Bayesian Artificial Neural Networks in Water Resources Engineering

by Greer B. Kingston

Submitted in fulfilment of the requirements for the degree of **DOCTOR OF PHILOSOPHY**

May 2006

FACULTY OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES

School of Civil and Environmental Engineering

Bayesian Artificial Neural Networks in Water Resources Engineering

By: Greer B. Kingston, B.E. Civil and Environ. (Hons)

May 2006

Thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy**

School of Civil and Environmental Engineering Faculty of Engineering, Computer and Mathematical Sciences The University of Adelaide SA 5005 Australia

Telephone:+61 8 8303 5451Facsimile:+61 8 8303 4359Web:www.civeng.adelaide.edu.auEmail:enquiries@civeng.adelaide.edu.au

Table of Contents

	Tab	le of Co	ntents	iii
	List	of Figu	res	'ii
	List	of Tabl	es	٢V
	Abs	tract	x	ix
	Stat	ement o	of Originality x	xi
	Ack	nowled	gements xx	i ii
	List	of Pub	lications xx	٢V
	Non	nenclatı	ire & Abbreviations xxv	'ii
1	Intr	oductio	n	1
	1.1	Motiva	ation	1
	1.2	Resear	rch Objectives	3
	1.3	Layou	t and Contents of Thesis	5
2	Res	earch B	ackground	7
	2.1	Water	Resources Modelling	7
	2.2	Artific	ial Neural Networks (ANNs)	9
		2.2.1	Background and Description	9
		2.2.2	Multi-Layer Perceptrons (MLPs)	0
		2.2.3	Training	2
		2.2.4	Advantages	2
		2.2.5	Issues and Limitations	3
	2.3	Bayes	ian Methods	24
		2.3.1	Background to Bayesian Methodology	24

		2.3.2	Use of Bayesian Methods in Water Resources Modelling	25
		2.3.3	Bayesian Neural Networks	26
		2.3.4	Training and Prediction	27
		2.3.5	Model Selection	33
		2.3.6	Limitations of Current Bayesian Neural Network Practices	35
	2.4	Conclu	ision	36
3	Stat	e-of-the	-Art Deterministic ANN Methodology	39
	3.1	Introdu	ction	39
	3.2	Review	v of The Current State-of-the-Art	40
		3.2.1	Choice of Performance Criteria	41
		3.2.2	Choice of Data Sets	46
		3.2.3	Data Pre-Processing	50
		3.2.4	Determination of ANN Inputs	55
		3.2.5	Determination of ANN Architecture	60
		3.2.6	ANN Training	68
		3.2.7	ANN Validation	74
	3.3	Approa	ach Adopted and Investigations Required	75
	3.4	Investi	gation of Deterministic ANN Development Methods	77
		3.4.1	Synthetic Data Sets	77
		3.4.2	Comparison of Training Algorithms	80
		3.4.3	Assessment of Model Selection Criteria	93
		3.4.4	Assessment of Input Importance Measures	94
		3.4.5	Results	102
		3.4.6	Evaluation of Best Models	126
		3.4.7	Conclusions	133
4	A N	ew Baye	esian Framework for ANNs	137
	4.1	Introdu	action and Motivation	137
	4.2	Bayesi	an Training and Prediction	139
		4.2.1	Markov Chain Monte Carlo Methods	140
		4.2.2	MCMC Methods Previously Applied to ANNs	146
		4.2.3	Proposed Bayesian Training Approach	149
	4.3	Bayesi	an Model Selection	159
		4.3.1	Computation of Evidence via Posterior Simulation	159
		4.3.2	Bayes Factors	161

		4.3.3	BMS Previously Applied to ANNs
		4.3.4	Proposed BMS Framework
	4.4	Assess	ment of Bayesian Techniques with Synthetic Data
		4.4.1	Bayesian Training and Prediction
		4.4.2	Bayesian Model Selection
		4.4.3	Results
		4.4.4	Evaluation of Best Models
		4.4.5	Conclusions
5	Case	e Study	1 - Salinity Forecasting in the River Murray 215
	5.1	Introdu	action
	5.2	Backg	round
		5.2.1	Salinity in the River Murray
		5.2.2	Forecasting Salinity in the River Murray with ANNs
	5.3	Availa	ble Data and Model Inputs
	5.4	Detern	ninistic ANN Development
		5.4.1	Methods
		5.4.2	Results
	5.5	Bayesi	an ANN Development
		5.5.1	Methods
		5.5.2	Results
	5.6	Conclu	usions
6	Case	e Study	2 - Cyanobacteria Forecasting 255
	6.1	Introdu	action
	6.2	Backg	round
		6.2.1	Cyanobacteria in the River Murray
		6.2.2	Modelling Cyanobacteria Concentrations with ANNs 258
	6.3	Availa	ble Data and Model Inputs
	6.4	Detern	ninistic ANN Development
		6.4.1	Methods
		6.4.2	Results
	6.5	Bayesi	an ANN Development
		6.5.1	Methods
		6.5.2	Results
	6.6	Conclu	isions

