward), from one layer to the next. The input layer contains a node
corresponding to each input variable and information is received at this layer as a vector
of real valuex® = (z1,...,2x). The values are then transmitted to each node in the
next layer via weighted connections, where the weight determines the strength of the
signal. At the nodes, the weighted values from the previous layer are summed together
with a weighted bias. The result is then passed through a (possibly) nonlinear transfer, or
activation, function to generate an activation level for that node. The activations are then
transmitted to the subsequent layer and the process is continued until the information
reaches the output layer. The activation level generated ahtheoutput node is the
predictiony,,. Figure 2.2 shows the operation of a single hidden layer node.

Wy g(@m)

X1

Figure 2.2 Operation of a single node.

The connection and bias weights, are the free parameters of the network and, in
order for the network to perform the desired function, appropriate values of these weights
must be estimated. The complexity of an ANN is dependent on the number of weights,
or dimension of the weight vectal; which is determined by the number of nodes in the
network. The input and output layer nodes are fixed according to the number of input
and output variables, respectively; however, the number of nodes in the hidden layers is
flexible and must be specified by the modeller. Therefore, model complexity is adjusted
by increasing or decreasing the number of hidden nodes. The complexity of the model
is also dependent on the choice of activation function, which may be any continuous
differentiable function. The most commonly used activation functions are sigmoidal type
functions, such as the hyperbolic tangent (tanh) and logistic functiddag( and Dandy
2000a).
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2.2.3 Training

ANN “training” can be compared to the calibration of coefficients in statistical models
(Maier and Dandy 2001). During training the aim is to find values for the connection
and bias weights so that the outputs produced by the ANN approximate the training data
well. However, it is not sufficient to just reproduce solutions in the training data set;
rather, a generalised solution applicable to all examples is requttedd and Kartam

1994). ANNSs, like all mathematical models, work on the assumption that there is a real
function underlying a system that relates a sekdhdependent predictor variable$ to

M dependent variables of intergst!. Therefore, the overall aim of ANN training is to
infer an acceptable approximation of this relationship from the training data, so that the
model can be used to produce accurate predictions when presented with new data. Thus,
if the function relating the measured target data to the model inputs is given by:

yM = (x5, w) +e (2.1)

where f(-) is the function described by the ANNk is a vector of weights that charac-
terise the data generating relationship amépresents random measurement noise, the
aim is to find the best estimate of the weight vector, which is denoted by his is
typically done by iteratively adjusting and optimising the weights such that some func-
tion of the difference between the measured targetgitand the predicted outpugs"/
(e.g. the sum squared ertdy, = 1 > (y™ — y*)?) is minimised. The term “generalise”
is used to imply that the functional forrfi(-) will not be explicitly revealed, but will
instead be represented by the estimated weighfaSCE Task Committe2000a).

Following training, the performance and generalisation ability (‘generalisability’) of
the ANN is checked by subjecting it to an independent validation data set.

2.2.4 Advantages

The increased popularity of ANNs for water resources modelling can be attributed to a
number of factors. Firstly, as mentioned above, modelling hydrological variables with
more conventional physically-based or conceptual models may be limited by a poor un-
derstanding of the complex interactions that are involved in the pro8&3SHE Task Com-
mittee 2000a). Therefore, there are clear advantages to using empirical approaches such
as ANNs over knowledge-based methods, as they have the ability to extract the input-
output relationship from data without requiring an in-depth knowledge of the physics oc-
curring within the hydrological systenZiang et al. 1998). Secondly, ANNs are able to
model nonlinear relationshipsl{ll et al., 1994). The majority of hydrologic processes are
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highly nonlinear in nature; however, when using empirical methods, water resources prac-
titioners have typically only used simple linear regression or time series maddaier(

and Dandy2000a). While there may be some advantages to using simple linear models in
terms of implementation and interpretation, these models are limited by the fact that they
are unable to capture the complex nonlinear nature of hydrological probfdrasd et al,

1998). Thirdly, ANNs have the ability to generalise solutions to new examples from pre-
vious ones. This makes ANNSs relatively insensitive to noise in the data and, as inputs are
considered as variables, without regard for their membership to a time series, ANNs can
handle incomplete, discontinuous data sB@vwson and Wilby2001;Castellano-Mndez

et al, 2004). Thus, ANNs have an advantage over both conceptual and Box-Jenkins time
series models, which do not have this generalisation abd#aland et al.1999). Finally,

ANNSs are relatively easy to use and are a highly flexible modelling apprdaate and
Dandy, 2000a;Gaume and GosseP003). The advantages presented thus far are not
exclusive to ANNs, and in fact, sophisticated statistical methods capable of performing
similar modelling tasks to those performed by ANNs (i.e. complex, nonlinear) have been
available for many years prior to the introduction of ANNdajer and Dandy 2000a).
However, the need to prespecify the functional form of these model-based approaches has
limited their use, since there are too many possible nonlinear patterns, making it very dif-
ficult to formulate an appropriate nonlinear modéhéng 2001); hence, the preference

for simple linear statistical models@ier and Dandy2000a). On the other hand, ANNs

are model free, allowing them to model both linear and nonlinear relationships without
requiring any restrictive assumptions about the functional fa@nahd Zhang 2001),

giving them more general appeal than less flexible mod#iarig 2001). Furthermore,

the complexity of ANNs can be easily adjusted by altering the number and configuration
of hidden nodes and/or the types of activation functions used, and ANNs can be easily ex-
tended from being univariate models to multivariate modelaiér and Dandy 2000a).

In fact, the nonlinear and flexible functional form of ANNs makes it possible to model
any continuous function to an arbitrary degree of accurdty g et al. 1998), and as

such ANNSs are often considered to be ‘universal function approximatGtserig and
Titterington 1994;Bishop 1995;ASCE Task Committe2000b).

2.2.5 Issues and Limitations

Despite the increasing use of ANNs as hydrological models, a number of limitations and
methodological issues have caused them to be viewed sceptically by users of conven-
tional modelling methodologie<hatfield 1993a;Gorr, 1994;Hill et al., 1994;Gaume
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and Gosset2003). During the development of an ANN there are many alternatives avail-
able to the modeller at each stage of the procktsdr and Dandy 2000b). While this
provides great flexibility, there are no well established specification or diagnostic tests,
such as those commonly employed in traditional modelling, and therefore it is difficult
to provide any confidence that the developed model has a plausible theoretical interpre-
tation Refenes and Zaprani$999). Failure to carefully consider ‘good practice’ model
identification principles is the main reason for contradictory or inconclusive results about
the predictive capability of ANNSs in the literatur@l{fang 2001). However, due to the
lack of ANN development theory, and perhaps encouraged by the ability of an ANN to
develop a solution to a problem automatically, ANN users have commonly relied on arbi-
trary decisions for many key model development stépsqd and Kartam 1994;Maier

and Dandy 2000a). Based on a review of the current literature, it is considered that the
most significant issues facing the wider acceptance of ANNs are generalisability, inter-
pretability and uncertainty.

2.2.5.1 Generalisability

As discussed in Section 2.2.4, one of the main advantages of ANNs is the ability to infer
a generalised solution to a problefldod and Kartam 1994), yet, actually obtaining
good generalisation can be very complicat8dr{ge 2002). Firstly, to achieve appropriate
generalisation, the training data set must be of sufficient quality and quantity such that it
contains enough reliable information relating the input variables to the taf@@GH Task
Committee 2000a;Tokar and Johnsgnl999). This requires selection of the necessary
model inputs, which, for a hydrological system, involves deciding which are the important
causal variables and which time lagged values of these variables are necessary to account
for the time structure in the datdg@ier and Dandy 2001). As the problems modelled

by ANNSs are typically poorly understood, selecting the correct inputs is a difficult task,
yet it is also one that has a significant impact on the prediction ability of an ANN: the
inclusion of unnecessary inputs can confuse the training process by adding irrelevant
information, whereas omitting important inputs results in a loss of information that leads
to poor prediction performancASCE Task Committe2000a). Furthermore, to achieve
generalisation, the training data must be a representative sample of the population from
which the data were generated. Due to the lack of physical principles incorporated into
ANNSs, they generally do not perform well on data outside the domain of that used to
calibrate the model (i.e. extrapolation), as there is no information regarding the form
of the solution surface outside of this regidfidod and Kartam 1994; Toth and Brath
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2002). As stated bBienenstock and Gemgh994):

...Statisticians know that generalisation (good performance on samples not in
the training set) depends almost entirely on the extent to which the training
set is representative, and/or the structure of the problem happens to accom-
modate the models used. It is too much to expect statistical methods to “dis-
cover”, by themselves, complex and nontrivial structure...

Consequently, it is important to include enough data in the training set such that extrap-
olation is avoided $arle 2002;ASCE Task Committe000b). However, this may not
always be possible, as many hydrologic records do not go back far enough.

Secondly, generalisability is closely related to model complexity; thus the network
geometry that provides the appropriate level of complexity for the problem under con-
sideration must be selected. As the number of input and output nodes are fixed by the
number of input and output variables in the model, network geometry is determined by
the number of hidden layers and hidden layer nodes in the network. Selecting the opti-
mal number and configuration of hidden layer nodes is one of the most critical and most
difficult tasks in designing an ANNQi and Zhang 2001). It is highly problem depen-
dent and, although a number of ‘rules of thumb’ have been suggested in the literature that
relate the number of training samples and the number of connection weights, there is no
universally accepted theoretical basis to guide selechitaigr and Dandy2000ade Vos
and Rientjes2005). As a consequence, network geometries are commonly found using
trial-and-error approacheZtjang 2001). In determining the number of free parameters
of a network, a compromise is required between the ability to approximate the underlying
function and the generalisation ability of the netwobkagvson and Wilby2001). With
too few hidden nodes, the network may not have sufficient free parameters to correctly
estimate the complex relationship between inputs and outputs and as a result the underly-
ing function is approximated poorly, or ‘underfitted’. On the other hand, too many hidden
nodes can lead to ‘overfitting’, where, rather than inferring the general underlying trend,
noise and spurious features of the training data are learnt, which results in poor gener-
alisation on samples not contained in the training dABGE Task Committe€000a;

Maier and Dandy 2000a;Dawson and Wilby2001). While overfitting also occurs in
conventional models with many parameters, it is more common in ANNSs due to the typ-
ically large number of parameters set to be estimaZéauig 2001). Furthermore, it has
been suggested that model selection criteria commonly used to select the optimal level
of complexity for conventional statistical models, such as Akaike’s information criterion
(AIC) and the Bayesian information criterion (BIC), over-penalise complexity in ANNs
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and emphasise overly simple moded and Zhang2001).

Finally, good generalisation relies on appropriate estimation of the network weights.
ANN training is a multidimensional nonlinear optimisation problem and obtaining good
estimates of the network weights can be problematic. The nonlinearity and high dimen-
sionality of the problem can lead to the existence of multiple local and flat optima on
the solution surfacevan der Smagt and Hirzingefl998). Training algorithms may be-
come trapped in local minima rather than converging on the global solution and, although
sophisticated global optimisation algorithms have been developed, there is still no algo-
rithm that can guarantee global convergence in a reasonable amount o iaregy(et al,

1998). Furthermore, as discussed above, ANNSs are susceptible to overfitting (also referred
to as ‘overtraining’), which results in weight estimates that do not provide a general rep-
resentation of the underlying function. Various methods can be used during training to
prevent overfitting. These can generally be categorised into two main groups: those that
reduce the effective size of the network, and those that stop training before overfitting
can occur. Methods belonging to the latter group are those most commonly used to avoid
overfitting Sarle 1995). Such methods ensure that the network has sufficient flexibility
(degrees of freedom) to fit the data accurately if it were allowed to train to convergence;
however, to prevent overfitting, training is stopped ealg {/eaux et a).1998). A typi-

cal approach employed to determine when to stop training is known as ‘cross-validation’
(Ripley, 1994), which involves the use of a test data set to determine when the network is
beginning to overfit the training dat®éawson and Wilby2001). In the initial stages of
training, errors for both the training and test data sets should decrease at approximately
the same rate. When overfitting begins, the training errors continue to decrease but test
set errors begin to risASCE Task Committe2000a), hence training is stopped at this
point. However, as noted Wyipley(1994), there are a number of difficulties associated
with the use of cross-validation, including:

1. There is no guarantee that the path taken by the optimisation algorithm is sensible.

2. The test set error often rises and falls a number of times making it difficult to deter-
mine when the best point on the path has been reached.

3. The use of a test set wastes data.

In regard to this last point, partitioning the available data into a greater number of subsets
reduces the amount of information contained in the training data. In some cases, there
may not be sufficient data available to allow for a test set. In such cases, training may
simply be stopped when the training error has reached a sufficiently small value or when it
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ceases to decrease significantysCE Task Committe2000aMaier and Dandy2000a);
however, this requires the subjective choice of what is a ‘sufficiently small’ error.

Methods belonging to the former group include regularisation and pruning algorithms.
These methods begin with a network that is flexible enough to fit the training data accu-
rately and subsequently remove or disable unnecessary weights and/or nodes during train-
ing (Maier and Dandy 2000a). Regularisation involves the use of a penalty term which
Is added to the error function in order to penalise model complexity and ensure smoother
mappings Bishop 1995). The regularised error function to be minimised is therefore
given by:

Eregularised - Ey + aEw (22)

whereEy is the error on the datdy,, is the penalty term that measures model complexity
anda is a regularisation coefficient that determines the influence of the penalty term on
the solution. A commonly used regulariser is known as ‘weight decay’ and has the form
(Bishop 1995):

Ey = E > w? (2.3)

This term penalises large weights, forcing them to decay exponentially to zero, hence
reducing the effective model complexity. However, determining the magnitude of the reg-
ularisation coefficient is difficult, yet critical to the generalisation ability of the network
(Sarle 2002); if it is chosen to be too small, overfitting may still occur, whereas if it

is chosen to be too large, underfitting is a problévedl 1996a). It has been noted by
Anders and Korr§1999) that the regularisation coefficients usually do not result from the-
oretical reasoning but are instead set in an ad hoc fashion, and moreover, may involve the
use of a cross-validation, or testing, data set, which again results in inefficient use of the
available dataishop 1995). Furthermore, to ensure good generalisation, different types
of weights in the network usually require different regularisation coefficieBishop

1995). According taSarle (2002), for a one hidden layer MLP, at the very least two
different regularisation coefficients are required for the input-hidden and hidden-output
weights. In general, pruning algorithms are used to remove weak connections (i.e. small
absolute weights)Abrahart et al, 1999) or elements (weights or nodes) that have mini-
mal effect on the error function (i.e. elements to which the error function is insensitive)
(Reed 1993). However, a question which then arises is at what threshold value should
elements be removed from the netwo@{den and Jacksqr2002)?
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Ideally, achieving good generalisability would involve selecting an ANN of optimal
complexity, where optimality is defined as the smallest network that adequately captures
the underlying relationship, and then estimating its weights from a set of good quality
training data, which properly represent the population from which the data were gener-
ated. However, when modelling water resources systems, there are too many factors that
are unknown or cannot be controlled. When the system is poorly understood, it cannot
be guaranteed that all important inputs are included in the model and that a network
providing the optimal level of complexity will be selected. Furthermore, modellers of
environmental systems often have to make do with available data, either due to time or
monetary constraints, and these data may not be of sufficient quality and/or quantity to
derive appropriate estimates for the weights. Currently used ANN development methods
are either incapable of ensuring good generalisability, given these factors, or due to the
lack of systematic guidelines, are not appropriately employed to develop the best model
of the system given the available data.

2.2.5.2 Interpretability

ANNSs are much less interpretable than other empirical modelling methods, such as tra-
ditional times series and regression modéldl (et al., 1994). Any explanation of the
internal behaviour of an ANN is only revealed back to the user in the form of an “op-
timal” weight vector, which is difficult to interpret as a functional relationship. Conse-
guently, ANNs are frequently criticised for operating as “black-box” modeBGE Task
Committee 2000a), where solutions to a problem are automatically generated with no
consideration or explanation of the physical process being modé&iaedhgeer and Jain
2004;0lden and Jacksqr2002).

As the data used to develop ANNs contain important information about the physi-
cal process being modelled, it is generally implied that once an ANN has been trained
and validated, the trained model represents the physical process of the systdimedr
2005). However, a consequence of the training problems presented in the previous sec-
tion is that many combinations of weights may result in similar network performance.
Due to the poor interpretability of ANN weights, there is no way to directly distinguish
which combination of weights best approximates the underlying relationship. While the
calibration problems presented also apply to many conventional models to some extent,
it is usually easier to validate the modelled function against a priori knowledge. Black-
box models are generally undesirable as predictive models, as it is difficult to determine
whether the model will behave correctly when presented with previously unseen data; in
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other words, it is hard to trust their reliabilitydéritez et al, 1997). Thus, due to their
inability to explain, in a comprehensible way, the process by which the model outputs are
generated, the utility of ANNs as prediction tools is limitéh@rews et al.1995).

Recently, efforts have been made to develop hybrid ANN/knowledge-based models
which exploit the strengths of each individual approasbkd and Abrahar2001;Gan-
guly, 2002;Coulibaly et al, 2005). A common approach for developing a hybrid ANN is
to use a physical model as the basis, with the ANN calculating unknown or immeasurable
parametersAguiar and Filhg 2001). This way, aspects of the system that are well under-
stood are described by mathematical equations, whereas the ANN can be used to estimate
the unknown componenttée et al, 2002). An alternative approach is to use the ANN
to model the residuals between the physical model and the target data. As such, the ANN
models the gap in knowledge between the physical model and the actual prGoEss (
et al, 1995). A further alternative is to use a weighted combination of the physical model
and ANN outputs, where the weights assigned to each model are determined by consider-
ing the variances of the forecast errors of the individual modedsiljbaly et al, 2005).
Each of these methods results in a “grey-box” model of the sysizenfeaux et aJ.
1999), where the overall model has physical basis and interpretation, yet the limitations
due to an inadequate description of the complex physical system are overcome using the
strengths of data-based black-box methods. However, a requirement for the development
of hybrid ANNSs is that there exists a knowledge-based (physical or conceptual) model of
the system.

In order to increase the transparency of ANNs and overcome their black-box image in
the absence of a knowledge-based model, extraction of the knowledge locked up within
a trained ANN has become an active and evolving disciplinek(e et al, 1998). Since
the late 1980s, a number of methods have been proposed in the literature for interpreting
what has been learnt by an ANNIOntaiio and Palmer2003); however, there is currently
no widely accepted method for doing this. The hidden units in ANNs can be thought of
as representing “derived featureraven and Shavlik1997) of the modelled system.
Therefore, recent attempts have been made in the field of hydrological modelling to un-
derstand the relationships represented by the hidden nodes by relating the outputs of the
individual hidden neurons to components of the hydrological sysWiiby et al, 2003;

Jain et al, 2004;Sudheer and Jaijr2004). However, because of the distributed nature of
ANNSs, individual hidden units generally do not correspond well with features in the prob-
lem domain, e.g. the baseflow component of a flood hydrograph. Rather, these physical
components are likely to be encoded across a number of hidden nodes, and similarly, each
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hidden node may partially represent a number of different system compo@ate(
and Shavlik1997).

On a more general level, the methods used to interpret trained ANNs can usually be
categorised as those that translate the function modelled by the ANN into a set of sym-
bolic rules that are easier to interpret by the user (i.e. rule extraction methet$ie¢
et al, 1997), and those that aim to understand the function modelled by quantifying the
strength of the relationships between individual inputs and the output (i.e. input impor-
tance measuresgarle 2002). Andrews et al(1995) andTickle et al.(1998) review the
relative merits of the various rule extraction methods available for ANNs. With the ex-
ception ofMaier et al. (2000, 2001), who applied a neurofuzzy approach for predicting
riverine cyanobacteria concentrations, there appear to have been very few attempts to ap-
ply rule extraction methods to ANNs in the field of water resources modelling. Possible
reasons for this could be some of those notedigkle et al.(1998), including that the
computational complexity of rule extraction algorithms may be a limiting factor on what
is achievable from these techniques. Overall, there have been limited attempts to interpret
ANNSs trained to model water resources variables; however, those that have been made
have tended to favour methods that indicate the influence of input variables on the output,
such as sensitivity analysiMgier et al, 1998;Jeong et al.2001;Walter et al, 2001),
saliency analysisAbrahart et al, 2001) and perturbation analysiSudheer2005). All
available methods for quantifying the importance of ANN inputs have limitations, and
in acknowledging thisSarle (2002);0lden and Jackso(2002);Olden et al.(2004) and
Gevrey et al(2003) have reviewed and compared such methods. However, while each of
these comparisons provides a good reference, it is considered that they are inadequate to
indicate a ‘best’ measure. The comparison carried olBdye(2002) is based on a sim-
ple, nonlinear function with weights of an MLP specified to fit the function. However, the
weights specified are unrealistic of those that would result if the ANN was trained in the
usual manner and it is therefore considered that the results of the comparison do not fairly
represent the relative performances of different input importance measures under normal
circumstances. It was argued ©jden et al.(2004) that the comparison l&yevrey et al.

(2003) was based on empirical data, however, to establish the accuracy of the different
measures the true correlation structure of the data needs to be known. Therefore, they
carried out their own comparison using synthetically generated data with known corre-
lation structure. However, this data set was generated by a linear function, and as one
of the complicating factors of using certain input importance measures arises due to the
“squashing” effect that nonlinear activation functions have on the wei§addg 2002),
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it is considered that this comparison is also inadequate. In addition, one of the factors
that limits the use of most input importance measures is that the inputs are required to
be independent, meaning that a method must be used either before or during training to
ensure that only relevant independent inputs remain in the netwé@ragd and Cérot,

2002).

It is unlikely that there will ever be a method to perfectly summarise the relationship
modelled by an ANN without considering the actual input-output function computed. Nev-
ertheless, in order to validate ANN models against a priori knowledge or gain information
about the physical system from ANNSs, the best way to interpret the relationship modelled
by an ANN needs to be identified. Comparative investigations that have attempted to do
this in the past have been limited due to the way in which the investigations were car-
ried out and, consequently, there is still no recommended ‘best’” method for improving
the interpretability of ANNs, which is necessary for them to overcome their “black-box”
image.

2.2.5.3 Uncertainty

In spite of the black-box characteristics of ANNs and the difficulty associated with ob-
taining good generalisability, ANNSs in the field of water resources modelling have been
almost exclusively deterministic, with little regard given to the uncertainty associated with
the predictions generatei@ier and Dandy2000a). It is widely accepted that water re-
sources models are subject to uncertainty due to the stochastic nature of natural processes,
the limitations of a finite calibration data set and the inability of models to accurately de-
scribe these complex process8g¢k 1987;Chow et al, 1988; Kavetski et al. 2002).

This is particularly the case for ANNs, whose parameter values are determined entirely
by calibration, the problems of which were discussed in section 2.2.5.1.

Quantifying the uncertainty associated with water resources models is extremely im-
portant, as suppressing this information can create a false sense of security in the predic-
tions generated. As a consequence, inappropriate design or management strategies may
be implemented that can, in turn, result in significant social and economiddosssgto-
fowicz 2001). Thus, in order to increase the usability of ANNs in water resources mod-
elling, the predictions need to be supported by an associated confidence measure, which
indicates the quality of the predictions.

Prediction intervals may be used to express upper and lower limits between which a
prediction is expected to lie at a given probabiligh@atfield 1993b). Such an interval
measures the accuracy of an ANN'’s output with respect to the observed data {.e.
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y) and should encompass a measure of the accuracy of the estimated system function
(i.e. f(x,w) —y) and a measure of the accuracy of the observed data(ir.(2.1))
(Heskes1997). For a given model structure, estimating the prediction intervals is then

a problem of estimating the distributions ebndw. It is generally assumed thatis

an independent normally distributed random variable with mean of zero and constant
variance (i.ee ~ N(0, 03)) (Chatfield 1993b;Tibshirani 1996;De Veaux et a].1998),
therefore estimates are required @I‘andp(wa, x), the conditional probability density

function (PDF) of the weights given the observed data.

Several methods borrowed from nonlinear regression methodology have been applied
to construct prediction intervals for ANNs. These are typically based on classical analysis
(White 1989;Hwang and Ding1997;De Veaux et a).1998), bootstrappingr{bshirani
1996;Heskes1997) and Bayesian methodologguntine and Weigend.991; MacKay,
1992aNeal 1992). Classical analysis techniques utilise a first-order linear approximation
of the model functionf(-) at the optimum weight values. This requires that the weights
are uniquely identifiable, yet as pointed out Hwang and Ding(1997), ANN weights
are, by their nature, unidentifiable; therefore, classical methods are not directly applica-
ble to estimate the uncertainty in the weight estimates. Nevertheless, they showed that the
prediction limits calculated by this method were still asymptotically valid when the ANN
was trained to convergence. HowevBe Veaux et al(1998) demonstrated that stan-
dard classical methods were inaccurate when applied to estimating prediction intervals of
ANNSs. Firstly, they found that by ensuring convergence during training, overfitting oc-
curred and, as a consequence, the limits were too narrow. Secondly, by stopping training
early to prevent overfitting, it was found tha} was overestimated and the resulting pre-
diction limits were too wide. Furthermore, the linear approximation requires calculation
of the Hessian matrix (matrix of second derivatives of the error function with respect to
the weights). This matrix can be nearly singular when the number of parameters is large,
which leads to instability and prediction intervals that are much too wide in some cases
(De Veaux et a).1998). To overcome these problems, they combined classical theory
with weight regularisation to reduce the effective number of weights in the network.

Tibshirani (1996) compared the performance of a number of different methods for
constructing prediction intervals based on classical techniques and on bootstrapping. Boot-
strapping works by creating many pseudo-replicates of the training data set and re-eval-
uating new values of the network weights based on each different training set. The data
are sampleavith replacemento form training data sets of the same size as the available
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data. The standard error for ti¥é predicted value can then be calculated by:

B 1/2
5= {ﬁ S [ ) — ->}2} @4)

=1
where B is the number of bootstrap sampleg’, is the estimated weight vector for the
bth sample andf (x;,-) = S_7 | f(x;, w")/B. The advantages of this approach is that it
is a distribution-free approacihatfield 1993b) and does not require linearization of the
modelled function, which may not be valid for a nonlinear mo@ed {/eaux et aJ.1998).
Tibshirani(1996) found that the bootstrap methods provided the most accurate estimates
of the prediction variance and that the methods based on local linearization were often
inaccurate due to convergence to local optima. Furthermore, it was found that prediction
intervals could not be estimated by the classical techniques when the number of weights
was large and weight decay was not used, due to difficulty in computing the Hessian
matrix because of near singularities. However, a limitation of bootstrapping methods is
that for each of thé3 samples, the ANN needs to be retrained. /Ass typically in the
range20 < B < 200 (Tibshirani 1996) these methods are very computationally intensive
(Chatfield 1993b). Moreover, as noted Bssen and Rger(1998), local optima can lead
to prediction intervals that are too wide.

