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ABSTRACT

A standard and/or improved GA, using a fixed-length genotype and crossover operation,
have been widely used in science and engineering disciplines. It is well-known that the GA
is robust in searching for the optimal combination of diameter and rehabilitation actions of
water distribution systems but requires a large number of evaluations. A characteristic,
which has been observed from the studies, is that the optimal solution of the design and
rehabilitation of water distribution systems is located at the boundary of the feasible and
infeasible regions of the search space. Previous research has not considered the sizing of
pipe wall thicknesses and water hammer protection measures, which are always required in
reality. In this research, first of all, the original messy genetic algorithm is applied to the
optimisation of design and rehabilitation of water distribution systems. It has been found
that the messy GA is more efficient and effective than the standard and improved GAs at
solving the optimisation of water distribution systems, but it requires a huge initial
population size. This has been overcome by introducing the fast messy GA. Secondly, a
scheme of co-evolutionary and self-adaptive penalty has been proposed for the GA solving
a constrained boundary optimisation problem. It is purposely designed to guide the GA to
search the boundary of the feasible and infeasible regions of the search space. It has been
shown that this approach is very effective and efficient for the optimisation of water
distribution systems. Finally, the hydraulic network solver .(EPANET) for steady state
simulation has been incorporated into a transient model for simulation of water hammer in
water distribution systems. A methodology for comprehensive optimisation of pipe
diameters, pipe classes and surge tanks of the water distribution systems has been
developed by carefully integrating the steady state hydraulic solver, the water hammer

simulation model, the fast messy GA and the boundary search strategy.
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1. Introduction

1. INTRODUCTION

“Engineering is defined as the art or science of making practical
application of the knowledge of pure science such as physics, chemistry,
biology, etc. This implies that the task of engineering is to synthesise, or put
together, useful systems by applying knowledge and methods derived from
the pure science.”

by Edward J. Haug and Jasbir S. Arora, 1979.

Water is essential for each community in our society. People have been building water
distribution systems for thousands of years yet it is not possible to say with any degree of
confidence that a particular distribution system is the least cost system that could have
been implemented. Archaeologists have shown that ceramic pipes and brick aqueducts
were built 5000 years ago in Sindhu-valley civilisation. Rome had a well-developed water
supply system 2000 years ago. The system was built from a wide range of materials such
as clay, bored-stone, lead and bronze. Modern civilisation started designing and
constructing public water supply systems for population centers in late 19th century. Since
then a water distribution system has become one of the major requirements in urban and
regional economic development.

With the economic development of a modern society, the design and construction of
water distribution systems requires hydraulic analysis of the systems. The hydraulic
analysis is usually carried out by establishing a numerical model that simulates the flow
within the water distribution system. Modelling of a water distribution system, as hydraulic

modelling in general, has been facilitated by advent of computer. It is the wide application
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of computer technology that the hydraulic modelling, in general, and water distribution
system modelling, in particular, has been become every day tool of hydraulic engineers for
analysis of water distribution systems.

Computer modelling of water distribution systems has provided a practical
possibility of what-if decision-making of the system. The numerical model for simulation
of a water distribution system has been developed as a product which encapsulates the
hydraulics equations that govern the flow behaviour of a physical system. The product has
usually been presented as a menu-driven and user-friendly computer software. It is easy to
use. Thus it becomes a standard tool. It is the tool, by which the numerical model of a
large-scale network system is established, that makes the network data that is originally
only available to become readily accessible through the numerical model (Abbott 1992).
The accessibility of the large set of data of the physical system provides the possibility for
engineers and/or decision-maker to understand the flow behaviour of complicated water
systems. Thus the model enables the engineer to answer the what-if questions for design
and construction of the water systems. It is practically impossible, however, that a cost
effective design can be found by trial and error of answering the what-if questions.

In profit-driven industry, as well as in government authorities, the objective is to
maximise the value or to reduce the cost of the system, while satisfying constraints on
resources, performance, and human limitations. Once the cost function or measure of value
is chosen and the constraints are identified, the system designer would like to have a
method by which optimum design is found. The development of hydraulic modelling
computer software systems has laid down a sound basis for optimisation of water
distribution system. Thus the development of a computer-aided tool for optimisation of

water distribution networks serves as a way of achieving cost-effective networks. This is
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one of places where the waters of the world and our current informational revolution come

together (Abbott 1992).

1.1 The Need for Robust and Efficient Optimisation

With the development of high speed digital computers and improved optimisation
techniques, optimisation of designs for water distribution networks has been investigated
since the 1960°s. Walski (1985) and Goulter (1987) both predicted that within the next
decade water distribution optimisation models should become everyday tools of practicing
water engineers. However, it has been found (Goulter 1992) that optimisation models have
not been widely used, or even show signs of being accepted. This implies that there is still
a need, in general, for developing optimisation models and techniques for water
distribution systems, and in particular, developing a methodology that is of practical use
from an engineering point of view.

It is difficult, however, that the problem of optimisation of water distribution system
is solved without compromising efficiency, accuracy and completeness of the problem.
The difficulty arises from many aspects such as

1. nonlinear constraints i.e. hydraulic heads in relation to pipe sizes;

2. mixed continuous and discrete decision variables;

3. nonconvexity of the feasible solution regions;

4. existence of multiple local optimal solutions;

5. high dimensionality of optimisation problems.

First of all, the optimisation of a water distribution system is a nonlinear-constrained
optimisation problem. It is usually subjected to satisfying the minimum hydraulic pressure
heads at nodes in the system. The constraint of the pressure head is given by a head loss

equation and the energy conservation law for looped network systems, and the head loss is

3



1. Introduction

a nonlinear function of decision variables such as pipe diameters and velocities. Secondly,
optimisation of the water system requires sizing not only the pipe diameters, but also pump
capacities, valve locations and settings, and also the storage tanks. The pipe diameters,
locations of valves, pump stations and storage tanks are discrete variables while the pump
capacities and valve settings are continuous. Thus the problem becomes a mixed
continuous and discrete optimisation problem. Furthermore, the research in literature has
shown that optimisation of water distribution systems is a nonconvex optimisation
problem, and that there exists plenty of local optima in a solution region. In addition to the
nonconvexity, multiple local optimal solutions, the mixed decision variables and the
constraint nonlinearity, optimisation of water distribution system, in reality, often involves
hundreds of pipes and dozen of valves and pumps. The problem, therefore, is a highly
dimensional optimisation problem. No single model or algorithm is able to solve the
problem effectively and efficiently. Although not every case of optimisation of water
distribution networks contains all the characteristics mentioned above, it is essential to
develop an optimisation methodology that is able to handle these characteristics more
efficiently and effectively than previous methods. In this research, a state-of-the-art
evolutionary computation technique is employed to develop an efficient and effective
methodology for optimisation of water distribution systems including water hammer
loadings. Consideration of transient loadings allows not only pipe diameters, but also pipe
wall thicknesses (pipe classes) and surge pressure protection devices to be optimised. This
is the first time, to the best of my knowledge, that water hammer loadings has been

included in the optimisation of water distribution systems.
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1.2 Objectives and Thesis Overview
The objectives of this research are:

1. To develop efficient and effective algorithms for optimal design of water
distribution systems taking account of water hammer loadings (e.g. high
pressures due to a rapid operation of an outlet valve).

2. To apply messy genetic algorithm to optimisation of water distribution
systems.

3. To compare the performance of GA paradigms including standard GA,
improved GA and the messy GA for optimisation of pipeline networks.

4. To evaluate the improvement in design when large water distribution
networks are optimised taking into account both water hammer loadings
and steady state conditions simultaneously.

To achieve these goals, the research focuses on developing an insight into the
methodology. The thesis is organised into 10 Chapters including the introduction presented
in this Chapter. Chapter 2 contains a review of previous research in the area of the
optimisation of water distribution systems. The review has classified previous optimisation
methods into traditional methods and evolutionary optimisation techniques, and also
discussed their drawbacks and the motivation for developing a more efficient and robust
algorithm for the optimisation of water distribution systems. It eventually outlines the
scope of this research. Chapter 3 proposes a discrete model and a generalised formulation
for applying a genetic algorithm (GA) for optimisation of water distribution systems. The
original messy GA, using complete enumerative initialisation scheme, is employed to solve
the problem. Chapter 4 presents an analysis of a continuous optimisation model using a
fitted cost function. It leads to a formulation of a split pipe optimisation of water

distribution systems to avoid fitting the cost function from a set of discrete cost data
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Chapter 5 extends the discrete model introduced in Chapter 3 to a model for optimal
rehabilitation of water distribution systems. The original messy GA is applied to the
problem of the optimal rehabilitation. Chapter 6 applies a fast messy GA to improve the
original messy GA by introducing a probabilistically complete initialisation and gene
filtering scheme to replace the complete enumerative initialisation in the original messy
GA. The fast messy GA is applied to large-scale optimisation of water distribution
systems. Chapter 7 proposes an approach for a boundary search within genetic algorithm
optimisation by using a self-adaptation and a co-evolutionary penalty factor. This approach
has been applied to the optimisation of water distribution systems. It is shown that the
boundary search genetic algorithm improves the efficiency and effectiveness of the
optimisation procedure. Chapter 8 discusses the method of characteristic (MOC) and
implements the MOC for transient analysis of water distribution systems. A comprehensive
transient analysis of a low head irrigation system is carried out to evaluate critical water
hammer loadings. The water hammer model is verified by using LIQT, a widely-used
commercial program for transient analysis of pipeline systems. This paves the way for
considering transient loadings in the optimisation model. Chapter 9 suggests a model for
optimal transient design of water distribution systems including water hammer. It
optimises not only pipe diameters but also pipe wall thicknesses and pressure surge

protection devices. Finally, conclusions from the research are drawn and the

recommendations for the future work are made in Chapter 10.
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2. LITERATURE REVIEW

Optimisation of water supply systems is undertaken to find out the most cost effective
pipeline diameters, components and configurations while meeting water demands at
different locations. The total cost of water distribution systems is minimised by searching
for optimum pipe diameters and the preferred layout. This problem has been solved by
using different methods in the past. They are generally classified as traditional optimisation

approaches and evolutionary optimisation techniques. A review of both approaches is

given as follows.

2.1 Traditional Optimisation Approaches

Comprehensive reviews of optimisation of water distribution systems have been made by
different researchers (Walski 1985; Goulter 1987, Walters 1988; Lansey and Mays 1989b;
Goulter 1992 and Dandy et al. 1993). In this section, a summary of optimisation of water
distribution systems published up through 1993 is given by using previous reviews as a
guide and then subsequent works in this area are reviewed in detail. The review is followed
by classifying traditional approaches for optimisation of water distribution systems as the

methods without using a hydraulic network solver and the methods using a hydraulic

network solver.

2.1.1 Optimisation methods without using a network solver
For methods that do not use a hydraulic network solver, early research works assumed that
the flow distribution in water distribution systems was fixed. A set of length variables,

each of them corresponding to a discrete diameter, was applied to one pipe between a pair
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of nodes. The cost of the pipeline was a linear function of the length. This enabled linear
programming (LP) technique to be applied to optimisation of water distribution systems.
The assumption of the fixed flow distribution, however, is only valid for branched systems.
Water distribution systems commonly are found to be looped systems. The flow in a pipe
of a looped system does not only depend on the adjacent pipe but also other pipes in the
system. A breakthrough was made for optimisation of looped water distribution systems by
introducing a method called linear programming gradient (LPG) (Alperovits and Shamir
1977). The LPG method decomposed the optimisation problem into two stages: (1) flow
variables are kept constant while the network is optimised by using LP; and (2) a search
technique is employed to determine how the flow variables held constant in the first stage
should be changed so that the solution improves. The flow variables are initially assumed
by engineering judgment and modified according to the gradient of the objective function
(GOF) with respect to the flows. The two-stage iterative procedure is continued until no
further reduction of network cost occurs. The problem is elegantly solved at the first stage
by using LP for a fixed flow distribution. The optimality of the final solution is governed
by the computation of GOF. In other words, how to achieve the optimal flow of the
network in the second stage is the key for the LPG methods.

Since Alperovits and Shamir (1977) proposed the original LPG method, a great deal
of work has been done to improve the LPG method by introducing different schemes for
GOF computation. Alperovits and Shamir (1977) suggested the use of the simple gradient
search in determining the direction of the GOF to modify the link flows, and a fixed step
size in the selected gradient direction. Quindry et al. (1979) corrected the GOF expression
suggested by Alperovits and Shamir (1977) by considering the interaction of the paths and
loops in the head constraints for the demand nodes. Quindry et al. (1981) also proposed an

approach, similar to that of Alperovits and Shamir (1977), using assumed nodal heads
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instead of assumed link flows. The nodal heads are subsequently corrected by using the
GOF with respect to the assumed nodal heads, and an optimal solution is obtained.
Fujiwara et al. (1987) presented a full derivation of the correct gradient expressions, and
suggested the use of (1) a quasi-Newton method to determine the direction of the flow
revision; and (2) a backtracking line search method to determine the step size. They
observed that the final solution was sensitive to the step size, perhaps because there existed
many local optimal solutions, and therefore they suggested the use of several step sizes
before a final solution was accepted. An analysis of LPG methods was carried out by
Kessler and Shamir (1989). They introduced the projection of the GOF onto the constraint
surface, and thus it guaranteed that a truly local optimal solution could be obtained. The
philosophy of the modified LPG method was analysed by Bhave and Sonak (1992). It is
shown that the LPG method is inefficient, even for the optimisation of illustrative two-loop
network, as compared to a heuristic method that initially identified logically good
branching configuration for obtaining the local optimal solution.

Some efforts have been made to improve the LPG methods to achieve the global
optimal solution. Eiger et al. (1994) extended the LPG method by applying a branch and
bound algorithm, using non-smooth optimisation and duality theory. A methodology was
developed for reducing the duality gap that enabled the computation of a tight lower bound
of the global optimal solution. The global optimality of the final solution is measured by
the difference between the tight lower bound and the solution. It is served as an optimality
criteria for optimisation of water distribution systems. This improved LGP method
demonstrated its superiority over previous methods in literature. Loganathan et al. (1995)
followed the same philosophy of the two-stage decomposition model of the LPG method,
but employed two global-search schemes, MULTISTART and simulated ANNEALING,

for changing the flows in the second stage (outer loop). The linear programming was used
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to optimise the pipe size in the first stage (inner loop). MULTISTART and simulated
ANNEALING permit the search to migrate among various local optimal solutions. This
approach yielded lower cost designs than previously reported designs in literature for two
well-studied test problems of a two-loop network and the New York city tunnel network.
In summary, the methods of the two-stage decomposition model for the optimisation
of design of water distribution systems are able to
(1) apply the well-developed LP technique to solving for the optimal length of pipe
segments corresponding to the discrete commercially available pipe sizes;
(2) guarantee a local optimal solution;
(3) define the tight lower bound of global optimal solution;
(4) handle pumps and multiple loadings.
The methods, however, have difficulty performing well for a real world problem. This is
due to the methods
(1) have difficulty considering other optimisation variables such as tank locations
and sizes, and also rehabilitation actions (eg. cleaning), which are discrete in solution
space and hard to cope with in the LP model;
(2) require considerable amount of mathematical sophistication, particularly for the
computation of gradients of objective function and the tight lower bound of global
optimal solution. These mathematical complexities may create some difficulty for the
engineering community to accept the methodology;
(3) generate a rather high dimensionality of the optimisation model even for a
network of moderate size (the dimension = the number of pipes x the number of
available discrete pipe sizes);
(4) are not able to take advantage provided by the user-friendly simulation models

that have been accepted as basic tools for network analysis by engineers.
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Some of these drawbacks can be overcome by incorporating a hydraulic network solver

into the optimisation of water distribution systems.

2.1.2 Optimisation methods using a network solver

Development of hydraulic network simulation models has provided some new
opportunities for developing optimisation model for design of water distribution systems.
A hydraulic network solver is usually used to calculate flows in pipes and the pressure
heads at nodes while optimisation techniques are employed to optimise networks. A
number of researchers have reported their works in optimisation of water distribution
systems using a hydraulic network solver.

Morgan and Goulter (1985) adopted the two-stage decomposition formulation
(Alperovits and Shamir 1977) and integrated the inner LP model with a Hardy Cross
solver. This algorithm was able to analyse networks under multiple loads and determine
the optimum layout and pipe sizes of looped water distribution systems. It is not applicable
to large networks because the Hardy Cross solver is only effective and efficient at solving
small network. Su et al. (1987) developed an optimisation model for design of water
distribution systems. A nonlinear programming algorithm called the generalised reduced
gradient (GRG) technique was integrated with a steady state simulation model KYPIPE
(Wood 1980). The GRG was used to optimise the network while KYPIPE was employed
to calculate hydraulic pressure heads throughout the system. A reliability constraint was
added to the model and guaranteed to produce a looped network. The reliability was
defined as the probability of the design pressure being maintained at appropriate nodes in
the system for a given probability of some pipes being unavailable e.g. a pipe breakage.
The model could not handle other system components such as pumps, valves and storage

tanks. Lansey and Mays (1989a) used the same techniques as Su et al. (1987), namely
11
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GRG and KYPIPE. In their model, an augmented Lagrangian method was used to handle
the minimum head and other constraints. It was able to optimise not only pipe sizes but
also the pumps and tanks under multiple loadings. The model often resulted in a branch
network because no reliability restriction was included in the model. Duan et al. (1990)
improved the work of Lansey and Mays (1989a). A separate model for computing system
reliability was incorporated into the optimisation model integrating GRG and KYPIPE.
Their formulation decomposed the optimisation procedure into two levels the master
problem level and the subproblem level. At the master problem level, the number and
locations of pumps and tanks are identified. At the subproblem level, GRG, KYPIPE and
reliability model were employed to optimise the pipe sizes for the pump and tank locations
specified at the master level.

The methods integrating a hydraulic network solver and a nonlinear optimisation
technique provided more flexibility for considering some discrete variables than the
methods that do not use the network solver. Kim and Mays (1994) proposed a mixed-
integer nonlinear programming formulation for optimal rehabilitation of water distribution
systems. In their model, two integer variables (each takes one value of either 0 or 1) were
used for each pipe within the system for replacement and rehabilitation, respectively. The
other variables such as pipe diameters and pump horsepower are continuous variables. The
solution methodology included an implicit enumeration scheme for integer variables and
an integration of the GRG and KYPIPE for optimising the continuous variables of pipe
diameter and pump horsepower.

More recently, Taher and Labadie (1996) presented a water distribution system
optimisation program (WADSOP), interfacing a simulation model and the LP optimisation
technique with geographic information system (GIS). GIS provides an efficient spatial data

management and analysis tool for preparation of accurate spatial information for input to
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network simulation and optimisation models, and also for post-optimisation analysis
graphical output display. It also provides a graphical environment and functions for layout
design of the networks. In their optimisation model, the optimisation of a water distribution
system was formulated as a two-stage decomposition procedure as originally proposed by
Alperovits and Shamir in 1977. A nonlinear programming algorithm, the Frank-Wolfe
algorithm, was employed as the network solver for steady state simulation. The LP model
determined the optimal pipe diameter and pump head for the flows and heads from the
network solver. An iterative optimisation procedure continues until no significant change
of objective cost occurs. As the model employed LP for optimising the network, it avoided
the calculation of gradients of the design variables as required by the GRG method, and
consequently reduced the computer CPU time. To enable the LP to be applied to solving
the optimisation problem, however, some assumption, such as the pumping energy cost
being a linear function of pumping heads, was made. This assumption may reduce the
optimality of the final solution.

The methods developed by using hydraulic network solvers offset the drawbacks of
the methods that do not use solvers as follows.

(1) The methods employ hydraulic simulation models as network solvers and

nonlinear programming algorithms as optimisers. This reduces not only the

mathematical complexity of optimisation formulation for design and rehabilitation of

water distribution systems, but also ease the implementation of the optimisation

model by integrating well-developed and off-shelf computer packages of network

solvers and optimisation algorithms.

(2) The methods are usually more flexible than the methods that do not use a solver,

and thus they enable more system components such as tanks and valves, and also
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enable some discrete variables such as rehabilitation actions to be considered in the
model.
These methods usually employ a non-linear programming algorithm for optimising
continuous variables of the system components and enumerative scheme for optimising
discrete variables of rehabilitation actions. The main drawbacks with such methods are:
(1) It only guarantees a local optimal solution because the optimisation is a non-
convex nonlinear programming problem.
(2) 1t requires that the cost of the pipelines be expressed as continuous and preferably
differentiable function of the pipe diameters. The available pipe sizes, in reality, are
discrete. This means that a cost function needs to be fitted from cost information for
a set of discrete pipe sizes.
(3) The final optimal pipe sizes are a set of continuous pipe diameters between the
prespecified maximum and minimum diameter. Thus the optimal diameters need to
be rounded up or down to an adjacent available discrete diameter size. This reduces
the optimality of the solution and sometime may generate an infeasible solution.
(4) 1t lacks robustness and requires large computation times because of the gradient
calculation.
Some other methods have been employed for optimisation of water distribution systems in
literature. The optimisation algorithms include direct search techniques (Ormsbee and
Contractor 1981), dynamic programming (Yang 1975; Kally 1971), integer programming
(Rowell 1982; Oron and Karmeli 1979), and also enumerative methods (Gessler 1982).
These optimisation models have been reviewed in detail by Lansey and Mays (1989b).
Traditional optimisation techniques, such as linear programming, non-linear
programming and enumerative methods, have been investigated by many researchers in the

past. It has been found (Murphy & Simpson 1992; Simpson et al. 1994) that genetic
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algorithms (GAs), a general search algorithm based on natural evolutionary principles and
biological reproduction, outperform their counterparts for water distribution system

optimisation.

2.2 Evolutionary Optimisation Techniques

Natural evolution has long been visualised as an optimisation process by Rechenberg
(1973) and Schwefel (1981) in Germany and in a parallel development by Holland (1975)
in the United States. The principle of natural selection and biological reproduction is
simplified in both of approaches into two similar but different optimisation techniques,
namely evolutionary strategy and genetic algorithm (GA). The genetic algorithm was
successfully applied to optimal operation of a gas pipeline by Goldberg and Kou in 1987.
Since then the GA has been applied to many optimisation problems in different areas
(Goldberg 1989). Cembrowicz and Krauter (1977) applied evolutionary strategy along
with graph theory and linear programming to solving the optimisation of the design of a
sewer system. It was noted that the optimisation technique based on the evolutionary
principles offered a very effective solution method. This evolutionary technique, and in
particularly the genetic algorithm technique, has been further explored and applied to
optimisation of water distribution system in literature. A brief overview of the GA is given

in the following section.

2.2.1 Standard genetic algorithms: a brief overview

Genetic algorithms (GAs) (Holland 1975, Goldberg 1989) are fundamentally different
from traditional optimisation approaches in terms of search process. Genetic algorithms,
generally, initiate a population of points in the search space. Each point is represented by
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either a n-bit string or a set of real numbers encoding the information of the point (one
solution of the problem). The string is usually called a chromosome and evaluated by a
measure called fifness which quantifies the merit of the chromosome (one individual)
adapting itself to the dynamic environment (solution space). In other words, the fitness
quantifies the degree of the optimality of the solution. The parents are selected from the
population by performing simulation of Darwin's survival of the fittest principle. These
individuals reproduce their offspring by mimicking gene operations such as crossover and
mutation, and thus the reproduction of a new generation is completed. After a number of
generations, the population is expected to evolve artificially, and the optimum (hopefully

the global optimum) will be found in the evolved population.

2.2.2 A standard GA based approach

In the early work on genetic algorithms applied to the optimisation of design of water
distribution systems (Murphy & Simpson 1992), pipe diameters of new pipes and
duplicated pipes were considered and encoded as a string. The GA was developed and
successfully applied to a typical water supply network. The optimal solution, a set of
diameters for new and duplicated pipes was found and compared with other methods. The
GA based approach was able to find lower cost solutions for the problem. However, it is
observed that the simple GA requires a large number of evaluation and is not able to reach
the global optimal in every run.

Murphy et al. (1993) and Dandy et al. (1996) improved the simple GA with fitness
scaling using exponentiation, adjacency or creeping mutation and Gray coding. The
improved GA has been used to solve a well-studied problem for the New York City Tunnel
water supply network. The optimal solution given by the improved GA was found to be

better than that by any other method. However, it involved considerable effort to tune the
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GA parameters, and dozens of runs to find the optimal solution. Simpson and Goldberg
(1994) compared the effects on finding the known global optimal solution for a two
reservoir problem for different coding schemes (binary coding, Gray coding and natural
number coding), and different selection operators such as roulette selection and tournament
selection, different crossover operators such as one point crossover, two-point crossover
and uniform crossover, and also for different population sizes. It was found (Simpson and
Goldberg 1994) that the selection scheme and population size were the most critical
aspects of applying standard GAs to pipeline system design. Tournament selection was
recommended. Savic and Walters (1997) proposed an approach by integrating the standard
GA with a steady state hydraulic solver EPANET Rossman 1994). They identified that the
optimal solution was sensitive to the Hazen William coefficient in the head loss equation.
A general methodology (Murphy, Dandy & Simpson 1994) was developed for
applying the improved GA (Murphy et al. 1993) to optimise the Anyfown water supply
system (Walski et al. 1987), which has served as a benchmark problem for testing pipe
network optimisation algorithms. The Anytown problem considered the expansion of the
existing water supply network of an old central city area to meet water demands of several
new residential and industrial areas. The expansion covers almost all the system
components such as pipes, tanks and pumps. The total cost is the sum of the pipe costs (a
function of the pipe lengths and diameters), the tank costs (a function of elevations and
volumes) and the pump cost (a function of capacity). An improved design, in terms of cost,
was found using the improved GA, but it was observed to be difficult to compare to the
previous design because of different network reliability criteria and interpretations. This
suggests that a robust GA-based approach to a comprehensive optimisation design for any
water distribution system, particularly when all the components must be considered in the

design, is still needed to be developed.
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2.2.3 Lessons from the GA based approach
The application of GAs in water supply system optimisation has shown that the GA is a
promising technique for the development of a practical design tool for water resource
engineers. The GA based approach for optimisation of water distribution systems belongs
to the category of the methods using the network solver. In addition to the advantages
mentioned earlier in this Section 2.1.2, The GA optimisation of water distribution systems
has been proven to be more effective at solving this type of problems than the traditional
methods, particularly in the following aspects:

1. The GA works on either a discrete or continuous space.

2. The GA produces a set of near-optimal solutions instead of just one optimal

solution by the traditional methods.
3. The GA has a global search mechanism. It increases the chance to reach the
global optimal solution.

4. The GA is more robust than the traditional methods.
The GA that uses either a binary string coding or other alphabet string coding works on a
discrete space. It enables more discrete variables of water system components, such as
tanks and rehabilitation actions, to be included in the optimisation model without losing the
generality of the water distribution system optimisation. The GA searches the solution
space by using a population of genotypes. Each of them represents one alternative in the
search space, consequently, it produces a set of final near-optimal solutions instead of just
one final optimal solution by the traditional methods. The GA optimisation is guided by
using the information of the objective function only. It avoids the calculation of the
gradient of objective function with respect to the decision variables. Thus the GA is more
robust than traditional methods. It increases chances of finding the optima solution by
mimicking the principles of natural evolution and biological reproduction. In previous
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applications of the standard GA to optimisation of water distribution systems, however, the
following drawbacks have being noted.

1. It is sometimes “hard” for standard GAs to find the global optimum design for a
practical water distribution system (although, in general, it can never be
guaranteed that the global optimum solution has been determined).

2. The standard GA requires a large number of objective evaluations to reach the
optimal or near-optimal solutions.

Different GA runs may reach different solutions with different convergence rates. It is
particularly difficult for the GA to reach the same optimal solution in every GA run as the
dimension of the problem increases. Genetic algorithm optimisation, in theory, lacks
convergence (optimality) criteria, thus an exhaustive search (a computer run using
computation resources as much as possible) is usually performed to increase the
probabilities for the GA to achieve optimal solution. Furthermore the standard GA is not
able to solve a linkage problem where the genes coding the optimal solution are far apart
instead of being coded tightly within one chromosome. This is often found in a high

dimensional optimisation problem. Thus a more efficient GA technique such as a messy

genetic algorithm (mGA) needs to be investigated.

2.2.4 Motivation for using messy genetic algorithms

A messy genetic algorithm, developed by Goldberg, Korb & Deb (1989), was seen as
particularly suitable for problems which are “hard” to solve with standard GAs. It was
designed to solve bounded difficult search problems by developing a tight linkage between
artificial genes that improve the chances of leading to the global optimal. It is the tight
linkage of the genes that help the messy GA to solve the linkage problem more efficiently

and more effectively. In this research, a messy GA is employed to develop an approach for
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optimisation of water distribution systems. This methodology hopefully will be able to
improve the existing GA based optimisation for water distribution systems and develop a
sound foundation and provide insight into how the messy GA based approach can be
developed for a comprehensive approach to the optimisation design for water distribution
networks.

Finally, a pipe system design, in reality, includes not only sizing diameters but also
selecting pipe wall thickness (pipe class) and surge or water hammer protection devices
such as surge tanks. Consequently, the solution domain may become “hard” for standard
GAs to search for the optimal or near-optimal solutions. This also encourages a more
efficient and effective GA — the messy GA to be employed for the optimisation of water
distribution systems including the consideration of water hammer loadings. To enable the
pipe wall thickness and surge devices to be included in the optimisation formulation, a
computer model simulating water hammer loadings is used to calculate the maximum

and/or the minimum transient pressure heads for each of the links in water distribution

systems.