7	Conc	lusions	and Recommendations	289
	7.1	Contrib	outions of the Research	289
		7.1.1	Deterministic ANN Development	289
		7.1.2	Bayesian ANN Development	291
	7.2	Conclu	sions	293
		7.2.1	General	293
		7.2.2	Deterministic ANN Development	295
		7.2.3	Bayesian ANN Development	296
	7.3	Recom	mendations for Future Work	297
Re	feren	ces		299
Ap	pendi	ices		325
Ap	pendi	ix A Tı	raining Investigation Results	327
Ap	pendi	x B R	esults of Assessment of Input Importance Measures	331

List of Figures

2.1	Layer structure of a multi-layer perceptron	10
2.2	Operation of a single node	11
2.3	Evidence incorporating Occam's razor	35
3.1	Main steps in the development of an ANN	40
3.2	SOM data division	48
3.3	Typical activation functions for ANNs	61
3.4	Generalising to, overfitting and underfitting the data	63
3.5	Examples of different local minima on the error surface	68
3.6	The effect of the learning rate used for backpropagation	70
3.7	The impact of momentum in backpropagation	71
3.8	Indirect route taken towards the minimum of the error surface	72
3.9	Probability density of data set I	78
3.10	Probability density of data set II	79
3.11	Probability density of data set III	80
3.12	Schematic of backpropagation	82
3.13	Schematic of a genetic algorithm	85
3.14	Two child average crossover operator	87
3.15	Schematic of the SCE-UA algorithm	89
3.16	Example ANN	95
3.17	The squashing effect of nonlinear activation functions	96
3.18	Error surfaces of 2 and 10 hidden node ANNs	07
3.19	In-sample BIC results when training was stopped early and run to conver-	
	gence	12
3.20	Average <i>RI</i> values estimated for data set I	20
3.21	Average <i>RI</i> values estimated for data set II	22
3.22	Average <i>RI</i> values estimated for data set III	.24
3.23	Scatter plots of model predictions for data set I	27

3.24	Time series plot of model predictions for data set I $\ldots \ldots \ldots$	128
3.25	Scatter plots of model predictions for data set II	129
3.26	Time series plot of model predictions for data set II	130
3.27	Scatter plots of the 5 hidden node ANN predictions for data set III \ldots	132
3.28	Scatter plots of the 6 hidden node ANN predictions for data set III \ldots	132
3.29	5 hidden node ANN predictions for data set III	134
4.1	The probability of a jump using the Metropolis Algorithm	142
4.2	The effect of the proposal distribution scale used for Metropolis	143
4.3	Scale and degrees of freedom parameters of the scaled inverse chi-squared	
	distribution	153
4.4	The effect of simulated annealing on the target distribution	158
4.5	Posterior hidden-output weight distributions that include zero	166
4.6	SSE traces obtained when local and global minimum solutions were found	
	for data set II	169
4.7	SSE traces obtained when local and global minimum solutions were found	
	for data set III	170
4.8	SSE traces obtained with 1 and 10 hidden node ANNs used to model data	
	set I	172
4.9	SSE traces obtained with 3 and 10 hidden node ANNs used to model data	
	set II	173
4.10	Mean MCMC traces for the $2, 6, \ldots, 10$ hidden node ANNs applied to	
	data set II	174
4.11	Individual log $p^*(\mathbf{w} \mathbf{y})$ traces obtained for the 2, 6,, 10 hidden node	
	ANNs applied to data set II	175
4.12	Mean MCMC traces resulting from each form of prior distribution when	
	applied to poorly initialised data set II model - unfixed hyperparameters .	176
4.13	Mean MCMC traces resulting from each form of prior distribution when	
	applied to poorly initialised data set III model - unfixed hyperparameters .	177
4.14	Individual $\log p^*(\mathbf{w} \mathbf{y})$ traces resulting from each form of prior distribu-	
	tion when applied to poorly initialised data set II model - unfixed hyper-	
	parameters	178
4.15	Individual $\log p^*(\mathbf{w} \mathbf{y})$ traces resulting from each form of prior distribu-	
	tion when applied to poorly initialised data set III model - unfixed hyper-	
	parameters	178

