
Chapter 1

Introduction

1.1 MOTIVATION

Water resources engineering involves the planning, development and management of wa-

ter resources in order to meet the water needs of society and the environment. Of overall

concern is the hydrological cycle, as water moves from a natural source to its point of use

and back, taking into account the environmental processes that act on the system during

this cycle. Models play an integral part in water resources engineering; however, it is

very difficult to simulate the behaviour of these natural systems due to the innumerable

nonlinear and often poorly understood interactions that occur within them. Over the past

15 years, there has been a growing interest in artificial neural networks (ANNs) for simu-

lating, forecasting and predicting many different aspects of the hydrological cycle, as it is

often considered that they provide the best model of a water resource system in the face

of these difficulties.

ANNs have the ability to extract a relationship between a number of causal input vari-

ables and a dependent variable of interest from available characterising data, without the

need for restrictive assumptions about the relationship under study. Their nonlinear and

flexible functional form makes it possible to model any continuous function to an arbi-

trary degree of accuracy, and as such ANNs are often considered to be universal function

approximators. Furthermore, ANNs are relatively easy to use and have made it possible

for water resources practitioners to model complex nonlinear processes without the need

for sophisticated statistical techniques. The capability of ANNs to model hydrological

and water resources variables has been demonstrated in numerous applications, including

rainfall-runoff modelling (Hsu et al., 1995;Dawson and Wilby, 1999;Dibike and Solo-

matine, 2001;Anmala et al., 2000), streamflow prediction (Zealand et al., 1999; Imrie

et al., 2000;Yitian and Gu, 2003;Dolling and Varas, 2003) and water quality forecast-

ing (Maier and Dandy, 1996;Zhang and Stanley, 1997;Whitehead et al., 1997;Maier
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et al., 1998). A comprehensive review of such applications can be found inASCE Task

Committee(2000a,b),Maier and Dandy(2000a) andDawson and Wilby(2001).

Despite the increasing use of ANNs in water resources modelling, they are still viewed

with some scepticism by users of more conventional statistical and knowledge-based mod-

elling methodologies. The main premise in support of ANNs is their ability to generalise

solutions to new examples from previous ones. However, this ability is reliant upon the

proper estimation of a governing set of parameters that characterise the underlying system.

These parameters have no physical interpretation and their values must be determined by

calibration with a finite set of noisy data, which itself is performed solely by minimi-

sation of predictive error and does not provide any means of incorporating knowledge

of the system into the model. Furthermore, calibration of ANNs is a multidimensional

nonlinear optimization problem, which is far from being straightforward. Determining

the optimum level of complexity required to model a given problem is one of the most

difficult tasks in the development of an ANN. Therefore, ANNs typically contain many

more free parameters, or degrees of freedom, than conventional statistical or conceptual

models, and minimising the predictive error often results in a model that ‘overfits’ the

calibration data. Alternatively, optimisation algorithms used for calibration may become

trapped in one of the many local optima that typically exist on the complex error surface,

rather than finding the global minimum. To make matters worse, once an ANN has been

calibrated, any explanation of its internal behaviour is only revealed back to the user in

the form of an “optimal” parameter vector, which is difficult to interpret as a functional

relationship. Consequently, there is no direct way to validate the model in terms of its

physical plausibility.

Given these problems, it is very difficult to use ANNs confidently in any context other

than interpolation. However, when used for prediction and forecasting purposes, it is

generally inevitable that the model will also be required to extrapolate. In order to increase

the confidence in ANN predictions, and hence improve their usability in water resources

applications, it is necessary to acknowledge and quantify the uncertainty associated with

estimating appropriate parameter values. As stated byMaier and Dandy(2000a) in the

concluding paragraph of their review on the use of ANNs for water resources modelling:

A further challenge is the incorporation of uncertainty into ANN models.

Until now, ANN models in the field of water resources have been almost

exclusively deterministic. However, it is well documented that many water

resources models are subject to inherent, model and parameter uncertainties.

Consequently, techniques for dealing with uncertainty should be considered
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in the development of ANN models.

Accordingly, the primary motivation of this research is to incorporate uncertainty into

ANNs used for water resources modelling. In recent years, Bayesian methods have been

increasing in popularity for this purpose in various fields, including water resources mod-

elling with more traditional models. However, a full Bayesian framework has not yet

been extended to ANNs used for water resources modelling and, therefore, this will be

the main focus of this thesis.

In addition to providing a confidence measure for the predictions, it is expected that

the Bayesian framework will also help to overcome the difficulties in selecting an “opti-

mal” set of model parameters and will aid in the design of a model with the appropriate

level of complexity. To properly investigate these advantages, the new Bayesian neural

network methodology presented in this research is compared to a “state-of-the-art” deter-

ministic ANN modelling approach. Therefore, current best practice deterministic ANN

development methods will be reviewed, and where limitations are identified, improve-

ments made, in order to devise a state-of-the-art deterministic approach. Furthermore, to

demonstrate the advantages of the new Bayesian neural network methodology in a prac-

tical setting, two water resources case studies are considered. These include forecasting

salinity and cyanobacteria concentrations in a river.

1.2 RESEARCH OBJECTIVES

The overall objective of this research is to use Bayesian methods to help overcome some

of the limitations that prevent ANNs from becoming more widely accepted and reaching

their full potential as reliable water resources models, namely the lack of consideration

of prediction uncertainty, the difficulty in estimating appropriate parameter values, the

difficulty in selecting the optimum complexity and the lack of an objective method to

properly validate the model and interpret the relationship modelled. In order to meet

this overall goal, a number of primary and secondary objectives will be addressed. The

primary objectives include:

• The development of a Bayesian framework applicable to ANNs used for water re-

sources modelling, that incorporates:

– a method to identify the distribution of plausible model parameters; and

– a method to identify the optimal (or near optimal) ANN structure for a given

case study.
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• Comparison of the Bayesian approach to state-of-the-art deterministic ANN devel-

opment approaches to determine the advantages and limitations of the developed

methods.

• Application of the Bayesian ANN development approach to real water resources

case studies to demonstrate the practical advantages and limitations of the Bayesian

methods.

The secondary objectives are those not directly related to the Bayesian framework includ-

ing:

• The assessment, comparison and, if necessary, improvement of currently used de-

terministic ANN development methods to devise a state-of-the-art approach.

• The development of an objective validation framework based on the modelled rel-

ative contributions of the predictor variables in generating the response variable.

This should involve the comparison and, if necessary, improvement of existing in-

put importance measures for use in the framework.
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1.3 LAYOUT AND CONTENTS OF THESIS

A background to this research is presented in Chapter 2. This includes background in-

formation on ANN concepts (Sections 2.2.1 to 2.2.3) and Bayesian methodology (Sec-

tion 2.3.1), as well as a discussion of current practices, strengths and limitations in both

of these areas resulting from a review of the relevant literature (Sections 2.2.4 to 2.2.5 and

2.3.3 to 2.3.6).

In Chapter 3, deterministic methods applied to ANNs used for water resources mod-

elling are reviewed and, if necessary, improved, in order to devise a state-of-the-art de-

terministic ANN approach. Methods currently employed at each stage of the model de-

velopment process are reviewed in Section 3.2 to determine best practice approaches and

identify any areas requiring improvement or further assessment. The state-of-the-art ap-

proach adopted throughout this research is summarised in Section 3.3, together with the

model development steps identified as requiring further analysis. Various methods for

carrying out these steps are investigated and compared in Section 3.4 using three syn-

thetic data sets. Finally, the conclusions made based on the investigations conducted are

presented in Section 3.4.7

The new Bayesian ANN framework developed in this research is presented in Chap-

ter 4. The ‘training and prediction’ component of the framework is discussed in Sec-

tion 4.2, which includes a background to the use of Markov chain Monte Carlo (MCMC)

methods for estimating parameter distributions (Section 4.2.1), a review of MCMC meth-

ods previously used for ANN training (Section 4.2.2) and, finally, an outline of the pro-

posed Bayesian training and prediction approach (Section 4.2.3). In Section 4.3, the

‘model selection’ component of the framework is proposed, based on a review of avail-

able Bayesian model selection methods (Section 4.3.1) and those previously applied for

selecting the optimum complexity of an ANN (Section 4.3.3). In Section 4.4, the details

of each of these components are determined and the overall proposed methodology is

assessed through investigations carried out on synthetic data.

In Chapters 5 and 6, the proposed Bayesian and state-of-the-art deterministic ANN

development methods are compared when applied to two real-world water resources case

studies, which involve forecasting salinity and cyanobacteria concentrations in a river,

respectively. Both of these cases are considered to be good benchmark studies against

which the relative merits of each of the ANN development approaches can be assessed in

a real-world context.

Finally, the overall contributions, conclusions and recommendations of this research

are given in Chapter 7.
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Chapter 2

Research Background

2.1 WATER RESOURCES MODELLING

Models are required in almost all areas of water resources planning and management

(Wurbs, 1995). They enable the response and behaviour of a system to be investigated

under various physical conditions, which is generally either impossible or infeasible to do

in the real world. Therefore, they play a vital role in areas such as river regulation and

management, hydraulic infrastructure design and water quality protection.

Water resources modelling will inevitably involve the use of some type of hydrolog-

ical model. The types of models currently used to model hydrological systems can be

broadly categorised into three main groups: physically-based, conceptual and empirical

(ASCE Task Committee, 2000a;Dawson and Wilby, 2001). Physically-based models aim

to represent the underlying physics of the system by using a series of partial differential

equations to describe, as best they can, the change of state (e.g. mass, energy) of the

system over time. In theory, once developed, these models should have a wide range of

applicability (e.g. on data outside the domain of those used to develop the model and

on ungauged systems with known or assumed characteristics), as they are based on fun-

damental physical relationships. The parameters of physically-based models are directly

related to catchment characteristics and, thus, give useful insight into the system under

investigation. However, the development of a physically-based model is very data in-

tensive, requiring catchment specific spatial and temporal data to describe the physical

characteristics of the system (Maier and Dandy, 2000b;ASCE Task Committee, 2000a).

These types of data are generally not available; therefore, in many cases intensive data

collection programs are required which can be both costly and time consuming, while

in other cases typical parameter values are selected from manuals or textbooks and may

provide little reflection of the actual values (Reckhow, 1999). Furthermore, development

of a physically-based model requires that all of the physical processes occurring within
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the system are understood sufficiently well to be described mathematically (Maier and

Dandy, 2000b). However, there still remain many components of hydrological systems

that are only poorly understood or are simply too complex to model accurately with math-

ematical relationships. Consequently, even the most complex physically-based models are

extreme simplifications of reality (Reckhow, 1999). Additionally, by attempting to simu-

late all of the processes that occur within a system, physically-based models are subject

to overparameterisation (Beven, 1989) and parameter redundancy (de Vos and Rientjes,

2005); thus the complexity of these models may, in fact, hinder model performance.

In order to overcome some of the limitations of physically-based models, conceptual

models only aim to represent key components of the hydrological system using simplified

descriptions of the physical mechanisms that occur (de Vos and Rientjes, 2005). Con-

ceptual models are therefore simpler than their physically-based counterparts, requiring

fewer parameters, and are also less data intensive. The hydrological system is commonly

conceptualised as a series of interconnected water stores, where empirical relationships

are used to describe the recharge and depletion processes that occur within and between

them (Kokkonen and Jakeman, 2001). While still based on conservation of mass, albeit on

a larger temporal and spatial scale, calibration of conceptual models with historical data is

required to estimate the parameters that govern the empirical equations. In general, con-

ceptual models do not exploit previously measured values of the output (i.e. streamflow),

except for calibration purposes, and assume that observed values of the independent in-

puts (e.g. rainfall and evaporation), together with the model structure, are sufficient to

describe the evolution of the system over time (Toth and Brath, 2002). However, errors

in the measured data, together with the various simplifying assumptions made concern-

ing the responses of the individual system components, introduce some level of error into

the predicted response of the system components (Beven, 1989). This error is then propa-

gated through the modelled evolution of the system and, thus, the lead time for predictions

made by conceptual models is limited (Toth and Brath, 2002). Furthermore, both concep-

tual and physically-based models require continuous data sets and cannot handle gaps in

the data. If data are missing, which is often the case, predicted values of the inputs must

be used (Heneker, 2002), further adding to the errors introduced into the model.

Empirical models are data-driven with the aim being prediction rather than explana-

tion (Grant et al., 1997). In other words, these models are developed primarily to extract

information contained in a set of observed data and use it to characterise system response,

rather than directly attempting to represent the physical processes occurring within the

hydrological system (Kokkonen and Jakeman, 2001;Toth and Brath, 2002). Empirical
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models are often referred to as “black-box” models, as inputs are presented to the model

and outputs are generated, with little regard given to the actual mechanisms being mod-

elled (ASCE Task Committee, 2000a;Toth and Brath, 2002). However, as these models do

not require in depth consideration of the underlying physical laws, they do not suffer from

the same drawbacks as physically-based and conceptual models, that arise due to an in-

adequate description of the physical processes. Furthermore, empirical models typically

use historical values of the target variable as inputs and are thus less affected by error

propagation through the model (Toth and Brath, 2002). Therefore, empirical models are

suited to modelling complex systems where the underlying relationships are unknown or

difficult to describe and where observed data are abundant (Qi and Zhang, 2001). Tradi-

tionally, the types of empirical techniques used for hydrological modelling have included

Box-Jenkins time series methods, and linear and nonlinear regression (Hipel and McLeod,

1994;Maier and Dandy, 2000b). More recently, machine learning techniques with routes

in artificial intelligence, which include, for example, model trees (MTs), support vector

machines (SVMs) and artificial neural networks (ANNs), have proven to be successful

empirical methods for many water resources applications (Solomatine, 2002). Of these

techniques, ANNs are by far the most popular and have received considerable attention

as a water resources modelling approach since the first publications in this field appeared

in 1992 (French et al., 1992;DeSilet et al., 1992). The promising results of these initial

studies led to numerous comparisons between ANNs and more conventional hydrological

modelling methods, where in most cases it was shown that ANNs can perform at least as

well as, if not better than, many traditional models (Hsu et al., 1995;Shamseldin, 1997;

Tokar and Johnson, 1999;Dawson and Wilby, 1999;Toth et al., 2000;Thirumalaiah and

Deo, 2000). As a result, the popularity of ANNs in the field of water resources modelling

has increased dramatically since their first introduction (Maier and Dandy, 2000a).

2.2 ARTIFICIAL NEURAL NETWORKS (ANNS)

2.2.1 Background and Description

ANNs were first developed in the 1940s when they were originally designed to mimic the

functioning of the brain (McCulloch and Pitts, 1943). However, it has only been in the

last 20 or so years, since the development of new calibration techniques and the increase

in computational power, that their popularity in various fields as prediction tools has blos-

somed (Maier and Dandy, 2000a;de Vos and Rientjes, 2005). ANNs are mathematical

models composed of a number of highly interconnected processing units called “nodes” or
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“neurons”, which, individually, carry out rather simple and limited computations. How-

ever, collectively as a network, complicated computations can be performed due to the

connectivity between the nodes and the way in which information is passed through and

processed within the network (Flood and Kartam, 1994). ANNs are nonparametric, or

“model free”, and as such are able to model both linear and nonlinear functions without

prior specification of the functional form of the model (Qi and Zhang, 2001). Therefore,

when used for prediction, which is the focus of this thesis, ANNs can be considered as a

very general form of nonlinear regression model (Castellano-Ḿendez et al., 2004).

There are many different types of ANNs in terms of structure and mode of operation

(Flood and Kartam, 1994). These are generally classified according to network topology

and type of connectivity between the nodes, the type of data used, the way in which

the network ‘learns’ the underlying function and the computations performed by each

node (Sarle, 2002). Multi-layer perceptrons (MLPs) are the most popular and widely

used ANN structure for regression problems (Cheng and Titterington, 1994;Zhang et al.,

1998), including those relating to water quality and quantity (Maier and Dandy, 2000a;

Dawson and Wilby, 2001). Therefore, MLPs are the focus of this research and throughout

this thesis the term “ANN” will refer to an MLP unless stated otherwise.

2.2.2 Multi-Layer Perceptrons (MLPs)

Multi-layer perceptrons, as the name suggests, are made up of several layers of nodes.

As shown in Figure 2.1, the nodes are arranged into an input layer, an output layer and

one or more intermediate layers, called ‘hidden’ layers. Information in the form of a
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Figure 2.1 Layer structure of a multi-layer perceptron.
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vector of observed data values is passed through the network, generally in a forward

direction (feedforward), from one layer to the next. The input layer contains a node

corresponding to each input variable and information is received at this layer as a vector

of real valuesxK = (x1, . . . , xK). The values are then transmitted to each node in the

next layer via weighted connections, where the weight determines the strength of the

signal. At the nodes, the weighted values from the previous layer are summed together

with a weighted bias. The result is then passed through a (possibly) nonlinear transfer, or

activation, function to generate an activation level for that node. The activations are then

transmitted to the subsequent layer and the process is continued until the information

reaches the output layer. The activation level generated at themth output node is the

predictionŷm. Figure 2.2 shows the operation of a single hidden layer node.
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Figure 2.2 Operation of a single node.

The connection and bias weights,w, are the free parameters of the network and, in

order for the network to perform the desired function, appropriate values of these weights

must be estimated. The complexity of an ANN is dependent on the number of weights,

or dimension of the weight vectord, which is determined by the number of nodes in the

network. The input and output layer nodes are fixed according to the number of input

and output variables, respectively; however, the number of nodes in the hidden layers is

flexible and must be specified by the modeller. Therefore, model complexity is adjusted

by increasing or decreasing the number of hidden nodes. The complexity of the model

is also dependent on the choice of activation functiong(·), which may be any continuous

differentiable function. The most commonly used activation functions are sigmoidal type

functions, such as the hyperbolic tangent (tanh) and logistic functions (Maier and Dandy,

2000a).
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2.2.3 Training

ANN “training” can be compared to the calibration of coefficients in statistical models

(Maier and Dandy, 2001). During training the aim is to find values for the connection

and bias weights so that the outputs produced by the ANN approximate the training data

well. However, it is not sufficient to just reproduce solutions in the training data set;

rather, a generalised solution applicable to all examples is required (Flood and Kartam,

1994). ANNs, like all mathematical models, work on the assumption that there is a real

function underlying a system that relates a set ofK independent predictor variablesxK to

M dependent variables of interestyM . Therefore, the overall aim of ANN training is to

infer an acceptable approximation of this relationship from the training data, so that the

model can be used to produce accurate predictions when presented with new data. Thus,

if the function relating the measured target data to the model inputs is given by:

yM = f
(
xK ,w

)
+ ε (2.1)

wheref(·) is the function described by the ANN,w is a vector of weights that charac-

terise the data generating relationship andε represents random measurement noise, the

aim is to find the best estimate of the weight vector, which is denoted byŵ. This is

typically done by iteratively adjusting and optimising the weights such that some func-

tion of the difference between the measured target datayM and the predicted outputŝyM

(e.g. the sum squared errorEy = 1
2

∑
(yM − ŷM)2) is minimised. The term “generalise”

is used to imply that the functional formf(·) will not be explicitly revealed, but will

instead be represented by the estimated weightsŵ (ASCE Task Committee, 2000a).

Following training, the performance and generalisation ability (‘generalisability’) of

the ANN is checked by subjecting it to an independent validation data set.

2.2.4 Advantages

The increased popularity of ANNs for water resources modelling can be attributed to a

number of factors. Firstly, as mentioned above, modelling hydrological variables with

more conventional physically-based or conceptual models may be limited by a poor un-

derstanding of the complex interactions that are involved in the process (ASCE Task Com-

mittee, 2000a). Therefore, there are clear advantages to using empirical approaches such

as ANNs over knowledge-based methods, as they have the ability to extract the input-

output relationship from data without requiring an in-depth knowledge of the physics oc-

curring within the hydrological system (Zhang et al., 1998). Secondly, ANNs are able to

model nonlinear relationships (Hill et al., 1994). The majority of hydrologic processes are
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highly nonlinear in nature; however, when using empirical methods, water resources prac-

titioners have typically only used simple linear regression or time series models (Maier

and Dandy, 2000a). While there may be some advantages to using simple linear models in

terms of implementation and interpretation, these models are limited by the fact that they

are unable to capture the complex nonlinear nature of hydrological problems (Zhang et al.,

1998). Thirdly, ANNs have the ability to generalise solutions to new examples from pre-

vious ones. This makes ANNs relatively insensitive to noise in the data and, as inputs are

considered as variables, without regard for their membership to a time series, ANNs can

handle incomplete, discontinuous data sets (Dawson and Wilby, 2001;Castellano-Ḿendez

et al., 2004). Thus, ANNs have an advantage over both conceptual and Box-Jenkins time

series models, which do not have this generalisation ability (Zealand et al., 1999). Finally,

ANNs are relatively easy to use and are a highly flexible modelling approach (Maier and

Dandy, 2000a;Gaume and Gosset, 2003). The advantages presented thus far are not

exclusive to ANNs, and in fact, sophisticated statistical methods capable of performing

similar modelling tasks to those performed by ANNs (i.e. complex, nonlinear) have been

available for many years prior to the introduction of ANNs (Maier and Dandy, 2000a).

However, the need to prespecify the functional form of these model-based approaches has

limited their use, since there are too many possible nonlinear patterns, making it very dif-

ficult to formulate an appropriate nonlinear model (Zhang, 2001); hence, the preference

for simple linear statistical models (Maier and Dandy, 2000a). On the other hand, ANNs

are model free, allowing them to model both linear and nonlinear relationships without

requiring any restrictive assumptions about the functional form (Qi and Zhang, 2001),

giving them more general appeal than less flexible models (Zhang, 2001). Furthermore,

the complexity of ANNs can be easily adjusted by altering the number and configuration

of hidden nodes and/or the types of activation functions used, and ANNs can be easily ex-

tended from being univariate models to multivariate models (Maier and Dandy, 2000a).

In fact, the nonlinear and flexible functional form of ANNs makes it possible to model

any continuous function to an arbitrary degree of accuracy (Zhang et al., 1998), and as

such ANNs are often considered to be ‘universal function approximators’ (Cheng and

Titterington, 1994;Bishop, 1995;ASCE Task Committee, 2000b).

2.2.5 Issues and Limitations

Despite the increasing use of ANNs as hydrological models, a number of limitations and

methodological issues have caused them to be viewed sceptically by users of conven-

tional modelling methodologies (Chatfield, 1993a;Gorr, 1994;Hill et al., 1994;Gaume

Page 13



Chapter 2 – Research Background

and Gosset, 2003). During the development of an ANN there are many alternatives avail-

able to the modeller at each stage of the process (Maier and Dandy, 2000b). While this

provides great flexibility, there are no well established specification or diagnostic tests,

such as those commonly employed in traditional modelling, and therefore it is difficult

to provide any confidence that the developed model has a plausible theoretical interpre-

tation (Refenes and Zapranis, 1999). Failure to carefully consider ‘good practice’ model

identification principles is the main reason for contradictory or inconclusive results about

the predictive capability of ANNs in the literature (Zhang, 2001). However, due to the

lack of ANN development theory, and perhaps encouraged by the ability of an ANN to

develop a solution to a problem automatically, ANN users have commonly relied on arbi-

trary decisions for many key model development steps (Flood and Kartam, 1994;Maier

and Dandy, 2000a). Based on a review of the current literature, it is considered that the

most significant issues facing the wider acceptance of ANNs are generalisability, inter-

pretability and uncertainty.

2.2.5.1 Generalisability

As discussed in Section 2.2.4, one of the main advantages of ANNs is the ability to infer

a generalised solution to a problem (Flood and Kartam, 1994), yet, actually obtaining

good generalisation can be very complicated (Sarle, 2002). Firstly, to achieve appropriate

generalisation, the training data set must be of sufficient quality and quantity such that it

contains enough reliable information relating the input variables to the targets (ASCE Task

Committee, 2000a;Tokar and Johnson, 1999). This requires selection of the necessary

model inputs, which, for a hydrological system, involves deciding which are the important

causal variables and which time lagged values of these variables are necessary to account

for the time structure in the data (Maier and Dandy, 2001). As the problems modelled

by ANNs are typically poorly understood, selecting the correct inputs is a difficult task,

yet it is also one that has a significant impact on the prediction ability of an ANN: the

inclusion of unnecessary inputs can confuse the training process by adding irrelevant

information, whereas omitting important inputs results in a loss of information that leads

to poor prediction performance (ASCE Task Committee, 2000a). Furthermore, to achieve

generalisation, the training data must be a representative sample of the population from

which the data were generated. Due to the lack of physical principles incorporated into

ANNs, they generally do not perform well on data outside the domain of that used to

calibrate the model (i.e. extrapolation), as there is no information regarding the form

of the solution surface outside of this region (Flood and Kartam, 1994;Toth and Brath,
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2002). As stated byBienenstock and Geman(1994):

...statisticians know that generalisation (good performance on samples not in

the training set) depends almost entirely on the extent to which the training

set is representative, and/or the structure of the problem happens to accom-

modate the models used. It is too much to expect statistical methods to “dis-

cover”, by themselves, complex and nontrivial structure...

Consequently, it is important to include enough data in the training set such that extrap-

olation is avoided (Sarle, 2002;ASCE Task Committee, 2000b). However, this may not

always be possible, as many hydrologic records do not go back far enough.

Secondly, generalisability is closely related to model complexity; thus the network

geometry that provides the appropriate level of complexity for the problem under con-

sideration must be selected. As the number of input and output nodes are fixed by the

number of input and output variables in the model, network geometry is determined by

the number of hidden layers and hidden layer nodes in the network. Selecting the opti-

mal number and configuration of hidden layer nodes is one of the most critical and most

difficult tasks in designing an ANN (Qi and Zhang, 2001). It is highly problem depen-

dent and, although a number of ‘rules of thumb’ have been suggested in the literature that

relate the number of training samples and the number of connection weights, there is no

universally accepted theoretical basis to guide selection (Maier and Dandy, 2000a;de Vos

and Rientjes, 2005). As a consequence, network geometries are commonly found using

trial-and-error approaches (Zhang, 2001). In determining the number of free parameters

of a network, a compromise is required between the ability to approximate the underlying

function and the generalisation ability of the network (Dawson and Wilby, 2001). With

too few hidden nodes, the network may not have sufficient free parameters to correctly

estimate the complex relationship between inputs and outputs and as a result the underly-

ing function is approximated poorly, or ‘underfitted’. On the other hand, too many hidden

nodes can lead to ‘overfitting’, where, rather than inferring the general underlying trend,

noise and spurious features of the training data are learnt, which results in poor gener-

alisation on samples not contained in the training data (ASCE Task Committee, 2000a;

Maier and Dandy, 2000a;Dawson and Wilby, 2001). While overfitting also occurs in

conventional models with many parameters, it is more common in ANNs due to the typ-

ically large number of parameters set to be estimated (Zhang, 2001). Furthermore, it has

been suggested that model selection criteria commonly used to select the optimal level

of complexity for conventional statistical models, such as Akaike’s information criterion

(AIC) and the Bayesian information criterion (BIC), over-penalise complexity in ANNs
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and emphasise overly simple models (Qi and Zhang, 2001).

Finally, good generalisation relies on appropriate estimation of the network weights.

ANN training is a multidimensional nonlinear optimisation problem and obtaining good

estimates of the network weights can be problematic. The nonlinearity and high dimen-

sionality of the problem can lead to the existence of multiple local and flat optima on

the solution surface (van der Smagt and Hirzinger, 1998). Training algorithms may be-

come trapped in local minima rather than converging on the global solution and, although

sophisticated global optimisation algorithms have been developed, there is still no algo-

rithm that can guarantee global convergence in a reasonable amount of time (Zhang et al.,

1998). Furthermore, as discussed above, ANNs are susceptible to overfitting (also referred

to as ‘overtraining’), which results in weight estimates that do not provide a general rep-

resentation of the underlying function. Various methods can be used during training to

prevent overfitting. These can generally be categorised into two main groups: those that

reduce the effective size of the network, and those that stop training before overfitting

can occur. Methods belonging to the latter group are those most commonly used to avoid

overfitting (Sarle, 1995). Such methods ensure that the network has sufficient flexibility

(degrees of freedom) to fit the data accurately if it were allowed to train to convergence;

however, to prevent overfitting, training is stopped early (De Veaux et al., 1998). A typi-

cal approach employed to determine when to stop training is known as ‘cross-validation’

(Ripley, 1994), which involves the use of a test data set to determine when the network is

beginning to overfit the training data (Dawson and Wilby, 2001). In the initial stages of

training, errors for both the training and test data sets should decrease at approximately

the same rate. When overfitting begins, the training errors continue to decrease but test

set errors begin to rise (ASCE Task Committee, 2000a), hence training is stopped at this

point. However, as noted byRipley(1994), there are a number of difficulties associated

with the use of cross-validation, including:

1. There is no guarantee that the path taken by the optimisation algorithm is sensible.

2. The test set error often rises and falls a number of times making it difficult to deter-

mine when the best point on the path has been reached.

3. The use of a test set wastes data.

In regard to this last point, partitioning the available data into a greater number of subsets

reduces the amount of information contained in the training data. In some cases, there

may not be sufficient data available to allow for a test set. In such cases, training may

simply be stopped when the training error has reached a sufficiently small value or when it
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ceases to decrease significantly (ASCE Task Committee, 2000a;Maier and Dandy, 2000a);

however, this requires the subjective choice of what is a ‘sufficiently small’ error.

Methods belonging to the former group include regularisation and pruning algorithms.