2.3 Simulation Models

Computer modelling of water distribution system has been a basic tool for hydraulic
analysis, design and operation of those systems. In practical applications, the simulation
models are usually classified as steady state model and water hammer model. The steady
state model is used to simulate flow condition which does not vary with time, namely
instantaneous simulation or is governed by a temporary change of its boundary conditions,
namely extended period simulation. Water hammer model takes into account the inertia of
the water and the changes of the water velocity in the pipeline. It is employed to analyse

the unsteady state flow condition generated by sudden change of water velocity within the
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system. Both the steady state model and the water hammer model are employed to develop

a comprehensive methodology for optimisation of water distribution system in this

research.

2.3.1 Steady state model

Steady state flow in pipeline networks is governed by the energy conservation law and
mass balance law. The distribution of flows through the network under a certain demand
pattern is given by solving the energy conservation equations namely loop equations and
hydraulic head loss equations, and also mass conservation equations namely continuity
equations at nodes. Different methods have been developed for solving the network
equations in literature. They include Hardy Cross method (Cross 1936); Newton-Raphson
techniques (Warga 1954); linear theory method (Wood and Charles 1972), Gradient
method (Todini and Pilati 1987, 1988) and optimisation techniques (Collins et al. 1987).
All the methods are theoretically capable of solving the set of system equations and were
compared by Lansey and Mays (1989¢). Hardy-Cross method is attractive for hand
calculation and easily coded, however, it requires more computation time than the other
methods, and converges to the solution slowly for complex networks. The Newton-
Raphson method converges more quickly than the linear method for small systems. It
requires less storage but converges more slowly than the linear method for large networks.
The optimisation technique was introduced to solve the network equations by Collins et al.
(1978). Three techniques including the Franke-Wolfe algorithm, piece-wise linear
programming and convex Simplex algorithm were compared for solving the problem. It

was found that the piece-wise approximation technique produced the most accurate

solution for the least effort.
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Todini and Pilati (1987) developed an efficient algorithm which took advantage of
the special structure of the pipe network governing equations. The basis for the technique
is that the solution to be found is the complete set of unknown heads and unknown flows,
for which a unique solution is known to exist. This technique was implemented in a
hydraulic network solver EPANET by Rossman (1994). Main advantages of the method
are as follows (Rossman 1994).

1. The system equations to be solved at each iteration of the algorithm is sparse,
symmetric, and positive-definite. This allows highly efficient sparse matrix
techniques to be used for their solution.

2. The method maintains flow continuity at all nodes after its first iteration.

3. It can readily handle pumps and valves without having to change the structure of
the equation matrix when the status of these components changes.

The EPANET is a public domain software and will be employed in this research.

2.3.2 Transient model

When a steady state flow condition in pipeline networks is disturbed by sudden change the
flow velocity a unsteady state flow occurs. The flow situation before the unsteady state
flow becomes steady again is known as a transient flow (Wylie and Streeter 1993). The
transient flow is governed by two differential equations. One of them is unsteady
continuity equation describing the mass balance of the flow within the system. The other is
called unsteady momentum equation describing the balance between the friction force and
the gravity force, caused by a rapid change of boundary conditions in the pipeline network.
Both of the equations are classified as quasi-linear hyperbolic partial differential equations.
Because of the nonlinearity of the equations along with nonlinearities introduced by

boundary conditions e.g. surge tanks and air chambers, no analytic solutions of the
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transient flow are available. Only an approximate solution can be obtained by numerical
methods. The methods that have been used to solve the partial differential equations are
method of characteristics, finite difference method and finite element method.

The finite element method is very well developed. It can accurately represent a
complex boundary and handle high-dimensional nonlinearity of a physical domain, but
requires more computation than other two methods. Since the transients in a pipeline are
usually represented as one-dimensional waves it is highly unlike that the finite element
method can perform better than other methods.

There are two types of finite difference methods namely explicit difference
methods and implicit difference methods. The explicit finite difference schemes usually
have significant restrictions on the maximum time step to maintain the solution stability. A
number of implicit finite difference schemes have been applied to solving the transient
equations. The partial derivatives are approximated by the finite difference scheme, the
unknowns of the problem are solved simultaneously at each time step. Although the
simultaneous resolution of the unknowns increases the computation effort, efficiency of the
transient simulation may be improved by using much larger time step because Courant
number (wave propagation velocity times the ratio of the time step to the space step) is
allowed to be greater than the unity. Arfaie and Anderson (1990) found that the centred
difference scheme produced the most accurate results, but it generated other errors, in
particular numerical phase errors associated with wave dispersion when the Courant
number is small. The phase errors can be avoided by dividing the scheme over more points
in space, but it results in a lower accuracy at the boundaries. A space-compact high-
accuracy scheme was proposed by Verwey and Yu (1993). This scheme is defined between
two points in space and over three levels in time. The advantages of the scheme in practical

implementation are (1) the distance steps of the computation grid can be varied along
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pipeline without affecting the accuracy of the adjacent pipe sections and (2) the Courant
number in different pipes or pipe sections can be varied while the high accuracy is
maintained. This implicit finite difference scheme, however, needs to be further developed
for the different boundary conditions, such as pumps, valves, surge tanks and air chambers,
which are often found in water distribution systems.

The method of characteristics (MOC) exploits the hyperbolic nature of the governing
equations to convert the two partial differential equations into four ordinary differential
equations. The integration of the four ordinary differential equations gives rise to a set of
explicit equations for solving for the discharge and head of internal sections of a pipe. This
explicit solution equation offers a distinct advantage of the MOC being easily
implemented. A number of boundary conditions of the MOC have been developed by
Wylie and Streeter (1993), One boundary condition can be solved independently from the
others. The accuracy of the method has also been verified by physical experiment results
(Chaudhry 1987; Wylie and Streeter 1993). Finally, the boundary conditions of the MOC
for water distribution systems have been further simplified and developed by Karney and
Mclnnis (1992). An efficient and comprehensive representation of pressure surge
protection devices and valves has been introduced and verified by applying it to a real
world water system. It improves the efficiency of the MOC for transient analysis in water
distribution systems. In this research, this approach will be used to develop a transient
model that will be integrated into optimisation model for optimal design of water

distribution system under water hammer loadings.

2.4 Scope of This Research

The review of optimisation of water distribution systems as given in Section 2.1 and 2.2

indicates that no optimisation technique, up to date, is efficient and effective at
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comprehensively solving the optimisation problem. This has prompted many researchers to

develop new methods and apply state-of-the-art optimisation techniques to solving the

problem. In this research, the messy genetic algorithm—a new generation of genetic
algorithms will be applied to optimisation of water distribution systems. The efficiency and

effectiveness of GA optimisation of water distribution system will be further improved by

developing a technique particularly for solving a constrained nonlinear optimisation

problem where the optimal solution is located at the boundary of the feasible and infeasible

regions in the search space.

As indicated in Section 2.2.4, the formulation of optimal design of the water
distribution system needs to be extended to take into account sizing pipe wall thickness and
pressure surge protection devices. Water hammer can damage the pipe in short term by

generating dangerously high pressures that often cause pipe bursts, and it also may cause

column separation. Current water hammer design and selection of water hammer control

devices for pipeline systems are based on a trial and error procedure. The transient analysis

is often referred to a specialist because of the sophistication of the transient analysis for the

water distribution systems. It is highly unlikely that a comprehensive analysis of water

hammer events in a water pipeline network is carried out to maintain the safety of pressure

surge protection and at the same time to achieve a least cost design of the system.
Development of optimisation model to include water hammer, to the best of my
knowledge, will be the first time to provide engineer with a methodology for completely
sizing the pipeline network such that the total cost of the network is minimised subject to
satisfying water supply demands and water hammer protection requirements. The specific
tasks of this research are:

1. Application of the original messy GA using a complete enumerative initialisation

to optimisation of water distribution systems just under steady state loadings.
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2. Development and application of a fast messy GA to optimisation of design and
rehabilitation of water distribution systems.

3. Development of a GA technique searching the boundary of the feasible and
infeasible regions of the search space. This will be further improving the
efficiency and effectiveness of optimisation of water distribution systems.

4. Development of a transient model for simulation of water hammer in water
distribution systems.

5. Development of a generalised methodology for optimal design of water
distribution system. It will be able to size not only pipe diameters but also pipe
wall thicknesses (pipe classes) and surge (water hammer) protection devices.

The work was initiated by investigating the application of the original messy GA to

optimisation of water distribution systems. This is discussed in the next Chapter.
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3. MESSY GENETIC ALGORITHM FOR OPTIMAL DESIGN OF

WATER DISTRIBUTION SYSTEMS

3.1 Problem Description

An overall design of a water distribution system involves selection of the network layout
including the pipeline routes, the locations of many components such as pump stations,
valves and tanks. In addition, other aspects that need to be selected include the sizes of all
the components including water hammer control devices and pipe wall thicknesses. The
design is subject to constraints such as geometric limitations and water availability. To date
it appears that no optimisation technique can handle the overall optimisation design problem
in one model. In fact, practicing engineers subdivide the problem into several different
stages and solve each of them as a separate stage, instead of attempting to solve the
problem in its entirety. The planning and design process for water distribution systems has
been classified into four stages (Walski 1995) including (1) master planning; (2) preliminary
engineering design; (3) subdivision design and (4) rehabilitation. Most of the research up to
date in the area of optimisation of water distribution systems has fallen into later two
categories. Examples include sizing of new pipes added to an existing network and/or the
pipes replacing or duplicating existing pipes; and choosing rehabilitation actions such as
cleaning or lining of old pipes to improve system supply performance.

This type of optimisation design problem has been well studied and specified in the
following way (Alperovits and Shamir 1977, Gessler 1985; Walski et al. 1987; Dandy,
Simpson & Murphy 1992; Simpson, Dandy & Murphy 1994). For a given layout of a

network and prescribed water demands at certain nodes, the total cost of full system
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components (mainly pipes) is minimised by searching for the optimum combination of pipes
sizes and rehabilitation actions. The search process is subjected to two types of constraints.
The first type involves component dimension limitations such as minimum and maximum
pipe diameters. The second type of constraint includes hydraulic requirements such as
minimum pressure heads at certain nodes. The hydraulic analysis is generally carried out by

pipe flow simulation models.

3.2 Discrete Model Formulation
There are two types of models for optimal design of water distribution systems. These

include a discrete model and a continuous model. The continuous model is based on fitting
curves to cost functions. A pipe diameter d|, is treated as a continuous variable between a
minimum and maximum diameter in a continuous optimisation model. Commercially
available pipe sizes, however, are discrete. For a gradient based optimisation approach, a
formulation with continuous diameters is used and a cost curve (function) is usually fitted
by using the discrete pipe sizes and unit cost data. Most of the continuous formulation
approaches (Lansey and Mays 1989; Fujiwara & Khang 1990; Ahn 1993; Loganathan,
Greene & Ahn 1995) up to date have adopted a fitted cost function in the search process.
An optimisation model using discrete pipe sizes is formulated as follows.

The task is to select pipe diameters D={d,, n=1,..., N} for all new pipes added to a
water system, and to choose rehabilitation actions (e.g. duplicating or replacing a pipe or
cleaning a pipe) and the associated pipe sizes E={e, d, r=1..R } for all rehabilitated

pipes. The objective is to ensure that the total cost of pipe materials and rehabilitation
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actions Cyot =(D, E) is minimised subject to minimum allowable hydraulic pressure heads

at nodes and pipe size limits.

In this model, all pipe diameters d,, n = 1 ,..., N, where N is the number of new

pipes, take values directly from commercially available discrete sizes. The cost of pipes is
assumed to be only a function of its length. Therefore, the cost of all new pipes may be

written as;

N
Coew = 2.6,(4,)L, (3.1)
n=}
where L, = the length of new pipe n; d, = the diameter of new pipe »; c,(d,) = the cost of
per unit length of new pipe n with diameter d,.

The cost of a rehabilitated pipe (e.g. removing, replacing, duplicating or cleaning of

a pipe) is a function of the rehabilitation event and associated diameter (e,,d,), where r =

1, 2, 3, ..., R. Thus the cost function of the rehabilitation actions is given as:

Cren =§ c,d,.e)L, (.2)
where R = number of rehabilitated pipes; L, = length of rehabilitated pipe r; d, = diameter
of rehabilitated pipe r; e, = rehabilitation action taking place at pipe r; c,(d,,e,) = cost of
unit length of rehabilitated pipe » with diameter d, and event e, .
The total cost of the water system is:

Couw =C,.., +C,, 3.3)
or more generally :

Coa = C(D, E) 3.4

A discrete optimisation model may be written as:
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search for (D, E) such that

- = N R
minimise C(D,Ey=3c,d,)L,+X c(d,e)L, (3.5)
n=1 r=1

subject to

Vd, d, eD° = {d,k =1,...kk}
Ve, eE° = {e,‘,’,h: l,...,hh}
H, 2H™ j=lJii =l ]

where df - k-th commercially available pipe diameter; kk = number of the commercially

available pipe sizes; hh = number of the rehabilitation events applicable to pipes; ey = h-th
rehabilitation event that may applied to the existing pipe 7, H,; - hydraulic grade at node j
for steady state loading I; I = number of steady state loadings; H;™ = minimum

requirement of hydraulic grade at node j and J = number of nodes in system (excluding

fixed grade nodes).

EBach solution {D;,Dp,,..,Pn} from GA initialisation;
Update the values of decision variables;

Call hydraulic simulation model (e.g. EPANET) ;
Evaluate the cost of the solution;

Generation = 1;
While (Generation < specified maximum generation)

{ /*performing GA search*/

Each solution {D3,D2,...,Pn} from optimisation process;
Update the values of the decision variables ;

Call hydraulic simulation model (e.g. EPANET);
Evaluate the cost of the solution;

Generation = Generation + 1;

}

Figure 3-1 Pseudo-code for Optimal Rehabilitation and Pipe Sizing
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3.3 A General Optimisation Procedure

In order to find low cost solutions, a hydraulic solver EPANET (Rossman 1994) 1s
employed and coupled with a messy GA (mGA) search algorithm. EPANET is used to
simulate the water flow in the pipe network system and gives hydraulic pressure head
(grade) at nodes. The mGA is used to search for optimal pipe sizes and the best

rehabilitation policy. A conceptual procedure of the approach is illustrated in Figure 3-1.

3.4 Why Messy Genetic Algorithms?
As genetic algorithms are receiving more and more attention in combinatorial optimisation
problems, it has been found that standard GAs, with fixed-length strings and various genetic
operators, are very unlikely to solve a difficult optimisation problem. A difficult search
problem is a problem where a great number of near-global optimal points are present in a
search space. The standard GA search process favours a suboptimal solution instead of the
global optimal solution when searching a difficult problem. This type of problem is usually a
so-called deceptive problem (Goldberg 1987). Simply stated, deception (for GAs) means
that low-order building blocks lead the search away from the global optimum. The optimal
genetic features (genetic configuration or building blocks) for this type of problem are not
coded tightly within the chromosome, instead they are located far apart. This is referred to
as loose linkage or a so-called linkage problem for genetic search approach. It has been
recognised as one of the biggest challenges for GA based applications, especially for highly
dimensional problems such as optimisation of a large-scale water distribution network.

A standard GA is not able to deal with the linkage problem. The standard GA

considers only a small fraction of building blocks defined by the representation. The GA
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with one-point crossover favours those building blocks for which positions in sequence
space are closer to each other and neglect those building blocks that contain positions far
apart. The inversion operator was suggested as a possible solution to this problem, but it is
very slow and unlikely to solve the problem efficiently (Thierens & Goldberg 1993).
Uniform crossover does not have any preference bias toward the closely spaced partitions.
Random mutation of the strings also results in disrupting proper evaluation of the building
blocks. The standard GA is not able to accomplish a proper search in the building block
space if the problem is deceptive.

A new genetic algorithm, called messy genetic algorithm (mGA) ) (Goldberg, Korb
& Deb 1989) was purposely designed and developed to solve search problems of bounded
difficulty. A carefully designed 30-bit deceptive problem has been solved to global
optimality by using a mGA without any prior knowledge of the structure of the problem.
Furthermore, the mGA has been shown (Goldberg, Deb & Korb 1990) to converge to the
global optima in a time that grows as a polynomial function of the number of decision
variables on a serial machine. Although the optimisation for water distribution systems has
not been theoretically shown to be a deceptive problem, carefully tuning of the GA and a
large number computer runs have been required to search for the optimal or near-optimal
solutions (Murphy & Simpson 1992; Murphy et al. 1993). It suggests that optimal sizing
and rehabilitation of water distribution system may be a difficult task for GAs. The
outstanding performance of the mGA on the carefully designed deceptive problem by
Goldberg et al. (1989) strongly suggests that it be able to solve bounded problems that a
standard GA is not able to solve.

An approach called the structured messy genetic algorithm (SMGA) (Hathal et al.

1997) was developed and applied to the optimal improvement of water distribution systems.
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The SMGA employed fixed-length strings in one generation. The length of the strings
increases with a fixed step size over generations, thus the chromosomes in each generation
have the same length or a “tidy” structure, which enables a standard GA crossover to be
applied in a GA process. However, the messy genetic algorithm (mGA) (Goldberg, Korb &
Deb 1989) was originally developed by using variable-length strings, a threshold genetic
selection and messy operators of cut and splice to solve search problems of bounded
difficulty. The length of strings can be varied not only over generations but also within each
generation. The messy GA provides a flexible coding representation which enables a linkage
problem to be solved. Thus it is expected to be able to solve a combinatorial optimisation
problem such as optimal sizing and rehabilitation of a water supply network more easily
with a mGA than a standard GA. If this is the case, it will make it more practical to employ
genetic search methodology in the development of a comprehensive methodology for the

optimisation design and rehabilitation of water distribution systems.

3.5 Genotype Representation and Fitness

In order for a GA to be used to optimise the pipe sizes and rehabilitation actions for a
network, variables such as the pipe size (diameter) for each new pipe, the rehabilitation
action for an existing pipe and its size associated with the action must be coded into a #-bit
string, usually a binary string. The string is reproduced in the GA process by mimicking
genetic reproduction rules, and thus is called a genotypical representation or a genotype of
the optimisation variables. A genotype or one string corresponds to a set of values of the
variables, namely one solution of the problem. This solution is the so-called phenotype of

the string.

33



3. Messy genetic algorithm for optimal design of water distribution system

In a canonical GA, a population is followed over a time ¢ (generations) by its

genotypical representation as a sequence G(f) = (g, (¢),...£,,(),..., 8 (1)), Where NN is the
population size, composed of a population of elements g, (¢) called chromosomes. Each

chromosome is represented by a string of binary digits. The total length of the chromosome
is divided into N intervals of the same length dd for a new pipe and R intervals of the same
length pp for a rehabilitated pipe. Thus each genotype g, (f) has a general form as:

3 - d d d d e e d d
&) =(a,,. A gas- BNy AN ads A1 3 Anitees ANt ees > BNl cerdd

e e d d
Anir1>e > AnsRces AnsReest > AN R cerdd) (3.6)

a: 4 is @ gene bit, taking the value either 1 or O for a binary string, wheren=1, ... N+R N

is the number of new pipes to be added to a distribution system; R is the number of existing
pipes that may be rehabilitated; dex = 1, ... dd, dd is the number of bits representing the

diameter of an expanded or rehabilitated pipe. Similarly, a;,,. represents a rehabilitation

event, where r = N+, .., N+R, edex = 1, ..., ee, where ee is the number of bits
representing a rehabilitation action for an existing pipe. The number pp of bits coding a pipe
undergoing rehabilitation is the sum of the bits for coding the new pipe diameters and the
bits for coding the rehabilitation actions namely

pp =dd + ee 3.7
Each chromosome, the genotypical individual g,, with the length of (dd+N + PP *R) bits,
defines a corresponding phenotypical representation or a phenotype namely one design
alternative given as:

P =(D.E)=(d,,....dy.€,,dy.1.- - €0,y 1) (3.8)

One example of a genotype and a phenotype representation is given as follows.
Suppose that in a water distribution system, there are 5 new pipes (N = 5) which are to be
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3. Messy genetic algorithm for optimal design of water distribution system

added to the system, 3 existing pipes (R = 3) which are to be rehabilitated by taking one of
the actions such as cleaning, duplicating or leaving, and that there are 8 commercially
available pipe sizes which can be used for new and duplicated pipes. Three binary bits (dd =
3) are needed to represent pipe size alternatives for each new or duplicated pipe (2° = 8
choices), 2 binary bits (ee = 2) are needed to represent rehabilitation action for each of 3
choices for actions associated with existing pipes (this actually provides 4 choices, 2*,
however, 2 genotype values can be set to the same rehabilitation action). Thus the total

length of a genotype for this example problem is 30 bits. Figure 3-2 shows one genotype

and phenotype of this example network.

—
d & d d & e d& e d & ds <—— one phenotype
pipe 1 pipe 2 pipe3 pipe4 pipeS oldpipe1 oldpipe2 oldpipe3

Figure 3-2 An Example of a Genotype Coding Scheme

One phenotype, namely one alternative design configuration, is composed of a

sequence of diameters for new pipes, and diameters associated with a rehabilitation policy

for duplicated or replaced pipes. Each such alternative gives rise to a cost for new pipes and

rehabilitated pipes. The fitness can be defined for a genotype representation as (Wu 1994) :

o1 Cun(DiE) 3.9)
Max C,.n(DnEt)

nn=1,...NN
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3. Messy genetic algorithm for optimal design of water distribution system

where NN = the population size. This has a desirable property that the fitness is in the range
0<®,, <1.0and that the cost C(D, E) will be minimised over generations .

A methodology is needed for transcribing the genotypical representation of a
chromosome, a n-bit string, into the phenotypical representation of pipe diameters and
rehabilitation policies (the rehabilitation actions allocated to existing pipes). Generally, this
is done by using a mapping from a genotype to phenotype of M: g, (1)~ p_(1). The
mapping function can be defined in many ways, but the following definitions are given for

the discrete pipe model.

3.6 Mapping From Genotype to Phenotype
For the discrete optimisation formulation, a pipe size (for a new or duplicated or replaced

pipe) d, takes the value from a commercially available diameter pipe list of kk+1 choices as
D = (@, d,..d,..d,), and a rehabilitation action is selected from an action set of Ah+1
options as E° =(el,e’,...,e},....en,) . The unit cost (the cost per unit length) for
rehabilitating an existing pipe is associated with a specific rehabilitation event (such as
cleaning a pipe) and its corresponding diameter. Thus a unit cost matrix ¢ = (c, , ) PRI
where h=0,1,2,...hh and k=0,1,2,...,kk, is generally formed as shown in Table 3-1. Each

Cox» k=0, 1, 2, ..., kk, represents the unit cost of a new pipe with a diameter of d°, while

Chi (B = 0,1, ..., hh; k = 0,1, ..., kk) represents the unit cost of a rehabilitation event e?

with diameter of d° .
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3. Messy genelic algorithm for optimal design of water distribution system

One genotypical segment (az,,as,...a.., ) , where dd is the number of bits for
coding a pipe diameter, can be mapped into its phenotypical representationd,, n=1,..., N+R,
a pipe diameter as follows:

index = %a" b (3.10)

n,dex
dex=1

d’; or  index = kk;
d ={ oS (3.11)

" |d Jor  index < kk;

index >

Table 3-1 The Cost per Unit Length for a New Pipe in a Network Expansion or

Rehabilitation
Pipe Diameter list a a ... d .. dy,
New pipe added (eg) | Coo  Con =+ Cox - Cox
Leave the pipe(e)) | co Cu - Cix oo Ciu
Cleaning apipe(e;)| C,0 Ca - Cox oo Cone

Similarly, genotypical representation (a;,,a;,...a;,,), where r = N+1, ..., N+R,
coding a rehabilitation policy for an existing pipe, is mapped into a phenotypical

representation e, , a rehabilitation action as follows:

index = 3 al b (3.12)

edex=1
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3. Messy genetic algorithm for optimal design of water distribution system

e = (3.13)

r

ey,  for  index > hh;
0 Sor  index < hh;

eindex )
where b = 2 for binary strings and b = /0 for natural number strings.
For instance, two sub-strings 101 for a new pipe n and 11 011 for an existing pipe r
to be rehabilitated for a coding example in Table 3-2 can be mapped by using the index

given by the equations from (3.10) to (3.13) as shown in Table 3-2.

Table 3-2 An Example of Mapping from Genotype to Phenotype.

new pipe existing pipe
variables diameter(d, ) action(e, ) diameter(d,)
genotype (substring) 101 11 011
index by Eq. (3.10) or (3.12) 5 3 3
phenotype (solution) d? ey d;

3.7 Messy GA Components

What is a messy GA (mGA)? A messy genetic algorithm uses variable-length strings, a
threshold genetic selection (also called genic selective crowding) and messy operators of cut
and splice (Goldberg et al. 1989). The components have been designed based on an
analysis of the GA schema theorem, which guarantees that all the building blocks —short,
highly fit combinations of bits are growing and can combine to give improving solutions.
The basic components of the mGA as applied to optimisation pipe-sizing and rehabilitation

as part of this Ph.D research in this work are outlined as follows.
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3. Messy genetic algorithm for optimal design of water distribution system

3.7.1 Messy genotype

The mGA uses variable-length strings in the genetic based search. Each bit of a string
consists of a bit value, 0 or 1 for binary coding, and a name or a tag of the bit. A bit name
or a tag is usually the order of the bit in a complete string. The variable-length string gives
rise to an under- and/or over-specification of the genotypes. For example, a 3-bit coding can
be represented either by (1,1), (3,0) or by (1,1), (2,1), (3,0), (3,1), where the first number
within the bracket refers to the tag and the second number refers to the value of the bit i.e.
zero or one. The former coding is called underspecification because the bit with tag 2 is
missing. The latter is called overspecification because of more than one value for the bit
with tag 3. To evaluate the underspecified string, Goldberg, Korb & Deb (1989) suggested
that the best way to fill in the missing gene locus is to use a competitive template. The
competitive template can be a random solution initially and then is updated with the best
solution found in each generation. For the overspecified strings, the redundant bits are
removed by following a first-come-first served rule scanning from left to right. In this way,
the messy GA is able to evaluate the variable-length strings. It is this length-relaxed genetic
representation that makes it possible for weakly linked building blocks, which cause a
linkage problem, to be sought out and to be ordered to assemble a genetic structure that is

more likely to reach the global optimum.

3.7.2 Thresholding selection

A specifically designed selection scheme—thresholding selection is required for comparing
the variable-length genotypes in the mGA. In a standard GA, the individuals have very ‘tidy’

structure—i.e. each individual has the same number of bits. In contrast, individuals from a
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3. Messy genetic algorithm for optimal design of water distribution system

mGA have ‘untidy’ structures—i.e. individuals have different numbers of bits. For example,
for a 5-bit problem, the strings ((1,1) (2,0)) and ((3,1) (5,0) (4,1)) can be selected, but
comparing both strings is meaningless because there are no bits specified for matching tags.
Comparing strings makes sense only when they have some genes in common, in other
words, only comparing the same classes of building blocks is meaningful. Thresholding
selection (Goldberg, Deb & Korb 1990) was introduced to ensure that the strings compete
with each other only when they contain some genes from the same locus. A similarity
measure O is used to denote the number of common genes in the two strings. Two strings

are allowed to compete with each other if the 0 is greater than a threshold value given as

(Goldberg et al. 1990):

9%%] (3.14)

where the operator [ | denotes a ceiling operator that calculates the nearest integer greater
than the operand; /; = the length of the first string, /> = the length of the second string and /
= the problem length. For example, for a 10-bit problem / = 10, the string ((1,0) (2,0) 4,1))
(I, = 3) and the string (((1,1) (3,0) (5,0) (6,1)) (/2 =4) can be selected, and a threshold value
8 =[12/101= 2 is required by Eq. (3.14), but the number of the common gene in these two

strings is 1, thus they are not allowed to compete each other by the thresholding selection.

In practice, a tournament selection is held, except that genotypes are forced to
compete with those with some genes in common with them. Thresholding selection
(Goldberg, Deb & Korb 1990) starts by picking up the first random candidate from a
permutation list, and then the second candidate is chosen by checking the next shuffle

number, ngp, candidates in the list. A conceptual procedure of thresholding selection is

shown in Figure 3-3.
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{
choose a shuffle number n, >2;
create a random per_'mutatiqn list including all the genotypes;
while (selection is required)

{

pick the first candidate randomly from the list

without replacement; )
check the next nsp candidates, one at a time;

if(the candidate with at least 6 genes in common

with the first is found)
then(compare both, select the better one)

else(the first one is selected);
} /*end of selection */

Figure 3-3 Pseudo-code for Thresholding Selection

3.7.3 Messy operators

The main genetic operator of crossover used in the standard GA cannot be used for the
mGA due to overspecified and/or underspecified strings. Two messy operators, cut and
splice, were designed by Goldberg et al. (1989) and are used for messy genetic
reproduction instead of crossover. Cut acts to cut a chromosome into two, while splice
links or concatenates two chromosomes to form one individual. The cut operator is
activated by the cut probability as

P.=P,(A-1) (3.15)

where Py is specified bitwise cut probability, and A is the length of the string. Splicing is
initiated by a prescribed probability Py If cuf and splice are called in turn and applied to two
strings, both operators work in a similar way to one point crossover operator in traditional
or standard GAs. If two strings are cut, and then just the splice operation is called for the
second string, it works like an inversion operator. Figure 3-4 shows cut and splice

operations.
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before
cut

after
splice

Figure 3-4 Cut and Splice Operations of the Messy GA (Goldberg et al. 1989)

There are two phases to the mGA including the primordial phase and the

Juxtapositional phase. As the string length grows, the cut probability P¢ increases due to

the dependence on string length as shown in Eq. (3.15). Consequently, disruption of the
genetic expression becomes highly likely. It means that the probability of forming a
complete optimal genetic representation is reduced as string length grows longer and
longer. One straightforward idea is to form the optimal genetic expression before the
genotype grows so long that the cut operation will disrupt the genetic structure. The
primordial phase of the mGA is designed for this purpose. It allows highly fit strings to be
enriched in a population prior to the messy genetic reproduction phase, the so-called a
Jjuxtapositional phase. Thus the probability of having erroneous bits (misleading bits) in the
search process is reduced, and there is a higher probability of forming optimal or near-

optimal structures at an early stage of the search process.
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3.8 Two-Phase Evolution

The original messy genetic algorithm proceeds with an initial population by using a
complete enumerative initialisation scheme, thereafter, the primordial phase is called to
select good building blocks, and in a juxtapositional phase the cur and splice operators
combine the good building blocks to form the optimal or the near-optimal solutions.