4.16	Mean MCMC traces resulting from each form of prior distribution when
	applied to poorly initialised data set II model - fixed hyperparameters 179
4.17	Individual MCMC traces resulting from each form of prior distribution
	when applied to poorly initialised data set II model - fixed hyperparameters 180
4.18	Mean MCMC traces resulting from each form of prior distribution when
	applied to poorly initialised data set III model - fixed hyperparameters $\ . \ . \ 181$
4.19	Individual MCMC traces resulting from each form of prior distribution
	when applied to poorly initialised data set III model - fixed hyperparameters 181
4.20	Mean MCMC traces obtained for the data set III model with a longer
	simulation
4.21	Mean MCMC traces obtained for the data set II model with poor and good
	weight initialisations
4.22	Mean MCMC traces obtained for the data set III model with poor and
	good weight initialisations
4.23	Mean MCMC traces obtained using simulated annealing
4.24	Mean MCMC traces resulting from different prior distributions when the
	MCMC algorithm was used to train the 10 hidden node data set I model -
	overfitting prevented
4.25	Mean MCMC traces resulting from different prior distributions when the
	MCMC algorithm was used to train the 10 hidden node data set II model
	- overfitting prevented
4.26	Mean MCMC traces resulting from each form of prior when applied to
	the overtrained data set I model
4.27	Mean MCMC traces resulting from each form of prior when applied to
	the overtrained data set II model
4.28	Average magnitudes of different weight groups for the data set I model,
	given each form of prior
4.29	Average magnitudes of different weight groups for the data set II model,
	given each form of prior
4.30	Evidence estimates for the $1, \ldots, 10$ hidden node ANNs applied to data
	set I
4.31	Marginal posterior hidden-output weight distribution for the 1 hidden
	node ANN
4.32	Marginal posterior hidden-output weight distributions for the 2 hidden
	node ANN

4.33	Evidence estimates for the 1,, 10 hidden node ANNs applied to data set II
4.34	Marginal posterior hidden-output weight distributions for the 3 hidden node ANN applied to data set II
4.35	Marginal posterior hidden-output weight distributions for the 4 hidden node ANN applied to data set II
4.36	Evidence estimates for the 1,, 10 hidden node ANNs applied to data set III
4.37	Marginal posterior hidden-output weight distributions for the 5 hidden node ANN applied to data set III
4.38	Marginal posterior hidden-output weight distributions for the 6 hidden node ANN applied to data set III
4.39	Marginal posterior hidden-output weight distributions for the 7 hidden node ANN applied to data set III
4.40	Scatter plots of mean predictions and 95% prediction limits for data set I 200
4 4 1	Mean predictions and 95% prediction limits obtained for data set I 201
4.42	First 100 mean predictions and 95% prediction limits obtained for data set 1202
4.43	Estimated <i>BI</i> distributions for the inputs of data set I 202
4.44	Scatter plots of mean predictions and 95% prediction limits for data set II 203
4.45	First 100 mean predictions and 95% prediction limits obtained for data set II203
4.46	Mean predictions and 95% prediction limits obtained for data set II 204
4.47	Estimated <i>RI</i> distributions for the inputs of data set II
4.48	Scatter plots of the 5 hidden node ANN mean predictions and 95% pre-
	diction limits for data set III
4.49	Scatter plots of the 6 hidden node ANN mean predictions and 95% pre- diction limits for data set III
4.50	Mean predictions and 95% prediction limits obtained using the 5 hidden node ANN applied to data set III
4.51	First 100 mean predictions and 95% prediction limits obtained using the
	5 hidden node ANN applied to data set III
4.52	RI distributions for the inputs of data set III estimated using the 5 hidden node ANN weights
4.53	RI distributions for the inputs of data set III estimated using the 6 hidden
	node ANN weights
5.1	Murray-Darling Basin