These methods begin with a network that is flexible enough to fit the training data accu-

rately and subsequently remove or disable unnecessary weights and/or nodes during train-

ing (Maier and Dandy, 2000a). Regularisation involves the use of a penalty term which

is added to the error function in order to penalise model complexity and ensure smoother

mappings (Bishop, 1995). The regularised error function to be minimised is therefore

given by:

Eregularised = Ey + αEw (2.2)

whereEy is the error on the data,Ew is the penalty term that measures model complexity

andα is a regularisation coefficient that determines the influence of the penalty term on

the solution. A commonly used regulariser is known as ‘weight decay’ and has the form

(Bishop, 1995):

Ew =
1

2

d∑
i=1

w2
i (2.3)

This term penalises large weights, forcing them to decay exponentially to zero, hence

reducing the effective model complexity. However, determining the magnitude of the reg-

ularisation coefficientα is difficult, yet critical to the generalisation ability of the network

(Sarle, 2002); if it is chosen to be too small, overfitting may still occur, whereas if it

is chosen to be too large, underfitting is a problem (Neal, 1996a). It has been noted by

Anders and Korn(1999) that the regularisation coefficients usually do not result from the-

oretical reasoning but are instead set in an ad hoc fashion, and moreover, may involve the

use of a cross-validation, or testing, data set, which again results in inefficient use of the

available data (Bishop, 1995). Furthermore, to ensure good generalisation, different types

of weights in the network usually require different regularisation coefficients (Bishop,

1995). According toSarle (2002), for a one hidden layer MLP, at the very least two

different regularisation coefficients are required for the input-hidden and hidden-output

weights. In general, pruning algorithms are used to remove weak connections (i.e. small

absolute weights) (Abrahart et al., 1999) or elements (weights or nodes) that have mini-

mal effect on the error function (i.e. elements to which the error function is insensitive)

(Reed, 1993). However, a question which then arises is at what threshold value should

elements be removed from the network (Olden and Jackson, 2002)?
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Ideally, achieving good generalisability would involve selecting an ANN of optimal

complexity, where optimality is defined as the smallest network that adequately captures

the underlying relationship, and then estimating its weights from a set of good quality

training data, which properly represent the population from which the data were gener-

ated. However, when modelling water resources systems, there are too many factors that

are unknown or cannot be controlled. When the system is poorly understood, it cannot

be guaranteed that all important inputs are included in the model and that a network

providing the optimal level of complexity will be selected. Furthermore, modellers of

environmental systems often have to make do with available data, either due to time or

monetary constraints, and these data may not be of sufficient quality and/or quantity to

derive appropriate estimates for the weights. Currently used ANN development methods

are either incapable of ensuring good generalisability, given these factors, or due to the

lack of systematic guidelines, are not appropriately employed to develop the best model

of the system given the available data.

2.2.5.2 Interpretability

ANNs are much less interpretable than other empirical modelling methods, such as tra-

ditional times series and regression models (Hill et al., 1994). Any explanation of the

internal behaviour of an ANN is only revealed back to the user in the form of an “op-

timal” weight vector, which is difficult to interpret as a functional relationship. Conse-

quently, ANNs are frequently criticised for operating as “black-box” models (ASCE Task

Committee, 2000a), where solutions to a problem are automatically generated with no

consideration or explanation of the physical process being modelled (Sudheer and Jain,

2004;Olden and Jackson, 2002).

As the data used to develop ANNs contain important information about the physi-

cal process being modelled, it is generally implied that once an ANN has been trained

and validated, the trained model represents the physical process of the system (Sudheer,

2005). However, a consequence of the training problems presented in the previous sec-

tion is that many combinations of weights may result in similar network performance.

Due to the poor interpretability of ANN weights, there is no way to directly distinguish

which combination of weights best approximates the underlying relationship. While the

calibration problems presented also apply to many conventional models to some extent,

it is usually easier to validate the modelled function against a priori knowledge. Black-

box models are generally undesirable as predictive models, as it is difficult to determine

whether the model will behave correctly when presented with previously unseen data; in
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other words, it is hard to trust their reliability (Beńıtez et al., 1997). Thus, due to their

inability to explain, in a comprehensible way, the process by which the model outputs are

generated, the utility of ANNs as prediction tools is limited (Andrews et al., 1995).

Recently, efforts have been made to develop hybrid ANN/knowledge-based models

which exploit the strengths of each individual approach (See and Abrahart, 2001;Gan-

guly, 2002;Coulibaly et al., 2005). A common approach for developing a hybrid ANN is

to use a physical model as the basis, with the ANN calculating unknown or immeasurable

parameters (Aguiar and Filho, 2001). This way, aspects of the system that are well under-

stood are described by mathematical equations, whereas the ANN can be used to estimate

the unknown components (Lee et al., 2002). An alternative approach is to use the ANN

to model the residuals between the physical model and the target data. As such, the ANN

models the gap in knowledge between the physical model and the actual process (Côté

et al., 1995). A further alternative is to use a weighted combination of the physical model

and ANN outputs, where the weights assigned to each model are determined by consider-

ing the variances of the forecast errors of the individual models (Coulibaly et al., 2005).

Each of these methods results in a “grey-box” model of the system (De Veaux et al.,

1999), where the overall model has physical basis and interpretation, yet the limitations

due to an inadequate description of the complex physical system are overcome using the

strengths of data-based black-box methods. However, a requirement for the development

of hybrid ANNs is that there exists a knowledge-based (physical or conceptual) model of

the system.

In order to increase the transparency of ANNs and overcome their black-box image in

the absence of a knowledge-based model, extraction of the knowledge locked up within

a trained ANN has become an active and evolving discipline (Tickle et al., 1998). Since

the late 1980s, a number of methods have been proposed in the literature for interpreting

what has been learnt by an ANN (Montãno and Palmer, 2003); however, there is currently

no widely accepted method for doing this. The hidden units in ANNs can be thought of

as representing “derived features” (Craven and Shavlik, 1997) of the modelled system.

Therefore, recent attempts have been made in the field of hydrological modelling to un-

derstand the relationships represented by the hidden nodes by relating the outputs of the

individual hidden neurons to components of the hydrological system (Wilby et al., 2003;

Jain et al., 2004;Sudheer and Jain, 2004). However, because of the distributed nature of

ANNs, individual hidden units generally do not correspond well with features in the prob-

lem domain, e.g. the baseflow component of a flood hydrograph. Rather, these physical

components are likely to be encoded across a number of hidden nodes, and similarly, each
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hidden node may partially represent a number of different system components (Craven

and Shavlik, 1997).

On a more general level, the methods used to interpret trained ANNs can usually be

categorised as those that translate the function modelled by the ANN into a set of sym-

bolic rules that are easier to interpret by the user (i.e. rule extraction methods) (Beńıtez

et al., 1997), and those that aim to understand the function modelled by quantifying the

strength of the relationships between individual inputs and the output (i.e. input impor-

tance measures) (Sarle, 2002).Andrews et al.(1995) andTickle et al.(1998) review the

relative merits of the various rule extraction methods available for ANNs. With the ex-

ception ofMaier et al. (2000, 2001), who applied a neurofuzzy approach for predicting

riverine cyanobacteria concentrations, there appear to have been very few attempts to ap-

ply rule extraction methods to ANNs in the field of water resources modelling. Possible

reasons for this could be some of those noted byTickle et al.(1998), including that the

computational complexity of rule extraction algorithms may be a limiting factor on what

is achievable from these techniques. Overall, there have been limited attempts to interpret

ANNs trained to model water resources variables; however, those that have been made

have tended to favour methods that indicate the influence of input variables on the output,

such as sensitivity analysis (Maier et al., 1998;Jeong et al., 2001;Walter et al., 2001),

saliency analysis (Abrahart et al., 2001) and perturbation analysis (Sudheer, 2005). All

available methods for quantifying the importance of ANN inputs have limitations, and

in acknowledging this,Sarle(2002);Olden and Jackson(2002);Olden et al.(2004) and

Gevrey et al.(2003) have reviewed and compared such methods. However, while each of

these comparisons provides a good reference, it is considered that they are inadequate to

indicate a ‘best’ measure. The comparison carried out bySarle(2002) is based on a sim-

ple, nonlinear function with weights of an MLP specified to fit the function. However, the

weights specified are unrealistic of those that would result if the ANN was trained in the

usual manner and it is therefore considered that the results of the comparison do not fairly

represent the relative performances of different input importance measures under normal

circumstances. It was argued byOlden et al.(2004) that the comparison byGevrey et al.

(2003) was based on empirical data, however, to establish the accuracy of the different

measures the true correlation structure of the data needs to be known. Therefore, they

carried out their own comparison using synthetically generated data with known corre-

lation structure. However, this data set was generated by a linear function, and as one

of the complicating factors of using certain input importance measures arises due to the

“squashing” effect that nonlinear activation functions have on the weights (Sarle, 2002),

Page 20



Artificial Neural Networks (ANNs) – Section 2.2

it is considered that this comparison is also inadequate. In addition, one of the factors

that limits the use of most input importance measures is that the inputs are required to

be independent, meaning that a method must be used either before or during training to

ensure that only relevant independent inputs remain in the network (Féraud and Cĺerot,

2002).

It is unlikely that there will ever be a method to perfectly summarise the relationship

modelled by an ANN without considering the actual input-output function computed. Nev-

ertheless, in order to validate ANN models against a priori knowledge or gain information

about the physical system from ANNs, the best way to interpret the relationship modelled

by an ANN needs to be identified. Comparative investigations that have attempted to do

this in the past have been limited due to the way in which the investigations were car-

ried out and, consequently, there is still no recommended ‘best’ method for improving

the interpretability of ANNs, which is necessary for them to overcome their “black-box”

image.

2.2.5.3 Uncertainty

In spite of the black-box characteristics of ANNs and the difficulty associated with ob-

taining good generalisability, ANNs in the field of water resources modelling have been

almost exclusively deterministic, with little regard given to the uncertainty associated with

the predictions generated (Maier and Dandy, 2000a). It is widely accepted that water re-

sources models are subject to uncertainty due to the stochastic nature of natural processes,

the limitations of a finite calibration data set and the inability of models to accurately de-

scribe these complex processes (Beck, 1987;Chow et al., 1988;Kavetski et al., 2002).

This is particularly the case for ANNs, whose parameter values are determined entirely

by calibration, the problems of which were discussed in section 2.2.5.1.

Quantifying the uncertainty associated with water resources models is extremely im-

portant, as suppressing this information can create a false sense of security in the predic-

tions generated. As a consequence, inappropriate design or management strategies may

be implemented that can, in turn, result in significant social and economic loss (Krzyszto-

fowicz, 2001). Thus, in order to increase the usability of ANNs in water resources mod-

elling, the predictions need to be supported by an associated confidence measure, which

indicates the quality of the predictions.

Prediction intervals may be used to express upper and lower limits between which a

prediction is expected to lie at a given probability (Chatfield, 1993b). Such an interval

measures the accuracy of an ANN’s output with respect to the observed data (i.e.y −
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ŷ) and should encompass a measure of the accuracy of the estimated system function

(i.e. f(x,w)− ŷ) and a measure of the accuracy of the observed data (i.e.ε in (2.1))

(Heskes, 1997). For a given model structure, estimating the prediction intervals is then

a problem of estimating the distributions ofε andw. It is generally assumed thatε is

an independent normally distributed random variable with mean of zero and constant

variance (i.e.ε ∼ N(0, σ2
y)) (Chatfield, 1993b;Tibshirani, 1996;De Veaux et al., 1998),

therefore estimates are required forσ2
y andp(w|y,x), the conditional probability density

function (PDF) of the weights given the observed data.

Several methods borrowed from nonlinear regression methodology have been applied

to construct prediction intervals for ANNs. These are typically based on classical analysis

(White, 1989;Hwang and Ding, 1997;De Veaux et al., 1998), bootstrapping (Tibshirani,

1996;Heskes, 1997) and Bayesian methodology (Buntine and Weigend, 1991;MacKay,

1992a;Neal, 1992). Classical analysis techniques utilise a first-order linear approximation

of the model functionf(·) at the optimum weight values. This requires that the weights

are uniquely identifiable, yet as pointed out byHwang and Ding(1997), ANN weights

are, by their nature, unidentifiable; therefore, classical methods are not directly applica-

ble to estimate the uncertainty in the weight estimates. Nevertheless, they showed that the

prediction limits calculated by this method were still asymptotically valid when the ANN

was trained to convergence. However,De Veaux et al.(1998) demonstrated that stan-

dard classical methods were inaccurate when applied to estimating prediction intervals of

ANNs. Firstly, they found that by ensuring convergence during training, overfitting oc-

curred and, as a consequence, the limits were too narrow. Secondly, by stopping training

early to prevent overfitting, it was found thatσ2
y was overestimated and the resulting pre-

diction limits were too wide. Furthermore, the linear approximation requires calculation

of the Hessian matrix (matrix of second derivatives of the error function with respect to

the weights). This matrix can be nearly singular when the number of parameters is large,

which leads to instability and prediction intervals that are much too wide in some cases

(De Veaux et al., 1998). To overcome these problems, they combined classical theory

with weight regularisation to reduce the effective number of weights in the network.

Tibshirani (1996) compared the performance of a number of different methods for

constructing prediction intervals based on classical techniques and on bootstrapping. Boot-

strapping works by creating many pseudo-replicates of the training data set and re-eval-

uating new values of the network weights based on each different training set. The data

are sampledwith replacementto form training data sets of the same size as the available
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data. The standard error for theith predicted value can then be calculated by:

s =

{
1

B − 1

B∑
i=1

[
f(xi, ŵ

b)− f(xi, ·)
]2}1/2

(2.4)

whereB is the number of bootstrap samples,ŵb is the estimated weight vector for the

bth sample andf(xi, ·) =
∑B

i=1 f(xi, ŵ
b)/B. The advantages of this approach is that it

is a distribution-free approach (Chatfield, 1993b) and does not require linearization of the

modelled function, which may not be valid for a nonlinear model (De Veaux et al., 1998).

Tibshirani(1996) found that the bootstrap methods provided the most accurate estimates

of the prediction variance and that the methods based on local linearization were often

inaccurate due to convergence to local optima. Furthermore, it was found that prediction

intervals could not be estimated by the classical techniques when the number of weights

was large and weight decay was not used, due to difficulty in computing the Hessian

matrix because of near singularities. However, a limitation of bootstrapping methods is

that for each of theB samples, the ANN needs to be retrained. AsB is typically in the

range20 ≤ B ≤ 200 (Tibshirani, 1996) these methods are very computationally intensive

(Chatfield, 1993b). Moreover, as noted byOssen and R̈uger(1998), local optima can lead

to prediction intervals that are too wide.

Papadopoulos et al.(2001) compared the performance of classical, bootstrapping and

approximate Bayesian methods for estimating prediction intervals when applied to an

example where the distribution ofε was dependent upon the model inputs. Their results

showed that the accuracy of the classical and bootstrapping methods was approximately

equal. However, problems with calculating the Hessian matrix for classical methods were

again reported in this study. Additionally, it was found that the bootstrapping method

consistently overestimated the width of the prediction intervals, supporting the comment

made byOssen and R̈uger(1998). Overall, the approximate Bayesian approach was found

to give the most accurate prediction intervals. Unlike standard ANN approaches, Bayesian

methodology is used to make predictions based on the posterior probability distribution of

the weightsp(w|y,x), which explicitly accounts for the uncertainty associated with the

weight estimates (Bishop, 1995). The method investigated byPapadopoulos et al.(2001)

was considered to beapproximateBayesian because the posterior weight distribution was

approximated by a Gaussian distribution. Exact Bayesian methods, on the other hand,

do not make this assumption, rather, Markov chain Monte Carlo integration is used to

estimate the distribution nonparametrically (Neal, 1992, 1996a).Papadopoulos et al.

(2001) considered this exact Bayesian approach to be too computationally expensive and

inappropriate for multidimensional, real-world applications.
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Classical methods for estimating prediction limits are unsuitable for application to

ANNs. These methods require a linear approximation of the nonlinear model function at

the optimal weights, which, if not estimated correctly, can result in bounds that are either

too narrow or too wide. Furthermore, calculation of the Hessian matrix required for the

linearization may be difficult due to near singularities. Bootstrapping methods for esti-

mating prediction limits can be time consuming and may be incorrect if affected by local

minima in the error surface, resulting in bounds that are too wide. Approximate Bayesian

methods may also be inappropriate due to the Gaussian approximation of the posterior

weight distribution that is used. While an exact Bayesian approach for estimating pre-

diction limits has previously been considered too computationally intensive, this method

appears to be most suitable for ANNs and, with the increases in computer power, it is

considered that this method warrants further investigation.

2.3 BAYESIAN METHODS

2.3.1 Background to Bayesian Methodology

The philosophy behind Bayesian inference is that any prior beliefs regarding unknown

parameter values are updated based on new information contained in an observed set of

data, to yield a posterior probability distribution of the parameters. This statement is

usually referred to asBayes’ theorem. Put generally, ify is a set of observed data whose

probability distribution depends on the values of a set of parametersθ, Bayes’ theorem

can then be used to infer the conditional distribution of the unknownθ given the observed

datay as follows:

p(θ|y,H) =
p(y|θ,H)p(θ|H)

p(y|H)
(2.5)

In this expression, the assumed model of the situationH is a conditioning statement upon

which the probability forθ is based. The distributionp(θ|yH), is called theposterior

distribution ofθ given the datay, or simply, the “posterior”. It describes what is known

about the parameter values given knowledge of the data. On the other hand,p(θ), de-

scribes what is known aboutθ without knowledge of the data. It is known as the prior

distribution of the parametersθ, or the “prior”. The distributionp(y|θ,H) is known as

the “likelihood” of θ and it describes the information aboutθ contained in the datay.

It is this information that is used to update the prior distribution to obtain the posterior

(Box and Tiao, 1973;MacKay, 1995a). The denominatorp(y|H) is a normalising con-

stant known as the ‘evidence’ of the model (MacKay, 1992a;Rasmussen, 2001) or the
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‘marginal likelihood’ (Chib and Jeliazkov, 2001;Titterington, 2004) and is given by:

p(y|H) =

∫
p(y|θ,H)p(θ|H)dθ (2.6)

As Bayesian inferences are based ona priori knowledge and conditional assumptions,

they can be considered to be subjective. However, it is not possible to generalise about

data without making assumptions (MacKay, 1995a), thus, conventional deterministic mod-

els are also subjective in a sense. The only difference is that Bayesian methodology makes

explicit all assumptions that are made. As stated byLampinen and Vehtari(2001), this

is a considerable advantage of the Bayesian approach, as it gives a principled way to do

inference when some of the prior knowledge is lacking or vague, so that one is not forced

to guess values for attributes that are unknown.

2.3.2 Use of Bayesian Methods in Water Resources Modelling

In recent years, there has been an upsurgeance in the use of Bayesian methodology in var-

ious scientific fields (Malakoff, 1999), including hydrological and water resources mod-

elling (Kuczera, 1983;Kuczera and Parent, 1998;Beven and Binley, 1992;Romanowicz

et al., 1994;Reichert and Omlin, 1997;Omlin and Reichert, 1999;Bates and Camp-

bell, 2001;Thiemann et al., 2001;Kavetski et al., 2002;Thyer et al., 2002;Vrugt et al.,

2003;Marshall et al., 2004). While the importance of incorporating uncertainty analysis

into water resources modelling has been emphasised by a number of authors (Beck, 1987;

Reckhow, 1994;Beven, 1993;Krzysztofowicz, 2001), the limitations of classical statistical

methods traditionally used for this purpose have also been noted (Kuczera, 1988;Omlin

and Reichert, 1999;Vrugt and Bouten, 2002). In particular, classical methods relying on

first-order linear approximations are typically unable to cope with the nonlinearity of hy-

drologic models (Kuczera and Parent, 1998), especially when the parameters are poorly

identifiable (Omlin and Reichert, 1999).

Under the Bayesian paradigm, uncertainty in the model parameters is handled explic-

itly by estimating parameter distributions, rather than point values. Theoretically, this

eliminates the need to linearly approximate the prediction intervals based on uniquely

identified optimal parameter estimates, as the probability of a model’s responseyN+1,

given future input valuesxN+1 and the data used to calibrate the modely, can be evalu-

ated based on the entire posterior parameter distributionp(θ|y) by the integral:

p(yN+1|xN+1,y) =

∫
p(yN+1|xN+1, θ)p(θ|y)dθ (2.7)

However, in practice, the high dimensionality of this integral makes its evaluation with

conventional analytical or numerical integration techniques virtually impossible (Kuczera,
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1988;Marshall et al., 2004). Thus, approximate analytical solutions requiring the as-

sumption of normally distributed parameters and either first-order (Kuczera, 1983, 1988)

or second-order analysis (Kuczera and Mroczkowski, 1998) have been used in the past

due to their computational efficiency. Again, these approximations can lead to a very

poor approximation of prediction uncertainty for reasons noted.

With advances in computers, attention has now turned to more computationally in-

tensive Monte Carlo based methods for estimating parameter uncertainty (Kuczera and

Mroczkowski, 1998;Gaume et al., 1998). Such methods include regionalised sensitivity

analysis (Hornberger and Spear, 1981;Beck, 1987), generalised likelihood uncertainty

estimation (GLUE) (Beven and Binley, 1992;Beven, 2001), and Markov chain Monte

Carlo (MCMC) methods (Kuczera and Parent, 1998;Bates and Campbell, 2001;Borsuk

et al., 2001;Vrugt et al., 2003;Marshall et al., 2004). Each of these methods scan, in ei-

ther a random or systematic way, the range of possible parameter vectors to identify those

that give an acceptable result (Gaume et al., 1998). After a sufficient number of trials, the

acceptable parameter vectors sampled should converge to the posterior distribution of the

parameters (Beck, 1987). However, as stated byBrun et al.(2001),

Current applications of the Bayesian methodology, however, are still suffer-

ing from very time consuming calculations. They are restricted to models

with short simulation times and a moderate number of parameters in order to

keep computational costs reasonably low.

This is possibly the reason why the use of Bayesian methodology in water resources

modelling has been limited to simple conceptual and data-based mechanistic models and

traditional statistical models with few parameters.

2.3.3 Bayesian Neural Networks

Bayesian methodology has been applied to ANNs since the early 1990s, when it was

first used byBuntine and Weigend(1991),MacKay(1992a) andNeal(1992). The use of

‘Bayesian neural networks’ has since been reviewed byBishop(1995),MacKay(1995a),

Neal (1996a),Lampinen and Vehtari(2001) andTitterington (2004). Unlike standard

ANN approaches, the aim under the Bayesian framework is not to find a single “optimal”

weight vector, but rather, it is to explicitly represent the uncertainty in the values of the

weights by a posterior probability distribution.

MacKay(1992a, 1995a) describes two levels of Bayesian inference that can be per-

formed in ANN modelling: the first level involves inference of the network weights under

Page 26



Bayesian Methods – Section 2.3

the assumption that the chosen ANN structure is “true”, while the second level involves

model comparison in light of the data and the estimated weight distributions. In this re-

search, these two levels of inference will be considered in terms of ANN ‘training and

prediction’ and ‘model selection’, respectively. The advantages of the Bayesian neural

network framework, given the two levels of inference, are briefly summarised as follows

(Bishop, 1995;Neal, 1992;Rasmussen, 1996):

• Uncertainty in both the model parameters and the predictions is handled explic-

itly. Predictive distributions are calculated by integrating the predictions from all

possible weight vectors over the posterior weight distribution, thus allowing predic-

tion intervals to be assigned and achieving better generalisation than standard ANN

approaches (as overfitting is avoided to some extent).

• The Bayesian framework provides a natural interpretation for regularisation, allow-

ing overfitting to be avoided in a consistent manner. Values of the regularisation

coefficients (i.e.α in (2.2)) are selected automatically using only the training data;

thus, a separate testing data set is not required.

• Complex networks can be used without fear of overfitting the data. Therefore, more

structure can be learnt from the data, improving prediction accuracy. Furthermore,

a relatively large number of regularisation coefficients can be used, which would

not be computationally feasible if their values had to be found by cross-validation.

• ANNs of varying complexity can be compared in an objective and principled man-

ner, using only the training data. The ‘evidence’ of an ANNp(y|H) (see Section

2.3.1) is the likelihood that the given modelH is the “true” model, given the data

y. This term automatically penalises overly complex models and therefore can be

used to select the optimum level of complexity for modelling the data.

• The relative importance of different inputs can be determined using the Automatic

Relevance Determination (ARD) method ofMacKay(1994) andNeal(1996a, 1998).

2.3.4 Training and Prediction

As discussed in Section 2.2.3, the aim of standard (deterministic) ANN training is to find a

single optimal weight vector̂w that provides the best fit of the model to the observed data

y. The aim of Bayesian training, on the other hand, is to infer the posterior probability

distribution of the weights given the observed datap(w|y) (Bishop, 1995). This posterior
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weight distribution can then be used to make probabilistic predictions given new values

of the model inputs. However, the first problem involves estimation of the posterior.

2.3.4.1 Bayesian Training (Posterior Weight Estimation)

When applied to estimate the weights of an ANN, Bayes’ theorem, given by (2.5), can be

written as:

p(w|y,X,H) =
p(y|w,X,H)p(w|X,H)

p(y|X,H)
(2.8)

The observed set of input dataX = (xK
1 , . . . ,xK

N ) and the model structureH are the

conditional assumptions upon which the probability measure for the weights is based

(MacKay, 1995a). When only considering one model (as is the case when applying the

first level of inference), it is common to drop these conditioning terms (Bishop, 1995) to

simplify the notation. Furthermore, the normalising constantp(y|X,H) is irrelevant at

this level of inference and as such it is commonly ignored (MacKay, 1992a). Therefore

(2.8) can be simplified as follows:

p(w|y) =
p(y|w)p(w)

p(y)
∝ p(y|w)p(w) (2.9)

which states that the posterior weight distribution is proportional to the product of the

likelihood of the weights and the prior weight distribution. Therefore, before inferences

can be made about the posterior of the weightsp(w|y), choices must be made about the

likelihood functionp(y|w) and prior weight distributionp(w).

As the likelihood functionp(y|w) is commonly regarded as a function of the weights

w rather than as a function of the datay, it may be written asL(w|y), or simplyL(w)

(Box and Tiao, 1973;Neal, 1996a). For a set ofN statistically independent observed data

points, the likelihood is equal to:

L(w) = L(w|y1, . . . , yN)

∝ p(y1, . . . , yN |w) =
N∏

i=1

p(yi|w) (2.10)

This function is defined up to a multiplicative constant, as it is only the relative value

of the likelihood which is of importance. As discussed in Section 2.2.5.3, it is generally

assumed thatε in (2.1) is normally and independently distributed with zero mean and

constant varianceσ2
y. Under this assumption, the likelihood function is given by:

L(w) =
N∏

i=1

1√
2Πσ2

y

exp

{
− [yi − f(xi,w)]2

2σ2
y

}
(2.11)
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In the simplest case, the prior probability distribution for each of the network weights

is also assumed to be normal with zero mean and constant varianceσ2
w (Ragg et al., 2002).

p(w) =
d∏

i=1

p(wi) =
d∏

i=1

1√
2Πσ2

w

exp

(
− w2

i

2σ2
w

)
(2.12)

This prior is selected based on the experience that the values of the weights can be positive

and negative with equal probability and that the weights have a finite variance (Thodberg,

1996). It also restricts the complexity of the ANN, as small weight values are sought

(Ragg et al., 2002). By rewriting (2.9) as:

p(w|y) ∝ exp

{
−

(
1

2σ2
y

N∑
i=1

[yi − f(xi,w)]2 +
1

2σ2
w

d∑
i=1

w2
i

)}

∝ exp

{
−
(

1

σ2
y

Ey + αEw

)}
(2.13)

it can be seen that the form of prior given by (2.12) is equivalent to weight decay (i.e.

Ew = 1
2

∑d
i=1 w2

i , see Section 2.2.5.1), withα = 1/σ2
w; thus, regularisation is auto-

matically incorporated into the Bayesian framework in the form of priors on the weights

(MacKay, 1992a;Titterington, 2004).

The variance terms upon which both the likelihood function and prior distribution

depend (i.e. σ2
y and σ2

w, respectively) are generally referred to as ‘hyperparameters’

(MacKay, 1995a;Neal, 1996a;Lampinen and Vehtari, 2001), as they play an important

role in estimating the posterior weight distribution, but ultimately play no part in the de-

veloped model. In a full Bayesian approach, no fixed values are used for any parameters

or hyperparameters (Lampinen and Vehtari, 2001); therefore, both the weightsw and the

hyperparameters
{
σ2

y, σ
2
w

}
are estimated as follows:

p(w, σ2
w, σ2

y|y) =
p(y|w, σ2

y)p(w|σ2
w)p(σ2

w, σ2
y)

p(y)
(2.14)

Estimation of the parameters is given a hierarchical treatment (Lampinen and Ve-

htari, 2001;Ragg et al., 2002), where the lower level of the hierarchy is comprised of

the weightsw, while the upper layer consists of the hyperparameters that control the dis-

tributions of the weightsσ2
w and the noise levels in the regression modelσ2

y. The hyperpa-

rameters are then assigned their own priors or ‘hyperpriors’ (p(σ2
w, σ2

y) in (2.14)), which

are generally vague or ‘noninformative’ and enable the hyperparameter distributions to

be determined automatically from the data (Bishop, 1995;Neal, 1996a;Lampinen and

Vehtari, 2001). While the parameterσ2
y is not strictly a ‘hyperparameter’, as it does not
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control the distribution of the lower level parameters (Neal, 1996a), it is commonly re-

ferred to as such in the Bayesian neural network literature and is treated in the same way

asσ2
w (Neal, 1992;MacKay, 1992a,b;Buntine and Weigend, 1991).