In a complete enumerative initialisation, at least one copy of all possible building

l
) is required for

blocks of a specified length, £, is provided. A population size of NN = 2* (k

capturing deceptive nonlinearities of order k. Thus, the initialisation of the messy GA is not
exactly random. Rather, it provides all possible order-k equivalence classes (building blocks)
in the initial population.

A primordial selection phase follows the complete enumerative initialisation for an
era of order-k. During this phase, selection of highly fit strings is performed only, i.e.
without activating any messy genetic reproduction. As a result, no extra fitness evaluations
are required. As selection proceeds, the population size is reduced by halving the size every
generation. The primordial phase continues until the population size reaches a prescribed
size which is then used in the juxtapositional phase.

In the juxtapositional phase, the mGA invokes the cut and splice operators and other
operators like mutation operators to juxtapose the good building blocks. It is similar to the
action of a standard GA during this phase except that cut and splice are used. The
population size is kept constant from generation to generation in the juxtapositional phase,
and the operator probabilities are also kept constant.

The length of the strings increases over the messy GA optimisation process. The

strings have the same length of the order of the building blocks (e.g. /= k, where k=1, 2,
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3, ... ) in the initial population and the primodial phase. In justapositional phase, cut and
splice genetic operations are applied to each of the strings (according to the cut and splice
probabilities). At early stage of the justapositional phase, the length of the strings is small,
the cut probability is low as indicated by Eq.(3.15). The splice operation is more likely
applied to generating the next generation than the cut operation. Thus the strings grow in
length. However, the longer the strings are, the higher the cut probability becomes, the

more likely the strings are cut. The length of the strings stays at a certain level while the cut

probability is about the same as the splice probability.

era = 0; /*the order of building block*/
while ( messy GA termination is not true ){
era=era+ I;
complete enumerative initialisation;
evaluation; /*network solver is called */
t=20;
while ( primordial phase is true ) {
threshold tournament selection;
t =t+1;
}
while ( juxtapositional phase is true ){
threshold tournament selection;
cul,
splice;
mutation,
evaluation; /*network solver is called */
t=t+1;

}
Figure 3-5 A Conceptual Framework of the Messy GA

The mGA components described above are combined into this two-phase evolution
process, are shown in Figure 3.5. The search process is followed over a certain number of

eras. The eras are taken as k = 1, 2, 3, ..., etc (where k is order of the building blocks). In
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each era, an initial population—a complete enumeration of era-order building blocks—
strings of era fixed positions are initialised, and evaluated by using a randomly generated
template. For the first era, order one building blocks are initialised. For example, the entire
set of order one building blocks of 3-bits string are 1 *# ¥, * 1 % *x ] O ** *( * and * *
0, where * is don’t care character (Goldberg 1989), and are filled in by the template. After
the initialisation, the population is enriched with fitter strings in the primordial phase, and
evolved in the juxtapositional phase. Thus the first era search is completed. The second era
search is commenced by initialising the order two building blocks (for example 1 1 *, 1 = 1,
*11,00%, 1*0,*10), which are evaluated by using the best string from the first era as

the template. Over a number of eras (user-specified), the optimum solution can be found in

the evolved population.

3.9 Implementation of the Messy Genetic Algorithm for Optimisation of Pipe
Networks

The computer program mGANET for optimisation of the design and/or rehabilitation of
water distribution systems has been implemented in this research by integrating the mGA
(Deb and Goldberg 1991) with the hydraulic network solver EPANET (Rossman 1994).
The mGA searches for new low cost designs or rehabilitation alternatives for water
distribution systems. EPANET simulates the water flow in the system and gives information
on flow rates for pipes, hydraulic grades or pressures at nodes. Integrating the mGA with
EPANET required an interface program for linking the subroutines together, evaluating the
costs of the alternatives, and checking the actual pressures against the minimum allowable

pressures at nodes. This interface program has been developed and coupled with mGA and
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EPANET as a program named mGANET for the optimal design and/or rehabilitation of

water distribution networks.

3.9.1 The messy genetic algorithm

The mGA provides a general optimisation programming tool. It allows users to add their
own optimisation functions, specify genotypical encoding bits and decoding formats. This
program was originally developed at the Genetic Algorithm Laboratory at University of
Illinios, and has been employed in this research project.

The mGA consists of four main components including get input(),

initialize(), generate() and functions.c, which are summarised as

follows.

Functions Purpose

get_input() This function reads all user specified parameters for controlling
the messy genetic algorithm, sets up the template and gets
information on objective function from input files.

initialise() This function calls routines to create the initial population and to
report population statistics. It also invokes a function that sets up
the population reduction schedule in the primordial phase.

generate () This function performs one generation of the messy GA

operation. If the generation counter, gen, is less than prim_gen,
the primordial phase is called, otherwise the juxtapositional phase
is called. Population statistics of the new generation are calculated
and reported. The routine terminates by assigning the new
generation to the old population.

functions.c The file contains all optimisation functions that are used as

subfunctions. Users define the objective function(s) in this file.
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Two functions £ile8 ()in the file functions.c has been defined respectively
for the discrete pipe model described earlier. The cost function begins by extracting the
genes for each rehabilitated pipe and decoding the genes as a rehabilitation event and a pipe
size for each old pipe, and then extracts the genes for each new pipe and decodes the genes
as the new pipe diameters. The conceptual procedure for the cost function is given in Figure
3-6 and it terminates by calling the totalcost () from the interface program to calculate

the total cost of rehabilitated and/or expanded water distribution systems.

Jor each old pipe {
extract gene for rehabilitation policy;
decode the policy;
extract gene for rehabilitation pipe size;
decode the size;
}
Jfor each new pipe {
extract gene for pipe size;
decode the size;

/

call totalcost();

Figure 3-6 Framework of £ile8 () for Linking mGA Search with Pipe Cost
Function

3.9.2 Hydraulic solver

As discussed before, a hydraulic network solver was needed to simulate the water flow in
distribution systems. A program called EPANET (Rossman 1994), a tool for water quantity
and quality simulation, has been used in this research project. EPANET is written in C and
developed by U.S. Environmental Protection Agency. It contains files which include

main.c, smatrix.c, hydaul.c, guality.c, inputl.c and input2.c.
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Since water quality is not being considered in this research, the file quality.c was left
out of the integration. In order to compare the simulation results from the final optimisation
from mGANET with a pure EPANET simulation, the EPANET input format is used in the
integrated program mGANET. A function hydsolve () links routines from hydraul.c
and smatrix.c, and performs the water flow simulation. It is this function that is called
for each chromosome representing one alternative of optimal rehabilitation and design of

the water distribution system under consideration.

3.9.3 The Interface program
The interface file pipe . c has been written for linking the routines in mGA and EPANET,
and performing the optimisation of the rehabilitation and pipe-sizing for the distribution

systems. The pipe . c includes functions as described below.

Functions Purpose
ReadPipelInfo () the unit costs for new pipes, unit rehabilitation costs for

old pipes, demand(s) and minimum hydraulic grade (or
pressure) for each node are read from a data file.

Oldpipecost () calculate costs for rehabilitating old pipes by using
discrete model.

newpipecost () calculate costs for new expansion pipes by using discrete
model

maxHeadDeficit () finds the maximum hydraulic grade (or pressure) deficit in
the system considering all demands

updatediam() updates the diameters for old and new pipes.
updatecoff () updates roughnesses for cleaned and/or lined pipes.
totalcost() calculates the total cost of rehabilitation and pipe-sizing by

using a discrete pipe model

All the routines or functions are linked by the function totalcost () for the

discrete model. The cost function has the programming structure for the total cost
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computation as given in Figure 3-7. The cost evaluation starts by updating friction
coefficients due to the rehabilitation such as cleaning and lining of an old pipe, and is
followed by assigning the new set of diameters, decoded from file8 () to diameter
variables in EPANET. The network solver is called for each demand loading case, and the
maximum hydraulic pressure (or grade) deficit, found for each of the demand cases, is used

for the penalty cost computation. The total cost, evaluated for one solution, is the sum of

the network cost and the penalty cost.

updatecoeff();
updatediam();
Jor each demand case {
hydsolve(); /*performs EPANET hydraulic simulation*/
maxHeaddeficit();
/
penaltycost = maxdeficit*penaltyfactor;
networkcost = Oldpipecost() + newpipecost(); /*for discrete model*/
totalcost = penaltycost + networkcost;

Figure 3-7 Pseudo Code for totalcost()

3.9.4 The structure of mGANET

The mGANET program provides an overall structure that initiates the messy GA, links
optimisation models (the interface program), and activates the hydraulic network solver
EPANET. The main structure of the mGANET is given as in Figure 3-8. It starts by getting

the data for messy GA, optimisation models and EPANET from input files as listed in Table
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3-3. The mGANET terminates by outputting the best individual pipe network design from
the messy GA. Table 3-4 gives more detail about the outputs.

The mGA is invoked by initialising a population of chromosomes for each era. Each
era contains a certain order of building block, missing genes are filled by using a random or
user-specified template for the initial population. The template will be replaced by the best
string (i.e. lowest cost) found whenever the generation best string is found. One complete
representation of each chromosome is evaluated by calling function £i1le8 (), which then
calls cost functions totalcost ()in the interface program. It is the cost functions that
activate the hydraulic network solver EPANET and that contribute to the fitness, if there is
a penalty cost, for the genotypical representation. After the initialisation, the messy GA
enters the primordial phase within which individuals are selected by performing just the
threshold tournament competition, in the meantime, the population size is reduced to a
prescribed level. The juxtapositional phase performs genetic operations similar to a standard
GA, but using messy operators such as cut and splice, and mutation operations if necessary
as described earlier. This phase is executed until the specified maximum permitted number
of generations for this era is reached. The best string found at the end of the first era is used
as the template for the initial population in the next era. Over several eras, the best

individual is found to be the optimum solution.
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Table 3-3 Input Files for nGANET

Input Files Description

Parameter | user-specified messy GA global parameters such as number of eras
(levels), probabilities for genetic operations, problem sizes etc.

Subfunc Contains number of subfunctions, genes specifying each function.

Era Includes population size and the maximum generations for each
juxtapositional phase.

Template contains template information for a complete chromosome.

Pipeinfo required for optimisation models, it involves unit cost information, penalty
factors, demand loading cases and minimum allowable pressures at nodes.

*  inp Information required by EPANET.

Table 3-4 Output Files for nGANET
QOutput Files Description
output Population records for each generation, it includes the best fitness,

average fitness and the worst fitness for each generation

solution.opt | Optimum rehabilitation policy and pipe sizes, corresponding cost,

and hydraulic grade lines at nodes.
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Messy GA optimisation Hydraulic simulation
Cost evaluation

era=1

A Initialisation
partial enumeration
Fitness

( Primordial phase J evaluation
__EI:xtapositional phasﬂ

Steady state
hydraulic simulation

era=era+1

Cost function =
network cost + penalty

Figure 3-8 The mGANET Integration Structure
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3.10 Application and Results

Two problems, a two-reservoir network problem and the New York City water supply
tunnels, have been chosen for testing the messy GA based approach for optimal
rehabilitation and pipe-sizing of water supply systems. Both problems have been previously

studied in literature and are good examples for testing the program mGANET.

3.10.1 Case study I: the two reservoir network

A network with two water supply sources and fourteen pipes has been studied by
Simpson et al. (1994) and is shown in Figure 3-9. A complete analysis has been given by
applying complete enumeration, linear programming, non-linear programming and the
standard GA (Murphy & Simpson 1992; Simpson, Dandy & Murphy 1994). The global
optimum solution and a set of ranked solutions for this problem was found by using discrete
pipe sizes (equivalent to discrete optimisation model proposed in section 3.2) using
complete enumeration of every alternative. The results from the previous studies provide an
excellent example for testing the program mGANET and comparing the performance of
the messy GA approach with the standard GA approach.

The layout of the network is given in Figure 3-9. It contains two reservoirs, five new
pipes to be sized, and nine existing pipes, three of which may be rehabilitated by a pipe in
parallel (referred to duplication although a different diameter may actually be selected),
cleaning or alternatively left as they are. In Figure 3-9, solid lines represent the existing
system, and dashed lines represent the parts of the system where pipe links [1], [4] and (5]}
may be rehabilitated, and pipe links [6], [8], [11], [13] and [14] that are to be sized with at

least a minimum diameter pipe. Table 3-5 gives the pipe costs and available diameters.
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Three demand cases including two fire loading cases and one peak day loading case and the
associated minimum allowable pressure heads are shown in Table 3-6.

Tank
SESRIIIIIINIIIIIIT 5’ EL37 l .86

Reservoir

SRR 1’ &365.76

[4]1,254,80

[1],356,75

2,EL32004 3 EL32614 4 EL332.23

ol 2125480  [3],254,80
]
2
Nﬁ
=) “

]

1 7, EL295.66
g o
b =
~ e 11
5 g -

[12)203,000 § 13 & (14 °
9, EL.289.56 10, EL289.56 11,EL292.61 12, EL289.56
O node

existing system
--------- existing pipe to be duplicated, cleaned or left
....................... new pipes

Pipes: {1],356,75 [pipe number], diameter(mm), Hazen-Williams roughness C
Note. 1. All pipe lengths are 1609m, except pipef1]=4828m
and pipe[4]=6437m.
2. C=120 for new pipes and cleaned pipes.
Nodes: 2, EL320.04 node number, node elevation(m)

Figure 3-9 The Two Reservoir Network (from Simpson et al. 1994)
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Table 3-5 Available Pipe Sizes and Associated Costs for the Two Reservoir Network

Pipe Diameter (mm) Cost for a Cost for duplicating Cost for
new pipe ($/m) a pipe ($/m) cleaning
a pipe ($/m)
152 dg 49.54 49.54 47.57
203 a’ 63.32 63.32 51.51
254 d;’ 94.82 94.82 55.12
305 d; 132.87 132.87 58.07
356 d; 170.93 170.93 60.70
407 ds" 194.88 194.88 63.00
458 d; 232.94 232.94 -
509 d? 264.10 264.10 -

Table 3-6 Demand Patterns and Associated Minimum Allowable Pressures for the

Two Reservoir Network

Node Demand Pattern 1 Demand Pattern 2 Demand Pattern 3

Minimum Minimum Minimum
allowable allowable allowable
Demand | pressure | Demand | pressure | Demand | pressure

(L/s) |[head(m) | (L/s) |head(m)| (L/s) head (m)

2 12.62 28.18 12.62 14.09 12.62 14.09
3 12.62 17.61 12.62 14.09 12.62 14.09
4 0 17.61 0 14.09 0 14.09
6 18.93 35.22 18.93 14.09 18.93 14.09
7 18.93 35.22 82.03 10.57 18.93 14.09
8 18.93 35.22 18.93 14.09 18.93 14.09
9 12.62 35.22 12.62 14.09 12.62 14.09
10 18.93 35.22 18.93 14.09 18.93 14.09
11 " 18.93 35.22 18.93 14.09 18.93 14.09
12 12.62 35.22 12.62 14.09 50.48 10.57
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mGA Coding, Decoding and Parameters

To apply messy GA to discrete optimisation of two reservoir network problem, 3
binary bits have been used to represent each pipe size variable of the five new pipes and
three existing pipes. Each of the 3 binary bits represents 8 possible choices of pipe sizes.
Two binary bits have been used for each existing pipe to represent 3 possible choices of
rehabilitation actions that include cleaning, leaving or duplicating an existing pipe. Thus 30
bits are needed for solving the problem by using the discrete formulation. A binary coding
and decoding scheme for the all possible pipe sizes and rehabilitation actions of the two
reservoir network are given in the Table 3-7 and Table 3-8. The penalty factor for pressures
which do not meet the minimum allowable pressure constraint for this problem was chosen

to be $5000/m of deficit to match the value taken by Simpson et al. (1994). The other

parameters used as follows:

Splice probability 1.0 Maximum number of eras 3
Cut probability 0.017 Juxtapositional phase population size 150
Mutation Probability 0.01 Maximum generations 10

Table 3-7 Coding and Decoding Scheme of Available Pipe Sizes for the Two Reservoir
Network

Pipe Diameter Binary substring Index Pipe size notation
(mm) corresponding to by Eq.(3.10) (corresponding to
the pipe size Table 3.11)

152 000 0 a?
203 001 1 ar
254 010 2 d?
305 011 3 d?
356 - 100 4 d;
407 101 5 d°
458 110 6 d
509 111 7 d?
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Table 3-8 Coding and Decoding Scheme of Possible Rehabilitation Actions for the

Two Reservoir Network

Actions Binary string | Index by Eq.(3.12) | Rehabilitation action notation
Leaving a pipe 00 0 e
Duplicating a pipe 01 1 e’
Cleaning a pipe 10or 11 20r3 e

Mapping a genotype to a phenotype for this problem follows the mapping scheme
described in Section 3.6. An example of mapping one genotype to its corresponding
phenotype for the two reservoir network is given in Table 3-8a. A genotype, for example
101110001111011011010011001111, is first divided into five substrings of 3 bits for each
of five new pipes added to the network, and three substrings of 5 bits (2 bits for coding the
rehabilitation actions and 3 bit for the associated coding diameter) for each of three existing
pipes. The diameter and action binary strings are decoded into integer indexes by the
Eq.(3.10) and Eq.(3.12). The sizes or diameters of the pipes added and duplicated were
found from the Table 3-5 by the mapped indexes. The pipe size was the same as the original
size if the pipe was left or cleaned. Similarly, the rehabilitation action for each existing pipe
was found from Table 3-8 by the mapped index. The network cost of the solution can be
calculated by the sizes for new and duplicated pipes and the rehabilitation actions for the
existing pipes. The penalty cost for cases where design criteria are not satisfied is calculated
by calling the hydraulic solver EPANET. Thus the genotype has been mapped to a
phenotype which represents a particular design solution, and the phenotype (solution) has

been evaluated to contribute to the fitness of the genotype.
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Table 3-8a An Example of Mapping a Genotype to a Phenotype for the Two

Reservoir Network

Pipe Id (6} | [8) | [11]) [13] | [14] [1] [4] [5]
Pipe Tag 1 2 3 4 5 6 7 8
Variable d, d, | d, d, | ds € dg e, d, €3 ds

Genotype 101 | 110 { 001 { 111 { O11 01 101 00 110 10 111
Index S 6 1 7 3 1 5 0 6 2 7

Phenotype | dy | do | 4P | d; | dJ | € dg eg dg eg d;

A solution | 407 | 458 | 203 | 509 | 305 | dup. | 407 | leave - clean | 254

(diameter or action)

Results and Comparison

The optimum discrete solution for this problem was found by mGANET with different
random seeds and compared with the standard GA results (Simpson et al. 1994; Simpson &
Goldberg 1994) and are shown in Table 3-9. A typical convergence rate for the nGANET
solution with the seed 0.7 is given in Figure 3-10

As shown in Table 3-9, the messy GA found the lowest cost solution (global
optimum) in each of the 10 runs with different random seeds. The number of mGANET
evaluations needed for achieving the optimal are less than the standard GA, being only one
‘third to half of the evaluation numbers of the standard GA (Simpson et al. 1994), and also
less than the GA with tournament selection (selection pressure s = 2) (Simpson & Goldberg
1994). Thus it is shown that the messy GA search for the optimal solution is more efficient

and effective than the standard GA.
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Most of the evaluations in the messy GA have been taken by initialisation process.
The messy GA started the first era with order 1 bit combinations for the initialisation by
complete enumeration. A total of 300 one-bit strings were generated and evaluated by using
a randomly generated gene string as a competitive template. The initial population size was
reduced to 150 (the population size of the justapositional phase) at the end of primordial
phase for era 1 and was followed by the juxtapositional phase. In the second era
initialisation, 435 two-bit strings were initialised by complete enumeration with order 2 and
evaluated by using the best solution as the competitive template from the first era. For the
third era, 4060 three-bit strings were initialised by complete enumeration with order 3, as
shown in the Figure 3-10. The number of evaluation required for the initial population for
all 3 eras is more than 50% of the total number of evaluations. This disadvantage must be
overcome to enable the messy GA to be applied to more complicated network design

problems. A fast messy GA is introduced in Chapter 6, which overcomes this problem.

Table 3-9 Results of Messy GA Compared with a Standard GA for the Two

Reservoir Network
GA ( Simpson et al. 1994)  |GA (Simpson & Goldberg 1994) Messy GA
Roulette wheel selection Tournament selection (s = 2)

Run| Cost (dollars) [Achieved at |Cost (dollars)|  Achieved at Cost (dollars) {Achieved at
_ (% difference | evaluation evaluation evaluation
No.| from optimum) number number number

1 11,791,000 (2.3%)| 23,400 1,750,300 9,000 1,750,300 6,148

2 1,750,300* 10,350 1,750,300 9,500 1,750,300 6,148

3 1,841,700'(5.2%) 22,410 1,750,300 8,500 1,750,300 6,148

4 11,839,000 (5.1%) 15,660 1,750,300 9,500 1,750,300 8,958

5 1,750,300 17,190 1,750,300 8,000 1,750,300 2,957

6 1,750,300 11,070 1,750,300 8,000 1,750,300 2,522
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GA ( Simpson et al. 1994)  |GA (Simpson & Goldberg 1994) Messy GA
Roulette wheel selection Tournament selection (s = 2)
Run{ Cost (dollars) ({Achievedat |Cost (dollars)| Achieved at Cost (dollars) |Achieved at
(% difference evaluation evaluation evaluation
No.| from optimum) number number number
7 1,750,300 10,080 1,750,300 8,000 1,750,300 8,758
8 11,799,900 (2.8%) 4,410 1,750,300 7,500 1,750,300 10,042
9 1,750,300 12,510 1,750,300 10,000 1,750,300 3,977
10 1,750,300 19,890 1,750,300 10,000 1,750,300 6,148
Average 14,697 8,800 6,181
+The global optimum solution
Messy GA evolution process (random seed = 0.7)
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Figure 3-10 Generation Cost Statistics for a mGANET Run for the Two Reservoir

Problem
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3.10.2 Case study II New York city water supply tunnels

The New York water supply tunnel system consists of one water supply source Hillview

reservoir, and two main city tunnels City Tunnel No. 1 and City Tunnel No. 2. The layout is

shown in Figure 3-11. The problem was first posed in 1969 by Schaake & Lai to size the

optimal pipe diameters by using a fitted cost function ¢; = 1.1d"%, where d = diameter of

pipe. The pipe sizes are discretised from the function and listed in Table 3-10. The minimum

required hydraulic grades are shown in Table 3-11 for each node. This problem has been

studied by many researchers (Schaake and Lai 1969; Quindry et al. 1981; Gessler 1982;

Bhave 1985; Morgan and Goulter 1985; Dandy et al. 1996). The previous studies provide a

sound basis for comparison with the new messy GA based approach.

Table 3-10 Available Pipe Sizes and Costs for New York City Tunnels Expansion

Diameter | Pipe cost ($/ft) | Diameter | Pipe cost ($/ft) | Diameter | Pipe cost ($/ft)
(in) (1969 price)* (in) (1969 price) (in) (1969 price)
36 93.5 96 316.0 156 577.0
48 134.0 108 365.0 168 632.0
60 176.0 120 417.0 180 689.0
72 221.0 132 469.0 192 746.0
84 267.0 144 522.0 204 804.0

*based on cost function ¢ = 1. Jd"**
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18

Figure 3-11 New York City Water Supply Tunnels (from Dandy et al. 1996)
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Table 3-11 Node Data for New York Water Supply Tunnels

Node| Demand [Minimum Allow-| Node | Demand [Minimum Allow-
No. (cfs) able HGL (ft) No. (cfs) able HGL (ft)
1 reservoir 300.0 11 170.0 255.0
2 92.4 255.0 12 117.1 255.0
3 92.4 255.0 13 117.1 255.0
4 88.2 255.0 14 924 255.0
5 88.2 255.0 15 924 255.0
6 88.2 255.0 16 170.0 255.0
7 88.2 255.0 17 57.5 272.8
8 88.2 255.0 18 117.1 255.0
9 170.0 255.0 19 117.1 255.0
10 1.0 255.0 20 170.0 255.0

Table 3-12 Pipe Data for New York City Water Supply Tunnels

Pipes| Start| End | Length| Existing ,Fipes Start | End |Length] Existing
No. | node{node| (R) [Diameter (in)] No. | node|node| (ft) |Diameter (in)
1y 1 2 | 11600 180 [12]| 13 | 12 | 12200 204
[2] 2 | 3 | 19800 180 [13]] 14 | 13 | 24100 204
(31 3 4 { 7300 180 [14]} 15 | 14 {21100 204
[4] 4 5 | 8300 180 [15]] 1 15 | 15500 204
(51| 5 6 | 8600 180 [16]] 10 | 17 | 26400 72
(611 6 | 7 | 19100 180 [17}] 12 | 18 }31200 72
(771 7 { 8 | 9600 132 [18]{ 18 | 19 | 24000 60
[8] 8 9 | 12500 132 [19]1 11 | 20 | 14400 60
911 9 | 10| 9600 180 [20]] 20 | 16 | 38400 60
(01{ 11 | 9 [ 11200 204 211 9 | 16 |26400 72
[11]] 12 | 11 | 14500 204

All pipes, existing and new, are assumed to have a Hazen Williams C = 100
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mGA coding, decoding and parameters

There are 15 choices in Table 3-10 of pipe sizes for each pipe to be rehabilitated. In
order for the mGA to search for the best combination of pipe sizes, four bits (providing 16
choices, 0000 was used to represent leaving a pipe as it is for this problem) were used to
code the possible sizes for each pipe, so that a total of 84 binary bits were used to represent

the problem to be optimised.

Previous Recent Studies of the New York Problem

Dandy et al. (1996) improved the standard GA approach (Simpson et al. 1994) by using a
fitness scaling technique, Gray coding scheme and creeping mutation, and applied the
improved GA to the New York problem. The optimisation results were checked using the
KYPIPE hydraulic network solver. The optimal discrete pipe solution was found to be
$38.80 million.

Savic & Walters (1997) found that the optimal solution was quite sensitive to the
coefficients of Hazen-Williams pipe head loss formula. They integrated a standard GA with
EPANET, and found least cost solutions corresponding to low and high bounds of
coefficients in the Hazen-Williams formula used by number of researchers. The results from

the improved and standard GA are compared with messy GA design solutions in this

Chapter.

mGANET Results and Comparisons
Four bits were used for each pipe in the New York city Tunnels problem, giving a

total of 84 bits for 21 pipes for the discrete pipe formulation. The messy GA parameters

which were used are as follows.
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(i) Primordial phase: random seed = 0.9; maximum number of eras = 2; maximum number
of generations for each era = 100; initial population size for era 1 = 420; and initial
population size for era 2 = 13,944.

(ii) Juxtpositional phase: juxtapositional population size NN = 500; cut bitwise probability
Pi =0.02; splice probability P; = 0.9; and mutation probability P» = 0.01.

The least cost solution for the New York city tunnels problem was determined by
Savic & Walters (1997) for various values of coefficients of the Hazen-Williams formula.
Savic and Walters (1997) identified the low and high bound of the coefficients of Hazen-
Williams formula used by Fujiwara & Khang (1992) and Quindry et al. (1981) from a
number of combinations of values used by various researchers. Savic and Walters (1997)
presented the following:

A low bound of the Hazen-Williams formula:

Q 1.85
h, =4.6847L(—C-) D™*¥ (3.16)

A high bound of the Hazen-Williams formula:

1
h, = 4.8306L(%) 0¥ ps (3.17)

Other forms of the Hazen-Williams formula include that used by EPANET (Rossman 1994)

given as:
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h -472L(Q)HSD*"“ (.18
,=4niZ 18)

In order to test the messy GA, and compare it to the standard GA (Savic and Walters
1997), a set of three mMGANET runs have been performed. One set of the runs used the
EPANET original Hazen-Williams formula Eq.(3-18); the second set of the runs used the
low bound of Hazen-Williams formula Eq.(3-16) and the third one used the high bound of
Hazen-Williams formula Eq.(3-17). The results are summarised and compared in the Table
3-13 and Table 3-14. As shown in Table 3-13, the discrete messy GA optimal solution for
the low bound Hazen-Williams formula is the same as the standard GA approach. For the
high bound of Hazen-Williams formula, however, the messy GA found a lower cost discrete
solution than the standard GA.