5.2	Pipelines delivering River Murray water to South Australia
5.3	Increasing salinity in the River Murray with distance downstream 218
5.4	Economic impacts for a 1 EC unit increase in Morgan salinity 219
5.5	Time series of salinity in the River Murray at Murray Bridge
5.6	Fourier series seasonal mean for salinity and flow
5.7	Salinity at Mannum with a lag of 1 day (MAS_{t-1})
5.8	Salinity at Morgan with a lag of 60 days (MOS_{t-60})
5.9	Salinity at Waikerie with a lag of 1 day (WAS $_{t-1}$)
5.10	Salinity at Loxton with a lag of 25 days (MAS $_{t-1}$)
5.11	Flow at lock 7 with a lag of 1 day $(L7F_{t-1})$
5.12	River level at Murray Bridge with a lag of 1 day (MBL _{$t-1$})
5.13	River level at Mannum with a lag of 57 days (MAL $_{t-57}$)
5.14	River level upstream of Lock 1 with a lag of 1 day $(L1UL_{t-1})$
5.15	Histogram of Murray Bridge salinity data
5.16	Standardised model residuals
5.17	BIC and AIC values for $5, 10, \ldots, 30$ hidden node ANN models $\ldots 235$
5.18	BIC and AIC values for 2, 4, 6 and 8 hidden node ANN models 236
5.19	BIC and AIC values for 3, 4 and 5 hidden node ANN models
5.20	Scatter plots of the 4 hidden node ANN model predictions
5.21	Salinity forecasts obtained for the "model development" data
5.22	Salinity forecasts obtained for the "real-time forecasting" data 240
5.23	Mean MCMC traces for the $2,4,\ldots,10$ hidden node ANNs
5.24	Individual log $p^*(\mathbf{w} \mathbf{y})$ traces obtained for the $2, 4, \ldots, 10$ hidden node
	ANNs
5.25	Evidence estimates for the $2,4,\ldots,10$ hidden node ANNs $\ \ \ldots \ \ldots \ 245$
5.26	Marginal posterior hidden-output weight distributions of the 4 hidden
	node ANN
5.27	Marginal posterior hidden-output weight distributions of the 6 hidden
	node ANN
5.28	Scatter plot of hidden-output weights for the 6 hidden node ANN 247
5.29	Estimated evidence values including those for the 3 and 5 hidden node
	ANNs
5.30	Marginal posterior hidden-output weight distributions for the 3 hidden
	node ANN

5.31	Marginal posterior hidden-output weight distributions for the 5 hidden	
	node ANN	248
5.32	Scatter plots of mean predictions and 95% prediction limits	249
5.33	Mean salinity forecasts and 95% prediction limits obtained for the "model	
	development" data	249
5.34	RI distributions for salinity inputs $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	251
5.35	Mean salinity forecasts and 95% prediction limits obtained for the "real-	
	time forecasting" data	252
6.1	Regulatory structures in the lower River Murray, South Australia	257
6.2	Algal dynamics	259
6.3	Anabaena spp. time series	262
6.4	Silica versus Anabaena spp. at Morgan	264
6.5	Flow into South Australia versus Anabaena spp. at Morgan	264
6.6	Temperature versus Anabaena spp. at Morgan	265
6.7	pH versus Anabaena spp. at Morgan	265
6.8	Probability density of the available Anabaena spp. data	267
6.9	Residuals resulting from linearly scaled data	269
6.10	Residuals resulting from log transformed data	270
6.11	BIC and AIC values for 5, 10, 15 and 20 hidden node ANN models	271
6.12	BIC and AIC values for 2, 4, 6 and 8 hidden node ANN models	271
6.13	BIC and AIC values for 1, 2, 3, 4 and 5 hidden node ANN models	272
6.14	Anabaena spp. forecasts obtained for the entire data	273
6.15	Anabaena spp. forecasts obtained for the validation data	274
6.16	Mean MCMC traces for the $2, 4, \ldots, 10$ hidden node ANNs	277
6.17	Individual log $p^*(\mathbf{w} \mathbf{y})$ traces obtained for the $2, 4, \ldots, 10$ hidden node	
	ANNs	278
6.18	Evidence estimates for the $2,4,\ldots,10$ hidden node ANNs $\ .$	279
6.19	Marginal posterior hidden-output weight distributions for the 2 hidden	
	node ANN	280
6.20	Scatter plot of hidden-output weights for the 2 hidden node ANN	280
6.21	Marginal posterior hidden-output weight distributions for the 4 hidden	
	node ANN	281
6.22	Scatter plots of the hidden-output weights for the 4 hidden node ANN $$	282
6.23	Estimated evidence values including that for the 1 hidden node ANN	283
6.24	Mean Anabaena forecasts and 95% prediction limits obtained for all data	283

6.25	Mean Anabaena forecasts and 95% prediction limits obtained for valida-	
	tion data	284
6.26	<i>RI</i> distributions for <i>Anabaena</i> spp. inputs	286

List of Tables

3.1	Default parameter values for SCE-UA algorithm
3.2	User-defined parameters adopted for BP, GA and SCE-UA 92
3.3	ANN weights specified in the comparison of input importance measures
	carried out by <i>Sarle</i> (2002)
3.4	Limitations of previous studies conducted to compare input importance
	measures
3.5	Summary of training set MSE results for data set I
3.6	Summary of training set MSE results for data set II
3.7	Summary of training set MSE results for data set III
3.8	Average training times for the BP, GA and SCE-UA algorithms 108
3.9	Optimal number of hidden nodes for data set I
3.10	Optimal number of hidden nodes for data set II
3.11	Optimal number of hidden nodes for data set III
3.12	In-sample AIC and BIC results for data set I
3.13	In-sample AIC and BIC results for data set II
3.14	In-sample AIC and BIC results for data set III
3.15	Out-of-sample results for data set I
3.16	Out-of-sample results for data set II
3.17	Out-of-sample results for data set III
3.18	Validation set results for data set I
3.19	Validation set results for data set II
3.20	Validation set results for data set III
3.21	PMI results for data sets I, II, and III
3.22	Evaluation of input importance measures for data set I
3.23	Evaluation of input importance measures for data set II
3.24	Evaluation of input importance measures for data set III
3.25	Overall evaluation of input importance measures
3.26	Performance of best model developed for data set I