Papadopoulos et a(2001) compared the performance of classical, bootstrapping and
approximate Bayesian methods for estimating prediction intervals when applied to an
example where the distribution efwas dependent upon the model inputs. Their results
showed that the accuracy of the classical and bootstrapping methods was approximately
equal. However, problems with calculating the Hessian matrix for classical methods were
again reported in this study. Additionally, it was found that the bootstrapping method
consistently overestimated the width of the prediction intervals, supporting the comment
made byOssen and Bger(1998). Overall, the approximate Bayesian approach was found
to give the most accurate prediction intervals. Unlike standard ANN approaches, Bayesian
methodology is used to make predictions based on the posterior probability distribution of
the weightsp(w|y, x), which explicitly accounts for the uncertainty associated with the
weight estimatesBishop 1995). The method investigated Bgpadopoulos et a({2001)
was considered to kepproximateBayesian because the posterior weight distribution was
approximated by a Gaussian distribution. Exact Bayesian methods, on the other hand,
do not make this assumption, rather, Markov chain Monte Carlo integration is used to
estimate the distribution nonparametricalNe@l 1992, 1996a). Papadopoulos et al.
(2001) considered this exact Bayesian approach to be too computationally expensive and
inappropriate for multidimensional, real-world applications.
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Classical methods for estimating prediction limits are unsuitable for application to
ANNSs. These methods require a linear approximation of the nonlinear model function at
the optimal weights, which, if not estimated correctly, can result in bounds that are either
too narrow or too wide. Furthermore, calculation of the Hessian matrix required for the
linearization may be difficult due to near singularities. Bootstrapping methods for esti-
mating prediction limits can be time consuming and may be incorrect if affected by local
minima in the error surface, resulting in bounds that are too wide. Approximate Bayesian
methods may also be inappropriate due to the Gaussian approximation of the posterior
weight distribution that is used. While an exact Bayesian approach for estimating pre-
diction limits has previously been considered too computationally intensive, this method
appears to be most suitable for ANNs and, with the increases in computer power, it is
considered that this method warrants further investigation.

2.3 BAYESIAN METHODS

2.3.1 Background to Bayesian Methodology

The philosophy behind Bayesian inference is that any prior beliefs regarding unknown
parameter values are updated based on new information contained in an observed set of
data, to yield a posterior probability distribution of the parameters. This statement is
usually referred to aBayes’ theoremPut generally, ify is a set of observed data whose
probability distribution depends on the values of a set of parameétdayes’ theorem
can then be used to infer the conditional distribution of the unknginen the observed
datay as follows:
p(yld, H)p(6|H)

ploly 1) == (2.5)
In this expression, the assumed model of the situatios a conditioning statement upon
which the probability ford is based. The distributiop(d|yH), is called theposterior
distribution of# given the data, or simply, the “posterior”. It describes what is known
about the parameter values given knowledge of the data. On the otherztiandie-
scribes what is known aboétwithout knowledge of the data. It is known as the prior
distribution of the parameters or the “prior”. The distributiorp(y|6, H) is known as
the “likelihood” of # and it describes the information abduitontained in the datg.
It is this information that is used to update the prior distribution to obtain the posterior
(Box and Tiag 1973;MacKay, 1995a). The denominatefy|H) is a normalising con-
stant known as the ‘evidence’ of the modMgcKay, 1992a;Rasmusser?001) or the
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‘marginal likelihood’ Chib and Jeliazkav2001;Titterington 2004) and is given by:

py|H) = / Py 16, H)p(6H)d6 (2.6)

As Bayesian inferences are basedaopriori knowledge and conditional assumptions,
they can be considered to be subjective. However, it is not possible to generalise about
data without making assumptiorid@cKay, 1995a), thus, conventional deterministic mod-

els are also subjective in a sense. The only difference is that Bayesian methodology makes
explicit all assumptions that are made. As stated.agpinen and Vehtari2001), this

is a considerable advantage of the Bayesian approach, as it gives a principled way to do
inference when some of the prior knowledge is lacking or vague, so that one is not forced
to guess values for attributes that are unknown.

2.3.2 Use of Bayesian Methods in Water Resources Modelling

In recent years, there has been an upsurgeance in the use of Bayesian methodology in var-
ious scientific fieldsalakoff, 1999), including hydrological and water resources mod-
elling (Kuczera 1983;Kuczera and Parentl998;Beven and Binleyl992;Romanowicz

et al, 1994; Reichert and Omlin1997; Omlin and Reichert1999; Bates and Camp-
bell, 2001; Thiemann et a).2001;Kavetski et al.2002; Thyer et al, 2002;Vrugt et al,
2003;Marshall et al, 2004). While the importance of incorporating uncertainty analysis
into water resources modelling has been emphasised by a number of aBeak4987;
Reckhow1994;Beven 1993;Krzysztofowicz22001), the limitations of classical statistical
methods traditionally used for this purpose have also been nktexx¢ra 1988;0mlin

and Reichert1999;Vrugt and Bouten2002). In particular, classical methods relying on
first-order linear approximations are typically unable to cope with the nonlinearity of hy-
drologic models Kuczera and Parentl998), especially when the parameters are poorly
identifiable Omlin and Reichert1999).

Under the Bayesian paradigm, uncertainty in the model parameters is handled explic-
itly by estimating parameter distributions, rather than point values. Theoretically, this
eliminates the need to linearly approximate the prediction intervals based on uniquely
identified optimal parameter estimates, as the probability of a model's respense
given future input values y; and the data used to calibrate the mogetan be evalu-
ated based on the entire posterior parameter distribpti@lty) by the integral:

P(ynailXnes, y) = / Plyn a1, 0)p(6]y)d6 (2.7)

However, in practice, the high dimensionality of this integral makes its evaluation with
conventional analytical or numerical integration techniques virtually imposs{blezera
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1988; Marshall et al, 2004). Thus, approximate analytical solutions requiring the as-
sumption of normally distributed parameters and either first-oidacZera 1983, 1988)

or second-order analysi&czera and Mroczkowski998) have been used in the past
due to their computational efficiency. Again, these approximations can lead to a very
poor approximation of prediction uncertainty for reasons noted.

With advances in computers, attention has now turned to more computationally in-
tensive Monte Carlo based methods for estimating parameter uncertdudyefa and
Mroczkowski 1998;Gaume et a].1998). Such methods include regionalised sensitivity
analysis Hornberger and Spearl981;Beck 1987), generalised likelihood uncertainty
estimation (GLUE) Beven and Binley1992; Beven 2001), and Markov chain Monte
Carlo (MCMC) methodsKuczera and Parentl998;Bates and Campbel2001;Borsuk
et al, 2001;Vrugt et al, 2003;Marshall et al, 2004). Each of these methods scan, in ei-
ther a random or systematic way, the range of possible parameter vectors to identify those
that give an acceptable resuBdume et a].1998). After a sufficient number of trials, the
acceptable parameter vectors sampled should converge to the posterior distribution of the
parametersBeck 1987). However, as stated Byun et al.(2001),

Current applications of the Bayesian methodology, however, are still suffer-

ing from very time consuming calculations. They are restricted to models

with short simulation times and a moderate number of parameters in order to
keep computational costs reasonably low.

This is possibly the reason why the use of Bayesian methodology in water resources
modelling has been limited to simple conceptual and data-based mechanistic models and
traditional statistical models with few parameters.

2.3.3 Bayesian Neural Networks

Bayesian methodology has been applied to ANNs since the early 1990s, when it was
first used byBuntine and Weigen(L991),MacKay(1992a) andNeal (1992). The use of
‘Bayesian neural networks’ has since been revieweBisiop(1995),MacKay(1995a),
Neal (1996a),Lampinen and Vehtar§2001) andTitterington (2004). Unlike standard
ANN approaches, the aim under the Bayesian framework is not to find a single “optimal”
weight vector, but rather, it is to explicitly represent the uncertainty in the values of the
weights by a posterior probability distribution.

MacKay(1992a, 1995a) describes two levels of Bayesian inference that can be per-
formed in ANN modelling: the first level involves inference of the network weights under
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the assumption that the chosen ANN structure is “true”, while the second level involves
model comparison in light of the data and the estimated weight distributions. In this re-
search, these two levels of inference will be considered in terms of ANN ‘training and

prediction’ and ‘model selection’, respectively. The advantages of the Bayesian neural
network framework, given the two levels of inference, are briefly summarised as follows
(Bishop 1995;Neal 1992;Rasmusseri996):

e Uncertainty in both the model parameters and the predictions is handled explic-
itly. Predictive distributions are calculated by integrating the predictions from all
possible weight vectors over the posterior weight distribution, thus allowing predic-
tion intervals to be assigned and achieving better generalisation than standard ANN
approaches (as overfitting is avoided to some extent).

e The Bayesian framework provides a natural interpretation for regularisation, allow-
ing overfitting to be avoided in a consistent manner. Values of the regularisation
coefficients (i.ea in (2.2)) are selected automatically using only the training data;
thus, a separate testing data set is not required.

e Complex networks can be used without fear of overfitting the data. Therefore, more
structure can be learnt from the data, improving prediction accuracy. Furthermore,
a relatively large number of regularisation coefficients can be used, which would
not be computationally feasible if their values had to be found by cross-validation.

e ANNSs of varying complexity can be compared in an objective and principled man-
ner, using only the training data. The ‘evidence’ of an AN{Y|H) (see Section
2.3.1) is the likelihood that the given modklis the “true” model, given the data
y. This term automatically penalises overly complex models and therefore can be
used to select the optimum level of complexity for modelling the data.

e The relative importance of different inputs can be determined using the Automatic
Relevance Determination (ARD) methodvacKay(1994) andNeal(1996a, 1998).

2.3.4 Training and Prediction

As discussed in Section 2.2.3, the aim of standard (deterministic) ANN training is to find a
single optimal weight vecto& that provides the best fit of the model to the observed data
y. The aim of Bayesian training, on the other hand, is to infer the posterior probability
distribution of the weights given the observed data|y) (Bishop 1995). This posterior
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weight distribution can then be used to make probabilistic predictions given new values
of the model inputs. However, the first problem involves estimation of the posterior.

2.3.4.1 Bayesian Training (Posterior Weight Estimation)

When applied to estimate the weights of an ANN, Bayes’ theorem, given by (2.5), can be

written as:

plylw, X, H)p(w|X, H)
p(y|X, H)

The observed set of input dat& = (xX,... x¥) and the model structurgl are the

conditional assumptions upon which the probability measure for the weights is based

(MacKay, 1995a). When only considering one model (as is the case when applying the

first level of inference), it is common to drop these conditioning terishop 1995) to

simplify the notation. Furthermore, the normalising consiagi X, ) is irrelevant at

this level of inference and as such it is commonly ignofdd¢Kay, 1992a). Therefore

(2.8) can be simplified as follows:

p(wly, X, H) = (2.8)

p(wly) = P o o) 29)
p(y)

which states that the posterior weight distribution is proportional to the product of the
likelihood of the weights and the prior weight distribution. Therefore, before inferences
can be made about the posterior of the weiglitg|y), choices must be made about the
likelihood functionp(y|w) and prior weight distributiop(w).

As the likelihood functiorp(y|w) is commonly regarded as a function of the weights
w rather than as a function of the datait may be written ad.(w|y), or simply L(w)
(Box and Tiap1973;Neal 1996a). For a set oV statistically independent observed data

points, the likelihood is equal to:

Lw) = L(wly,...,un)

o plys, - ynlw) = [ [ plvilw) (2.10)

i=1
This function is defined up to a multiplicative constant, as it is only the relative value
of the likelihood which is of importance. As discussed in Section 2.2.5.3, it is generally
assumed that in (2.1) is normally and independently distributed with zero mean and
constant variance;. Under this assumption, the likelihood function is given by:

N 2
L(w) = ]1 \/2;_03 exp {— lvi = ];(;g"w)] } (2.11)

Page 28



Bayesian Methods — Section 2.3

In the simplest case, the prior probability distribution for each of the network weights
is also assumed to be normal with zero mean and constant vasar{&agg et al.2002).

) = TTotw) =TT o (5 ) 212

2
=1 =1 wW

This prior is selected based on the experience that the values of the weights can be positive
and negative with equal probability and that the weights have a finite varidhoelferg

1996). It also restricts the complexity of the ANN, as small weight values are sought
(Ragg et al, 2002). By rewriting (2.9) as:

p(wly) o exp {— (% Z lyi — f(xi, W) + % Zw?) }

Y =1 W oi=1

X exp {— (%Ey + aEw) } (2.13)

it can be seen that the form of prior given by (2.12) is equivalent to weight decay (i.e.
By = 3% w?, see Section 2.2.5.1), with = 1/0%; thus, regularisation is auto-
matically incorporated into the Bayesian framework in the form of priors on the weights
(MacKay, 1992a;Titterington 2004).

The variance terms upon which both the likelihood function and prior distribution
depend (i.e. 0—3 and o2, respectively) are generally referred to as ‘hyperparameters’
(MacKay, 1995a;Neal 1996a;Lampinen and Vehtar2001), as they play an important
role in estimating the posterior weight distribution, but ultimately play no part in the de-
veloped model. In a full Bayesian approach, no fixed values are used for any parameters
or hyperparameterdé @émpinen and VehtarR001); therefore, both the weightsand the

hyperparameter§o?, oy, } are estimated as follows:

p(ylw,o2)p(wlo3,)p(os, 07)

p(y)

p(W, 0y, 0yly) =

(2.14)

Estimation of the parameters is given a hierarchical treatmearnpinen and Ve-
htari, 2001;Ragg et al. 2002), where the lower level of the hierarchy is comprised of
the weightsw, while the upper layer consists of the hyperparameters that control the dis-
tributions of the weights?2, and the noise levels in the regression m@@elThe hyperpa-
rameters are then assigned their own priors or ‘hyperprip(s’(, 03) in (2.14)), which
are generally vague or ‘noninformative’ and enable the hyperparameter distributions to
be determined automatically from the daBishop 1995;Neal 1996a;Lampinen and
Vehtari 2001). While the parameteﬁ is not strictly a ‘hyperparameter’, as it does not
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control the distribution of the lower level parameteieél 1996a), it is commonly re-
ferred to as such in the Bayesian neural network literature and is treated in the same way
asco? (Neal 1992;MacKay, 1992a,bBuntine and Weigend 991).

As discussed in Section 2.2.5.1, different groups of weights within the network require
different regularisation coefficients. Therefore the prior in (2.12), based on the common
hyperparametes? , is generally not a good choice for the network weights. One of the
great advantages of the Bayesian framework is that a large number of hyperparameters
(which correspond to regularisation coefficients) can be used since they are determined
automatically Ragg et al.2002). Therefore, a more general and flexible prior distribution
Is the product ofG different normal distributions, wher@' is the number of different

weight groups (i.e.w = {wy,...,wg} ando? = {02, ,...,0%_}) (Husmeier et al.
1999). This prior is written as follows:
G G ng w2
_ 2\ _ 2 \—dy/2 _ Laig=1 g
i) = [Tptwlon,) =T 2t00,) e ( o ) (2.15)

whered, is the dimension of thgth weight group. In the most extreme case, the num-
ber of groups would correspond to the number of weights. In other words, the prior
distribution of each weight would have a different variantiétérington 2004). A more

typical approach is to have four groups of weights corresponding to the input-hidden layer
weights, the hidden layer biases, the hidden-output layer weights and the output layer bi-
ases Lampinen and Vehtari2001). Another alternative is to further divide weights in

the input-hidden layer into groups of weights exiting the same input. This is done in the
Automatic Relevance Determination (ARD) methodwdicKay(1994) andNeal (19964,

1998). As the variance hyperparameters are automatically adapted during training, when
equilibrium is reached they can be used to assess the relevance of the weights belonging to
that group. The smaller the variance, the more tightly the weights are distributed around
zero; hence, the less relevant they are to the model. Therefore, by treating the weights
exiting the same input as a group, the relative importance of the input can be assessed
by comparing the variance hyperparameter to those controlling other input weight groups
(Thodberg 1996;Husmeier et al.1999;Vivarelli and Williams 2001).

2.3.4.2 Marginalization (Prediction)

Under the Bayesian paradigm, the predictive distribution of a new datum is deter-
mined by integrating the predictions made by all of the weight vectors over the posterior
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distribution of the weights, as follow&(euteri et al, 2002):
pyns1lXni1,Y) = /p<yN+1aW’XN+17Y)dW

_ / P11 X1, W)p(wly)dw (2.16)

Since onlyp(wl|y) is required to make predictions, it is also necessary to integrate out the
hyperparameters from (2.14):

p(wly) = /p(w Uw,ayly)da da
= /p(WIOi,Ui,y)p( 0%, Oy|y)dos,do?, (2.17)

The process of integrating out the unwanted parameteand {aw, y} is known
as ‘marginalization’. However, for complex problems, the high dimensionality of these
integrals makes marginalization analytically intractalNedl| 1993;Titterington 2004).
In order to overcome this problem, two main approaches to marginalization have generally
been followed in the Bayesian neural network literature, including:

1. Gaussian approximation of the posterior weight distribution about the most proba-
bly weight vectorw to enable analytical integration, as introducedBuntine and
Weigend1991) andVlacKay(1992a).

2. Numerical integration using Markov chain Monte Carlo methods, as introduced by
Neal (1992)

With the first method, there has been some controversy regarding how the hyperparam-
eters should be handledlacKay, 1999). Buntine and Weigend1991) introduced a
method for analytically integrating out the hyperparameters before the Gaussian approxi-
mation is made. This is done by integratipgv|o2,) overo?, and integrating(y|w, o)

over o to obtainp(w) andp(y|w), respectively. The most probable weights are then
found by maximising(y|w)p(w) and the Gaussian posterior assumption is subsequently
made about these weights. On the other hdaKay(1992a,b) integrates the posterior
p(y|w, o2)p(w|oy,) over the weights to obtain(y |02, o3 ), which he terms the ‘evidence’

of the hyperparameters. A Gaussian approximation is again made for this evidence term,
which is then maximised to find optimal valuesdgf andag. The Gaussian approxima-

tion is then made with the hyperparameters fixed at their optimal values. In a comparison
of the two Gaussian approximation approactédacKay(1999) demonstrated that, from

a predictive point of view, is it better to integrate over many weights rather than over
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few hyperparameters. Therefore, the ‘evidence’ framework has been the most widely
adopted Gaussian approximation method and is highly influential in the Bayesian neural
network literature(itterington 2004). However, for multi-layered ANNSs, the posterior
weight distribution is typically very complex and multi-modal and thus the assumption
of a Gaussian weight distribution is generally not a good dwea( 1996a). This has

been acknowledged lacKay(1995a) who then assumes that the distributidngslly
Gaussian around each mode and treats each mode as a separate model. However, this
raises the question of how to properly handle the multiple modes when making predic-
tions. Furthermore, the assumption of even a locally Gaussian distribution in the vicinity
of the modes is sometimes questionable, particularly when the model is complex and the
data available for training are limite®Ra@smusseri996).

To avoid the need to make a Gaussian approximation of the posterior weight distri-
bution, Neal (1992) introduced a Markov chain Monte Carlo (MCMC) implementation
to sample from the posterior weight distribution. The use of a MCMC algorithm to es-
timate the posterior distribution involves the construction of a Markov chain of sampled
weight vectors and hyperparameters, which, at equilibrium, has the target distribution
p(w,afv,a§|y). By choosing conjugate inverse chi-square priors for the variance hy-
perparameters, the Gibbs samplé&e(man et al. 2004), which is the simplest MCMC
algorithm, may be used to update the hyperparametaral(1996a;Titterington 2004).
However, the complexity of the likelihood of the weights prevents Gibbs sampling for
the weights Titterington 2004). A commonly used MCMC algorithm used when the
Gibbs sampler is not applicable is the Metropolis algorithnMetropolis et al.(1953).
However, as noted bMeal (1992), while it is possible to use the Metropolis algorithm to
sample the weights, this algorithm can be slow to converge to the target distribution and
it is difficult to determine whether or not convergence has been reached. Therefore, the
approach promoted byeal(1996a) involves the use of the hybrid Monte Carlo algorithm
developed byuane et al(1987) to sample the weight vectors. This is an elaboration of
the Metropolis algorithm that makes use of gradient information to speed convergence to
the target distributionNeal 1992).

Sampling from the posterig(w, o2, o2 |y) then follows a two-step procedure. In the

»Ywr Yy

first step, the hyperparameters are held constant while the weights are sampled from the
distribution:

p(ylw,o2)p(wloy,)
p(yloZ,o2)

o plylw,oy)p(wloy,) (2.18)

p(wlod,o0,y)

Page 32



Bayesian Methods — Section 2.3

using the hybrid Monte Carlo method. In the second step, the weights are held constant
while the hyperparameters are sampled from their respective full conditional distributions:

ploglw,y,00) = plog|w)

x p(wloy)p(os) (2.19)
p(aylw,y,00) = ployw,y)

< p(ylw,o3)p(o}) (2.20)

After the MCMC algorithm reaches equilibrium, the sampled weights and hyperpa-
rameters can be considered as samples from the posterior distribution. An advantage
of the MCMC approach is that marginalization over the hyperparameters is automati-
cally accomplishedHanson 1999). By sampling from the joint posterior distribution
p(w, 0%, 04ly), when the posterior gf(w|y) is determined using the sampled weights,
the remaining hyperparamete{rsfv, Uf,} are automatically integrated out. The sampled
weights may therefore be used directly to obtain samples from the predictive distribu-
tion for the targets of a test casigal 1996a). To do this, the model outputs are first
calculated with the given test inputs using the sampled weight states. Samples from the
predictive distribution are then obtained by adding Gaussian noise to the outputs, with
variance given by the samplesti hyperparameter that corresponds to the weight state
used to calculate the outputs.

2.3.5 Model Selection

Given a set ofH competing modeldH;;i = 1,..., H}, the Bayesian framework can
be used to infer the posterior probability that, of tHemodels,H; is the “true” model
of the system given the observed ddatKay, 1995a;Bishop 1995). At this level of
inference, Bayes’ theorem yields:

p(Hily) = p(y|H:)p(H;) _ g(y,Hi)p(Hz‘) (2.21)
p(y) > =1 (Y[ H;)p(H;)
wherep(H;) is the prior probability assigned t&; and the likelihoodp(y|H;) is the
denominator from (2.5), or the ‘evidence’ of the model. Although, it is unlikely that
any model will actually be “true”, the Bayes’ approach enables the relative merits of the
competing models to be compared, which is worthwhile assuming that at least one of the
models is approximately corredMassermaji2000). It is also generally assumed that the

prior probabilities assigned to the different models are approximately equal, as a model
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thought to be highly implausible would not even be considered in the compahsat (
1993). Therefore, 2.21 can be simplified to:

p(Hily) = }zl?(yle-)

> i1 P(yIH;)
which states the relative probabilities of the competing models can be compared based on
their evidenceBishop 1995).

As discussed irMacKay (1995a) andRasmusse2001), the evidence of a model
automatically incorporates ‘Occam’s razor’, which is a principle that states the preference
for simple theories, through the effect of its prior on the weights. In terms of an ANN
model, (2.6) is rewritten as:

p(y|H,) = / p(yIw, Ho)p(w|H,)dw, (2.23)

which can be interpreted as the probability that, given a weight vector randomly selected
from the prior weight distribution, a particular set of observed data will be genelRéed (
mussen2001). Simple models have relatively narrow prior weight distributions which
only allow a limited range of data sets to be generated, whereas complex models have
rather wide flat prior weight distributions that enable a greater variety of data sets to
be generatedacKay, 1992a). The aim is then to select the model that has the great-
est probability of generating a given set of observed ggta or the strongest evidence
p(Yobs|H). This is illustrated in Figure 2.3, whefé,, H, and; are three models of in-
creasing complexity and the observed dataysgtis shown as a single value of In this
figure, it is shown that{; would be very unlikely to generate the observed data given the
narrow predictive distributiop(y|H;). Likewise, it would be unlikely that the observed
data would be generated at random7gy, due to the wide range @f(y|Hs). Thus,H,
is the most probable model for the observed dataysgt as it results in the maximum
predictive probability, or the strongest evidence. Typically, the value of the evidence for
any model will be extremely small, as any particular data set of significant size will have
low probability even under the correct modblgal 1993). However, by considering the
relative magnitude of these small probabilities, the data-based evidence term can be used
to rank a number of competing models in order of plausibility without the need to specify
a prior that gives preference to simple modéa¢Kay, 1995a).

Similar to the integrals in (2.16) and (2.17), for complex models the integral in (2.23)
is analytically intractable. In his evidence framewokkacKay (1992a, 1995a) instead
evaluates the integral:

o p(y|Hi) (2.22)

ply|H,) = / p(y|o2, 02, Ho)p(o?,, 02 [H;)do?, do? (2.24)
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Evidence

p(y|#)

p(y|#>

p(y|#5)

yobs
Figure 2.3 Evidence incorporating Occam'’s razor.

by using the Gaussian approximationyd |52, 63,%), whered? and &3 the optimal
hyperparameter values used in estimating the posterior weight distribution (see Section
2.3.4.1), to obtain a well-definedy|H;) (Titterington 2004).

Under the evidence framework, evaluation of the determinant of the Hessian matrix
is required. As discussed in Section 2.2.5.3, the Hessian matrix of an ANN can be nearly
singular and consequently, evaluation of the evidence can be very sensitive to errors in
the small eigenvalue8(shop 1995). An alternative to this approach is that suggested by
Neal (1994), where model complexity is not limited. Neal has argued that if a complete
Bayesian analysis is performed without approximation and appropriate prior distributions
are used on the weights, it is possible to use large networks without fear of overfitting
the data. However, it may still be necessary to limit the complexity of an ANN to ensure
that Gaussian assumptions for estimating the weights are valid or MCMC techniques
achieve convergence in reasonable computational tBreh¢p 1995). A sophisticated
MCMC approach for selecting the right level of complexity was developedimer and
Rios Insua(1998), where the number of hidden nodes was treated as a random variable

that was also estimated.

2.3.6 Limitations of Current Bayesian Neural Network Practices

While Bayesian techniques have been applied to ANNs (although rarely) for around 10-
15 years, the complexity of ANNs makes it difficult to apply standard Bayesian methods
that are increasing in popularity for other models (e.g. the standard Metropolis algorithm)
(Neal 1996a). Consequently, the majority of Bayesian techniques applied to ANNs in the
past have employed complex statistics in order to overcome any complications. The ma-
jority of publications in this field have therefore been limited to the statistical, computer
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science and neural computing literatuf@terington 2004). Most of the available ANN
software does not allow for Bayesian analysis, and due to the difficulty associated with
programming the available complicated techniques, Bayesian ANN training has not been
adopted by water resources practitioners.

Considerable emphasis has been placed on achieving efficiency and statistical opti-
mality when Bayesian methods have been developed for ANNSs in the past. However, the
difficulty in implementing these methods and their lack of adoption by water resources
modellers indicates the need for a Bayesian ANN development framework that provides
accurate results, while being relatively straightforward to code and implement.