For comparison the solution found with a particular Hazen-William formula was
evaluated by using the other two forms of the Hazen-William formulas. It has been observed
that the optimal solutions are governed by the minimum hydraulic pressure heads at certain
nodes. As shown in Table 3-14, the greater the hydraulic pressure deficit, then the lower
cost of the solution that is found. The hydraulic deficits of different optimal solutions by
different Hazen-William formulations Eq. (3-16) to Eq. (3-18) also provide useful

information to water engineers to gauge the sensitivity of the optimal solution for selection

of the head loss formula.
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Table 3-13 Comparing the mGANET Designs with Previous GA Solutions

Duplicated | Savic & Walters (1997) Messy GA run
pipe Hazen-Williams Hazen-Williams
formulation formulation
low high EPANET low high
Eq (3-16) | Eq (3-17) | Eq. (3-18) | Eq. (3-16) [Eq. (3-17)
[71 108 0 132 108 0
[15] 0 144 0 0 132
[16] 96 84 96 96 84
(17} 96 96 96 96 96
[18] 84 84 84 84 84
[19] 72 72 72 72 72
[21] 72 72 72 72 72
Cost 37.13 40.42 38.10 37.13 39.60
($million)
Evaluations - - 48,667 40,382 39,939

Table 3-14 Comparison of Hydraulic Heads at Node 17 Using Different Hazen-

Williams Formulations
Hazen- | Min. allowable |Savic & Walters (1995) | Messy GA run
Williams head (ft) low* high EPANET high
formula Eq. (3-16) | Eq.(3-17) | Eq. (3-18) | Eq.(3-17)
272.80 272.86 273.77 273.06 273.47
Low Surplus = +0.06 +0.97 +0.26 +0.67
272.80 272.66 273.57 272.86 273.27
EPANET| Surplus= -0.14 +0.77 +0.06 +0.47
272 .80 272.25 273.18 272.46 272.88
High Surplus = -0.55 +0.38 -0.34 +0.08
Cost ($million) 37.13 40.42 38.10 39.60

*The messy GA discrete pipe solution found for low bound Hazen-Williams formula is the same as Savic

and Walters (1995) solution for low bound Hazen-Williams formula.
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In order to compare the performance of the messy GA with the improved GA (Dandy
et al. 1996), the same Hazen William equation as used by Dandy et al. (1996) was adopted

in this study. It is given as:

_ _Q_ 1852 s
hy=47291 5] D (3.19)

The program mGANET was run several times with different penalty factors for violation of
the minimum allowable HGL constraint. A set of least cost solutions that were found by the
messy GA are listed in Table 3-15. Three lower cost solutions by the improved GA and the
messy GA are also given in Table 3-16. The optimal hydraulic heads at nodes for the
optimal solution of $38.80 million by both the messy GA solution and the improved GA
solution are compared in Table 3-17. It shows that the messy GA identified the same critical
nodes as the improved GA and that the actual hydraulic heads of the optimal solution by the
messy GA are almost the same (to the second decimal place) as that by the improved GA.
As shown in Table 3-15 and 3-16, the solutions found by the messy GA are very
similar to the solutions by the improved GA, but the messy GA is more efficient than the
improved GA at searching for the optimum design of water distribution systems. The
improved GA required 143,790 evaluations on average of five GA runs to reach the optimal
or near-optimal solution. In contrast, the messy GA evaluated 48,427 alternatives on
averége of five mGA runs to achieve the similar optimal or near-optimal solution. The
number of evaluations required by the messy GA is about one third of the evaluations by

the improved GA for this case study. This has shown that the messy GA is more efficient
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than the improved GA at searching for the least cost design solution for water distribution

systems.

Table 3-15 Results of the Messy GA Runs Compared with the Improved GA

Improved GA (Dandy et al.1996) Messy GA
Achieved at Achieved at
GA | Lowest cost | evaluation | GA penalty |Lowest cost evaluation
runs | ($million) number |runs| factor ($/ft) | (Smillion) number
1 38.80 96,750 1 9,000,000 38.80 49,587
2 39.06 137,400 2 | 13,000,000 39.06 42,787
3 38.80 151,400 3 11,000,000 38.80 48,387
4 39.06 145,700 4 | 15,000,000 40.17 53,187
5 39.17 187,700 5 7,000,000 38.64* 48,187
Average = 143,790 Average = 48,427

* The hydraulic pressure constraint at the node 15 is violated by 0.02 (ft).

Table 3-16 Comparing the mnGANET Designs with Previous GA Solutions

Duplicated Optimal Diameters (inches)
pipe Improved GA by Dandy et al. Messy GA
(1996)
ID GAs 1 GAs 2 GAs3 [mGA1l [mGA2 |mGA3
7 0 144 156 0 144 144
[15] 120 0 0 120 0 0
[16] 84 96 96 84 96 96
[17] 96 108 96 96 108 96
[18] 84 72 84 84 72 84
[19] 72 72 72 72 72 72
[20] 0 0 0 0 0 0
[21) 72 72 72 72 72 72
Cost ($million)] 38.80 39.06 39.17 38.80 | 39.06 |38.64*
Evaluations | 96,750 | 137,400 | 187,700 | 49,587 | 42,787 | 48,187

* The hydraulic pressure constraint at the node 1S is violated by 0.02 (ft).
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Table 3-17 Actual Hydraulic Heads of the Optimal Solution of $38.80 Million

Node Minimum Actual hydraulic heads (ft)
ID allowable head (ft) | Improved GA by Messy GA
Dandy et al. (1996)
1 Teservoir 300.000 300.000
2 255.0 294.620 294.621
3 255.0 287.204 287.205
4 255.0 285.056 285.057
5 255.0 283.181 283.182
6 255.0 281.754 281.755
7 255.0 279.564 279.565
8 2550 276.425 276.427
9 255.0 274.223 274.225
10 255.0 274.192 274.193
11 255.0 274.364 274.365
12 255.0 275.820 275.821
13 255.0 279.024 279.026
14 255.0 287.028 287.029
15 255.0 295.301 295.302
16 260.0 260.524 260.523
17 272.8 272.860 272.861
18 255.0 261.842 261.841
19 255.0 255.705 255.703
20 255.0 261.196 261.194
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Figure 3-12 illustrates a typical convergence rate of the messy GA solution ($38.80
million) for the New York city tunnels problem. The convergence of the messy GA is
compared with the improved GA in Figure 3-13. The messy GA, unlike the standard GA
and the improved GA, starts with evaluating all possible building blocks of order 1 namely
all the strings with one bit fixed. For this case study, it has been observed that the
performance of the messy GA was not affected by reducing the initial population size from
all the combinations of one or two-bit strings to half of the required strings in the initial
population. Thus, instead of 840 one-bit strings being initiated for era one, an initial
population of 420 one-bit strings and 13,944 two-bit strings were created in the messy GA
initialisation of era one and two respectively. Each of the one or two-bit strings was
evaluated by using a random string or a local optimal string as a competitive template to fill
the missing genes. The short strings of high fitness were selected by applying the
thresholding selection in the primordial phase. The messy GA enriched the highly fit
building blocks of order 1 or 2 at the end of the primordial phase and resulted in a
significant improvement in the genotype fitness and the objective function value as shown in
Figure 3-12. This provides the messy GA a mechanism identifying good building blocks at
early stage of the artificial evolution. In contrast, the improved GA is not purposely
designed for identifying the building blocks. The search procedure of the improved GA, as
illustrated in Figure 3-13, appears more random and noisy than the messy GA. The messy

GA reached the optimal or near optimal solution more efficiently than the improved genetic

algorithm.
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Figure 3-12 Convergence Behaviour of Messy GA for Discrete Pipe Optimisation of
New York City Tunnels Problem (Optimal Solution $38.80 Miilion)
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Figure 3-13 Comparison of Convergence Rates of the Improved GA (Dandy et al.

1996) and the Messy GA for the Discrete Pipe Solution $38.80 Million.
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3.11 Summary
An optimisation model based on a discrete pipe formulation has been developed in this
Chapter. A generalised genotypical representation and mapping scheme for genetic
algorithm optimisation of water distribution systems is also presented. The optimisation
model was based on a messy GA. It uses variable-length strings, thresholding selection and
messy operators of cut and splice. The messy GA starts by enumerating a certain order of
building blocks and is followed by a primordial phase and a juxtapositional phase. In the
primordial phase, tournament thresholding selection occurs only to allow highly fit strings to
be enriched in a population. The strings are evolved in the juxtapositional phase by
performing the messy genetic operations of cut and splice. The messy GA has been
integrated with the hydraulic network solver EPANET. The integrated program mGANET
has been tested for the optimisation of water supply networks on the previously studied
examples, the two reservoir network and the New York city tunnels problem. The results
have shown that the messy GA approach to optimal sizing and rehabilitation of water
distribution networks is more efficient than standard GA (tournament selection pressure s =
2) and/or improved GA approach. The approach will be able to provide the decision-maker
a set of lower cost solutions for a comprehensive design of the water distribution systems.
Another type of model for optimisation of water distribution systems is a continuous
model, in which the optimisation variables such as pipe diameters are treated as a set of
continuous variables. The continuous model, however, finds it difficult to consider
rehabilitation actions that are discrete, and also there is no guarantee for the continuous

model to reach a real engineering optimal solution. This will be discussed in next Chapter.

74



4. Split pipe formulation for genetic algorithm optimisation of water networks

4. SPLIT PIPE FORMULATION FOR GENETIC ALGORITHM

OPTIMISATION OF WATER NETWORKS

4.1 Introduction

Over the last several decades, optimisation of design of water distribution networks has
been studied. Optimisation techniques have been improved. In recent years, standard genetic
algorithms (sGAs) have been applied to the optimal design of water distribution networks.
It has been found that the sGAs are well suitable for solving this type of problem and
outperform traditional optimisation techniques. In Chapter 3, it also has been demonstrated
that the messy genetic algorithm (mGA), a new generation of the genetic algorithm, is more
efficient and more reliable than sGAs at searching for global optimal design solutions of
water distribution networks.

Optimisation models developed to date for optimal design of water distribution
systems can be generally classified into two types including a discrete pipe model and a
continuous pipe model. Both types of the models may be formulated with the objective of
minimising the total cost of water distribution systems by searching for the optimum
combination of pipe sizes and rehabilitation actions. The discrete pipe model treats the pipe
size as a decision variable taking values directly from a discrete commercially available pipe
size list, while the pipe size variables in the continuous model take the values between the
minimum and maximum diameter. For a continuous formulation, a unit cost curve (function)
is usually ﬁtted'by using the discrete pipe sizes and the corresponding cost data. The fitted

cost function has been used previously for network cost evaluation in the search process
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(Lansey and Mays 1989a; Fujiwara and Khang 1990; Ahn 1993; Lognanathan et al. 1995).
A fitted continuous cost function may lead the optimisation process to a lower cost
continuous solution than that by the discrete formulation, but the continuous solution is not
desirable for practical application. This is because commercially available pipe sizes are
discrete. Hence, after the continuous optimisation is carried out, the continuous optimal
solution is usually converted to a hydraulically equivalent split discrete solution, namely a
solution of two adjacent discrete pipe sizes used for an upstream pipe segment and a
downstream pipe segment between a pair of nodes. However, it has been shown by
Fujiwara and Dey (1987) that the optimal adjacent split pipe solution exists if and only if
pipe costs are a strictly convex function of pipe diameters. In this Chapter, an analysis is
presented to compare continuous pipe solution and split pipe solution. The outcome is that
there appears to be no guarantee that the continuous model using a fitted convex function
will reach an optimal split pipe solution. Thus a split pipe optimisation model is proposed.
The model treats the pipe size as a continuous variable in the formulation, but each
continuous solution is converted into a split pipe solution during the optimisation process
and evaluated by using the cost information of commercially available pipe sizes. It
eliminates the need for fitting a continuous cost function and guarantees an optimal split
pipe solution to be found. The approach employs the original messy genetic algorithm as a
search algorithm and comes up with a discrete optimal split pipe solution for the design and

rehabilitation of water distribution networks.
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4.2 Analysis of a Continuous Model
For a continuous pipe diameter formulation, the pipe cost function is generally fitted as:

¢, =bd’ @1
by using a set of commercially available discrete pipe sizes D° = (d,,d,,+-,d,)and a set of
corresponding unit length costs C = (¢,,C5,*",Cx ), where a and b are fitted coefficients,
and a > 1.0, b > 0 (for example a =1.24 and b =1.1 for the New York water supply tunnels

problem by Schaake and Lai (1969). It is assumed that the fitted curve of Eq. (4.1) is a

convex function (i.e. a > 1.0). The cost for a pipe 7 with a diameter d, and a length L, is:

C;=L,c,d,) (4.2)
While the Hazen-William equation is valid for the pipe flow, the pipe n with a continuous

diameter d, and length L,, however, can be split into two segments with discrete diameters

d* and d’ where superscript u refers to the upstream segment and d to the downstream

segment of pipe. The following constraint must hold d, >d, 2 d® such that the pipe of
larger diameter is in the upstream segment. The lengths of the two segments between a pair
of nodes are L' and L, where L, = L, + L? . The two lengths are found by an applying a
head loss equation to maintain the same total head loss in the continuous diameter system
and the split pipe system. One of the most common head loss formulas is Hazen Williams
formula, given as:

. 47291L 0%
hg = OV 3524437 (4.3)

where O, is discharge in the pipe, and C, is Hazen Williams coefficient for pipe 7. The split

pipe system should have the same head loss as the continuous one, that is

7



4. Split pipe formulation for genetic algorithm optimisation of water networks

h,, =, +h, (4.4)
Solving equations (4.3) and (4.4), the split pipe lengths 7* and Z? are obtained:

(dd)—4.87 _ (d )—4.87
"‘l = (d’:i)—487 _ (d: )-4.87 n

(4.5)

L,=L,-L, (4.6)

Thus the cost of the pipe n, split by Eq. (4.5) and Eq. (4.6) into two adjacent discrete pipe
sizes, is given as:

Cr = Lic,(d2) + Lic, (d?) (4.7)

The optimal continuous pipe solutions (Bhave 1985; Fujiwara & Khang 1990) for
the New York water supply tunnels problem have been evaluated by using the fitted
continuous cost function of ¢ = 1.1d'** and its equivalent discrete split pipe cost. As shown
in the Table 4-1, the network costs evaluated by the equivalent discrete split pipe cost are
greater than that by fitted cost function used in the continuous models (Fujiwara and Khang
1990; Bhave 1985). Figure 4-1 shows a comparison of the cost of a continuous pipe
solution (for sizes between 48 and 60 inches) represented by a fitted cost function
¢, = 11d"* versus the cost of the equivalent discrete split pipe solution (with an upstream
segment diameter of 60 inches and a downstream segment diameter of 48 inches). It is

evident that the cost of a continuous pipe is less than that of its equivalent discrete pipe.

This has been proven for the general case of a continuous model (assuming a convex cost

function) as follows.
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Table 4-1 Comparison of Discrete Pipe and Continuous Pipe Costs

Cost evaluation Network cost (million $)
method New York water supply tunnels solutions
Bhave (1985) Fujiwara & Khang (1990)
Fitted cost function 40.18 36.10
Equivalent split pipe cost 40.74 36.62
Percentage of difference 1.39%% 1.44%

g
E 1001
&3
2 0.80
%]
(2]
.8 0.60 -
m . . t
040 continuous pipe cos
---------------- Split pipe cost
0.20 -
0-00 T L T T T
48 50 52 54 56 58 60

Pipe diameter (inch)

Figure 4-1 Comparing the Cost of a Continuous Pipe Solution to that of its

Equivalent Discrete Split Pipe
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Assuming F=C;-C; (4.8)
where C7 is the cost of pipe 7 evaluated by the fitted cost curve given in Eq. (4.1) and Eq.

(4.2), and C; is the cost of pipe n by the split pipe cost evaluation given in Eq.(4.7). By

introducing Eq. (4.5), (4.6) and (4.7) into Eq.(4.8)

Lb
T T ANS8T [ qun487
@,) @,)

{ (d")a[(d:)—4.87 _ (d: )—4,87] +(d: )a [(d: )—4.87 _ (d,, )—4.87]

Hd)' @) - @)} (4.9)
The term on the right hand side prior to the term in curly brackets is always positive. Thus
taking the portion of Eq. (4.9) in the curly brackets and letting
Id,.d,d})=(d,) @) -(d)*"1+@)(d)*" -(@d,)"*"]
Hd) [ d,) ™ = (d)™*] (4.10)
Now investigate the properties of the function I' to find if it is an increasing or
decreasing function by taking the first order derivatives and the second order derivatives as

follows:

a

u
n

= 487(d;) ' [(d,)" - (@) 1+ad))" [(d,)*" - (d) ] (4.11)

g— = 487 ) V(@) - (d,)"]+ a(d? )" [(d*) 4 - (d,) V] .12)

d
n

o'
— 59 du —6.87 dd a __ d a

a(a-1)d)"*(d,)*" - (d)™"]

o°T
—— 5 =2859(d))*¥[(d,)* - (d:)”
Ad) @,)"(d,)" -(d,)" ]+ (4.14)

ala-1)d,)"*(d,) " -(d,)™*"]
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J°r

- u _gdya-l d\-a-487 uy\~a-437
AdHaa) 487a(d,d;)" ((d,) (d,) ] (4.15)

Consider the condition where the diameters of the upstream pipe and the downstream pipe

are identical to the continuous pipe diameter, thus the solutions will be the same. In other
words d* =d’, then d' =d? =d,. This implies that there would be no cost difference

between the continuous solution and the equivalent discrete split pipe solution and thus by

Eq.(4.8)

Fd,.d,.d) =0 (4.16)
di=di=d,

If we consider the form of the equation for the function I"in Eq.(4.10) and the first order
derivatives in Eq.(4.11) and Eq.(4.12) it is clear that if d* =d? = d,, then these values must

be zero as follows:

u a a
NCRRNCS PP I L L PP (4.17)

Now considering the more general condition where the upstream and downstream discrete

diameters are different such that d* >d, >d? and following a term by term analysis of

. &
Eq.(4.14) and Eq.(4.15) based on the assumption of @ > 1.0, we have W)T et et < 0

is a decreasing function of d . It means that — increases when d’

which implies —

decreases, thus —g—; ea >§7| 4, - Referring to Eq.(4.17), it follows that the
derivative:

a

E‘T ai<d, >0 (418)
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2
Note that the value of ——f——lj-— in Eq.(4.15) is greater than zero under the general
Ad, )Ad,)

o°’r

whi a
AdDAd*) “ O ) h h 1 l‘ th t ——
AdH)A(d" )| =< > ich implies tha

d

n

condition d* >d, >d’ . In other words

is an increasing function of d,. This implies that the derivative pY” increases as d,

n

increases, thus 7 |, > % fed, Referring to Eq.(4.17), it follows that the derivative:
ax
—c’ﬂd e > 0 4.19)

Considering Eq.(4.18) and Eq.(4.19), the value of the first order derivative given by

Eq.(4.12) is greater than zero in the entire range of (d?, d*), an example is shown in

Figure 4-2 (based on ¢, = 11d"* as shown in Figure 1), and thus

a
&1d dd<d,,<d: >0 (420)

This indicates that the function I" given by Eq.(4.10) is an increasing function of d; . It

implies that I' decreases when d decreases, thus I . dn=d:<l“‘ P Thus by

Eq.(4.17), the following inequality holds

r@l.d,d) ., . <0 (4.21)
Similarly by considering the general condition d! >d, >d: and a term by term

analysis of Eq.(4.13) and Eq.(4.15) based on the assumption of @ > 1.0, we have

2
il < 0. This implies that —d—: is a decreasing function of d. Thus the derivative

ad,) a,
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é—r’? decreases as d, increases, namely a4 > ; dedt Referring to Eq.(4.17), it
follows that
2; o<t <0 (4.22)
Because ——f—zr—— steq o > 0 s given by Eq.(4.18), then a is an increasing function
Ad,)od, )1 << o,

of d?, and the derivative —— decreases with decreasing d then it follows that

n

a a : :
i ated < . Referring to Eq.(4.17), it can be concluded that:
A &< A dy=d,
& 14
&
g 121
)
R
I
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Figure 4-2 Plot of the First Order Derivative Given by Eq. (4.12)
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Figure 4-3 Plot of the First Order Derivative Given by Eq. (4.11)

iz
ﬁ ai<d, <0 (423)

Considering Eq.(4.22) and Eq.(4.23), the value of the first order derivative by Eq.(4.11) is

less than zero in the entire range of (d:, d“), an example is shown in Figure 4-3 (again

based on ¢, = 1.14"* as shown in Figure 4-1), and thus

a 0 (4.24)

- <
al” df<d, <d*
n

This indicates that the function I" given by Eq.(4.10) is a decreasing function of d; . Then I’

decreases as d; increases, and it follows that I" it < FI Hd et Referring to Eq.(4.17),

the following inequality holds:

rd’.d,d") <0 (4.25)

e 4"'5“’:
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Considering Eq.(4.21) and Eq.(4.25), we can now conclude that:

r(d‘,d,,d") <0 (4.26)

d:<d"<d"‘
Consequently, the value of the function /" given by Eq.(4.9) is less than zero namely

F@d‘.d, d")

n>7"n>"n

0 (4.27)

dtcdyeds =
This indicates that the pipe cost evaluated by the continuous fitted cost function is less than

by the discrete split pipe cost namely C;7 < C; . In other words, the pipe cost increases when

converting a continuous solution to a hydraulically equivalent split pipe solution. It is,
therefore, concluded that there is no guarantee that the continuous model using a fitted

convex cost function (i.e. @ > 1.0 in Eq.(4.1)) will reach an optimal split pipe solution.

4.3 Formulation of a Split Pipe Model

The split pipe model is formulated (1) to select pipe diameter sizes D={d, n=1,..., N},
where N = number of all new pipes added to a water system, and (2) to choose
rehabilitation actions (e.g. duplicating or replacing a pipe or cleaning a pipe) and the
associated pipe sizes £={e,, d,, r=1,...R }, where R = number of all possible rehabilitated
pipes. The pipe diameters d, and d, take on the continuous values in an interval between the

minimum and maximum pipe sizes namely d, , d, € [d™", "], where d™ = minimum
diameter of pipe sizes, and d™ = maximum diameter of pipe sizes. The cost of a new pipe

or a rehabilitated pipe is evaluated by split pipe sizes given by Eq. (4.3) to (4.6). The
objective of the optimisation procedure is to minimise the total cost of the network pipeline
materials and also installation and rehabilitation actions subject to minimum allowable

pressure heads at nodes. Thus the split pipe model may be expressed as:
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search for (D,E)

- N
minimise C(D,E) = Y[c,(dDLE +c (d)[*]+
n=1

R
r=1
subject to d™ <d, <d™

vdl,d.,d!\d' €D’ ={d}.k=1,.,K}
Ve, cE’ = {eg,,m =1...M

H, 2H;’"",j= L....J, i=1..1
L=0L+L

L (dn)—4.7804 - Ld(dd)~4.7804 +Lu(du)—4.7804

where D’ = the set of commercially available pipe sizes; d; - k-th commercially available

pipe diameter in set D% K = number of the commercially available pipe sizes; E° = the set of

possible rehabilitation events; e’ = m-th rehabilitation event that may applied to the existing
pipe 7 in set E°, M = number of the rehabilitation events applicable to pipes; H;; =hydraulic

grade at node j under steady state loading case i; J = number of nodes (excluding fixed

min

grade nodes);, / = number of steady state loading cases; /" = minimum allowable

hydraulic grade at node j. One advantage of the split pipe model is that it eliminates the
need for fitting a cost function to discrete values. The fitted cost function may lead the
search process to a lower cost continuous solution than that by discrete formulation, but the

continuous solution is not desirable for practical application in most of cases.
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4.4 Genetic Algorithm Mapping Scheme for Split Pipe Model
The total length of the chromosome is divided into N intervals of the same length dd for a
new pipe and R intervals of the same length (ee + dd) for a rehabilitated pipe. Thus each

genotype g, (¢) has a general form as:

— _ d d d d e e d d
Eo() = (@)1, 4y 38y 1550 423 Oy 1153 On 41 00> AN 1 o013 5PN 1) eordds

e e d d
AR aN+R,1 LERRE] aN+R,ee s aN+R,ee+I PRRRS aN+R,ee+dd ) (428)

a?,, is a binary bit, taking the value of either 1 or 0 for a binary coding, and represents

pipe diameter, where » = 1, ..., N+R, N = the number of new pipes to be added to a
distribution system; R = the number of existing pipes to be rehabilitated; dex = I, ..., dd,

where dd = the number of bits representing the diameter of an expanded or rehabilitated

pipe. Similarly, a . represents rehabilitation event, where r = N+1, .., N*R, edex = |,

r.edex
..., ee, where ee = the number of bits representing a rehabilitation action for an existing pipe.
The number of bits coding a pipe undergoing rehabilitation is the sum of the bits for coding
the pipe diameter and the bits for coding the rehabilitation action.

Each chromosome, the genotypical individual g, with the length of
dd(R+N)+R(ee) bits, defines a corresponding phenotypical representation or a phenotype
namely one design alternative given as:

B =(D,E)=(d,,...dy,e,dy, e, dy.z) (4.29)

a vector of pipe diameters for new pipes and associated rehabilitation actions for existing
pipes.

Generally, the genotypical pipe size representation (a,,a?,..aL,, ) is uniformly

mapped into a prescribed interval (@™, @™ ], given as:
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min dmax ~d™" & d dex—|
d" =d +——E§§———i_[za"'dex2 ] (430)
dex=]

Each rehabilitation policy genotypical representation (a;,,a’,...a;,,), where r = N+1, ...,
N+R, for an existing pipe, is mapped into a phenotypical representation e, by the mapping
scheme developed in Chapter 3. The messy genetic algorithm described in the last Chapter
is utilised here, however, the results for a comparison of the split pipe and discrete pipe
formulation which is the focus of this Chapter are equally valid for a standard genetic

algorithm formulation.

4.5 Integrating the Split Pipe Model into Messy Genetic Algorithm

The split pipe optimisation model has been implemented in a genetic algorithm formulation.

The cost evaluation of a split pipe design in a genetic algorithm formulation is given in

Figure 4-4. For each string from the GA, the cost evaluation begins by extracting the genes

for each rehabilitated pipe and decodes the genes as a rehabilitation event and a pipe size for
each existing pipe, and then extracts the genes for each new pipe and decodes the genes as
the new pipe diameters. The evaluation is followed by updating friction coefficients due to
the rehabilitation such as cleaning and lining of an existing pipe, and by assigning a set of
diameters to diameter variables for a hydraulic network simulation. The network solver is
called for each demand loading case, and the maximum hydraulic pressure (or grade) deficit,
found for all the demand cases, is used for the penalty cost computation. The total cost of
one solution is the sum of the network cost and the penalty cost and also is converted to the

fitness of the genotypical string as given as in Chapter 3.
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Begin
forgeach string in a population for the genetic algorithm begin
Jor each existing pipe begin
extract gene for rehabilitation policy;
decode the policy;
extract gene for rehabilitation pipe size;
decode the size;
end
Jfor each new pipe begin
extract gene for pipe size;
decode the size;
end
computing split pipe sizes;
update coefficients and pipe sizes;
Jor each demand case begin
perform network hydraulic simulation;
JSind maximum hydraulic pressure deficit;
end
penaltycost = maxpressuredeficit #penaltyfactor;
networkcost = new split pipe cost + rehabilitation split pipe cost;
totalcost = penaltycost + networkcost;

end

end

Figure 4-4 Pseudo-code for Cost Evaluation of Split Pipe Model
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Two problems, a two reservoir network problem and the New York City water
supply tunnels problem, have been chosen for testing the GA based split pipe model for
optimal rehabilitation and pipe-sizing of water supply systems. Both problems have been
studied by using the discrete model and the messy GA in Chapter 3 and are good examples
for comparing the results from the split pipe optimisation model with the discrete pipe

optimisation model.

4.6 Case Study I: The Two Reservoir Network

4.6.1 Genetic algorithm coding and parameters

In the application of the split optimisation model to a two reservoir network, the pipe sizes
have been coded and mapped into a prescribed interval. Suppose that a dd-bit string is used
to represent a pipe size, 2 points, which are uniformly distributed within the interval
between the minimum discrete size of 152 mm and the maximum discrete size of 509 mm,
are selected to form the search space for GA optimisation. Each dd-bit sub-string for one
pipe is extracted from a genotype, and decoded into an integer, then the integer is mapped
10 a real number belonging to the range [152, 509] by Eq.(4.30). Thus a genotype has been
mapped to a phenotype in split pipe genetic algorithm optimisation formulation. The other
messy genetic algorithm parameters taken as different values compared with the discrete
formulation in Chapter 3 are a random seed of 0.9, a juxtapositional size of 300 and the

number of maximum generations of 100.
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4.6.2 Results and comparison for the two reservoir network

During the application of this model to the two reservoir network, a number of genotype
representations with different number of bits for representing the pipe size have been used
and the results are compared in Table 4-2. The more bits that are used for representing each
pipe, the more points in the interval are picked to form the search space, the more
evaluations that are required to search for the lower cost solutions. The best split pipe
solution ($1.7145 million) was found with a 9-bit representation. It is 2% cheaper than the
discrete optimal solution ($1.7503 million) by Simpson et al. (1994). The solutions,
however, found with the other representations are not very different in terms of the cost
except for the 4-bit solution. It can be concluded that the split pipe optimisation model gives
a lower cost solution than the discrete pipe formulation.

The hydraulic pressure deficits or differences between actual hydraulic pressures and
minimum allowable pressures at nodes are given in Table 4-3 for the split pipe solution
($1.7145 million). It is shown that the optimum is controlled by demand case 2. Two nodes,
node 4 and node 7, are critical for the optimal design solutions. The characteristics that the
optimum solution is governed by certain critical nodes were also observed in a previous GA
application (Simpson et al. 1994) to optimisation of water distribution networks.