3.27	RI values for the 1 hidden node ANN inputs for data set I $\ldots \ldots$	129
3.28	Performance of best model developed for data set II	131
3.29	RI values for the 3 hidden node ANN inputs for data set II	131
3.30	Performance of the 5 hidden node ANN developed for data set III	132
3.31	Performance of the 6 hidden node ANN developed for data set III	133
3.32	RI values for the 5 and 6 hidden node ANN inputs for data set III \ldots	133
4.1	Interpretive scale for Bayes factors	162
4.2	SSE values obtained for each model developed in the overfitting investi-	
	gation	189
4.3	Evidence estimates for data set I ANN models	191
4.4	Log Bayes Factors in favour of the highest ranked model for data set I $\ . \ .$	192
4.5	Evidence estimates for data set II ANN models	193
4.6	Log Bayes Factors in favour of the highest ranked model for data set II	194
4.7	Evidence estimates for data set III ANN models	196
4.8	Log Bayes Factors in favour of the highest ranked model for data set III $$.	197
4.9	Mean RI values for the 1 hidden node ANN inputs for data set I \ldots	202
4.10	Mean RI values for the 3 hidden node ANN inputs for data set II	205
4.11	Mean RI values for the 5 and 6 hidden node ANN inputs for data set III $$.	209
4.12	Mean performance of the ANNs developed using Bayesian methods in	
	comparison to the performance of the corresponding deterministic ANNs	211
5.1	Available data for salinity forecasting model	224
5.2	Inputs used in salinity forecasting ANN model	225
5.3	Modified parameter values for SCE-UA algorithm	232
5.4	Training times using the SCE-UA algorithm	234
5.5	Model-based RI estimates and order of input importance \ldots \ldots \ldots	239
5.6	Log Bayes Factors in favour of the highest ranked model	245
5.8	Performance of the 4 hidden node ANN developed using deterministic	
	and Bayesian methods	253
6.1	National cyanobacterial alert levels	258
6.2	Available data for <i>Anabaena</i> forecasting model	261
6.3	Inputs used in Anabaena forecasting ANN model	263
6.4	RMSEs (log scale) for the 1 hidden node ANN developed using determin-	
	istic methods	273

6.5	Model-based RI estimates and order of input importance in comparison
	to the PMI-based <i>RI</i> estimates
6.6	Log Bayes Factors in favour of the highest ranked model
6.7	RMSEs (log scale) for the 1 hidden node ANN developed using determin-
	istic methods
A.1	MSE results for data set I trained with BP
A.2	MSE results for data set I trained with the GA
A.3	MSE results for data set I trained with the SCE-UA algorithm
A.4	MSE results for data set II trained with BP
A.5	MSE results for data set II trained with the GA
A.6	MSE results for data set II trained with the SCE-UA algorithm 329
A.7	MSE results for data set III trained with BP
A.8	MSE results for data set III trained with the GA
A.9	MSE results for data set III trained with the SCE-UA algorithm 330
B .1	<i>RI</i> results for data set I trained by BP
B.2	RI results for data set I trained by GA
B.3	RI results for data set I trained by SCE-UA
B.4	RI results for data set II trained by BP
B.5	RI results for data set II trained by GA
B.6	RI results for data set II trained by SCE-UA
B.7	RI results for data set III trained by BP
B.8	RI results for data set III trained by GA
B.9	RI results for data set III trained by SCE-UA