As discussed in Section 2.2.5.1, different groups of weights within the network require

different regularisation coefficients. Therefore the prior in (2.12), based on the common

hyperparameterσ2
w, is generally not a good choice for the network weights. One of the

great advantages of the Bayesian framework is that a large number of hyperparameters

(which correspond to regularisation coefficients) can be used since they are determined

automatically (Ragg et al., 2002). Therefore, a more general and flexible prior distribution

is the product ofG different normal distributions, whereG is the number of different

weight groups (i.e.w = {w1, . . . ,wG} andσ2
w =

{
σ2

w1
, . . . , σ2

wG

}
) (Husmeier et al.,

1999). This prior is written as follows:

p(w) =
G∏

g=1

p(wg|σ2
wg

) =
G∏

g=1

(2Πσ2
wg

)−dg/2 exp

(
−
∑dg

ig=1 w2
ig

2σ2
wg

)
(2.15)

wheredg is the dimension of thegth weight group. In the most extreme case, the num-

ber of groups would correspond to the number of weights. In other words, the prior

distribution of each weight would have a different variance (Titterington, 2004). A more

typical approach is to have four groups of weights corresponding to the input-hidden layer

weights, the hidden layer biases, the hidden-output layer weights and the output layer bi-

ases (Lampinen and Vehtari, 2001). Another alternative is to further divide weights in

the input-hidden layer into groups of weights exiting the same input. This is done in the

Automatic Relevance Determination (ARD) method ofMacKay(1994) andNeal(1996a,

1998). As the variance hyperparameters are automatically adapted during training, when

equilibrium is reached they can be used to assess the relevance of the weights belonging to

that group. The smaller the variance, the more tightly the weights are distributed around

zero; hence, the less relevant they are to the model. Therefore, by treating the weights

exiting the same input as a group, the relative importance of the input can be assessed

by comparing the variance hyperparameter to those controlling other input weight groups

(Thodberg, 1996;Husmeier et al., 1999;Vivarelli and Williams, 2001).

2.3.4.2 Marginalization (Prediction)

Under the Bayesian paradigm, the predictive distribution of a new datumyN+1 is deter-

mined by integrating the predictions made by all of the weight vectors over the posterior
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distribution of the weights, as follows (Eleuteri et al., 2002):

p(yN+1|xN+1,y) =

∫
p(yN+1,w|xN+1,y)dw

=

∫
p(yN+1|xN+1,w)p(w|y)dw (2.16)

Since onlyp(w|y) is required to make predictions, it is also necessary to integrate out the

hyperparameters from (2.14):

p(w|y) =

∫
p(w, σ2

w, σ2
y|y)dσ2

wdσ2
y

=

∫
p(w|σ2

w, σ2
y,y)p(σ2

w, σ2
y|y)dσ2

wdσ2
y (2.17)

The process of integrating out the unwanted parametersw and
{
σ2

w, σ2
y

}
is known

as ‘marginalization’. However, for complex problems, the high dimensionality of these

integrals makes marginalization analytically intractable (Neal, 1993;Titterington, 2004).

In order to overcome this problem, two main approaches to marginalization have generally

been followed in the Bayesian neural network literature, including:

1. Gaussian approximation of the posterior weight distribution about the most proba-

bly weight vectorŵ to enable analytical integration, as introduced byBuntine and

Weigend(1991) andMacKay(1992a).

2. Numerical integration using Markov chain Monte Carlo methods, as introduced by

Neal(1992)

With the first method, there has been some controversy regarding how the hyperparam-

eters should be handled (MacKay, 1999). Buntine and Weigend(1991) introduced a

method for analytically integrating out the hyperparameters before the Gaussian approxi-

mation is made. This is done by integratingp(w|σ2
w) overσ2

w and integratingp(y|w, σ2
y)

over σ2
y to obtainp(w) andp(y|w), respectively. The most probable weights are then

found by maximisingp(y|w)p(w) and the Gaussian posterior assumption is subsequently

made about these weights. On the other hand,MacKay(1992a,b) integrates the posterior

p(y|w, σ2
y)p(w|σ2

w) over the weights to obtainp(y|σ2
w, σ2

y), which he terms the ‘evidence’

of the hyperparameters. A Gaussian approximation is again made for this evidence term,

which is then maximised to find optimal values ofσ2
w andσ2

y. The Gaussian approxima-

tion is then made with the hyperparameters fixed at their optimal values. In a comparison

of the two Gaussian approximation approaches,MacKay(1999) demonstrated that, from

a predictive point of view, is it better to integrate over many weights rather than over
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few hyperparameters. Therefore, the ‘evidence’ framework has been the most widely

adopted Gaussian approximation method and is highly influential in the Bayesian neural

network literature(Titterington, 2004). However, for multi-layered ANNs, the posterior

weight distribution is typically very complex and multi-modal and thus the assumption

of a Gaussian weight distribution is generally not a good one (Neal, 1996a). This has

been acknowledged byMacKay(1995a) who then assumes that the distribution islocally

Gaussian around each mode and treats each mode as a separate model. However, this

raises the question of how to properly handle the multiple modes when making predic-

tions. Furthermore, the assumption of even a locally Gaussian distribution in the vicinity

of the modes is sometimes questionable, particularly when the model is complex and the

data available for training are limited (Rasmussen, 1996).

To avoid the need to make a Gaussian approximation of the posterior weight distri-

bution, Neal (1992) introduced a Markov chain Monte Carlo (MCMC) implementation

to sample from the posterior weight distribution. The use of a MCMC algorithm to es-

timate the posterior distribution involves the construction of a Markov chain of sampled

weight vectors and hyperparameters, which, at equilibrium, has the target distribution

p(w, σ2
w, σ2

y|y). By choosing conjugate inverse chi-square priors for the variance hy-

perparameters, the Gibbs sampler (Gelman et al., 2004), which is the simplest MCMC

algorithm, may be used to update the hyperparameters (Neal, 1996a;Titterington, 2004).

However, the complexity of the likelihood of the weights prevents Gibbs sampling for

the weights (Titterington, 2004). A commonly used MCMC algorithm used when the

Gibbs sampler is not applicable is the Metropolis algorithm ofMetropolis et al.(1953).

However, as noted byNeal(1992), while it is possible to use the Metropolis algorithm to

sample the weights, this algorithm can be slow to converge to the target distribution and

it is difficult to determine whether or not convergence has been reached. Therefore, the

approach promoted byNeal(1996a) involves the use of the hybrid Monte Carlo algorithm

developed byDuane et al.(1987) to sample the weight vectors. This is an elaboration of

the Metropolis algorithm that makes use of gradient information to speed convergence to

the target distribution (Neal, 1992).

Sampling from the posteriorp(w, σ2
w, σ2

y|y) then follows a two-step procedure. In the

first step, the hyperparameters are held constant while the weights are sampled from the

distribution:

p(w|σ2
w, σ2

y,y) =
p(y|w, σ2

y)p(w|σ2
w)

p(y|σ2
w, σ2

y)

∝ p(y|w, σ2
y)p(w|σ2

w) (2.18)
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using the hybrid Monte Carlo method. In the second step, the weights are held constant

while the hyperparameters are sampled from their respective full conditional distributions:

p(σ2
w|w,y, σ2

y) = p(σ2
w|w)

∝ p(w|σ2
w)p(σ2

w) (2.19)

p(σ2
y|w,y, σ2

w) = p(σ2
y|w,y)

∝ p(y|w, σ2
y)p(σ2

y) (2.20)

After the MCMC algorithm reaches equilibrium, the sampled weights and hyperpa-

rameters can be considered as samples from the posterior distribution. An advantage

of the MCMC approach is that marginalization over the hyperparameters is automati-

cally accomplished (Hanson, 1999). By sampling from the joint posterior distribution

p(w, σ2
w, σ2

y|y), when the posterior ofp(w|y) is determined using the sampled weights,

the remaining hyperparameters
{
σ2

w, σ2
y

}
are automatically integrated out. The sampled

weights may therefore be used directly to obtain samples from the predictive distribu-

tion for the targets of a test case (Neal, 1996a). To do this, the model outputs are first

calculated with the given test inputs using the sampled weight states. Samples from the

predictive distribution are then obtained by adding Gaussian noise to the outputs, with

variance given by the sampledσ2
y hyperparameter that corresponds to the weight state

used to calculate the outputs.

2.3.5 Model Selection

Given a set ofH competing models{Hi; i = 1, . . . , H}, the Bayesian framework can

be used to infer the posterior probability that, of theH models,Hi is the “true” model

of the system given the observed data (MacKay, 1995a;Bishop, 1995). At this level of

inference, Bayes’ theorem yields:

p(Hi|y) =
p(y|Hi)p(Hi)

p(y)
=

p(y|Hi)p(Hi)∑H
j=1 p(y|Hj)p(Hj)

(2.21)

wherep(Hi) is the prior probability assigned toHi and the likelihoodp(y|Hi) is the

denominator from (2.5), or the ‘evidence’ of the model. Although, it is unlikely that

any model will actually be “true”, the Bayes’ approach enables the relative merits of the

competing models to be compared, which is worthwhile assuming that at least one of the

models is approximately correct (Wasserman, 2000). It is also generally assumed that the

prior probabilities assigned to the different models are approximately equal, as a model
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thought to be highly implausible would not even be considered in the comparison (Neal,

1993). Therefore, 2.21 can be simplified to:

p(Hi|y) =
p(y|Hi)∑H

j=1 p(y|Hj)
∝ p(y|Hi) (2.22)

which states the relative probabilities of the competing models can be compared based on

their evidence (Bishop, 1995).

As discussed inMacKay (1995a) andRasmussen(2001), the evidence of a model

automatically incorporates ‘Occam’s razor’, which is a principle that states the preference

for simple theories, through the effect of its prior on the weights. In terms of an ANN

model, (2.6) is rewritten as:

p(y|Hi) =

∫
p(y|w,Hi)p(w|Hi)dw, (2.23)

which can be interpreted as the probability that, given a weight vector randomly selected

from the prior weight distribution, a particular set of observed data will be generated (Ras-

mussen, 2001). Simple models have relatively narrow prior weight distributions which

only allow a limited range of data sets to be generated, whereas complex models have

rather wide flat prior weight distributions that enable a greater variety of data sets to

be generated (MacKay, 1992a). The aim is then to select the model that has the great-

est probability of generating a given set of observed datayobs, or the strongest evidence

p(yobs|H). This is illustrated in Figure 2.3, whereH1,H2 andH3 are three models of in-

creasing complexity and the observed data setyobs is shown as a single value ofy. In this

figure, it is shown thatH1 would be very unlikely to generate the observed data given the

narrow predictive distributionp(y|H1). Likewise, it would be unlikely that the observed

data would be generated at random byH3, due to the wide range ofp(y|H3). Thus,H2

is the most probable model for the observed data setyobs, as it results in the maximum

predictive probability, or the strongest evidence. Typically, the value of the evidence for

any model will be extremely small, as any particular data set of significant size will have

low probability even under the correct model (Neal, 1993). However, by considering the

relative magnitude of these small probabilities, the data-based evidence term can be used

to rank a number of competing models in order of plausibility without the need to specify

a prior that gives preference to simple models (MacKay, 1995a).

Similar to the integrals in (2.16) and (2.17), for complex models the integral in (2.23)

is analytically intractable. In his evidence framework,MacKay (1992a, 1995a) instead

evaluates the integral:

p(y|Hi) =

∫
p(y|σ2

w, σ2
y,Hi)p(σ2

w, σ2
y|Hi)dσ2

wdσ2
y (2.24)
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p(y|H1) 

p(y|H2) 

p(y|H3) 

yobs 
y 

Evidence 

Figure 2.3 Evidence incorporating Occam’s razor.

by using the Gaussian approximation ofp(y|σ̂2
w, σ̂2

y,Hi), whereσ̂2
w and σ̂2

y the optimal

hyperparameter values used in estimating the posterior weight distribution (see Section

2.3.4.1), to obtain a well-definedp(y|Hi) (Titterington, 2004).

Under the evidence framework, evaluation of the determinant of the Hessian matrix

is required. As discussed in Section 2.2.5.3, the Hessian matrix of an ANN can be nearly

singular and consequently, evaluation of the evidence can be very sensitive to errors in

the small eigenvalues (Bishop, 1995). An alternative to this approach is that suggested by

Neal (1994), where model complexity is not limited. Neal has argued that if a complete

Bayesian analysis is performed without approximation and appropriate prior distributions

are used on the weights, it is possible to use large networks without fear of overfitting

the data. However, it may still be necessary to limit the complexity of an ANN to ensure

that Gaussian assumptions for estimating the weights are valid or MCMC techniques

achieve convergence in reasonable computational time (Bishop, 1995). A sophisticated

MCMC approach for selecting the right level of complexity was developed byMüller and

Rios Insua(1998), where the number of hidden nodes was treated as a random variable

that was also estimated.

2.3.6 Limitations of Current Bayesian Neural Network Practices

While Bayesian techniques have been applied to ANNs (although rarely) for around 10-

15 years, the complexity of ANNs makes it difficult to apply standard Bayesian methods

that are increasing in popularity for other models (e.g. the standard Metropolis algorithm)

(Neal, 1996a). Consequently, the majority of Bayesian techniques applied to ANNs in the

past have employed complex statistics in order to overcome any complications. The ma-

jority of publications in this field have therefore been limited to the statistical, computer
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science and neural computing literature (Titterington, 2004). Most of the available ANN

software does not allow for Bayesian analysis, and due to the difficulty associated with

programming the available complicated techniques, Bayesian ANN training has not been

adopted by water resources practitioners.

Considerable emphasis has been placed on achieving efficiency and statistical opti-

mality when Bayesian methods have been developed for ANNs in the past. However, the

difficulty in implementing these methods and their lack of adoption by water resources

modellers indicates the need for a Bayesian ANN development framework that provides

accurate results, while being relatively straightforward to code and implement.

2.4 CONCLUSION

Given the nonlinearity, complexity and limited physical understanding of the majority of

processes that occur within water resource systems, ANNs may well be the best available

tool for modelling such systems. However, ANNs have yet to become widely accepted

and reach their full potential as models in the field of water resources engineering. Based

on a review of the relevant literature, this is apparently due to three significant issues,

namely generalisability, interpretability and uncertainty, which ANN modellers are poorly

equipped to address, given currently available ANN development methods. As a result,

ANNs continue to be viewed sceptically as a means for providing predictions that can be

used confidently in water resources design and management applications. On the other

hand, the Bayesian modelling paradigm appears to be a promising approach for dealing

with these issues, whether directly or indirectly, and its application to more conventional

models has been increasing in the field of water resources modelling. However, due to

the complexity of ANNs, application of Bayesian methods for ANN development is not

straightforward, as standard techniques are often infeasible or highly inefficient; thus,

producing poor results. Consequently, the Bayesian techniques developed for ANNs,

proposed primarily in the statistical and computer sciences literature, have generally em-

ployed complex statistics, which makes them difficult to code and implement. The lack

of adoption of these sophisticated Bayesian methods in the field of water resources mod-

elling clearly indicates the need for a Bayesian ANN development framework that is ac-

cessible to water resources modellers. As stated byMaier and Dandy(2000a),

The primary focus should be on achieving good results, rather than statistical

optimality, as this is one of the features that has attracted water resources

modellers to ANNs in the first place.
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Therefore, the aim of this research is to develop a relatively simple Bayesian framework

that can be applied to ANNs in the field of water resources modelling, where the primary

aim of the procedure is not statistical optimality, nor optimum efficiency, but rather good

results and ease of programming and application. It is envisaged that the development

of such a framework will enable significant advances to be made in the field of water

resources modelling with ANNs, as ANNs will no longer be held back due to the lack of

appropriate methods for addressing the modelling issues discussed in Section 2.2.5.
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Chapter 3

State-of-the-Art Deterministic ANN

Methodology

3.1 INTRODUCTION

Following almost a decade of reported applications of ANNs for modelling hydrological

and water resources variables, three comprehensive state-of-the-art reviews were con-

ducted on ANN modelling in this field (ASCE Task Committee, 2000a,b;Maier and

Dandy, 2000a;Dawson and Wilby, 2001). Although it was evident from these reviews

that ANNs had potential as a useful prediction and forecasting tool, one of the main con-

clusions of each review was that, for significant advances to be made in this field, a set of

systematic guidelines would need to be established to aid the development of ANNs ap-

plied to hydrological and water resources modelling. In his recent thesis,Bowden(2003)

attempted to address this issue by developing ‘a robust methodology for the design and

successful implementation of ANN models for the forecasting/prediction of water re-

sources variables’. Therefore, the methods proposed in this chapter will attempt to build

on this approach.

In this chapter, each step in the ANN development process is discussed, together with

a review of the methods currently used for carrying out these steps and a summary of the

methods proposed byBowden(2003). Additionally, any limitations or shortcomings of

current practices are identified and, if necessary, addressed through further assessment,

comparison and simple modification of alternative existing methods when applied to syn-

thetic data sets. The methods considered in this chapter are limited to conventionaldeter-

ministicANN methods, where a single optimum weight vector is sought and single-valued

predictions are made. Furthermore, only methods applicable to feedforward MLPs with

a single output variable will be considered; however, it is considered that these methods

could be easily extended to ANNs with more than one output.
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3.2 REVIEW OF THE CURRENT STATE-OF-THE-ART

As discussed inMaier and Dandy(2000a,b) and outlined in Figure 3.1, there are a num-

ber of main steps in the ANN development process. It can be seen in this figure that

there are also a number of options available at each step and, while this provides great

flexibility in ANN modelling, it also leaves the modeller faced with the difficult task of

selecting the most suitable methods. In order to develop a robust methodology for ANNs,

the research carried out byBowden(2003) involved a review of the alternatives available

at each step, identification of the limitations of available methods and, finally, the pro-

posal of new (or modified) methods to enable ANNs to be developed in a systematic and

ANN validation 

ANN training 

Choice of data sets 

Data pre-processing 

Determination of ANN inputs 

Determination of ANN architecture 

Number of data sets 
Method for data division 

Scaling/standardisation 
Transformation of input/output distributions 
Removal of non-stationarities 

Choice of variables 
Choice of lags 

Connection type 
Degree of connectivity 
Number of layers 
Number of nodes per layer 

Objective function 
Optimisation method 
Choice of optimisation algorithm parameters 
Stopping criteria 

Prediction accuracy 
Error bounds 

Types of transfer (activation) functions 

Choice of performance criteria 

Figure 3.1 Main steps in the development of an ANN (source: adapted fromMaier and

Dandy(2000b).
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consistent manner, where considered appropriate. However, while each of the ANN de-

velopment steps was addressed to some extent byBowden(2003), the main emphasis was

placed on the choice of data sets, pre-processing and transformation of the data and selec-

tion of important network inputs. Since the choice of performance criteria, architecture

selection, training and validation steps were not addressed in detail byBowden(2003),

improvements to these steps will be the main focus of Section 3.4.

3.2.1 Choice of Performance Criteria

3.2.1.1 Review of current practice

The first step in the ANN development process is the choice of performance criteria, as

this determines how the model is assessed and will consequently affect many of the sub-

sequent steps such as training and the choice of network architecture (Maier and Dandy,

2000a). Performance criteria may include measures of training and processing speed;

however, the most commonly used performance criteria used in water resources mod-

elling measure the prediction accuracy (Bowden, 2003).

Performance criteria which measure prediction accuracy generally measure the fit

(or lack there of) between the model outputsŷ = {ŷi, . . . , ŷN} and the observed data

y = {yi, . . . , yN} by some error measureEy. They are used during training asobjective

functions, and after training to evaluate the trained ANN, where the criterion used for each

purpose need not necessarily be the same. The most commonly used objective function,

which is minimised during training, is the sum squared error (SSE) given by:

Ey = SSE =
1

2

N∑
i=1

(yi − ŷi)
2 =

1

2

N∑
i=1

(yi − f (xi,w))2 (3.1)

The SSE provides an overall estimate of modelling performance (Dawson and Wilby,

2001), as it measures the total deviation of the modelled function from the observed data,

as estimated by summing the squared model residuals (deviations between the observed

data and the model outputs) over the entire data set. The reason for using squared resid-

uals rather than their absolute values is that this allows the residuals to be treated as a

continuous differentiable quantity, which is important if a gradient-based search tech-

nique is used to minimise the objective function during training (see Section 3.2.6). Use

of the SSE as an objective function gives rise to the well knownleast squaresparame-

ter estimation method, which makes the assumption that the residuals are randomly dis-

tributed with zero mean and constant variance. It is also implicitly assumed that the target

data are approximately normally distributed. While this is not a requirement of the least

squares estimation method, under the assumption of independent Gaussian residuals, min-
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imising the SSE is equivalent to maximising the likelihood of the weightsp(y|w) when

y ∼ N
(
f(x,w), σ2

y

)
(see Section 2.3.4.1). Furthermore, the SSE can be very sensitive

to outliers in the data, resulting in poor weight estimates. Extreme random values are

uncommon under a Gaussian distribution; therefore, optimal results are achieved when

the target data are approximately normally distributed.

While the SSE may be suitable as an objective function during training, this measure

does not quantify the error in terms of the units of the target variable, nor does it take into

account the size of the data set, which is appropriate if model performance is compared on

different data sets. Furthermore, although the SSE indicates overall performance, it may

not be adequate for assessing the model’s ability to fit both low and peak events. Thus, it is

also common to assess the predictive performance of a trained ANN using error measures

that indicate the particular areas of model deficiency that are considered to be of most

importance for a given problem (Dawson and Wilby, 2001). According to bothDawson

and Wilby(2001) andBowden(2003), the most commonly used error measures in water

resources modelling include the root mean squared error (RMSE), the mean absolute error

(MAE), the mean squared relative error (MSRE), the coefficient of determination (r2) and

the coefficient of efficiency (CE), given by (3.2) to (3.6), respectively.

RMSE =

[
1

N

N∑
i=1

(yi − ŷi)
2

]1/2

(3.2)

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.3)

MSRE =
1

N

N∑
i=1

(
yi − ŷi

yi

)2

(3.4)

r2 =

 ∑N
i=1 (yi − ȳ) (ŷi − ỹ)√∑N
i=1 (yi − ȳ)2 (ŷi − ỹ)2

2

(3.5)

CE = 1−
∑N

i=1 (yi − ŷi)
2∑N

i=1 (yi − ȳ)2
(3.6)

In (3.5) and (3.6),̄y is the mean of the observed data andỹ is the mean of the correspond-

ing model outputs.

The RMSE is also a measure of general model performance, but unlike the SSE, the

sample size is taken into consideration and it returns an error value with the same units as
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the data. However, the RMSE (like the SSE) is sensitive to outliers and extreme values in

the data, as squaring the residuals means that larger values can have a significantly greater

influence on the overall statistic. Consequently, the RMSE is generally weighted towards

the prediction of peak events, as these tend to be the poorest predictions (Abrahart and

See, 1998). The MAE uses absolute values of the residuals, and is therefore less weighted

towards fitting extremes in the data.Legates and McCabe(1999) note that the degree

to which the RMSE exceeds the MAE is an indicator of the extent to which outliers (or

variance in the residuals) exist in the data. It has also been suggested that measures of

relative errors, such as the MSRE, which allow larger valued observations to have larger

inherent errors, are more suited to measuring predictive performance on moderate values

than the RMSE (Karunanithi et al., 1994). However, the MSRE is inappropriate if the

observed data contain values of zero. If the aim is to fit extreme values, a higher order

error measure, where the residuals are raised to a higher even power (e.g.(yi − ŷi)
4),

could be used to place more emphasis on such extreme events (Abrahart and See, 1998).

The r2 and CE criteria are dimensionless “goodness-of-fit” measures. They provide

a useful relative assessment of model performance in comparisons between studies, since

they are independent of the scale of data used. Ther2 criterion measures the linear cor-

relation between the model outputs and the observed data and ranges from 0, for no cor-

relation, to 1, for perfect correlation. However,Legates and McCabe(1999) note that the

r2 criterion is limited because it does not account for differences between the means and

variances of observed data and the predicted outputs. Nevertheless,r2 continues to be one

of the most commonly used criteria to evaluate an ANNs performance. The CE criterion

also provides a measure of the correlation between model outputs and the observed data,

but unliker2 it is sensitive to differences in the observed and predicted means and vari-

ances. The value of CE can range from−∞ in the worst case to 1 for perfect correlation.

Alternatively, performance measures may be considered which take into account the

parsimony of the model. It can be expected that a more complex model will be able

to fit data better than a model with fewer degrees of freedom, and hence, less flexibility.

However, whether the increase in fit is justifiable given the available data and the increased

effort required to develop the model should be considered (Dawson and Wilby, 2001).

The two most commonly used performance measures that account for the complexity of

a model while measuring its performance include Akaike’s information criterion (AIC)

and the Bayesian information criterion (BIC), which combine a measure of fit with a term

that penalises model complexity as shown in (3.7) and (3.8):

AIC = −2 log L(ŵ) + 2d (3.7)
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BIC = −2 log L(ŵ) + d log N (3.8)

wherelog L(ŵ) is the maximised log likelihood function andd is the dimension of the

weight vector (i.e. the number of weights in the model). These measures are generally

calculated based on the training data, orin-sample, performance.

Given the wide range of performance measures available,Dawson and Wilby(2001)

state that “the problem then becomes deciding which (if any) are most appropriate to a

particular application”. To address this problem,Bowden(2003) used an approach pro-

posed byDiskin and Simon(1977) to compare a number of possible error measures in

order to select the most suitable measure for a particular application. GivenX possi-

ble performance criteria, the procedure applied byBowden(2003) involved training and

cross-validating an ANNX times, using each criterion in turn to measure the performance

of the model on the test (cross-validation) data set. Training was stopped when the error

on the test set, as measured by the given criterion, was minimised; thus it was consid-

ered that the weights obtained were “optimal” according to that criterion. The “optimal”

weights obtained using each of the different criteria were then used to calculate the values

of the other criteria for which the weights were not optimal. The criterion whose “opti-

mal” weights resulted in the best values of the other criteria, overall, was then selected as

the most suitable performance criterion for the given application and was used to evaluate

the performance of the trained ANNs.

3.2.1.2 Limitations and Conclusions

Diskin and Simon(1977) originally applied the procedure used byBowden(2003) to

conceptual hydrologic models calibrated using the pattern search optimisation method,

which does not require derivatives of the objective function for gradient descent, and

thus nondifferentiable and discontinuous objective functions can be used. Therefore, the

procedure proposed byDiskin and Simon(1977) involved calibrating the models using

the different performance criteria as objective functions in order to obtain the optimal

weights. However,Bowden(2003) adapted the method such that it could be applied to

ANNs trained by backpropagation, which is based on gradient decent and does require

that the objective function used is differentiable (see Section 3.4.2.1). Therefore, the ANN

was trained based on the SSE over the training data, but training was stopped according to

the performance on the test set, which was calculated by the various performance criteria

investigated. However, it is considered that this procedure is flawed, as stopping training

according to a different error measure than that used to define the error surface could result

in a set of weights that is optimal according to neither criterion used. Even if a global
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training algorithm were used that does not require a differentiable objective function,

such that the method could be applied as proposed byDiskin and Simon(1977), with

numerous possible error measures to consider, this procedure could be extremely time

consuming and, as it does not take into account the possibility of becoming trapped in

local minima, the results could still be misleading. According toBishop(1995), as long

as the assumptions of the least squares method are approximately correct, the SSE is

the most suitable, and simple, form of performance measure or objective function for

solving the regression problem given by (2.1). Therefore, for the ANNs developed in this

research, the SSE will be used during training to evaluate the error on both the training

and test data sets.

A further limitation of the method proposed byBowden(2003) is that a different per-

formance criterion may be used to evaluate the predictive performance of an ANN for

each different case considered. As noted byDawson and Wilby(2001) in their review

of ANNs used for hydrological modelling, the absence of a standard error measure for

evaluating the performance of trained ANNs has led to a lack of objectivity and consis-

tency in the way the predictive performance of an ANN is assessed.Legates and McCabe

(1999) suggest that a complete assessment of model performance should include at least

one relative error measure, such as CE orr2 (although use ofr2 is warned against), and at

least one absolute error measure, such as the RMSE or MAE, with additional supporting

information such as a comparison between the observed and simulated mean and standard

deviations. Therefore, the RMSE, MAE,r2 and CE will be used to evaluate the perfor-

mance of the trained ANNs developed in this research. The AIC and BIC will also be

used to evaluate the generalisability of the ANN models based only on the training data

results.

In the approach proposed byBowden(2003), by only considering predictive accuracy,

the physical plausibility of the model is disregarded. As discussed in Section 2.2.5.2,

ANNs treated as black-boxes, where no consideration is given to the modelled function,

are generally undesirable as predictive models, as it is difficult to trust their reliability.

Therefore, it is considered that ANNs need to be evaluated not only in terms of their

predictive performance, but also in terms of their ability to capture the underlying rela-

tionship. However, as there is no widely accepted method for interpreting what has been

learnt by an ANN, this is an area that still requires further investigation. In this research, a

number of input importance measures will be investigated for quantifying the strength of

the modelled relationships between individual inputs and the output in order to determine

which measure, if any, is most appropriate for assessing the relationship modelled by an
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ANN.

3.2.2 Choice of Data Sets

3.2.2.1 Review of current practice

At a minimum, the available data need to be divided into two subsets; one for training

and the other for independent validation of the trained model. However, in general, three

data sets are required; namely a training, testing and validation set. As discussed in

Section 2.2.5.1, cross-validation with an independent data set is commonly employed

during training to prevent overfitting. However, the validation data must not be used in

any context during the training and model selection process (Maier and Dandy, 2000a),

therefore, a third independent data set is required. The same applies if a trial-and-error

process is used to optimise the network architecture or to select the network inputs or

parameters of the optimisation algorithm used. Therefore, the training data are used to

find an optimal set of network weights, the testing data are used to select the best network

during development and, if cross-validation is employed, to prevent overfitting, and the

validation set is used to validate or confirm the generalisability of the selected model.