Figure 4-5 shows the convergence behaviour of messy GA with the 9-bit
representation for split pipe optimisation of the two reservoir network. It is observed that
the convergence behaviour of the messy GA is similar to that of standard GA applications
(Simpson et al. 1994; Wu 1994; Babovic et al. 1994 and Dandy et al. 1996), i.e. the GA
quickly detects the optimal solution region but takes a long search process to reach the

optimal solution.
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Table 4-2 Comparison of the Best Split Pipe Solutions with Different Lengths of Genotype Representation

Number of bits for representing each pipe size

4 bits 5 bits 6 bits 7 bits 8 bits 9 bits 10 bits
Dia. | Length | Dia. | Length | Dia. | Length | Dia. |[Length| Dia. |Length | Dia. | Length | Dia. | Length
Pipe | (mm) | (m) | (mm) { (m) | (mm) | (m) | (mm) | (m) | (mm) | (m) | (mm) | (m) | (mm) | (m)
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(4] 356 6437 305 546 305 827 305 820 305 817 305 778 305 796
356 5891 356 5610 356 5617 356 5621 356 5659 356 5642
(5] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[6] 254 361 305 1609 254 75 254 164 305 1609 254 182 305 1609
305 1248 305 1534 305 1445 305 1247
[8] 203 1421 152 66 203 1609 203 1410 203 1609 152 36
254 188 203 1543 254 254 199 203 1609 203 1574
[11] 203 115 203 173 203 1227 203 1609 254 1609 203 741
254 1494 254 1436 254 382 203 1609 254 867
[13] 152 1609 152 1609 152 1609 152 1503 152 1609 152 1609 152 1609
203 106
[14] 203 1421 203 1516 203 427 203 254 1609 203 1609 203 970
254 188 254 93 254 1182 254 1609 254 639
Cost ($m)| 1.7448 1.7261 1.7164 1.7201 1.7206 1.7145 1.7166
Evaluation| 3,254 10,478 12,453 20,654 23,167 30,803 38,972
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Table 4-3 Hydraulic Pressure Deficit for Lowest Cost Split Pipe Solution ($1.7145

million) for the Two Reservoir Network

Node Pressure Surplus (m)*

ID Load case 1 |Load case 2 [Load case 3
2 7.32%* 9.64 15.35
3 11.98 3.80 9.31
4 7.99 0.01 4.65
6 10.91 3.89 19.93
7 13.92 0.03 22.70
8 21.28 2233 29.56
9 16.98 10.06 23.34
10 15.99 9.15 19.53
11 16.35 15.81 16.39
12 17.64 17.11 0.45

*A negative value indicates pressure deficit. **Bold values indicates critical nodes.
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Figure 4-5 Optimal Cost for the Split Pipe Solution $1.7145 Million by mGA —Two

Reservoir Network
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4.7 Case Study II: New York City Water Supply Tunnels

The New York water supply tunnels problem was posed by Schaake and Lai in 1969 to
select the optimal combination of pipe sizes. It has been studied by a number of researchers
in literature. More recently, Loganathan et al. (1995) proposed an outer flow search—inner
optimisation procedure for choosing a better local optimal. The outer search scheme used
ANNEALING and/or MULTISTART to choose alternative flow configurations to find an
optimal flow division among pipes. An inner linear program was used for the design of the
least cost diameters. The approach yielded a lower cost split pipe solution of $38.04 million
for New York water tunnels than results from previous studies up to date. This study
together with the improved GA (Dandy et al. 1996) and the messy GA application in the
last Chapter provides a sound basis for comparison with the genetic algorithm split pipe

formulation proposed in this Chapter.

4.7.1 Results and comparison for the New York city tunnels problem

In order for the GA to search for the best combination of pipe sizes, an 8-bit sub-string was
used to code the pipe diameter sizes for each of the 21 pipes. Thus a total of 168 binary bits
were required for this problem by the genetic algorithm split pipe formulation. Each sub-
string is mapped into an interval between 36 and 204 inches. Thus 256 points (pipe size
alternatives) uniformly distributed in the interval [36, 204] have been used to search for the
optimal split pipe solution. The pipe diameter choices are separated by 0.6588 inches ((204-
36)/255).

The GA split pipe solution and recently published results are summarised and

compared in Table 4-4. The split pipe model has found a fower cost solution than the
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improved GA (Dandy et al. 1996) and the outer flow search—inner optimisation approach
(Lognathan et al. 1995). As shown in Table 4-4, the cost of split pipe design solution is
$1.07 million lower than the improved GA solution by Dandy et al. (1996) and $0.31
million lower than the split pipe solution by Loganathan et al. (1995). The convergence rate
of the GA based split pipe formulation, as shown in Figure 4-6, indicates that to reach a
similar cost level to that previously obtained (Dandy et al. 1996 and Lognanathan et al.
1995) the GA split pipe model only requires about 30,000 network evaluations. This
number is approximately one third of the evaluations (96,750) required by the improved GA
discrete pipe optimisation as shown in Table 4-4. Thus the genetic algorithm split pipe
formulation provides an efficient search procedure for reaching the low cost solution. It is
also shown in Table 4-5 that the genetic algorithm split pipe solution is closer to the critical

constraint boundary than other solutions.

95



4. Split pipe formulation for genetic algorithm optimisation of water networks

Table 4-4 Comparing the Genetic Algorithm Split Pipe Design with Previous

Solutions
Discrete pipe solutions Split pipe solutions
Pipe Dandy et al. * Lognanathan** Messy GA**
(1996). et al. (1995)
Dia. (in) |Length (ff) [Dia. (in) |Length (ft) |Dia. (in) | Length (ft)
7 0 - 120 8902 96 867
[7] 0 - 132 698 108 8733
[15] 120 15500 0 -
[15] 0 -
[16] 84 26400 96 20476 84 697
[16] 108 5924 96 25703
[17] 96 31200 96 30986 96 17646
[17] 108 214 108 13544
[18] 84 24000 84 23247 72 4988
[18] 96 753 84 19012
[19] 72 14400 72 13687 48 1635
[19] 84 713 60 12765
[21] 72 26400 72 26291 72 5487
[21] 84 109 84 20913
Cost ($million)| 38.80 38.04 37.73
Evaluation 96,750 - 266,215
Hazen-Williams formulation:
*h =4.7291L(-Q—)1'852 p~48704 4% =4.73L(9)l'852 il
/ C s C
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Table 4-5 Comparison of Hydraulic Heads of Discrete and Split Pipe Optimal
Solutions for New York City Tunnels Problem

Node Minimum Discrete pipe solution Split pipe solutions
required head Dandy Lognanathan Messy GA
() et al. (1996) et al. (1995)
16 260.00 260.65 260.06 260.09
Pressure surplus = 0.65 0.06 0.09
17 272.80 272,98 272.83 272.8
Pressure surplus = 0.18* 0.03 0.00
19 255.00 255.84 255.06 256.12
Pressure surplus = 0.84 0.06 1.12
Cost ($million) 38.80 38.04 37.73

*critical node in bold
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Evaluation number

Figure 4-6 Optimal Cost for the Split Pipe Solution $37.73 million by mGA
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4.8 Summary

A split pipe formulation for the genetic algorithm optimisation of water distribution systems
has been developed. An analysis showing a comparison of the continuous pipe formulation
and the split pipe formulation has been presented and indicates that there is no guarantee
that the continuous pipe size model using a fitted convex cost function will reach an optimal
split pipe solution. The split pipe optimisation model, which allows the split pipe sizes to be
used in the optimisation procedure, has been formulated to search for the optimal split pipe
solution. This model has been implemented in a genetic algorithm formulation and tested on
two previously studied examples of optimisation of water supply networks. The results have
shown that the genetic algorithm split pipe model for optimal sizing and rehabilitation of
water distribution networks is able to give lower cost solutions than genetic algorithm
discrete pipe optimisation. The number of evaluations required for the split pipe optimal
solution is greater than that for the discrete pipe approach because more gene bits have been
used for representing the solution space of split pipe optimisation.

To develop a comprehensive methodology for optimal rehabilitation of water
distribution systems, current optimisation models need to be extended to consider other

components such as pump stations. This will be presented in the next Chapter.
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S. OPTIMAL REHABILITATION OF WATER DISTRIBUTION

SYSTEMS USING A MESSY GENETIC ALGORITHM

5.1 Introduction

Water distribution systems have existed for more than a hundred years in industrialised
countries. As these systems age and economies develop, it is essential that the water supply
infrastructure is continuously improved (rehabilitated) to meet the current and future
demands of both water quantity and water quality. The funds available for rehabilitation of
the water supply systems have increased in recent years, but are always limited. Thus
developing a technique for achieving an optimal rehabilitation of the water distribution
system is of great importance to ensure maximum benefits for every dollar expended.

In this Chapter, a messy genetic algorithm (mGA) is employed as a search algorithm
and integrated with a hydraulic solver to search for the optimal solution. The messy genetic
algorithm is a search algorithm, as introduced in Chapter 3, uses a population of variable-
length chromosomes and mimics the principles of biological reproduction. The approach is

applied to a case study network in this Chapter to demonstrate the application of the

technique.

5.2 An Overview of Rehabilitation

A water supply system needs rehabilitating when it reaches the stage where the system
cannot deliver adequate service. The objective is to satisfy the consumer’s demands in terms
of quantity and quality of water supplied. Thus rehabilitation of water distribution systems is

motivated by a combination of social, economical and political reasons. It is not a single
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activity but involves numerous decisions and activities, which transform an inadequate
water system into one that provides the quality of the service required by the consumers.
The decision-making process regarding the best strategy for rehabilitation may take into
account all the system components such as water supply dams, water treatment plants,
wells, storage tanks, pump stations, distribution pipelines and control valves. However, it is
not practical to consider all the facets in one decision-making stage. The development of a
computer-based optimisation tool for rehabilitation of water distribution pipelines and
pumps on which a large amount of capital investment has been spent (Walski et al. 1987
will constantly enhance the capability and efficiency of the decision-making process.

The rehabilitation decisions relating to the preferred strategy for a water distribution
system including pump stations can be undertaken as a search problem. A rehabilitation
action for each pipe is selected from a set of possible rehabilitation actions such as cleaning,
relining, replacing, duplicating the pipe (laying a pipe parallel to the existing pipe) or just
leaving a pipe as it is. A pipe size associated with the action is chosen from a list of
commercially available discrete pipe sizes. In addition, the pump capacity is determined for
each pump. The optimal rehabilitation strategy is the combination of the decisions for
rehabilitation of the pipeline and pumps that results in the minimum overall cost. Although
Walski et al. (1987) showed that the methods developed for optimisation of the design of a
water distribution system could be used to solve the problem of optimal rehabilitation of
water distribution systems, it is difficult to consider all the discrete variables (such as
rehabilitation action for each pipe) and the continuous decision variables efficiently by using
traditional linear and/or non-linear programming formulations. Kim and Mays (1994)
developed a mathematical formulation for the optimal rehabilitation of water distribution
systems using a mixed-integer non-linear programming approach. An implicit enumeration

procedure called the branch and bound algorithm was used to find the optimal rehabilitation
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actions for the pipeline while non-linear programming was used to size the pipes and pumps.
In Chapter 3 and Chapter 4, the application of a messy genetic algorithm (mGA) (Goldberg
et al. 1989) to water distribution system optimisation has shown that the mGA provides an
efficient approach within the genetic algorithm paradigm. Thus the mGA is employed to
solve the optimal rehabilitation problem in this Chapter. A case study is also presented to

demonstrate the application of this technique.

5.3 Problem Formulation

The objective of the optimisation model for rehabilitation is to minimise the sum of the
present worth of the costs which includes the pipeline rehabilitation cost, the expected pipe
repair cost and the pump energy cost. The total cost is minimised by searching for an
optimal rehabilitation strategy for pipelines and an optimal pump operational capacity
(assumed to be a constant pump horsepower) subject to constraints such as pressure head

requirements for all demand nodes and pipe size limitations.

5.3.1 Pipeline rehabilitation

Pipeline rehabilitation involves choosing a rehabilitation action e, from a set of possible
rehabilitation actions (e.g. duplicating or replacing a pipe or cleaning a pipe) and an
associated pipe size d, for rehabilitated pipe r. The cost of a pipe rehabilitation is a function
of the rehabilitation action and the associated diameter (e,,d.), wherer =1, 2, 3, ..., R It
is assumed that the cost for one pipe is a linear function of the cost per unit length of the
pipe with rehabilitation action e, and diameter d,. Thus the cost function of the pipeline

rehabilitation is given as:
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R

Creh :Z cr(er’d()Lr (51)

r=1
where R = number of rehabilitated pipes; L, = length of rehabilitated pipe r; d, = diameter
of rehabilitated pipe r, e, = rehabilitation action taking place at pipe r (eg. removing,

replacing, duplicating or cleaning) and c (e,,d, )= cost of unit length of rehabilitated pipe r

with diameterd, and event e, .

If no rehabilitation action is taken for a pipe, a cost may occur for repairing a pipe
break. Breaks are generally repaired by placing a sleeve around the break. The cost for
repairing the pipe break is a function of many factors such as the crew, equipment, sleeve
details, repaving and the associated overheads. A unit cost (dollars/break) of pipe break
repair has been derived as a function of pipe diameter by the U.S. Army Corps of Engineers

(1983). Thus the present worth of the expected cost of a pipe repair in its design life can be

formulated by introducing a break rate P, (breaks/mile/year), and is given as:

»(d,)PL
Z Z[(Hr)y 5280] ©2)

n=R+1 y=1
where N = the number of the pipes to be expected breaking; ¥ = planning period in years; P
= the expected break rate of the unit length pipe #. The break rate P, can be posed in many
ways, but the same break rate formulation as Kim and Mays (1994) is used. It was originally
given as a function of the pipe diameter by Goodrich et al. (1989) as follows.

P, = 0.819¢ "% (5.3)

where d, is the diameter of pipe n. Thus the pipeline cost is the sum of the rehabilitation
cost and the pipe break repair cost namely
Cope = Cren + Crp (5.4)
The pipeline cost Cppe is minimised subject to the pressure head requirement that

the pressure head hj being supplied at each demand node j under loading case / must be
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greater than or equal to the minimum allowable pressure head A J’."'” and less than or equal
to the maximum pressure head H'“, given as:

Hr" < h, < H™ (5.5)

5.3.2 Pump rehabilitation

Assume that a pump has a typical characteristic curve such as that given in the MAPS
manual (U.S. Army Corps of Engineers 1980). The useful horse power HP; for each pump
is used as a decision variable when considering rehabilitation of the pump stations. The
present worth of the energy cost for a pump can be obtained by summing the energy cost of
each pump in the operation period in its design life (in years), and given as (Kim and Mays

1994):

K Y T,
Co = E;{[%(S;gr?)ﬁjpk E[Mkﬂk ]} (5.6)
where M, = the unit cost (dollars/kwh) of electricity for pump k; and E; = the efficiency of
pump k;, AT, = the time of pump & in operation period ¢ during one day. The horse power
HP; cannot be smaller than an existing horse power HP; provided by the existing pumps,
that is

HP, 2 HP;. 6.7
which gives the lower bound of the pump decision variable HPy Thus the optimal
rehabilitation of water distribution systems is formulated as follows:

Search for:  (e,, d,) and HP,

Minimise: (Cope + Cpump)

Subjectto:  H™ < h,<H™
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HP, > HP;

In order to find the least cost rehabilitation strategy for the pipelines and pump
stations in the water distribution system, an integrated approach and the computer program
(mGANET) developed in Chapter 3, which coupled a hydraulic network solver EPANET
with a messy genetic algorithm (mGA), has been employed for optimisation of rehabilitation

of water distribution systems.

5.4 A Case Study

A hypothetical network, as shown in Figure 5-1, was studied by Kim and Mays (1994). It
provides a good example for demonstrating the application of the messy genetic algorithm
approach described in the previous section. The results of this Chapter are compared with
the previous results of Kim and Mays (1994).

The network consists of 17 pipes and 12 nodes as shown in Figure 5-1. The Hazen-
Williams roughness coefficients in all the pipes are assumed to be 50 (indicating severely
encrusted pipe interiors) in order to simulate an existing system that does not adequately
meet the water demand and the minimum allowable pressure head requirement. The Hazen-
Williams coefficient in a new pipe (replaced pipe) is assumed to be 130, while that of a
rehabilitated pipe is 100. We chose to present the case study in SI units although previous
work is in US customary units. Table 5-1 gives the characteristics of the pipes in the
network while Table 5-2 lists the demands and allowable pressure heads at the nodes. The
unit length costs given in Table 5-3 for each possible rehabilitation action and associated
diameter were obtained by the fitted cost functions by Kim and Mays (1994). The values of
other parameters are given as (Kim and Mays 1994) (1) the planning period of the pump

and pipe reparation is 20 years; (2) unit cost of electricity is 0.05 dollars/kWh; (3) pump
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efficiency 75% and (4) interest rate 6%. . These values were selected to ensure that the

results in this study are comparable to the previous results.

60.9

15.24m <~ |

Figure 5-1 Layout of the Water Distribution System (from Kim and Mays 1994)
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Table 5-1 Characteristics of Pipes in the Case Study Network

Pipe Length Diameter Roughness
No. (m) (mm) Coeft. (C)

1 3048 610 50

2 1524 457 50

3 1524 457 50

4 305 152 50

5 1676 381 50

6 1067 381 50

7 1676 381 SO

8 1372 305 50

9 762 229 50

10 1067 305 50

11 671 305 50

12 1981 381 50

13 1524 381 50

14 1676 381 50

15 914 381 50

16 1219 381 50

17 1219 229 50

Table 5-2 Characteristics of Nodes Used in the Case Study Network

Node | Elevation | Demand Allowable pressure head (kPa)
No. (m) (L/s) min. (kPa) min. (m) | max. (kPa) max. (m)
1 46 0 - - - -
2 49 142 276 28 827 84
3 50 0 - - - -
4 49 121 276 28 827 84
5 46 105 276 28 827 84
6 47 85 276 28 827 84
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Node | Elevation | Demand Allowable pressure head (kPa)
No. (m) (L/s) min. (kPa) min. (m) | max. (kPa) max. (m)
7 44 142 276 28 827 84
8 43 0 - - ] )
9 40 57 276 28 827 84
10 41 57 276 28 827 84
11 44 0 - - - -
12 40 57 276 28 827 84

5.4.1 Messy genetic algorithm coding and decoding
A binary string coding has been used for this study. Each bit of a string takes one value of
either 1 or 0. Three binary bits have been used to represent each pipe size variable of the 17
existing pipes to represent 8 possible choices of pipe sizes. Two binary bits have been used
for each existing pipe to represent 3 possible choices of rehabilitation actions that include
relining, replacing or leaving as it is (one coding is not used). A pipe breakage repair cost is
expected to occur for a pipe taking the action of leaving it as it is. Four bits are used for
representing the useful pump horsepower. Thus a total of 89 bits are needed for solving the
problem by using the formulation described earlier. A binary coding and decoding scheme
for the all possible pipe sizes and rehabilitation actions of the network are given in Table 5-4
and Table 5-5. The penalty factor for pressures which do not meet the allowable pressure
constraint for this problem was chosen to be $1,524,000/m (assumed originally to be
$5,000,000/ft prior to conversion to SI units) of deficit.

The mapping for this problem follows the mapping scheme given in Chapter 3. An
example of mapping for the case study network is given in Table 5-6. A string, for example
101110001101101011 O1 ...... 01111, is first divided into 17 substrings of 5 bits (2 bits for

coding the rehabilitation action and 3 bits for coding of the associated diameter) for each of
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the existing pipes. The action and diameter binary strings are treated as binary numbers and
converted to 10 decimal integers which are used as indexes. The sizes or diameters of the
pipes rehabilitated were found from Table 5-4 by the mapped indexes. The size of the pipe
for taking the action of ‘leaving’ was the same as the original size. Similarly, the
rehabilitation action for each existing pipe was found from Table S-5 by the mapped index.
The network cost of the solution can be calculated by the pipe diameter sizes and the
rehabilitation actions. The penalty cost is calculated by calling the hydraulic solver EPANET

to determine any pressure deficits. It is the penalty cost that degrades the fitness of the

string.

Table 5-3 Unit Length Cost of Rehabilitation Action and Associated Diameter

Diameter Possible Rehabilitation Actions for Pipes
(mm) Relining ($/m) | Replacing ($/m) Repairing ($/m)
152 82 136 2775
203 82 152 3317
229 82 161 3568
305 82 191 4265
381 82 226 4898
457 82 266 5484
508 84 294 5854
610 87 ’ 356 6555
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Table 5-4 Coding and Decoding Scheme of Available Pipe Sizes

Pipe diameter Binary substring Pipe size | Pipe size
(mm) corresponding to the pipe size index notation

152 000 0 d?

203 001 1 d’

229 010 2 d;

305 011 3 d?

381 100 4 dl

457 101 5 d;

508 110 6 d?

610 111 7 d?

Table 5-5 Coding and Decoding Scheme of Possible Rehabilitation Actions

Actions Binary string |Index |Rehabilitation action notation
Leaving a pipe 00 0 ey
Replacing a pipe 01 1 e’
Relining a pipe 10 or 11 20r3 es

Table 5-6 An Example of a Mapping for the Network

Pipe Tag 1 2
Variable: e d, e, d,
Genotype: 10 111 00 011
Index: 2 7 0 3
Phenotype: e; d ee dy
(action and diameter in mm)

3 4 . 17
e, d, e, d, ... e, d,
11 011 01 101 ... 10 111
3 3 1 5 ... 2 7
el di e di .. e d;

A solution: relining 610 leaving 305 relining 305 replacing 457......

relining 610
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5.4.2 Results and a comparison

The optimal solutions found by the messy genetic algorithm optimisation technique for the
case study network are compared with the previous results of Kim and Mays (1994) in
Table 5-7 and Table 5-8. Two solutions have been found by using mGANET. The solution
mGANET 1 has been obtained by using the same pump horse power as Kim and Mays
(1994). It shows that the mGANET found a lower cost solution than the method of branch
and bound coupled with a non-linear programming (Kim and Mays 1994). The mGANET
solutions for this case study are compared to the previous result by Kim and Mays (1994).
The solution mGANET 1 reduces the cost from $11.96 million to $11.58 million as shown
~ in Table 5-7. However, it also shows that the cost of the pipeline rehabilitation is only about
10% of the total cost. In other words, the cost of the water distribution system
rehabilitation is dominated by the pump energy cost. Thus another mGANET run was
performed by relaxing the lower bound of pump horse power from 1454 k# to 745.70 kW.
The solution mGANET 2 found by this run shows that mGANET has chosen a more
expensive pipeline rehabilitation strategy but a much lower-cost horse power of the pump
than the previous result. The total cost dropped from $11.96 million to $8.76 million a
saving of 26.7%. Also the pressure heads at demand nodes, as illustrated in Figure 5-2, are

closer to the minimum allowable pressure heads than the mGANET 1 solution.

Table 5-7 Cost Comparison of the Optimal Solutions

Type of cost (US$) Kim and Mays (1994) | mGANET 1 mGANET 2
Pipeline rehabilitation 1,372,838 996,341 3,280,193
Pump energy 10,587,207 10,587,207 5,480,615
Total cost 11,960,045 11,583,548 8,760,808
Percentage savings - 3% 26%
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Table 5-8 Comparison of the Optimal Rehabilitation Strategy

Components| Existing pipe | Kim and Mays (1994) mGANET 1 mGANET 2
No. Diam. (mm) [rehabilitation| Diam. |rehabilitation[Diam. [rehabilitation| Diam.
&
pump (kW) actions (mm) actions |[(mm)| actions (mm)

Pipe 1 610 Reline 610 Reline 610 replace 610
Pipe 2 457 Reline 457 Reline 457 replace 610
Pipe 3 457 Asis - Asis - Reline 457
Pipe 4 152 Asis - Asis - Asis -
Pipe 5 381 Asis - Asis - Reline 381
Pipe 6 381 Asis - Asis - Asis -
Pipe 7 381 Asis - Asis - Reline 381
Pipe 8 305 Asis - Asis - Asis -
Pipe 9 229 Asis - Asis - Asis -
Pipe 10 305 Asis - Asis - Asis -
Pipe 11 308 Reline 305 Reline 305 | Replace 508
Pipe 12 381 Replace 437 Reline 381 | Replace 610
Pipe 13 381 Replace 269 Reline 381 Reline 381
Pipe 14 381 Asis - Asis - Asis -
Pipe 15 381 Asis - Reline 381 Reline 381
Pipe 16 381 Asis - Asis - Asis -
Pipe 17 229 Asis - Reline 229 Reline 229

Pump (kW) 1454 - 1454 - 1454 - 818
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Figure 5-2 Pressure Heads of mGANET Solutions
5.5 Summary

An approach to the optimisation of the rehabilitation for water distribution systems has been
developed. An optimal rehabilitation model has been formulated to select a rehabilitation
action for each pipe from a set of possible rehabilitation actions such as duplicating,
cleaning, relining, replacing or just leaving a pipe as it is. A rehabilitation action and the
associated pipe size is chosen from a list of commercially available discrete pipe sizes, and a
pumping capacity is employed so that the water demand and minimum allowable hydraulic
pressure at all the nodes are satisfied while the total cost of the rehabilitation is minimised.
The total cost considered includes both the pipe rehabilitation cost and pumping cost.

To minimise the total cost, an integrated program mGANET, which has coupled the
messy genetic algorithm and a hydraulic network solver EPANET, has been employed to

search for the optimal rehabilitation strategy. The results of the case study have shown that
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the messy GA is efficient at searching for the optimal solution. It also shows that the cost of
the rehabilitation is dominated by the pump energy cost, which is almost 90% of the total
cost of the solution mGANET?2 and about 70% of the total cost of the solution mGANET1.
This implies that the optimal rehabilitation of water distribution system must consider not
only pump useful horse power but also the pump operation (scheduling). The consideration
of these aspects will provide more accurate information to evaluate the rehabilitation

strategies in an optimal rehabilitation model of the water distribution systems in the future.
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6. FAST MESSY GENETIC ALGORITHM FOR OPTIMAL
REHABILITATION OF LARGE-SCALE WATER

DISTRIBUTION SYSTEMS

6.1 Introduction

Engineering and science disciplines have made extensive use of genetic algorithms. A
number of genetic-based search paradigms have been developed and applied to different
problems. A growing demand for algorithms to solve new problems and a never-ending
process of designing algorithms strongly suggests the need for more efficient and more
robust genetic-based optimisation techniques. These algorithms should make few
assumptions regarding the objective functions and use as little domain knowledge as
possible.

The design of the pipeline within a water distribution system involves selecting pipe
sizes from a set of commercially available pipe sizes. It is a discrete optimisation problem.
The discrete optimisation problem appears to be easier to solve than the continuous one
because fewer possible solutions exist. In general, however, it is more difficult to solve. This
is due to the fact that the discrete design space is non-differentiable and nonconvex. The
standard gradient-based programming techniques and optimality criteria cannot be applied
directly. A global optimal solution of the discrete optimisation problem can be obtained only
by an exhaustive search (Arora et al. 1994). The genetic algorithm has been proven to be
robust for the optimisation of pipeline networks but usually requires a large number of

function evaluations (Simpson et al. 1994; Dandy et al. 1996).
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Genetic-based search techniques have been developed to exploit the information
(fitness and/or objective function value) gathered from samples taken from the search space.
The search space is quantified by different regions. The algorithms use the information to
decide which region to explore next. In other words, the search space can be seen as being
classified into different classes which represent certain relationships among solutions. Thus,
the search space can be decomposed into three partitions including the relation space, the
class space and the sample space (Kargupta 1995). For example, for a 4-bit problem, # # # f
is a relation between the samples, where f means a fixed bit. The strings # # # 1 and # # # 0
are two classes of the relation, where # is called don’t-care symbol which can be either 0 or
1. Finally the strings 0110 and 1110 are two samples of class # # # 0. Searching for an
optimum requires a search for right relations and classes.

A standard genetic algorithm (sGA) (Holland 1975) searches for relations and
classes implicitly. The sGA population combines the relation space, class space and sample
space all together. This results in sGA being a poor search for relations. The messy GA
(Goldberg et al. 1989) is designed to search for the relations and classes by using (1) a
variable-length genotype; (2) an explicitly enumerative initialisation; and (3) the cut and
splice genetic operators. However, the original messy GA usually requires a large number
of members in the initial population. It is difficult to apply the original mGA to a highly
dimensional problem. A fast messy GA (Goldberg et al. 1993), using a probabilistically
complete initialisation and building bloc;,k filtering process, was introduced to eliminate this
bottleneck. In this Chapter, the messy GA and the fast messy GA are applied to the
optimisation of design of pipeline networks. The efficiency of the messy GAs are compared
with standard GA paradigms. Finally, the fast messy GA is employed to solve a discrete

optimisation problem of large-scale rehabilitation of water distribution systems.
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6.2 Lessons From Genetic Algorithm Paradigms

6.2.1 An overview of messy genetic algorithms

A messy genetic algorithm is described as messy because it allows variable-length strings
that may be under- or overspecified with respect to the problem being solved as described in
Chapter 3. The messy gene, an ordered pair, is defined by its name (a tag) and value. A
messy chromosome is a collection of the messy genes. The underspecified strings may be
filled in by using a competitive template, a string that is locally optimal to the previous level,
while the overspecified strings may be dealt with by using a first-come-first-served rule
scanning from left to right. The messy GA is run in an era-wise search. Each era has three
stages namely (1) initialisation; (2) a primordial phase; and (3) a juxtapositional phase.
Initialisation in the original messy GA was performed by creating a population of all strings
of building blocks of length &, where k=1, 2, ..., X and K = the maximum number of eras.
Good building blocks of the desired length are selected in primordial phase by performing
thresholding selection alone. In this phase, it also adjusts the population size to be a
prescribed size for the reproductive processing of juxtapositional phase. Having enriched
the population with the best building blocks in the primordial phase, thresholding selection
and the cut-and-splice operators are used to reproduce offspring over generations with
some similarity to the standard GA. The optimal string found in era k is used as competitive
template in era k+ /of the messy GA run.

A messy genetic algorithm is one among the rare class of adaptive search algorithms
that emphasise searching for appropriate relations. The messy GA uses a competitive
template and explicit enumeration of good classes—building-blocks—to ensure correct
decision making. However, explicit enumeration of building-block essentially means a

complete lack of the benefits of implicit parallelism. The development of the fast messy GA
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has eliminated the major bottleneck of the messy GA—the enumerative initialisation. The
probabilistically complete initialisation and the building-block filtering process introduced in
the fast messy GA (Goldberg et al. 1993) were used to detect better classes from better
relations without sparing the advantage of implicit parallelism.

