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Abstract. This paper describes the second order statistics of a finite state Markov
process indexed on a binary tree. Such models are the discrete state analogues of the
continuous state Gauss-Markov processes as described by Basseville et al [1]. Such
processes are termed tree-indexed processes. The idea is to use the leaf nodes of the
tree at a specified depth, as indices for a time series, and to derive a probabilistic
model for this time series. The paper shows that such processes possess covariance
functions which decay as a power law thus exhibiting a long range dependent (LRD)
or self- similarity property. These models are motivated in part by recent evidence that
suggests some communications network traffic may exhibit such behaviour. However,
the processes are highly non-stationary in nature. The paper poses as an open question
whether there exists a modification of the tree structure which permits the leaf node
process to be stationary but retains the LRD property.

I INTRODUCTION

In computer communications networks [2], messages are generally transmitted in a
packetised form. From the point of view of designing control mechanisms for the
network, it is of interest to examine the statistical variability or burstiness of the
data at several time scales. For example, bursty data at fine time scales is likely
to be related to the message structure of a single transaction ; burstiness at longer
time scales is more likely to arise from some more global properties of traffic on
the network. In either case, different control and design considerations are likely
to arise. This paper describes a novel type of model which, we argue, offers the
potential to represent such behaviour. The idea of indexing Markov processes on
trees is not new. Such models were addressed in the linear-Gaussian framework in
a series of papers [1], [3], [4]. Also the idea of modelling a time-series by such a
process’s leaf nodes has appeared in [5] where the question of identification based
on such measurements is addressed in an autoregressive framework.
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In [6], results are presented which argue that some computer network data exhibits
a kind of self-similarity of statistical properties in scale. Reference [7] also considers
a class of processes which exhibit such behaviour. These processes exhibit a very
large degree of variability and extremely long term correlations, both attributes
which are suggested relevant by the studies reported in [6]. The work [8] also con-
siders LRD processes but uses a different mechanism to obtain an approximately
LRD process.

The purpose of this paper is to describe the second order statistics of a general
class of tree-indexed finite state Markov processes and demonstrate that the data
generated by such models can possess a LRD or self-similar characteristic. The
problem with our existing theory is that the leaf node process (indeed all processes
derived by sequential access of all nodes of a fixed depth), are highly non-stationary.
The problem of matching an observed time-series to the leaf nodes of a tree-indexed
process is also addressed in [5]. We pose as an open question whether there is a
modification or generalisation of the above model to yield stationary processes at
the leaf nodes. Proofs are not given but may be found in [9].

II TREE-INDEXED PROCESSES

In this section, we introduce the concept of a finite state Markov process indexed
on a binary tree, and derive the joint probability and the covariance of the state
process between two arbitrary nodes of the tree. We then focus attention on the
leaf nodes by defining a time series indexed by the leaf nodes taken in a specified
order. We demonstrate that this process has the LRD property.

Let 7 denote a binary tree of depth D with root node denoted by 0. Let X;,t € T
denote a random process indexed on the binary tree 7. We assume that X, takes
values in a finite set @ = {q1, . .. , qv } typically a subset of R. The Markov structure
is imposed on X, by specifying the downwards (ie towards the leaf nodes) transition
probabilities

Pr{Xiw = q;, Xis = qi| X: = ¢.} = Aij (1) Aix(t) (1)

where, following [1}, ta and t8 denote respectively the left and right child nodes of
node t. The designation ty denotes the parent node of node ¢, whilst ¢6 denotes
the sibling of node t. Thus, rather than the state occupancy probabilities of the
Markov process depending on the state at the previous time together with a tran-
sition probability, in the tree case, the probability distribution at a node depends
only on its parent node together with a downwards (ie parent to child) transition
probability. Also these transition probabilities are assumed to be independent (for
each child node) and identical. Notice that we restrict the transition probabilities
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to be identical for each child node, although this restriction is not a necessary fea-
ture of the most general model.

We assume the root node 0 is intitialised with stationary probability 7 satisfying
ATrm = 7 with m; > 0 V i. We assume the state processes all have zero mean by
suitable choice of state levels, ie Zf;l mq; = 0. We also assume that A is non-
singular.

We give some definitions based on the idea that the leaf nodes represent a time
series. Proofs of these results may be found in [9].