2.4 CONCLUSION

Given the nonlinearity, complexity and limited physical understanding of the majority of
processes that occur within water resource systems, ANNs may well be the best available
tool for modelling such systems. However, ANNs have yet to become widely accepted
and reach their full potential as models in the field of water resources engineering. Based
on a review of the relevant literature, this is apparently due to three significant issues,
namely generalisability, interpretability and uncertainty, which ANN modellers are poorly
equipped to address, given currently available ANN development methods. As a result,
ANNSs continue to be viewed sceptically as a means for providing predictions that can be
used confidently in water resources design and management applications. On the other
hand, the Bayesian modelling paradigm appears to be a promising approach for dealing
with these issues, whether directly or indirectly, and its application to more conventional
models has been increasing in the field of water resources modelling. However, due to
the complexity of ANNSs, application of Bayesian methods for ANN development is not
straightforward, as standard techniques are often infeasible or highly inefficient; thus,
producing poor results. Consequently, the Bayesian techniques developed for ANNSs,
proposed primarily in the statistical and computer sciences literature, have generally em-
ployed complex statistics, which makes them difficult to code and implement. The lack
of adoption of these sophisticated Bayesian methods in the field of water resources mod-
elling clearly indicates the need for a Bayesian ANN development framework that is ac-
cessible to water resources modellers. As statedagr and Dandy(2000a),

The primary focus should be on achieving good results, rather than statistical

optimality, as this is one of the features that has attracted water resources
modellers to ANNSs in the first place.
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Therefore, the aim of this research is to develop a relatively simple Bayesian framework
that can be applied to ANNs in the field of water resources modelling, where the primary
aim of the procedure is not statistical optimality, nor optimum efficiency, but rather good
results and ease of programming and application. It is envisaged that the development
of such a framework will enable significant advances to be made in the field of water
resources modelling with ANNs, as ANNs will no longer be held back due to the lack of
appropriate methods for addressing the modelling issues discussed in Section 2.2.5.
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Chapter 3
State-of-the-Art Deterministic ANN
Methodology

3.1 INTRODUCTION

Following almost a decade of reported applications of ANNs for modelling hydrological
and water resources variables, three comprehensive state-of-the-art reviews were con-
ducted on ANN modelling in this fieldASCE Task Committe000a,b;Maier and
Dandy, 2000a;Dawson and Wilby2001). Although it was evident from these reviews
that ANNs had potential as a useful prediction and forecasting tool, one of the main con-
clusions of each review was that, for significant advances to be made in this field, a set of
systematic guidelines would need to be established to aid the development of ANNs ap-
plied to hydrological and water resources modelling. In his recent tH&sveden(2003)
attempted to address this issue by developing ‘a robust methodology for the design and
successful implementation of ANN models for the forecasting/prediction of water re-
sources variables’. Therefore, the methods proposed in this chapter will attempt to build
on this approach.

In this chapter, each step in the ANN development process is discussed, together with
a review of the methods currently used for carrying out these steps and a summary of the
methods proposed yowden(2003). Additionally, any limitations or shortcomings of
current practices are identified and, if necessary, addressed through further assessment,
comparison and simple modification of alternative existing methods when applied to syn-
thetic data sets. The methods considered in this chapter are limited to convedétaal
ministicANN methods, where a single optimum weight vector is sought and single-valued
predictions are made. Furthermore, only methods applicable to feedforward MLPs with
a single output variable will be considered; however, it is considered that these methods
could be easily extended to ANNs with more than one output.
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3.2 REVIEW OF THE CURRENT STATE-OF-THE-ART

As discussed iMaier and Dandy(2000a,b) and outlined in Figure 3.1, there are a num-
ber of main steps in the ANN development process. It can be seen in this figure that
there are also a number of options available at each step and, while this provides great
flexibility in ANN modelling, it also leaves the modeller faced with the difficult task of
selecting the most suitable methods. In order to develop a robust methodology for ANNSs,
the research carried out Bowden(2003) involved a review of the alternatives available

at each step, identification of the limitations of available methods and, finally, the pro-
posal of new (or modified) methods to enable ANNSs to be developed in a systematic and

Choice of performance criteria

Choice of data sets

Number of data sets
Method for data division

Data pre-processing

Scaling/standardisation
Transformation of input/output distributions
Removal of non-stationarities

Determination of ANN inputs

Choice of variables
Choice of lags

Determination of ANN architecture

Connection type

Degree of connectivity

Number of layers

Number of nodes per layer

Types of transfer (activation) functions

ANN training

Objective function

Optimisation method

Choice of optimisation algorithm parameters
Stopping criteria

ANN validation

=

Figure 3.1 Main steps in the development of an ANN (source:

Dandy(2000b).
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consistent manner, where considered appropriate. However, while each of the ANN de-
velopment steps was addressed to some exteBolayden(2003), the main emphasis was
placed on the choice of data sets, pre-processing and transformation of the data and selec-
tion of important network inputs. Since the choice of performance criteria, architecture
selection, training and validation steps were not addressed in detBiblwgden(2003),
improvements to these steps will be the main focus of Section 3.4.

3.2.1 Choice of Performance Criteria

3.2.1.1 Review of current practice
The first step in the ANN development process is the choice of performance criteria, as
this determines how the model is assessed and will consequently affect many of the sub-
sequent steps such as training and the choice of network architeletaier @nd Dandy
2000a). Performance criteria may include measures of training and processing speed;
however, the most commonly used performance criteria used in water resources mod-
elling measure the prediction accura8ogvden 2003).

Performance criteria which measure prediction accuracy generally measure the fit
(or lack there of) between the model outpgts= {y;,..., 9y} and the observed data
y = {vi,...,yn} by some error measute,. They are used during training abjective
functions and after training to evaluate the trained ANN, where the criterion used for each
purpose need not necessarily be the same. The most commonly used objective function,
which is minimised during training, is the sum squared error (SSE) given by:

N 1 N

Ey =SSE =2 (i —6:)° = B > (i = f (xi,w))? (3.1)

=1 =1
The SSE provides an overall estimate of modelling performabesvéon and Wilby
2001), as it measures the total deviation of the modelled function from the observed data,
as estimated by summing the squared model residuals (deviations between the observed
data and the model outputs) over the entire data set. The reason for using squared resid-
uals rather than their absolute values is that this allows the residuals to be treated as a
continuous differentiable quantity, which is important if a gradient-based search tech-
nique is used to minimise the objective function during training (see Section 3.2.6). Use
of the SSE as an objective function gives rise to the well knteast squareparame-
ter estimation method, which makes the assumption that the residuals are randomly dis-
tributed with zero mean and constant variance. Itis also implicitly assumed that the target
data are approximately normally distributed. While this is not a requirement of the least
squares estimation method, under the assumption of independent Gaussian residuals, min-
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imising the SSE is equivalent to maximising the likelihood of the weighigw) when

y ~ N (f(x, w), 032,) (see Section 2.3.4.1). Furthermore, the SSE can be very sensitive
to outliers in the data, resulting in poor weight estimates. Extreme random values are
uncommon under a Gaussian distribution; therefore, optimal results are achieved when
the target data are approximately normally distributed.

While the SSE may be suitable as an objective function during training, this measure
does not quantify the error in terms of the units of the target variable, nor does it take into
account the size of the data set, which is appropriate if model performance is compared on
different data sets. Furthermore, although the SSE indicates overall performance, it may
not be adequate for assessing the model’s ability to fit both low and peak events. Thus, itis
also common to assess the predictive performance of a trained ANN using error measures
that indicate the particular areas of model deficiency that are considered to be of most
importance for a given problenbawson and Wilby2001). According to botibawson
and Wilby(2001) andBowden(2003), the most commonly used error measures in water
resources modelling include the root mean squared error (RMSE), the mean absolute error
(MAE), the mean squared relative error (MSRE), the coefficient of determinatiparfd
the coefficient of efficiency (CE), given by (3.2) to (3.6), respectively.

1/2
RMSE = [% Z (i — y>] (3.2)
1 N
MAE = — g lyi — 3 (3.3)
MSRE—iiCﬁ_gi)Q (3.4)
N i1 Yi .
2 S (i — ) (i — ) (3.5)
VI -9 G- 9)
Z]‘L (yi - Qz)Q
CE=1_ & 3.6
Zi]\i1 (yi - ﬂ)2 3o

In (3.5) and (3.6)y is the mean of the observed data grid the mean of the correspond-
ing model outputs.

The RMSE is also a measure of general model performance, but unlike the SSE, the
sample size is taken into consideration and it returns an error value with the same units as
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the data. However, the RMSE (like the SSE) is sensitive to outliers and extreme values in
the data, as squaring the residuals means that larger values can have a significantly greater
influence on the overall statistic. Consequently, the RMSE is generally weighted towards
the prediction of peak events, as these tend to be the poorest predi¢tlmasdrt and
Seeg1998). The MAE uses absolute values of the residuals, and is therefore less weighted
towards fitting extremes in the datdegates and McCabgl999) note that the degree
to which the RMSE exceeds the MAE is an indicator of the extent to which outliers (or
variance in the residuals) exist in the data. It has also been suggested that measures of
relative errors, such as the MSRE, which allow larger valued observations to have larger
inherent errors, are more suited to measuring predictive performance on moderate values
than the RMSE Karunanithi et al, 1994). However, the MSRE is inappropriate if the
observed data contain values of zero. If the aim is to fit extreme values, a higher order
error measure, where the residuals are raised to a higher even powe(ggeu.ggi)‘*),
could be used to place more emphasis on such extreme exdméhért and Seel998).
Ther? and CE criteria are dimensionless “goodness-of-fit” measures. They provide
a useful relative assessment of model performance in comparisons between studies, since
they are independent of the scale of data used. /Flugiterion measures the linear cor-
relation between the model outputs and the observed data and ranges from 0, for no cor-
relation, to 1, for perfect correlation. Howeveggates and McCab@ 999) note that the
r? criterion is limited because it does not account for differences between the means and
variances of observed data and the predicted outputs. Neverthélesatinues to be one
of the most commonly used criteria to evaluate an ANNs performance. The CE criterion
also provides a measure of the correlation between model outputs and the observed data,
but unliker? it is sensitive to differences in the observed and predicted means and vari-
ances. The value of CE can range fremc in the worst case to 1 for perfect correlation.
Alternatively, performance measures may be considered which take into account the
parsimony of the model. It can be expected that a more complex model will be able
to fit data better than a model with fewer degrees of freedom, and hence, less flexibility.
However, whether the increase in fit is justifiable given the available data and the increased
effort required to develop the model should be consideBaiMson and Wilby2001).
The two most commonly used performance measures that account for the complexity of
a model while measuring its performance include Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC), which combine a measure of fit with a term
that penalises model complexity as shown in (3.7) and (3.8):

AIC = —2log L(W) + 2d (3.7)
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BIC = —2log L(W) + dlog N (3.8)

wherelog L(W) is the maximised log likelihood function antlis the dimension of the
weight vector (i.e. the number of weights in the model). These measures are generally
calculated based on the training dataimsample performance.

Given the wide range of performance measures avail&d@e;son and Wilby2001)
state that “the problem then becomes deciding which (if any) are most appropriate to a
particular application”. To address this probleBgwden(2003) used an approach pro-
posed byDiskin and Simor(1977) to compare a number of possible error measures in
order to select the most suitable measure for a particular application. Giveossi-
ble performance criteria, the procedure appliedBoyvden(2003) involved training and
cross-validating an ANNX times, using each criterion in turn to measure the performance
of the model on the test (cross-validation) data set. Training was stopped when the error
on the test set, as measured by the given criterion, was minimised; thus it was consid-
ered that the weights obtained were “optimal” according to that criterion. The “optimal”
weights obtained using each of the different criteria were then used to calculate the values
of the other criteria for which the weights were not optimal. The criterion whose “opti-
mal” weights resulted in the best values of the other criteria, overall, was then selected as
the most suitable performance criterion for the given application and was used to evaluate
the performance of the trained ANNSs.

3.2.1.2 Limitations and Conclusions

Diskin and Simon(1977) originally applied the procedure used Bgwden(2003) to
conceptual hydrologic models calibrated using the pattern search optimisation method,
which does not require derivatives of the objective function for gradient descent, and
thus nondifferentiable and discontinuous objective functions can be used. Therefore, the
procedure proposed yiskin and Simor(1977) involved calibrating the models using

the different performance criteria as objective functions in order to obtain the optimal
weights. HoweverBowden(2003) adapted the method such that it could be applied to
ANNSs trained by backpropagation, which is based on gradient decent and does require
that the objective function used is differentiable (see Section 3.4.2.1). Therefore, the ANN
was trained based on the SSE over the training data, but training was stopped according to
the performance on the test set, which was calculated by the various performance criteria
investigated. However, it is considered that this procedure is flawed, as stopping training
according to a different error measure than that used to define the error surface could result
in a set of weights that is optimal according to neither criterion used. Even if a global
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training algorithm were used that does not require a differentiable objective function,
such that the method could be applied as proposeBiblgin and Simorn(1977), with
numerous possible error measures to consider, this procedure could be extremely time
consuming and, as it does not take into account the possibility of becoming trapped in
local minima, the results could still be misleading. Accordinggtshop(1995), as long

as the assumptions of the least squares method are approximately correct, the SSE is
the most suitable, and simple, form of performance measure or objective function for
solving the regression problem given by (2.1). Therefore, for the ANNs developed in this
research, the SSE will be used during training to evaluate the error on both the training
and test data sets.

A further limitation of the method proposed Bpwden(2003) is that a different per-
formance criterion may be used to evaluate the predictive performance of an ANN for
each different case considered. As noteddawson and Wilby2001) in their review
of ANNSs used for hydrological modelling, the absence of a standard error measure for
evaluating the performance of trained ANNs has led to a lack of objectivity and consis-
tency in the way the predictive performance of an ANN is assessghtes and McCabe
(1999) suggest that a complete assessment of model performance should include at least
one relative error measure, such as CE2dialthough use of? is warned against), and at
least one absolute error measure, such as the RMSE or MAE, with additional supporting
information such as a comparison between the observed and simulated mean and standard
deviations. Therefore, the RMSE, MAE2 and CE will be used to evaluate the perfor-
mance of the trained ANNs developed in this research. The AIC and BIC will also be
used to evaluate the generalisability of the ANN models based only on the training data
results.

In the approach proposed Bpwden(2003), by only considering predictive accuracy,

the physical plausibility of the model is disregarded. As discussed in Section 2.2.5.2,
ANNSs treated as black-boxes, where no consideration is given to the modelled function,
are generally undesirable as predictive models, as it is difficult to trust their reliability.
Therefore, it is considered that ANNs need to be evaluated not only in terms of their
predictive performance, but also in terms of their ability to capture the underlying rela-
tionship. However, as there is no widely accepted method for interpreting what has been
learnt by an ANN, this is an area that still requires further investigation. In this research, a
number of input importance measures will be investigated for quantifying the strength of
the modelled relationships between individual inputs and the output in order to determine
which measure, if any, is most appropriate for assessing the relationship modelled by an
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ANN.

3.2.2 Choice of Data Sets

3.2.2.1 Review of current practice

At a minimum, the available data need to be divided into two subsets; one for training
and the other for independent validation of the trained model. However, in general, three
data sets are required; namely a training, testing and validation set. As discussed in
Section 2.2.5.1, cross-validation with an independent data set is commonly employed
during training to prevent overfitting. However, the validation data must not be used in
any context during the training and model selection proceksdgr and Dandy 2000a),
therefore, a third independent data set is required. The same applies if a trial-and-error
process is used to optimise the network architecture or to select the network inputs or
parameters of the optimisation algorithm used. Therefore, the training data are used to
find an optimal set of network weights, the testing data are used to select the best network
during development and, if cross-validation is employed, to prevent overfitting, and the
validation set is used to validate or confirm the generalisability of the selected model.

Traditionally, the data have been divided arbitrarily without giving consideration to
the statistical properties of the respective data $dtsdr and Dandy2000a). However,
the way in which the data are divided can significantly influence an ANN’s performance
(Yapo et al. 1996;Tokar and Johnsqri999). As it was also discussed in Section 2.2.5.1,
there is no information provided to an ANN about the form of the solution surface other
than that contained in the training data (i.e. there is no incorporation of physical con-
cepts). Therefore, to achieve good generalisation of the data generating relationship, the
training data must be a representative sample of the population from which the data were
generated. Furthermore, it follows that if the training data must be representative of the
data population to achieve generalisability, the toughest evaluation of generalisability is
if the testing and validation data are also representative subsets. Also, an unrepresenta-
tive test set could bias the cross-validation procedure and the selection of the optimum
network architecture.

While it is important for each of the data subsets to be representative of the data
population, the proportion of samples to include in each of the subsets is also an important
considerationASCE Task Committd2000b) define an optimal training data set as “one
that fully represents the modelling domain and has the minimum number of data pairs in
training”. This is because large sets of repetitive data can slow down training while only
marginally improving network performance. However, due to the time and cost involved
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in data collection, in many practical circumstances the available data are lirfitsati(
and Kartam 1994). Therefore, it is again important to consider the relative sizes of the
subsets, in order to include the maximum amount of information in the training data set.

Bowden et al(2002) andBowden(2003) proposed two methods for systematically
dividing the available data into statistically representative subsets. The first method in-
volved the use of a genetic algorithm (GA) to minimise the difference in the statistics
(mean and standard deviation) of the subsets and the second employed a self-organising
map (SOM) Kohonen 1982) to cluster the data into groups of similar data patterns, such
that samples from each group could be included in each of the subsets.

The GA used for dividing the data was designed to allocate the available data into
training, testing and validation sets of prespecified proportions according to a set of
pseudo random numbers. The decision variable being optimised was the pseudo random
number seed used to generate the random sorting (i.e. the random seed used to determine
the optimal allocation of data into subsets). The objective function minimised was the
sum of the absolute difference in mean and standard deviation values for each input and

output variable between each pair of the three subsets:
K+1

ObjeCtive fn = Z { [/fb(i)trm’n - ,u(i)test] + [M(i)test - M(i)validation}
i=1

+ [U(i)train — U(i)test] + [U(i)test - U(i)validation] } (39)

whereK is the number of inputs, andando are the mean and standard deviation of the
input or output variable, respectively. To ensure that the maximum and minimum values
of each variable were included in the training set, penalty constraints were added to the
objective function. Penalty constraints were used, rather than manually removing extreme
values from the data and placing them in the training set, as it was noted that there may
be a trade-off between keeping the statistics of the training, testing and validation sets the
same and ensuring that the extreme values are in the training set.

With the second data division method, the SOM was used to cluster the data by pre-
senting the ANN input and output variables as the SOM’s inputs. A SOM grid size was
specified, where each cell in the grid represents a node in the Kohonen layer, and by train-
ing the SOM, similar data samples were clustered into each of the grids. This is illustrated
in Figure 3.2, where each square represents a cluster and each dot represents a sample of
data.

Using the method employed Bowden(2003), three data records from each cluster
were sampled and allocated to each of the training, testing and validation subsets. How-
ever, if a cluster only contained one record, this record was allocated to the training set.
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Figure 3.2 SOM data division

If a cluster contained two records, one record was placed in the training set and the other
in the testing set. It was considered that an advantage of this technique over other data
division methods is that it avoids the need to arbitrarily select which proportion of data to
include in each subset and that it is capable of constructing a representative training data
set using the minimum number of samples.

It was found that each method was capable of dividing the available data into statisti-
cally similar subsets and the predictive performance of the models developed using these
subsets was significantly greater than when the data were divided arbitrarily.

3.2.2.2 Limitations and Conclusions
It is considered that each approach proposeBdyden(2003) suffers from some limita-
tions. Firstly, dividing the data with a GA can be very time consuming as many different
combinations for arranging the data need to be compared to find the best allocation. In
the simple example given bgowden(2003), if there are 60 data samples that must be
divided into training, testing and validation sets consisting of 40, 10 and 10 data samples
respectively, then there are:

60!

40! x 10! x 10!
ways of arranging the data samples. In reality, it is unlikely that an optimal division of
the data will be found within a reasonable time frame, although good results can still be
obtained. More importantly, though, in the GA method describedBbwden(2003),
the cross-over operator is unable to function as it should. Crossing over two random
number seeds does not result in a set of random numbers that share the properties of the

= 7.7 x 10%

parents, thus the method as presented is only relying on selection and mutation to find
the appropriate division of the data, which further slows the process (for details of the
operation of a GA see Section 3.4.2.2).
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Using the SOM data division method, the number of data samples allocated to each
data subset depends on the Kohonen grid size specified. However, as n&eud/den
(2003), there is no theoretical principle for determining the optimum size of the Kohonen
layer. According toShahin et al.(2004), the grid size specified can have a significant
impact on the results obtained using the SOM data division method, as the underlying as-
sumption of the approach is that the data samples in one cluster provide the same informa-
tion in high-dimensional spac8owden(2003) stated that the grid size was selected such
that it was large enough to ensure that the maximum number of clusters were formed from
the available data. However, theoretically, the grid size could be specified large enough
such that each grid only contained one sample of data, making it impossible to choose
representative subsets. Furthermore, by only selecting one sample from each cluster for
each data set, the amount of data used for ANN development is significantly reduced. In
one of the case studies presentedBmywden(2003), 2005 available data samples were
reduced to 147 samples using this method, with only 49 samples allocated to each data
subset. Such a reduction in data may result in a significant loss of information, in which
case the resulting training data set would not adequately represent the population of data.
The amount of information that is lost through such data reduction depends on the intra-
cluster variation. If this were large for even some of the clusters, important information
may be omitted from the training set by only selecting one sample from each cluster.

Nevertheless, the SOM method appears to be a promising approach for systematically
dividing the data into statistically similar subsets; thus, it is considered that no further
investigation is required on data division methods in the present research. However, it
is proposed that, within reason, the entire clustered data set should be divided into the
three subsets, with 64% allocated to the training set, 16% to the testing set and 20% to
the validation set, which are the proportions propose&dwwden(2003) when using the
GA data division method. Furthermore, in the present research, analytical measures will
be used to aid selection of the optimal SOM grid size. As mentioned above, specifying
a grid size that is too large can result in too many clusters containing single data points,
making it difficult to choose representative subsets. Conversely, if the grid size is too
small, there may be significant variation within the clusters. To determine the optimum
number of clusters for data divisioBhahin et al(2004) used the average silhouette width
5(k), which is an average measure of how well the data samples lie within the clusters
they have been assigned to at the end of the clustering process. This measure is calculated
by evaluating the silhouette valuéi) for each data sample= 1, ..., N, and taking the
average over the data set. The silhouette value for a data samsge/en by Kaufman
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and Rousseeuwvt990):
, b(i) —al(s

s (i) = max({l(i) ,ézi)} (3.10)
wherea(i) is the average dissimilarity of sampido all other samples in a cluster A;
andb(i) is the smallest average dissimilarity of sampl all points in any cluster E
different from A. If (i) is close to 1, the “within” dissimilarity:(i) is smaller than the
smallest “between” dissimilarity(i). Therefore it is considered that sampleas a strong
membership to cluster A. The optimum number of clusters can be determined by choos-
ing the number of clusters that maximises the valug(éf. However, for only a small
number of clusters, the smallest “between” dissimilarity may be reasonably large, which
can result in a high value of(k), regardless of how similar the samples within a cluster
are. Therefore, a “discrepancy” measure, which indicates the total “within” dissimilarity,
will be used together with the average silhouette width to select the SOM grid size. This
discrepancy measure is given by:

N
Discrepancy = Z H{Xi, yi} — W; (3.11)

=1
whereW, is the weight vector associated with the cluster to which the safxle; } is
assigned. The smaller the discrepancy value, the better the samples “fit” to the clusters to
which they have been assigned. However, if there are a large number of clusters contain-
ing a small number of samples, the discrepancy may be small, although the dissimilarity
between the clusters may also be small. Consequently, the discrepancy value needs to be
used in conjunction with the average silhouette width to select the SOM grid size.

3.2.3 Data Pre-Processing

3.2.3.1 Review of current practice
Data pre-processing involves transforming the data into a format that will enable easier
and more effective processing by the ANN. This may involve rescaling, standardisation,
de-trending, distribution transformation and removal of outliers. As discussesop
(1995), being universal function approximators, ANNs should, in principle, be able to
map raw input data directly onto the required output values; however, in practice this ap-
proach would normally give poor results, as the model is relied upon too much to find
appropriate transformations. Therefore, pre-processing is an important step in ANN de-
velopment.

The simplest and most commonly used form of pre-processing is linear transforma-
tion, which involves transforming the data such that the variables have similar values
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(Bowden 2003;Bishop 1995) and includes rescaling and standardisation. Rescaling gen-
erally refers to the scaling of data between specified upper and lower bounds, whereas
standardisation often refers to statistical standardisation where a measure of location (e.qg.
mean) is subtracted and the result is divided by a measure of scale (e.g. standard devia-
tion). If x; is theith raw value of variable, theith linearly transformed valug; can be
obtained by rescaling or by standardisation according to (3.12) and (3.13), respectively:

T T T T

e — X X X — Xy Lmi

, high l 1 max highmin

4y = | Zhigh Tlow ) [ Dlow ig (3.12)
Tmaz — Tmin Tmaz — Tmin

, r;, — X

g = (3.13)
T stdev

In (3.12), 2,0 @ndx,,,;,, are the maximum and minimum values of the untransformed
variable, whilezy, , andzy,,, are specified upper and lower bounds which become the
new maximum and minimum values of the transformed data, respectively. In (3.13),
Tmean ANAx g4, are the mean and standard deviation of variableespectively.

Since different variables generally span different ranges, and because typical values
do not necessarily reflect the relative importance of inputs in determining the output,
transforming the inputs to a similar scale is particularly important in ensuring that each
variable receives equal attention during trainiMga({er and Dandy2000a).Sarle(2002)
recommends either scaling the inputs betweeh 1] or standardising them to a mean of
zero and a standard deviation of one, as in (3.13), as it is important to centre the inputs
around the origin in order to get good random initialisations of the weights. Recently,
Shi(2000) suggested that if the input data are linearly scaled within some specified limits
(e.g. [-1,1]), for some variables a large proportion of the data may be confined to a very
small range (e.g. [-1,-0.95]), making it difficult to achieve a continuous mapping for such
inputs on the entire input range. To overcome ti§kj (2000) proposed a distribution
transformation method to transform the input data to uniform distributions on the range
[0,1] using the cumulative distribution functions (CDF) of the input variables: (k) is
the CDF of inputx, the transformed data are obtainedihy= F' (z;).

If bounded activation functions are used on the output layer (see Section 3.2.5), it is
also necessary to scale the target data, such that they are proportionate with the limits
of the activation function. For example, if the hyperbolic tangent activation function,
which has the limits [-1,1], is used on the output nodes, the data should be scaled between
—0.9 and0.9 or —0.8 and 0.8 (Bowden 2003). It is not recommended that the data be
scaled to the extreme limits of the activation function, as this will likely cause the size of
the weight updates to become extremely small, leading to the occurrence of flatspots in
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training (Maier and Dandy 2000a). Furthermore, when scaling the target data to force
the values into the range of the output activation function, it is important to use lower
and upper bounds of the target variable, rather than the minimum and maximum values
in the training set $arle 2002). For example, the lower bound of a variable that can
only take positive values is zero; therefarg,;,, should be substituted with zero in (3.12).

If an unbounded activation function (e.g. linear) is used at the output layer, it is not
strictly necessary to rescale the target data. However, by ensuring that the input and
output variables are of order unity, either through rescaling or standardisation, it can be
expected that the weights will also be of order unity, which makes it easier to randomly
initialise the weights appropriate3{shop 1995).