The fast messy GA has been applied to solving a target tracking problem—a
problem a high degree of interest in the field of air defence system (Kargupta 1995). On the
hundreds of target-tracking problems (150 clustered missile problem and 300 clustered
missile problem), the fast messy GA has found all track correctly after a reasonable amount
of evaluations. More recently the fast messy GA has been applied to discrete optimisation of
pipeline networks and compared with other genetic algorithm paradigms (Wu and Simpson
1997). It was shown that the fast messy GA is the most efficient algorithm among the

genetic algorithm paradigms for discrete nonlinear optimisation.

6.2.2 Why a standard GA sometime fails

A standard genetic algorithm using bit-based representation is usually a robust solver for a
wide range of search problems. The fundamental theory describing how the genetic
algorithms work is schema theorem (Holland 1975). A schema is a string over the alphabet
{*, 0, 1} of the length n, where n is the length of a genotype, which encode a complete
solution. A * symbol is a so-called don’t-care symbol, which can represent either O or 1. For
instance, A= 1* * 1 0 is a schema over chromosome of length 10 suchas * 1* * 1 Q0 * * * *
. 8(h) = 5 is the physical distance between the outermost defining positions of the schema,
and usually called the length of the schema. o(h) = 3 is the number of fixed positions

contained in the schema, and usually called the order of the schema. If a schema, which is
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relatively short and of low order, and has above-average fitness, is called a building block.
The building blocks are expected to grow in subsequently generations. An important issue,
however, is the linkage of the building blocks. The linkage is regarded to be tight if the fixed
bits belonging to the building block are close to each other on the chromosome, While loose
linkage occurs when the fixed bits are scattered on the chromosome. Loose linkage cause
problems to the GA since the standard GA doesn’t have any explicitly designed mechanism
to handle the loose linkage. For many optimisation problems, the linkage between bits is
unknown in advance, so handling the loose linkage is crucially important for an efficient

genetic algorithm.

6.2.3 Why messy genetic algorithm works

The messy genetic algorithm has been carefully designed by respecting the schema theorem,
particularly by considering the need for tight linkage quite seriously. It gets the linkage right
prior to subsequent genetic processing. Goldberg et al. (1989) found that messy genetic
algorithm was successful at (1) obtaining tight building blocks; (2) increasing the proportion
of the best building blocks; (3) making good decisions among the building blocks and
eventually and (4) exchanging the building blocks well. Those features lead the messy GA
to search efficiently for the optimal solution.

A genetic-based search starts with random initialisation. Initial population of the
original messy GA was initiated by complete enumeration as described in Chapter 3. It
creates a population with a single copy of all substrings of length or order £. It ensures that
all building blocks of the desired length are obtained. After the initialisation, the primordial

phase, in which selection alone is performed, enriches the population with fitter genotypes.
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This phase, together with thresholding selection in juxtapositional phase, ensures that a high
proportion of the best building blocks grows over generations.

The messy code relaxes the fixed-locus representation of the standard GA. It is the
messy code that enables the arbitrary building blocks to achieve a tight building blocks by
rearranging the tagged genes in close proximity to one other. The tight building blocks
correspond to a low probability of good ones being destroyed by crossover and other
genetic operators. Thus the messy GA exchanges the building blocks well.

A messy genetic algorithm makes good decisions among the building blocks by
decomposing the search space into two different spaces the sample space—template space
and the building block space—the population strings (Kargupta 1995). During the
primordial phase every string in the population has a length less than the problem length.
Each of them defines an equivalence class—a building block. Therefore, the strings in the
primordial stage represent the building block space. In the meantime, the template is always
a full string and defines the sample space in the messy GA. Since the main decision making
in the mGA is made during the primordial stage, the decomposition of the search space
makes the decision less noisy when compared to the standard GA. Thus unlike the standard
GA, the search for tight building blocks in the messy GA is more accurate and less
susceptible to err because of the explicit enumeration and the use of a locally template for

class evaluation.
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Figure 6-1 Initial Population Sizes Required by Original Messy GA Using

Enumeration

6.2.4 Bottleneck of original messy genetic algorithm

The original messy GA, as described in Chapter 3, adopted enumeration of all strings of
length k to create the initial population. This requires a population size of n =2* (IIJ

Obviously, the number of the evaluations of the initial population increases exponentially as
the problem length / and/or the order k¥ of the building blocks increase. The initial
population size is in order of O(%) while the juxtapositional phase processing of O(llogl)
(Goldberg et al. 1990). The overall computation of the original messy GA was dominated
by the initialisation. For example, as shown in Figure 6-1, the initial population size by the
complete enumeration of the order 4 building blocks for a problem of 40-bit is more than

one million. This bottleneck has been overcome by introducing a probabilistically complete
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initialisation and a gene filter procedure (Goldberg et al. 1993) into the messy GA. It speeds

up the search process, and is called a fast messy GA.

6.3 The Structured Messy Genetic Algorithm of Hahal et al. (1997)

A genetic algorithm called structured messy genetic algorithm (SMGA) was developed by
Hahal et al. (1997) and applied to optimal rehabilitation of water networks. The SMGA
could be more precisely seen as being constructed (simplified) from the original messy
genetic algorithm (mGA) by Goldberg et al. (1989, 1990) rather than Holland (1975). It is
believed that incorporating more features of the original messy GA would improve the

efficiency and effectiveness of the SMGA as discussed in the following sections.

6.3.1 Structured messy genotypes

The structured messy genetic algorithm (SMGA) starts a complete enumeration of all single
element namely one-variable solutions, for instance one pipe rehabilitation solutions. All the
single variable (or equivalent one digit genotype) decisions are evaluated and are
concatenated to assemble strings of a certain length (the number of digits) to form an initial
population. The length of the strings increases with a fixed step size over generations. Thus
the SMGA employed fixed-length strings in one generation, that is, the chromosomes in
each generation have the same length or a fidy structure. The fidy genotype representation,
similar to a standard GA genotype representation enables standard GA operators such as
tournament selection, crossover and mutation to be applied in a SMGA evolution process.
In contrast, the messy genetic algorithm of Goldberg et al. (1989) was originally developed

by using a tagged gene representation, that is, each gene is represented by its value and gene
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location in the chromosome. The chromosome can be underspecified with some genes not
included in the chromosome. These missing genes are filled in by using a competitive
template, which can be a random chromosome initially and replaced by a locally optimal
string as the messy GA progresses. Alternatively the chromosome can be overspecified
when there is more than one values being generated for the same gene location. The
overspecified genes are eliminated by following a rule of the first-come-first-served by
scanning from left to right. The length of strings can be varied not only over generations but
also within each generation. It provides a flexible coding representation of variable-length to

solve search problems of bounded difficulty.

6.3.2 Structured messy evolution

The proposed SMGA a procedure of Hahal et al. (1997) involves three stages including
complete enumeration of single-elemental solutions, a concatenation process of the longer
strings and standard GA reproduction process. The complete enumeration of single-
elemental solutions creates one-bit building blocks, which provides a genetic material pool
for the concatenations and the reproductions of the SMGA evolution. The SMGA revisits
the pool to pick up good gene materials to assemble a population of longer strings to be
evolved. Obviously, the quality of the population depends on both of the quantity and
quality of the building blocks in the géne material pool. Since only one-bit building blocks
are generated By the enumeration, it hardly guarantees adequate building blocks being
provided for the further evolution stages. This may contribute a low efficiency of the
SMGA as observed by Hahal et al. (1997) while applying the SMGA to a single-objective

optimisation.
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The original messy GA procedure by Goldberg et al (1989, 1990) starts with a
complete enumeration of order one (one-bit) building blocks, a primordial phase then
follows to select fitter building blocks for evolving the population and finally a
juxtapositional phase in which thresholding selection, cuf and splice operations take place.
The best string found is used as competitive template for evaluating underspecified
genotypes. The evolution process continues by enumerating order-two (two-bit) building
blocks. The complete enumeration of the building blocks of different orders guarantees
adequate gene materials being provided for evolving the population. Although the SMGA
can be extended to incorporate a similar process by generating more than one elemental
solutions, it will encounter the same bottleneck of the complete enumeration of the building
blocks as found for the original messy genetic algorithm. The complete enumeration of
building blocks lacks of implicit parallelism of the genetic algorithm and requires a huge
number of evaluations for the high order building blocks of a large dimensional problem.
Goldberg et al. (1990) overcame this problem by introducing a probabilistically complete
initialisation and a gene filtering process (Goldberg et al. 1990) to replace the initialisation
scheme of the complete enumeration of a certain order building blocks. Thus it is believed
that efficiency and effectiveness of the genetic algorithm paradigm can be enhanced by
maintaining the original messy GA features including the variable-length genotype which
allows the string lengths to vary not only over generations but also within the generation, a
two-phase evolution, thresholding selection, and also incorporating the gene filtering
techniques for filtering building blocks of any order to provide adequate gene materials for
the messy genetic algorithm evolution.

To avoid the possible computer memory difficulties of a genetic algorithm

implementation, advanced programming features such as dynamic linked structures, bitwise
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variables and operations can be used. One gene stored as an integer variable occupies 32
bits or 64 bits while one gene of binary representation stored as a one bit variable just needs
one bit. Thus tremendous memory can be saved by using bitwise storage. The dynamic
linked structure of genotypes provides a flexible and efficient memory operation, and

together with the bitwise operations can improve the efficiency of the genetic algorithms

without compromising the effectiveness.

6.4 Fast Messy Genetic Algorithm
Explicit enumeration of the building blocks of a certain length is very computationally time
consuming for applying the original messy GA to highly dimensional problems, and also for

running the messy GA over a number of eras for a simple problem. The problem is the need

to evaluate an initial population of 2"(19 substring structures, from which good building

blocks are selected. The fast messy GA preserves the feature of searching for tight building
blocks of the original messy GA. The tight building blocks are not initiated by explicit
enumeration but obtained by probabilistically complete initialisation and building block
filtering. It brings some benefits of implicit parallelism back to the messy GA. The

components of fast messy genetic algorithm are described in the following sections.

6.4.1 Components of fast messy genetic algorithm
The fast messy genetic algorithm preserves the main framework of the original messy
genetic algorithm. The explicitly initial enumeration of building blocks is replaced with

probabilistically complete initialisation and building block filtering procedure. Both
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techniques are incorporated into the original messy GA to improve the efficiency of the

messy evolution process.

(i) Probabilistcially complete initialisation

The original messy GA initially enumerates all the order-k building blocks. This initialisation
is deterministic or can be considered to be a non-GA type operation. The probabilistically
complete initialisation has been developed to replace the explicit enumerative initialisation.
The idea of the probabilistically complete initialisation is that all the order-k building blocks
can be defined using a much smaller number of strings, when the string length is much
greater than k. In other words, multiple combinations of the building blocks can be defined
by one long string. The length of the initial strings and the population size are the two
crucial factors in the initialisation stage.

Kargupta (1995) has shown that the length of the initial strings is the trade-off
between reduction of population size and increase in error probability. As the string length
increases, the population size decreases quickly, but the error probability increases. The
population size for the probabilistically complete initialisation is suggested n = O(0), I is the
length of initial strings and is suggested to be taken as I = / - k, where / is the problem
length or the number of the bits representing one solution, and & is the era of the messy GA
run or the length (order) of the building blocks that is expected to be filtered for
juxtapositional phase. Thus the probabilistically complete initialisation reduces the initial

population size from O(%) to O(l), and consequently improves the search efficiency.
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(ii) Building-block filtering

The Probabilistically complete initialisation technique generates an initial population of
strings with a length of / - k& Building blocks of order- k are expected to be filtered out by
gradual reduction of the string length. The length of the strings is reduced by random
deletion of genes. This process of detecting the good classes by thresholding selection and
gene deletion is called building block filtering.

The building-block filtering process offers a way of gradually detecting certain
order-k classes from strings of length /', where /’>k. During this stage, the string is selected
in presence of thresholding and the genes are occasionally deleted to reduce the string
length from /' to k. The gene deletion rate should be chosen so that it is on average less than
the rate at which better string get more copies by selection. Good results has been achieved
for the numerical experimental testing of fast messy GA by using a deletion rate of 0.5
(Kargupta 1995). A simple building block filtering scheme has been proposed as shown in
Figure 6-2. Thresholding selection continues with constant string length to reproduce more
copies of the better strings. No fitness evaluations are required at this stage. Gene deletion
follows by randomly deleting half of the current genes, which reduces the string length to
just half of the previous string length. These shorter strings are then evaluated and the same
procedure of thresholding selection and gene deletion are applied until the string length is

the same as the order k of the required building blocks.
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Repeat
Repeat
thresholding selection;
Until (population size > juxtapositional size)

delete L genes at random;

2
evaluate all new genotypes;

Until (string length < building block length k)

Figure 6-2 Pseudo-code of Building Block Filtering

6.4.2 A framework for the fast messy genetic algorithm

The fast messy GA, like original messy GA, is run over a number of eras. The main
difference is that the selection-only primordial phase in original messy GA is replaced by a
primordial stage that employs the probabilistically initialisation, thresholding selection and
gene deletion for filtering the building blocks. A framework describing the fast messy GA is
given in Figure 6-3. It starts era k = 1 with initial strings of length /* =/ -1. The good
building blocks are filtered out by following a procedure as shown in Figure 6-2 until the
string length equals to order of the era. Then the juxtapositional phase follows to reproduce
better individuals by applying messy genetic operators of cuf and splice and also mutation
operations. The optimal string of this era is used as competitive template of next era. The
fast messy GA is run era by era until the optimal or near-optimal solution is obtained or the

algorithm may be terminated when reaching a specified maximum number of eras.
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era = 0; /*the order of building block*/
while ( messy GA termination is not true )
{
era=era+ I;
probabilistically complete initialisation;
evaluation; /*network solver is called */
t=20;
while (building block filtering is true)
{
threshold tournament selection;
building block filtering;
t=1t+1;

/

while ( juxtapositional phase is true )
{
threshold tournament selection;
cul;
splice;
multation;
evaluation; /*network solver is called */

t=t+1;

/
Figure 6-3 A Framework of Fast Messy Genetic Algorithm
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6.5 An Enhanced mGANET

The components of the fast messy GA described above has been incorporated into the
integrated computer system mGANET for optimisation of design and rehabilitation of water
distribution systems. The mGANET developed in Chapter 3 was based on the original
messy GA. It was efficient at searching for the optimal solution, but constrained to solve
small dimensional problems or run a limited number of eras due to the bottle neck problem
in the initialisation of eras of the original messy GA. The fast messy GA has been developed
and incorporated into the mGANET, as shown in Figure 6-4, to overcome the difficulty of

evaluating a huge number of substrings in the original messy GA.

Hydraulic simulation

Fast messy GA optimisation !
Cost evaluation

era=1

> Probabilistically
complete initialisation

J

Fitness
[Building block ﬁltering]‘ > evaluation

Y
_‘I:Juxtapositional phase

Steady state
hydraulic simulation

era+ 1

era

Y

Cost function =
network cost + penalty

Figure 6-4 Program Structure of Enhanced mGANET—fmGANET
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The enhanced program called fnGANET maintained the same program structure as
mGANET described in Chapter 3. The fast messy GA is linked with hydraulic network
solver EPANET through the fitness evaluation of the genotypes and search for the optimal
solution over eras. The optimal string found in current era is used as competitive template in

next era. The program is terminated by reaching the maximum number of eras.

6.6 A Comparison Study—The Two Reservoir Network

A network with two water supply sources and fourteen pipes, studied by Simpson et al.
(1994) as shown in Figure 3-1, has been chosen for the comparison study. This network has
also been solved by the messy GA using complete enumerative initialisation in Chapter 3.
The results from the previous studies provide results for comparing the performance of the

messy GA approach with the standard GA approach.

Table 6-1 Population Sizes of Messy Genetic Algorithms for Optimisation of the Two

Reservoir Network

Messy GAs Original messy GA Fast messy GA
Eras era | era2 era3 era 1 era2 era3
Initialisation 300 435 4060 60 60 60
Juxtapositional 150 150 150 150 150 150

6.6.1 Fast messy GA coding, decoding and parameters

The genotype representation and the fitness formulation given in Chapter 3 are used in this
comparison study. Three binary bits have been used to represent each pipe size variable for
the five new pipes and three existing pipes to represent 8 possible choices of pipe sizes.
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Two binary bits have been used for each existing pipe to represent 3 possible choices of
rehabilitation actions that include cleaning, leaving or duplicating an existing pipe. Thus 30
bits are needed for solving the problem when using the discrete diameter formulation. A
decoding and mapping scheme from genotype to phenotype for optimisation of design and
rehabilitation of water distribution systems is given in Chapter 3. The penalty factor for
pressures which do not meet the minimum allowable pressure constraints for this problem
was chosen to be $5000/m of deficit to match the value taken by Simpson et al. (1994).
Table 6-1 shows the population sizes used by the original and fast messy GA. The other

parameters are splice probability P = 1.0, cut probability P, = 0.017, Mutation Probability

P,,=0.01 and maximum juxtapositional generations N N =10.

6.6.2 Results and comparison

The optimum discrete solution for this problem was found by the messy GA with different
random seeds and compared with the standard GA results (Simpson et al. 1994; Simpson &
Goldberg 1994) as in Table 6-2. Typical convergence rates of the messy GA with the seed
0.7 are respectively given for using explicitly enumerative initialisation and probabilistically
complete initialisation in Figure 6-5.

As shown in the Table 6-2, the fast messy GA is the most efficient at searching for
the global optimal solution of discrete optimisation of pipeline networks. The messy GAs
have found the lowest cost solution (global optimum) in each of the 10 runs with different
random seeds. The numbers of original mGA evaluations needed for achieving the global
optimal solution are less than for the standard GA. The messy GA using enumerative
initialisation required only one third to half of the evaluation numbers of the standard GA
(Simpson et al. 1994), and also less than the GA with tournament selection (selection
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pressure s 2). Simpson and Goldberg (1994) observed that increasing tournament

pressure (s = S) for the standard GA could reduce the number of evaluations, and thus
improve the search efficiency, but too much pressure (s =20) might lead the search to a
local optimum. The fast messy GA, using probabilistically complete initialisation and

building block filtering, has further reduced the number of the evaluations, being

approximately one third of the evaluation numbers of the original messy GA.

Table 6-2 Results of Comparison of GA Paradigms for the Two Reservoir Network

Standard Genetic Algorithms Messy Genetic Algorithms
Roulette wheel selection Tournament selection Explicitly Probabilistically
enumerative
(Simpson et al. 1994) (Simpsoxllgi )Goldberg initialisation (Wu & | complete initialisation
(N = 100; Pc = 0.9; (N = 1000; Pc = 0.5; Simpson 1996)
Pm=0.02) Px=0.5,Pm =0.0)
Cost (m$) |Achieved at | Cost Achieved at Cost |Achieved at { Cost | Achieved at

Run| (% difference | evaluation | ($m) |evaluation number| ($m) | evaluation | ($m) evaluation
No. {from optimum)[ number (s=2)| (s=5) number number

1 |1.7910 (2.3%) 23,400 1.7503 ] 9,000 | 4,000 |1.7503 6,148 1.7503 1,112

2 1.7503* 10,350 1.7503 { 9,500 | 4,000 |1.7503 6,148 1.7503 2,243

3 |1.8417 (5.2%) 22,410 1.7503 | 8,500 | 4,500 |1.7503 6,148 1.7503 1,855

4 |1.8390 (5.1%) 15,660 1.7503 | 9,500 | 5,500 |1.7503 8,958 1.7503 3,004

5 1.7503 17,190 1.7503 1 8,000 { 4,500 §1.7503 2,957 1.7503 4,053

6 1.7503 11,070 1.7503 | 8,000 | 5,000 {1.7503 2,522 1.7503 2,722

7 1.7503 10,080 1.7503 | 8,000 | 4,000 |1.7503 8,758 1.7503 3,053

8 11.7999 2.8%)| 4410 |1.7503| 7,500 | 4,500 [1.7503| 10,042 |1.7503 2,622

9 1.7503 12,510 1.7503 } 10,000 | 4,000 |1.7503 3,977 1.7503 1,622

10 1.7503 19,890 1.7503 § 10,000 | 3,000 {1.7503 6,148 1.7503 1,722
Average 14,697 8,800 | 4,300 6,181 2,400

*The global optimum solution
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Cost in each generation (Sm)

Figure 6-5 Comparison of Generation Best Cost for Original and Fast Messy

Messy GAs optimisation (random seed = 0.7)
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The fast messy GA employed the probabilistically complete initialisation and the

building block filtering process. The initialisation just required a population of O(J) of string

length (/ - k). The fast mGA started the first era (order 1 with £ =1) with 60 strings of 29-bit

strings. It was followed by the building block filtering process, in which the strings are cut

in half every generation and evaluated by using a random template. Members for the next

generation were selected by thresholding selection. The building block filtering process

continues until the string length is equal to 1. The population size was increased to 150 at

the end of building block filtering process. As for the original messy GA, it was then

followed by the juxtapositional phase. For the second and the third eras the same population

size of 60 as for the first era was used in the fast messy GA, and also the building block
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filtering was carried out for order 2 and order 3. In contrast, as shown in Table 6-1, the
original messy GA required an initial population size of 435 and 4060 for era 2 and era 3
respectively. Thus, the fast messy GA overcomes the bottleneck of the original messy GA

and provides a more efficient search algorithm for the discrete optimisation of the pipeline

networks.

6.7 Optimal Rehabilitation of Large-scale Network

Optimisation of rehabilitation of water distribution systems is a non-linear discrete
optimisation problem. This type of problem has been studied previously by applying many
different optimisation techniques including genetic algorithms. Although it has been found
that the GAs are generally efficient at solving the problems of discrete optimisation, the
difficulty of searching for optimal or near-optimal solutions increases as the dimension of
the problem increases. A real water distribution system, however, always involves hundreds
of pipes and dozens of pumps and valves. Previously developed GA techniques for
optimisation of rehabilitation of a large-scale water distribution network are not efficient at
searching for the optimal solution. The original messy GA has been shown more efficient
than the standard GA paradigm at searching for the optimal solutions, but suffers from the
bottle neck of complete enumerative initialisation of certain order building blocks. In this
Chapter, the fast messy GA has been implemented and compared with the other genetic
algorithm paradigms. It shows that the fast messy GA provides the most efficient genetic
search algorithm and overcomes the curse of the dimensionalty. As an example of its

application the fast messy GA is applied to optimal rehabilitation of a large-scale water

distribution network in this section.
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Figure 6-6 Layout of a Moroccan Network

6.7.1 A Moroccan network

A real water distribution system in Morocco, as shown in Figure 6-5, is for a town of
50,000 inhabitants. This network consists of 115 nodes and 167 pipes and is chosen to test
the efﬁciency»and effectiveness of the fast messy GA for optimal rehabilitation of the large-
scale water distribution system. The problem has been studied by Hahal et al. (1997) using
the structured messy genetic algorithm. The fast messy genetic algorithm has been

employed to solve this problem.
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6.7.2 Optimal rehabilitation criteria

The optimisation of rehabilitation of the Moroccan network has been specified as
minimisation of the total cost of the rehabilitation by searching for the optimal pipe
diameters for the new pipes and the optimal combination of rehabilitation actions including
replacement of pipes, duplication of pipes, cleaning or lining of pipes or leaving pipes as
they are. The optimal solution is sought subject to the minimum pressure head of 20.0
metres at each node. Table 6-3 and 6-4 give the data for existing pipes and new pipes to be
added to the existing system. Table 6-6 gives the cost information of the rehabilitation
action and the pipe size associated with the action. It shows that there are 4 possible

rehabilitation actions and 8 discrete pipe sizes available for each pipe.

A repair cost is expected for the pipe if no rehabilitation action is taken with the
assumption (Hahal et al. 1997) that new pipes are assumed to have no annual repair cost
during their first 10 years, as they are usually under warranty for this period. The repair cost

is calculated as follows (Hahal et al. 1997).

=tr J ;
C)= 3 0l 6D

t=tp (l +r)“'P

where C,,(j) = repair cost of a break for pipe j; r = interest rate; ip = present year; #r = year

tp + 10; and J(f) = break rate in year ¢, which is given by

Jt)=J,(1+b) (6-2)

where J, = break rate in year O (break/km/yr); b = break rate growth coefficient and ¢ = time

in year.
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Table 6-3 Data for Existing Pipes of the Moroccan Network

Pipe [From| To | Diameter | Length |Hazen William| Repair cost | Break rate
No. |Node|Node (mm) (m) C coefficient cost (no./Km/yr)
1 1 2 400 330 120 0 0
2 2 3 400 120 120 0 0
3 3 80 200 40 90 0 0
4 74 8 350 422 120 0 0
5 81 114 100 432 90 0 0
6 4 5 80 350 80 3000 1.1
7 83 | 73 80 190 80 3000 1.1
8 5 | 104 80 210 90 0 0
9 10 6 100 420 70 4500 1.1
10 84 | 110 100 220 90 0 0
11 7 72 100 254 90 0 0
12 3 74 300 154 120 0 0
13 8 9 350 170 120 0 0
14 8 14 100 130 90 0 0
15 9 13 100 94 90 0 0
16 96 15 80 150 90 0 0
17 15 16 100 180 80 4500 0.8
18 { 16 | 13 100 240 80 4500 0.9
19 | 16 | 75 100 130 80 4500 0.95
20 | 13 | 17 100 336 70 4500 1.15
21 11 17 100 80 70 4500 1.1
22 9 11 350 360 120 0 0
23 4 10 100 280 90 0 0
24 | 44 10 100 180 20 0 0
25 (108 ( 12 300 180 120 0 0
26 | 112 18 200 130 120 0 0
27 18 19 100 150 90 0 0
28 26 19 100 366 90 0 0
29 19 22 80 210 100 0 0
30 | 21 95 100 150 100 0 0
31 20 | 21 150 36 120 0 0
32 18 20 150 170 120 0 0
33 61 20 80 80 90 0 0
34 | 62 61 100 300 90 0 0
35 12 62 200 100 120 0 0
36 | 85 | 86 100 240 100 0 0
37 | 62 [ 105 200 144 120 0 0
38 63 65 80 440 80 3000 0.95
39 | 105 | 64 100 260 80 4500 0.85
40 | 65 | 66 100 380 90 0 0
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Pipe [From| To | Diameter | Length |Hazen William| Repair cost Break rate
No. {Node|Node (mm) (m) | C coefficient cost (no./Km/yr)

41 87 63 100 234 70 4500 1.05
42 21 58 150 64 120 0 0
43 58 | 106 100 170 100 0 0
44 64 66 80 310 100 0 0
45 66 | 67 100 70 100 0 0
46 | 67 | 71 100 490 100 0 0
47 | 67 68 100 50 100 0 0
48 | 68 | 70 80 250 100 0 0
49 | 68 | 91 100 260 100 0 0
50 | 23 22 100 200 100 0 0
51 23 24 100 90 100 0 0
52 25 24 80 398 100 0 0
53 25 23 100 190 100 0 0
54 26 25 100 50 100 0 0
55 27 26 100 100 100 0 0
56 | 27 | 29 100 300 100 0 0
57 | 30 | 29 80 210 100 0 0
58 28 27 100 40 100 0 0
59 | 28 30 80 180 100 0 0
60 | 33 28 100 190 80 4500 1.1
61 33 15 100 140 80 4500 1.1
62 32 76 100 186 100 0 0
63 32 | 30 80 176 100 0 0
64 | 33 31 150 80 100 0 0
65 31 54 150 130 70 6000 0.9
66 31 56 150 490 80 6000 0.75
67 | 56 | 78 150 100 90 0 0
68 57 56 100 556 80 4500 0.9
69 | 57 79 80 416 100 0 0
70 56 55 100 148 100 0 0
71 55 77 100 126 100 0 0
72 | 50 | 49 100 450 100 0 0
73 54 53 150 70 100 0 0
74 | 53 55 100 270 90 0 0
75 53 49 150 190 90 0 0
76 76 | 49 100 210 100 0 0
77 | 48 | 101 150 160 100 0 0
78 45 47 100 226 100 0 0
79 | 46 | 45 100 40 100 0 0
80 | 46 50 100 174 100 0 )
81 51 50 80 100 100 0 0
82 76 51 100 138 100 0 0
83 52 51 100 124 100 0 0
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Pipe [From| To | Diameter | Length |Hazen William| Repair cost | Break rate
No. |Node|Node (mm) (m) | C coefficient cost (no./Km/yr)
84 | 34 52 80 286 80 3000 1.2
85 34 33 300 114 70 15000 0.65
86 35 34 300 170 90 0 0
87 | 35 43 100 340 100 0 0
88 36 | 35 300 100 100 0 0
89 | 37 | 36 300 40 100 0 0
90 97 37 400 140 100 0 0
91 37 38 300 300 100 0 0
92 | 38 39 150 130 100 0 0
93 39 | 40 150 214 80 6000 0.95
94 | 40 | 41 80 20 80 3000 1.2
95 42 | 41 150 136 80 6000 0.8
96 | 39 | 100 150 590 70 6000 I
97 43 46 100 130 100 0 0
98 | 42 | 43 100 34 100 0 0
99 | 36 | 42 100 134 100 0 0
100 { 115 | 82 80 84 120 0 0
101 | 82 83 100 364 120 0 0
102 | 97 | 96 100 450 110 0 0
103 | 85 84 100 310 110 0 0
104 | 102 7 60 170 90 0 0
105 | 86 | 102 80 110 120 0 0
106 | 105 | 87 100 206 120 0 0
107 | 88 89 80 240 100 0 0
108 | 64 88 100 18 100 0 0
109 | 89 | 90 100 154 120 0 0
110 | 90 91 150 120 120 0 0
111 ] 91 | 69 100 220 100 0 0
112} 70 | 69 60 300 120 0 0
113 | 106 | 60 100 150 90 0 0
114 | 106 | 90 80 210 120 0 0
115 | 58 87 100 150 90 0 0
116 | 58 | 94 60 196 120 0 0
117 | 94 | 92 60 340 120 0 0
118 | %94 93 60 470 120 0 0
119 | 101 | 57 150 124 120 0 0
120 | 47 | 101 150 100 100 0 0
121 | 100 | 47 150 180 100 0 0
122 | 100 | 99 60 280 120 0 0
123 | 99 57 80 150 120 0 0
124 | 98 99 80 140 120 0 0
125 | 103 | 98 100 986 120 0 0
126 | 38 | 103 100 30 120 0 0
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Pipe |From| To | Diameter | Length |Hazen William Repair cost | Break rate
No. |Node| Node (mm) (m) C coefficient cost (no./Km/yr)
127 5 83 80 80 100 0 0
128 ) 6 84 100 90 80 4500 0.95
129 | 12 | 85 100 64 80 4500 0.8
130} 86 | 65 100 290 80 4500 0.85
131 | 104 | 73 60 250 120 0 0
132 6 104 80 160 100 0 0
133 | 105 | 86 100 176 120 0 0
134 ] 16 | 27 60 180 120 0 0
135 | 22 | 95 100 20 90 0 0
136 | 95 | %4 60 110 120 0 0
137 | 9 | 14 80 60 - 100 0 0
138 | 80 97 400 190 100 0 0
139 | 49 | 48 150 50 100 0 0
140 { 49 | 48 100 50 100 0 0
141 | 11 | 108 350 130 120 0 0
142 | 108 | 44 100 24 100 0 0
143 | 33 32 100 54 100 0 0
144 | 74 81 100 140 100 0 0
145 | 88 63 100 92 100 0 0
146 | 110 | 7 100 110 120 0 0
147 | 57 | 111 150 1500 120 0 0
148 | 17 | 112 200 170 120 0 0
149 3 80 250 40 120 0 0
150 | 33 28 150 190 120 0 0
151 | 11 17 200 80 120 0 0
152 | 57 79 80 416 120 0 0
153 { 105 | 64 150 260 120 0 0
154 | 64 | 66 100 310 120 0 0
155 | 88 89 100 240 120 0 0
156 | 58 | 106 100 170 120 0 0
157 | 114 | 115 80 96 90 0 0
158 | 114 | 4 100 38 90 0 0
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Table 6-4 Data for New Pipes of a Moroccan Network