Abstract

A new Bayesian framework for training and selecting the complexity of artificial neural networks (ANNs) is developed in this thesis, based on Markov chain Monte Carlo (MCMC) techniques. The primary motivation of the research presented is the incorporation of uncertainty into ANNs used for water resources modelling, with emphasis placed on obtaining accurate results, while maintaining simplicity of implementation, which is considered to be of utmost importance for adoption of the framework by practitioners in this field. By applying the Bayesian framework to a number of synthetic and real-world case studies and by comparison with a state-of-the-art ANN development approach, it is shown throughout this thesis how the Bayesian approach can be used to address the three most significant issues facing the wider acceptance of ANNs in this field; namely generalisability, interpretability and uncertainty. The state-of-the-art approach is devised through reviewing and, where necessary, improving current best practice deterministic ANN development methods, leading to the recommended use of the global SCE-UA optimisation algorithm, which has not been used before for ANN training, and the development of a modified connection weight approach for extracting knowledge from trained ANNs. The real-world case studies used in this research, which involve salinity forecasting in the River Murray at Murray Bridge, South Australia, and the forecasting of cyanobacteria (Anabaena spp.) in the River Murray at Morgan, South Australia, are used to demonstrate the practical value of the Bayesian framework, particularly when extrapolation is required and when the available data are of poor quality. These issues lead to poor model performance when deterministic ANN development methods are applied, yet as the generated predictions are deterministic, there is no direct way of assessing their quality. Application of the proposed Bayesian framework leads to better average performance of the ANN models developed, since a minimal ANN structure is selected and a more generalised input-output mapping is obtained. More importantly, prediction limits are provided which quantify the uncertainty in the predictions and enable management and design decisions to be made based on a known level of confidence.

Abstract

Statement of Originality

I Greer B. Kingston hereby declare that this work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution. To the best of my knowledge and belief, it contains no material previously published or written by any other person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

SIGNED: *DATE:*

Page xxii

Acknowledgements

Firstly, I would like to express my sincere gratitude to my principal supervisor Associate Professor Holger Maier, whose continual encouragement, direction and constructive and timely comments helped me to complete this thesis and were always greatly appreciated throughout the duration of my PhD. Secondly, I would like to thank my co-supervisor Associate Professor Martin Lambert who helped to shape this project by introducing me to various algorithms and Bayesian procedures and whose assistance in my understanding of these methods is kindly acknowledged. I would also like to thank Dr Gavin Bowden for providing the code used to implement a number of the deterministic ANN methods used to complete this work.

Thanks must also go to my fellow postgraduates in the School of Civil and Environmental Engineering for providing such a friendly and supportive working environment and for the de-stressing ritual that is "Friday drinks". Thankyou also to the support staff in the school for their assistance throughout my time here.

A special thanks to my friends and family for their encouragement and belief in me, particularly my mother Kathy and my sister Lauren, whose various forms of support helped me to complete this PhD.

Finally, the financial support for this project, provided by an Australian Research Council (ARC) Discovery grant together with an Australian Postgraduate Award (APA), is gratefully acknowledged.

List of Publications

The following publications are related to the research presented in this thesis:

Journal Papers:

- Kingston, G. B., M. F. Lambert, and H. R. Maier (2005), Bayesian training of artificial neural networks used for water resources modeling, *Water Resources Research*, 41(12), W12409, doi:10.1029/2005WR004152.
- Kingston, G. B., H. R. Maier, and M. F. Lambert (2005), Calibration and validation of neural networks to ensure physically plausible hydrological modeling, *Journal of Hydrology*, 314(1–4), 158–176, doi:10.1016/j.jhydrol.2005.03.013.
- Kingston, G. B., H. R. Maier, and M. F. Lambert (2005), A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction, *Mathematical and Computer Modelling*, *In press*, doi:10.1016/j.mcm.2006.01.008.

Conference Papers:

- Kingston, G. B., H. R Maier, and M. F. Lambert (2006), Forecasting cyanobacteria with Bayesian and deterministic artificial neural networks, accepted for publication in *Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2006)*, Vancouver, Canada, July 2006.
- Kingston, G. B., H. R Maier, and M. F. Lambert (2005), A Bayesian approach to artificial neural network model selection, in Zerger, A. and Argent, R. M. (eds), *Proceedings of the MODSIM 2005 International Congress on Modelling and Simulation*, pp. 1853–1859. Melbourne, Australia, December 2005. http://www.mssanz.org.au/modsim05/papers/kingston.pdf
- Kingston, G. B., H. R Maier, and M. F. Lambert (2005), A Bayesian method to improve the extrapolation ability of ANNs, in Hamza, M. H. (ed), *Proceedings of the IASTED International Conference on Applied Simulation and Modelling*, no. 469–126. Benalmádena, Spain, June 2005.

Kingston, G. B., H. R. Maier, and M. F. Lambert (2004), A statistical input pruning method for artificial neural networks used in environmental modelling, in Pahl-Wostl, C., Schmidt, S., Rizzoli, A. E. and Jakeman, A. J. (eds), *Complexity and Integrated Resources Management, Transactions of the 2nd Biennial Meeting of the International*

Environmental Modelling and Software Society, Volume 1, pp. 87–92. iEMSs, June 2004.