There has been some confusion as to whether further transformations, such as those
used in traditional statistical modelling, need to be applied to the data when using an
ANN. In assuming that the model residuals are normally distributed with a constant vari-
ance, the most commonly used methods in regression analysis also make the assumption
that the target data are (approximately) normally distributed, either implicitly (e.g. least
squares estimation) or explicitly (e.g. maximum likelihood estimation). In traditional sta-
tistical modelling, nonlinear mathematical functions, such as the square root, logarithm
or inverse, are widely used to transform the data in order to reduce the non-normality and
stabilise the variance in the datagborne 2002). In traditional time series modelling it is
also common to remove deterministic components in the data such as trends and season-
ality (Maier and Dandy2000a). However, in a study yaraway and Chatfield1998),
results of empirical trials indicated that there was no improvement in an ANN’s perfor-
mance when a logarithmic transformation was used and that the performance deteriorated
when the seasonality was removed from the data.

Bowden et al(2003) andBowden2003) investigated the effects of six different trans-
formations on the performance of ANN models, as outlined below:

1. Linear Transformation - The inputs were linearly rescaled betwekfi and 1.0,
while the network outputs were rescaled betwe® and0.8 to be commensurate
with the limits of the hyperbolic tangent activation function used on the output layer
node.

2. Logarithmic Transformation - A logarithmic transformation of both the inputs and
outputs was performed.

3. Histogram Equalization Transformation - The distribution transformation method
of Shi(2000) is dependent on fitting a probability density function (PDF) to each of
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the input variables at an acceptable level of significance. To ensure an appropriate
fit of the input PDFs, a discrete version of distribution transformation known as
histogram equalizatiorLponey 1997) was applied to the input data.

4. Kernel Transformation - Similar to the histogram equalization transformation above,
this transformation was developed Bpwden(2003) to transform the input vari-
ables according to the distribution transformation methdstwf2000). The method
uses univariate kernels to approximate the PDF of each input series, which is then
integrated to approximate the required CDF.

5. Seasonal Standardisation - Deterministic seasonality was removed from the inputs
and outputs by subtracting a seasonally varying mean and dividing by a seasonally
varying standard deviation.

6. Transformation to Normality - A two-step transformation to normality was pro-
posed byBowden(2003), combining the histogram equalization transformation to
compute the CDF of an input series (uniform distribution between 0 and 1) with
an approximation of the inverse Gaussian CBedsley and Springel977) to
produce the corresponding normal deviates.

When applied to a water resources case stBdyden(2003) found that the models
developed using the linear, histogram equalization and kernel transformations performed
significantly better than those developed using the logarithmic, seasonal and normality
transformations for the training, testing and validation sets. It was concluded that the latter
three transformations distorted the original relationships between variables in a way that
was not beneficial to ANN learning. It was also found that, while the models developed
using data transformed by histogram equalization and kernel transformation had (slightly)
superior performance when tested on data within the training domain, these models were
not as robust as the models developed using linearly transformed data when tested on data
outside of the training domain. Analysis of the residuals produced by the ANN models
trained using linearly transformed data showed that the assumptions of least squares error
model were satisfied, indicating that the data did not require any further transformations
other than linear rescaling.

3.2.3.2 Limitations and Conclusions

Itis recommended b@sborng2002) that all data transformations should be utilised with

care and never without a clear reason. In the investigation carried @&awgen(2003),

there was no clear reason to transform the data in some cases. For example, seasonality
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was removed from exogenous input variables when it was not necessary; similarly, loga-
rithmic and normality transformations were applied to input data when there was no need,
as discussed below. Data transformations should be applied in order to comply with the
requirements of the modelling technique used. In traditional time series modelling, it is
necessary to remove seasonality from the output time series, as it may conceal the true
underlying movement in the data. However, it is not necessary to remove the seasonality
from other external input variables included in the model. When using linear regression, it
is important to transform both input and target data to normality to achieve constant vari-
ance in the residuals and linearity in the equation. However, transformations should not
be applied simply to achieve linearity when using nonlinear modelling techniques. Fur-
thermore, transformations to normality should only be applied when the data or resulting
model residuals are substantially non-normal, as regression models are generally robust,
to some extent, to violation of the assumption of normally distributed residOalsofne

and Waters2002). It is more important that the distribution of the data be approximately
symmetrical and not have a heavy tail than to be normally distribltsssters 1993).

As data transformations can alter the fundamental nature of the data, it is possible that
unnecessary transformations may have distorted the results of the investigation carried
out by Bowden(2003).

Following the recommendations @sborne(2002), a more systematic approach to
data pre-processing will be used in this research, with transformations only applied to
data when there is a clear reason. Due to the general function mapping abilities of ANNS,
less emphasis has to be placed on careful optimisation of data pre-processing than in tra-
ditional linear regression or time series modelliBgshop 1995). However, as discussed
in Section 3.2.3, there are well established reasons why some pre-processing, particularly
linear transformations, can significantly improve the performance of an ANN. In this re-
search, all inputs and outputs will be standardised to have a mean of 0 and a standard
deviation of 1, as recommended Bwrle(2002), except if a bounded activation function
is used on the output layer, in which case the target data will be scaled to be commen-
surate with the limits of this function. Furthermore, once the model is fitted, diagnostic
checking of the residuals will be carried out to determine whether the assumptions of the
regression model specified by (2.1) have been met. These assumptions are:

1. The mean ot is zero;
2. The variance of is constant;

3. e is statistically independent; and
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4. e is normally distributed.

If any of these assumptions are significantly violated, a nonlinear transform of the target
data, such as the logarithm, square root or inverse, will be considered.

3.2.4 Determination of ANN Inputs

3.2.4.1 Review of current practice

Determining what the important inputs are for a given problem can be one of the most crit-
ical decisions in ANN model development, as the inputs contain the important informa-
tion required to define the data-generating relationship. This can also be one of the most
difficult tasks in water resources modelling because many of the hydrological and envi-
ronmental processes acting upon these systems are poorly understood. As water resource
systems vary in space and time, potentially important inputs may include observations of
causal variables at different locations and time lags, as well as lagged observations of the
dependent variable of interest. Therefore, the number of potentially important inputs can
be large. However, the inclusion of unnecessary inputs is undesirable, as such inputs do
not provide any useful information about the underlying relationship, but increase the size
and complexity of the network, making the task of extracting important information from
the data difficult. On the other hand, omitting key inputs results in a loss of important
information, which can be detrimental to the predictive performance of an ANN.

In the past, selection of important inputs has been given relatively little attention, as
it has been considered that, being a data-driven modelling approach, ANNs should de-
termine automatically which inputs are criticlidier and Dandy 2000a). However, as
mentioned above, presenting a large number of inputs to an ANN increases the size and
complexity of the model; thus, slowing processing time, reducing interpretability and in-
creasing the potential of overfitting. Therefore, there are considerable advantages in using
analytical techniques to help select important inputs. Accordir@pteden(2003), there
are only a small number of recent papers that treat input determination as an important
step in ANN development. The methods used in these papers were classified into five
broad groups b¥dowden(2003);Bowden et al(2005a), as discussed below.

1. Methods that rely upon the use afpriori knowledge of the system being mod-
elled. Selecting important inputs for ANNs usually always requires some degree
of a priori knowledge, as it is necessary to use some judgement to select a set of
potentially important inputs. However, relying solely arpriori knowledge for
input determination requires a good understanding of the system being modelled
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(ASCE Task Committe2000a). Inspection of time series plots of potential inputs
and outputs can help in selecting important inpMaiger and Dandy1996), as can
existing physically-based or conceptual mod&sdland et al. 1999;Shamseldin
1997) or previous studies of the system or similar systé@rmsiimalaiah and Dep
2000;Wei et al, 2001). However, if the system is less well understood, the use of
analytical techniques, in conjunction wighpriori knowledge, would be beneficial
(Maier and Dandy2000a).

2. Methods based on linear cross-correlation. Cross- and auto-correlation analysis has
been popular for selecting appropriate inputs (including lagged observations of the
target variable) for ANNSs in the field of water resources modellifgyitando and
Jayawardenal998;Imrie et al, 2000;Coulibaly et al, 2000;Lekkas et al.2001;
Sudheer et aJ.2002). This method uses the strength of the cross-correlations be-
tween potential input variables and the output to select important causal inputs or
the strength of autocorrelations to select appropriate lags. However, a significant
disadvantage of cross-correlation analysis is that it is only able to detect linear de-
pendence between two variables and is therefore not optimal for selecting inputs of
nonlinear relationships.

3. Methods that utilise a heuristic approach. Using such approaches, different com-
binations of inputs are trialled in order to find the combination that results in the
best model performance. A stepwise selection approach is commonly employed to
avoid consideration of all subsets of inputs. Stepwise selection can be applied in
a forward manner, where, given a set of selected inputs, the input that improves
the model’s performance most is added to the final model, beginning with the best
single input. Alternatively, backward selection may be used, where an ANN is first
developed with the set of all potentially important inputs, and inputs that reduce the
performance least when deleted are sequentially removed from the mimdeir
and Johnsor{1999),Luk et al.(2000) andViaier and Dandy2001) used a heuris-
tic input selection approach. The disadvantage of these approaches is that they are
computationally intensive, requiring the ANN to be retrained each time a new com-
bination of inputs is trialled. Furthermore, heuristic model selection methods are
based on trial-and-error, and consequently, there is no guarantee that they will find
the globally best subset of inputs.

4. Methods that extract knowledge contained within the trained ANN. Methods such
as sensitivity analysis, saliency analysis and partitioning of connection weights are
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designed to quantify the relative importance of inputs in trained ANNdédn et al,

2004). Of these methods, sensitivity analysis is the most commonly used for input
selection in the field of water resources modelliMp{er and Dandy 1996, 1997,

Liong et al, 2000;Wei et al, 2001). The main disadvantage of these approaches
is that if all inputs in the set of potentially important inputs are not statistically
independent, the effects of dependent inputs generally cannot be sep&atied (
2002). Additionally, it can be difficult to determine the statistical significance of
input variables using these approaches; thus, subjective judgement is often required
to determine at what threshold value inputs should be removed or retained in the
network Olden and Jacksqr2002).

5. Methods that use various combinations of the above four approaches. According
to Bowden(2003), a number of papers also report the combined use of some of the
above approaches.

Bowden(2003) andBowden et al.(2005a) proposed two input determination ap-
proaches; onenodel-basedand onemodel-free Model-based approaches rely on the
modelled input-output relationship to determine the dependence of the output on each
input variable, while model-free approaches use some statistical measure of dependence
(e.g. correlation) to determine the strength of the relationship between each input and
the output. The model-based input determination approach proposfeaviyen(2003)
involved the use of a genetic algorithm (GA) together with a general regression neu-
ral network (GRNN), which is a type of supervised feedforward ANN with the advan-
tages of having a fixed architecture and being relatively quick to train. Using this hybrid
GAGRNN approach, the GA is employed to evolve the GRNN model with the optimal
set of inputs, determined according to the corresponding predictive error. To begin the
algorithm, a population of GRNN models is randomly initialised, each with a different
subset of input variables, as depicted by a binary string. For example, if thefé jpoe
tentially important inputs, the string will have lengthand if thekth value of the string is
equal to one, théth input is included, otherwise, if it equals zero, it is not included. The
GRNN models are then trained and the corresponding predictive error is calculated for
each GRNN. Selection, crossover and mutation operators are then used to evolve the pop-
ulation of GRNN models over a number of generations to obtain the GRNN model with
the optimal inputs (i.e. that producing the smallest predictive error). This method requires
that the set of potentially important inputs optimised by the GAGRNN are statistically in-
dependent; therefore, an input preprocessing stage was used prior to the GAGRNN to
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reduce the original set of inputs to a set of independent inputs. FoBitwgden(2003)
used principle component analysis (PCA) and SOM clustering techniques.

The model-free input selection approach propose8dyden(2003) was an adapta-
tion of the stepwise partial mutual information (PMI) input selection procedure developed
by Sharma(2000). The PMI criterion is a measure of (linear or nonlinear) partial depen-
dence between an independent variabnd a dependent variabyeand is given by:

fey (5, 91)
PMI = Z log, [ o (yl)} (3.14)
wherefy (z}) andfy (y;) are the marginal PDFs af andy’, respectively, and.y (2}, y})
is the joint (bivariate) PDF ok’ andy’. The PMI is a “partial” measure because it de-
pends on the inputs already selected and measures any additional dependence a new input
can add to the existing prediction model. In (3.14)andy’ represent the residual in-
formation in variables andy, once the effect of the existing predictor(s) has been taken
into consideration.

Briefly, the stepwise PMI input selection algorithm is carried out as foll&ta(ma
2000;Bowden et a].2005a):

1. Identify the set of potentially important inputs usiagpriori knowledge.

2. Estimate the PMI score between the dependent varjabled each of the potential
inputs, conditional on the existing predictor(s), using (3.14).

3. Identify the potential input with the highest PMI score.

4. Create a set of randomised samples of the potential input identified in step 3 by ran-
domly bootstrapping the input series to remove the dependence that existed between
that input and the dependent variable. Estimate the 95th percentile randomised sam-
ple PMI score for this potential input.

5. If the PMI score for the identified potential input is higher than the 95th percentile
randomised sample PMI score, select the input as an important predictor and re-
move it from the set of potential inputs. If the PMI score is less than the 95th
percentile randomised sample PMI score, go to step 7.

6. Repeat steps 2-5.

7. Stop once all important predictors have been selected.
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In Bowden(2003), the two input selection approaches were applied to a number of
synthetic case studies with known dependence attributes. It was found that the model-free
stepwise PMI approach was able to correctly select the important input variables for each
test case, whereas the GAGRNN was only able to do this for the simplest of the synthetic
data sets, and only when the SOM clustering technique was used to reduce the dimension-
ality of the original set of inputs. Although the SOM-GAGRNN method did not always
select the actual model inputs, it was found that, overall, the models developed using this
input selection method were able to achieve similar predictive performance to those de-
veloped using the stepwise PMI input selection method. It was therefore concluded by
Bowden(2003) that both approaches are suitable for ANN input selection when predictive
performance is the primary aim. However, as it was demonstrated that only the stepwise
PMI algorithm was able to identify the actual model inputs to the test problems, it was
considered that this method should be used when insight into the underlying process is of
utmost importance.

3.2.4.2 Limitations and Conclusions

As discussed ilBowden(2003), both the stepwise PMI and GAGRNN input selection
methods suffer from a number of limitations. Using the PCA-GAGRNN approach, it is
not possible to determine the exact inputs to the system; rather, the important principal
components (PCs) are selected using the GAGRNN, where each PC is a linear combi-
nation of all of the original inputs. Therefore, is likely that even important PCs con-
tain extraneous inputs. Furthermore, only linear dependence between variables is con-
sidered in PCA; hence, this technique is not optimal for nonlinear relationships. The
SOM-GAGRNN approach is an improvement over the PCA-GAGRNN technique, as the
SOM is able to account for nonlinear relationships and does not combine the inputs in
any way. However, using the SOM input reduction method, it cannot be guaranteed that
the actual model inputs will be included in the reduced set of independent inputs, as an
input that is highly correlated with the actual input may be selected if it is closest to the
cluster centre. Moreover, like all model-based approaches, the resulting set of inputs se-
lected using the GAGRNN is dependent upon the model developed. If the model does
not properly represent the relationships between the candidate inputs and the output, the
resulting set of selected inputs is likely to be suboptimal. Being model-free, the stepwise
PMI approach is not dependent upon a modelled relationship and thus has an advantage
over the GAGRNN approach. Furthermore, it does not require any input preprocessing
step, as it is able to account for redundant inputs. However, to estifpdte), fy' (v!)
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and fxy (2}, y:) in (3.14), a kernel density estimator is used, which requires specification
of a “bandwidth” to prescribe the smoothness of the estimated deriityden(2003)
andSharma2000) used the Gaussian reference bandwi8lillrérman 1986), which may

be unsuitable for highly non-Gaussian data, leading to the selection of a sub-optimal set
of model inputs. Nevertheless, as it was demonstrated that the stepwise PMI input selec-
tion technique was able to correctly select the model inputs for the test caBewden
(2003), this approach will be used in the current research. An additional advantage of this
approach is that the magnitude of the PMI scores give useful information regarding the
relative importance of each input.

3.2.5 Determination of ANN Architecture

3.2.5.1 Review of current practice

In the regression equation given by (2.1), the functi¢r) is determined by the network
architecture, which, in turn, is defined by the number of input and output nodes, the num-
ber and configuration of hidden layer nodes, the connectivity between the nodes and the
types of activation functions used within the network. Therefore, it is the network archi-
tecture which determines model complexity. Only fully connected feedforward MLPs are
considered in this research, where the input and output nodes are fixed according to the
number of input and output variables included in the model, respectively. Therefore, de-
termination of an appropriate ANN architecture, and thus model complexity, comes down
to selecting the number and configuration of hidden layer nodes and choosing which ac-
tivation functions to use on the hidden and output layers.

Activation functions are needed to introduce nonlinearity into an ANN. Any nonlinear
function is capable of this; however, when a gradient descent type search algorithm is
used for training, the activation function must be continuous and differentiSialee(

2002). Sigmoidal activation functions, such as the logistic sigmoid or the hyperbolic
tangent (tanh), given by (3.15) and (3.16), respectively (whetés the summed input to

a node), are most commonly used on the hidden layer nddiag( and Dandy 2000a).

There may be some practical advantage to using tanh activation functions rather than
logistic, as empirically, the tanh function has been found to give faster convergence of the
training algorithm Maier and Dandy 1998a). Although sigmoidal functions may also

be used on the output layer, the linear, or identity, activation function, given by (3.17), is
commonly used, as this function does not restrict the range of the possible outputs to the
range that would be attainable if a bounded function were WBistidp 1995). However,

there are sometimes good reasons to use a bounded activation function at the output nodes;
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for example, if there are known upper and lower bounds for the target variable. The tanh,
logistic and linear activation functions are illustrated in Figure 3.3 where it can be seen
that the tanh and logistic activation functions are bounded on the ranges [-1,1] and [0,1],
respectively, whereas the linear function is unrestricted.

1
ezin _ efzin
n)= ——HooH—— 3.16
g(zm) eFin | g—zin ( )
g(zin) = zin (3.17)

An ANN with sigmoidal hidden units and linear output units is not limited to mod-
elling smooth nonlinear functions. A sigmoidal hidden node may approximate a linear
hidden node by arranging all of the weights feeding into the node to be very small, such
that the summed input lies on the linear part of the sigmoid curve. Similarly, a sigmoidal
hidden unit may approximate a step function by setting all of the weights feeding into it
to very large valuesBHishop 1995). In fact, it has been shown that a one hidden layer
network with this configuration of activation functions can essentially approximate any
continuous functional mapping to arbitrary accuracy, provided that the number of hidden
nodes is sufficiently largeQybenko 1989;Hornik et al, 1989;Bishop 1995).

The flexibility in ANN architecture determination primarily lies in selecting the num-
ber and configuration of hidden layer nodes, which, in turn, determine the number of
weights in the model. However, as discussed in Section 2.2.5.1, this is one of the most
critical and difficult tasks in designing an ANN. Generally, the number of hidden layers
is fixed, then the number of nodes in each hidden layer is chddare( and Dandy

(@) g(in) (b) g(zn) ) g( ng
1 1
Q zin g zin
6 -4 -2 2 4 6 6 -4 -2 2 4 6
1 zin
B 6 4 2 0 2 4 6 6

Figure 3.3 Typical activation functions (a) tanh, (b) logistic and (c) linear or identity.
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2000a). As mentioned above, only one hidden layer is required to approximate any con-
tinuous function, thus, most studies only utilise one hidden lagewden 2003). How-
ever,Cheng and Titteringtorf1994) note that even though a one hidden layer network
may be adequate, the number of hidden nodes required can be prohibikbped and
Kartam(1994) argue that it may be better to use two hidden layers to provide the greater
flexibility necessary to model complex shaped solution surfaces, as a two hidden layer
ANN can yield an accurate approximation with fewer weights than a one hidden layer
network Bebis and Georgiopoul9pd994). However, in an empirical study de Villiers

and Barnard(1992), it was found that there was no difference in the optimal performance
of one or two hidden layer ANNs with the same complexity, which led to the conclusion
that there is no reason to use two hidden layer networks in preference to one hidden layer
networks “in all but the most esoteric applications”. Furthermore, the use of two hidden
layers can exaccerbate the problem of local minima on the solution surface, making them
more difficult to train (see Section 3.2.64rle 2002;de Villiers and Barnarg1992).

Although the above results are useful in selecting the number of hidden layers, they
do not provide any guidance in selecting the number of hidden nodes. Theoretically, the
optimal number of hidden nodes is that which results in the smallest network able to ade-
quately capture the underlying relationship in the data. However, in the past, the selection
of hidden nodes has been somewhat arbitrary, as the optimal number of hidden nodes is
highly problem dependent; yet, there exists no systematic model selection method to en-
sure the optimal network will be chosen. A balance is required between having too few
hidden nodes such that there are insufficient degrees of freedom to adequately capture the
underlying relationship (i.e. the data are underfitted), and having too many hidden nodes
such that the model fits to noise in the individual data points, rather than the general trend
underlying the data as a whole (i.e. the data are overfitted). This is illustrated in Fig-
ure 3.4, which shows an example of an ANN (a) generalising well to the underlying trend
in the data, (b) overfitting the data and (c) underfitting the data. The generalisability of
the models shown in Figures 3.4 (b) and (c) would be poor, as a result of having too much
and too little flexibility to fit the data, respectively. This can be explained by considering
the bias-variance tradeoff, as discusse®ishop(1995), where the model error is de-
composed into the sum of thgassquared plus theariance Bias results from a network
function that is on average different from the regression function, whereas variance results
from a network function that is overly sensitive to the particular data set. The model in
Figure 3.4 (b) has negligible bias as the model fits that data perfectly, however, this model
would generalise poorly due to a large variance in the error when applied to a different
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Figure 3.4 Example of an ANN (a) estimating the general underlying trend in the data, (b)
overfitting the data and (c) underfitting the data.

data set. On the other hand, the model in Figure 3.4 (c) is insensitive to the data set to
which it is applied and therefore has negligible variance. However, this model would also
generalise poorly as a result of having a large bias across all data sets. This highlights
the need to optimise the number of hidden nodes (and hence model complexity) such that
there is a balance between the bias and variance and the best generalisability is achieved.
Numerous techniques have been suggested to make decisions regarding network ar-
chitecture less arbitrary, such as pruning and construction algorithms, statistically based
comparison procedures and ‘rules of thumBebis and Georgiopoulps994; Anders
and Korn 1999;Qi and Zhang 2001;Basheer and Hajmee2000). Maier and Dandy
(2000a, 2001) discuss a number of general guidelines that have been proposed in the
literature to help select the optimal number of hidden nodes by relating the number of
training samples to the size of the network. For examlglasters(1993) suggests that
there should be twice the number of training samples as there are weights in the network,
whereasMNeigend et al(1990) suggest that this ratio should be 10:1. More formally, by
analysing the asymptotic gain in generalisation error when early stopping is performed, it
has been shown b&mari et al.(1997) that if the number of training samples is greater
than 30 times the number of network weights, overfitting does not occur. In selecting the
number of hidden nodeg, Maier and Dandy(2001) suggest taking the smaller of the
values obtained using the upper limits forgiven by Hecht-Nielser{1987) andRogers
and Dowla(1994) in (3.18) and (3.19), respectively,

J<2K +1 (3.18)
N

< 3.19

TS w (3.19)
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where N is the number of training samples aiad is the number of inputs. However,
while these guidelines may provide an upper limit, in many cases good performance can
be obtained with fewer nodes. Therefore, the optimal geometry is generally not obtained
using these guidelines.

The most commonly used method for selecting the number of hidden layer nodes is by
trial-and-error Basheer and HajmegR000;Maier and Dandy2000a), where a number
of networks are trained, while the number of hidden nodes is systematically increased or
decreased until the network with the best generalisability is found. The generalisability
of an ANN can be estimated by evaluating its ‘out-of-sample’ performance on an inde-
pendent test data set using some general measure of fit (e.g. RMSE, CE, MAE given in
Section 3.2.1). In the statistical literature, this is known as cross-validation. However,
cross-validation with an independent data set may not be practical if there are only lim-
ited available data, since the test data cannot be used for training. Furthermore, if the
test data are not representative of the same population as the training data, the evaluation
may be biased. Alternatively, information criteria which measure ‘in-sample’ fit (i.e. fit
to the training data) but penalise model complexity, such as the AIC or BIC discussed
in Section 3.2.1, can be used to estimate the generalisability of an ANN. As this method
does not require the use of a test data set, all of the available data can be used for training;
however, it has been suggested that the commonly used information criteria may overly
penalise ANN complexity, leading to the selection of models that are too simpl3itic (
and Zhang2001).

Although the trial-and-error selection of hidden nodes is straightforward, it can be
inefficient, as many networks may have to be trained before an acceptable one is found
(Reed 1993). In order to overcome the tedious manual search for the optimal number of
hidden layer nodes, a number of pruning and construction algorithms, as well as evolu-
tionary approaches, have been proposed to automate the selection proBesdar&493;

Yaq 1999). Generally, pruning methods attempt to find an optimal network size by start-
ing with a large network and systematically reducing it by eliminating weights or nodes
that do not significantly contribute to the model fit. There are two main categories of
pruning methods: those that prune weights and/or nodes according to some sensitivity
measure (e.g. the change in model performance if a weight/node is removed from the
network, or the partial derivative of the error function with respect to a given weight); and
those thaeffectivelyprune weights by modifying the error function to include a term that
penalises large weights (i.e. regularisation as discussed in Section 2.R&et)1993).
Construction algorithms, on the other hand, begin with a minimal network and add new
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layers, nodes or connections as required during training. Small networks have a tendency
to become trapped in local minima (see Section 3.2.6), therefore, the addition of new hid-
den nodes can change the shape of the weight space and help to escape the local minima
(Bebis and Georgiopoulp4994). However, finding the optimal network geometry with
these unit-by-unit evolution methods is not guaranteed and termination criteria used (e.g.
all weights provide a ‘significant’ contribution to model fit) lack clear statistical meaning
(Vila et al., 1999).

Bowden(2003) used an evolutionary backpropagation MLP (EBMLP) to determine
the most suitable network architecture, which was implemented using the commercially
available software package, NeuroGenetic Optimizer (NGEYpGomp Systems Inc.
1998). An EBMLP combines a genetic algorithm with a feedforward MLP architecture,
trained using the backpropagation algorithm (see Section 3.4.2.1), to find the optimal
network architecture. The NGO software offers a number of features which enabled mul-
tiple hidden layers to be considered, an upper limit to be placed on the number of nodes
in each hidden layer, a preference to be set for simpler models, linear, logistic or hyper-
bolic tangent activation functions to be utilised for each hidden and output node, the use
of cross-validation during training, the selection of backpropagation parameters and the
choice between two alternative methods for each of the three main GA operators: selec-
tion, crossover and mutation (see Section 3.4.2.2). Furthermore, the effect of different
weight initialisations was taken into account during the evolutionary process, as the same
architecture could be initialised numerous times throughout the algorithm with different
initial weights.

The search space for an optimal ANN architecture is infinitely large, since the number
of possible nodes and connections is unbounded (L999). However, to define a more
limited and reasonable search space, the NGO software allows upper limits of 8, 16, 32,
64, 128 or 256 to be placed on the number of nodes in each hiddenBoyeden(2003)
used (3.18) to determine the theoretical upper limit for the number of hidden nodes and
then used this value to guide the choice of upper limit adopted using the NGO software.
Bowden(2003) also allowed for two hidden layers to be considered to determine whether
a second hidden layer was required. The same setting was used to define the upper limit
for the number of nodes in each hidden layer. Additionally, the three available transfer
functions were all considered for each of the hidden and output nodes, giving rise to a
very large search space.