Pipe No. {From node | To node{Length (m)| Pipe No. | From node| To node {Length (m)
1 81 107 470 6 93 92 440
2 78 113 230 7 113 93 180
3 107 82 190 8 113 109 300
4 107 59 190 9 74 81 140
5 92 90 460

Table 6-5 Node Data of a Morrocan Network

Node | Demand | Minimum Node Demand | Minimum
No. (L/s) head (m) No. (L/s) head (m)

2 5.07 20 59 0.92 20
3 0.73 20 60 39 20
4 0.81 20 61 1.24 20
S 1.33 20 62 1.43 20
6 0.86 20 63 3.72 20
7 0.97 20 64 0.95 20
8 0.73 20 65 445 20
9 0.11 20 66 3.61 20
10 1.77 20 67 1.52 20
11 0.26 20 68 1.69 20
12 1.26 20 69 6.49 20
13 3.13 20 70 2.33 20
14 1.05 20 71 1.45 20
15 1.02 20 72 6.39 20
16 0.75 20 73 29 20
17 3.7 20 74 1.05 20
18 2.93 20 75 1.21 20
19 3.54 20 76 0.59 20
20 0.7 20 71 0.36 20
21 0.23 20 78 0.33 20
22 1.52 20 79 443 20
23 0.81 20 80 0.28 20
24 1.71 20 81 2.87 20
25 2.02 20 82 2.49 20
26 1.35 20 83 3.01 20
27 0.39 20 84 3.72 20
28 0.8 20 85 1.97 20
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Node | Demand { Minimum Node Demand | Minimum
No. (L/s) head (m) No. (L/s) head (m)
29 2.25 20 86 0.67 20
30 2.21 20 87 0.58 20
31 1.67 20 88 0.82 20
32 1.06 20 89 0.76 20
33 0.43 20 90 3.6 20
34 2.21 20 91 2.92 20
35 1.46 20 92 3.39 20
36 0.19 20 93 522 20
37 0.31 20 94 2.24 20
38 1.73 20 95 1.16 20
39 6.29 20 96 2.18 20
40 1.4 20 97 0.6 20
41 1.51 20 98 1.36 20
42 2.15 20 99 1.35 20
43 0.88 20 100 1.97 20
44 1.08 20 101 042 20
45 1.97 20 102 1.74 20
46 1.39 20 103 2.64 20
47 191 20 104 Q.59 20
48 1.07 20 105 1.09 20
49 1.25 20 106 1.69 20
50 1.22 20 107 1.43 20
51 2.66 20 108 1.65 20
52 0.24 20 109 2.62 20
53 0.66 20 110 0 20
54 1.55 20 111 477 20
55 4,74 20 112 0 20
56 2.12 20 113 0 20
57 6.55 20 114 0 20
58 0.91 20 115 0 20
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Table 6-6 Unit Cost of Available Pipe Sizes for the Rehabilitation of a Moroccan

Network
Pipe Possible rehabilitation actions
Diameters | relining a pipe |replacing a pipe| duplicating a pipe
(mm) ($/m) ($/m) or a new pipe ($/m)
80 85 110 100
100 100 190 175
150 150 240 220
200 220 350 320
300 300 600 550
400 410 850 780
500 500 1050 980
600 630 1500 1350

6.7.3 Fast messy GA parameters

Binary coding has been used for solving the optimisation of the rehabilitation of Moroccan
network. Two bits have been used for coding the 4 rehabilitation actions and 3 bits have
been used for coding the 8 pipe sizes for each of 158 existing pipes. Three bits have been
used for coding the 8 pipe sizes for each of the 9 new pipes. Thus 817 binary bits are used
for one alternative solution of the Moroccacn network. The optimal solution is sought over
4 eras. Each era started with an initial population of 820 and a juxtapositional population of
1500. The other messy GA parameters used for solving this problem are splice probability
P, = 0.9, bit-wise cut probability Px = 0.0166, allelic mutation probability P = 0.01, genic

mutation probability = 0.01 and the maximum generation for each era = 200.

6.7.4 Results
The optimisation model as described above has been established for optimal rehabilitation of
the Moroccan network by using the fnGANET. A number of fmGANET runs have been
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carried out to search for the optimal rehabilitation strategy by using the different penalty
cost factors. A set of the optimal or near-optimal solutions have been found. The cost of the
optimal rehabilitation solution for the Moroccan network for each of the 8 different penalty
factors is given in Table 6-7. It shows that there are slight differences among the optimal
solutions by using penalty factors from $550,000 to $750,000 per meter of the excess
heads. The greater the penalty factor that was used in the optimisation model, the greater
the cost of the least solution found. This is because the large penalty factor forced the
genetic algorithm search towards the feasible region. The genetic algorithm operations
tended to reproduce more genotypes within the feasible region than outside of the region. It
helps to ensure the feasibility of the optimal solution, but requires more search effort to
reach the optimal solution as shown in Table 6-8.

The optimal rehabilitation actions and associated pipe sizes for the top 4 solutions
(the other solutions are given in Appendix A) are given in Table 6-9. The total costs of
these 4 solutions are almost same as shown in Table 6-7, but the optimal rehabilitation
actions are quite different as observed in Table 6-9. These different optimal configurations
provide engineers and/or decision-makers more options to choose the optimal rehabilitation
strategy by using other non-quantifiable engineering criteria.

This case study demonstrates that the fast messy GA is highly efficient at searching
for the optimal or near-optimal solution for the discrete optimisation of large-scale water

network. The total number of possible solutions for the rehabilitation of the Moroccan

28 17 0245

network equals 2%'7, which is approximately 8.74 x 10", A complete enumeration of this
solution space would consume 2.77 x 107 centuries of CPU time even if assuming that
10,000 objective evaluations can be done every second. The fnGANET have found the

optimal or near-optimal solutions by evaluating about 600,000 alternatives as shown in
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Table 6-8. Although it is not possible to prove whether or not the fmGANET has found the
global optimal solution, the convergence rates of the f mGANET runs, as shown in Figure 6-
7 and 6-8, indicate that the fast messy GA has efficiently improved the process of searching
for the global optimal solution. The best cost in each generation has been quickly improved
from about 10.0 million down to 1.1 million.

Figures 6-7 and 6-8 also show the typical convergence behaviour of the fast messy
GA. The best generation cost was initially very large, but improved along the fast messy GA
optimisation. The cost increased in next era due to the population being initialised again.
The cost improved fairly quickly by using the best string found in last era as competitive
template and kept improving by the fast messy GA optimisation until it reached the
maximum number of the generations specified for this era. For the next era, the fast messy
GA search started again until it reached the maximum number of eras. The optimal or near-

optimal solution was found at the end of fast messy GA search.

Table 6-7 Cost of Optimal Rehabilitation Strategies of the Moroccan Network

Fast messy | Penalty | Repair | Relining or | Replace- | Duplicat- | New pipe | Total

GA solutions | factor cost [cleaning cost| ment cost | ion cost cost cost
fmGA1l 550,000 | 235,352 | 41,600 29,020 | 497,680 | 309,200 (1,112,852
fmGA2 750,000 | 221,087 105,900 0 519,150 | 301,100 |[1,147,237

fmGA3 | 500,000 | 215,266 | 82,500 | 14,740 | 526,100 | 309,200 [1,147,806
fmGA4 | 700,000 | 230,839 | 79,500 | 21,600 | 518,180 | 309,200 1,159,319
fmGAS | 600,000 | 224,083 | 54,600 0 606,480 | 309,200 |1,194,363
fmGA6 | 650,000 | 195,863 | 173,300 | 12,100 | 515,880 | 309,200 |1,206,343
fmGA7 | 800,000 | 158,192 | 277,200 | 79,120 | 543,570 | 326,000 |1,384,082
fmGAS (1,000,000 213,990 | 67,510 | 22,400 | 614,380 | 477,500 |1,395,780
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Table 6-8 Pressure Heads and Excess at Critical Nodes of Moroccan Network

(EPANET)

Optimal Node 59 Node 69 Node 87 Node 111 Evaluations
solutions| head |excess| head |excess| head |excess| head | excess | achieved

(m) | (m) | m [(m) ] (m) | (m | (m) (m)
fmGA1 | 20.09 | 0.09 { 20.01 | 0.01 | 20.13 | 0.13 | 20.17 0.17 630,290
fmGA2 | 20.40 | 0.40 | 20.24 | 0.24 | 20.02 | 0.02 | 20.45 0.45 571,290
fmGA3 | 2092 { 0.92 { 20.18 | 0.18 | 20.03 | 0.03 | 20.08 0.08 566,290
fmGA4 | 20.54 | 0.54 | 19.99 |-0.01 | 20.02 | 0.02 | 20.00 0.00 586,290
fmGAS | 20.13 | 0.13 [{20.017]0.017] 20.01 | 0.01 | 20.87 0.87 430,290
fmGA6 | 20.07 | 0.07 | 20.00 | 0.00 | 20.20 | 0.20 19.99 -0.01 575,290
fmGA7 | 20.54 | 0.54 | 20.12 | 0.12 | 20.02 | 0.02 | 20.25 0.25 599,290
fmGAS8 | 2024 | 0.24 | 20.04 | 0.04 | 20.48 | 0.48 | 21.42 1.42 906,970

Table 6-9 Optimal Rehabilitation Actions and Associated Pipe Sizes of the Moroccan

Network
Pipe fmGAl fmGA2 fmGA3 fmGA4
ID | Action | Dia. Action Dia. Action Dia. Action Dia.
(mm) (mm) (mm) (mm)
1 |duplication| 500 | duplication | 500 | duplication | 400 | duplication | 400
2 | duplication| 80 leave - | duplication | 150 leave -
3 leave - leave - | duplication | 100 reline 200
12 leave - leave - | duplication | 300 leave -
21 reline 100 leave - reline 100 reline 100
22 leave - leave - leave - duplication | 80
26 leave - leave - | duplication | 80 leave -
31| replace | 200 reline 150 leave - replace 300
32 leave - leave - leave - duplication { 200
37 | duplication| 200 | duplication | 300 leave - leave -
39 | duplication| 80 | duplication | 80 leave - leave -
42 leave - leave - leave - duplication | 300
45 leave - reline 100 leave - reline 100
54 reline 100 leave - duplication | 80 leave -
55 reline 100 | duplication | 100 leave - leave -
58 | duplication| 80 reline 100 leave - duplication | 80
60 leave - leave - reline 100 leave -
64 | duplication| 150 reline 150 reline 150 leave -
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Pipe fmGAl fmGA2 fmGA3 fmGA4
ID | Action Dia. Action Dia. Action Dia. Action Dia.
(mm) (mm) _(mm) (mm)
66 leave - reline 150 | duplication [ 80 leave -
73 leave - duplication | 80 leave - leave -
77 leave - leave - duplication | 80 leave -
79 leave - reline 100 leave - leave -
81 leave - leave - leave - reline 80
88 leave - duplication | 80 leave - leave -
89 | duplication | 200 leave - reline 300 | duplication | 150
92 | duplication| 80 leave - leave - leave -
94 leave - leave - reline 80 leave -
97 { duplication| 80 leave - leave - duplication | 150
99 leave - leave - leave - duplication | 100
106 | duplication| 80 | duplication | 100 | duplication | 80 leave -
108| replace 150 leave - reline 100 reline 100
110 leave - | duplication | 80 leave - leave -
115| leave - leave - leave - duplication | 80
124 leave - leave - duplication | 80 leave -
126{ reline 100 leave - leave - duplication | 100
127| leave - leave - reline 80 leave -
128 leave - leave - leave - reline 100
129 reline 100 leave - reline 100 | duplication { 150
130 leave - leave - leave - reline 100
135 leave - leave - leave - reline 100
136| replace 80 leave - replace 80 leave -
142| leave - leave - replace 80 leave -
143! reline 100 leave - leave - reline 100
145 duplication| 80 leave - leave - leave -
146 leave - leave - reline 100 leave -
148| leave - leave - leave - duplication | 80
149| leave - leave - duplication - leave -
150 leave - leave - leave - duplication { 80
151 leave - duplication | 80 leave 100 leave -
153| leave - leave - | duplication | 80 leave -
158 reline 100 leave - reline 100 leave -
159 new 80 new 80 new 80 new 80
160 new 150 new 150 new 150 new 150
161 new 80 new 80 new 80 new 80
162 new 80 new 80 new 80 new 80
163 new 80 new 80 new 80 new 80
164 New 80 new 80 new 80 new 80
165 New 150 new 100 new 150 new 150
166 New 80 new 80 new 80 new 80
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Pipe fmGAl fmGA2 fmGA3 fmGA4
ID Action Dia. Action Dia. Action Dia. Action Dia.
(mm) (mm) (mm) (mm)
167 New 80 new 80 new 80 new 80
total
costf 1,112,582 1,147,237 1,147,806 1,159,319
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Figure 6-7 Convergence Rate of fmGA1 Solution for Optimal Rehabilitation of the
Moroccan Network
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Figure 6-8 Convergence Rate of fmGA2 Solution for Optimal Rehabilitation of the

Moroccan Network

6.8 Summary
In this Chapter, the standard genetic algorithm paradigm has been compared with the messy
genetic algorithm for the two reservoir network. The standard GA defines the relations and
classes implicitly by using a fixed-length representation. It combines the relation space, class
space and sample space all together, thus a poor and noisy decision process occurs.
Increasing the tournament selection pressure can improve the search efficiency, but too
much pressure may lead the search to a local optimal.

Messy GAs emphasise searching for appropriate relations. The original messy GA
uses a competitive template and explicit enumeration of good classes or building blocks, to
ensure correct decision making. However, using an initialisation procedure where building

blocks are explicitly enumerated essentially prevents the messy GA from being applied to
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highly dimensional problems. The probabilistically complete initialisation and the building
block filtering process are introduced into the fast messy GA to detect better classes from
better relations. A comparison study of the messy GAs for optimisation of pipeline
networks has been carried out and shows that the fast messy GA is the most efficient
algorithm among the genetic-based search paradigms. It eliminates the major bottleneck of
the original messy GA—the explicitly enumerative initialisation and thus provides a
promising optimisation algorithm for solving highly dimensional discrete optimisation
problems.

The fast messy GA has been implemented and integrated with hydraulic network
solver EPANET. The integrated approach has been applied to the optimal rehabilitation of a
large water distribution system in Morocco. This application has demonstrated that the fast
messy GA is very efficient at solving large-scale optimisation problems. A set of optimal or
near-optimal solutions have been found by employing different penalty factors. The greater
the penalty, the greater the optimal cost and also the more evaluations of objective
functions, however too small a penalty factor may not be able to ensure the feasibility of the
solutions. As observed in the optimisation of the water distribution systems, the optimal
solution is often located at the edge of the feasibility boundary since there are always a few
of nodes critical for the solution. Thus it may enhance the efficiency and effectiveness of the
genetic algorithm search procedure to adapt the population of a GA search towards the

edge of the boﬁndary of the feasible and infeasible regions. This will be explored in next

Chapter.
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7. BOUNDARY SEARCH OF GENETIC ALGORITHMS BY

SELF-ADAPTIVE PENALTY

7.1 Introduction
It is generally difficult to solve constrained nonlinear optimisation problems that are often
found in engineering design disciplines. A commonly used method for handling the design
constraints of a problem in constrained optimisation is by use of a penalty function. Genetic
algorithms outperform gradient-based optimisation methods at dealing with the cases where
the optimisation problems are characterised by a number of peaks. Much effort is required
for developing a penalty function approach for genetic and/or evolutionary algorithms to
solve the constrained nonlinear optimisation problems. No method is completely robust and
efficient at solving the constrained nonlinear optimisation problem in a general sense.
Particularly, not a method is efficient and effective at searching for the boundary area
between feasible and infeasible regions of the search space of the constrained nonlinear
optimisation problem. This ability of the genetic algorithms searching for the boundary is
important in the case of optimisation problems with nonlinear equality constraints while
being particularly important for the optimisation of water distribution systems. This is
because the optimal or near-optimal solutions are always located at the boundary of the
active nonlinear constraints of the minimum hydraulic pressure head requirements at some
of the nodes in the water distribution system. These nodes are often called critical nodes for
the optimisation of the design and rehabilitation of the networks.

A penalty function method for handling the constraints in the GA distorts the

objective function to force the search towards feasibility. Typically, the approach requires
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one (or more than one) penalty factors to construct a weighted sum of the constraint
violations and the objective functions. It is the penalty factor that defines the degree of the
distortion of the objective function, and consequently has a major influence on the
performance of the GA search. Different penalty factors may lead the search process to a
different solution. Tuning the penalty factor is not only time consuming, also requires a trial
and error procedure. In this chapter, a strategy for the co-evolution of the value of the
penalty factor is proposed by coding the penalty factor into each of the genotype in addition
to the normal chromosome coding. The idea is to evolve or to self-adapt the penalty factor
for forcing the genotypes into the region of the boundary of the feasible and infeasible
regions along the GA optimisation horizon. The genotypes that have encoded penalty
factors and produce fitter offspring will survive longer, consequently, the preferred penalty
factor value will spread through the population and be evolved over generations. The self-
adaptive penalty method is applied in this Chapter to a well-studied example of optimisation
of water distribution system to demonstrate the effectiveness of the method. The numerical
results have shown the ability of the self-adaptive penalty approach of the genetic algorithm

to reach the optimal and near-optimal solutions by searching for the boundary of the feasible

and infeasible regions of the search space.

7.2 Constrained Optimisation Problems
A constrained nonlinear programming problem (NLP) is to search for the global optimum
solution x subject to a set of nonlinear constraints. It can be generally written as

search for x = (x;, X2, ..., Xa) € R"

such that minimum f{x)
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subject to g(x)=20 Jj=12,..17;
xS x, < XM i=12,.,m
where x™" = the lower bound of the i-th variable; x™ = the upper bound of the i-th

variable; f{x) is the objective function defined on the n-dimensional Euclidean space R,
and the constraint functions g(x) define the feasible region of the search space. In general, it
is impossible to develop a deterministic method for the NLP problem in the global
optimisation category. One of the main difficulties in solving the NLP problem is that of
local optima. Local optima satisfy just the mathematical requirements on the derivatives of
the functions, and many optimisation techniques based on gradient methods result in
obtaining a local optimal solution only.

Evolutionary algorithms are global methods that aim at complex objective functions (eg.,
those that are nondifferentiable or discontinuous). However, most research on applications
of evolutionary computation techniques to NLP problems has been concerned with complex
objective functions but no constraints. Many of the numerical optimisation functions used
by various researchers during the past 20 years did not include any constraints (apart from
specified domains of variables). More recently, a set of constrained numerical optimisation
functions have been studied by evolutionary algorithms using different penalty functions and
specific genetic operators (Michalewicz and Schoenauer 1996). But it has not been clear
what makes nonlinear constrained optimisation problem hard to solve. A number of possible
difficulties are summarised as follows (Michalewicz and Schoenauer 1996).

e The ruggedness of the unconstrained fitness landscape is certainly the first important
characteristic influencing the overall problem difficulty. For instance, linear or convex
objective functions will always result in easier constrained problems than chaotic
functions.
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e The sparseness of the feasible region is indeed a crucial factor of difficulty. In some
problems, finding a single feasible point is difficult. Moreover, a large slope of the
constraints on the border of the feasible region is another way in which a constrained
problem can make the penalty method difficult to apply.

e A high ratio between the highest global optima of the objective function (on the whole
domain where it is defined) and the optima of the constrained function (e.g., the local
optima of the objective function in the feasible region), as well as a small distance
between these global optima and the feasible region, can also make the constrained
optimisation problem almost intractable for penalty methods.

e The number of active constraints at the optimum is of course important. the more
constraints that are active at the optimum, the more likely to succeed are algorithms
searching close to the boundary.

It is hard to predict (1) the ruggedness of the unconstrained region; (2) the spareness of the

feasible region and (3) the number of active constraints. It seems worthwhile to resort to the

metaphor of the evolutionary techniques, the self-adaptation of the search procedure for

handling nonlinear constraints in constrained GA optimisation.

7.3 Conventional Method for NLP

A favourite method for solving the constrained optimisation problem is to reduce it to a
sequence of unconstrained problems that are easy to solve. The idea is that each of the easy
problems is solved and that the sequence of solutions of the easy problems will converge to
the solution of the original difficult optimisation problem. This is often refereed as to

sequentially unconstrained minimisation technique (SUMT) by Fiacco and McCormick
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(1968). A penalty function is traditionally introduced to convert a constrained NLP into a
sequence of unconstrained nonlinear optimisation as follows.

search for x = (xp, X ..., Xx») € R"

minimising  0bj(x) = f(x)+ penalty(x)

subject to XM < x, < xM i=1,2,..,m
where F is the feasible region of the search space.

The penalty functions are designed to penalise the infeasible solutions, namely, to
force the search towards the feasible solution region by solving an unconstrained
optimisation problem. The penalty function is based on the distance of a solution from the
feasible region, it is zero if no violation occurs and is a positive otherwise. The penalty of an
infeasible solution is usually calculated based on a function of the distance between the
solution and the feasible region. The penalty function is often defined by a weighted sum of
the amount of actual constraint violation. The weight on the penalty term is usually called
penalty factor. There are number of different ways of constructing the penalty function
which gives rise to different performance of the constrained nonlinear optimisation

techniques.

7.3.1 Traditional penalty methods

The penalty fuﬁction penalty(x) is traditionally constructed from the constraint functions in
such a way that as the penalty factor approaches zero (or infinity) the unconstrained
optimum of the augmented objective function converges to the solution of the original NLP.
Two basically different penalty techniques and a hybrid method were suggested by Haug

and Arora (1979).
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(1) Interior penalty method This technique defines the penalty function given as

penalty(x) = r(zj:- g.j(x)) 7.1

where 7 = penalty factor and g(x) = the j-th constraint. The penalty factor is selected as a
sequence r; that approaches zero while the solution of NLP is approached. This penalty
function is continuous within the feasible region, but constructs an objective surface that is
infinitely high at the boundary of the feasible and infeasible. It is the infinitely high objective
value that forces the search procedure to be within the feasible region. Thus this technique
requires the initial point within the feasible region, but initialising a feasible point is normally
“hard” in most cases of NLP.

(2) Exterior penalty method. Unlike the interior penalty method, initial points for the
exterior penalty method are not required to be within the feasible region of NLP. The idea
in the exterior penalty method is to add to the original objective function a penalty for the

points outside the feasible region and zero inside the region. The exterior penalty function

can be given as

I _ ] 0 5 X GF
penalty(x) = t.Z, [gj(X)] xeF (7.2)
. )=
where F = the feasible region of the search space and ¢ = penalty factor that is selected as a
sequence of #, ¢, — o while the points approach to the optimum of NLP. This penalty
function discourages the minimum of the new augmented objective function from being too

far from the constraints set. It handles equality as well as inequality constraints without any

difficulty.
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(3) Mixed interior-exterior penalty method. A combination of the interior and exterior
penalty methods are applied to NLP with inequality constraints and equality constraints.
The interior method cannot be used if the interior of the constraint set is empty, such as a
single equality constraint. The exterior method cannot used if some constraints are not well
defined. Thus the mixed method allows for treatment of problems that may have both these
undesirable features and cannot be treated by either pure interior or exterior methods.

These traditional penalty methods are often used for point based optimisation
techniques. It establishes a theoretical and empirical foundation for the constrained genetic
algorithm optimisation. The penalty methods have been extended in evolutionary algorithms

for handling the nonlinear constraints.

7.4 Methods in Evolutionary Algorithms for NLP
A great deal of research work has been done to develop methodologies for the constrained
nonlinear optimisation using evolutionary algorithms. They are generally classified as

e penalty method;

o searching for the feasible solutions;

¢ hybrid method.
These methods were generally reviewed by Michalewicz and Schoenauer (1996) in context
of numerical function optimisation. They are discussed in this section in a framework of

engineering optimisation.

7.4.1 Penalty methods

The penalty function methods developed in evolutionary algorithms are mainly as follows.
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(1) Static penalty — Homaifar, Lai and Qi (1994) suggested this method by using a

penalty function as

0
J ) xel
penalty(x)= {Z Vi8] xeF (7.3)

where 7, = the penalty coefficient for constraint j at violation level i and i =1, 2, ..., . The
static penalty method assigns one penalty factor to each of / levels violation for each of J
constraints. The drawback of this method is that a large number of penalty coefficients are
required even for a small optimisation problem. It is hardly applicable for solving the
problem of engineering optimisation due to large number of constraints.

(2) Dynamic penalty — It was proposed by Joins and Houck (1994). The penalty is

evaluated by the formula given as

9 xelk
penalty(x) =4 (C x t)aZ[ g (x)]ﬂ feF (7.9

It assumed that the penalty on a infeasible solution increases as the generation (iteration)
increases. The penalty is multiplied by (C * #)®, where C = 0.5, B = a = 2, t is the
generation or iteration. This method gave very good results, in general, for quadratic
objective functions. In most numerical experiments, it gave good results in early
generations, but the penalty increased too fast to be useful, as a result the search is hard to
escape from a local optima.

(3) Annealing penalty — This approach is based on dynamic penalty method and was
introduced by Michalewicz and Attia (1994) and Michalewicz (1996). The penalty cost is

given as

] 0 5 xeF
> (&) x¢F (7.5)

i=!

penalty(x)={_1
2t

158



7. Boundary search of genetic algorithms by self-adaptive penalty

where 1 is called temperature. The penalty increases as the femperature is cooling down
from a starting temperature such as 1.0 to a freezing temperature such as 0.00001. This
method was used in conjunction with a set of special operators in Genocop (for Genetic
algorithm for Numerical Optimisation of Constrained Problem) by Michalewicz and
Janikow (1991). These special operators maintained the feasibility of linear constraints, and
the penalty cost is calculated by decreasing the values of temperature. Obviously, this
method requires a starting and a freezing temperature and a cooling scheme to decrease the
temperature. The optimal solution was reported to be very sensitive to the cooling scheme.
(4) Adaptive penalty — This method (Bean and Hadj-Alouane 1992) used the same
penalty evaluation as the traditional exterior penalty method. The penalty factor was
adjusted by a rule similar to “1/5 success rule” in the evolutionary strategy (Back et al.
1991). The penalty decreased for (s+1)st generation if all the best individuals in ¢
generations were feasible, and increased if all the best solutions in last £ generations are
infeasible. The penalty remained the same value if some solutions were infeasible and some
of them were feasible.

(5) Death penalty — The death penalty method (Back et al. 1991) just simply rejects
infeasible solutions. The method provided good results for some problems, but was not

stable as others (Michalewicz 1995). It generally gave a poor performance.

7.4.2 Search for feasible solutions
The methods emphasis the search for feasible solutions only. There are three methods as

discussed as following.
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(1) Behavioural memory method — This method (Schoenauer and Xanthakis 1993)
considers the constraints in a sequence. Switching from one constraint to another is based
on arrival of a sufficient number of feasible individuals in the population. It requires a linear
order of all the constraints and a flip threshold that is the percentage of the feasible
individuals in the population for a specific constraint.

The algorithm starts evolving the population until the flip threshold for constraint j is
satisfied, then the next constraint is considered. The population is evolved until the flip
thresholds for all the constraints are satisfied. Then the population is optimised by using
death penalty approach. Obviously the order of the constraints could have some influence
on the optimal solution, and also the solution quality is governed by the death penalty
method used at the final stage of the optimisation.