Traditionally, the data have been divided arbitrarily without giving consideration to

the statistical properties of the respective data sets (Maier and Dandy, 2000a). However,

the way in which the data are divided can significantly influence an ANN’s performance

(Yapo et al., 1996;Tokar and Johnson, 1999). As it was also discussed in Section 2.2.5.1,

there is no information provided to an ANN about the form of the solution surface other

than that contained in the training data (i.e. there is no incorporation of physical con-

cepts). Therefore, to achieve good generalisation of the data generating relationship, the

training data must be a representative sample of the population from which the data were

generated. Furthermore, it follows that if the training data must be representative of the

data population to achieve generalisability, the toughest evaluation of generalisability is

if the testing and validation data are also representative subsets. Also, an unrepresenta-

tive test set could bias the cross-validation procedure and the selection of the optimum

network architecture.

While it is important for each of the data subsets to be representative of the data

population, the proportion of samples to include in each of the subsets is also an important

consideration.ASCE Task Committee(2000b) define an optimal training data set as “one

that fully represents the modelling domain and has the minimum number of data pairs in

training”. This is because large sets of repetitive data can slow down training while only

marginally improving network performance. However, due to the time and cost involved
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in data collection, in many practical circumstances the available data are limited (Flood

and Kartam, 1994). Therefore, it is again important to consider the relative sizes of the

subsets, in order to include the maximum amount of information in the training data set.

Bowden et al.(2002) andBowden(2003) proposed two methods for systematically

dividing the available data into statistically representative subsets. The first method in-

volved the use of a genetic algorithm (GA) to minimise the difference in the statistics

(mean and standard deviation) of the subsets and the second employed a self-organising

map (SOM) (Kohonen, 1982) to cluster the data into groups of similar data patterns, such

that samples from each group could be included in each of the subsets.

The GA used for dividing the data was designed to allocate the available data into

training, testing and validation sets of prespecified proportions according to a set of

pseudo random numbers. The decision variable being optimised was the pseudo random

number seed used to generate the random sorting (i.e. the random seed used to determine

the optimal allocation of data into subsets). The objective function minimised was the

sum of the absolute difference in mean and standard deviation values for each input and

output variable between each pair of the three subsets:

Objective fn =
K+1∑
i=1

{
[µ(i)train − µ(i)test] + [µ(i)test − µ(i)validation]

+ [σ(i)train − σ(i)test] + [σ(i)test − σ(i)validation]
}

(3.9)

whereK is the number of inputs, andµ andσ are the mean and standard deviation of the

input or output variable, respectively. To ensure that the maximum and minimum values

of each variable were included in the training set, penalty constraints were added to the

objective function. Penalty constraints were used, rather than manually removing extreme

values from the data and placing them in the training set, as it was noted that there may

be a trade-off between keeping the statistics of the training, testing and validation sets the

same and ensuring that the extreme values are in the training set.

With the second data division method, the SOM was used to cluster the data by pre-

senting the ANN input and output variables as the SOM’s inputs. A SOM grid size was

specified, where each cell in the grid represents a node in the Kohonen layer, and by train-

ing the SOM, similar data samples were clustered into each of the grids. This is illustrated

in Figure 3.2, where each square represents a cluster and each dot represents a sample of

data.

Using the method employed byBowden(2003), three data records from each cluster

were sampled and allocated to each of the training, testing and validation subsets. How-

ever, if a cluster only contained one record, this record was allocated to the training set.

Page 47



Chapter 3 – State-of-the-Art Deterministic ANN Methodology

 

Figure 3.2 SOM data division

If a cluster contained two records, one record was placed in the training set and the other

in the testing set. It was considered that an advantage of this technique over other data

division methods is that it avoids the need to arbitrarily select which proportion of data to

include in each subset and that it is capable of constructing a representative training data

set using the minimum number of samples.

It was found that each method was capable of dividing the available data into statisti-

cally similar subsets and the predictive performance of the models developed using these

subsets was significantly greater than when the data were divided arbitrarily.

3.2.2.2 Limitations and Conclusions

It is considered that each approach proposed byBowden(2003) suffers from some limita-

tions. Firstly, dividing the data with a GA can be very time consuming as many different

combinations for arranging the data need to be compared to find the best allocation. In

the simple example given byBowden(2003), if there are 60 data samples that must be

divided into training, testing and validation sets consisting of 40, 10 and 10 data samples

respectively, then there are:

60!

40!× 10!× 10!
= 7.7× 1020

ways of arranging the data samples. In reality, it is unlikely that an optimal division of

the data will be found within a reasonable time frame, although good results can still be

obtained. More importantly, though, in the GA method described byBowden(2003),

the cross-over operator is unable to function as it should. Crossing over two random

number seeds does not result in a set of random numbers that share the properties of the

parents, thus the method as presented is only relying on selection and mutation to find

the appropriate division of the data, which further slows the process (for details of the

operation of a GA see Section 3.4.2.2).
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Using the SOM data division method, the number of data samples allocated to each

data subset depends on the Kohonen grid size specified. However, as noted byBowden

(2003), there is no theoretical principle for determining the optimum size of the Kohonen

layer. According toShahin et al.(2004), the grid size specified can have a significant

impact on the results obtained using the SOM data division method, as the underlying as-

sumption of the approach is that the data samples in one cluster provide the same informa-

tion in high-dimensional space.Bowden(2003) stated that the grid size was selected such

that it was large enough to ensure that the maximum number of clusters were formed from

the available data. However, theoretically, the grid size could be specified large enough

such that each grid only contained one sample of data, making it impossible to choose

representative subsets. Furthermore, by only selecting one sample from each cluster for

each data set, the amount of data used for ANN development is significantly reduced. In

one of the case studies presented byBowden(2003), 2005 available data samples were

reduced to 147 samples using this method, with only 49 samples allocated to each data

subset. Such a reduction in data may result in a significant loss of information, in which

case the resulting training data set would not adequately represent the population of data.

The amount of information that is lost through such data reduction depends on the intra-

cluster variation. If this were large for even some of the clusters, important information

may be omitted from the training set by only selecting one sample from each cluster.

Nevertheless, the SOM method appears to be a promising approach for systematically

dividing the data into statistically similar subsets; thus, it is considered that no further

investigation is required on data division methods in the present research. However, it

is proposed that, within reason, the entire clustered data set should be divided into the

three subsets, with 64% allocated to the training set, 16% to the testing set and 20% to

the validation set, which are the proportions proposed byBowden(2003) when using the

GA data division method. Furthermore, in the present research, analytical measures will

be used to aid selection of the optimal SOM grid size. As mentioned above, specifying

a grid size that is too large can result in too many clusters containing single data points,

making it difficult to choose representative subsets. Conversely, if the grid size is too

small, there may be significant variation within the clusters. To determine the optimum

number of clusters for data division,Shahin et al.(2004) used the average silhouette width

s̄(k), which is an average measure of how well the data samples lie within the clusters

they have been assigned to at the end of the clustering process. This measure is calculated

by evaluating the silhouette values(i) for each data samplei = 1, . . . , N , and taking the

average over the data set. The silhouette value for a data samplei is given by (Kaufman
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and Rousseeuw, 1990):

s (i) =
b (i)− a (i)

max {a (i) , b (i)}
(3.10)

wherea(i) is the average dissimilarity of samplei to all other samples in a cluster A;

and b(i) is the smallest average dissimilarity of samplei to all points in any cluster E

different from A. If s(i) is close to 1, the “within” dissimilaritya(i) is smaller than the

smallest “between” dissimilarityb(i). Therefore it is considered that samplei has a strong

membership to cluster A. The optimum number of clusters can be determined by choos-

ing the number of clusters that maximises the value ofs̄(k). However, for only a small

number of clusters, the smallest “between” dissimilarity may be reasonably large, which

can result in a high value of̄s(k), regardless of how similar the samples within a cluster

are. Therefore, a “discrepancy” measure, which indicates the total “within” dissimilarity,

will be used together with the average silhouette width to select the SOM grid size. This

discrepancy measure is given by:

Discrepancy =
N∑

i=1

∥∥∥{xi, yi} − Ŵi

∥∥∥ (3.11)

whereŴi is the weight vector associated with the cluster to which the sample{xi, yi} is

assigned. The smaller the discrepancy value, the better the samples “fit” to the clusters to

which they have been assigned. However, if there are a large number of clusters contain-

ing a small number of samples, the discrepancy may be small, although the dissimilarity

between the clusters may also be small. Consequently, the discrepancy value needs to be

used in conjunction with the average silhouette width to select the SOM grid size.

3.2.3 Data Pre-Processing

3.2.3.1 Review of current practice

Data pre-processing involves transforming the data into a format that will enable easier

and more effective processing by the ANN. This may involve rescaling, standardisation,

de-trending, distribution transformation and removal of outliers. As discussed inBishop

(1995), being universal function approximators, ANNs should, in principle, be able to

map raw input data directly onto the required output values; however, in practice this ap-

proach would normally give poor results, as the model is relied upon too much to find

appropriate transformations. Therefore, pre-processing is an important step in ANN de-

velopment.

The simplest and most commonly used form of pre-processing is linear transforma-

tion, which involves transforming the data such that the variables have similar values
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(Bowden, 2003;Bishop, 1995) and includes rescaling and standardisation. Rescaling gen-

erally refers to the scaling of data between specified upper and lower bounds, whereas

standardisation often refers to statistical standardisation where a measure of location (e.g.

mean) is subtracted and the result is divided by a measure of scale (e.g. standard devia-

tion). If xi is theith raw value of variablex, theith linearly transformed valuéxi can be

obtained by rescaling or by standardisation according to (3.12) and (3.13), respectively:

x́i =

(
xT

high − xT
low

xmax − xmin

)
· xi +

(
xT

lowxmax − xT
highxmin

xmax − xmin

)
(3.12)

x́i =
xi − xmean

xstdev

(3.13)

In (3.12),xmax andxmin are the maximum and minimum values of the untransformed

variable, whilexT
high andxT

low are specified upper and lower bounds which become the

new maximum and minimum values of the transformed data, respectively. In (3.13),

xmean andxstdev are the mean and standard deviation of variablex, respectively.

Since different variables generally span different ranges, and because typical values

do not necessarily reflect the relative importance of inputs in determining the output,

transforming the inputs to a similar scale is particularly important in ensuring that each

variable receives equal attention during training (Maier and Dandy, 2000a).Sarle(2002)

recommends either scaling the inputs between[−1, 1] or standardising them to a mean of

zero and a standard deviation of one, as in (3.13), as it is important to centre the inputs

around the origin in order to get good random initialisations of the weights. Recently,

Shi(2000) suggested that if the input data are linearly scaled within some specified limits

(e.g. [-1,1]), for some variables a large proportion of the data may be confined to a very

small range (e.g. [-1,-0.95]), making it difficult to achieve a continuous mapping for such

inputs on the entire input range. To overcome this,Shi (2000) proposed a distribution

transformation method to transform the input data to uniform distributions on the range

[0,1] using the cumulative distribution functions (CDF) of the input variables. IfF (x) is

the CDF of inputx, the transformed data are obtained byx́i = F (xi).

If bounded activation functions are used on the output layer (see Section 3.2.5), it is

also necessary to scale the target data, such that they are proportionate with the limits

of the activation function. For example, if the hyperbolic tangent activation function,

which has the limits [-1,1], is used on the output nodes, the data should be scaled between

−0.9 and0.9 or −0.8 and0.8 (Bowden, 2003). It is not recommended that the data be

scaled to the extreme limits of the activation function, as this will likely cause the size of

the weight updates to become extremely small, leading to the occurrence of flatspots in
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training (Maier and Dandy, 2000a). Furthermore, when scaling the target data to force

the values into the range of the output activation function, it is important to use lower

and upper bounds of the target variable, rather than the minimum and maximum values

in the training set (Sarle, 2002). For example, the lower bound of a variable that can

only take positive values is zero; therefore,xmin should be substituted with zero in (3.12).

If an unbounded activation function (e.g. linear) is used at the output layer, it is not

strictly necessary to rescale the target data. However, by ensuring that the input and

output variables are of order unity, either through rescaling or standardisation, it can be

expected that the weights will also be of order unity, which makes it easier to randomly

initialise the weights appropriately (Bishop, 1995).

There has been some confusion as to whether further transformations, such as those

used in traditional statistical modelling, need to be applied to the data when using an

ANN. In assuming that the model residuals are normally distributed with a constant vari-

ance, the most commonly used methods in regression analysis also make the assumption

that the target data are (approximately) normally distributed, either implicitly (e.g. least

squares estimation) or explicitly (e.g. maximum likelihood estimation). In traditional sta-

tistical modelling, nonlinear mathematical functions, such as the square root, logarithm

or inverse, are widely used to transform the data in order to reduce the non-normality and

stabilise the variance in the data (Osborne, 2002). In traditional time series modelling it is

also common to remove deterministic components in the data such as trends and season-

ality (Maier and Dandy, 2000a). However, in a study byFaraway and Chatfield(1998),

results of empirical trials indicated that there was no improvement in an ANN’s perfor-

mance when a logarithmic transformation was used and that the performance deteriorated

when the seasonality was removed from the data.

Bowden et al.(2003) andBowden(2003) investigated the effects of six different trans-

formations on the performance of ANN models, as outlined below:

1. Linear Transformation - The inputs were linearly rescaled between−1.0 and1.0,

while the network outputs were rescaled between−0.8 and0.8 to be commensurate

with the limits of the hyperbolic tangent activation function used on the output layer

node.

2. Logarithmic Transformation - A logarithmic transformation of both the inputs and

outputs was performed.

3. Histogram Equalization Transformation - The distribution transformation method

of Shi(2000) is dependent on fitting a probability density function (PDF) to each of
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the input variables at an acceptable level of significance. To ensure an appropriate

fit of the input PDFs, a discrete version of distribution transformation known as

histogram equalization (Looney, 1997) was applied to the input data.

4. Kernel Transformation - Similar to the histogram equalization transformation above,

this transformation was developed byBowden(2003) to transform the input vari-

ables according to the distribution transformation method ofShi(2000). The method

uses univariate kernels to approximate the PDF of each input series, which is then

integrated to approximate the required CDF.

5. Seasonal Standardisation - Deterministic seasonality was removed from the inputs

and outputs by subtracting a seasonally varying mean and dividing by a seasonally

varying standard deviation.

6. Transformation to Normality - A two-step transformation to normality was pro-

posed byBowden(2003), combining the histogram equalization transformation to

compute the CDF of an input series (uniform distribution between 0 and 1) with

an approximation of the inverse Gaussian CDF (Beasley and Springer, 1977) to

produce the corresponding normal deviates.

When applied to a water resources case study,Bowden(2003) found that the models

developed using the linear, histogram equalization and kernel transformations performed

significantly better than those developed using the logarithmic, seasonal and normality

transformations for the training, testing and validation sets. It was concluded that the latter

three transformations distorted the original relationships between variables in a way that

was not beneficial to ANN learning. It was also found that, while the models developed

using data transformed by histogram equalization and kernel transformation had (slightly)

superior performance when tested on data within the training domain, these models were

not as robust as the models developed using linearly transformed data when tested on data

outside of the training domain. Analysis of the residuals produced by the ANN models

trained using linearly transformed data showed that the assumptions of least squares error

model were satisfied, indicating that the data did not require any further transformations

other than linear rescaling.

3.2.3.2 Limitations and Conclusions

It is recommended byOsborne(2002) that all data transformations should be utilised with

care and never without a clear reason. In the investigation carried out byBowden(2003),

there was no clear reason to transform the data in some cases. For example, seasonality
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was removed from exogenous input variables when it was not necessary; similarly, loga-

rithmic and normality transformations were applied to input data when there was no need,

as discussed below. Data transformations should be applied in order to comply with the

requirements of the modelling technique used. In traditional time series modelling, it is

necessary to remove seasonality from the output time series, as it may conceal the true

underlying movement in the data. However, it is not necessary to remove the seasonality

from other external input variables included in the model. When using linear regression, it

is important to transform both input and target data to normality to achieve constant vari-

ance in the residuals and linearity in the equation. However, transformations should not

be applied simply to achieve linearity when using nonlinear modelling techniques. Fur-

thermore, transformations to normality should only be applied when the data or resulting

model residuals are substantially non-normal, as regression models are generally robust,

to some extent, to violation of the assumption of normally distributed residuals (Osborne

and Waters, 2002). It is more important that the distribution of the data be approximately

symmetrical and not have a heavy tail than to be normally distributed (Masters, 1993).

As data transformations can alter the fundamental nature of the data, it is possible that

unnecessary transformations may have distorted the results of the investigation carried

out byBowden(2003).

Following the recommendations ofOsborne(2002), a more systematic approach to

data pre-processing will be used in this research, with transformations only applied to

data when there is a clear reason. Due to the general function mapping abilities of ANNs,

less emphasis has to be placed on careful optimisation of data pre-processing than in tra-

ditional linear regression or time series modelling (Bishop, 1995). However, as discussed

in Section 3.2.3, there are well established reasons why some pre-processing, particularly

linear transformations, can significantly improve the performance of an ANN. In this re-

search, all inputs and outputs will be standardised to have a mean of 0 and a standard

deviation of 1, as recommended bySarle(2002), except if a bounded activation function

is used on the output layer, in which case the target data will be scaled to be commen-

surate with the limits of this function. Furthermore, once the model is fitted, diagnostic

checking of the residuals will be carried out to determine whether the assumptions of the

regression model specified by (2.1) have been met. These assumptions are:

1. The mean ofε is zero;

2. The variance ofε is constant;

3. ε is statistically independent; and
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4. ε is normally distributed.

If any of these assumptions are significantly violated, a nonlinear transform of the target

data, such as the logarithm, square root or inverse, will be considered.

3.2.4 Determination of ANN Inputs

3.2.4.1 Review of current practice

Determining what the important inputs are for a given problem can be one of the most crit-

ical decisions in ANN model development, as the inputs contain the important informa-

tion required to define the data-generating relationship. This can also be one of the most

difficult tasks in water resources modelling because many of the hydrological and envi-

ronmental processes acting upon these systems are poorly understood. As water resource

systems vary in space and time, potentially important inputs may include observations of

causal variables at different locations and time lags, as well as lagged observations of the

dependent variable of interest. Therefore, the number of potentially important inputs can

be large. However, the inclusion of unnecessary inputs is undesirable, as such inputs do

not provide any useful information about the underlying relationship, but increase the size

and complexity of the network, making the task of extracting important information from

the data difficult. On the other hand, omitting key inputs results in a loss of important

information, which can be detrimental to the predictive performance of an ANN.

In the past, selection of important inputs has been given relatively little attention, as

it has been considered that, being a data-driven modelling approach, ANNs should de-

termine automatically which inputs are critical (Maier and Dandy, 2000a). However, as

mentioned above, presenting a large number of inputs to an ANN increases the size and

complexity of the model; thus, slowing processing time, reducing interpretability and in-

creasing the potential of overfitting. Therefore, there are considerable advantages in using

analytical techniques to help select important inputs. According toBowden(2003), there

are only a small number of recent papers that treat input determination as an important

step in ANN development. The methods used in these papers were classified into five

broad groups byBowden(2003);Bowden et al.(2005a), as discussed below.

1. Methods that rely upon the use ofa priori knowledge of the system being mod-

elled. Selecting important inputs for ANNs usually always requires some degree

of a priori knowledge, as it is necessary to use some judgement to select a set of

potentially important inputs. However, relying solely ona priori knowledge for

input determination requires a good understanding of the system being modelled
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(ASCE Task Committee, 2000a). Inspection of time series plots of potential inputs

and outputs can help in selecting important inputs (Maier and Dandy, 1996), as can

existing physically-based or conceptual models (Zealand et al., 1999;Shamseldin,

1997) or previous studies of the system or similar systems (Thirumalaiah and Deo,

2000;Wei et al., 2001). However, if the system is less well understood, the use of

analytical techniques, in conjunction witha priori knowledge, would be beneficial

(Maier and Dandy, 2000a).

2. Methods based on linear cross-correlation. Cross- and auto-correlation analysis has

been popular for selecting appropriate inputs (including lagged observations of the

target variable) for ANNs in the field of water resources modelling (Fernando and

Jayawardena, 1998;Imrie et al., 2000;Coulibaly et al., 2000;Lekkas et al., 2001;

Sudheer et al., 2002). This method uses the strength of the cross-correlations be-

tween potential input variables and the output to select important causal inputs or

the strength of autocorrelations to select appropriate lags. However, a significant

disadvantage of cross-correlation analysis is that it is only able to detect linear de-

pendence between two variables and is therefore not optimal for selecting inputs of

nonlinear relationships.

3. Methods that utilise a heuristic approach. Using such approaches, different com-

binations of inputs are trialled in order to find the combination that results in the

best model performance. A stepwise selection approach is commonly employed to

avoid consideration of all subsets of inputs. Stepwise selection can be applied in

a forward manner, where, given a set of selected inputs, the input that improves

the model’s performance most is added to the final model, beginning with the best

single input. Alternatively, backward selection may be used, where an ANN is first

developed with the set of all potentially important inputs, and inputs that reduce the

performance least when deleted are sequentially removed from the model.Tokar

and Johnson(1999),Luk et al.(2000) andMaier and Dandy(2001) used a heuris-

tic input selection approach. The disadvantage of these approaches is that they are

computationally intensive, requiring the ANN to be retrained each time a new com-

bination of inputs is trialled. Furthermore, heuristic model selection methods are

based on trial-and-error, and consequently, there is no guarantee that they will find

the globally best subset of inputs.

4. Methods that extract knowledge contained within the trained ANN. Methods such

as sensitivity analysis, saliency analysis and partitioning of connection weights are
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designed to quantify the relative importance of inputs in trained ANNs (Olden et al.,

2004). Of these methods, sensitivity analysis is the most commonly used for input

selection in the field of water resources modelling (Maier and Dandy, 1996, 1997;

Liong et al., 2000;Wei et al., 2001). The main disadvantage of these approaches

is that if all inputs in the set of potentially important inputs are not statistically

independent, the effects of dependent inputs generally cannot be separated (Sarle,

2002). Additionally, it can be difficult to determine the statistical significance of

input variables using these approaches; thus, subjective judgement is often required

to determine at what threshold value inputs should be removed or retained in the

network (Olden and Jackson, 2002).

5. Methods that use various combinations of the above four approaches. According

to Bowden(2003), a number of papers also report the combined use of some of the

above approaches.

Bowden(2003) andBowden et al.(2005a) proposed two input determination ap-

proaches; onemodel-basedand onemodel-free. Model-based approaches rely on the

modelled input-output relationship to determine the dependence of the output on each

input variable, while model-free approaches use some statistical measure of dependence

(e.g. correlation) to determine the strength of the relationship between each input and

the output. The model-based input determination approach proposed byBowden(2003)

involved the use of a genetic algorithm (GA) together with a general regression neu-

ral network (GRNN), which is a type of supervised feedforward ANN with the advan-

tages of having a fixed architecture and being relatively quick to train. Using this hybrid

GAGRNN approach, the GA is employed to evolve the GRNN model with the optimal

set of inputs, determined according to the corresponding predictive error. To begin the

algorithm, a population of GRNN models is randomly initialised, each with a different

subset of input variables, as depicted by a binary string. For example, if there areK po-

tentially important inputs, the string will have lengthK and if thekth value of the string is

equal to one, thekth input is included, otherwise, if it equals zero, it is not included. The

GRNN models are then trained and the corresponding predictive error is calculated for

each GRNN. Selection, crossover and mutation operators are then used to evolve the pop-

ulation of GRNN models over a number of generations to obtain the GRNN model with

the optimal inputs (i.e. that producing the smallest predictive error). This method requires

that the set of potentially important inputs optimised by the GAGRNN are statistically in-

dependent; therefore, an input preprocessing stage was used prior to the GAGRNN to
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reduce the original set of inputs to a set of independent inputs. For this,Bowden(2003)

used principle component analysis (PCA) and SOM clustering techniques.

The model-free input selection approach proposed byBowden(2003) was an adapta-

tion of the stepwise partial mutual information (PMI) input selection procedure developed

by Sharma(2000). The PMI criterion is a measure of (linear or nonlinear) partial depen-

dence between an independent variablex and a dependent variabley and is given by:

PMI =
1

N

N∑
i=1

loge

[
fx′y′ (x′

i, y
′
i)

fx′ (x′
i) fy′ (y′

i)

]
(3.14)

wherefx′ (x′
i) andfy′ (y′

i) are the marginal PDFs ofx′ andy′, respectively, andfx′y′ (x′
i, y

′
i)

is the joint (bivariate) PDF ofx′ andy′. The PMI is a “partial” measure because it de-

pends on the inputs already selected and measures any additional dependence a new input

can add to the existing prediction model. In (3.14),x′ andy′ represent the residual in-

formation in variablesx andy, once the effect of the existing predictor(s) has been taken

into consideration.

Briefly, the stepwise PMI input selection algorithm is carried out as follows (Sharma,

2000;Bowden et al., 2005a):

1. Identify the set of potentially important inputs usinga priori knowledge.

2. Estimate the PMI score between the dependent variabley and each of the potential

inputs, conditional on the existing predictor(s), using (3.14).

3. Identify the potential input with the highest PMI score.

4. Create a set of randomised samples of the potential input identified in step 3 by ran-

domly bootstrapping the input series to remove the dependence that existed between

that input and the dependent variable. Estimate the 95th percentile randomised sam-

ple PMI score for this potential input.

5. If the PMI score for the identified potential input is higher than the 95th percentile

randomised sample PMI score, select the input as an important predictor and re-

move it from the set of potential inputs. If the PMI score is less than the 95th

percentile randomised sample PMI score, go to step 7.

6. Repeat steps 2–5.

7. Stop once all important predictors have been selected.
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In Bowden(2003), the two input selection approaches were applied to a number of

synthetic case studies with known dependence attributes. It was found that the model-free

stepwise PMI approach was able to correctly select the important input variables for each

test case, whereas the GAGRNN was only able to do this for the simplest of the synthetic

data sets, and only when the SOM clustering technique was used to reduce the dimension-

ality of the original set of inputs. Although the SOM-GAGRNN method did not always

select the actual model inputs, it was found that, overall, the models developed using this

input selection method were able to achieve similar predictive performance to those de-

veloped using the stepwise PMI input selection method. It was therefore concluded by

Bowden(2003) that both approaches are suitable for ANN input selection when predictive

performance is the primary aim. However, as it was demonstrated that only the stepwise

PMI algorithm was able to identify the actual model inputs to the test problems, it was

considered that this method should be used when insight into the underlying process is of

utmost importance.

3.2.4.2 Limitations and Conclusions

As discussed inBowden(2003), both the stepwise PMI and GAGRNN input selection

methods suffer from a number of limitations. Using the PCA-GAGRNN approach, it is

not possible to determine the exact inputs to the system; rather, the important principal

components (PCs) are selected using the GAGRNN, where each PC is a linear combi-

nation of all of the original inputs. Therefore, is likely that even important PCs con-

tain extraneous inputs. Furthermore, only linear dependence between variables is con-

sidered in PCA; hence, this technique is not optimal for nonlinear relationships. The

SOM-GAGRNN approach is an improvement over the PCA-GAGRNN technique, as the

SOM is able to account for nonlinear relationships and does not combine the inputs in

any way. However, using the SOM input reduction method, it cannot be guaranteed that

the actual model inputs will be included in the reduced set of independent inputs, as an

input that is highly correlated with the actual input may be selected if it is closest to the

cluster centre. Moreover, like all model-based approaches, the resulting set of inputs se-

lected using the GAGRNN is dependent upon the model developed. If the model does

not properly represent the relationships between the candidate inputs and the output, the

resulting set of selected inputs is likely to be suboptimal. Being model-free, the stepwise

PMI approach is not dependent upon a modelled relationship and thus has an advantage

over the GAGRNN approach. Furthermore, it does not require any input preprocessing

step, as it is able to account for redundant inputs. However, to estimatefx′ (x′
i), fy′ (y′

i)
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andfx′y′ (x′
i, y

′
i) in (3.14), a kernel density estimator is used, which requires specification

of a “bandwidth” to prescribe the smoothness of the estimated density.Bowden(2003)

andSharma(2000) used the Gaussian reference bandwidth (Silverman, 1986), which may

be unsuitable for highly non-Gaussian data, leading to the selection of a sub-optimal set

of model inputs. Nevertheless, as it was demonstrated that the stepwise PMI input selec-

tion technique was able to correctly select the model inputs for the test cases inBowden

(2003), this approach will be used in the current research. An additional advantage of this

approach is that the magnitude of the PMI scores give useful information regarding the

relative importance of each input.

3.2.5 Determination of ANN Architecture

3.2.5.1 Review of current practice

In the regression equation given by (2.1), the functionf(·) is determined by the network

architecture, which, in turn, is defined by the number of input and output nodes, the num-

ber and configuration of hidden layer nodes, the connectivity between the nodes and the

types of activation functions used within the network. Therefore, it is the network archi-

tecture which determines model complexity. Only fully connected feedforward MLPs are

considered in this research, where the input and output nodes are fixed according to the

number of input and output variables included in the model, respectively. Therefore, de-

termination of an appropriate ANN architecture, and thus model complexity, comes down

to selecting the number and configuration of hidden layer nodes and choosing which ac-

tivation functions to use on the hidden and output layers.

Activation functions are needed to introduce nonlinearity into an ANN. Any nonlinear

function is capable of this; however, when a gradient descent type search algorithm is

used for training, the activation function must be continuous and differentiable (Sarle,

2002). Sigmoidal activation functions, such as the logistic sigmoid or the hyperbolic

tangent (tanh), given by (3.15) and (3.16), respectively (wherezin is the summed input to

a node), are most commonly used on the hidden layer nodes (Maier and Dandy, 2000a).