Definition

Consider a binary tree 7 of depth D > 0 (ie there are 27 leaf nodes). The depth
of a node ¢ will be denoted by d(t) € {0,...,D}. Let s,t € T, then we denote by
s At the unique common ancestor of s and ¢ of maximal depth. Let 6(s,t) denote
the distance between two nodes s and ¢, ie §(s, t) = d(s) + d(t) — 2d(s A ).

We firstly have the following result for the joint probability between any two nodes.

Theorem 1

Let s,t € T, then the joint probability of the states at nodes s and ¢ is given by

N
Pr{X; =g, X, = ¢} = Y m [AC]  [AEI] (2)
Corollary
The covariance between the state at nodes s and ¢ is given by
COV Xt; Zﬂ_ Ad 5,8At) q . [A5(t,5/\t)q]k ] (3)

Comment

For the case when s and ¢ are restricted to the same depth, (3) becomes

Cov({Xy, X Zwk Ad
=q" Qd q, (4)
355
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where

(IT = [(h,--- 7QN]

Qa = (A7) 11 A (5)
and d = §(s,s At) = §(t,s At). Here I = diag(my,...,7n).
Lemma 2
Let £ denote the leaf nodes of 7. We can find a sequence t,,,n =0,...,2” — 1 of

the elements of £ so that

S(to, tn) = 2 (1 + [logy(n)]) (6)
for n > 1 with d(tg, t5) = 0.
Comment
Let the leaf nodes be ordered according to the sequence 0aP,0aP~18,
0aP~28a, ... 08P ta, 08P, define the sequence {t,}. This sequence can be readily

shown to have the specified property.

We can now establish a formula for the covariance between the state at the two
leaf nodes tg and £, in terms of their linear distance apart n.

Theorem 3

Forn > 1,

=z

Cov(to, ty) = > my [AlHLoEa)) q]i (7)

k=1

We now focus on the dynamic properties of Markov chains by examining the prop-
erties of A. By assumption, we may write the eigendecomposition of A as

N
A:17TT+Z)\kUkUkT, (8)
k=2

where 1 denotes the vector consisting of all 1s, and the u; and vy, satisfy v} 1 = 0Vk,
ulm = 0Vk, and ulv; = 8. We assume that 1 > |[Ap| > |A3] > ... > |Ay]| > 0, and
that A is simple (ie diagonalisable). This last restriction is not necessary and can
be relaxed (see [9]). Thus for any integer d, we have
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N
A = 17T + Z Mg vl (9)
k=2
We now state our result on the LRD property of the state process indexed by nodes
{t.}.
Theorem 4

The state process covariance between nodes ty and ¢, satisfies

Cov(ty, tn) > Cn™H, (10)
where = —21og,(|An|), and C > 0 depends on A.

Comment

We generally require the Hurst parameter H given by H = 1—p1/2 = 1+log,(|An])
to satisfy 0.5 < H < 1. Thus we require 0 < z < 1 or equivalently 1 > [Ay| > 27/2.

IIT CONCLUSION AND OPEN QUESTIONS

This paper has defined the concept of a Markov process indexed on a binary tree,
and has derived the covariance structure of the process. If we define a time series
by an ordering of the states at the leaf nodes of the tree, such a process is shown
to have a long range dependency structure ie the covariance decays with a frac-
tional power law, rather that exponentially in conventional (time-series) Markov
processes. In other work, we have extended the concept to both continuous and
discrete hidden Markov models, and we have also derived optimal smoothing and
parameter estimation algorithms for such processes [9]. Application to data anal-
ysis has been addressed in [10] where it is argued that the tree indexed model is
useful for multiscale analysis of network traffic.

Several open questions are :

1. What about when A is singular 7 Do you get exponential modes or modes of
finite support ?

2. What happens when |Ay| < 271/2 ? This is usually a restriction on a time-series
to enforce stationarity, which is not a property enjoyed here.

357

Downloaded 21 Apr 2011 to 192.43.227.18. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions



3. To construct a stationary process, we require Cov(ig, t,) = Cov(ty, tyim) for all
m > 0 (or at least over some range of m). Is there a transformation of the state
process X, which yields a stationary process having the LRD property ?
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