The GA selection method discards poor chromosome strings throughout the evolution;
therefore, with each generation, the population needs to be refilled. The NGO software
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enables two alternative strategies to be used for refilling the population, including cloning
the survivors of the selection process and randomly creating new population members.
The former strategy has the advantage of faster convergence; however, premature conver-
gence may result if the population is too small. By introducing new members into the
population, the latter refill method avoids search stagnatBowden(2003) considered

each of these refill strategies.

The results obtained bBowden(2003) indicated that the EBMLP was sensitive to
the type of refill strategy used during the GA optimisation, where it was apparent that
cloning was the best method to refill the population. It was observed that while this refill
strategy resulted in a decrease in the diversity of the networks obtained, it allowed for
faster convergence to a near-optimal network configuration. The results also indicated
that many networks with different configurations were capable of providing similar per-
formance, and as a result, it was concluded that there can be no guarantee that the true
optimal architecture was found.

3.2.5.2 Limitations and Conclusions

It is acknowledged that evolutionary approaches can be an effective way to conduct a di-
rected search for an optimal solution within a large search space. However, in the case
studies presented Bowden(2003), it is considered that the search space was made much
larger than necessary by allowing a great amount of flexibility in the architectures consid-
ered, when there are well established reasons to apply stricter constraints. For example,
in the salinity forecasting case study presentedbwden(2003), by placing an upper

limit of 32 hidden nodes on each of two hidden layers allowed for and by enabling one
of three possible activation functions for each hidden and output node, it was calculated
that there werd.3 x 10® possible network architectures. However, as discussed in Sec-
tion 3.2.5, there are good reasons to use tanh hidden nodes and linear output nodes, and if
these constraints were set, the search space would have been reduced considerably (1089
possible network configurations) without decreasing the possibility of finding the optimal
architecture.

Additionally, the error surface of a small network is more complicated than that of
a large network; thus, small networks are more susceptible to becoming trapped in lo-
cal minima than larger one8¢bis and Georgiopoulpd994). Therefore, there is the
possibility of smaller networks being discarded in preference for larger ones using evolu-
tionary architecture selection methods. This is particularly the case for the EBMLP used
by Bowden(2003), as it is based on the local backpropagation training algorithm, which
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has limited capabilities for escaping local minima. The effect of different weight initiali-
sations may be taken into account during the evolutionary process if the same architecture
is initialised numerous times; however, if smaller networks are discarded in the early gen-
erations as a result of becoming trapped in local minima, there is little possibility that
the same architecture will be initialised more than once, particularly using the cloning re-
fill strategy. For example, using a trial-and-error architecture selection approach, a good
place to start would be a one hidden layer network with one tanh hidden node and one
linear output node. However, using the EBMLP, this configuration would initially have a
1in 1.3 x 108 possibility of being considered. There is evidence in the results presented
by Bowden(2003) that small networks may have been disregarded during the search,
as the top 10 performing networks obtained using each of the population refill methods
were reasonably large, containing between 11 and 27 nodes in the first hidden layer and
between 7 and 16 nodes in the second hidden layer.

A further limitation of the EBMLP is that the results are dependent upon many user
defined parameters. For example, parameters must be selected for the backpropagation
training algorithm, the GA optimisation algorithm, as well as the overarching EBMLP
parameters, such as constraints on the number of hidden layers and nodes and the types of
activation functions enabled. While this provides much flexibility to the user, it may result
in a suboptimal architecture being selected. It can be difficult to select the parameters of
just one of these components to come up with an optimal solution; thus, the difficulty is
increased when all three components are combined.

In this research, a trial-and-error architecture selection procedure will be used, begin-
ning with a minimal network and systematically increasing the number of hidden nodes
until it is considered that no significant improvement in model performance can be gained
by the addition of further nodes. The networks considered will be limited to single hid-
den layer nets with tanh activation functions on the hidden layer nodes. If the target data
have known upper and lower bounds, a bounded activation function, such as the logistic
sigmoid or the hyperbolic tangent, will be considered for the output nodes; otherwise,
linear output units will be used. It is acknowledged that a trial-and-error search for the
optimum network may be tedious; however, by conducting a constrained and systematic
search of the possible network architectures, it is considered that a near optimal network
can be found in similar or less time than a less constrained evolutionary search. How-
ever, the problem remaining with trial-and-error architecture selection is that there is no
widely accepted method for evaluating the generalisability of the trialled networks, as
cross-validation with an independent data set reduces the available data for training and
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may give biased results if the test set is not properly representative. In addition, the use of
performance criteria that penalise model complexity may overly penalise ANNSs, leading
to the selection of networks that are too simplistic. Therefore, in this research, further
investigations will be conducted into how to best evaluate the generalisability of an ANN
in order to select the optimal architecture.

3.2.6 ANN Training

3.2.6.1 Review of current practice

Training an ANN was discussed briefly in Section 2.2.3. 1t is the process by which the
weights of an ANN are estimated, by using an iterative procedure to minimise a prede-
termined error, or objective, function, such as the SSE given by (3.1). Therefore, ANN
training is essentially a nonlinear least squares problem, which can be solved using stan-
dard nonlinear least squares methods. However, like all complex nonlinear optimisation
problems, training an ANN is generally not straightforward, as the error surface is typ-
ically a highly nonlinear function of the weights, complicated with many minima and
saddlepointsCheng and Titteringtan1994; Bishop 1995), as shown in Figure 3.5, in
which points A and B aréocal minimag point C is theglobal minimunm(i.e. the smallest
value of the error function) and point D is a saddle point.

Local or global optimisation algorithms may be used to train an ANN. Local methods
search for an optimum solution in a downhill direction from their initial position on the
error surface. While such methods can be an effective way of optimising the weights of
feedforward networks, they are susceptible to becoming trapped in local minima in the
error surface. Therefore, as can be seen in Figure 3.5, the location of the initial weights

Figure 3.5 Examples of different local minima on the error surface.
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can have a significant impact on the local minimum found. On the other hand, global
methods employ directed random search techniques to allow the simultaneous search for
an optimum in several directions. Such algorithms are therefore less sensitive to weight
initialisations, as they have an increased ability to escape local minima. However, global
methods are generally more computationally intensive than local algorithms. Therefore,
the suitability of a particular training method is generally a compromise between compu-
tation cost and performanc®ier and Dandy2000a).

Using local optimisation methods, the general form of the weight updates is:

Wit = Wy + 7dy (3.20)

where~, is the stepsized, is the vector which defines the direction of descent and

Is the iteration numberMaier and Dandy 2000a). Either first-order or second-order
local search methods are available, where the essential difference between the two is the
determination of the vectat,, which determines the convergence rate and computational
complexity Maier and Dandy2000a).

First-order methods are based on a linear approximation of the error function about
the current weight state;;. They use steepest, or gradient, descent to search the error
surface for a minimum solution, whesgd, is proportional to the local negative gradient
of the error surface, calculated by taking the first partial derivatives of the error function
with respect tow;. Thebackpropagatioralgorithm, also known as thgeeneralized delta
rule (Rumelhart et al.1986), is a first-order local search method that is by far the most
widely used method to train feedforward MLRddier and Dandy 2000a). The main
contribution of this algorithm is that it provides a computationally efficient method for
evaluating the partial derivatives of the error function by propagating the computed error
between the model output and the target data backwards through the network. The calcu-
lated derivatives are then used to update each of the weights in the network according to
(3.21):

Wil =Wy — NV Ey, (3.21)

whereV Ey,, denotes the gradient of the error function at pentandr is known as the
learning rate The learning rate) has an important impact on the ultimate performance
of ANNSs trained with backpropagation, as it directly affects the size of the steps taken
in weight space Nlaier and Dandy 1998a). A choice ofy that is too small can lead

to very slow convergence of the algorithm and can increase the likelihood of becoming
trapped in a local minimum. A larger learning rate will speed convergence; however, if
n is too large, the algorithm may overshoot the optimum solution and fall into possibly
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Figure 3.6 The effect of the learning rate used for backpropagation.

divergent oscillations. The effect gfis illustrated in Figure 3.6, where it can be seen that
a small value of) could result in a small step from point 1 to point 2, from which point
the algorithm would then continue to jump from one side of point A to the other, with the
local minimum at point A being the best solution that would be found. Alternatively, with
a larger value of), a large step from point 1 could result in the set of weights at point
3, which is in the vicinity of the global minimum point C; however, the next step would
likely overshoot C with the algorithm possibly falling into an oscillatory trap.

A number of alternatives have been proposed to enhance the backpropagation algo-
rithm by reducing the influence of a fixed learning rate. The most popular of these in-
cludes anomentunterm in the weight update formula as follows:

Aw; = —nVEy, + ¢Aw;_ (3.22)

where¢ is the momentum parameter. Adding momentum has the effect of adding inertia
to the steps taken in weight space, which can either act to increase or decrease the size
of the steps taken in weight space. In Figure 3.7, two situations are shown in which the
addition of momentum helps the backpropagation algorithm converge on a better solution
than it would if standard backpropagation was used. Figure 3.7 (a) shows an example of
a situation where the standard backpropagation algorithm would oscillate between A and
B; however, by using momentum to account for the inertia caused by the previous step
in the opposite direction, the size of successive steps taken in weight space is gradually
reduced, enabling the algorithm to find the minimum solution. Conversely, Figure 3.7 (b)
shows a situation where the momentum term increases the size of the steps taken in weight
space, enabling the algorithm to more efficiently transverse regions on the error surface
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with a small gradient. If the standard backpropagation algorithm was used in this case,
the size of the steps taken would become successively smaller with the reducing gradient,
with the algorithm possibly converging in the flat region between points A and B where
the gradient is virtually zero. Therefore, as can be seen, the inclusion of momentum
generally leads to a significant improvement in the backpropagation algorgsinof

1995). Other variations of first-order local search methods include the delta-bar-delta
algorithm (Jacobs 1988) and RpropRiedmiller, 1994). The main differences between

the variety of local gradient based search methods include the information used to modify
the step size, the parameters that are modified and whether the parameters are modified
globally or individually for each nodeMaier and Dandy2000a).

E E

AW,

(a) (b)

Figure 3.7 The impact of momentum in backpropagation.

While first-order optimisation algorithms are simple to implement, a problem with
these methods is that, for most points in weight space, the local negative gradient does
not point to the minimum of the error function. Therefore, an indirect route is taken
towards the minimum, as illustrated in Figure 3.8, which results in slow convergence
(Bishop 1995). Second-order local optimisation methods attempt to overcome this by
using second-order information about the error surface to take a more direct route towards
the minimum. These methods are based on a local quadratic approximation of the error
function about the current weight state, and use the local Hessian matkik(matrix of
second patrtial derivatives of the error function with respest fpto provide information
about the curvature of the surface. The optimum weight update is therefore given by:

Wil = Wy — HivtvEWt (323)

which, unlike first-order methods, results in a step directly towards the minirBishdp
1995). The formula given by (3.23) is the classical Newton algorithm and the vector
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Figure 3.8 Indirect route taken towards the minimum of the error surface, where the ellipses
represent contours of the surface.

—H,, VE,, is known as the Newton direction. However, as the quadratic approximation
of the error function is not exact, the Newton algorithm is iterative and as such, requires
evaluation of the local Hessian matrix at each step. For all but the smallest networks, this
can be extremely computationally demanding and places serious restrictions on the use of
this method aier and Dandy 2000a). Furthermore, the Hessian must be non-singular

if it is to be inverted, which is not always the case, particularly if the network is large, as
discussed in Section 2.2.5.3. Various modifications of the Newton algorithm are available
that make use of different amounts of second-order information and thus have different
computational demands. The QuickProp algorittiahiman 1989), conjugate-gradient
methods, quasi-Newton methods and the Levenberg-Marquardt algorithm are examples
of such algorithms listed in increasing order of use of second-order information. The
amount of second-order information used can then be directly related to the size of the
networks to which these algorithms may be appligdr(e 2002).

Because both first- and second-order local training algorithms tend to converge on
the local minimum solution in the region of their starting point, finding the global min-
imum is dependent upon a fortuitous initialisation of the weights. To more consistently
obtain a set of globally optimal weights, global optimisation methods, which have strate-
gies to help them escape from local minima, can be used for ANN traiSiext¢n et aj.
1999a). The simplest global training method, knowmastistart, involves the use of a
local algorithm started from several points distributed over the whole weight space. A
limitation of this method, however, is its lack of efficiency, as the same minimum solu-
tion can be determined several times, rather than thoroughly searching different solutions.
Furthermore, the number of necessary starting points is generally unknown and problem
dependent$exton et a).1998). Stochastic global search techniques, including evolu-
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tionary programming (EP)Fogel 1999), simulated annealiniifkpatrick et al, 1983)

and genetic algorithms (GAspldberg 1989) provide alternative solutions to the opti-
misation problem.Sexton et al(1998, 1999a,b)Gupta and Sexto(i1999); Sexton and
Dorsey(2000) andsexton and Guptg000) carried out a number of comparisons between
the backpropagation, genetic algorithm and simulated annealing algorithms for training
ANNSs, applied to both synthetic and real-world case studies. It was found that GAs are
able to reliably and consistently outperform the backpropagation algorlentdn et a.
1998;Gupta and Sextqri999;Sexton and Dorsey000;Sexton and Gupt{®000). Ad-
ditionally, simulated annealing was found to outperform backpropagafext¢n et a.
1999b); however, it was also observed that GAs are able to systematically obtain superior
solutions to simulated annealin§éxton et a).1999a).

Bowden(2003) compared six different training algorithms for estimating the weights
of an ANN, including four first-order and two second-order local optimisation methods.
The first-order methods included different variations of the delta rule, namely backpropa-
gation (the generalised delta rule), the normalized cumulative delta (NCD) rule, the delta-
bar-delta (DBD) algorithm, and the extended delta-bar-delta (EDBD) algorithm, while the
second-order methods included QuickProp and a variation of this algorithm called Max-
Prop. To provide a fair comparison of the training algorithms, the ANNs were initialised
with 30 different sets of weights for each training algorithm.

The results of the comparison carried outBgwden(2003) showed that there was
large variation between the performance of the models obtained using the different first-
order training algorithms, as measured by the average error calculated using 30 different
weightinitialisations. The best results were obtained using the EDBD algorithm, followed
by backpropagation, while the worst results were obtained using the NCD algorithm. It
was also found that the generalisability of the ANNs developed using the second-order
methods was inferior to that of the models developed using the first-order methods, which
was consistent with the results obtained Mgier and Dandy(1999), who found that,
depending on the size of the steps taken in weight space, first-order methods are able
to escape local minima, whereas second-order methods are not. Overall, it was found
that the results obtained using the QuickProp algorithm using the 30 different weight
initialisations had the greatest variability, indicating that this algorithm was least able to
converge on the same local minimum in the error surface.
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3.2.6.2 Limitations and Conclusions

The investigation carried out lyowden(2003) was limited by the ANN software used
((NeuralWare 1991)), which did not enable the use of global training techniques. Al-
though it has been shown that local optimisation algorithms, in particular backpropaga-
tion, can be used to successfully train an ANWBjer and Dandy1999), results are often
inconsistent due to the sensitivity of these algorithms to the initial weights. Therefore,
it is difficult to place a reasonable degree of confidence in the solutions obtained using
local search methods. While, there is currently no training algorithm that can guarantee
the global solution of the network will be found in a reasonable amount of tdhar(g

et al, 1998), it has been demonstrated that global optimisation techniques, such as GAs,
are able to more consistently converge on a near optimal solution. Therefore, in this
research, the training performance of the most widely used backpropagation algorithm
will be compared to two global optimisation techniques, namely a GA and the shuffled
complex evolution (SCE-UA) algorithm developed Byan et al.(1992). The SCE-UA
algorithm has not yet been used to train ANNS, but has been found to be both effective and
efficient in finding the global optimum in numerous other hydrological modelling studies
(Franchini et al, 1998;Freedman et a).1998;Thyer et al, 1999).

3.2.7 ANN Validation

3.2.7.1 Review of current practice

An ANN may achieve almost perfect “in-sample” performance, which is evaluated ac-
cording to the fit between the model outputs and the sample of data that it was trained
on. However, before the model can be used to generate predictions or simulate data, it
needs to be validated, which is usually done by evaluating its “out-of-sample” perfor-
mance, or generalisability when applied to an independent set of validation data, using
the performance criteria chosen (see Section 3.Ra)dr and Dandy2000a). To ensure
appropriate validation of the developed ANN model, it is vital that the validation data
were not used in any capacity during training and model selection.

Bowden(2003) did not consider ANN validation apart from selecting the performance
criteria used to evaluate out-of-sample performance (see Section 3.2.1) and dividing the
data to obtain a statistically representative validation data set (see Section 3.2.2).

3.2.7.2 Limitations and Conclusions

The main limitation of the standard method for validating ANNs is that no consideration
Is given to the physical plausibility of the estimated relationship. Rather, it is generally
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assumed that if an ANN model has good out-of-sample performance, it represents the
physical process of the syste®udheer2005). However, as discussed in Section 3.2.6,
local minima may exist on the error surface, which may result in many combinations of
weights having similar network performance. Knowing this fact does not provide great
confidence in ANN predictions; however, if it can be demonstrated that a trained ANN
has captured knowledge of the underlying system, the model can be applied with greater
confidence. Therefore, in this research, validation of the ANNs developed will be carried
out by evaluating out-of-sample performance on an independent set of validation data
and by assessing the relationship modelled using the relative contributions of the model
inputs in predicting the output. The relative contributions of the inputs as modelled by the
ANN can then be compared to expertaopriori knowledge of the system, correlation or
mutual information measures, or other data mining methods when there is littleaor no
priori knowledge of the system.

3.3 SUMMARY OF APPROACH ADOPTED AND FURTHER
INVESTIGATIONS REQUIRED

Following the review of the current state-of-the-art ANN development process given in
the preceding section, the methods adopted in this research for carrying out each step
of the deterministic ANN development process are summarised below, together with any
limitations of the current methodology and areas requiring further investigation:

Choice of data sets: The SOM data division approach proposedoyden et al(2002);
Bowden(2003) will be used to divide the available data into training, testing, and
validation subsets. However, rather than allocating one data point from each cluster
into each of the data subsets as suggesteBdwden(2003), the entire available
data set will be divided into the respective subsets, with 64% of the data allocated
to training, 16% allocated to testing and 20% allocated to validation. The average
silhouette widths (k) will be used in conjuction with the discrepancy measure given
by (3.11) to determine the appropriate size of the kohonen layer (i.e. SOM grid size)
used to cluster the data.

Data pre-processing: In this research, data pre-processing will only be applied as nec-
essary. Initially, all inputs and outputs will be standardised to have a mean of 0 and
a standard deviation of 1, except if a bounded activation function is used on the out-
put layer, in which case the target data will be scaled to be commensurate with the
limits of this function. Once the model is fitted, diagnostic checking of the residuals
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will be carried out to determine whether the assumptions of the regression model,
given in Section 3.2.3.2, have been met. If the assumptions are not met (e.g. model
residuals are significantly non-Gaussian), nonlinear transformations including the
logarithm, inverse and square root of the data will be considered in an attempt to
improve the model.

Determination of ANN inputs: The stepwise PMI input selection approach proposed by
Bowden(2003);Bowden et al(2005a) will be adopted in this research. However,
this method will first be applied to a number of synthetic data sets to verify that it
is able to correctly select the important inputs.

Determination of ANN architecture: A trial-and-error procedure will be used to select
the optimum number of hidden layer nodes for a given problem based on the best
generalisability. The ANNs considered will be limited to single hidden layer net-
works with tanh hidden nodes and linear output nodes. As there is currently no
widely accepted method for evaluating generalisability in order to select the opti-
mum ANN size, this issue will be further investigated in this research.

ANN training: The optimisation performance of the backpropagation, GA and SCE-UA
training algorithms will be compared in this research. The global optimisation
method SCE-UA has not before been used to train an ANN, therefore, the inves-
tigation will aim to determine whether this algorithm is appropriate for training
ANNSs, and which algorithm is most suitable for training ANNs out of this new
global method, the widely used local optimisation algorithm backpropagation, and
the most commonly used global optimisation algorithm, the GA.

Choice of performance criteria and ANN validation: The commonly used performance
criteria RMSE, MAE;? and CE will all be used to evaluate the performance of the
trained ANNs developed in this research. The AIC and BIC will also be used to
evaluate the generalisability of the ANN models based only on the training data re-
sults, while taking into account the complexity of the models. To validate the phys-
ical plausibility of the models developed, the relationship modelled by the ANNs
will be assessed by evaluating the relative contributions of the model inputs in pre-
dicting the output. However, as there is currently no widely accepted method for
guantifying the relative importance of the ANN inputs, a number of input impor-
tance measures will be investigated in this research to determine which measure, if
any, is most appropriate for assessing the relationship modelled by an ANN.
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3.4 FURTHER INVESTIGATION OF DETERMINISTIC ANN
DEVELOPMENT METHODS USING SYNTHETIC DATA

3.4.1 Synthetic Data Sets

Three different synthetic data sets (data sets I, Il and Ill) were used to compare and assess
the methods investigated in the following sections. The use of synthetically generated
data enabled the methods to be properly assessed and compared without the complication
of other uncertainties, such as unknown important inputs or an unknown error model, and
without being affected by data limitations. More importantly, if real data were used to
assess the input importance measures investigated, as discussed in Section 3.4.4, it would
not be possible to check the accuracy of the measures in relation to the true contributions.
Furthermore, it was possible to generate “true” and “measured” target data, where the
“true” data were generated by the model function without the addition of a random noise
component and the “measured” data were obtained by corrupting the “true” data with
random “measurement” errorsy N(0, 1).

The data sets were generated with different degrees of nonlinearity, noise levels and
sizes, to represent the variability of cases that could be encountered in a real forecasting
situation. Additionally, each data set represents a different type of forecasting problem,
including time series forecasting, where inputs are past observations of the data series
(i.e. v, = f(yi1,---,y—x)); causal forecasting, where inputs are independent predictor
variables (i.e.y = f(z1,...,zx)); and in-between, where inputs include past values of
the data series and independent variablesdi.e= f(y;—1,...,¥—p,%1,...,Zx_p)). TO
quantify the degree of nonlinearity in the data sets, a multivariate linear regression model
was fitted to the noise-free, or “true” data. The fit of the linear model to the data was
evaluated using the coefficient of determinatidngiven by (3.5), where the closet is
to one, the more linear the data are, and vice versa. To evaluate the noise levels in the
data, the signal-to-noise ratio was evaluated as follows:

2

N\ — gsignal 3.24
B Uazloise ( . )
wherea?, ., is the variance of the “true” data ang, . is the variance of the added noise
component.

The generated data were divided into training, testing and validation data subsets us-
ing the SOM data division method discussed in Section 3.2.2. In order to find the optimal
grid size for each data set, the average silhouette widths and discrepancy values (see Sec-
tion 3.2.2.2) were compared for SOM grid sizes ranging friom 2 to 12 x 12. Once
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clustered, 64% of the data samples were allocated to the training subset, 16% were allo-

cated to the testing subset and the remaining 20% were allocated to the validation subset,

ensuring that at least one sample from each cluster was allocated to each subset where
possible.

3.4.1.1 Data Set|

The autoregressive model of order nine (i.e. AR(9)), given by (3.25), was used to generate
870 data points to make up data set |. This model, also us8tdagma2000) andBowden

et al. (2005a) for the generation of synthetic data, isear time seriesnodel, including

only past observations of the data as inputs.

Y = O-'?)yt—l — O.Gyt_4 — O'5yt—9 + € (325)

An r? value of 0.999 was obtained by fitting a linear regression model to the “true” data,
indicating that the generated data are linear as expected. The signal-to-noise ratio of the
“measured” data set was= 1.92, which indicates that the data are fairly noisy (i.e. the
strength of the signal is less than twice the strength of the noise).

A histogram showing the probability density of the data is given in Figure 3.9, where
it can be seen that the data are approximately normally distributed, indicating that only
linear rescaling (standardisation) of the data was necessary. It was foundlthata
SOM grid size was optimal for clustering this data set, which resulted in 6 clusters all
containing more than 3 samples. From these clusters, 557 samples were allocated to the
training data subset, 139 were allocated to the testing subset and 174 were allocated to the
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Figure 3.9 Probability density of response variahjefor data set I.
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validation subset.

3.4.1.2 Data Set I

Data set Il, consisting of 1120 data points, was also generated by the AR(9) time series
model, but with the linear addition of an independent nonlinear compeie2tz,), as
shown in (3.26), where is an independent random variable uniformly distributed be-
tween—m andr.

Y = 0.3y;—1 — 0.6y4—4 — 0.5y4_9 + sin(2x;) + € (3.26)

An 72 value of 0.864 was obtained for this data set when a linear regression model was
fitted to the “true” data, indicating that the generated data are reasonably linear with a
nonlinear component that the linear model cannot account for. The signal-to-noise ratio
of the “measured” data set was= 3.39, which indicates that the noise levels in the data

are moderate (i.e. the strength of the signal is greater than three times the strength of the
noise).

The probability density of the data is shown in Figure 3.10. Similar to data set I, the
data are approximately normal; thus no further preprocessing was required apart from
linear rescaling. For this data set, it was also found that>xa6 SOM grid size was
optimal for clustering the data and again, each of the 6 clusters contained greater than
3 data samples. From these clusters, 717 samples were allocated to the training subset,
another 179 to the testing subset and the remaining 224 to the validation subset.
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Figure 3.10 Probability density of response variahjefor data set Il.
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3.4.1.3 Data Set lll

1900 data points were generated by (3.27) to make up data set Ill. This function, suggested
by Friedman(1991), describes a linear combination of both nonlinear and linear functions
of independent random variables.

y = 10sin(rz125) + 20(z5 — 0.5)% + 1024 + 55 + € (3.27)

An r? value of 0.775 was obtained by fitting a linear regression model to the “true” data,
indicating that data set Il is the least linear of the data sets considered. The signal-to-
noise ratio of the “measured” data set was- 23.94, which is significantly greater than
the signal-to-noise ratios of data sets | and Il. As the strength of the signal is almost 24
times the strength of the noise, the data are considered to contain little noise.

The probability density of the response variaples shown in Figure 3.11. Again,
the distribution of the data is approximately symmetric and did not require a nonlinear
transformation. Al x 8 SOM grid size was found to be optimal for this data set, resulting
in 8 clusters all containing greater than 3 data samples. From the clusters, 1215, 304 and
380 samples were allocated to the training, testing and validation subsets, respectively.
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Figure 3.11 Probability density of response variahjdor data set Ill.