There may be some practical advantage to using tanh activation functions rather than

logistic, as empirically, the tanh function has been found to give faster convergence of the

training algorithm (Maier and Dandy, 1998a). Although sigmoidal functions may also

be used on the output layer, the linear, or identity, activation function, given by (3.17), is

commonly used, as this function does not restrict the range of the possible outputs to the

range that would be attainable if a bounded function were used (Bishop, 1995). However,

there are sometimes good reasons to use a bounded activation function at the output nodes;
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for example, if there are known upper and lower bounds for the target variable. The tanh,

logistic and linear activation functions are illustrated in Figure 3.3 where it can be seen

that the tanh and logistic activation functions are bounded on the ranges [-1,1] and [0,1],

respectively, whereas the linear function is unrestricted.

g(zin) =
1

1 + e−zin
(3.15)

g(zin) =
ezin − e−zin

ezin + e−zin
(3.16)

g(zin) = zin (3.17)

An ANN with sigmoidal hidden units and linear output units is not limited to mod-

elling smooth nonlinear functions. A sigmoidal hidden node may approximate a linear

hidden node by arranging all of the weights feeding into the node to be very small, such

that the summed input lies on the linear part of the sigmoid curve. Similarly, a sigmoidal

hidden unit may approximate a step function by setting all of the weights feeding into it

to very large values (Bishop, 1995). In fact, it has been shown that a one hidden layer

network with this configuration of activation functions can essentially approximate any

continuous functional mapping to arbitrary accuracy, provided that the number of hidden

nodes is sufficiently large (Cybenko, 1989;Hornik et al., 1989;Bishop, 1995).

The flexibility in ANN architecture determination primarily lies in selecting the num-

ber and configuration of hidden layer nodes, which, in turn, determine the number of

weights in the model. However, as discussed in Section 2.2.5.1, this is one of the most

critical and difficult tasks in designing an ANN. Generally, the number of hidden layers

is fixed, then the number of nodes in each hidden layer is chosen (Maier and Dandy,
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Figure 3.3 Typical activation functions (a) tanh, (b) logistic and (c) linear or identity.
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2000a). As mentioned above, only one hidden layer is required to approximate any con-

tinuous function, thus, most studies only utilise one hidden layer (Bowden, 2003). How-

ever,Cheng and Titterington(1994) note that even though a one hidden layer network

may be adequate, the number of hidden nodes required can be prohibitive.Flood and

Kartam(1994) argue that it may be better to use two hidden layers to provide the greater

flexibility necessary to model complex shaped solution surfaces, as a two hidden layer

ANN can yield an accurate approximation with fewer weights than a one hidden layer

network (Bebis and Georgiopoulos, 1994). However, in an empirical study byde Villiers

and Barnard(1992), it was found that there was no difference in the optimal performance

of one or two hidden layer ANNs with the same complexity, which led to the conclusion

that there is no reason to use two hidden layer networks in preference to one hidden layer

networks “in all but the most esoteric applications”. Furthermore, the use of two hidden

layers can exaccerbate the problem of local minima on the solution surface, making them

more difficult to train (see Section 3.2.6) (Sarle, 2002;de Villiers and Barnard, 1992).

Although the above results are useful in selecting the number of hidden layers, they

do not provide any guidance in selecting the number of hidden nodes. Theoretically, the

optimal number of hidden nodes is that which results in the smallest network able to ade-

quately capture the underlying relationship in the data. However, in the past, the selection

of hidden nodes has been somewhat arbitrary, as the optimal number of hidden nodes is

highly problem dependent; yet, there exists no systematic model selection method to en-

sure the optimal network will be chosen. A balance is required between having too few

hidden nodes such that there are insufficient degrees of freedom to adequately capture the

underlying relationship (i.e. the data are underfitted), and having too many hidden nodes

such that the model fits to noise in the individual data points, rather than the general trend

underlying the data as a whole (i.e. the data are overfitted). This is illustrated in Fig-

ure 3.4, which shows an example of an ANN (a) generalising well to the underlying trend

in the data, (b) overfitting the data and (c) underfitting the data. The generalisability of

the models shown in Figures 3.4 (b) and (c) would be poor, as a result of having too much

and too little flexibility to fit the data, respectively. This can be explained by considering

the bias-variance tradeoff, as discussed inBishop(1995), where the model error is de-

composed into the sum of thebiassquared plus thevariance. Bias results from a network

function that is on average different from the regression function, whereas variance results

from a network function that is overly sensitive to the particular data set. The model in

Figure 3.4 (b) has negligible bias as the model fits that data perfectly, however, this model

would generalise poorly due to a large variance in the error when applied to a different
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Figure 3.4 Example of an ANN (a) estimating the general underlying trend in the data, (b)

overfitting the data and (c) underfitting the data.

data set. On the other hand, the model in Figure 3.4 (c) is insensitive to the data set to

which it is applied and therefore has negligible variance. However, this model would also

generalise poorly as a result of having a large bias across all data sets. This highlights

the need to optimise the number of hidden nodes (and hence model complexity) such that

there is a balance between the bias and variance and the best generalisability is achieved.

Numerous techniques have been suggested to make decisions regarding network ar-

chitecture less arbitrary, such as pruning and construction algorithms, statistically based

comparison procedures and ‘rules of thumb’ (Bebis and Georgiopoulos, 1994;Anders

and Korn, 1999;Qi and Zhang, 2001;Basheer and Hajmeer, 2000). Maier and Dandy

(2000a, 2001) discuss a number of general guidelines that have been proposed in the

literature to help select the optimal number of hidden nodes by relating the number of

training samples to the size of the network. For example,Masters(1993) suggests that

there should be twice the number of training samples as there are weights in the network,

whereasWeigend et al.(1990) suggest that this ratio should be 10:1. More formally, by

analysing the asymptotic gain in generalisation error when early stopping is performed, it

has been shown byAmari et al.(1997) that if the number of training samples is greater

than 30 times the number of network weights, overfitting does not occur. In selecting the

number of hidden nodesJ , Maier and Dandy(2001) suggest taking the smaller of the

values obtained using the upper limits forJ given byHecht-Nielsen(1987) andRogers

and Dowla(1994) in (3.18) and (3.19), respectively,

J ≤ 2K + 1 (3.18)

J ≤ N

K + 1
(3.19)
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whereN is the number of training samples andK is the number of inputs. However,

while these guidelines may provide an upper limit, in many cases good performance can

be obtained with fewer nodes. Therefore, the optimal geometry is generally not obtained

using these guidelines.

The most commonly used method for selecting the number of hidden layer nodes is by

trial-and-error (Basheer and Hajmeer, 2000;Maier and Dandy, 2000a), where a number

of networks are trained, while the number of hidden nodes is systematically increased or

decreased until the network with the best generalisability is found. The generalisability

of an ANN can be estimated by evaluating its ‘out-of-sample’ performance on an inde-

pendent test data set using some general measure of fit (e.g. RMSE, CE, MAE given in

Section 3.2.1). In the statistical literature, this is known as cross-validation. However,

cross-validation with an independent data set may not be practical if there are only lim-

ited available data, since the test data cannot be used for training. Furthermore, if the

test data are not representative of the same population as the training data, the evaluation

may be biased. Alternatively, information criteria which measure ‘in-sample’ fit (i.e. fit

to the training data) but penalise model complexity, such as the AIC or BIC discussed

in Section 3.2.1, can be used to estimate the generalisability of an ANN. As this method

does not require the use of a test data set, all of the available data can be used for training;

however, it has been suggested that the commonly used information criteria may overly

penalise ANN complexity, leading to the selection of models that are too simplistic (Qi

and Zhang, 2001).

Although the trial-and-error selection of hidden nodes is straightforward, it can be

inefficient, as many networks may have to be trained before an acceptable one is found

(Reed, 1993). In order to overcome the tedious manual search for the optimal number of

hidden layer nodes, a number of pruning and construction algorithms, as well as evolu-

tionary approaches, have been proposed to automate the selection procedure (Reed, 1993;

Yao, 1999). Generally, pruning methods attempt to find an optimal network size by start-

ing with a large network and systematically reducing it by eliminating weights or nodes

that do not significantly contribute to the model fit. There are two main categories of

pruning methods: those that prune weights and/or nodes according to some sensitivity

measure (e.g. the change in model performance if a weight/node is removed from the

network, or the partial derivative of the error function with respect to a given weight); and

those thateffectivelyprune weights by modifying the error function to include a term that

penalises large weights (i.e. regularisation as discussed in Section 2.2.5.1) (Reed, 1993).

Construction algorithms, on the other hand, begin with a minimal network and add new
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layers, nodes or connections as required during training. Small networks have a tendency

to become trapped in local minima (see Section 3.2.6), therefore, the addition of new hid-

den nodes can change the shape of the weight space and help to escape the local minima

(Bebis and Georgiopoulos, 1994). However, finding the optimal network geometry with

these unit-by-unit evolution methods is not guaranteed and termination criteria used (e.g.

all weights provide a ‘significant’ contribution to model fit) lack clear statistical meaning

(Vila et al., 1999).

Bowden(2003) used an evolutionary backpropagation MLP (EBMLP) to determine

the most suitable network architecture, which was implemented using the commercially

available software package, NeuroGenetic Optimizer (NGO) (BioComp Systems Inc.,

1998). An EBMLP combines a genetic algorithm with a feedforward MLP architecture,

trained using the backpropagation algorithm (see Section 3.4.2.1), to find the optimal

network architecture. The NGO software offers a number of features which enabled mul-

tiple hidden layers to be considered, an upper limit to be placed on the number of nodes

in each hidden layer, a preference to be set for simpler models, linear, logistic or hyper-

bolic tangent activation functions to be utilised for each hidden and output node, the use

of cross-validation during training, the selection of backpropagation parameters and the

choice between two alternative methods for each of the three main GA operators: selec-

tion, crossover and mutation (see Section 3.4.2.2). Furthermore, the effect of different

weight initialisations was taken into account during the evolutionary process, as the same

architecture could be initialised numerous times throughout the algorithm with different

initial weights.

The search space for an optimal ANN architecture is infinitely large, since the number

of possible nodes and connections is unbounded (Yao, 1999). However, to define a more

limited and reasonable search space, the NGO software allows upper limits of 8, 16, 32,

64, 128 or 256 to be placed on the number of nodes in each hidden layer.Bowden(2003)

used (3.18) to determine the theoretical upper limit for the number of hidden nodes and

then used this value to guide the choice of upper limit adopted using the NGO software.

Bowden(2003) also allowed for two hidden layers to be considered to determine whether

a second hidden layer was required. The same setting was used to define the upper limit

for the number of nodes in each hidden layer. Additionally, the three available transfer

functions were all considered for each of the hidden and output nodes, giving rise to a

very large search space.

The GA selection method discards poor chromosome strings throughout the evolution;

therefore, with each generation, the population needs to be refilled. The NGO software
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enables two alternative strategies to be used for refilling the population, including cloning

the survivors of the selection process and randomly creating new population members.

The former strategy has the advantage of faster convergence; however, premature conver-

gence may result if the population is too small. By introducing new members into the

population, the latter refill method avoids search stagnation.Bowden(2003) considered

each of these refill strategies.

The results obtained byBowden(2003) indicated that the EBMLP was sensitive to

the type of refill strategy used during the GA optimisation, where it was apparent that

cloning was the best method to refill the population. It was observed that while this refill

strategy resulted in a decrease in the diversity of the networks obtained, it allowed for

faster convergence to a near-optimal network configuration. The results also indicated

that many networks with different configurations were capable of providing similar per-

formance, and as a result, it was concluded that there can be no guarantee that the true

optimal architecture was found.

3.2.5.2 Limitations and Conclusions

It is acknowledged that evolutionary approaches can be an effective way to conduct a di-

rected search for an optimal solution within a large search space. However, in the case

studies presented byBowden(2003), it is considered that the search space was made much

larger than necessary by allowing a great amount of flexibility in the architectures consid-

ered, when there are well established reasons to apply stricter constraints. For example,

in the salinity forecasting case study presented byBowden(2003), by placing an upper

limit of 32 hidden nodes on each of two hidden layers allowed for and by enabling one

of three possible activation functions for each hidden and output node, it was calculated

that there were1.3 × 108 possible network architectures. However, as discussed in Sec-

tion 3.2.5, there are good reasons to use tanh hidden nodes and linear output nodes, and if

these constraints were set, the search space would have been reduced considerably (1089

possible network configurations) without decreasing the possibility of finding the optimal

architecture.

Additionally, the error surface of a small network is more complicated than that of

a large network; thus, small networks are more susceptible to becoming trapped in lo-

cal minima than larger ones (Bebis and Georgiopoulos, 1994). Therefore, there is the

possibility of smaller networks being discarded in preference for larger ones using evolu-

tionary architecture selection methods. This is particularly the case for the EBMLP used

by Bowden(2003), as it is based on the local backpropagation training algorithm, which
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has limited capabilities for escaping local minima. The effect of different weight initiali-

sations may be taken into account during the evolutionary process if the same architecture

is initialised numerous times; however, if smaller networks are discarded in the early gen-

erations as a result of becoming trapped in local minima, there is little possibility that

the same architecture will be initialised more than once, particularly using the cloning re-

fill strategy. For example, using a trial-and-error architecture selection approach, a good

place to start would be a one hidden layer network with one tanh hidden node and one

linear output node. However, using the EBMLP, this configuration would initially have a

1 in 1.3 × 108 possibility of being considered. There is evidence in the results presented

by Bowden(2003) that small networks may have been disregarded during the search,

as the top 10 performing networks obtained using each of the population refill methods

were reasonably large, containing between 11 and 27 nodes in the first hidden layer and

between 7 and 16 nodes in the second hidden layer.

A further limitation of the EBMLP is that the results are dependent upon many user

defined parameters. For example, parameters must be selected for the backpropagation

training algorithm, the GA optimisation algorithm, as well as the overarching EBMLP

parameters, such as constraints on the number of hidden layers and nodes and the types of

activation functions enabled. While this provides much flexibility to the user, it may result

in a suboptimal architecture being selected. It can be difficult to select the parameters of

just one of these components to come up with an optimal solution; thus, the difficulty is

increased when all three components are combined.

In this research, a trial-and-error architecture selection procedure will be used, begin-

ning with a minimal network and systematically increasing the number of hidden nodes

until it is considered that no significant improvement in model performance can be gained

by the addition of further nodes. The networks considered will be limited to single hid-

den layer nets with tanh activation functions on the hidden layer nodes. If the target data

have known upper and lower bounds, a bounded activation function, such as the logistic

sigmoid or the hyperbolic tangent, will be considered for the output nodes; otherwise,

linear output units will be used. It is acknowledged that a trial-and-error search for the

optimum network may be tedious; however, by conducting a constrained and systematic

search of the possible network architectures, it is considered that a near optimal network

can be found in similar or less time than a less constrained evolutionary search. How-

ever, the problem remaining with trial-and-error architecture selection is that there is no

widely accepted method for evaluating the generalisability of the trialled networks, as

cross-validation with an independent data set reduces the available data for training and
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may give biased results if the test set is not properly representative. In addition, the use of

performance criteria that penalise model complexity may overly penalise ANNs, leading

to the selection of networks that are too simplistic. Therefore, in this research, further

investigations will be conducted into how to best evaluate the generalisability of an ANN

in order to select the optimal architecture.

3.2.6 ANN Training

3.2.6.1 Review of current practice

Training an ANN was discussed briefly in Section 2.2.3. It is the process by which the

weights of an ANN are estimated, by using an iterative procedure to minimise a prede-

termined error, or objective, function, such as the SSE given by (3.1). Therefore, ANN

training is essentially a nonlinear least squares problem, which can be solved using stan-

dard nonlinear least squares methods. However, like all complex nonlinear optimisation

problems, training an ANN is generally not straightforward, as the error surface is typ-

ically a highly nonlinear function of the weights, complicated with many minima and

saddlepoints (Cheng and Titterington, 1994;Bishop, 1995), as shown in Figure 3.5, in

which points A and B arelocal minima, point C is theglobal minimum(i.e. the smallest

value of the error function) and point D is a saddle point.

Local or global optimisation algorithms may be used to train an ANN. Local methods

search for an optimum solution in a downhill direction from their initial position on the

error surface. While such methods can be an effective way of optimising the weights of

feedforward networks, they are susceptible to becoming trapped in local minima in the

error surface. Therefore, as can be seen in Figure 3.5, the location of the initial weights
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Figure 3.5 Examples of different local minima on the error surface.
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can have a significant impact on the local minimum found. On the other hand, global

methods employ directed random search techniques to allow the simultaneous search for

an optimum in several directions. Such algorithms are therefore less sensitive to weight

initialisations, as they have an increased ability to escape local minima. However, global

methods are generally more computationally intensive than local algorithms. Therefore,

the suitability of a particular training method is generally a compromise between compu-

tation cost and performance (Maier and Dandy, 2000a).

Using local optimisation methods, the general form of the weight updates is:

wt+1 = wt + γtdt (3.20)

whereγt is the stepsize,dt is the vector which defines the direction of descent andt

is the iteration number (Maier and Dandy, 2000a). Either first-order or second-order

local search methods are available, where the essential difference between the two is the

determination of the vectordt, which determines the convergence rate and computational

complexity (Maier and Dandy, 2000a).

First-order methods are based on a linear approximation of the error function about

the current weight statewt. They use steepest, or gradient, descent to search the error

surface for a minimum solution, whereγtdt is proportional to the local negative gradient

of the error surface, calculated by taking the first partial derivatives of the error function

with respect towt. Thebackpropagationalgorithm, also known as thegeneralized delta

rule (Rumelhart et al., 1986), is a first-order local search method that is by far the most

widely used method to train feedforward MLPs (Maier and Dandy, 2000a). The main

contribution of this algorithm is that it provides a computationally efficient method for

evaluating the partial derivatives of the error function by propagating the computed error

between the model output and the target data backwards through the network. The calcu-

lated derivatives are then used to update each of the weights in the network according to

(3.21):

wt+1 = wt − η∇Ewt (3.21)

where∇Ewt denotes the gradient of the error function at pointwt andη is known as the

learning rate. The learning rateη has an important impact on the ultimate performance

of ANNs trained with backpropagation, as it directly affects the size of the steps taken

in weight space (Maier and Dandy, 1998a). A choice ofη that is too small can lead

to very slow convergence of the algorithm and can increase the likelihood of becoming

trapped in a local minimum. A larger learning rate will speed convergence; however, if

η is too large, the algorithm may overshoot the optimum solution and fall into possibly
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Figure 3.6 The effect of the learning rate used for backpropagation.

divergent oscillations. The effect ofη is illustrated in Figure 3.6, where it can be seen that

a small value ofη could result in a small step from point 1 to point 2, from which point

the algorithm would then continue to jump from one side of point A to the other, with the

local minimum at point A being the best solution that would be found. Alternatively, with

a larger value ofη, a large step from point 1 could result in the set of weights at point

3, which is in the vicinity of the global minimum point C; however, the next step would

likely overshoot C with the algorithm possibly falling into an oscillatory trap.

A number of alternatives have been proposed to enhance the backpropagation algo-

rithm by reducing the influence of a fixed learning rate. The most popular of these in-

cludes amomentumterm in the weight update formula as follows:

∆wt = −η∇Ewt + φ∆wt−1 (3.22)

whereφ is the momentum parameter. Adding momentum has the effect of adding inertia

to the steps taken in weight space, which can either act to increase or decrease the size

of the steps taken in weight space. In Figure 3.7, two situations are shown in which the

addition of momentum helps the backpropagation algorithm converge on a better solution

than it would if standard backpropagation was used. Figure 3.7 (a) shows an example of

a situation where the standard backpropagation algorithm would oscillate between A and

B; however, by using momentum to account for the inertia caused by the previous step

in the opposite direction, the size of successive steps taken in weight space is gradually

reduced, enabling the algorithm to find the minimum solution. Conversely, Figure 3.7 (b)

shows a situation where the momentum term increases the size of the steps taken in weight

space, enabling the algorithm to more efficiently transverse regions on the error surface
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with a small gradient. If the standard backpropagation algorithm was used in this case,

the size of the steps taken would become successively smaller with the reducing gradient,

with the algorithm possibly converging in the flat region between points A and B where

the gradient is virtually zero. Therefore, as can be seen, the inclusion of momentum

generally leads to a significant improvement in the backpropagation algorithm (Bishop,

1995). Other variations of first-order local search methods include the delta-bar-delta

algorithm (Jacobs, 1988) and Rprop (Riedmiller, 1994). The main differences between

the variety of local gradient based search methods include the information used to modify

the step size, the parameters that are modified and whether the parameters are modified

globally or individually for each node (Maier and Dandy, 2000a).
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Figure 3.7 The impact of momentum in backpropagation.

While first-order optimisation algorithms are simple to implement, a problem with

these methods is that, for most points in weight space, the local negative gradient does

not point to the minimum of the error function. Therefore, an indirect route is taken

towards the minimum, as illustrated in Figure 3.8, which results in slow convergence

(Bishop, 1995). Second-order local optimisation methods attempt to overcome this by

using second-order information about the error surface to take a more direct route towards

the minimum. These methods are based on a local quadratic approximation of the error

function about the current weight statewt, and use the local Hessian matrixH (matrix of

second partial derivatives of the error function with respect towt) to provide information

about the curvature of the surface. The optimum weight update is therefore given by:

wt+1 = wt −H1
wt
∇Ewt (3.23)

which, unlike first-order methods, results in a step directly towards the minimum (Bishop,

1995). The formula given by (3.23) is the classical Newton algorithm and the vector
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Figure 3.8 Indirect route taken towards the minimum of the error surface, where the ellipses

represent contours of the surface.

−H1
wt
∇Ewt is known as the Newton direction. However, as the quadratic approximation

of the error function is not exact, the Newton algorithm is iterative and as such, requires

evaluation of the local Hessian matrix at each step. For all but the smallest networks, this

can be extremely computationally demanding and places serious restrictions on the use of

this method (Maier and Dandy, 2000a). Furthermore, the Hessian must be non-singular

if it is to be inverted, which is not always the case, particularly if the network is large, as

discussed in Section 2.2.5.3. Various modifications of the Newton algorithm are available

that make use of different amounts of second-order information and thus have different

computational demands. The QuickProp algorithm (Fahlman, 1989), conjugate-gradient

methods, quasi-Newton methods and the Levenberg-Marquardt algorithm are examples

of such algorithms listed in increasing order of use of second-order information. The

amount of second-order information used can then be directly related to the size of the

networks to which these algorithms may be applied (Sarle, 2002).

Because both first- and second-order local training algorithms tend to converge on

the local minimum solution in the region of their starting point, finding the global min-

imum is dependent upon a fortuitous initialisation of the weights. To more consistently

obtain a set of globally optimal weights, global optimisation methods, which have strate-

gies to help them escape from local minima, can be used for ANN training (Sexton et al.,

1999a). The simplest global training method, known asmultistart, involves the use of a

local algorithm started from several points distributed over the whole weight space. A

limitation of this method, however, is its lack of efficiency, as the same minimum solu-

tion can be determined several times, rather than thoroughly searching different solutions.

Furthermore, the number of necessary starting points is generally unknown and problem

dependent (Sexton et al., 1998). Stochastic global search techniques, including evolu-
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tionary programming (EP) (Fogel, 1999), simulated annealing (Kirkpatrick et al., 1983)

and genetic algorithms (GAs) (Goldberg, 1989) provide alternative solutions to the opti-

misation problem.Sexton et al.(1998, 1999a,b);Gupta and Sexton(1999);Sexton and

Dorsey(2000) andSexton and Gupta(2000) carried out a number of comparisons between

the backpropagation, genetic algorithm and simulated annealing algorithms for training

ANNs, applied to both synthetic and real-world case studies. It was found that GAs are

able to reliably and consistently outperform the backpropagation algorithm (Sexton et al.,

1998;Gupta and Sexton, 1999;Sexton and Dorsey, 2000;Sexton and Gupta, 2000). Ad-

ditionally, simulated annealing was found to outperform backpropagation (Sexton et al.,

1999b); however, it was also observed that GAs are able to systematically obtain superior

solutions to simulated annealing (Sexton et al., 1999a).

Bowden(2003) compared six different training algorithms for estimating the weights

of an ANN, including four first-order and two second-order local optimisation methods.

The first-order methods included different variations of the delta rule, namely backpropa-

gation (the generalised delta rule), the normalized cumulative delta (NCD) rule, the delta-

bar-delta (DBD) algorithm, and the extended delta-bar-delta (EDBD) algorithm, while the

second-order methods included QuickProp and a variation of this algorithm called Max-

Prop. To provide a fair comparison of the training algorithms, the ANNs were initialised

with 30 different sets of weights for each training algorithm.

The results of the comparison carried out byBowden(2003) showed that there was

large variation between the performance of the models obtained using the different first-

order training algorithms, as measured by the average error calculated using 30 different

weight initialisations. The best results were obtained using the EDBD algorithm, followed

by backpropagation, while the worst results were obtained using the NCD algorithm. It

was also found that the generalisability of the ANNs developed using the second-order

methods was inferior to that of the models developed using the first-order methods, which

was consistent with the results obtained byMaier and Dandy(1999), who found that,

depending on the size of the steps taken in weight space, first-order methods are able

to escape local minima, whereas second-order methods are not. Overall, it was found

that the results obtained using the QuickProp algorithm using the 30 different weight

initialisations had the greatest variability, indicating that this algorithm was least able to

converge on the same local minimum in the error surface.
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3.2.6.2 Limitations and Conclusions

The investigation carried out byBowden(2003) was limited by the ANN software used

((NeuralWare, 1991)), which did not enable the use of global training techniques. Al-

though it has been shown that local optimisation algorithms, in particular backpropaga-

tion, can be used to successfully train an ANN (Maier and Dandy, 1999), results are often

inconsistent due to the sensitivity of these algorithms to the initial weights. Therefore,

it is difficult to place a reasonable degree of confidence in the solutions obtained using

local search methods. While, there is currently no training algorithm that can guarantee

the global solution of the network will be found in a reasonable amount of time (Zhang

et al., 1998), it has been demonstrated that global optimisation techniques, such as GAs,

are able to more consistently converge on a near optimal solution. Therefore, in this

research, the training performance of the most widely used backpropagation algorithm

will be compared to two global optimisation techniques, namely a GA and the shuffled

complex evolution (SCE-UA) algorithm developed byDuan et al.(1992). The SCE-UA

algorithm has not yet been used to train ANNs, but has been found to be both effective and

efficient in finding the global optimum in numerous other hydrological modelling studies

(Franchini et al., 1998;Freedman et al., 1998;Thyer et al., 1999).

3.2.7 ANN Validation

3.2.7.1 Review of current practice

An ANN may achieve almost perfect “in-sample” performance, which is evaluated ac-

cording to the fit between the model outputs and the sample of data that it was trained

on. However, before the model can be used to generate predictions or simulate data, it

needs to be validated, which is usually done by evaluating its “out-of-sample” perfor-

mance, or generalisability when applied to an independent set of validation data, using

the performance criteria chosen (see Section 3.2.1) (Maier and Dandy, 2000a). To ensure

appropriate validation of the developed ANN model, it is vital that the validation data

were not used in any capacity during training and model selection.

Bowden(2003) did not consider ANN validation apart from selecting the performance

criteria used to evaluate out-of-sample performance (see Section 3.2.1) and dividing the

data to obtain a statistically representative validation data set (see Section 3.2.2).

3.2.7.2 Limitations and Conclusions

The main limitation of the standard method for validating ANNs is that no consideration

is given to the physical plausibility of the estimated relationship. Rather, it is generally
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assumed that if an ANN model has good out-of-sample performance, it represents the

physical process of the system (Sudheer, 2005). However, as discussed in Section 3.2.6,

local minima may exist on the error surface, which may result in many combinations of

weights having similar network performance. Knowing this fact does not provide great

confidence in ANN predictions; however, if it can be demonstrated that a trained ANN

has captured knowledge of the underlying system, the model can be applied with greater

confidence. Therefore, in this research, validation of the ANNs developed will be carried

out by evaluating out-of-sample performance on an independent set of validation data

and by assessing the relationship modelled using the relative contributions of the model

inputs in predicting the output. The relative contributions of the inputs as modelled by the

ANN can then be compared to expert ora priori knowledge of the system, correlation or

mutual information measures, or other data mining methods when there is little or noa

priori knowledge of the system.

3.3 SUMMARY OF APPROACH ADOPTED AND FURTHER

INVESTIGATIONS REQUIRED

Following the review of the current state-of-the-art ANN development process given in

the preceding section, the methods adopted in this research for carrying out each step

of the deterministic ANN development process are summarised below, together with any

limitations of the current methodology and areas requiring further investigation:

Choice of data sets:The SOM data division approach proposed byBowden et al.(2002);

Bowden(2003) will be used to divide the available data into training, testing, and

validation subsets. However, rather than allocating one data point from each cluster

into each of the data subsets as suggested byBowden(2003), the entire available

data set will be divided into the respective subsets, with 64% of the data allocated

to training, 16% allocated to testing and 20% allocated to validation. The average

silhouette width̄s(k) will be used in conjuction with the discrepancy measure given

by (3.11) to determine the appropriate size of the kohonen layer (i.e. SOM grid size)

used to cluster the data.

Data pre-processing: In this research, data pre-processing will only be applied as nec-

essary. Initially, all inputs and outputs will be standardised to have a mean of 0 and

a standard deviation of 1, except if a bounded activation function is used on the out-

put layer, in which case the target data will be scaled to be commensurate with the

limits of this function. Once the model is fitted, diagnostic checking of the residuals

Page 75



Chapter 3 – State-of-the-Art Deterministic ANN Methodology

will be carried out to determine whether the assumptions of the regression model,

given in Section 3.2.3.2, have been met. If the assumptions are not met (e.g. model

residuals are significantly non-Gaussian), nonlinear transformations including the

logarithm, inverse and square root of the data will be considered in an attempt to

improve the model.