- Kingston, G. B., T. M. Heneker, M. F. Lambert, and H. R. Maier (2003), A comparison of conceptual and empirical modelling methods for simulation of catchment runoff, in *Proceedings of the 28th Hydrology and Water Resources Symposium*, Volume 2, pp. 299–306. Wollongong, Australia, November 2003.
- Kingston, G. B., H. R. Maier, and M. F. Lambert (2003), Understanding the mechanisms modelled by artificial neural networks for hydrological prediction, in Post, D. A. (ed), *Proceedings of the MODSIM 2003 International Congress on Modelling and Simulation*, Volume 2, pp. 825–830. Townsville, Australia, July 2003.
- Kingston, G. B., M. F. Lambert, and H. R. Maier, (2003), Development of stochastic artificial neural networks for hydrological prediction, in Post, D. A. (ed), *Proceedings* of the MODSIM 2003 International Congress on Modelling and Simulation, Volume 2, pp. 837–842. Townsville, Australia, July 2003.

Nomenclature & Abbreviations

Symbol	Description

General	
\Re^d	d-dimensional set of all real numbers
Θ	search space; $\Theta \in \Re^d$
I	identity matrix
Η	Hessian matrix
μ	scalar mean
σ^2	variance (σ is the standard deviation)
Σ	covariance matrix
λ	signal-to-noise ratio
r^2	coefficient of determination

$N(\mu, \sigma^2)$	Normal distribution with mean μ and variance σ^2
U(a,b)	Uniform distribution with boundaries a, b , where $b > a$
$\operatorname{Inv-}\chi^2(\nu,S)$	Inverse chi-square distribution with ν degrees of freedom
	and scale S

ANN and Modelling Notation

$f(\cdot)$	function modelled by an ANN
K	number of inputs
J	number of hidden layer nodes
M	number of outputs
I_k	kth input node
H_j	jth hidden node
O_m	mth output node
w_i	<i>i</i> th "true" weight
\hat{w}_i	<i>i</i> th estimated weight
W	"true" vector of connection and bias weights $\equiv (w_1, \ldots, w_d)$
$\hat{\mathbf{w}}$	estimated vector of connection and bias weights $\equiv (\hat{w}_1, \dots, \hat{w}_d)$
	continued on next page

Symbol	Description
d	dimension of weight vector
$g(\cdot)$	activation function
zin_j	summed input into hidden node j
z_j	output from hidden node $j \equiv g(zin_j)$
$\hat{y}in$	summed input into output node
\hat{y}_m	output from output node $m \equiv g(\hat{y}in_m)$
$E_{\mathbf{y}}$	error, or objective, function
$E_{\mathbf{w}}$	penalty term used to regularise weights
∇E	gradient of error function
ϵ	model residuals
$\sigma^2_{f y}$	scale (variance) of model residuals
$\sigma^2_{\mathbf{w}}$	scale (variance) of weights
$\hat{\sigma}^2_{f y}$	scale of model residuals at optimum of $E_{\mathbf{y}}$
$\hat{\sigma}_{\mathbf{w}}^2$	scale of weights at optimum of $E_{\mathbf{y}}$
Data Notation	
N	number of samples in the data set
y	general term for observed target data
y_i	<i>i</i> th observed target data scalar
У	general term for set of scalar target data $\equiv (y_1, \ldots, y_N)$
\mathbf{y}^M	general term for observed target data vector $\equiv (y_1, \dots, y_M)$
\mathbf{y}_i^M or \mathbf{y}_i	<i>i</i> th target vector $\equiv (y_{1,i}, \ldots, y_{M,i})$
\mathbf{y}_m	mth target variable $\equiv (y_{m,1}, \ldots, y_{m,N})$
Y	general term for set of target vectors $\equiv (\mathbf{y}_1^M, \dots, \mathbf{y}_N^M)$
\hat{y}_i	<i>i</i> th predicted data scalar
$\hat{\mathbf{y}}$	general term for set of scalar predicted data $\equiv (\hat{y}_1, \dots, \hat{y}_N)$
$\mathbf{\hat{y}}^{M}$	general term for predicted data vector $\equiv (\hat{y}_1, \dots, \hat{y}_M)$
$\mathbf{\hat{y}}_{i}^{M}$ or $\mathbf{\hat{y}}_{i}$	<i>i</i> th predicted output vector $\equiv (\hat{y}_{1,i}, \dots, \hat{y}_{M,i})$
$\mathbf{\hat{y}}_m$	<i>m</i> th predicted output variable $\equiv (\hat{y}_{m,1}, \dots, \hat{y}_{m,N})$
х	general term for input variable $\equiv (x_1, \ldots, x_N)$
\mathbf{x}^{K}	general term for input vector $\equiv (x_1, \ldots, x_K)$
\mathbf{x}_i^K or \mathbf{x}_i	<i>i</i> th input vector $\equiv (x_{1,i}, \ldots, x_{K,i})$
\mathbf{x}_k	kth input variable $\equiv (x_{k,1}, \ldots, x_{k,N})$
X	general term for set of input vectors $\equiv (\mathbf{x}_1^K, \dots, \mathbf{x}_N^K)$
\mathcal{D}	set of data pairs $\equiv [(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)]$