3.4.2 ANN Training - Comparison of Training Algorithms

In this section, a description of each of the algorithms compared in terms of their training
abilities is given, together with a description of the investigation undertaken. The back-
propagation (BP) algorithm was included in the comparison as this is the most commonly
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used method to train MLPs, as discussed in Section 3.2.6, and provides a benchmark
against which to evaluate other methoBsWwson and Wilby2001). Genetic algorithms
(GAs) are a commonly explored alternative to using BP for training ANB&x{on and
Gupta 2000), and thus, were also included in the comparison. As mentioned in Sec-
tion 3.2.6, GAs differ from traditional optimisation techniques by searching for an opti-
mum from a population of points, rather than from a single point. They are also based on
evaluations of the objective function, rather than its derivative or auxiliary information,
and use probabilistic transition rules rather than deterministic rlekiperg 1989). Al-
though it has been found that GAs often provide better results when compared to gradient
based methods such as backpropagation, they do not have the ability to fine-tune a so-
lution, meaning that convergence can occur at a point where the gradient is not zero. It
has been recognised that the efficiency of evolutionary algorithms, such as GAs, can be
improved if they are combined with a local search methdah(1999). This allows the
evolutionary component of the algorithm to locate promising regions in the search space
while the local search method is used to find the optima of these regions. The shuffled
complex evolution - University of Arizona (SCE-UA) algorithm, developedionan et al.

(1992, 1993), combines the strengths of a global evolutionary optimisation method with
those of the local downhill simplex search method\&lder and Mead1965). The al-
gorithm was designed primarily to deal with the “peculiarities encountered in conceptual
watershed model calibration” and is based on the synthesis of four concepts, which are
said to make the algorithm effective, robust, flexible and efficintap et al, 1994).

These concepts are: (1) the combination of deterministic and probabilistic approaches;
(2) systematic evolution of a ‘complex’ of points spanning the parameter space, in the
direction of global improvement; (3) competitive evolution; and (4) complex shuffling.
As stated in Section 3.2.6.2, the SCE-UA algorithm has not yet been used to train ANNS;
therefore, it was included in the comparison to determine whether or not it is appropriate
for ANN training.

3.4.2.1 Backpropagation (BP)
Shown in Figure 3.12 is a schematic of the BP algorithm. As can be seen, there are four
main steps carried out during this algorithm, which are described as follows:

STEP 1: To initialise the algorithm, the weights are generally set to zero-mean random
values. Choosing an appropriate size for the initial weights can have an important
effect on training performance, as large weights may ‘saturate’ the nodes, causing
the derivatives of the activation functions to be small and the error surface to be

Page 81



Chapter 3 — State-of-the-Art Deterministic ANN Methodology

to small random valu
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Figure 3.12 Schematic of the BP algorithm, outlining the main steps carried out
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flat, and as a result, training is slow. On the other hand, if the initial weights are too
small, the error propagated backwards to update the input-hidden layer weights will
be small (see equations (3.30) and (3.31)); therefore, adaptation of these weights
will be slow. Itis therefore desirable that the summed inputs to sigmoidal activation
functions be of order unityBishop 1995). Thus, if the input variables are rescaled

to an order of one, it is appropriate that the size of the weights is also of order unity.

STEP 2: This step involves the forward propagation of information through the network,
where a defined number of training samples is presented to the network and the
model outputs are evaluated. The number of samples presented to the network be-
tween weight updates is known as #m@och sizeand is denoted by in Figure 3.12.

If the epoch size is equal to one (i.e. the weights are updated after each training
pattern has been presented to the network), the weight updates are saidd@be
mental If the epoch size is set equal to the size of the training set (i.e. the entire
training set is processed in-between weight updates), the network is said to operate
in batchmode. The epoch size can also be set to some intermediate number so that
the network operates between incremental and batch modes. There are a number
of advantages in presenting a number of training samples to the network before the
weights are updated, as are there in updating the weights following the processing
of each training sample. In batch mode, the weights are adapted based on the global
error over the whole data set, rather than on the local minimum for the particular
pattern being considered. On the other hand, updating the weights incrementally
causes the search through weight space to become stochastic (i.e. computing the
case-wise error function is equivalent to using an objective function that has been
corrupted by noiseSarle 2002)), increasing the ability of the algorithm to escape
from local minima in the error surfacélaier and Dandy(1998a) investigated the
effect of the epoch size on training and found that, while the predictive ability of
the network was unaffected by epoch size, training was much faster when a smaller
epoch size was used. It was concluded that there was no advantage in using larger
epoch sizes; therefore, in this research, incremental learning was used.

STEP 3: In this step, the model error is propagated backwards through the network in
order to evaluate the partial derivatives of the error function and update the weights.
Depending on whether a node is in the output layer or a hidden layer, the required
weight update can be derived with different expressions. The first step is to calculate
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the weight updates for the hidden-output layer weights, which is done according to:
ijm(t) = ndm2; + ¢ijm(t —1) (3.28)
wherez; is the the output from hidden noge The value ob,, is given by:

Om = (y = §) g (Jin) (3.29)

wheregin is the summed input to the output node (&2 = wy,, + Z}]:1 WimZj)-
The weight updates for the input-hidden node weights are calculated as follows:

Aty (t) = ndjay, + ¢pAt;(t — 1) (3.30)

whered; is given by:
0; = gj(2inj) > WjmOm (3.31)

and zin, is the summed input to hidden nogéi.e. zin; = o, + 3.1, Wk;Tx)-
Thus, the value aof for a hidden node is calculated by propagating®hbackwards
from nodes higher in the network. For an ANN with one hidden layer and a single
output, the single value a¥,, is propagated backward to evaluate thealues for
each hidden node.

As discussed in Section 3.2.6, choosing an appropriate value for the learning rate
can be difficult, as small values result in slow convergence and increase the poten-
tial of becoming trapped in local minima, while large values can lead to oscillatory
behaviour of the algorithm. Furthermore, if the error surface of an ANN contains
many local optima, the optimal learning rate will change during the course of train-
ing. For incremental training, which was used in this research, the learning rate
mustbe slowly reduced during training to guarantee convergence of the BP algo-
rithm (Sarle 2002). Therefore, an adaptive, or dynamic, learning rate was used
in this research. To achieve faster learning with a small learning rate, a relatively
large momentum termp can be used; however, to ensure convergence of the BP
algorithm, this value must be less than 1.0. The BP parameter values used in this
research are further discussed in Section 3.4.2.4
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STEP 4: Steps 2 and 3 are repeated for many iterations until a specified stopping criterion
has been met. There are numerous criteria upon which training may be stopped,
such as stopping after a fixed number of iterations; stopping when the training error
falls below a specified value or when the relative change in the error falls below

some tolerance value; or when the test set error begins to increase when applying
cross-validation. The stopping criteria used in this research will be further discussed
in Section 3.4.2.4.

3.4.2.2 Genetic Algorithms (GASs)
GAs are inspired by the Darwinian process of natural selection and survival of the fittest,

where an initial random population is evolved over a number of generations by selectively
sharing information among the best or ‘fittest’ solutions. The main steps in the GA train-
ing process, as outlined in Figure 3.13, are described as follows:

| Define search spac® O O¢ |

|
t=1
!

Initialise population ofG; by sampling
chromosomesy;, i = 1,...,s, at random
from©

]

Evaluate fitness of each
chromosome i, -E i=1,...,

t=t+1

Stopping
criteria met

Select parent chromosomes for
mating pool

|

Crossover parent chromosomes tp
generate offspring (i.&.1)

I

Mutate random genes; in

offspring chromosomes

STEP1

STEP3

STEP 4

Figure 3.13 Schematic of a GA outlining the main steps performed.
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STEP 1: Using a GA, a possible solution to the optimisation problem is represented in
the form of a string, called a ‘chromosome’. Each chromosome is then made up of a
number of elements, called ‘genes’, which contain encoded values of the variables
being optimised. If real-valued encoding is used for the ANN training problem
(as opposed to binary encoding, for example), each gene in a chromosome is one
connection weight and, therefore, each chromosome represents a weight vector. To
initiate the GA training process, the search sgaceeds to be defined and an initial
population of chromosomes, = {w,...,w,} is generated randomly within this
space, where the size of the populatiamustbe an even number.

STEP 2: In the second step, the fitness of each individual chromosome is evaluated and
a set of ‘parent’ chromosomes are selected. During the GA process, the aim is
to evolve solutions with greater fitness (i.e. maximise fitness). Therefore, in this
research, the fitness of each chromosome was calculated using the negative of the
model error function (i.efitness; = —F; = —SSE;); thus, the smaller the model
error, the fitter the chromosome was considered to be. The parent chromosomes are
chromosomes selected from the population that will contribute offspring to the next
generatiorG;, ;. This operator, calledelectionis analogous to the natural process
of survival of the fittest, where the chromosomes compete, based on their fitness, to
fill the population of parent chromosomes, called th&ting pool Different types
of selection operator may be used to fill the mating pool. In this research, a selection
operator known as ‘tournament selection’ was used, where pairs of chromosomes
are randomly competed against one another and the winner (chromosome with the
best fitness) is selected as a parent chromosome. The size of the mating pool needs
to be the same as the initial population; therefore, each chromosome competes in a
(random) tournament twice. As a result, fitter chromosomes may be included in the
mating pool twice, whereas other less fit chromosomes may not be included at all.

STEP 3: Once the parent chromosomes have been selected, a genssoveropera-
tor is applied between pairs of parents to produce offspring, which form the next
generation of chromosomes. The parents are paired by randomly selecting two
chromosomes from the mating pool, without replacement. There are a number of
different forms of crossover operator, all of which are designed to exchange or
combine the information contained in the parent chromosomes. In this research,
the two child staggered average crossover opersitkqvsk et al, 2000) was ap-
plied, as this operator has been designed to exploit the continuous nature of the
weights, as opposed to alternative crossover operators that were designed for bi-
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nary encoded chromosomes. One random crossover point was used, as shown in
Figure 3.14, which illustrates the two child average crossover operator. Generally,
when one-point crossover is applied, a crossover point is selected uniformly at ran-
dom, and the portions of the parent chromosomes from the crossover point to the
end are swapped, producing two new offspring. However, using the two child av-
erage crossover operator, the first offspring chromosome is produced by taking the
average values of corresponding genes of a pair of parent chromosomes up until the
crossover point, while the original genes are used from the crossover point to the
end of the chromosome. Conversely, the second offspring chromosome is produced
by using the original genes up until the crossover point, while taking the average of
the parent genes from the crossover point to the end of the chromosome, as shown
in Figure 3.14. The crossover operator is assigned a probabilitypssover rate

which determines whether or not crossover between a pair of parents will occur. Be-
cause crossover among parent chromosomes is a common natural pGauedi,

1991), it is traditionally given a relatively high probability ranging from 0.6 to 1.0
(Elbeltagi et al, 2005).

Parent chromosome A Offspring A I

LI PP PP PPy Py PP

Parent chromosome B - Offspring B

D Average of the genes of the I
corresponding parent

Figure 3.14 Two child average crossover operator.

STEP 4: Mutation, which is the occasional random alteration of the value of a gene
(Goldberg 1989), is the final step in the generation of offspring chromosomes.
This operator ensures that the evolution does not become trapped in unpromising
regions of the search space by introducing new information into the search. Similar
to the selection and crossover operators, there are a number of alternative mutation
operators available. The step size mutation operafitkqvsk et al, 2000) was
used in this research, because, like the crossover operator used, it too was designed
for continuous variables. This operator randomly mutates the value of a gene to
within onestepsizef the current value as follows:

ene’ = gene + 1 X u 3.32
g g
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wheregene’ is the mutated value of the genejs the stepsize, or maximum in-
cremental change, allowed for a gene and U(—1, 1). The parameter should

be selected according to the magnitude of the optimisation variables and the sensi-
tivity of the objective function to these variables.ndutation rateis also assigned

to the mutation operator, but unlike the crossover rate, the mutation rate is applied
to a chromosome on a gene by gene basis. The bulk of a GA's processing power
can be attributed to selection and crossover; therefore, mutation plays a secondary
role in the algorithm Goldberg 1989). As mutation in nature is a rare process, the
mutation rate is generally set to a small value (e.g. less thanBlldgl{agi et al,

2005). However, according tBiben et al.(1999), the use of rigid parameters that

do not change their values is in contrast to the dynamic adaptive nature of a GA.
They claim that different parameter values may be optimal at different stages of the
evolutionary process, where large mutation steps can be useful in early generations
for helping to explore the search space, whereas in later generations, small muta-
tion steps might be needed to help to fine tune chromosomes. Therefore, in this
research, a constant mutation rate was applied with a dynamic stepsize parameter.
The parameter values used in this research are further discussed in Section 3.4.2.4.

STEP 5: Steps 2 to 4 are repeated for many generations and, like backpropagation, the
final step in the algorithm involves determining when to stop training. The stopping
criteria used in this research are discussed in detail in Section 3.4.2.4.

3.4.2.3 Shuffled Complex Evolution (SCE-UA)

The SCE-UA algorithm involves randomly selecting a population of points from the fea-
sible search space, which are then divided into several communitiespgplexes The
complexes are evolved independently, through a ‘reproduction’ process, where each mem-
ber in a complex is a potential ‘parent’ with the ability to participate in the reproduc-
tion process. At periodic stages of the evolution, the entire population is shuffled before
points are reassigned to complexes (i.e. the communities are mixed and new communities
formed). This promotes the sharing of information gained by each community in order to
direct the entire population toward the neighbourhood of a global optimum. A schematic
of the SCE-UA algorithm is shown in Figure 3.15, outlining the main steps carried out
during the algorithm. These are discussed further as follows:

STEP 1: To initialise the process, the feasible search space is defined by placing upper
and lower limits on the weights, and a random sampfgaftswy, . . . , w IS gener-
ated within this space. The size of the sanykeequal to the number of complexes
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| Define search spao® [ (¢ |

t=1 STEP1

Generate initial population by sampling = mxp
pointsw;, i = 1,...5, at random fron®.

|

Evaluate objective function for each sample,
E, i:].,..,S.

!

Sort s points in order of increasirtg value
and store iD={W;, E, i =1,...,s}

STEP2

Stopping criteria
met’

STEP6

Partition Dy into p complexes containing
points,D; = {AX k=1,...p} STEP 3
I STEP 4

| Evolve each compleA*, k=1,...p i(_
l CCE

p - algorithm Selection
4' Replace A*, k=1,...pinto D1 |
M utation H Reflection |
STEPS5S X :

o | Contrvaction |

Figure 3.15 Schematic of SCE algorithm outlining the main steps carried out.

p, multiplied by the number of points in each comptexi.e. s = m x p).

STEP 2: The objective function® (e.g. the SSE given by (3.1)) is evaluated for each
point. Thes points are then sorted in order of increasing error function value and

storedinthe arralp = {w;, E;,i = 1, ..., s}, such that = 1 represents the weight
vector with the smallest error function value.

STEP 3: The arrayD is partitioned intop complexesAl, ..., AP, each containingn
points, such that the first complex contains evixy — 1) + 1] ranked point, the
second complex contains evepyfj — 1) + 2] ranked point, and so on, wheje=

1, o, (le Ak = {VAVéC, E1Jk|VAV;C = VAVk+p(j,1), Ejk = Eker(jfl)aj = 1, N ,m})

STEP 4: In this step, the complexes are evolved using the competitive complex evolution
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(CCE) algorithm Duan et al, 1992). In this algorithm, a number of subcomplexes
are selected from a complex, where a subcomplex acts as a pair of parents, although
it may contain more than two members. A probability is assigned to the members
of the complex such that better points have a greater chance of becoming parents,
similar to the selection operator described for the GA. The downhill simplex method
(Nelder and Mead1965) is then applied to each subcomplex to produce most of
the offspring, where reflection and contraction processes are applied to direct the
evolution in an improvement direction. Offspring are also occasionally randomly
introduced to ensure that the evolution does not become trapped in an unpromising
region. This is analogous to the mutation operator used in a GA. Each new offspring
produced by a subcomplex then replaces the worst point in the subcomplex.

STEP 5: Once the complexes have been evolved, they are shuffled and reformed by com-
bining all of the points in the evolved complexes into a single population, sorting
the population in order of increasing objective function value and, finally, repar-
titioning the population intgpy complexes according to the procedure described in
Step 3.

STEP 6: Steps 2 to 5 are repeated until a stopping criterion has been met and this step
involves checking whether or not this has occurred. The stopping criteria used in
this research are discussed in detail in Section 3.4.2.4.

3.4.2.4 Investigation

The optimal number of hidden nodes necessary for modelling data sets I, Il and 11l was
initially assumed to be unknown; therefore, each algorithm was used to train 10 different
sized networks, containing betweehahd 10 hidden nodes, for each of the three synthetic
data sets. It was considered that, within this range, there would be networks containing
too few, too many and the optimum number of hidden nodes for the given case studies.
This enabled the optimisation abilities of the training algorithms to be assessed under
such different conditions of model specification. To investigate the robustness of the
algorithms, each network was initialised with five different sets of weights. This resulted
in 50 networks being developed for each data set, using each training algorithm, or a total
of 150 ANN models for each data set. To initialise each of the algorithms, the initial
weights were randomly generated from a normal distribution with zero mean and unit

1This was the minimum number of hidden nodes considered in this research, as ANNs with no hidden
nodes result in linear models; thus defeating the purpose of using an ANN, rather than a linear regression
model.
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variance to achieve summed inputs to the hidden nodes of the order unity. Both the GA
and the SCE-UA algorithm required that upper and lower bounds be placed on the weights
in order to define the feasible search space. For each algorithm, these bounds were set
to [-10,10] in order to easily accommodate the initial weight values and to not be overly
restrictive or flexible for the algorithms to function properly.

Each of the algorithms required a number of user-defined parameters to be set. For the
BP algorithm, these included the initial and final values of the dynamic learningjate,
andnr, and the momentum rate The GA required that a population sizea crossover
rate p...ss, @ mutation ratep,,,,;, and initial and final values of the dynamic stepsize,
To and7r be specified. The SCE-UA algorithm has a number of parameters that require
specification, including the number of complexethe number of points in a complex;
the number of points in a subcomplexthe number of consecutive offspring generated
by each subcomplex; and the number of evolution steps taken by each comglex
However,Duan et al.(1993, 1994) provide default values for all of these parameters,
except forp, which is highly dependent upon the complexity of the problem. These
default values, given in Table 3.1, were used in this research; thus, only the parameter
required specification.

Table 3.1 Default parameter values for SCE-UA algorithm

Parameter Default value

m 2d +1
q d+1
« 1

Ié) 2d+1

To set the user-defined parameters used in the investigation, each algorithm was used
to train three networks containing 2, 6 and 10 hidden nodes, when applied to data set
[I, which was considered to have intermediate nonlinearity and noise properties of the
data sets considered. The different sized networks were used to ensure parameters were
selected that were suitable for the range of ANN sizes considered. Parameter values were
varied between specified ranges in order to find the best configuration for each training
technique. The ranges investigated were specified according to values typically used for
these algorithms, apart from the GA mutation rate, for which larger values than typical
were included, since the form of the mutation operator used is less random than other
types of mutation. The parameters that resulted in the most effective and efficient training
runs were selected and used in a further comparison of the algorithms. The values adopted
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Table 3.2 User-defined parameters adopted for BP, GA and SCE-UA training algorithms

Parameter Value Adopted Range Investigated
BP

Initial learning rateng 0.005 0.001, 0.005, 0.01, 0.05, 0.1, 0.2
Final learning rate)» 0.0001 0.0001, 0.0005, 0.001
Momentum rateb 0.6 0.5,0.6,...,0.9

GA

Population size 20 10, 20, 50, 100, 500
Probability of crossovep,., . 0.7 0.5,0.6,...,0.9
Probability of mutationp,,,..; 0.2 0.001, 0.005, 0.1,0.2,0.3,0.4
Initial stepsizery 0.2 0.1,0.2,0.5,1

Final stepsizer 0.001 0.0001, 0.001, 0.002, 0.005
SCE-UA

No. of complexe®p d 0.5d, d, 2d

for the user-defined parameters of each training algorithm are shown in Table 3.2, together
with the ranges investigated.

The stopping criteria used in the investigation were set to achieve convergence, or
near convergence, of the algorithms to within a specified tolerance value. Initially, the
stopping criterion used for each algorithm was that giverTbyer et al.(1999) for the
SCE-UA algorithm:

|SSE(W)k, — SSE(w)}
[SSE(W)F]

< tol (3.33)

where the superscrigdt denotes the lowest SSE value and “tol” was set equaka0—°.
In this research, the algorithms were stopped after meeting this criterion for 20 consec-
utive iterations. However, in the preliminary runs used to select the user-defined param-
eters, it was found that this criterion alone resulted in prohibitively long training times
when the SCE-UA algorithm was applied to the 10-hidden node network. Therefore, an
additional stopping criterion was included, where training was stopped after 10 million
error function evaluations using the GA and SCE-UA algorithm, and after 10 million for-
ward passes of the entire training set using BP, regardless of whether (3.33) had been
met. Thus, an algorithm stopped according to this criterion would not necessarily have
converged to a stationary point of the error surface.

The stopping criterion given by (3.33) was also used to determine when to reduce the
dynamic learning and stepsize parameters used in the BP algorithm and GA, respectively.
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For these algorithms, (3.33) was not used as a stopping criterion until the final values of
the dynamic parameters were reached. Instead, using the BP algorithm, the learning rate
n was reduced by 10% each time the criterion was met, whereas, with the GA, the stepsize
7 was reduced by 10% when the criterion was met for 10 consecutive generations. When
and by how much to reduce these values was determined heuristically when selecting the
user-defined parameters for the algorithms.

Finally, as the models developed in this investigation were also used in further investi-
gations on architecture selection and model validation, cross-validation with a test data set
was employed during training and the weights resulting in the minimum test set error (i.e.
the point at which overtraining is considered to begin) were saved, and the corresponding
model outputs computed so that they could be used in further investigations.

3.4.3 Determination of ANN Architecture - Assessment of Model Selection
Criteria

The generalisation abilities of the models developed using the best weight initialisations,
as described in the previous section, were evaluated to investigate how to best select the
optimal number of hidden nodes in a network for a given problem. Generalisability was
measured by computing tleait-of-samplgerformance on the test data set when training
was stopped early (i.e. when the saved weights resulting in the minimum test set error
were used to compute the model outputs) using the RMSE, MAECE, AIC and BIC

given by equations (3.2), (3.3), (3.5), (3.6), (3.7) and (3.8), respectively. It was also
measured by computing the-sampleAlC and BIC values for the training data when
training was allowed to run until convergence (or until the maximum number of function
evaluations was reached).

For data set I, it was known that an ANN containing no hidden layer nodes was the op-
timal structure, as the data were generated by a linear function. Therefore, the “optimal”
network sizes, as indicated by the various generalisability measures, could be evaluated
against this knowledge. For data sets Il and Ill, however, the optimal network structure
was unknown. Nevertheless, as the data were synthetically generated, the level of noise
added to the training data was known. Therefore, the MAE and variance of the models’
residuals obtained when the networks were trained to convergence could be compared to
the MAE and variance computed for the actual training data noise, to determine what size
network was necessary for an appropriate mapping of the data.
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3.4.4 ANN Validation - Assessment of Input Importance Measures

A number of methods have been proposed in the literature for determining the strengths
of the input variable contributions in predicting ANN outputs based on the optimised
network weights. As the weights of a trained ANN control the interactions that occur
between the model inputs and the output, the importance of each input can be determined
by the strength and direction of the connection weights between them. For example,
an input will have a positive impact on the output, through a given hidden node, if the
input-hidden and hidden-output weights are of the same sign (i.e. both positive or both
negative), whereas an input will have an inhibitory effect on the output through the hidden
node if the signs of the input-hidden and hidden-output weights are opposite. While no
method can perfectly summarise the information contained in the weights without consid-
ering the actual input-output function computed by the ANN, the question still remains
as to which of the measures available for estimating input importance, if any, provides
the best interpretation of the modelled function. To address this queS@olg (2002);
Gevrey et al(2003) andOlden et al(2004) compared a number of available methods for
guantifying the importance of ANN inputs. However, while each of these comparisons
provides a good reference, it is considered that limitations in the investigations prevent
the selection of an overall ‘best’ measure for reasons discussed in Section 3.4.4.5.

The Connection Weight Approac(den et al, 2004) and Garson’s measure of rel-
ative importance Garson 1991), which were two of the most promising methods for
assessing ANN input contributions identified in the comparisons conducté&ddsn
et al. (2004) andSarle (2002), were further investigated in this research for their ability
to accurately quantify ANN input importance. Additionally, given the known limitations
of these methods (discussed in Sections 3.4.4.1 and 3.4.4.2), two new methods, based
on modifications of the existing approaches, were also investigated and compared to the
existing methods. Details of the methods compared are discussed in the following sec-
tions. It should be noted that when using any of the methods presented to quantify input
contributions, standardising the input variables is extremely important in order to remove
the effects of measurement scale and ensure that the importance of each input variable is
reflected in its variability relative to the other inputs.

3.4.4.1 The Connection Weight Approach

The Connection Weight Approach was found to provide the best overall methodology for
guantifying ANN input importance in the comparison conductediyen et al.(2004).
This method is based on the sum of the products of input-hidden and hidden-output con-
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nection weights, or ‘overall connection weighOlden and Jacksqr2002). With refer-
ence to Figure 3.16, the overall connection weigh'11") of inputx; can be calculated

by:
J
OOWXk = ZwllmHj X wHwo (334)
j=1

While theOC'W values themselves are rather meaningless as a model validation mea-
sure, they may be used to determine the relative importaR£g ¢r relative contribution,
of each input in predicting the output as follows:

0CW;,
Zilil ’OOWIZ

RI,, = x 100% (3.35)

The RI values can then be compared to anpriori knowledge of the data-generating
relationship, or statistical mutual information measures, to assess how well the model has
explained the true interactions that take place between model inputs and outputs.

The main limitation of the Connection Weight Approach is that it does not account
for the “squashing” effect of hidden layer activation functio8aile 2002). The amount
of squashing increases with the magnitude of the summed input to a hiddenimgde
as illustrated in Figure 3.17. Thus, for large values:of;, the computed relative im-
portance measures are unlikely to accurately describe the modelled input-output relation-
ships. However, as the summed input to a node depends on all of the input, weight and
bias values feeding into that node, accounting for these complexities would require the
use of the actual input-output function computed by the AlSEr(e 2002).

X1—

Figure 3.16 Example ANN.
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Figure 3.17 The squashing effect of nonlinear activation functions.

3.4.4.2 Garson’s Measure of Relative Importance

Garson’s measure of relative importanGa(son 1991) was one of the earliest methods
proposed for quantifying the relative contributions of ANN inputs and has been used in a
number of studies, particularly in the field of ecological modelling, for extracting infor-
mation from trained ANNsHErosse et al.1999;Aurelle et al, 1999;Gozlan et al. 1999).

This measure is calculated by partitioning the hidden-output layer connection weights
into components associated with each input node, or, in other words, partitioning the sum
of effects on the output layer into input node shares. With reference to Figure 3.16, the
RI of inputx; can be calculated by:

lwr,, a5,
ijl (% « !ij,o\)

K
Ek:l ‘wI]ijl

K J |w1i,Hj|
2im {Zjl (Z;{-(_l lwry,, ;| x |wH7’O|)}

J
- Z[ il wmol ]xlOO% (3.36)

Yo [l YL lwa, ol
As can be seen from this equation, Garson’s measure is the sum of products of normalised
weights. By normalising the weights, the effect of squashing is accounted for to some
extent, as the excessive influence of large weights is diminishadeg 2002).