Determination of ANN inputs: The stepwise PMI input selection approach proposed by

Bowden(2003);Bowden et al.(2005a) will be adopted in this research. However,

this method will first be applied to a number of synthetic data sets to verify that it

is able to correctly select the important inputs.

Determination of ANN architecture: A trial-and-error procedure will be used to select

the optimum number of hidden layer nodes for a given problem based on the best

generalisability. The ANNs considered will be limited to single hidden layer net-

works with tanh hidden nodes and linear output nodes. As there is currently no

widely accepted method for evaluating generalisability in order to select the opti-

mum ANN size, this issue will be further investigated in this research.

ANN training: The optimisation performance of the backpropagation, GA and SCE-UA

training algorithms will be compared in this research. The global optimisation

method SCE-UA has not before been used to train an ANN, therefore, the inves-

tigation will aim to determine whether this algorithm is appropriate for training

ANNs, and which algorithm is most suitable for training ANNs out of this new

global method, the widely used local optimisation algorithm backpropagation, and

the most commonly used global optimisation algorithm, the GA.

Choice of performance criteria and ANN validation: The commonly used performance

criteria RMSE, MAE,r2 and CE will all be used to evaluate the performance of the

trained ANNs developed in this research. The AIC and BIC will also be used to

evaluate the generalisability of the ANN models based only on the training data re-

sults, while taking into account the complexity of the models. To validate the phys-

ical plausibility of the models developed, the relationship modelled by the ANNs

will be assessed by evaluating the relative contributions of the model inputs in pre-

dicting the output. However, as there is currently no widely accepted method for

quantifying the relative importance of the ANN inputs, a number of input impor-

tance measures will be investigated in this research to determine which measure, if

any, is most appropriate for assessing the relationship modelled by an ANN.
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3.4 FURTHER INVESTIGATION OF DETERMINISTIC ANN

DEVELOPMENT METHODS USING SYNTHETIC DATA

3.4.1 Synthetic Data Sets

Three different synthetic data sets (data sets I, II and III) were used to compare and assess

the methods investigated in the following sections. The use of synthetically generated

data enabled the methods to be properly assessed and compared without the complication

of other uncertainties, such as unknown important inputs or an unknown error model, and

without being affected by data limitations. More importantly, if real data were used to

assess the input importance measures investigated, as discussed in Section 3.4.4, it would

not be possible to check the accuracy of the measures in relation to the true contributions.

Furthermore, it was possible to generate “true” and “measured” target data, where the

“true” data were generated by the model function without the addition of a random noise

component and the “measured” data were obtained by corrupting the “true” data with

random “measurement” errors,ε ∼ N(0, 1).

The data sets were generated with different degrees of nonlinearity, noise levels and

sizes, to represent the variability of cases that could be encountered in a real forecasting

situation. Additionally, each data set represents a different type of forecasting problem,

including time series forecasting, where inputs are past observations of the data series

(i.e. yt = f(yt−1, . . . , yt−K)); causal forecasting, where inputs are independent predictor

variables (i.e.y = f(x1, . . . , xK)); and in-between, where inputs include past values of

the data series and independent variables (i.e.yt = f(yt−1, . . . , yt−P , x1, . . . , xK−P )). To

quantify the degree of nonlinearity in the data sets, a multivariate linear regression model

was fitted to the noise-free, or “true” data. The fit of the linear model to the data was

evaluated using the coefficient of determinationr2, given by (3.5), where the closerr2 is

to one, the more linear the data are, and vice versa. To evaluate the noise levels in the

data, the signal-to-noise ratio was evaluated as follows:

λ =
σ2

signal

σ2
noise

(3.24)

whereσ2
signal is the variance of the “true” data andσ2

noise is the variance of the added noise

componentε.

The generated data were divided into training, testing and validation data subsets us-

ing the SOM data division method discussed in Section 3.2.2. In order to find the optimal

grid size for each data set, the average silhouette widths and discrepancy values (see Sec-

tion 3.2.2.2) were compared for SOM grid sizes ranging from1 × 2 to 12 × 12. Once
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clustered, 64% of the data samples were allocated to the training subset, 16% were allo-

cated to the testing subset and the remaining 20% were allocated to the validation subset,

ensuring that at least one sample from each cluster was allocated to each subset where

possible.

3.4.1.1 Data Set I

The autoregressive model of order nine (i.e. AR(9)), given by (3.25), was used to generate

870 data points to make up data set I. This model, also used bySharma(2000) andBowden

et al. (2005a) for the generation of synthetic data, is alinear time seriesmodel, including

only past observations of the data as inputs.

yt = 0.3yt−1 − 0.6yt−4 − 0.5yt−9 + ε (3.25)

An r2 value of 0.999 was obtained by fitting a linear regression model to the “true” data,

indicating that the generated data are linear as expected. The signal-to-noise ratio of the

“measured” data set wasλ = 1.92, which indicates that the data are fairly noisy (i.e. the

strength of the signal is less than twice the strength of the noise).

A histogram showing the probability density of the data is given in Figure 3.9, where

it can be seen that the data are approximately normally distributed, indicating that only

linear rescaling (standardisation) of the data was necessary. It was found that a1 × 6

SOM grid size was optimal for clustering this data set, which resulted in 6 clusters all

containing more than 3 samples. From these clusters, 557 samples were allocated to the

training data subset, 139 were allocated to the testing subset and 174 were allocated to the
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Figure 3.9 Probability density of response variableyt for data set I.
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validation subset.

3.4.1.2 Data Set II

Data set II, consisting of 1120 data points, was also generated by the AR(9) time series

model, but with the linear addition of an independent nonlinear componentsin(2xt), as

shown in (3.26), wherex is an independent random variable uniformly distributed be-

tween−π andπ.

yt = 0.3yt−1 − 0.6yt−4 − 0.5yt−9 + sin(2xt) + ε (3.26)

An r2 value of 0.864 was obtained for this data set when a linear regression model was

fitted to the “true” data, indicating that the generated data are reasonably linear with a

nonlinear component that the linear model cannot account for. The signal-to-noise ratio

of the “measured” data set wasλ = 3.39, which indicates that the noise levels in the data

are moderate (i.e. the strength of the signal is greater than three times the strength of the

noise).

The probability density of the data is shown in Figure 3.10. Similar to data set I, the

data are approximately normal; thus no further preprocessing was required apart from

linear rescaling. For this data set, it was also found that a1 × 6 SOM grid size was

optimal for clustering the data and again, each of the 6 clusters contained greater than

3 data samples. From these clusters, 717 samples were allocated to the training subset,

another 179 to the testing subset and the remaining 224 to the validation subset.
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Figure 3.10 Probability density of response variableyt for data set II.
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3.4.1.3 Data Set III

1900 data points were generated by (3.27) to make up data set III. This function, suggested

by Friedman(1991), describes a linear combination of both nonlinear and linear functions

of independent random variables.

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε (3.27)

An r2 value of 0.775 was obtained by fitting a linear regression model to the “true” data,

indicating that data set III is the least linear of the data sets considered. The signal-to-

noise ratio of the “measured” data set wasλ = 23.94, which is significantly greater than

the signal-to-noise ratios of data sets I and II. As the strength of the signal is almost 24

times the strength of the noise, the data are considered to contain little noise.

The probability density of the response variabley is shown in Figure 3.11. Again,

the distribution of the data is approximately symmetric and did not require a nonlinear

transformation. A1× 8 SOM grid size was found to be optimal for this data set, resulting

in 8 clusters all containing greater than 3 data samples. From the clusters, 1215, 304 and

380 samples were allocated to the training, testing and validation subsets, respectively.
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Figure 3.11 Probability density of response variabley for data set III.

3.4.2 ANN Training - Comparison of Training Algorithms

In this section, a description of each of the algorithms compared in terms of their training

abilities is given, together with a description of the investigation undertaken. The back-

propagation (BP) algorithm was included in the comparison as this is the most commonly
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used method to train MLPs, as discussed in Section 3.2.6, and provides a benchmark

against which to evaluate other methods (Dawson and Wilby, 2001). Genetic algorithms

(GAs) are a commonly explored alternative to using BP for training ANNs (Sexton and

Gupta, 2000), and thus, were also included in the comparison. As mentioned in Sec-

tion 3.2.6, GAs differ from traditional optimisation techniques by searching for an opti-

mum from a population of points, rather than from a single point. They are also based on

evaluations of the objective function, rather than its derivative or auxiliary information,

and use probabilistic transition rules rather than deterministic rules (Goldberg, 1989). Al-

though it has been found that GAs often provide better results when compared to gradient

based methods such as backpropagation, they do not have the ability to fine-tune a so-

lution, meaning that convergence can occur at a point where the gradient is not zero. It

has been recognised that the efficiency of evolutionary algorithms, such as GAs, can be

improved if they are combined with a local search method (Yao, 1999). This allows the

evolutionary component of the algorithm to locate promising regions in the search space

while the local search method is used to find the optima of these regions. The shuffled

complex evolution - University of Arizona (SCE-UA) algorithm, developed byDuan et al.

(1992, 1993), combines the strengths of a global evolutionary optimisation method with

those of the local downhill simplex search method ofNelder and Mead(1965). The al-

gorithm was designed primarily to deal with the “peculiarities encountered in conceptual

watershed model calibration” and is based on the synthesis of four concepts, which are

said to make the algorithm effective, robust, flexible and efficient (Duan et al., 1994).

These concepts are: (1) the combination of deterministic and probabilistic approaches;

(2) systematic evolution of a ‘complex’ of points spanning the parameter space, in the

direction of global improvement; (3) competitive evolution; and (4) complex shuffling.

As stated in Section 3.2.6.2, the SCE-UA algorithm has not yet been used to train ANNs;

therefore, it was included in the comparison to determine whether or not it is appropriate

for ANN training.

3.4.2.1 Backpropagation (BP)

Shown in Figure 3.12 is a schematic of the BP algorithm. As can be seen, there are four

main steps carried out during this algorithm, which are described as follows:

STEP 1: To initialise the algorithm, the weights are generally set to zero-mean random

values. Choosing an appropriate size for the initial weights can have an important

effect on training performance, as large weights may ‘saturate’ the nodes, causing

the derivatives of the activation functions to be small and the error surface to be
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Compute the objective function Ey 

n = 1 

Initialise weights ŵt = (ŵ1,…, ŵd) 
to small random values 

START 

Update weights from the output 
layer backwards 
ŵt+1 = ŵt + ∆ŵt 

n = κ? 

Calculate the output from each 
node and the error between the 
model output and model target  

εn = (yn – ŷn) 
n = n +1 

t = 1 

Stopping criteria 
met? 

STOP 

t = t +1 

NO 

YES 

YES 

NO 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

Figure 3.12 Schematic of the BP algorithm, outlining the main steps carried out
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flat, and as a result, training is slow. On the other hand, if the initial weights are too

small, the error propagated backwards to update the input-hidden layer weights will

be small (see equations (3.30) and (3.31)); therefore, adaptation of these weights

will be slow. It is therefore desirable that the summed inputs to sigmoidal activation

functions be of order unity (Bishop, 1995). Thus, if the input variables are rescaled

to an order of one, it is appropriate that the size of the weights is also of order unity.

STEP 2: This step involves the forward propagation of information through the network,

where a defined number of training samples is presented to the network and the

model outputs are evaluated. The number of samples presented to the network be-

tween weight updates is known as theepoch sizeand is denoted byκ in Figure 3.12.

If the epoch size is equal to one (i.e. the weights are updated after each training

pattern has been presented to the network), the weight updates are said to beincre-

mental. If the epoch size is set equal to the size of the training set (i.e. the entire

training set is processed in-between weight updates), the network is said to operate

in batchmode. The epoch size can also be set to some intermediate number so that

the network operates between incremental and batch modes. There are a number

of advantages in presenting a number of training samples to the network before the

weights are updated, as are there in updating the weights following the processing

of each training sample. In batch mode, the weights are adapted based on the global

error over the whole data set, rather than on the local minimum for the particular

pattern being considered. On the other hand, updating the weights incrementally

causes the search through weight space to become stochastic (i.e. computing the

case-wise error function is equivalent to using an objective function that has been

corrupted by noise (Sarle, 2002)), increasing the ability of the algorithm to escape

from local minima in the error surface.Maier and Dandy(1998a) investigated the

effect of the epoch size on training and found that, while the predictive ability of

the network was unaffected by epoch size, training was much faster when a smaller

epoch size was used. It was concluded that there was no advantage in using larger

epoch sizes; therefore, in this research, incremental learning was used.

STEP 3: In this step, the model error is propagated backwards through the network in

order to evaluate the partial derivatives of the error function and update the weights.

Depending on whether a node is in the output layer or a hidden layer, the required

weight update can be derived with different expressions. The first step is to calculate
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the weight updates for the hidden-output layer weights, which is done according to:

∆ŵjm(t) = ηδmzj + φ∆ŵjm(t− 1) (3.28)

wherezj is the the output from hidden nodej. The value ofδm is given by:

δm = (y − ŷ) g′
m(ŷin) (3.29)

whereŷin is the summed input to the output node (i.e.ŷin = ŵ0m +
∑J

j=1 ŵjmzj).

The weight updates for the input-hidden node weights are calculated as follows:

∆ŵkj(t) = ηδjxk + φ∆ŵkj(t− 1) (3.30)

whereδj is given by:

δj = g′
j(zinj)

M∑
m=1

ŵjmδm (3.31)

andzinj is the summed input to hidden nodej (i.e. zinj = ŵ0j +
∑K

k=1 ŵkjxk).

Thus, the value ofδ for a hidden node is calculated by propagating theδs backwards

from nodes higher in the network. For an ANN with one hidden layer and a single

output, the single value ofδm is propagated backward to evaluate theδ values for

each hidden node.

As discussed in Section 3.2.6, choosing an appropriate value for the learning rateη

can be difficult, as small values result in slow convergence and increase the poten-

tial of becoming trapped in local minima, while large values can lead to oscillatory

behaviour of the algorithm. Furthermore, if the error surface of an ANN contains

many local optima, the optimal learning rate will change during the course of train-

ing. For incremental training, which was used in this research, the learning rate

mustbe slowly reduced during training to guarantee convergence of the BP algo-

rithm (Sarle, 2002). Therefore, an adaptive, or dynamic, learning rate was used

in this research. To achieve faster learning with a small learning rate, a relatively

large momentum termφ can be used; however, to ensure convergence of the BP

algorithm, this value must be less than 1.0. The BP parameter values used in this

research are further discussed in Section 3.4.2.4
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STEP 4: Steps 2 and 3 are repeated for many iterations until a specified stopping criterion

has been met. There are numerous criteria upon which training may be stopped,

such as stopping after a fixed number of iterations; stopping when the training error

falls below a specified value or when the relative change in the error falls below

some tolerance value; or when the test set error begins to increase when applying

cross-validation. The stopping criteria used in this research will be further discussed

in Section 3.4.2.4.

3.4.2.2 Genetic Algorithms (GAs)

GAs are inspired by the Darwinian process of natural selection and survival of the fittest,

where an initial random population is evolved over a number of generations by selectively

sharing information among the best or ‘fittest’ solutions. The main steps in the GA train-

ing process, as outlined in Figure 3.13, are described as follows:

Initialise population of Gt by sampling 
chromosomes ŵi, i = 1,…, s, at random 

from Θ 

START 

t = 1 

Stopping 
criteria met? 

t = t +1 

NO 

YES 

Evaluate fitness of each 
chromosome in Gt, -Ei    i=1,…,s 

Select parent chromosomes for 
mating pool 

Crossover parent chromosomes to 
generate offspring (i.e. Gt+1) 

Mutate random genes ŵj in 
offspring chromosomes 

Define search space Θ ⊂ ℜd 

STEP 1 

STEP 2 

STEP 3 

STEP 4 

STOP STEP 5 

Figure 3.13 Schematic of a GA outlining the main steps performed.
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STEP 1: Using a GA, a possible solution to the optimisation problem is represented in

the form of a string, called a ‘chromosome’. Each chromosome is then made up of a

number of elements, called ‘genes’, which contain encoded values of the variables

being optimised. If real-valued encoding is used for the ANN training problem

(as opposed to binary encoding, for example), each gene in a chromosome is one

connection weight and, therefore, each chromosome represents a weight vector. To

initiate the GA training process, the search spaceΘ needs to be defined and an initial

population of chromosomesG1 = {ŵ1, . . . , ŵs} is generated randomly within this

space, where the size of the populations mustbe an even number.

STEP 2: In the second step, the fitness of each individual chromosome is evaluated and

a set of ‘parent’ chromosomes are selected. During the GA process, the aim is

to evolve solutions with greater fitness (i.e. maximise fitness). Therefore, in this

research, the fitness of each chromosome was calculated using the negative of the

model error function (i.e.fitnessi = −Ei = −SSEi); thus, the smaller the model

error, the fitter the chromosome was considered to be. The parent chromosomes are

chromosomes selected from the population that will contribute offspring to the next

generationGt+1. This operator, calledselection, is analogous to the natural process

of survival of the fittest, where the chromosomes compete, based on their fitness, to

fill the population of parent chromosomes, called themating pool. Different types

of selection operator may be used to fill the mating pool. In this research, a selection

operator known as ‘tournament selection’ was used, where pairs of chromosomes

are randomly competed against one another and the winner (chromosome with the

best fitness) is selected as a parent chromosome. The size of the mating pool needs

to be the same as the initial population; therefore, each chromosome competes in a

(random) tournament twice. As a result, fitter chromosomes may be included in the

mating pool twice, whereas other less fit chromosomes may not be included at all.

STEP 3: Once the parent chromosomes have been selected, a geneticcrossoveropera-

tor is applied between pairs of parents to produce offspring, which form the next

generation of chromosomes. The parents are paired by randomly selecting two

chromosomes from the mating pool, without replacement. There are a number of

different forms of crossover operator, all of which are designed to exchange or

combine the information contained in the parent chromosomes. In this research,

the two child staggered average crossover operator (Vı́tkovsḱy et al., 2000) was ap-

plied, as this operator has been designed to exploit the continuous nature of the

weights, as opposed to alternative crossover operators that were designed for bi-
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nary encoded chromosomes. One random crossover point was used, as shown in

Figure 3.14, which illustrates the two child average crossover operator. Generally,

when one-point crossover is applied, a crossover point is selected uniformly at ran-

dom, and the portions of the parent chromosomes from the crossover point to the

end are swapped, producing two new offspring. However, using the two child av-

erage crossover operator, the first offspring chromosome is produced by taking the

average values of corresponding genes of a pair of parent chromosomes up until the

crossover point, while the original genes are used from the crossover point to the

end of the chromosome. Conversely, the second offspring chromosome is produced

by using the original genes up until the crossover point, while taking the average of

the parent genes from the crossover point to the end of the chromosome, as shown

in Figure 3.14. The crossover operator is assigned a probability, orcrossover rate,

which determines whether or not crossover between a pair of parents will occur. Be-

cause crossover among parent chromosomes is a common natural process (Caudill,

1991), it is traditionally given a relatively high probability ranging from 0.6 to 1.0

(Elbeltagi et al., 2005).

 

Parent chromosome A 

Parent chromosome B Offspring B 

Offspring A 

Average of the genes of the 
corresponding parent 
chromosomes 

Figure 3.14 Two child average crossover operator.

STEP 4: Mutation, which is the occasional random alteration of the value of a gene

(Goldberg, 1989), is the final step in the generation of offspring chromosomes.

This operator ensures that the evolution does not become trapped in unpromising

regions of the search space by introducing new information into the search. Similar

to the selection and crossover operators, there are a number of alternative mutation

operators available. The step size mutation operator (Vı́tkovsḱy et al., 2000) was

used in this research, because, like the crossover operator used, it too was designed

for continuous variables. This operator randomly mutates the value of a gene to

within onestepsizeof the current value as follows:

gene′ = gene + τ × u (3.32)
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wheregene′ is the mutated value of the gene,τ is the stepsize, or maximum in-

cremental change, allowed for a gene andu ∼ U(−1, 1). The parameterτ should

be selected according to the magnitude of the optimisation variables and the sensi-

tivity of the objective function to these variables. Amutation rateis also assigned

to the mutation operator, but unlike the crossover rate, the mutation rate is applied

to a chromosome on a gene by gene basis. The bulk of a GA’s processing power

can be attributed to selection and crossover; therefore, mutation plays a secondary

role in the algorithm (Goldberg, 1989). As mutation in nature is a rare process, the

mutation rate is generally set to a small value (e.g. less than 0.1) (Elbeltagi et al.,

2005). However, according toEiben et al.(1999), the use of rigid parameters that

do not change their values is in contrast to the dynamic adaptive nature of a GA.

They claim that different parameter values may be optimal at different stages of the

evolutionary process, where large mutation steps can be useful in early generations

for helping to explore the search space, whereas in later generations, small muta-

tion steps might be needed to help to fine tune chromosomes. Therefore, in this

research, a constant mutation rate was applied with a dynamic stepsize parameter.

The parameter values used in this research are further discussed in Section 3.4.2.4.

STEP 5: Steps 2 to 4 are repeated for many generations and, like backpropagation, the

final step in the algorithm involves determining when to stop training. The stopping

criteria used in this research are discussed in detail in Section 3.4.2.4.

3.4.2.3 Shuffled Complex Evolution (SCE-UA)

The SCE-UA algorithm involves randomly selecting a population of points from the fea-

sible search space, which are then divided into several communities, orcomplexes. The

complexes are evolved independently, through a ‘reproduction’ process, where each mem-

ber in a complex is a potential ‘parent’ with the ability to participate in the reproduc-

tion process. At periodic stages of the evolution, the entire population is shuffled before

points are reassigned to complexes (i.e. the communities are mixed and new communities

formed). This promotes the sharing of information gained by each community in order to

direct the entire population toward the neighbourhood of a global optimum. A schematic

of the SCE-UA algorithm is shown in Figure 3.15, outlining the main steps carried out

during the algorithm. These are discussed further as follows:

STEP 1: To initialise the process, the feasible search space is defined by placing upper

and lower limits on the weights, and a random sample ofpointsŵ1, . . . , ŵs is gener-

ated within this space. The size of the samples is equal to the number of complexes
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Generate initial population by sampling s = m×p 
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Partition Dt into p complexes containing m 
points, Dt = {Ak, k = 1,…,p} 

Evolve each complex Ak, k = 1,…,p 

Define search space Θ ⊂ ℜd 
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Figure 3.15 Schematic of SCE algorithm outlining the main steps carried out.

p, multiplied by the number of points in each complexm (i.e. s = m× p).

STEP 2: The objective functionE (e.g. the SSE given by (3.1)) is evaluated for each

point. Thes points are then sorted in order of increasing error function value and

stored in the arrayD = {ŵi, Ei, i = 1, . . . , s}, such thati = 1 represents the weight

vector with the smallest error function value.

STEP 3: The arrayD is partitioned intop complexesA1, . . . ,Ap, each containingm

points, such that the first complex contains every[p(j − 1) + 1] ranked point, the

second complex contains every[p(j − 1) + 2] ranked point, and so on, wherej =

1, . . . ,m (i.e. Ak =
{
ŵk

j , E
k
j |ŵk

j = ŵk+p(j−1), E
k
j = Ek+p(j−1), j = 1, . . . ,m

}
).

STEP 4: In this step, the complexes are evolved using the competitive complex evolution
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(CCE) algorithm (Duan et al., 1992). In this algorithm, a number of subcomplexes

are selected from a complex, where a subcomplex acts as a pair of parents, although

it may contain more than two members. A probability is assigned to the members

of the complex such that better points have a greater chance of becoming parents,

similar to the selection operator described for the GA. The downhill simplex method

(Nelder and Mead, 1965) is then applied to each subcomplex to produce most of

the offspring, where reflection and contraction processes are applied to direct the

evolution in an improvement direction. Offspring are also occasionally randomly

introduced to ensure that the evolution does not become trapped in an unpromising

region. This is analogous to the mutation operator used in a GA. Each new offspring

produced by a subcomplex then replaces the worst point in the subcomplex.

STEP 5: Once the complexes have been evolved, they are shuffled and reformed by com-

bining all of the points in the evolved complexes into a single population, sorting

the population in order of increasing objective function value and, finally, repar-

titioning the population intop complexes according to the procedure described in

Step 3.

STEP 6: Steps 2 to 5 are repeated until a stopping criterion has been met and this step

involves checking whether or not this has occurred. The stopping criteria used in

this research are discussed in detail in Section 3.4.2.4.

3.4.2.4 Investigation

The optimal number of hidden nodes necessary for modelling data sets I, II and III was

initially assumed to be unknown; therefore, each algorithm was used to train 10 different

sized networks, containing between 11 and 10 hidden nodes, for each of the three synthetic

data sets. It was considered that, within this range, there would be networks containing

too few, too many and the optimum number of hidden nodes for the given case studies.

This enabled the optimisation abilities of the training algorithms to be assessed under

such different conditions of model specification. To investigate the robustness of the

algorithms, each network was initialised with five different sets of weights. This resulted

in 50 networks being developed for each data set, using each training algorithm, or a total

of 150 ANN models for each data set. To initialise each of the algorithms, the initial

weights were randomly generated from a normal distribution with zero mean and unit

1This was the minimum number of hidden nodes considered in this research, as ANNs with no hidden

nodes result in linear models; thus defeating the purpose of using an ANN, rather than a linear regression

model.
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variance to achieve summed inputs to the hidden nodes of the order unity. Both the GA

and the SCE-UA algorithm required that upper and lower bounds be placed on the weights

in order to define the feasible search space. For each algorithm, these bounds were set

to [-10,10] in order to easily accommodate the initial weight values and to not be overly

restrictive or flexible for the algorithms to function properly.

Each of the algorithms required a number of user-defined parameters to be set. For the

BP algorithm, these included the initial and final values of the dynamic learning rate,η0

andηF , and the momentum rateφ. The GA required that a population sizes, a crossover

rate ρcross, a mutation rateρmut, and initial and final values of the dynamic stepsize,

τ0 andτF be specified. The SCE-UA algorithm has a number of parameters that require

specification, including the number of complexesp; the number of points in a complexm;

the number of points in a subcomplexq; the number of consecutive offspring generated

by each subcomplexα; and the number of evolution steps taken by each complexβ.

However,Duan et al.(1993, 1994) provide default values for all of these parameters,

except forp, which is highly dependent upon the complexity of the problem. These

default values, given in Table 3.1, were used in this research; thus, only the parameterp

required specification.

Table 3.1 Default parameter values for SCE-UA algorithm

Parameter Default value

m 2d + 1
q d + 1
α 1
β 2d + 1

To set the user-defined parameters used in the investigation, each algorithm was used

to train three networks containing 2, 6 and 10 hidden nodes, when applied to data set

II, which was considered to have intermediate nonlinearity and noise properties of the

data sets considered. The different sized networks were used to ensure parameters were

selected that were suitable for the range of ANN sizes considered. Parameter values were

varied between specified ranges in order to find the best configuration for each training

technique. The ranges investigated were specified according to values typically used for

these algorithms, apart from the GA mutation rate, for which larger values than typical

were included, since the form of the mutation operator used is less random than other

types of mutation. The parameters that resulted in the most effective and efficient training

runs were selected and used in a further comparison of the algorithms. The values adopted
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Table 3.2 User-defined parameters adopted for BP, GA and SCE-UA training algorithms

Parameter Value Adopted Range Investigated

BP
Initial learning rateη0 0.005 0.001, 0.005, 0.01, 0.05, 0.1, 0.2
Final learning rateηF 0.0001 0.0001, 0.0005, 0.001
Momentum rateφ 0.6 0.5, 0.6, . . . , 0.9

GA
Population sizes 20 10, 20, 50, 100, 500
Probability of crossoverρcross 0.7 0.5, 0.6, . . . , 0.9
Probability of mutationρmut 0.2 0.001, 0.005, 0.1, 0.2, 0.3, 0.4
Initial stepsizeτ0 0.2 0.1, 0.2, 0.5, 1
Final stepsizeτF 0.001 0.0001, 0.001, 0.002, 0.005

SCE-UA
No. of complexesp d 0.5d, d, 2d

for the user-defined parameters of each training algorithm are shown in Table 3.2, together

with the ranges investigated.

The stopping criteria used in the investigation were set to achieve convergence, or

near convergence, of the algorithms to within a specified tolerance value. Initially, the

stopping criterion used for each algorithm was that given byThyer et al.(1999) for the

SCE-UA algorithm:∣∣SSE(ŵ)L
t+1 − SSE(ŵ)L

t

∣∣
|SSE(ŵ)L

t |
< tol (3.33)

where the superscriptL denotes the lowest SSE value and “tol” was set equal to1×10−6.

In this research, the algorithms were stopped after meeting this criterion for 20 consec-

utive iterations. However, in the preliminary runs used to select the user-defined param-

eters, it was found that this criterion alone resulted in prohibitively long training times

when the SCE-UA algorithm was applied to the 10-hidden node network. Therefore, an

additional stopping criterion was included, where training was stopped after 10 million

error function evaluations using the GA and SCE-UA algorithm, and after 10 million for-

ward passes of the entire training set using BP, regardless of whether (3.33) had been

met. Thus, an algorithm stopped according to this criterion would not necessarily have

converged to a stationary point of the error surface.

The stopping criterion given by (3.33) was also used to determine when to reduce the

dynamic learning and stepsize parameters used in the BP algorithm and GA, respectively.
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For these algorithms, (3.33) was not used as a stopping criterion until the final values of

the dynamic parameters were reached. Instead, using the BP algorithm, the learning rate

η was reduced by 10% each time the criterion was met, whereas, with the GA, the stepsize

τ was reduced by 10% when the criterion was met for 10 consecutive generations. When

and by how much to reduce these values was determined heuristically when selecting the

user-defined parameters for the algorithms.