Symbol Description

Probability Notation

θ	general term for model parameters
${\cal H}$	general term for model structure, including implicit assumptions
p(heta)	probability density of model parameters θ , also known as the
	prior probability density
$p(heta, \mathbf{y})$	joint probability of the model parameters θ and the data y
$p(\theta \mathbf{y})$	conditional probability of θ , given the data y, also known as
	the posterior probability density of θ
$p^*(\theta \mathbf{y})$	unnormalised posterior density
$p(\mathbf{y} \theta)$	conditional probability of the data y, given the model parameters
	θ , also known as the likelihood function
$L(\theta)$	the likelihood function, as above
$p(\mathbf{y} \mathcal{H})$	conditional probability of the data \mathbf{y} , given the model \mathcal{H} ,
	also known as the marginal likelihood or evidence
$\hat{p}(\mathbf{y} \mathcal{H})$	approximate evidence
$p(\mathcal{H} \mathbf{y})$	conditional probability of the model \mathcal{H} , given the model y,
	also known as the posterior probability density of ${\cal H}$

Training Notation

Backpropagation (BP)

γ	stepsize of gradient descent	
d	direction of gradient descent	
η	learning rate	
ϕ	momentum rate	
$\Delta \mathbf{w}$	weight increment	
δ	delta function	
κ	epoch size	
Genetic Algorithm (GA)		
G	population of chromosomes	
S	population size	
$ ho_{cross}$	crossover rate	
$ ho_{mut}$	mutation rate	
au	mutation stepsize	
gene'	mutated gene value	
Shuffled Complex Evolution (SCE-UA)		
p	number of complexes	
m	number of points in a complex	

Symbol	Description
8	population size $= m \times p$
q	number of points in a subcomplex
α	number of offspring generated by a subcomplex
β	number of evolution steps taken by each complex
Markov chain Monte (Carlo (MCMC)
$T(\cdot)$	transition distribution
$Q(\cdot)$	proposal density
$lpha(\cdot)$	acceptance probability distribution
θ^*	candidate parameter state
c	adaptive scaling parameter
T	temperature used for simulated annealing
φ	simulated annealing schedule parameter
t_0	number of iterations for which Σ is held constant
$t_{\sigma_0^2}$	number of iterations for which hyperparameters are held constant
t_b	number of burn-in iterations

Abbreviation

Description

AM	Adaptive Metropolis
AIC	Akaike's information criterion
ANN	Artificial neural network
ARD	Automatic relevance determination
AWQC	Australian Water Quality Centre
BF	Bayes factor
BIC	Bayesian information criterion
BMS	Bayesian model selection
BP	Backpropagation
CCE	Competitive complex evolution
CDF	Cumulative distribution function
CE	Coefficient of efficiency
C-J	Chib-Jeliazkov
DWR	South Australian Department for Water Resources
EBMLP	Evolutionary backpropagation multi-layer perceptron
EP	Evolutionary programming
GA	Genetic algorithm
G-D	Gelfand-Dey

Abbreviation	Description
GLUE	Generalized likelihood uncertainty estimation
GRNN	General regression neural network
HMC	Hybrid Monte Carlo
L1LF	Lock 1 lower flow
L1LL	Lock 1 lower river level
L1UL	Lock 1 upper river level
L7F	Lock 7 flow
LOL	Loxton river level
LOS	Loxton salinity
MAE	Mean absolute error
MAL	Mannum river level
MAS	Mannum salinity
MBL	Murray Bridge river level
MBS	Murray Bridge salinity
MCMC	Markov chain Monte Carlo
MDB	Murray-Darling Basin
MDBC	Murray-Darling Basin Commission
MDBMC	Murray-Darling Basin Ministerial Council
MI	Mutual information
MLP	Multi-layer perceptron
MOL	Morgan river level
MOS	Morgan salinity
MSE	Mean squared error
MSRE	Mean squared relative error
MT	Model tree
NGO	NeuroGenetic Optimizer
OCF	Overland Corner flow
OCL	Overland Corner river level
OCW	Overall connection weight
PC	Principle component
PCA	Principle component analysis
PDF	Probability density function
PMI	Partial mutual information
RI	Relative importance
RMSE	Root mean squared error
SCE-UA	Shuffled complex evolution - University of Arizona
SOM	Self-organising map

Abbreviation

Description

nine
1