The main limitation of Garson’s measure is that, because it uses absolute values of the

R, x 100%

J=1

weights, the signs of the input contributions are not taken into account, which can result
in misleadingRI values. For example, if an input has a positive impact on the output
through one hidden node and an inhibitory effect on the output through another hidden
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node, the overall impact of the input should be somewhere in between (i.e. the overall
contribution of an input is diminished if it has counteracting impacts through individual
hidden nodes). However, as Garson’s measure only accounts for the magnitude of the
impacts through different hidden nodes, and not the direction, counteracting impacts are
added together to strengthen the overall contribution.

3.4.4.3 Moadification of the Connection Weight Approach

As the original Connection Weight Approach is limited by not accounting for the effects
of squashing, the modified Connection Weight Approach presented in this thesis involves
the use of a modifiedC'W measure that does account for squashing to some extent by
using the hidden layer activation functions to “squash” the input-hidden node weights as
follows:

J
OCWy, = g (wi,m,) X wy, 0 (3.37)
j=1

whereg (-) is the activation function used on the hidden layer nodes. If the input data
are standardised, large weights feeding into the hidden nodes would be the primary cause,
overall, for large summed inputs into the nodes, and hence, significant amounts of squash-
ing. Therefore, by squashing the input-hidden node weights using the hidden layer activa-
tion functions, the influence of excessively large weights is removed. While it is acknow!-
edged that this will still not result in an accurate representation of the modelled function,
as the size of the input-hidden node weights are not considered in relation to the other
weights feeding into the same hidden node, it should result in an improved representation
of the relative contributions of the various ANN inputs.

3.4.4.4 Modification of Garson’s Measure

A modified version of Garson’s measure is also introduced in this research. As the main
limitation of the original Garson’s method is due to the use of absolute values of the

weights, the proposed method calculates the relative importance of an input using nor-

malised values of the raw weights as follows:

J
Wr,, H; WH; 0
RI,, = = 2 X —— x 100% (3.38)
* ]Z_; Zk:l ‘wIImHj‘ Zi:l lwr, 0l

A limitation of this method, like all of the other methods discussed above, is that it
does not take into account the effect of the bias weights. A large bias feeding into a hidden
node may distort the values of the normalised input-hidden node weights, resulting in
misleadingR] values.
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3.4.4.5 Investigation

In order to appropriately compare the measures discussed above in their ability to quantify
ANN input contributions, the limitations of the comparisons conducted by Sarle (2002),
Gevrey et al. (2003) and Olden et al. (2004) were first identified, such that the same
inadequacies could be avoided in this research. The comparison carried out by Sarle

(2002) was based on a simple additive model given by:

y = 0.1tanh(100z; + 0.25) — 0.1 tanh (100z; — 0.25) — 0.1
+0.1 tanh (10025 + 1.5) — 0.1 tanh (100z2 — 1.5)
+ tanh (z3) (3.39)

Rather than training an ANN to fit this function, a 5 hidden node MLP with the weights
specified in Table 3.3 was used by Sarle (2002). Various input importance measures
were then compared in their ability to estimate the correct R/ values corresponding to the
three inputs x, zo and z3. However, it can be seen that each hidden node H; is only a
function of one input plus a bias term, which is unrealistic of the way relationships are
modelled by ANNs. Such a comparison of input importance measures is incomplete, as
these measures may be sensitive to the effects of several inputs feeding into one hidden
node; yet, this would not have been properly investigated. Therefore, it is considered that
the results of the comparison conducted by Sarle (2002) do not fairly represent the relative
performances of different input importance measures under normal circumstances.

The comparison conducted by Gevrey et al. (2003) was based on empirical ecological
data, where a 5 hidden node ANN was initialised and trained by BP to fit the data 10
times. The mean input contributions calculated by each of the input importance measures

Table 3.3 ANN weights specified to describe the function given by (3.39) in the comparison

of input importance measures carried out by Sarle (2002).

NOTE: This table is included on page 98 of the print copy of the
thesis held in the University of Adelaide Library.
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considered were assessed, together with the standard errors of the measures to evaluate
their stability. The major shortcoming of this comparison was that the true input contri-
butions in predicting the output were unknown, meaning that the accuracy of the different
measures investigated could not be established by comparison with true values. Further-
more, as noted b@lden et al.(2004), using the standard errors of the input importance
measures calculated from the 10 ANNs developed does not indicate the stability of the in-
put importance measures; rather, it assesses the differences among variable contributions
arising solely from different initial connection weights, which is an issue of optimisation
stability.

To overcome the weaknesses of the comparison conduct&ktney et al(2003),

Olden et al.(2004) used simulated data with known input-output relationships in their
comparison of ANN input importance measures. However, the major limitation of this
study was that the synthetic data were generated by a linear function. To model a linear
function with an ANN, the weights and biases feeding into a sigmoidal hidden node are
generally very small, such that the summed input to the node lies on the linear part of
the sigmoidal curve near the origiBi€hop 1995). Therefore, the effect of squashing on

the input importance measures would not have been properly investigated in the study by
Olden et al(2004), as the summed inputs to the hidden nodes would not have been large
enough to experience any significant squashing effects.

The limitations of previous studies conducted to compare the accuracy of various
input importance measures, summarised in Table 3.4, were considered when designing
the investigation conducted in this research. The methods described in Sections 3.4.4.1
to 3.4.4.4 were assessed when applied to ANNs of different sizes, trained by the BP, GA
and SCE-UA algorithms, to fit data sets I, Il and lll, which exhibit varying degrees of
nonlinearity and complexity. The use of different network sizes and training algorithms
was important to assess the accuracy and precision (degree of variation in accuracy) of

Table 3.4 Limitations of previous studies conducted to compare input importance measures.

Comparison Limitations

Sarle(2002) Unrealistic ANN weights, only considers a single input feeding
into each hidden node.

Gevrey et al(2003) Empirical data used, not possible to validate the accuracy of the
input importance measures. Evaluation of stability reflects opti-

misation stability rather than stability of the methods.
Olden et al(2004) Linear data used, performance of input importance measures

when “squashing” by the hidden layer occurs was not considered.
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the input importance measures when information was distributed through the ANNSs in
different ways, and not simply when the optimal network configuration was used, and to
assess their sensitivity to the optimised weights obtained by different training methods.

While the use of synthetic data meant that the characteristics of each data set were
known, the exact relative input contributions could only be determined directly (from the
function coefficients) for data set I. [¥/(y, X) is a measure that quantifies the impor-
tance of K input variables(x, ..., xx) jointly for the dependent variable, then the
relative importance of an explanatory variakleis defined by its contribution to the joint
importance measure as follows:

K
M(y,X) = M(y,x) (3.40)
k=1

whereM (y, x;) is a partial importance measure for inpyt (Soofi et al. 2000). There-

fore, to quantify the relative input contributions for data sets Il and Ill, the stepwise PMI
input selection procedure (see Section 3.2.4) was applied to the data sets, as the PMI
criterion calculated using this method provides a model-free measure of either linear or
nonlinear partial dependence between an independent variable and a dependent variable.
The PMI scores for each input, corresponding to when the input was selected as most im-
portant, conditional on the existing predictors (i.e. when each input had the highest PMI
score, as determined in step 3 of the stepwise PMI procedure described in Section 3.2.4),
were then used to estimaf® values for the inputs according to:

M (y, )
M(y,X)
where M (y,x;) = PMI, and M (y,x;) is calculated by (3.40). Howevegharma

(2000) suggests that caution should be used when relying on the PMI scores, as these
values can be sensitive to the calculation of the marginal and joint probability densities
in (3.14). Furthermore, the PMI scores may be sensitive to the amount of data, the noise

RI,, = x 100% (3.41)

levels in the data, and the order in which the input variables are selected as being important
(Soofi et al.2000). Nevertheless, it is considered tRdtvalues estimated using the PMI
scores may still provide a suitable guide for comparing the different input importance
measures described in Sections 3.4.4.1 to 3.4.4.4. To verify that this was the case, the PMI
algorithm was run applied to data set | and thevalues estimated from the PMI scores
obtained were compared to thhd values calculated using the coefficients of (3.25).

In order to discount the effects of suboptimal network performance (e.g. due to inap-
propriate training or an inappropriate model structure) in the comparison, only the mod-
elsbest representing the datdeveloped using each training algorithm and containing a
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greater or equal number of hidden nodes to that identified as being optimal in the model
selection investigation detailed in Section 3.4.3, were used in the comparison of the input
importance measures. The models considered to best represent the data were determined
based on how similar the estimated MAE and residual variance values, calculated when
the models were applied to the training and testing data sets, were to the corresponding
values calculated based on the actual random noise added to the simulated data.

Two methods of evaluation were used to assess the accuracy of the methods for quan-
tifying input importance. The first was Gower’s similarity coefficient (GSGpyer,
1971), which was used to compare theler of input importance as estimated by the
methods investigated to the order of input importance estimated by the PMI procedure
(referred to amctual order of importance for the purposes of this discussion). GSC was
also used in the comparison conducteddigien et al(2004). The similarity of two indi-
viduals: andj (e.g. estimated order of importance and actual order of importance) may
be compared on a characteristide.g. order of importance of inpuf) by assigning a
scores;;;, according to:

|Tik — T
Tk

wherez;; is the value of individual andz ;;, is the value of individuaj for characteristic

k. The value ofr,, is given by the range of values possible for fhk characteristic. For
example, if there are three inputs which can have a possible order of importance between
1 and 3, the value af;, is 2 (i.e. 3 - 1). To determine the overall similarity of individuals

i andj, havingk = 1,. .., v characteristics, the following equation is used:
GSC.. — M (3.43)
T Y Wi

wherelV;;, is a weight assigned to thigh characteristic score. In this research, all of the
weight values were set to 1.0. A GSC value of one indicates exact similarity between the
individuals, whereas a value of zero indicates no similarity.

While the similarity between the estimated and actual order of input importance pro-
vides a good assessment of the input importance measures, this evaluation does not take
into account the similarity between the estimated and actual relatagnitudesof im-
portance. Therefore, the second method of evaluation was based on the RMSE (given by
(3.2)) between the absolute estimafeflvalues and thé/ values estimated by the PMI
approach. Absolut&! values were used in the evaluation, as the PMI approach does not
give directions of the input-output relationships.
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3.45 Results

3.4.5.1 Comparison of Training Algorithms

The training algorithm comparison results are summarised in Tables 3.5, 3.6 and 3.7 for
data sets I, Il and Ill, respectively. These tables give the best, worst, mean and standard
deviation mean squared error (MSE) results obtained by initialising each training algo-
rithm five times for each network size. The MSE valuesSE = SSE/N) are presented

rather than the SSE values, as taking the mean of the error cancels the effect the training
set size has on the results. The best results obtained for each network size are highlighted
by bold italics. These include the smallest best, average and standard deviation MSE val-
ues obtained for a given network size, as well as the smallekgasty worst MSE value.

These results are also given for thweerall performance of the training algorithms, aver-
aged over all of the network sizes. Extended training results are presented in Appendix A.

Inspection of Table 3.5 shows that all three algorithms performed similarly when ap-
plied to data set I. However, while none of the algorithms performed obviously better than
the others, it appears that the SCE-UA algorithm was more consistent in obtaining good
solutions. The GA performed slightly worse than the other algorithms in training the
models to fit the data; however, this was probably due to its poor ‘fine-tuning’ abilities, as
the MSE values obtained were generally consistent (indicated by the small standard devi-
ations) and were not significantly greater than those obtained using the BP and SCE-UA
algorithms.

From the results obtained when the algorithms were applied to data set Il (shown in
Table 3.6), it is apparent that, while the BP algorithm seems better able to obtain a ‘best’
solution, particularly for the larger network sizes, it is also the least robust to different ini-
tial conditions, as suggested by the overall MSE standard deviation, which was the largest
obtained of the three algorithms. Overall, the SCE-UA algorithm performed consistently
better than the BP algorithm and the GA, as indicated by the smallest overall average
MSE, the overall ‘least worst’ MSE and the smallest overall standard deviation. Again,
the GA did not perform as well as the other two algorithms, although, nor did it perform
significantly worse.

The training results obtained for data set Il (Table 3.7) were very similar to the re-
sults obtained for data set Il. Again, the BP algorithm was better able to obtain a best
solution on the larger network sizes, but was generally not very robust to different initial
conditions, as indicated by the relatively large MSE standard deviations. The SCE-UA
performed the best on the smaller networks, as well as performing consistently well over-
all, obtaining the smallest overall MSE average and standard deviation values. While the
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GA was generally fairly robust when applied to data sets | and I, it was found to be the
least robust when applied to data set Ill, often obtaining ‘worst’ MSE values that were
significantly greater than the ‘best’ MSE values for a given network size. This is possibly
due to the fact that the algorithm parameters were selected according to the GA's perfor-
mance when applied to data set Il, and perhaps these were not the most suitable when
applied to data set .

Overall, it can be concluded that the BP algorithm performed the best on the larger
networks (e.g. containing greater than 7 hidden nodes), whereas the SCE-UA algorithm
performed well most consistently and was the least sensitive to initial conditions. One
of the reasons why the BP algorithm may have performed better on the large networks
is that for these networks the SCE-UA algorithm was stopped according to the second
stopping criterion applied (i.e. after 10 million function evaluations, see Section 3.4.2.4)
and had not converged to within the specified tolerance value. Another possible reason
why the BP algorithm performed well on these networks is that the error surface of large
networks is less complicated by local minima than those of smaller networks; thus, a local
optimisation algorithm may perform as well as, if not better than, a global method, as it
would not be as likely to become trapped in local minima. Additionally, global optimi-
sation methods tend to be lacking in local fine-tuning abilities, as their main purpose is
to provide a thorough, yet less concentrated, search of the error surface. Therefore, the
BP algorithm could be expected to have better training performance than a global method
when the error surface is concave and uncomplicated by local minima. To illustrate the
different error surfaces of small and large networks, the error surface of a 2 hidden node
ANN applied to data set | is shown in Figure 3.18 (a), while the error surface of a 10
hidden node ANN applied to data set | is shown in Figure 3.18 (b). Both of these plots
were obtained by altering weighis, », andwg, o (i.e the weights from the first input to
the first hidden node and from the first hidden node to the output), while fixing all of the
other weights equal to their optimal values. This gives an extremely simplified view of
the error surface; however, it would be impossible to view the true surface with all of the
weights changing in multidimensional space. In reality the error surface would be much
more complex than those shown here for illustrative purposes. Nevertheless, the plots il-
lustrate how a local optimisation method might perform poorly on a smaller network with
a more complicated error surface, than on a larger one with an error surface containing a
single minimum, or continuum of minimum error, as shown in Figure 3.18 (b). Not sur-
prisingly, the BP algorithm had the poorest performance of the three training algorithms
when applied to the 2 hidden network, whereas it had the best performance when applied
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Figure 3.18 The error surface of (a) a 2 hidden node ANN, and (b) a 10 hidden node ANN,
applied to data set I.

to the 10 hidden node network (see Table 3.5).

While the SCE-UA algorithm was found to have the overall best and most consistent
optimisation performance, a significant limitation of this algorithm was found to be the
time required for training, particularly on the larger networks. The average training times
in minutes for all three algorithms are presented in Table 3.8, where it can be seen that the
SCE-UA algorithm required significantly longer training times than the BP algorithm and
the GA, taking between 6 and 30 times longer to converge on the 10 hidden node ANNs
than BP or the GA, which had similar training times.

3.4.5.2 Assessment of Model Selection Criteria

The residual variancéf, and MAE results calculated based on the training set outputs ob-
tained from the best weight initialisation for each network size are presented in Tables 3.9,
3.10 and 3.11 for data sets I, Il and Ill, respectively. It is reiterated that these values were
calculated based on the model outputs when the networks were trained to convergence
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Table 3.8 Average training times in minutes for the BP, GA and SCE-UA algorithms.

Hidden Data set | Data set Il Data set lll

Nodes BP GA SCE BP GA SCE BP GA SCE

1 0.68 0.36 0.09 0.16 0.47 0.25 0.38 0.63 0.42

2 1.16 3.06 0.26 042 1.82 1.02 124 2.89 2.33

3 1.60 2.24 0.98 227 5.97 478 258 432 13.12
4 4.28 4.30 5.54 1.62 7.41 9.94 427 5.70 38.59
5 488 568 1023 708 758 2576 6.60 697 73.47
6 6.53 8.17 15.11 15.74 9.35 31.68 445 7.02 138.67
7 9.75 8.83 4277 1314 820 79.40 7.68 8.33 202.65
8 945 1350 112.89 16.69 12.09 126.20 9.53 791 24482
9 1143 1463 197.04 26.02 12.31 160.87 9.27 11.33 272.17
10 13.79 20.14 124.10 20.06 12.11 17498 9.93 11.06 302.18

(or until the maximum number of function evaluations had been reached). For data set
I, the variance and MAE values calculated based on the actual random noise added to
the simulated training data (henceforth, referred tacsalnoise variance;, andactual

MAE) were equal to 0.900 and 0.767, respectively. In Table 3.9, the smallest network
able to model the data such that mﬂimated?fg and MAE were approximately equal to

the corresponding actual values is framed. According to these criteria, it can be seen that
an ANN containing 1 hidden node was sufficient for modelling data set I. In actual fact,
an ANN model containing no hidden nodes would have been sufficient, as discussed in
Section 3.4.3; however, a 1 hidden node network was the smallest network considered in

the investigation.

Table 3.9 Optimal number of hidden nodes for modelling data set I, indicated by the
variance&f, and MAE values of the model residuals.

Hidden

Nodes

2
Ty

MAE

BP

GA

SCE

BP

GA SCE

0.905

0.899

0.897

0.766

0.764

0.7{34

© 00 ~NO U1l WN|PE

[E=Y
o

0.877
0.868
0.836
0.833
0.824
0.796
0.799
0.754
0.748

0.877
0.872
0.860
0.854
0.837
0.816
0.809
0.808
0.790

0.877
0.852
0.843
0.825
0.821
0.802
0.781
0.782
0.773

0.748
0.744
0.727
0.736
0.723
0.715
0.713
0.695
0.682

0.748
0.746
0.743
0.742
0.732
0.722
0.715
0.718
0.704

0.747
0.738
0.734
0.717
0.725
0.712
0.705
0.702
0.707
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Table 3.10 Optimal number of hidden nodes for modelling data set Il, indicated by the
variance&f, and MAE values of the model residuals.

Hidden &f,

MAE

Nodes BP GA SCE BP GA SCE

1.282
1.117

1.281
1.219

1.279
1.259

0.907 0.908 0.907
0.857 0.890 0.898

0.971

1.030

0.961

0.790 0.821 0.785

0.956
0.925
0.916
0.876
0.867
0.840
0.829

© 00 N O Ul hWN P

[y
o

0.963
0.948
0.918
0.911
0.907
0.892
0.889

0.942
0.931
0.917
0.900
0.893
0.889
0.867

0.786
0.777
0.768
0.748
0.750
0.735
0.728

0.784
0.778
0.771
0.767
0.767
0.760
0.754

0.779
0.768
0.765
0.766
0.755
0.757
0.756

For data set Il, the actual varianc§ and MAE of the training data noise were 0.983
and 0.797, respectively. The smallest network able to model the data such that the es-
timated&3 and MAE values approximated the corresponding actual values is framed in
Table 3.10. It can be seen that a 3 hidden node network was sufficient for modelling the
data, as indicated by the results obtained when the network was trained using the BP and
SCE-UA algorithms. It does not matter that a 3 hidden node network trained using the
GA was unabile to fit the data sufficiently well, as this is a function of optimisation ability,
rather than the appropriateness of the model structure. It can be seen that networks con-
taining fewer than 3 hidden nodes were unable to fit the data appropriately when trained
with any of the three training algorithms, as indicated by the larger estirﬁétadd MAE
values.

The actuab; and MAE values for data set Ill were 1.048 and 0.816, respectively. In
Table 3.11, it can be seen that a network containing 5 to 6 hidden nodes was appropriate
for modelling this data set, as indicated by the framed values. It is considered that a 5
hidden node ANN is probably sufficient for modelling the data, as the estingtadd
MAE values were approximately equal to the actual values when the network was trained
using the SCE-UA algorithm. However, it is apparent that a network of this size is difficult
to train appropriately and a network containing 6 hidden nodes had better data mapping
abilities.
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Table 3.11 Optimal number of hidden nodes for modelling data set I, indicated by the

variance&f, and MAE values of the model residuals.

Hidden

-2
Ty

MAE

Nodes BP

GA

SCE

BP

GA SCE

7.175
4.866
2.874
1.322

7.169
4.888
2.935
1.493

7.165
4.771
3.353
1.216

2.053
1.747
1.320
0.908

2.051 2.051
1.756 1.737
1.330 1.484
0.955 0.868

1.133
1.055

1.221
1.085

1.066 0.838 0.866 0.816
1.049 0.814 0.825 0.813

1.045
1.031
1.018
0.991

© 00 N gl WN

[y
o

1.113
1.094
1.090
1.074

1.034
1.034
1.044
1.053

0.810
0.807
0.802
0.794

0.833 0.805
0.832 0.808
0.832 0.814
0.819 0.814

Thein-sampleAlC and BIC results obtained when the ANNs were trained until con-
vergence are given in Tables 3.12, 3.13 and 3.14 for data sets I, Il and Ill, respectively.
The minimum values of these criteria (indicating the best generalisability) obtained using
each of the three training algorithms are highlighted by bold italics and the minimum val-
ues overall are indicated by framed values. The overall best values indicate the ‘optimal’
model structure according to each criterion. From an inspection of Tables 3.12, 3.13 and
3.14, it can be seen that the overall minimum BIC values correctly indicated the optimal
network sizes for data sets I, Il and Ill. It was interesting to note that only the minimum
in-sample BIC obtained when the networks were trained using the SCE-UA algorithm

Table 3.12 In-sample AIC and BIC results for data set I.

Hidden AIC BIC

Nodes BP GA SCE  BP GA SCE

1 1539.9 1536.2 1534.91565.9 1562.1

2 1532.2 1532.1 15320 1579.8 1579.7 1579.6
3 1536.8 1538.9 1525.9 1606.0 1608.1 1595.1
4 15255 15416 1530.3 1616.3 1632.4 1621.1
5 1533.7 1547.4 1528.0 1646.1 1659.9 16405
6 1537.8 1546.0 15356 1671.8 1680.1 1669.6
7 1530.1 15422 1532.3 1690.1 1697.9 1687.9
8 1540.6  1547.0 1527.4 1717.9 17243 1704.7
9 1556.3 1538.0 1717.1 17553 1736.9
10 1523.2 1554.1 1541.8 17437 17747 1762.4
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Table 3.13 In-sample AIC and BIC results for data set Il.

Hidden AIC BIC

Nodes BP GA SCE  BP GA SCE
1 2220.8 2220.0 22189 2252.8 22520 2250.9
2 21341 2196.6 2219.5 21935 2256.0 2279.0
3 2045.9 2088.1 2038.42132.7 2175.0

4 2047.0 2051.9 2036.6 2161.3 2166.2 2150.9

5 2035.4 2053.0 2039.8 2177.2 21948 2181.6
6 2028.7 2042.0 2041.5 21705 22111 2210.6
7 2008.7 2048.8 2039.5 2177.8 22454 2236.1
8 2024.9 2057.0 2046.4 22489 2281.1 2270.4
9 2057.0 2055.0 22657 23085 2306.5
10 2016.7 2067.3 2048.9 22956 2346.2 2327.9

indicated that a 5 hidden node ANN was optimal, whereas the BIC values obtained when
the ANNs were trained using BP and the GA suggest that 6 hidden nodes are best. This
is in agreement with the conclusion made based on Table 3.11 that a 5 hidden node ANN
may be optimal, but a better data mapping can be more easily obtained with a 6 hidden
node ANN. It can also be seen that the AIC values were unable to correctly identify the
optimum number of hidden nodes, selecting larger networks than necessary in each case.
The AIC values were also found to be much more sensitive to the optimum solution ob-
tained by training, as indicated by the large variation in AIC values obtained using the
three different training algorithms.

These results indicate that the in-sample BIC adequately penalises complexity in order

Table 3.14 In-sample AIC and BIC results for data set Il.

Hidden AIC BIC

Nodes BP GA SCE  BP GA SCE

1 5843.2 5842.3 5841.6 5884.0 5883.1 5882.4
2 5385.6 5391.0 5361.6 5462.1 5467.5 5438.1
3 4759.6 47851 49469 4871.8 4897.3 5059.1
4 3829.9 3977.9 37284 3977.9 41259 3876.4
5 3656.3 3747.2 3582.7 3840.0 3930.93766.4

6 3583.7 3617.9 3576.8 3803.1 3837.4 3796.2

7 3586.9 3662.6 3574.2 3842.1 3917.7 3829.3
8 3584.4 3655.8 3587.6 3875.3 3946.6 38785
9 3582.1 3666.3 36135 3908.7 3992.8 3940.1
10 3662.1 3637.9 3876.9 4024.4 4000.2
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to balance model fitting and model parsimony. However, whether this is true in all cases is
not clear from the results obtained in this investigation, as it was found that the in-sample
BIC values calculated for all of the models developed were very similar whether training
was run until convergence or stopped early according to the test set error, as shown in
Figure 3.19. This suggests that the degree to which the models were overfitted was never
great enough to have a significant impact on the BIC values obtained. Therefore, these
results may not be reflective of complex real-world problems with noisy data, where the
degree of overfitting that is possible may be significantly greater than observed in this
investigation. This issue requires further investigation.

Data Set | Data Set |1 Data Set 111
1850 ‘ 2500 6000
i 2450
1800 |
24001 55007 ‘e
1750 23501 50001 o
O 1700 23007
o 22501 4500
1650 | 22001
. 4000 \ T

1600 21501
- Training converged 2100 35001
Training stopped early | 20501
T T T 2000

1550

1500 3000

1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
Number of Hidden Nodes Number of Hidden Nodes Number of Hidden Nodes

Figure 3.19 In-sample BIC results when training was stopped early and run to convergence.

Shown in Tables 3.15, 3.16 and 3.17 are the out-of-sample results of the model selec-
tion investigation. Again, the best values of these criteria (i.e. minimum RMSE, MAE,
AIC and BIC values and maximunt and CE values) obtained using each of the three
training algorithms are highlighted by bold italics and the best values overall are indicated
by framed values. By inspecting these three tables it can be seen that, while the RMSE,
MAE, r? and CE criteria are reasonably consistent with one another, they all indicate that
a larger than necessary network is optimal for each of the three data sets. Furthermore,
there is quite large variation among these values for the different training algorithms, in-
dicating that they can be quite sensitive to the solution obtained during training. The AIC
and BIC seem better able to correctly select the optimum number of hidden nodes, with
the AIC correctly selecting the optimum network for data sets I, 1l and Ill, and the BIC
correctly selecting the optimum network for data sets I, and Ill. However, it is apparent
that the BIC may overly penalise model complexity when used to assess out-of-sample
performance, as can be seen most clearly when used to evaluate the generalisability of the
ANN models developed for data set Il (Table 3.16).
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Chapter 3 — State-of-the-Art Deterministic ANN Methodology

The models containing the ‘optimal’ number of hidden nodes, as identified using the
various generalisation measures, were applied to the independent validation data sets in
order to assess the generalisability of the models when applied to data not used during
training. These results are given in Tables 3.18, 3.19 and 3.20 for data sets I, Il and IlI,
respectively. For data set |, the models developed containing 1 hidden node, selected as
optimal by the in-sample BIC and out-of-sample AIC and BIC, performed the best on
the independent validation data, as highlighted in Table 3.18. The actual noise added
to the simulated validation data had a varianceri)f: 1.035 and an average absolute
magnitude oMAE = 0.816. It can be seen that the estimaﬁs@dand MAE values for the
models containing 1 hidden node closely approximated the actual values, indicating good
generalisability of the models.