Finally, as the models developed in this investigation were also used in further investi-

gations on architecture selection and model validation, cross-validation with a test data set

was employed during training and the weights resulting in the minimum test set error (i.e.

the point at which overtraining is considered to begin) were saved, and the corresponding

model outputs computed so that they could be used in further investigations.

3.4.3 Determination of ANN Architecture - Assessment of Model Selection

Criteria

The generalisation abilities of the models developed using the best weight initialisations,

as described in the previous section, were evaluated to investigate how to best select the

optimal number of hidden nodes in a network for a given problem. Generalisability was

measured by computing theout-of-sampleperformance on the test data set when training

was stopped early (i.e. when the saved weights resulting in the minimum test set error

were used to compute the model outputs) using the RMSE, MAE,r2, CE, AIC and BIC

given by equations (3.2), (3.3), (3.5), (3.6), (3.7) and (3.8), respectively. It was also

measured by computing thein-sampleAIC and BIC values for the training data when

training was allowed to run until convergence (or until the maximum number of function

evaluations was reached).

For data set I, it was known that an ANN containing no hidden layer nodes was the op-

timal structure, as the data were generated by a linear function. Therefore, the “optimal”

network sizes, as indicated by the various generalisability measures, could be evaluated

against this knowledge. For data sets II and III, however, the optimal network structure

was unknown. Nevertheless, as the data were synthetically generated, the level of noise

added to the training data was known. Therefore, the MAE and variance of the models’

residuals obtained when the networks were trained to convergence could be compared to

the MAE and variance computed for the actual training data noise, to determine what size

network was necessary for an appropriate mapping of the data.
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3.4.4 ANN Validation - Assessment of Input Importance Measures

A number of methods have been proposed in the literature for determining the strengths

of the input variable contributions in predicting ANN outputs based on the optimised

network weights. As the weights of a trained ANN control the interactions that occur

between the model inputs and the output, the importance of each input can be determined

by the strength and direction of the connection weights between them. For example,

an input will have a positive impact on the output, through a given hidden node, if the

input-hidden and hidden-output weights are of the same sign (i.e. both positive or both

negative), whereas an input will have an inhibitory effect on the output through the hidden

node if the signs of the input-hidden and hidden-output weights are opposite. While no

method can perfectly summarise the information contained in the weights without consid-

ering the actual input-output function computed by the ANN, the question still remains

as to which of the measures available for estimating input importance, if any, provides

the best interpretation of the modelled function. To address this question,Sarle(2002);

Gevrey et al.(2003) andOlden et al.(2004) compared a number of available methods for

quantifying the importance of ANN inputs. However, while each of these comparisons

provides a good reference, it is considered that limitations in the investigations prevent

the selection of an overall ‘best’ measure for reasons discussed in Section 3.4.4.5.

The Connection Weight Approach (Olden et al., 2004) and Garson’s measure of rel-

ative importance (Garson, 1991), which were two of the most promising methods for

assessing ANN input contributions identified in the comparisons conducted byOlden

et al. (2004) andSarle(2002), were further investigated in this research for their ability

to accurately quantify ANN input importance. Additionally, given the known limitations

of these methods (discussed in Sections 3.4.4.1 and 3.4.4.2), two new methods, based

on modifications of the existing approaches, were also investigated and compared to the

existing methods. Details of the methods compared are discussed in the following sec-

tions. It should be noted that when using any of the methods presented to quantify input

contributions, standardising the input variables is extremely important in order to remove

the effects of measurement scale and ensure that the importance of each input variable is

reflected in its variability relative to the other inputs.

3.4.4.1 The Connection Weight Approach

The Connection Weight Approach was found to provide the best overall methodology for

quantifying ANN input importance in the comparison conducted byOlden et al.(2004).

This method is based on the sum of the products of input-hidden and hidden-output con-
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nection weights, or ‘overall connection weight’ (Olden and Jackson, 2002). With refer-

ence to Figure 3.16, the overall connection weight(OCW ) of inputxk can be calculated

by:

OCWxk
=

J∑
j=1

wIk,Hj
× wHj ,O (3.34)

While theOCW values themselves are rather meaningless as a model validation mea-

sure, they may be used to determine the relative importance (RI), or relative contribution,

of each input in predicting the output as follows:

RIxk
=

OCWIk∑K
i=1 |OCWIi

|
× 100% (3.35)

The RI values can then be compared to anya priori knowledge of the data-generating

relationship, or statistical mutual information measures, to assess how well the model has

explained the true interactions that take place between model inputs and outputs.

The main limitation of the Connection Weight Approach is that it does not account

for the “squashing” effect of hidden layer activation functions (Sarle, 2002). The amount

of squashing increases with the magnitude of the summed input to a hidden nodezinj,

as illustrated in Figure 3.17. Thus, for large values ofzinj, the computed relative im-

portance measures are unlikely to accurately describe the modelled input-output relation-

ships. However, as the summed input to a node depends on all of the input, weight and

bias values feeding into that node, accounting for these complexities would require the

use of the actual input-output function computed by the ANN (Sarle, 2002).

…
 

…
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Figure 3.16 Example ANN.
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Figure 3.17 The squashing effect of nonlinear activation functions.

3.4.4.2 Garson’s Measure of Relative Importance

Garson’s measure of relative importance (Garson, 1991) was one of the earliest methods

proposed for quantifying the relative contributions of ANN inputs and has been used in a

number of studies, particularly in the field of ecological modelling, for extracting infor-

mation from trained ANNs (Brosse et al., 1999;Aurelle et al., 1999;Gozlan et al., 1999).

This measure is calculated by partitioning the hidden-output layer connection weights

into components associated with each input node, or, in other words, partitioning the sum

of effects on the output layer into input node shares. With reference to Figure 3.16, the

RI of inputxk can be calculated by:

RIxk
=

∑J
j=1

(
|wIk,Hj

|∑K
k=1 |wIk,Hj

| × |wHj ,O|
)

∑K
i=1

[∑J
j=1

(
|wIi,Hj

|∑K
k=1 |wIk,Hj

| × |wHj ,O|
)] × 100%

=
J∑

j=1

[
|wIk,Hj

|∑K
k=1 |wIk,Hj

|
×

|wHj ,O|∑J
i=1 |wHi,O|

]
× 100% (3.36)

As can be seen from this equation, Garson’s measure is the sum of products of normalised

weights. By normalising the weights, the effect of squashing is accounted for to some

extent, as the excessive influence of large weights is diminished (Sarle, 2002).

The main limitation of Garson’s measure is that, because it uses absolute values of the

weights, the signs of the input contributions are not taken into account, which can result

in misleadingRI values. For example, if an input has a positive impact on the output

through one hidden node and an inhibitory effect on the output through another hidden
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node, the overall impact of the input should be somewhere in between (i.e. the overall

contribution of an input is diminished if it has counteracting impacts through individual

hidden nodes). However, as Garson’s measure only accounts for the magnitude of the

impacts through different hidden nodes, and not the direction, counteracting impacts are

added together to strengthen the overall contribution.

3.4.4.3 Modification of the Connection Weight Approach

As the original Connection Weight Approach is limited by not accounting for the effects

of squashing, the modified Connection Weight Approach presented in this thesis involves

the use of a modifiedOCW measure that does account for squashing to some extent by

using the hidden layer activation functions to “squash” the input-hidden node weights as

follows:

OCWxk
=

J∑
j=1

g
(
wIk,Hj

)
× wHj ,O (3.37)

whereg (·) is the activation function used on the hidden layer nodes. If the input data

are standardised, large weights feeding into the hidden nodes would be the primary cause,

overall, for large summed inputs into the nodes, and hence, significant amounts of squash-

ing. Therefore, by squashing the input-hidden node weights using the hidden layer activa-

tion functions, the influence of excessively large weights is removed. While it is acknowl-

edged that this will still not result in an accurate representation of the modelled function,

as the size of the input-hidden node weights are not considered in relation to the other

weights feeding into the same hidden node, it should result in an improved representation

of the relative contributions of the various ANN inputs.

3.4.4.4 Modification of Garson’s Measure

A modified version of Garson’s measure is also introduced in this research. As the main

limitation of the original Garson’s method is due to the use of absolute values of the

weights, the proposed method calculates the relative importance of an input using nor-

malised values of the raw weights as follows:

RIxk
=

J∑
j=1

[
wIk,Hj∑K

k=1 |wIk,Hj
|
×

wHj ,O∑J
i=1 |wHi,O|

]
× 100% (3.38)

A limitation of this method, like all of the other methods discussed above, is that it

does not take into account the effect of the bias weights. A large bias feeding into a hidden

node may distort the values of the normalised input-hidden node weights, resulting in

misleadingRI values.
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considered were assessed, together with the standard errors of the measures to evaluate

their stability. The major shortcoming of this comparison was that the true input contri-

butions in predicting the output were unknown, meaning that the accuracy of the different

measures investigated could not be established by comparison with true values. Further-

more, as noted byOlden et al.(2004), using the standard errors of the input importance

measures calculated from the 10 ANNs developed does not indicate the stability of the in-

put importance measures; rather, it assesses the differences among variable contributions

arising solely from different initial connection weights, which is an issue of optimisation

stability.

To overcome the weaknesses of the comparison conducted byGevrey et al.(2003),

Olden et al.(2004) used simulated data with known input-output relationships in their

comparison of ANN input importance measures. However, the major limitation of this

study was that the synthetic data were generated by a linear function. To model a linear

function with an ANN, the weights and biases feeding into a sigmoidal hidden node are

generally very small, such that the summed input to the node lies on the linear part of

the sigmoidal curve near the origin (Bishop, 1995). Therefore, the effect of squashing on

the input importance measures would not have been properly investigated in the study by

Olden et al.(2004), as the summed inputs to the hidden nodes would not have been large

enough to experience any significant squashing effects.

The limitations of previous studies conducted to compare the accuracy of various

input importance measures, summarised in Table 3.4, were considered when designing

the investigation conducted in this research. The methods described in Sections 3.4.4.1

to 3.4.4.4 were assessed when applied to ANNs of different sizes, trained by the BP, GA

and SCE-UA algorithms, to fit data sets I, II and III, which exhibit varying degrees of

nonlinearity and complexity. The use of different network sizes and training algorithms

was important to assess the accuracy and precision (degree of variation in accuracy) of

Table 3.4 Limitations of previous studies conducted to compare input importance measures.

Comparison Limitations

Sarle(2002) Unrealistic ANN weights, only considers a single input feeding

into each hidden node.
Gevrey et al.(2003) Empirical data used, not possible to validate the accuracy of the

input importance measures. Evaluation of stability reflects opti-

misation stability rather than stability of the methods.
Olden et al.(2004) Linear data used, performance of input importance measures

when “squashing” by the hidden layer occurs was not considered.
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the input importance measures when information was distributed through the ANNs in

different ways, and not simply when the optimal network configuration was used, and to

assess their sensitivity to the optimised weights obtained by different training methods.

While the use of synthetic data meant that the characteristics of each data set were

known, the exact relative input contributions could only be determined directly (from the

function coefficients) for data set I. IfM(y,X) is a measure that quantifies the impor-

tance ofK input variables(x1, . . . ,xK) jointly for the dependent variabley, then the

relative importance of an explanatory variablexk is defined by its contribution to the joint

importance measure as follows:

M(y,X) =
K∑

k=1

M(y,xk) (3.40)

whereM(y,xk) is a partial importance measure for inputxk (Soofi et al., 2000). There-

fore, to quantify the relative input contributions for data sets II and III, the stepwise PMI

input selection procedure (see Section 3.2.4) was applied to the data sets, as the PMI

criterion calculated using this method provides a model-free measure of either linear or

nonlinear partial dependence between an independent variable and a dependent variable.

The PMI scores for each input, corresponding to when the input was selected as most im-

portant, conditional on the existing predictors (i.e. when each input had the highest PMI

score, as determined in step 3 of the stepwise PMI procedure described in Section 3.2.4),

were then used to estimateRI values for the inputs according to:

RIxk
=

M(y,xk)

M(y,X)
× 100% (3.41)

whereM(y,xk) = PMIxk
and M(y,xk) is calculated by (3.40). However,Sharma

(2000) suggests that caution should be used when relying on the PMI scores, as these

values can be sensitive to the calculation of the marginal and joint probability densities

in (3.14). Furthermore, the PMI scores may be sensitive to the amount of data, the noise

levels in the data, and the order in which the input variables are selected as being important

(Soofi et al., 2000). Nevertheless, it is considered thatRI values estimated using the PMI

scores may still provide a suitable guide for comparing the different input importance

measures described in Sections 3.4.4.1 to 3.4.4.4. To verify that this was the case, the PMI

algorithm was run applied to data set I and theRI values estimated from the PMI scores

obtained were compared to theRI values calculated using the coefficients of (3.25).

In order to discount the effects of suboptimal network performance (e.g. due to inap-

propriate training or an inappropriate model structure) in the comparison, only the mod-

elsbest representing the data, developed using each training algorithm and containing a

Page 100



Investigation of Deterministic ANN Development Methods – Section 3.4

greater or equal number of hidden nodes to that identified as being optimal in the model

selection investigation detailed in Section 3.4.3, were used in the comparison of the input

importance measures. The models considered to best represent the data were determined

based on how similar the estimated MAE and residual variance values, calculated when

the models were applied to the training and testing data sets, were to the corresponding

values calculated based on the actual random noise added to the simulated data.

Two methods of evaluation were used to assess the accuracy of the methods for quan-

tifying input importance. The first was Gower’s similarity coefficient (GSC) (Gower,

1971), which was used to compare theorder of input importance as estimated by the

methods investigated to the order of input importance estimated by the PMI procedure

(referred to asactualorder of importance for the purposes of this discussion). GSC was

also used in the comparison conducted byOlden et al.(2004). The similarity of two indi-

vidualsi andj (e.g. estimated order of importance and actual order of importance) may

be compared on a characteristick (e.g. order of importance of inputk) by assigning a

scoresijk according to:

sijk = 1.0− |xik − xjk|
rk

(3.42)

wherexik is the value of individuali andxjk is the value of individualj for characteristic

k. The value ofrk is given by the range of values possible for thekth characteristic. For

example, if there are three inputs which can have a possible order of importance between

1 and 3, the value ofrk is 2 (i.e. 3 - 1). To determine the overall similarity of individuals

i andj, havingk = 1, . . . , ν characteristics, the following equation is used:

GSCij =

∑ν
k=1 sijkWijk∑ν

k=1 Wijk

(3.43)

whereWijk is a weight assigned to thekth characteristic score. In this research, all of the

weight values were set to 1.0. A GSC value of one indicates exact similarity between the

individuals, whereas a value of zero indicates no similarity.

While the similarity between the estimated and actual order of input importance pro-

vides a good assessment of the input importance measures, this evaluation does not take

into account the similarity between the estimated and actual relativemagnitudesof im-

portance. Therefore, the second method of evaluation was based on the RMSE (given by

(3.2)) between the absolute estimatedRI values and theRI values estimated by the PMI

approach. AbsoluteRI values were used in the evaluation, as the PMI approach does not

give directions of the input-output relationships.
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3.4.5 Results

3.4.5.1 Comparison of Training Algorithms

The training algorithm comparison results are summarised in Tables 3.5, 3.6 and 3.7 for

data sets I, II and III, respectively. These tables give the best, worst, mean and standard

deviation mean squared error (MSE) results obtained by initialising each training algo-

rithm five times for each network size. The MSE values (MSE = SSE/N ) are presented

rather than the SSE values, as taking the mean of the error cancels the effect the training

set size has on the results. The best results obtained for each network size are highlighted

by bold italics. These include the smallest best, average and standard deviation MSE val-

ues obtained for a given network size, as well as the smallest, orleast, worst MSE value.

These results are also given for theoverall performance of the training algorithms, aver-

aged over all of the network sizes. Extended training results are presented in Appendix A.

Inspection of Table 3.5 shows that all three algorithms performed similarly when ap-

plied to data set I. However, while none of the algorithms performed obviously better than

the others, it appears that the SCE-UA algorithm was more consistent in obtaining good

solutions. The GA performed slightly worse than the other algorithms in training the

models to fit the data; however, this was probably due to its poor ‘fine-tuning’ abilities, as

the MSE values obtained were generally consistent (indicated by the small standard devi-

ations) and were not significantly greater than those obtained using the BP and SCE-UA

algorithms.

From the results obtained when the algorithms were applied to data set II (shown in

Table 3.6), it is apparent that, while the BP algorithm seems better able to obtain a ‘best’

solution, particularly for the larger network sizes, it is also the least robust to different ini-

tial conditions, as suggested by the overall MSE standard deviation, which was the largest

obtained of the three algorithms. Overall, the SCE-UA algorithm performed consistently

better than the BP algorithm and the GA, as indicated by the smallest overall average

MSE, the overall ‘least worst’ MSE and the smallest overall standard deviation. Again,

the GA did not perform as well as the other two algorithms, although, nor did it perform

significantly worse.

The training results obtained for data set III (Table 3.7) were very similar to the re-

sults obtained for data set II. Again, the BP algorithm was better able to obtain a best

solution on the larger network sizes, but was generally not very robust to different initial

conditions, as indicated by the relatively large MSE standard deviations. The SCE-UA

performed the best on the smaller networks, as well as performing consistently well over-

all, obtaining the smallest overall MSE average and standard deviation values. While the
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GA was generally fairly robust when applied to data sets I and II, it was found to be the

least robust when applied to data set III, often obtaining ‘worst’ MSE values that were

significantly greater than the ‘best’ MSE values for a given network size. This is possibly

due to the fact that the algorithm parameters were selected according to the GA’s perfor-

mance when applied to data set II, and perhaps these were not the most suitable when

applied to data set III.

Overall, it can be concluded that the BP algorithm performed the best on the larger

networks (e.g. containing greater than 7 hidden nodes), whereas the SCE-UA algorithm

performed well most consistently and was the least sensitive to initial conditions. One

of the reasons why the BP algorithm may have performed better on the large networks

is that for these networks the SCE-UA algorithm was stopped according to the second

stopping criterion applied (i.e. after 10 million function evaluations, see Section 3.4.2.4)

and had not converged to within the specified tolerance value. Another possible reason

why the BP algorithm performed well on these networks is that the error surface of large

networks is less complicated by local minima than those of smaller networks; thus, a local

optimisation algorithm may perform as well as, if not better than, a global method, as it

would not be as likely to become trapped in local minima. Additionally, global optimi-

sation methods tend to be lacking in local fine-tuning abilities, as their main purpose is

to provide a thorough, yet less concentrated, search of the error surface. Therefore, the

BP algorithm could be expected to have better training performance than a global method

when the error surface is concave and uncomplicated by local minima. To illustrate the

different error surfaces of small and large networks, the error surface of a 2 hidden node

ANN applied to data set I is shown in Figure 3.18 (a), while the error surface of a 10

hidden node ANN applied to data set I is shown in Figure 3.18 (b). Both of these plots

were obtained by altering weightswI1,H1 andwH1,O (i.e the weights from the first input to

the first hidden node and from the first hidden node to the output), while fixing all of the

other weights equal to their optimal values. This gives an extremely simplified view of

the error surface; however, it would be impossible to view the true surface with all of the

weights changing in multidimensional space. In reality the error surface would be much

more complex than those shown here for illustrative purposes. Nevertheless, the plots il-

lustrate how a local optimisation method might perform poorly on a smaller network with

a more complicated error surface, than on a larger one with an error surface containing a

single minimum, or continuum of minimum error, as shown in Figure 3.18 (b). Not sur-

prisingly, the BP algorithm had the poorest performance of the three training algorithms

when applied to the 2 hidden network, whereas it had the best performance when applied
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Figure 3.18 The error surface of (a) a 2 hidden node ANN, and (b) a 10 hidden node ANN,

applied to data set I.

to the 10 hidden node network (see Table 3.5).

While the SCE-UA algorithm was found to have the overall best and most consistent

optimisation performance, a significant limitation of this algorithm was found to be the

time required for training, particularly on the larger networks. The average training times

in minutes for all three algorithms are presented in Table 3.8, where it can be seen that the

SCE-UA algorithm required significantly longer training times than the BP algorithm and

the GA, taking between 6 and 30 times longer to converge on the 10 hidden node ANNs

than BP or the GA, which had similar training times.

3.4.5.2 Assessment of Model Selection Criteria

The residual variancêσ2
y and MAE results calculated based on the training set outputs ob-

tained from the best weight initialisation for each network size are presented in Tables 3.9,

3.10 and 3.11 for data sets I, II and III, respectively. It is reiterated that these values were

calculated based on the model outputs when the networks were trained to convergence
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Table 3.8 Average training times in minutes for the BP, GA and SCE-UA algorithms.

Hidden Data set I Data set II Data set III

Nodes BP GA SCE BP GA SCE BP GA SCE

1 0.68 0.36 0.09 0.16 0.47 0.25 0.38 0.63 0.42
2 1.16 3.06 0.26 0.42 1.82 1.02 1.24 2.89 2.33
3 1.60 2.24 0.98 2.27 5.97 4.78 2.58 4.32 13.12
4 4.28 4.30 5.54 1.62 7.41 9.94 4.27 5.70 38.59
5 4.88 5.68 10.23 7.08 7.58 25.76 6.60 6.97 73.47
6 6.53 8.17 15.11 15.74 9.35 31.68 4.45 7.02 138.67
7 9.75 8.83 42.77 13.14 8.20 79.40 7.68 8.33 202.65
8 9.45 13.50 112.89 16.69 12.09 126.20 9.53 7.91 244.82
9 11.43 14.63 197.04 26.02 12.31 160.87 9.27 11.33 272.17
10 13.79 20.14 124.10 20.06 12.11 174.98 9.93 11.06 302.18

(or until the maximum number of function evaluations had been reached). For data set

I, the variance and MAE values calculated based on the actual random noise added to

the simulated training data (henceforth, referred to asactualnoise varianceσ2
y andactual

MAE) were equal to 0.900 and 0.767, respectively. In Table 3.9, the smallest network

able to model the data such that theestimated̂σ2
y and MAE were approximately equal to

the corresponding actual values is framed. According to these criteria, it can be seen that

an ANN containing 1 hidden node was sufficient for modelling data set I. In actual fact,

an ANN model containing no hidden nodes would have been sufficient, as discussed in

Section 3.4.3; however, a 1 hidden node network was the smallest network considered in

the investigation.

Table 3.9 Optimal number of hidden nodes for modelling data set I, indicated by the

variancêσ2
y and MAE values of the model residuals.

Hidden σ̂2
y MAE

Nodes BP GA SCE BP GA SCE

1 0.905 0.899 0.897 0.766 0.764 0.764
2 0.877 0.877 0.877 0.748 0.748 0.747
3 0.868 0.872 0.852 0.744 0.746 0.738
4 0.836 0.860 0.843 0.727 0.743 0.734
5 0.833 0.854 0.825 0.736 0.742 0.717
6 0.824 0.837 0.821 0.723 0.732 0.725
7 0.796 0.816 0.802 0.715 0.722 0.712
8 0.799 0.809 0.781 0.713 0.715 0.705
9 0.754 0.808 0.782 0.695 0.718 0.702
10 0.748 0.790 0.773 0.682 0.704 0.707
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Table 3.10 Optimal number of hidden nodes for modelling data set II, indicated by the

variancêσ2
y and MAE values of the model residuals.

Hidden σ̂2
y MAE

Nodes BP GA SCE BP GA SCE

1 1.282 1.281 1.279 0.907 0.908 0.907
2 1.117 1.219 1.259 0.857 0.890 0.898
3 0.971 1.030 0.961 0.790 0.821 0.785
4 0.956 0.963 0.942 0.786 0.784 0.779
5 0.925 0.948 0.931 0.777 0.778 0.768
6 0.916 0.918 0.917 0.768 0.771 0.765
7 0.876 0.911 0.900 0.748 0.767 0.766
8 0.867 0.907 0.893 0.750 0.767 0.755
9 0.840 0.892 0.889 0.735 0.760 0.757
10 0.829 0.889 0.867 0.728 0.754 0.756

For data set II, the actual varianceσ2
y and MAE of the training data noise were 0.983

and 0.797, respectively. The smallest network able to model the data such that the es-

timatedσ̂2
y and MAE values approximated the corresponding actual values is framed in

Table 3.10. It can be seen that a 3 hidden node network was sufficient for modelling the

data, as indicated by the results obtained when the network was trained using the BP and

SCE-UA algorithms. It does not matter that a 3 hidden node network trained using the

GA was unable to fit the data sufficiently well, as this is a function of optimisation ability,

rather than the appropriateness of the model structure. It can be seen that networks con-

taining fewer than 3 hidden nodes were unable to fit the data appropriately when trained

with any of the three training algorithms, as indicated by the larger estimatedσ̂2
y and MAE

values.

The actualσ2
y and MAE values for data set III were 1.048 and 0.816, respectively. In

Table 3.11, it can be seen that a network containing 5 to 6 hidden nodes was appropriate

for modelling this data set, as indicated by the framed values. It is considered that a 5

hidden node ANN is probably sufficient for modelling the data, as the estimatedσ̂2
y and

MAE values were approximately equal to the actual values when the network was trained

using the SCE-UA algorithm. However, it is apparent that a network of this size is difficult

to train appropriately and a network containing 6 hidden nodes had better data mapping

abilities.
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Table 3.11 Optimal number of hidden nodes for modelling data set III, indicated by the

variancêσ2
y and MAE values of the model residuals.

Hidden σ̂2
y MAE

Nodes BP GA SCE BP GA SCE

1 7.175 7.169 7.165 2.053 2.051 2.051
2 4.866 4.888 4.771 1.747 1.756 1.737
3 2.874 2.935 3.353 1.320 1.330 1.484
4 1.322 1.493 1.216 0.908 0.955 0.868
5 1.133 1.221 1.066 0.838 0.866 0.816
6 1.055 1.085 1.049 0.814 0.825 0.813
7 1.045 1.113 1.034 0.810 0.833 0.805
8 1.031 1.094 1.034 0.807 0.832 0.808
9 1.018 1.090 1.044 0.802 0.832 0.814
10 0.991 1.074 1.053 0.794 0.819 0.814

The in-sampleAIC and BIC results obtained when the ANNs were trained until con-

vergence are given in Tables 3.12, 3.13 and 3.14 for data sets I, II and III, respectively.

The minimum values of these criteria (indicating the best generalisability) obtained using

each of the three training algorithms are highlighted by bold italics and the minimum val-

ues overall are indicated by framed values. The overall best values indicate the ‘optimal’

model structure according to each criterion. From an inspection of Tables 3.12, 3.13 and

3.14, it can be seen that the overall minimum BIC values correctly indicated the optimal

network sizes for data sets I, II and III. It was interesting to note that only the minimum

in-sample BIC obtained when the networks were trained using the SCE-UA algorithm

Table 3.12 In-sample AIC and BIC results for data set I.

Hidden AIC BIC

Nodes BP GA SCE BP GA SCE

1 1539.9 1536.2 1534.9 1565.9 1562.1 1560.8
2 1532.2 1532.1 1532.0 1579.8 1579.7 1579.6
3 1536.8 1538.9 1525.9 1606.0 1608.1 1595.1
4 1525.5 1541.6 1530.3 1616.3 1632.4 1621.1
5 1533.7 1547.4 1528.0 1646.1 1659.9 1640.5
6 1537.8 1546.0 1535.6 1671.8 1680.1 1669.6
7 1530.1 1542.2 1532.3 1690.1 1697.9 1687.9
8 1540.6 1547.0 1527.4 1717.9 1724.3 1704.7

9 1518.2 1556.3 1538.0 1717.1 1755.3 1736.9
10 1523.2 1554.1 1541.8 1743.7 1774.7 1762.4
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Table 3.13 In-sample AIC and BIC results for data set II.

Hidden AIC BIC

Nodes BP GA SCE BP GA SCE

1 2220.8 2220.0 2218.9 2252.8 2252.0 2250.9
2 2134.1 2196.6 2219.5 2193.5 2256.0 2279.0

3 2045.9 2088.1 2038.4 2132.7 2175.0 2125.3
4 2047.0 2051.9 2036.6 2161.3 2166.2 2150.9
5 2035.4 2053.0 2039.8 2177.2 2194.8 2181.6
6 2028.7 2042.0 2041.5 2170.5 2211.1 2210.6
7 2008.7 2048.8 2039.5 2177.8 2245.4 2236.1
8 2024.9 2057.0 2046.4 2248.9 2281.1 2270.4

9 2014.3 2057.0 2055.0 2265.7 2308.5 2306.5
10 2016.7 2067.3 2048.9 2295.6 2346.2 2327.9

indicated that a 5 hidden node ANN was optimal, whereas the BIC values obtained when

the ANNs were trained using BP and the GA suggest that 6 hidden nodes are best. This

is in agreement with the conclusion made based on Table 3.11 that a 5 hidden node ANN

may be optimal, but a better data mapping can be more easily obtained with a 6 hidden

node ANN. It can also be seen that the AIC values were unable to correctly identify the

optimum number of hidden nodes, selecting larger networks than necessary in each case.

The AIC values were also found to be much more sensitive to the optimum solution ob-

tained by training, as indicated by the large variation in AIC values obtained using the

three different training algorithms.

These results indicate that the in-sample BIC adequately penalises complexity in order

Table 3.14 In-sample AIC and BIC results for data set III.

Hidden AIC BIC

Nodes BP GA SCE BP GA SCE

1 5843.2 5842.3 5841.6 5884.0 5883.1 5882.4
2 5385.6 5391.0 5361.6 5462.1 5467.5 5438.1
3 4759.6 4785.1 4946.9 4871.8 4897.3 5059.1
4 3829.9 3977.9 3728.4 3977.9 4125.9 3876.4

5 3656.3 3747.2 3582.7 3840.0 3930.93766.4
6 3583.7 3617.9 3576.8 3803.1 3837.4 3796.2
7 3586.9 3662.6 3574.2 3842.1 3917.7 3829.3
8 3584.4 3655.8 3587.6 3875.3 3946.6 3878.5
9 3582.1 3666.3 3613.5 3908.7 3992.8 3940.1

10 3550.3 3662.1 3637.9 3876.9 4024.4 4000.2
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to balance model fitting and model parsimony. However, whether this is true in all cases is

not clear from the results obtained in this investigation, as it was found that the in-sample

BIC values calculated for all of the models developed were very similar whether training

was run until convergence or stopped early according to the test set error, as shown in

Figure 3.19. This suggests that the degree to which the models were overfitted was never

great enough to have a significant impact on the BIC values obtained. Therefore, these

results may not be reflective of complex real-world problems with noisy data, where the

degree of overfitting that is possible may be significantly greater than observed in this

investigation. This issue requires further investigation.
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Figure 3.19 In-sample BIC results when training was stopped early and run to convergence.

Shown in Tables 3.15, 3.16 and 3.17 are the out-of-sample results of the model selec-

tion investigation. Again, the best values of these criteria (i.e. minimum RMSE, MAE,

AIC and BIC values and maximumr2 and CE values) obtained using each of the three

training algorithms are highlighted by bold italics and the best values overall are indicated

by framed values. By inspecting these three tables it can be seen that, while the RMSE,

MAE, r2 and CE criteria are reasonably consistent with one another, they all indicate that

a larger than necessary network is optimal for each of the three data sets. Furthermore,

there is quite large variation among these values for the different training algorithms, in-

dicating that they can be quite sensitive to the solution obtained during training. The AIC

and BIC seem better able to correctly select the optimum number of hidden nodes, with

the AIC correctly selecting the optimum network for data sets I, II and III, and the BIC

correctly selecting the optimum network for data sets I, and III. However, it is apparent

that the BIC may overly penalise model complexity when used to assess out-of-sample

performance, as can be seen most clearly when used to evaluate the generalisability of the

ANN models developed for data set II (Table 3.16).
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The models containing the ‘optimal’ number of hidden nodes, as identified using the

various generalisation measures, were applied to the independent validation data sets in

order to assess the generalisability of the models when applied to data not used during

training. These results are given in Tables 3.18, 3.19 and 3.20 for data sets I, II and III,

respectively. For data set I, the models developed containing 1 hidden node, selected as

optimal by the in-sample BIC and out-of-sample AIC and BIC, performed the best on

the independent validation data, as highlighted in Table 3.18. The actual noise added

to the simulated validation data had a variance ofσ2
y = 1.035 and an average absolute

magnitude ofMAE = 0.816. It can be seen that the estimatedσ̂2
y and MAE values for the

models containing 1 hidden node closely approximated the actual values, indicating good

generalisability of the models.

For data set II, the models developed containing 3 hidden nodes, selected as optimal

by the in-sample BIC and out-of-sample AIC, had the best performance on the indepen-

dent validation data. The actualσ2
y and MAE values for the noise added to these data

were 0.852 and 0.733, respectively. It can be seen in Table 3.19 that the estimatedσ̂2
y and

MAE values for the models containing 3 hidden nodes best approximated the correspond-

ing actual values, indicating that this model had the best generalisability of the models

selected by the various criteria.

The 7 hidden node ANN model, selected as the optimal network size by the out-of-

sample RMSE, MAE,r2 and CE, had the best performance on the independent validation

data of data set III, as seen in Table 3.20. For this data set, the actualσ2
y and MAE

values for the added noise were 0.869 and 0.752, respectively. It can be seen that the

estimated̂σ2
y and MAE values for the 7 hidden node ANN best approximate the actual

Table 3.18 Validation set results for data set I.

Performance Number of hidden nodes

Measure 1a 1b 6c 9d 9e

σ̂2
y 1.025 1.023 1.052 1.099 1.542

RMSE 1.013 1.011 1.026 1.048 1.242
MAE 0.816 0.815 0.826 0.843 0.953
AIC 513 513 568 605 664
BIC 532 532 666 751 810
r2 0.702 0.704 0.695 0.681 0.586
CE 0.702 0.703 0.694 0.681 0.552

aTrained until convergence with SCE-UA, selected as best by in-sample BIC
bTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample AIC and BIC
cTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample MAE
dTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample RMSE,r2 and CE
eTrained until convergence with BP, selected as best by in-sample AIC
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Table 3.19 Validation set results for data set II.

Performance Number of hidden nodes

Measure 1a 3b 3c 6d 8e 9f

σ̂2
y 1.229 0.922 0.912 0.940 0.973 0.953

RMSE 1.108 0.960 0.955 0.969 0.986 0.976
MAE 0.873 0.766 0.760 0.776 0.792 0.780
AIC 696 655 653 696 728 735
BIC 720 720 718 822 895 923
r2 0.583 0.686 0.689 0.679 0.667 0.672
CE 0.576 0.682 0.685 0.676 0.664 0.671

aTrained with GA, training stopped early by cross-validation, selected as best by out-of-sample BIC
bTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample AIC
cTrained until convergence with SCE-UA, selected as best by in-sample BIC
dTrained with GA, training stopped early by cross-validation, selected as best by out-of-sampler2

eTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample RMSE, MAE and CE
fTrained until convergence with BP, selected as best by in-sample AIC

values, indicating that this model had the best generalisability. It can also be seen that

the 5 hidden node models, selected as the optimal network size by the in-sample BIC and

out-of-sample AIC and BIC, achieved a similar, although slightly worse overall fit to the

data. As suggested from an inspection of Table 3.11, an ANN containing 5 to 6 hidden

nodes was optimal for this data set, which is possibly why the results for the 5 hidden

nodes models were slightly worse on the validation data than those for the 7 hidden node

model.

Table 3.20 Validation set results for data set III.

Performance Number of hidden nodes

Measure 5a 5b 7c 10d

σ̂2
y 0.927 0.927 0.894 0.994

RMSE 0.963 0.963 0.945 0.997
MAE 0.770 0.771 0.756 0.791
AIC 1122 1122 1136 1204
BIC 1264 1263 1333 1456
r2 0.947 0.947 0.949 0.944
CE 0.947 0.947 0.949 0.944

aTrained until convergence with SCE-UA, selected as best by in-sample BIC
bTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample AIC and BIC
cTrained with SCE-UA, training stopped early by cross-validation, selected as best by out-of-sample RMSE, MAE,r2 and CE
dTrained until convergence with BP, selected as best by in-sample AIC
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Overall, these results indicate that theout-of-sampleAIC and in-sampleBIC are the

most suitable criteria for ANN model selection. It was apparent that by accounting for

model complexity as well as fit, the AIC was less sensitive to factors such as the testing

data used or the weights obtained during training than other out-of-sample generalisability

measures. However, the penalty given to model complexity was not sufficient to use the

AIC criterion as an in-sample measure of generalisability. On the other hand, for the

synthetic data sets considered in the investigation, it was found that the BIC criterion

was able to penalise model complexity sufficiently, in order to select the most appropriate

model structures based on in-sample performance. It is claimed that a major advantage

of using in-sample criteria is that a test data set is not required. From Tables 3.18, 3.19

and 3.20, it is apparent that this is the case, as the optimal models selected using the in-

sample BIC had similar generalisability whether training was stopped early or allowed

to run to convergence. However, as mentioned previously, it is uncertain whether the

in-sample BIC will adequately penalise model complexity in order to select the optimal

model structure, given different degrees of overfitting potential, which is a function of the

complexity of the problem being modelled, the amount of available data and the noise

levels in the data.

3.4.5.3 ANN Validation

The results from applying the stepwise PMI input selection procedure to data sets I, II

and III are given in Table 3.21. It was found that this method was correctly able to select

only the important inputs from a set of 15 potentially important inputs for each synthetic

data set, verifying the approach as an input selection method. However, to verify the

approach as a suitable method for quantifying input importance, theRI values estimated

for data set I were compared to the actual (absolute)RI values of the simulated data. The

magnitudes of the contributions ofyt−1, yt−4 andyt−9 in predicting the outputyt have the

ratio of 3 : 6 : 5, as seen in (3.25); thus, the actualRI values of the inputs are 21.43%,

42.86% and 35.71%, respectively. It can be seen in Table 3.21 that theRI values for data

set I, estimated based on the PMI scores, are a good approximation to the corresponding

actualRI values. Furthermore, when applied to data set II, it can be seen that the PMI-

basedRI values correctly estimated similar proportions for these inputs. For data set III,

it was known that theRI value of inputx4 should be approximately twice that of input

x4 and that theRI values of inputsx1 andx2 should be approximately equal (see (3.27)).

The PMI method was able to correctly estimate all of these proportions, validating the

procedure as an appropriate method for quantifying the relative importance of inputs.
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Table 3.21 PMI results for data sets I, II, and III.

Input PMI Score RI (%)

Data set I
yt−1 0.184 22.33
yt−4 0.372 45.07
yt−9 0.269 32.60
Data set II
yt−1 0.203 21.62
yt−4 0.339 36.13
yt−9 0.289 30.82
xt 0.193 11.44
Data set III
x1 0.185 20.07
x2 0.209 22.65
x3 0.098 10.65
x4 0.284 30.80
x5 0.146 15.83

As the optimal network configuration for data set I (of those investigated) was found

to contain 1 hidden node (see Section 3.4.5.2), the four relative input importance mea-

sures investigated were calculated for all 10 network sizes (i.e. containing between 1 and

10 hidden nodes) using the models that best represented the data for each network size.

Figure 3.20 displays the meanRI values, averaged over theRI values calculated for each

of the 10 networks, obtained by (a) the BP algorithm; (b) the GA; (c) the SCE-UA algo-

rithm; and (d) averaging over the results obtained for all three training algorithms. Error

bars are also displayed in this figure, showing the standard deviations of theRI values,

which indicate the precision of the methods. It can be seen in this figure that each of

the methods for assessing input importance performed reasonably well in terms of accu-

rately estimating theRI values estimated using the PMI procedure, and that none of the

methods performed obviously better than the others. The different degrees of precision

in the measures obtained by the three training algorithms can also be clearly seen in this

figure, with reasonably large variation in theRI values when the weights were obtained

by the BP algorithm and very small variation when the weights were estimated using the

SCE-UA algorithm. This confirms that the SCE-UA training algorithm most consistently

obtained good solutions of the three training algorithms investigated.

Table 3.22 summarises the evaluation of each method’s accuracy in estimating the

relative magnitudes and orders of input importance when applied to data set I. These are

given in terms of the mean and standard deviation RMSE and GSC values calculated based
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Table 3.22 Evaluation of input importance measures when applied to data set I.

Input Importance RMSE GSC

Estimation Method Mean St. Dev. Mean St. Dev.

BP

Connection Weight Approach 13.110 7.416 0.700 0.189
Garson’s Method 7.195 4.009 0.767 0.225
Modified Connection Weight Approach 7.941 5.7480.833 0.176
Modified Garson’s Method 10.421 10.004 0.800 0.233

GA

Connection Weight Approach 4.183 1.863 0.900 0.161
Garson’s Method 6.163 3.566 0.833 0.283
Modified Connection Weight Approach 4.302 1.239 0.967 0.105
Modified Garson’s Method 4.965 3.933 0.900 0.225

SCE-UA

Connection Weight Approach 3.137 0.419 0.800 0.155
Garson’s Method 3.966 1.424 0.600 0.000
Modified Connection Weight Approach 3.239 0.630 0.767 0.103
Modified Garson’s Method 4.033 2.019 0.783 0.075

Overall

Connection Weight Approach 6.810 6.239 0.867 0.188
Garson’s Method 5.775 3.383 0.856 0.226
Modified Connection Weight Approach 5.161 3.879 0.933 0.136
Modified Garson’s Method 6.473 6.733 0.900 0.199

on the 10 different network sizes. The best results (i.e. minimum RMSE mean, RMSE

standard deviation and GSC standard deviation and maximum GSC mean) are highlighted

by bold italics. It can be seen in this table that, while similar results were obtained using

each of the input importance measures, the overall best results were obtained using the

modified Connection Weight Approach.

The optimal number of hidden nodes necessary for modelling data set II was found

to be 3 (see Section 3.4.5.2); therefore, the four relative input importance measures were

calculated for networks containing 3 or more hidden nodes (8 network sizes) using the

models that best represented the data for each network size. The mean and standard de-

viation RI values obtained from the 8 networks developed by (a) the BP algorithm; (b)

the GA; (c) the SCE-UA algorithm; and (d) by averaging over the results obtained for all

three training algorithms, are displayed in Figure 3.21. It can be seen in this figure that

the two modified methods (modified Connection Weight Approach and modified Garson’s

method) were most accurate in estimating the PMI-basedRI values, particularly in esti-
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mating the importance of the independent nonlinear inputxt. It can also be seen that, as

well as being inaccurate, the original Connection Weight Approach was the least stable of

the input importance measures, as suggested by the large error bars obtained for theRI

values.

Table 3.23 summarises the evaluation of each method’s accuracy in estimating the

relative magnitudes and orders of input importance when applied to data set II. These

results were calculated based on the 8 different network sizes considered and, again, the

best results are highlighted by bold italics in this table. It can be seen the overall best

results were again obtained using the modified Connection Weight Approach; however,

it can also be seen that both the modified Connection Weight Approach and the modified

Garson’s method were significantly more accurate than the original methods when applied

to data set II.

It was found that an ANN containing at least 5 hidden nodes was necessary for mod-

elling data set III (see Section 3.4.5.2). Therefore, the four relative input importance

Table 3.23 Evaluation of input importance measures when applied to data set II.

Input Importance RMSE GSC

Estimation Method Mean St. Dev. Mean St. Dev.

BP

Connection Weight Approach 18.290 8.153 0.583 0.126
Garson’s Method 27.490 3.122 0.500 0.000
Modified Connection Weight Approach 3.605 2.955 1.000 0.000
Modified Garson’s Method 6.895 4.431 0.833 0.199

GA

Connection Weight Approach 20.880 9.967 0.583 0.154
Garson’s Method 28.843 1.738 0.500 0.000
Modified Connection Weight Approach 3.953 2.273 0.958 0.077
Modified Garson’s Method 4.913 3.926 0.896 0.177

SCE-UA

Connection Weight Approach 23.107 7.823 0.479 0.059
Garson’s Method 24.628 5.572 0.500 0.000
Modified Connection Weight Approach 4.013 3.003 0.938 0.124
Modified Garson’s Method 4.902 1.575 0.896 0.086

Overall

Connection Weight Approach 20.759 8.552 0.549 0.125
Garson’s Method 26.987 4.069 0.500 0.226
Modified Connection Weight Approach 3.857 2.647 0.965 0.085
Modified Garson’s Method 5.570 3.512 0.875 0.157
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measures were calculated for networks containing 5 or more hidden nodes (6 network

sizes) using the models that best represented the data for each network size. Figure 3.22

shows the mean and standard deviationRI values obtained from the 5 networks devel-

oped by (a) the BP algorithm; (b) the GA; (c) the SCE-UA algorithm; and (d) by averaging

over the results obtained for all three training algorithms, in comparison to the PMI-base

RI estimates. It can be seen in this figure that the two modified approaches were again

reasonably accurate in estimating the PMI-basedRI values; however, it is apparent that

the original Connection Weight Approach most accurately estimated the PMI-basedRI

estimates on average. Yet, it can also be seen that this method was the least precise, or

most sensitive to the weights obtained for the different network sizes and by the different

training algorithms. Garson’s method was the most stable method; however, it was also

the least accurate for quantifying the magnitudes of input importance.

The mean and standard deviation RMSE and GSC values obtained by applying the

four input importance measures to data set III are given in Table 3.24. These results

Table 3.24 Evaluation of input importance measures when applied to data set III.

Input Importance RMSE GSC

Estimation Method Mean St. Dev. Mean St. Dev.

BP

Connection Weight Approach 8.998 3.700 0.833 0.137
Garson’s Method 14.337 0.653 0.600 0.000
Modified Connection Weight Approach 7.353 2.878 0.833 0.052
Modified Garson’s Method 8.915 3.474 0.750 0.152

GA

Connection Weight Approach 12.710 5.070 0.750 0.055
Garson’s Method 13.002 0.661 0.583 0.041
Modified Connection Weight Approach 11.476 4.061 0.750 0.122
Modified Garson’s Method 12.288 2.679 0.717 0.117

SCE-UA

Connection Weight Approach 9.159 3.727 0.800 0.155
Garson’s Method 15.834 1.175 0.600 0.000
Modified Connection Weight Approach 7.813 2.188 0.767 0.103
Modified Garson’s Method 9.829 2.991 0.783 0.075

Overall

Connection Weight Approach 10.289 4.334 0.794 0.121
Garson’s Method 14.391 1.441 0.594 0.024
Modified Connection Weight Approach 8.881 3.507 0.783 0.099
Modified Garson’s Method 10.344 3.231 0.750 0.115
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were calculated based on the 6 different network sizes considered. Overall, it can be seen

that the modified Connection Weight Approach most accurately approximated the relative

magnitudes of input importance, whereas the original Connection Weight Approach most

accurately estimated the order of input importance. However, it can also be seen that the

mean GSC values obtained for the original and modified Connection Weight Approaches

were very similar, but large standard deviations of the RMSE and GSC were obtained

using the Connection Weight Approach, suggesting that this approach is sensitive to the

weights obtained.

Shown in Table 3.25, are theoverall average and standard deviation RMSE and GSC

values, based on the results obtained for the four input importance measures when applied

to data sets I, II and III. It can be seen in this table that, overall, the modified Connection

Weight Approach most accurately estimated the order and magnitude of input importance.

Garson’s measure was found to be the least sensitive to the weights obtained for various

network sizes and with different training algorithms; however, it was also the least accu-

rate. The modified Connection Weight Approach was found to be the next most stable

method for quantifying the importance of ANN inputs. Furthermore, it can be seen that

the overall accuracy of both of the modified input importance measures was greater than

that of the original methods.

Table 3.25 Overall evaluation of input importance measures.

Input Importance RMSE GSC

Estimation Method Mean St. Dev. Mean St. Dev.

Connection Weight Approach 12.619 6.375 0.737 0.145
Garson’s Method 15.718 2.964 0.650 0.083
Modified Connection Weight Approach 5.966 3.344 0.894 0.106
Modified Garson’s Method 7.462 4.492 0.842 0.157

3.4.6 Evaluation of Best Models

The performance of the best models developed for modelling each synthetic data set was

evaluated based on the “measured” and “true” training, testing and validation data. For

data set I, the best model contained 1 hidden node and was trained with the SCE-UA algo-

rithm. Scatter plots of the resulting model predictions versus the “measured” and “true”

training, testing and validation data are shown in Figures 3.23 (a), (b) and (c), respec-

tively, and the model performance results are summarised in Table 3.26 in comparison to

the actualσ2
y and MAE values (shown in italics). It can be seen in Figure 3.23 that the
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(a) (b) (c) Training Testing Validation 

"Measured" Data 
"True" Data 

Figure 3.23 Scatter plots of the 1 hidden node ANN model predictions versus “measured”

and “true” (a) training, (b) testing and (c) validation data for data set I.

Table 3.26 Performance of 1 hidden node ANN developed for modelling data set I.

Performance “Measured” Data “True” Data

Measure Train Test Validation Train Test Validation

σ̂2
y 0.899 1.102 1.020 0.005 0.010 0.010

MAE 0.764 0.849 0.814 0.057 0.072 0.075
RMSE 0.948 1.050 1.010 0.072 0.098 0.098
CE 0.635 0.671 0.703 0.997 0.996 0.996

Actualσ2
y 0.900 1.112 1.035 0.000 0.000 0.000

Actual MAE 0.767 0.900 0.816 0.000 0.000 0.000

model has predicted the “true” data very well, even though it was trained on the noisy

“measured” data. However, it can also be seen that the high and low data values were

slightly under- and overpredicted, respectively, for each data subset. Nevertheless, the

results presented in Table 3.26 indicate that the model has good generalisability across

each of the three subsets.

Shown in Figure 3.24 is a time series plot of the model predictions against the “mea-

sured” and “true” recombined training, testing and validation data, where it appears as

though the model has obtained a near perfect fit to the “true” data, confirming the ability

of the model to generalise to the underlying trend in the data.

TheRI values of the 1 hidden node ANN inputs estimated using the modified con-

nection weight method are presented in Table 3.27 in comparison to the corresponding

PMI-basedRI estimates. Given that both of these methods are approximations of the
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Table 3.27 RI values (%) for the inputs of the 1 hidden node ANN developed for modelling

data set I.
RI Estimation Method yt−1 yt−4 yt−9

Modified connection weight 21.21 41.40 37.39
PMI-based 22.33 45.07 32.60

actual input-to-output relationships and there is general agreement between the values,

it is considered that the model approximated the underlying relationship well. However,

considering that the data are linear, it is acknowledged that an ANN without a hidden

layer would probably have resulted in a better approximation

For data set II, the best model developed contained 3 hidden nodes and was trained

with the SCE-UA algorithm. Scatter plots of the resulting model predictions versus the

“measured” and “true” data are shown in Figure 3.25, while the model performance results

are presented in Table 3.28. It can be seen in Figure 3.25 that a reasonably good fit

to the “true” data was obtained using this model; however, the fit was not as good as

that obtained for data set I, which can be seen by the larger amount of scatter about the

straight lines. The results in Table 3.28 indicate that while the model has reasonable

generalisability, it may have overfitted the training data slightly, as seen by comparing

the actualσ2
y and MAE values to the corresponding estimated values for the “measured”

training data subset. This may be the reason for the slightly worse fit to the underlying

trend in the data, which is represented by the “true” data. Shown in Figure 3.26 is a

time series plot of the model predictions against the “measured” and “true” data for the
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Figure 3.25 Scatter plots of the 3 hidden node ANN model predictions versus “measured”

and “true” (a) training, (b) testing and (c) validation data for data set II.
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Table 3.28 Performance of 3 hidden node ANN developed for modelling data set II.

Performance “Measured” Data “True” Data

Measure Train Test Validation Train Test Validation

σ̂2
y 0.963 1.025 0.922 0.042 0.045 0.059

MAE 0.788 0.812 0.766 0.160 0.163 0.190
RMSE 0.981 1.013 0.960 0.205 0.211 0.243
CE 0.652 0.664 0.682 0.979 0.974 0.974

Actualσ2
y 0.983 0.982 0.852 0.000 0.000 0.000

Actual MAE 0.797 0.793 0.733 0.000 0.000 0.000

entire recombined training, testing and validation data set. It is apparent in this figure

that the model was able to generalise reasonably well to the underlying trend, although

a number of the “true” data points were not fitted to accurately, particularly the lower

values, indicating that the function modelled was slightly incorrect. TheRI values given

in Table 3.29 confirm this.

Table 3.29 RI values (%) for the inputs of the 3 hidden node ANN developed for modelling

data set II.
RI Estimation Method yt−1 yt−4 yt−9 xt

Modified connection weight 27.31 37.86 32.74 2.09
PMI-based 21.62 36.13 30.82 11.44

It was inconclusive whether a 5 hidden node ANN or a 6 hidden node ANN was

better for modelling data set III; therefore, the performances of both models, which were

trained with the SCE-UA algorithm, were evaluated. Scatter plots of the 5 hidden node

ANN model predictions versus the “measured” and “true” data are shown in Figure 3.27,

with the corresponding model performance results presented in Table 3.30. It can be seen

that a good fit to the data was obtained with relatively small error values given the values

of the data, which are significantly higher than those for data sets I and II. Scatter plots

of the 6 hidden node ANN model predictions versus the “measured” and “true” data are

shown in Figure 3.28, with the corresponding model performance results presented in

Table 3.31. In comparison to the results presented in Table 3.30 for the 5 hidden node

ANN, it can be seen that a slightly better fit to both the “measured” and “true” data was

obtained with the 6 hidden node model.

A plot of the 5 hidden node ANN model predictions against the “measured” and “true”

data for the entire recombined training, testing and validation data set is shown in Fig-
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Figure 3.27 Scatter plots of the 5 hidden node ANN model predictions versus “measured”

and “true” (a) training, (b) testing and (c) validation data for data set III.

Table 3.30 Performance of 5 hidden node ANN developed for modelling data set III.

Performance “Measured” Data “True” Data

Measure Train Test Validation Train Test Validation

σ̂2
y 1.067 1.170 0.924 0.058 0.073 0.068

MAE 0.815 0.856 0.768 0.187 0.205 0.201
RMSE 1.033 1.082 0.961 0.240 0.270 0.262
CE 0.942 0.939 0.947 0.997 0.996 0.996

Actualσ2
y 1.048 1.096 0.869 0.000 0.000 0.000

Actual MAE 0.816 0.832 0.752 0.000 0.000 0.000
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Figure 3.28 Scatter plots of the 6 hidden node ANN model predictions versus “measured”

and “true” (a) training, (b) testing and (c) validation data for data set III.
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Table 3.31 Performance of 6 hidden node ANN developed for modelling data set III.

Performance “Measured” Data “True” Data

Measure Train Test Validation Train Test Validation

σ̂2
y 1.050 1.149 0.909 0.051 0.058 0.059

MAE 0.811 0.856 0.769 0.175 0.184 0.185
RMSE 1.025 1.072 0.953 0.225 0.240 0.242
CE 0.942 0.940 0.948 0.997 0.997 0.997

Actualσ2
y 1.048 1.096 0.869 0.000 0.000 0.000

Actual MAE 0.816 0.832 0.752 0.000 0.000 0.000

ure 3.29. As can be seen, the model appears to have fit the data well; however, a number

of the smaller data values were overpredicted. The output plot of the 6 hidden node ANN

model’s predictions was found to be almost identical to that shown in Figure 3.29 and is

therefore not shown. The 6 hidden node ANN was also found to have overpredicted a

number of the smaller data values.

The estimatedRI values for the inputs of the 5 and 6 hidden node ANNs are given in

Table 3.32 in comparison to the PMI-based estimates. It can be seen that theRI values

of inputsx1, x2 andx3 are quite different between the two models and in comparison

to the PMI-based estimates. It is, however, difficult to determine which of the modelled

relationships is more correct.

Table 3.32 RI values (%) for the inputs of the 5 and 6 hidden node ANN developed for

modelling data set III.

RI Estimation Method x1 x2 x3 x4 x5

5 hidden nodes - modified connection weight 12.25 13.27 23.98 32.97 17.53
6 hidden nodes - modified connection weight 23.81 19.93 0.09 36.20 19.98
PMI-based 20.07 22.65 10.65 30.80 15.83

3.4.7 Conclusions

3.4.7.1 Comparison of Training Algorithms

The results of the training algorithm comparison demonstrated that the SCE-UA algo-

rithm is the most suitable training method for consistently obtaining good solutions for

ANNs, given a range of different model specification conditions (e.g. underparameterised,

overparameterised), initial weights, and data sets with different nonlinearity and noise

characteristics. However, a shortcoming of this training method is the time required for
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training, particularly for larger sized networks. For high dimensional ANNs with a known

and differentiable error function, it is unlikely that a randomised search method like the

SCE-UA algorithm would beat the efficiency of a gradient-based search method such as

backpropagation, even if the local search method were initialised several times to improve

its robustness. Nevertheless, as the main aim of developing a state-of-the-art deterministic

ANN development approach in this research was to provide the best comparison to the

Bayesian ANN development approach introduced in the following chapter, the SCE-UA

algorithm will be used to train the deterministic models developed in this research. To

prevent excessively long training times for large networks, it is recommended that mod-

ifications to, or upper limits for, the algorithm parameters be considered when training

ANNs containing more than approximately 40 weights (i.e.d > 40), which roughly cor-

responds to an 8 hidden node ANN for data set I, a 7 hidden node ANN for data set II and

a 6 hidden node ANN for data set III, all of which took over an hour to train in comparison

to approximately 10 minutes required by the BP algorithm and the GA.

3.4.7.2 Assessment of Model Section Criteria

It was found that both the in-sample BIC and the out-of-sample AIC criteria were the

most suitable for selecting the appropriate number of hidden nodes in an ANN, with both

criteria correctly selecting the optimal network size for modelling data sets I, II and III.

It was also seen that whether training was stopped early or allowed to converge had little

impact on the generalisability of the models selected using the in-sample BIC, suggesting

that a test data set would not be required when this criterion is used to select the ap-

propriate ANN configuration. However, it is considered that this may not always be the

case in complex real-world problems and is an issue that requires further investigation. A

limitation of both the in-sample BIC and the out-of-sample AIC is that they are determin-

istic and their results can vary depending on the solution obtained during training. In this

investigation, only the best models developed for each network size using each training

algorithm were considered and there was still some variation in both the in-sample BIC

and out-of-sample AIC results. Therefore, if the optimum weights are not obtained for

any given network size in a trial-and-error model selection process, such as the one car-

ried out in this investigation, the use of deterministic BIC and AIC values may lead to the

incorrect selection of the appropriate network size.
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3.4.7.3 Assessment of Input Importance Measures

Overall, it was found that the modified Connection Weight Approach developed as part

of this research was the most accurate method for quantifying the relative importance

of ANN inputs of the methods investigated. It was also found that, on average, both of

the modified methods considered (i.e. modified Connection Weight Approach and modi-

fied Garson’s measure) were an improvement on the original input importance measures.

However, similar to the model selection criteria, these methods were only applied to the

best models developed for modelling the synthetic data sets and the resultingRI val-

ues still exhibited (sometimes substantial) variation. Although the modified Connection

Weight Approach was found to be relatively robust to the different weights obtained for

various network sizes using different training algorithms, there is still some danger in

using such deterministic methods to quantify the relative importance of ANN inputs.
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