For data set Il, the models developed containing 3 hidden nodes, selected as optimal
by the in-sample BIC and out-of-sample AIC, had the best performance on the indepen-
dent validation data. The actuaj and MAE values for the noise added to these data
were 0.852 and 0.733, respectively. It can be seen in Table 3.19 that the esﬁtjhamd
MAE values for the models containing 3 hidden nodes best approximated the correspond-
ing actual values, indicating that this model had the best generalisability of the models
selected by the various criteria.

The 7 hidden node ANN model, selected as the optimal network size by the out-of-
sample RMSE, MAEy? and CE, had the best performance on the independent validation
data of data set Ill, as seen in Table 3.20. For this data set, the a@tunid MAE
values for the added noise were 0.869 and 0.752, respectively. It can be seen that the
estimatect3§ and MAE values for the 7 hidden node ANN best approximate the actual

Table 3.18 Validation set results for data set |.

Performance Number of hidden nodes

Measure 3 1b 6° od o8

&i 1.025 1.023 1.052 1.099 1.542
RMSE 1.013 1.011 1.026 1.048 1.242
MAE 0.816 0.815 0.826 0.843 0.953
AIC 513 513 568 605 664
BIC 532 532 666 751 810
r2 0.702 0.704 0.695 0.681 0.586
CE 0.702 0.703 0.694 0.681 0.552

8Trained until convergence with SCE-UA, selected as best by in-sample BIC

P Trained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample AIC and BIC
CTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample MAE
Hrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample/RMS& CE
®Trained until convergence with BP, selected as best by in-sample AIC
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Table 3.19 Validation set results for data set Il.

Performance Number of hidden nodes

Measure 3 3P 3¢ 6d 8 of
6)2, 1.229 0.922 0.912 0.940 0.973 0.953
RMSE 1.108 0.960 0.955 0.969 0.986 0.976
MAE 0.873 0.766 0.760 0.776 0.792 0.780
AIC 696 655 653 696 728 735
BIC 720 720 718 822 895 923
r? 0.583 0.686 0.689 0.679 0.667 0.672
CE 0.576 0.682 0.685 0.676 0.664 0.671

8Trained with GA, training stopped early by cross-validation, selected as best by out-of-sample BIC

P Trained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample AIC

CTrained until convergence with SCE-UA, selected as best by in-sample BIC

Hrained with GA, training stopped early by cross-validation, selected as best by out-of-s&mple

®Trained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample RMSE, MAE and CE
Mrained until convergence with BP, selected as best by in-sample AIC

values, indicating that this model had the best generalisability. It can also be seen that
the 5 hidden node models, selected as the optimal network size by the in-sample BIC and
out-of-sample AIC and BIC, achieved a similar, although slightly worse overall fit to the
data. As suggested from an inspection of Table 3.11, an ANN containing 5 to 6 hidden
nodes was optimal for this data set, which is possibly why the results for the 5 hidden
nodes models were slightly worse on the validation data than those for the 7 hidden node
model.

Table 3.20 Validation set results for data set Ill.

Performance Number of hidden nodes
Measure 5 5b 7° 100
&3 0.927 0.927 0.894 0.994
RMSE 0.963 0.963 0.945 0.997
MAE 0.770 0.771 0.756 0.791
AIC 1122 1122 1136 1204
BIC 1264 1263 1333 1456
r2 0.947 0.947 0.949 0.944
CE 0.947 0.947 0.949 0.944

4Trained until convergence with SCE-UA, selected as best by in-sample BIC

P Trained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample AIC and BIC
®Trained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample RMSE2MA& CE
Hrained until convergence with BP, selected as best by in-sample AIC
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Overall, these results indicate that theat-of-sampleAlC andin-sampleBIC are the
most suitable criteria for ANN model selection. It was apparent that by accounting for
model complexity as well as fit, the AIC was less sensitive to factors such as the testing
data used or the weights obtained during training than other out-of-sample generalisability
measures. However, the penalty given to model complexity was not sufficient to use the
AIC criterion as an in-sample measure of generalisability. On the other hand, for the
synthetic data sets considered in the investigation, it was found that the BIC criterion
was able to penalise model complexity sufficiently, in order to select the most appropriate
model structures based on in-sample performance. It is claimed that a major advantage
of using in-sample criteria is that a test data set is not required. From Tables 3.18, 3.19
and 3.20, it is apparent that this is the case, as the optimal models selected using the in-
sample BIC had similar generalisability whether training was stopped early or allowed
to run to convergence. However, as mentioned previously, it is uncertain whether the
in-sample BIC will adequately penalise model complexity in order to select the optimal
model structure, given different degrees of overfitting potential, which is a function of the
complexity of the problem being modelled, the amount of available data and the noise
levels in the data.

3.4.5.3 ANN Validation

The results from applying the stepwise PMI input selection procedure to data sets I, Il
and Il are given in Table 3.21. It was found that this method was correctly able to select
only the important inputs from a set of 15 potentially important inputs for each synthetic
data set, verifying the approach as an input selection method. However, to verify the
approach as a suitable method for quantifying input importance fhealues estimated

for data set | were compared to the actual (absolBieyalues of the simulated data. The
magnitudes of the contributions ¢f 1, y;_4 andy;_q in predicting the outpug; have the

ratio of 3 : 6 : 5, as seen in (3.25); thus, the actual values of the inputs are 21.43%,
42.86% and 35.71%, respectively. It can be seen in Table 3.21 th&t/tlalues for data

set |, estimated based on the PMI scores, are a good approximation to the corresponding
actualRI values. Furthermore, when applied to data set Il, it can be seen that the PMI-
basedR! values correctly estimated similar proportions for these inputs. For data set lll,
it was known that theR?! value of inputz, should be approximately twice that of input

x4 and that theR[ values of inputs:; andz, should be approximately equal (see (3.27)).
The PMI method was able to correctly estimate all of these proportions, validating the
procedure as an appropriate method for quantifying the relative importance of inputs.
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Table 3.21 PMI results for data sets I, I, and III.

Input PMI Score  RI (%)
Data set |

Yi1 0.184 22.33
Yi_4a 0.372 45.07
Yi—9g 0.269 32.60
Data set Il

Yi_1 0.203 21.62
Yi—4 0.339 36.13
Yt—9 0.289 30.82
Xy 0.193 11.44
Data set lll

1 0.185 20.07
) 0.209 22.65
3 0.098 10.65
X4 0.284 30.80
x5 0.146 15.83

As the optimal network configuration for data set | (of those investigated) was found
to contain 1 hidden node (see Section 3.4.5.2), the four relative input importance mea-
sures investigated were calculated for all 10 network sizes (i.e. containing between 1 and
10 hidden nodes) using the models that best represented the data for each network size.
Figure 3.20 displays the mediY values, averaged over tii& values calculated for each
of the 10 networks, obtained by (a) the BP algorithm; (b) the GA; (c) the SCE-UA algo-
rithm; and (d) averaging over the results obtained for all three training algorithms. Error
bars are also displayed in this figure, showing the standard deviations &f/thalues,
which indicate the precision of the methods. It can be seen in this figure that each of
the methods for assessing input importance performed reasonably well in terms of accu-
rately estimating thé?/ values estimated using the PMI procedure, and that none of the
methods performed obviously better than the others. The different degrees of precision
in the measures obtained by the three training algorithms can also be clearly seen in this
figure, with reasonably large variation in thd values when the weights were obtained
by the BP algorithm and very small variation when the weights were estimated using the
SCE-UA algorithm. This confirms that the SCE-UA training algorithm most consistently
obtained good solutions of the three training algorithms investigated.

Table 3.22 summarises the evaluation of each method’s accuracy in estimating the
relative magnitudes and orders of input importance when applied to data set I. These are
given in terms of the mean and standard deviation RMSE and GSC values calculated based
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Table 3.22 Evaluation of input importance measures when applied to data set I.

Input Importance RMSE GSC
Estimation Method Mean St.Dev. Mean St Dev.
BP
Connection Weight Approach 13.110 7.416 0.700 0.189
Garson’s Method 7.195 4.009 0.767 0.225
Modified Connection Weight Approach 7.941 5.7480.833 0.176
Modified Garson’'s Method 10.421 10.004 0.800 0.233
GA
Connection Weight Approach 4,183 1.863 0.900 0.161
Garson’s Method 6.163 3.566 0.833 0.283
Modified Connection Weight Approach 4.302 1.239 0.967 0.105
Modified Garson’s Method 4.965 3.933 0.900 0.225
SCE-UA
Connection Weight Approach 3.137 0.419 0.800 0.155
Garson’s Method 3.966 1.424  0.600 0.000
Modified Connection Weight Approach 3.239 0.630 0.767 0.103
Modified Garson’s Method 4.033 2.019 0.783 0.075
Overall
Connection Weight Approach 6.810 6.239 0.867 0.188
Garson’s Method 5775 3.383 0.856 0.226
Modified Connection Weight Approach 5.161 3.879 0.933 0.136
Modified Garson’s Method 6.473 6.733 0.900 0.199

on the 10 different network sizes. The best results (i.e. minimum RMSE mean, RMSE
standard deviation and GSC standard deviation and maximum GSC mean) are highlighted
by bold italics. It can be seen in this table that, while similar results were obtained using
each of the input importance measures, the overall best results were obtained using the
modified Connection Weight Approach.

The optimal number of hidden nodes necessary for modelling data set Il was found
to be 3 (see Section 3.4.5.2); therefore, the four relative input importance measures were
calculated for networks containing 3 or more hidden nodes (8 network sizes) using the
models that best represented the data for each network size. The mean and standard de-
viation RI values obtained from the 8 networks developed by (a) the BP algorithm; (b)
the GA; (c) the SCE-UA algorithm; and (d) by averaging over the results obtained for all
three training algorithms, are displayed in Figure 3.21. It can be seen in this figure that
the two modified methods (modified Connection Weight Approach and modified Garson’s
method) were most accurate in estimating the PMI-bdgkgalues, particularly in esti-
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mating the importance of the independent nonlinear inputt can also be seen that, as
well as being inaccurate, the original Connection Weight Approach was the least stable of
the input importance measures, as suggested by the large error bars obtainedzfbr the
values.

Table 3.23 summarises the evaluation of each method’s accuracy in estimating the
relative magnitudes and orders of input importance when applied to data set Il. These
results were calculated based on the 8 different network sizes considered and, again, the
best results are highlighted by bold italics in this table. It can be seen the overall best
results were again obtained using the modified Connection Weight Approach; however,
it can also be seen that both the modified Connection Weight Approach and the modified
Garson’s method were significantly more accurate than the original methods when applied
to data set Il.

It was found that an ANN containing at least 5 hidden nodes was necessary for mod-
elling data set Ill (see Section 3.4.5.2). Therefore, the four relative input importance

Table 3.23 Evaluation of input importance measures when applied to data set II.

Input Importance RMSE GSC
Estimation Method Mean St.Dev. Mean St. Dev.
BP
Connection Weight Approach 18.290 8.153 0.583 0.126
Garson’s Method 27.490 3.122  0.500 0.000
Modified Connection Weight Approach 3.605 2955 1.000 0.000
Modified Garson’s Method 6.895 4431 0.833 0.199
GA
Connection Weight Approach 20.880 9.967 0.583 0.154
Garson’s Method 28.843 1.738 0.500 0.000
Modified Connection Weight Approach 3.953 2273 0.958 0.077
Modified Garson’s Method 4913 3.926 0.896 0.177
SCE-UA
Connection Weight Approach 23.107 7.823 0.479 0.059
Garson’s Method 24,628 5.572  0.500 0.000
Modified Connection Weight Approach 4013 3.003 0.938 0.124
Modified Garson’s Method 4902 1575 0.896 0.086
Overall
Connection Weight Approach 20.759 8552 0.549 0.125
Garson’s Method 26.987 4.069 0.500 0.226
Modified Connection Weight Approach 3.857 2.647 0.965 0.085
Modified Garson’s Method 5.570 3.512 0.875 0.157
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measures were calculated for networks containing 5 or more hidden nodes (6 network
sizes) using the models that best represented the data for each network size. Figure 3.22
shows the mean and standard deviatithvalues obtained from the 5 networks devel-
oped by (a) the BP algorithm; (b) the GA; (c) the SCE-UA algorithm; and (d) by averaging
over the results obtained for all three training algorithms, in comparison to the PMI-base
RI estimates. It can be seen in this figure that the two modified approaches were again
reasonably accurate in estimating the PMI-baBédsalues; however, it is apparent that

the original Connection Weight Approach most accurately estimated the PMI-bdsed
estimates on average. Yet, it can also be seen that this method was the least precise, or
most sensitive to the weights obtained for the different network sizes and by the different
training algorithms. Garson’s method was the most stable method; however, it was also
the least accurate for quantifying the magnitudes of input importance.

The mean and standard deviation RMSE and GSC values obtained by applying the
four input importance measures to data set Ill are given in Table 3.24. These results

Table 3.24 Evaluation of input importance measures when applied to data set Ill.

Input Importance RMSE GSC
Estimation Method Mean St.Dev. Mean St. Dev.
BP
Connection Weight Approach 8.998 3.7000.833 0.137
Garson’s Method 14.337 0.653 0.600 0.000
Modified Connection Weight Approach 7.353 2878 0.833 0.052
Modified Garson’s Method 8.915 3.474 0.750 0.152
GA
Connection Weight Approach 12.710 5.0700.750 0.055
Garson’s Method 13.002 0.661 0.583 0.041
Modified Connection Weight Approach 11.476 4.061 0.750 0.122
Modified Garson’s Method 12.288 2.679 0.717 0.117
SCE-UA
Connection Weight Approach 9.159 3.7270.800 0.155
Garson’s Method 15.834 1.175 0.600 0.000
Modified Connection Weight Approach 7.813 2188 0.767 0.103
Modified Garson’s Method 9.829 2991 0.783 0.075
Overall
Connection Weight Approach 10.289 4.3340.794 0.121
Garson’s Method 14.391 1.441 0.594 0.024
Modified Connection Weight Approach 8.881 3507 0.783 0.099
Modified Garson’s Method 10.344 3.231 0.750 0.115
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were calculated based on the 6 different network sizes considered. Overall, it can be seen
that the modified Connection Weight Approach most accurately approximated the relative
magnitudes of input importance, whereas the original Connection Weight Approach most
accurately estimated the order of input importance. However, it can also be seen that the
mean GSC values obtained for the original and modified Connection Weight Approaches
were very similar, but large standard deviations of the RMSE and GSC were obtained
using the Connection Weight Approach, suggesting that this approach is sensitive to the
weights obtained.

Shown in Table 3.25, are tlwyerall average and standard deviation RMSE and GSC
values, based on the results obtained for the four input importance measures when applied
to data sets |, Il and lll. It can be seen in this table that, overall, the modified Connection
Weight Approach most accurately estimated the order and magnitude of input importance.
Garson’s measure was found to be the least sensitive to the weights obtained for various
network sizes and with different training algorithms; however, it was also the least accu-
rate. The modified Connection Weight Approach was found to be the next most stable
method for quantifying the importance of ANN inputs. Furthermore, it can be seen that
the overall accuracy of both of the modified input importance measures was greater than
that of the original methods.

Table 3.25 Overall evaluation of input importance measures.

Input Importance RMSE GSC
Estimation Method Mean St.Dev. Mean St. Dev.
Connection Weight Approach 12619 6.375 0.737 0.145
Garson’s Method 15.718 2.964 0.650 0.083
Modified Connection Weight Approach 5966 3.344 0.894 0.106
Modified Garson’s Method 7.462 4492 0.842 0.157

3.4.6 Evaluation of Best Models

The performance of the best models developed for modelling each synthetic data set was
evaluated based on the “measured” and “true” training, testing and validation data. For
data set |, the best model contained 1 hidden node and was trained with the SCE-UA algo-
rithm. Scatter plots of the resulting model predictions versus the “measured” and “true”
training, testing and validation data are shown in Figures 3.23 (a), (b) and (c), respec-
tively, and the model performance results are summarised in Table 3.26 in comparison to
the actualo§ and MAE values (shown in italics). It can be seen in Figure 3.23 that the
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Figure 3.23 Scatter plots of the 1 hidden node ANN model predictions versus “measured”

and “true” (a) training, (b) testing and (c) validation data for data set I.

Table 3.26 Performance of 1 hidden node ANN developed for modelling data set .

Performance “Measured” Data “True” Data
Measure Train Test Validation Train Test Validation
fr§, 0.899 1.102 1.020 0.005 0.010 0.010
MAE 0.764 0.849 0.814 0.057 0.072 0.075
RMSE 0.948 1.050 1.010 0.072 0.098 0.098
CE 0.635 0.671 0.703 0.997 0.996 0.996
Actual 03 0.900 1.112 1.035 0.000 0.000 0.000
Actual MAE 0.767 0.900 0.816 0.000 0.000 0.000

model has predicted the “true” data very well, even though it was trained on the noisy
“measured” data. However, it can also be seen that the high and low data values were

slightly under- and overpredicted, respectively, for each data subset. Nevertheless, the
results presented in Table 3.26 indicate that the model has good generalisability across
each of the three subsets.

Shown in Figure 3.24 is a time series plot of the model predictions against the “mea-
sured” and “true” recombined training, testing and validation data, where it appears as
though the model has obtained a near perfect fit to the “true” data, confirming the ability

of the model to generalise to the underlying trend in the data.

The RI values of the 1 hidden node ANN inputs estimated using the modified con-
nection weight method are presented in Table 3.27 in comparison to the corresponding
PMI-basedR! estimates. Given that both of these methods are approximations of the
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Table 3.27 RI values (%) for the inputs of the 1 hidden node ANN developed for modelling
data set I.

RI Estimation Method Yi1  Yida  Yi—o9
Modified connection weight 21.21 4140 37.39
PMI-based 22.33 45.07 32.60

actual input-to-output relationships and there is general agreement between the values,
it is considered that the model approximated the underlying relationship well. However,
considering that the data are linear, it is acknowledged that an ANN without a hidden
layer would probably have resulted in a better approximation

For data set II, the best model developed contained 3 hidden nodes and was trained
with the SCE-UA algorithm. Scatter plots of the resulting model predictions versus the
“measured” and “true” data are shown in Figure 3.25, while the model performance results
are presented in Table 3.28. It can be seen in Figure 3.25 that a reasonably good fit
to the “true” data was obtained using this model; however, the fit was not as good as
that obtained for data set I, which can be seen by the larger amount of scatter about the
straight lines. The results in Table 3.28 indicate that while the model has reasonable
generalisability, it may have overfitted the training data slightly, as seen by comparing
the actuabg and MAE values to the corresponding estimated values for the “measured”
training data subset. This may be the reason for the slightly worse fit to the underlying
trend in the data, which is represented by the “true” data. Shown in Figure 3.26 is a
time series plot of the model predictions against the “measured” and “true” data for the
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Figure 3.25 Scatter plots of the 3 hidden node ANN model predictions versus “measured”
and “true” (a) training, (b) testing and (c) validation data for data set Il.
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Table 3.28 Performance of 3 hidden node ANN developed for modelling data set Il.

Performance “Measured” Data “True” Data
Measure Train Test Validation Train Test Validation
&§ 0.963 1.025 0.922 0.042 0.045 0.059
MAE 0.788 0.812 0.766 0.160 0.163 0.190
RMSE 0.981 1.013 0.960 0.205 0.211 0.243
CE 0.652 0.664 0.682 0.979 0.974 0.974
Actual (73, 0.983 0.982 0.852 0.000 0.000 0.000
Actual MAE 0.797 0.793 0.733 0.000 0.000 0.000

entire recombined training, testing and validation data set. It is apparent in this figure
that the model was able to generalise reasonably well to the underlying trend, although
a number of the “true” data points were not fitted to accurately, particularly the lower

values, indicating that the function modelled was slightly incorrect. Khealues given
in Table 3.29 confirm this.

Table 3.29 RI values (%) for the inputs of the 3 hidden node ANN developed for modelling
data set II.
RI Estimation Method

Yt—1 Yt—4 Yt—9 Ty
Modified connection weight 2731 3786 3274 2.09
PMI-based 21.62 36.13 30.82 11.44

It was inconclusive whether a 5 hidden node ANN or a 6 hidden node ANN was
better for modelling data set Ill; therefore, the performances of both models, which were
trained with the SCE-UA algorithm, were evaluated. Scatter plots of the 5 hidden node
ANN model predictions versus the “measured” and “true” data are shown in Figure 3.27,
with the corresponding model performance results presented in Table 3.30. It can be seen
that a good fit to the data was obtained with relatively small error values given the values
of the data, which are significantly higher than those for data sets | and Il. Scatter plots
of the 6 hidden node ANN model predictions versus the “measured” and “true” data are
shown in Figure 3.28, with the corresponding model performance results presented in
Table 3.31. In comparison to the results presented in Table 3.30 for the 5 hidden node
ANN, it can be seen that a slightly better fit to both the “measured” and “true” data was
obtained with the 6 hidden node model.

A plot of the 5 hidden node ANN model predictions against the “measured” and “true”
data for the entire recombined training, testing and validation data set is shown in Fig-
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Figure 3.27 Scatter plots of the 5 hidden node ANN model predictions versus “measured”
and “true” (a) training, (b) testing and (c) validation data for data set Ill.
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Table 3.30 Performance of 5 hidden node ANN developed for modelling data set lil.

Predictions
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Performance “Measured” Data “True” Data
Measure Train Test Validation Train Test Validation
&f, 1.067 1.170 0.924 0.058 0.073 0.068
MAE 0.815 0.856 0.768 0.187 0.205 0.201
RMSE 1.033 1.082 0.961 0.240 0.270 0.262
CE 0.942 0.939 0.947 0.997 0.996 0.996
Actual af, 1.048 1.096 0.869 0.000 0.000 0.000
Actual MAE 0.816 0.832 0.752 0.000 0.000 0.000
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Figure 3.28 Scatter plots of the 6 hidden node ANN model predictions versus “measured”
and “true” (a) training, (b) testing and (c) validation data for data set Ill.
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Table 3.31 Performance of 6 hidden node ANN developed for modelling data set lil.

Performance “Measured” Data “True” Data
Measure Train Test Validation Train Test Validation
&3 1.050 1.149 0.909 0.051 0.058 0.059
MAE 0.811 0.856 0.769 0.175 0.184 0.185
RMSE 1.025 1.072 0.953 0.225 0.240 0.242
CE 0.942 0.940 0.948 0.997 0.997 0.997
Actual (73, 1.048 1.096 0.869 0.000 0.000 0.000
Actual MAE 0.816 0.832 0.752 0.000 0.000 0.000

ure 3.29. As can be seen, the model appears to have fit the data well; however, a number
of the smaller data values were overpredicted. The output plot of the 6 hidden node ANN
model’s predictions was found to be almost identical to that shown in Figure 3.29 and is
therefore not shown. The 6 hidden node ANN was also found to have overpredicted a
number of the smaller data values.

The estimated?] values for the inputs of the 5 and 6 hidden node ANNS are given in
Table 3.32 in comparison to the PMI-based estimates. It can be seen tliat tladues
of inputsz;, zo andx3 are quite different between the two models and in comparison

to the PMI-based estimates. It is, however, difficult to determine which of the modelled
relationships is more correct.

Table 3.32 RI values (%) for the inputs of the 5 and 6 hidden node ANN developed for
modelling data set lll.

RI Estimation Method T1 To T3 T4 Ts

5 hidden nodes - modified connection weight 12,25 13.27 2398 3297 17.53
6 hidden nodes - modified connection weight 23.81 1993 0.09 36.20 19.98
PMI-based 20.07 22.65 10.65 30.80 15.83

3.4.7 Conclusions

3.4.7.1 Comparison of Training Algorithms

The results of the training algorithm comparison demonstrated that the SCE-UA algo-
rithm is the most suitable training method for consistently obtaining good solutions for

ANNSs, given a range of different model specification conditions (e.g. underparameterised,
overparameterised), initial weights, and data sets with different nonlinearity and noise
characteristics. However, a shortcoming of this training method is the time required for
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training, particularly for larger sized networks. For high dimensional ANNs with a known
and differentiable error function, it is unlikely that a randomised search method like the
SCE-UA algorithm would beat the efficiency of a gradient-based search method such as
backpropagation, even if the local search method were initialised several times to improve
its robustness. Nevertheless, as the main aim of developing a state-of-the-art deterministic
ANN development approach in this research was to provide the best comparison to the
Bayesian ANN development approach introduced in the following chapter, the SCE-UA
algorithm will be used to train the deterministic models developed in this research. To
prevent excessively long training times for large networks, it is recommended that mod-
ifications to, or upper limits for, the algorithm parameters be considered when training
ANNSs containing more than approximately 40 weights (ilex 40), which roughly cor-
responds to an 8 hidden node ANN for data set |, a 7 hidden node ANN for data set Il and
a 6 hidden node ANN for data set Ill, all of which took over an hour to train in comparison
to approximately 10 minutes required by the BP algorithm and the GA.

3.4.7.2 Assessment of Model Section Criteria

It was found that both the in-sample BIC and the out-of-sample AIC criteria were the
most suitable for selecting the appropriate number of hidden nodes in an ANN, with both
criteria correctly selecting the optimal network size for modelling data sets I, Il and .

It was also seen that whether training was stopped early or allowed to converge had little
impact on the generalisability of the models selected using the in-sample BIC, suggesting
that a test data set would not be required when this criterion is used to select the ap-
propriate ANN configuration. However, it is considered that this may not always be the
case in complex real-world problems and is an issue that requires further investigation. A
limitation of both the in-sample BIC and the out-of-sample AIC is that they are determin-
istic and their results can vary depending on the solution obtained during training. In this
investigation, only the best models developed for each network size using each training
algorithm were considered and there was still some variation in both the in-sample BIC
and out-of-sample AIC results. Therefore, if the optimum weights are not obtained for
any given network size in a trial-and-error model selection process, such as the one car-
ried out in this investigation, the use of deterministic BIC and AIC values may lead to the
incorrect selection of the appropriate network size.
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3.4.7.3 Assessment of Input Importance Measures

Overall, it was found that the modified Connection Weight Approach developed as part
of this research was the most accurate method for quantifying the relative importance
of ANN inputs of the methods investigated. It was also found that, on average, both of
the modified methods considered (i.e. modified Connection Weight Approach and modi-
fied Garson’s measure) were an improvement on the original input importance measures.
However, similar to the model selection criteria, these methods were only applied to the
best models developed for modelling the synthetic data sets and the redeitingl-

ues still exhibited (sometimes substantial) variation. Although the modified Connection
Weight Approach was found to be relatively robust to the different weights obtained for
various network sizes using different training algorithms, there is still some danger in
using such deterministic methods to quantify the relative importance of ANN inputs.
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