(2) Superiority of feasible points — This method (Powell and Skolnick 1993) was based
on the classical penalty method with one exception in which any feasible solution is better
than any infeasible solutions. The difficulty with this method sometimes is to locate feasible
solution.

(3) Repairing infeasible points — This method was proposed by Michalewicz and
Nazhiyath (1995). The initial population P; is generated to meet linear constraints. The P is
divided into two sets namely P, which is the so-called reference population satisfying all
constraints and Py the set of infeasible solutions. Any point s from Pris repaired by randomly
projecting a random point between s and r (r is selected from P,), that is, z=as + (/ - a)r
until a fully feasible point is generated. This method always returns a feasible solution. The
feasible point is only evaluated by the objective function without being distorted by the
_penalty function. For engineering optimisation problems, the repair technique can be

essential to guarantee an efficient search procedure, and also the technique needs to be
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modified to cope with discrete variables that are often found in real world problems such as

optimisation of water distribution systems.

7.4.3 Hybrid methods

It has been recognised that hybridising EA and/or GA with traditional optimisation methods
improves the efficiency of the search procedure. An interesting approach developed for
handling the constraints, which has been successfully applied to some engineering
optimisation problems, is Vector Evaluated Genetic Algorithm (VEGA).

The VEGA method was proposed by Schaffer (1985). It treated the penalties of all the
constraints as a vector of multiobjective function along with the objective function.
Multiobjective techniques are applied to minimise all the components of the vector. This
approach was applied by Parmee and Purchase (1994) in the development of a technique for
constrained optimisation of engineering design. Surry et al. (1995) modified VEGA into a
two-objective optimisation problem by ranking all the population members based on the
constraint violation. The rank r and the objective value lead to a two-objective optimisation
problem. It performed well for the optimisation of gas supply networks.

Of all the methods discussed above, the penalty methods are generally applied to
solving NLP in evolutionary algorithms. Each of the methods, however, involves one (or
more than one) penalty factor to be tuned to achieve the best performance of the genetic
algorithms. However, tuning the penalty factor produces a dilemma, that is, too small a
penalty may lead the search to infeasible region, but too high penalty may restrict the GA
search inside the feasible region and forbid any shortcut across the infeasible region. As a
‘result the GA may fail to reach the optimum solution. The idea of the boundary search
method as developed in this research is to self-adapt the penalty factor by co-evolution of
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the factor in such a way that the GA population is adjusted (forced) to search the boundary
of the feasible and infeasible regions. Thus it is believed that the performance of GA search

can be improved for NLP problems with the optimal solution at the boundary.

7.5 Boundary Search GA by a Self-adaptive Penalty
7.5.1 Boundary optimisation problem

Optimal solutions of many of the nonlinear constrained optimisation problems are located
at the boundary of the constraint set. For the optimisation problems given as (Zhu et al.
1984):

search for x

n
such that minimum obj(x) = a,x{txfr...xln

i=l

subject to gx)<0, j=1,..,J

where a;, f;= constant coefficients and f; > 0. It has been generally proved (Zhu et al.
1984) that the optimal solution is at the boundary of the constraint set if there is an optimal
solution. Thus searching the boundary of the constraint set is essential to reach the optimal

solution of this type of the optimisation problems.

7.5.2 Boundary search

Conventional optimisation and heuristic methods recognised the need for searching the
boundary of the constraint set. A boundary search method (Zhu et al. 1984), based on the
complex method of Box (1965), was proposed for the optimisation problem in the case of
‘the optimal at the boundary. This method was successfully applied to optimisation of design

of concrete arch dams. Wu and Whang (1992) employed this method to solve a problem of
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fuzzy optimisation, which quantified subjective uncertainties of the active constraints in
conventional engineering optimisation problems. A heuristic approach for constrained
optimisation was developed in conjunction with the strategy of scatter search (Glover,
1977). This approach was more recently applied to a variety of problem settings in
combinatorial and nonlinear optimisation by Glover & Kochenberger (1995).

Although it has been realised (Michalewicz and Schoenauer 1996) that evolutionary
computation techniques have huge potential for incorporating specialised operators that
search the boundary of feasible and infeasible regions in an efficient way, a method has not
yet been developed to be generally effective for the constrained engineering optimisation. A
common situation in any constrained optimisation problems is that some constraints are
active at the global optimum. This optimum thus lies on the boundary of the feasible space.
Conversely, it is commonly acknowledged that restricting the size of the search space in
evolutionary algorithms (as in most search algorithms) is generally beneficial. Hence, it
seems natural in the context of constrained optimisation to restrict the search for the
solution to the boundary of the feasible part of the space. Two specific evolutionary
algorithms (Schoenauer and Michalewicz 1996) searching for boundary of the feasible
regions have been designed and tested on two continuous numerical functions. The
algorithms start initialising feasible solutions and generating the next generation of the
individuals by' using the specific crossover and mutation, which keep the offspring on the
surface (boundary) of the constraints. The results obtained show that the algorithms
designed specifically for these two numerical functions are very effective and efficient at
reaching the global optima. Some discussion was also given on the design of general

_evolutionary operators searching for the edges, but it is highly unlikely to construct such a
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type of operators by analytical approach. This is due to the nature of the high nonlinearity of

the search problems with implicit constraints in engineering optimisation.

7.5.3 Self-adaptive penalty

The co-evolutionary (or self-adaptation) metaphor was originally introduced by Béck et al.
(1991) into evolutionary strategy to evolve the mutation probability. A similar approach is
employed to self-adapt the penalty factor to preserve the population of genotypes close to
the boundary. The penalty factor is encoded onto each member of the population and
allowed to evolve. The genotypes that have encoded penalty factors and produce fitter
offspring will survive longer, consequently, the preferred penalty factor will spread through
the population and be evolved over generations.

Co-evolution of the penalty factor is implemented as follows. For any given problem, a
genotype (chromosome) contains its normal solution coding, and also the coding of the
penalty factor. As shown in Figure 7-1, the sub-string coding the penalty factor is attached
to the chromosome of the problem solution. The penalty coding is mapped onto a

prespecified range of the penalty factor given as

max min rr
j - dex—1
Yp =y {Za,’,,dexb “~ } (7.6)
b -1 dex=1

where 7, = the penalty for the genotype 7, ™" = the lower bound of penalty factor; y™* =
the upper bound of the penalty factor; aj, 4o = the dex-th bit of the sub-string coding the

penalty factor for genotype #; vy = the number of the bits coding the penalty factor; b = 2
for binary coding or 10 for integer coding. The mapped factor will be used in the fitness
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evaluation of the genotype. Thus the fitness is not only contributed to by the solution

coding, but also by the penalty factor coding.

11101011111100001011001100110100/011011000110100

encoding the problem solution N encoding the penalty factor

7

<
-~

Figure 7-1 Genotype Representation of Co-evolution of Penalty Factor

The scheme of co-evolution of the penalty factor has been implemented within the fast
messy GA described in Chapter 6. It has been applied to optimisation of water distribution
system to test the effectiveness of the co-evolutionary penalty strategy. The test results of
the optimisation indicate that the GA search procedure favoured the lower bound 7" of the
penalty factor. After a few number of generations, the lower bound of the penalty
dominated the genotype population. Too small a value of Y™ led the population far away
from the feasible region. A large value of 7", however, forced the population to converge
to a local optimal within the feasible region. Ideally, the lower and upper bounds of the
penalty are to be adapted in such a way that the population is maintained searching for the
boundary of the feasible and infeasible regions. Thus it will improve the effectiveness of the
GA to reach the optimal solution located at the boundary.

A heuristic rule has been developed in this research to adapt the penalty bounds to
keep the GA population search for the optimal at the boundary. A ratio of the number of
feasible solutions to the sum of the feasible and infeasible solutions is suggested to measure

the degree of the genotype allocation in the search space. If the ratio is about 0.5, it simply
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means that the population is at the boundary of the feasible and infeasible regions. Thus the
rule for adapting the bounds of penalty factors is formulated as follows.
Increase the lower and upper penalty bounds by 20% of the upper bound if the
ratio of the number of the feasible solutions to the sum of the feasible and
infeasible solutions in every certain number (say 20) of generations is less than
30%,;
OR
Decrease the lower and upper penalty bounds by 20% of the lower bound if the
ratio is greater than 50%.
This rule and the co-evolution of the penalty factor have been implemented and applied to

the optimisation of water distribution systems in the following section.

7.6 Boundary fmGA Optimisation of Water Distribution Systems
It has been observed that the optimal solution of design and/or rehabilitation of water
distribution systems is found at the boundary of hydraulic pressure constraints of the critical
nodes. The optimisation model formulated for the design and rehabilitation of a water
distribution system in this study or many others generally falls into the category of a
boundary optimisation problem. It is believed that the strategy of searching the boundary of
the hydraulic pressure constraints will improve the efficiency and effectiveness of the
optimisation procedure.

The self-adaptive penalty described above has been implemented into fmGANET
developed in Chapter 6. The penalty function employed for the constrained optimisation of

- water distribution systems is similar to the exterior penalty method and given as
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penalty(D, E) = 'y{ mla.x {m%x {0, ™ - HJ}J} (1.7)

=1

where y = the penalty factor that is to be adapted along the GA optimisation. To
demonstrate the application of the boundary search strategy, the New York Tunnels
problem has been chosen for this application. Although this problem may not represent all
the characteristics of optimisation of water distribution systems, it has been very well
studied in literature and provides an excellent example to investigate the behaviour of the

boundary GA search strategy.

7.6.1 Results for a case study

The fast messy GA implemented within the fmGANET has been employed for the study of
application of boundary GA search strategy. The genotype coding scheme is the same as
used in Chapter 3, except additional 4 binary bits are used for coding the penalty factor and
attached to the genotypes of the problem solutions. Thus the problem length of the
chromosome increases from 84 to 88 binary bits. To investigate the convergence behaviour
of the boundary search strategy, the maximum number of eras of 10 has been used in the
messy genetic algorithm with a juxtapositional population size of 200. The other messy GA

parameters are the same as in Chapter 3.
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Table 7-1 Comparison of Conventional GA Optimisation with Boundary GA

Optimisation for New York Tunnels Problem

Node | Minimum Fast messt GA with fixed penalty Fast messy GA with adaptive
factors per ft _penalty factors per ft
ID | required y=2 y=S5 y=1 y =11 initial initial initial
range range range
head (ft) | million | million | million | million [1,10] | [1, 50] | [0.210]
16 | 260.00 25914 | 259.84 | 261.27 | 260.40 | 260.52 | 260.52 | 260.52
Excess = -0.86 -0.16* 1.27 0.40 0.52 0.52 0.52
17 |272.80 271.46 | 272.63 | 272.80 | 272.85 | 272.86 | 272.86 | 272.86
Excess = -1.34 -0.17 0.00 0.05 0.06 0.06 0.06
19 | 255.00 25424 | 254.82 | 255.47 | 255.00 | 255.71 | 255.71 | 255.71
Excess = -0.76 -0.18 0.47 0.00 0.71 0.71 0.71
Cost ($million) 32.33 37.62 39.42 39.69 38.80 38.80 38.80
Achieved at
evaluation 15,513 | 44,562 | 21,245 | 18,876 } 22,508 ) 22,508 | 51,497
numbers

*A negative value of the pressure head excess means a constraint violation, and the Hazen-

William formula used for this case study is given as A= 4.7291L(Q/C)
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Figure 7-2 Convergence Behaviour of GA Optimisation of New York Tunnels

Problem with Conventional Penalty Method

The optimisation of New York tunnels problem has been carried out by using the

fmGANET using a conventional penalty approach of fixed penalty factor and the boundary

search strategy by adaptive penalty factor. For the conventional penalty optimisation, Four

different penalty factors of $11,000,000, $7,000,000, $5,000,000 and $2,000,000/ft have

been used for the investigation, while three different ranges of the penalty factor were used

for the GA boundary optimisation by adaptive penalty factor. The resuilts obtained by both

approaches are compared in Table 7-1. The optimal solutions are given in Appendix B.

The fast messy GA identified the same critical nodes in a similar way as many other

studies in literature. The results show that the fixed penalty factor of about $7,000,000/ft is

169



7. Boundary search of genetic algorithms by self-adaptive penalty

the best parameter for the optimisation of New York tunnels problem. The larger the
penalty factor such as $11,000,000/ft, the sooner the search procedure converges to the
solution, but it is not the optimal solution of the problem. Conversely, the small penalty
factor such as $2,000,000/ft led the GA search to the infeasible local optimal solution after a
few generations. To the contrary, the adaptive penalty optimisation has been shown very
effective for the different ranges of the penalty factor. The study of a conventional penalty
optimisation has indicated that the penalty factor for the New York tunnels problem was
around $5,000,000/ft, thus a normal penalty factor range of [1, 10] million was first used to
test the boundary GA optimisation strategy. The optimal solution has been achieved after
22,508 evaluations. The other two runs, one with the scaled-up upper bound of the normal
penalty range and the other with the scaled-down lower bound of the normal penalty range,
have also been carried out. The results show that the optimal or near-optimal solution has
been achieved for both the scaled-up penalty range and the scaled-down penalty range. The
fast messy GA optimisation using adaptive penalty factor is further demonstrated by
investigating the convergence behaviour of the boundary search of the GA optimisation
procedure. Comparison of the convergence rate of the adaptive approach with that of
conventional penalty approach will provide more understanding about why the self-adaptive

approach is more effective than the fixed penalty factor method. This will be discussed in

the following sections.
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Figure 7-3 Population Trace of GA Optimisation of New York Tunnels Problem with

Conventional Penalty Methods
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7.6.2 Convergence behaviour

(1) Without a self-adaptive penalty

The convergence behaviour of the fast messy GA optimisation with the conventional
penalty approach is given in Figure 7-2. The fast messy GA improves the search process
very efficiently at early stage of the optimisation and slowly converges to a solution. It has
been observed that a big penalty factor may force the GA to select more genotypes within
the feasible region of the search space as shown in Figure 7-3(a), but the search converged
to an non-optimal solution. The small a penalty factors produce more points within the
infeasible region. But too small penalty factor such as $2.0 million/ft yielded a low
feasibility of the population as shown in Figure 7-3(b), it consequently converged to a
infeasible solution as shown in Figure 7-2 and Table 7-1.

The conventional penalty optimisation approach is not able to adapt the feasibility
of the population. As shown in Figure 7-3, it either maintains a high or low feasibility ratio
of the population except the variations generated by the random initialisation in each of 10
eras of the fast messy GA. For the boundary optimisation problem such as the optimisation
of water distribution systems, adaptation of the population feasibility is essential to
guarantee the search to reach the optimal solution. This has been demonstrated by the

convergence behaviour of the fast messy GA boundary search through the self-adaptive

penalty.

(2) With a self-adaptive penalty
The self-adaptive penalty optimisation of New York tunnels problem has been observed to
be effective and efficient at searching for the optimal solution. Two different convergence

patterns have been noticed as in Figure 7-4 and described as follows.
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As shown in Figure 7-5 and Figure 7-6(a), for the penalty range from 1.0 to 10.0
million/ft, the fast messy GA search started with an average penalty factor about 5.0
million/ft and a very high feasibility ratio of the population. By the rule of penalty bound
adaptation, the bounds of penalty factor decreased about 20% of the lower bound of 1.0
million/ft after 20 generations (in about 5,000 evaluations). Thus the penalty factor
decreased, as shown in Figure 7-5, the feasibility ratio of the population decreased as
shown in Figure 7-6(a), the generation best solution was improved so much that the
solution became infeasible as shown in Figure 7-4. The penalty factor range was then
adjusted by increasing both the lower and upper bounds by 20% of the current upper bound
value of the penalty factor after every 20 generations. Both the average penalty factor and
the feasibility ratio of the population increased, and the GA was adapted towards the
feasible region of the search space. Thus the generation best solution was found within the
feasible region. As the penalty is self-adapted according to the feasibility ratio of the
population, the fast messy GA search converged to the optimal solution.

For the scaled-down penalty range from $0.2 to 10 million/f, the search followed
the same pattern as the normal penalty range. Although the lower bound of the penalty was
scaled down from 1.0 million to 0.2 million the search still started with quite high
feasibility ratio of the population as shown in Figure 7-6(a). This is because the same
random seed as the nofmal penalty range has been used for this case study. The fast messy
GA has béen self-adapted towards the boundary of the hydraulic pressure requirements.
The same optimal solution has been found in the case of scaled-down penalty factor range.

A different convergence pattern has been observed for the scaled-up penalty factor
range from 1.0 to 50.0 million, as shown in Figure 7-4. The fast messy GA search started
with an average penalty factor of about 30.0 million, as shown in Figure 7-5. Due to the

initial high feasibility ratio of the genotype population, the penalty factor was self-adapted
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by decreasing the factor bounds until the feasibility ratio was low. As shown in Figure 7-
6(c), the GA population feasibility increased as the penalty was adapted slightly greater
and greater as shown in Figure 7-5. The generation best is improved as the penalty is

adjusted. A near-optimal solution has been found for the case of scaled-up penalty range.
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Figure 7-4 Convergence Behaviour of Boundary Search GA Optimisation of New

York Tunnels Problem
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7.7 Summary

A method of co-evolution of the penalty factor and a heuristic rule of self-adapting the
lower bound and upper bound of the penalty factor has been developed for the optimisation
of water distribution systems in this Chapter. The optimal solution of design and
rehabilitation of water distribution networks has been observed to be achieved at the
boundary of the feasible and infeasible regions of the search space. It is a boundary
optimisation problem. A heuristic rule is specifically proposed for adapting the penalty
factor range in such a way that the genotype population is forced towards the boundary of
the feasible and infeasible regions. The penalty factor of each genotype is coded onto its
chromosome. The genotypes which encode the penalty factor and produce better offspring
survive longer. The preferred penalty factor spreads through the population and co-evolves
over generations.

This approach of a co-evolutionary and self-adaptive penalty factor has been
incorporated into the fmGANET for optimisation of design and rehabilitation of water
distribution system. A well-studied example of optimisation of New York tunnels problem
has been chosen to demonstrate the application of this boundary GA search strategy. The
results obtained by using the boundary GA search strategy have been carefully analysed
and compared with the conventional penalty GA optimisation approach. It has been found
that the conventional approach is quite sensitive to the penalty factor. Too large a penalty
value ma); preserve the feasibility of the genotypes and the search normally converges to
an internal point of the feasible region, which is not real optimal solution. Too small a
penalty value forces the GA to select the alternative outside the feasible region, which
eventually leads the search to converge to an infeasible solution. The boundary search

strategy has been shown effective and efficient at adapting the feasibility of the GA
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population within a large range of the penalty factor. It automatically adjusts the penalty
range and co-evolve the penalty factor along the GA optimisation.

The boundary search strategy developed in this Chapter is not only generally
applicable to the optimisation of water distribution system, but also to the boundary
optimisation problem, which is often found in engineering design. The results are
encouraging in that the strategy can be further developed and tested in numerical parameter
optimisation using any evolutionary algorithm. It may improve the effectiveness and
efficiency for the NLP in the cases where the optimal solution is at the boundary. Finally,
this approach will be applied to a more complicated problem of optimisation of water
distribution system including water hammer loadings. To be able to consider water
hammer loadings in the optimisation model, a computer model for the simulation of the

water hammer must be developed. This will be described in next Chapter.
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8. MODELLING HYDRAULIC TRANSIENTS IN WATER

DISTRIBUTION NETWORKS

8.1 An Introduction

Sudden changes or the stoppage of flows in pipeline systems cause a hydraulic transient or
water hammer event. Kinetic energy is destroyed during the change and is converted into
pressure energy, which is transmitted as a pressure or water hammer wave in the pipeline
system. The water hammer wave often generates the maximum pressure in pipeline systems.
The maximum pressure governs the design of pipeline networks including the selection of
pipe diameters, pipe wall thicknesses and water hammer control devices. In this Chapter,
details of a computer simulation model, based on method of characteristics for modelling
water hammer in water distribution networks is presented. The simulation model has been
applied to a low head irrigation system. A question arises as to which water hammer event
will cause the most severe pressure in the network. The water hammer events of closing
valves at different locations in the system are considered. The results obtained show that the
various water hammer events create different levels of pressure surge in different pipes
within the system. An approach for evaluating the impact of the pressure surge is suggested
and is used to measure the severity of the water hammer events. This provides engineers
with a method for choosing the most critical water hammer event for the comprehensive

design of water distribution systems including water hammer.
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8.2 Necessity of Comprehensive Transient Analysis

A water hammer event is important in design, maintenance and operation of water
distribution systems. It can cause high pressures, excessive noise and negative pressures.
The pipe can be damaged in the short term through over-pressures, or, in the long term,
through cavitation in the pipe. Thus the pipeline should be designed either with a suitable
pipe size (both diameter and wall thickness) or with an appropriate water hammer control
measure to withstand the possible maximum positive pressure and/or the minimum negative
pressures. Computer modelling of water hammer in pipeline systems provides a tool for
simulation of water hammer events and thus serves a way to provide a better understanding
of the behaviour of the transmission of the hydraulic transient pressure waves.

Although the behaviour of hydraulic transient flows have been well understood in
simple pipeline systems, little is known about the behaviour of the transients flow in a
complex network system. It has been recognised that long pipelines of large diameter may
experience severe transient pressures. For network systems, however, the necessity of
including water hammer loading into a procedure for design of water distribution system has
been controversial. There is a feeling that the network (loop) is more robust than a series
pipeline. In other words, it has been postulated (Watters 1984) that the network may
behave like a reservoir, which splits the water hammer wave into several subwaves and
which in turn diminishes the pressure rise. This assumption has been found little rational
basis, and recent research results (Karney and Mclnnis 1990; 1992; Mclnnis and Karney
1995) suggested that the opposite might be true.

The traditional wisdom of transient phenomena assumes that the maximum steady-
state velocity produces the maximum transient pressure and that surge-protection devices

will result in small surge pressures. It has been shown (Karney and Mclnnis 1990; 1992)
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that the wisdom can be true only if there is no head loss resulting from friction and no wave
reflection. For a complicated water distribution network, fluid transients are not influenced
only by the fundamental physical characteristics of the system; their behaviour depends on
system configuration, timing of events and initial conditions. In complex water distribution
systems, it is unusual to have frictionless flow and an absence of wave reflections. Loops
may not diminish the transient response. More protection devices such as pressure relief
valves may not guarantee a better transient protection. It is essential, therefore, that
computerised tools are developed to enable the investigation of transients flow in complex
water distribution networks. A comprehensive analysis of transient conditions must be
carried out to identify the worst transient loadings for the water distribution systems. Only
then can the diameters and the pipe wall thicknesses (classes) of the pipes be selected and

the surge-protection devices be logically sized.

8.3 Governing Equations

The governing equations for unsteady flow in pipeline are derived under the following
assumptions including (1) one-dimensional flow i.e. velocity and pressure are assumed
constant across a cross-section; (2) the pipe is full and remains full during the transient; (3)
no column separation occurs during the transient; (4) the pipe wall and fluid behave linearly

elastically and (5) unsteady friction loss is approximated by steady state losses.

The unsteady flow inside the pipeline is described in terms of the simplified unsteady
mass balance (continuity) equation and unsteady momentum equation, which define the
“state variables of Q (discharge) or V (velocity) and H (pressure head), given as (Wylie and

Streeter 1993):
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H a

b ey 8.1
a+g& (8.1)
MH & V]

A X T 8.2
£ at (8.2)

where x = distance along the pipe; ¢ = time; V = velocity; H = hydraulic gradeline; g =
acceleration due to gravity; a = wave speed; f = Darcy-Weisbach friction factor and D =

pipe diameter.

Eq. (8.1) is the continuity equation and takes into account the compressibility of the
water and the flexibility of the pipe material. Eq. (8.2) is the equation of motion. The wave

speed a is defined as:

2= K/p — (8.3)
R CACAY

a

(8.4)

1 forexpansion joints when D/e>25
: 14(2e/D)+Df(D+e) when Dfe<25

where K = bulk modulus of elasticity of the flow; e = pipe wall thickness, £ = modulus of
elasticity and c; = pipe restraint condition factor.
A method of characteristics transformation is applied to the basic Eq. (8.1) and

(8.2). The ordinary differential equation that is obtained is as follows:
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gaH _av. My _, (8.5)
ad dt 2D

This compatibility equation is only valid along the C* characteristic equation of :

& =+a (8.6)

The other ordinary differential equation obtained is given as:

__g_ﬁ+idz+m=0 (87)
ad d 2D

This compatibility equation is only valid along the C" characteristic equation of:

& (8.8)

The differential equations (8.5) and (8.7) are solved at the intersection of C* and C~

characteristic lines given by equations (8.6) and (8.8).

8.4 Characterisation of Pipeline Systems

The governing equations Eq. (8.1) and (8.2) are seldom solved analytically, a numerical

approach is used to approximate the solution. A pipeline system is usually discretised into a
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number of sections. The compatibility equations Eq. (8.5) and (8.7), derived by applying a
method of characteristics, are valid only along the so-called C* and C characteristic curves,
and thus solved at the intersection of these two curves for the interior sections of the pipe.
The end of the pipe is regarded as a boundary condition. A set of characteristic equations

are derived for various boundary conditions.

8.4.1 Interior section

The x - ¢ grid as shown in Figure 8-1 is used to ensure the characteristic lines given by Ax =
taAt for solving the Eq. (8.5) and (8.7) for the interior sections of the pipeline. Eq. (8.5) is
integrated along the C* while Eq. (8.7) is integrated along the C". Both integrated equations

can be written for the unknowns of H, and (, at P. They are given as:

C,B,+C,B,

H,3,1)= BB (8.9)

0,6, 0= i::g: (8.10)
in which

C, =H,(-D)+BQ,(G-11-1) (8.11)

ép =B+RQ,(i-1,1-1) (8.12)

C,=H,(i+1,t-1)-BQ,(i+1,t~1) (8.13)

B, =B+RQ,(i+1,t-1) (8.14)

where B and R are pipe constants given as:
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B=§Z (8.15)
Ax
R= Zg{DA’ (8.16)

where A4 = cross-section area of the pipe. The information required for the solution at P at
time step 7 is the head and discharge at previous time step t - 1 and the pipe constants. A

steady state solution at the first time step is needed to commence the transient simulation.

T {
t+1 ................................ D OO U SOOI RROROSISUPPRORTUOON
P
S i Bl '
at ; C, c
Al B
f-
! C
Ax
- X
i-1 i i+ 1

Figure 8-1 Calculation of Q and/or H at Interior Section i from Section i + 1 at Time

Step ¢
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8.4.2 Boundary conditions

The method of characteristics provides a systematic formulation for calculating the transient
flow within a pipeline. However, if this approach is to applied to the whole range of
hydraulic devices at the end of a pipe, an extra relation between head and discharge must be
specified. The relationship of the head and discharge is the so-called boundary condition.
The boundary conditions considered in this research are one-node conditions
including reservoir, generalised junction, a valve discharging to the atmosphere and an open
surge tank, and also the boundary condition between two nodes namely an inline valve.
Comprehensive relations of head and discharge have been first derived for one-node
boundary conditions by Karney and McInnis (1990) and then extended by Mclnnis (1992).
This approach simplified the control logic of modelling implementation and improved the
computation efficiency. Thus it has been adopted in this research. The boundary condition
of an inline valve has 3 unknown variables that include head on the upstream side of the
valve ; head on the downstream side of the valve and flow through the valve. They can be
explicitly solved by a set of 3 equations including the orifice flow equation, one
characteristic equation on the upstream side of the valve and the characteristic equation on
the downstream side of the valve. The boundary conditions for solving hydraulic devices
such as inline valves, outlet valves and surge tanks, and the characteristic equations for

solving interior points have been implemented as described in the following section.
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8.5 Modelling System Implementation

A transient model (Simpson et al. 1992), originally developed for water hammer simulation
of hydro-electric power plant systems, was based on the method of characteristics. This
method was used to solve the unsteady continuity equation and unsteady equation of
motion governing flow and pressure head variation in the networks. For flow elements
where non-linear equations are added to the method of characteristics equations—a set of
nonlinear equations results. A Newton-Raphson iterative solution procedure is used to solve
for the unknown variables for each flow element and/or boundary condition.

The transient solution, based on the method of characteristics, proceeds point by
point. Each pipe in the network is divided into an even number of reaches. Head and
discharge conditions are solved at the end of each reach (called sections). These sections
constitute interior points. Each interior point in a pipe is solved at every second time step
for the head and flow independently of other points in the system. A non-pipe element such
as a junction, reservoir, valve or surge tank is referred to as a particular boundary condition

and is solved simultaneously for all the variables associated with that boundary condition.
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A transient model, developed for hydro-electric power systems by Simpson et al.
(1992), has been improved for the transient simulation of water distribution systems in this
research. The model has been enhanced to be more robust at handling surge tanks, different
pipe materials, wave speeds, outlet valves and valve operations. The enhanced transient
model is integrated with a hydraulic network solver EPANET (Rossman 1994), which is
employed for simulating steady state flow in the network to establish the initial flow
conditions for the transient simulation. The integrated computer model is then able to
simulate the hydraulic transient of the water distribution networks with reservoirs, nodes
and/or junctions, in-line valves, outlet valves and surge tanks.

The integrated transient modelling system, named HAMMER, follows a program
structure as shown in Figure 8-2. The program starts with reading input data for steady
state simulation and transient simulation. The input data for steady state model has been
kept in the same format as original input file of EPANET computer simulation model. The
input for the transient simulation includes the time period of transient simulation, pipe
material type, surge device data, pipe thickness and valve operation for generating water
hammer events. The hydraulic network solver EPANET is called for the simulation of the
steady state flow conditions. The simulation results of velocity of each link and hydraulic
grade of g:ach node are passed through a model interface program to the transient model.
This establishes an initial flow condition for the water hammer simulation. The transient
model follows an iterative procedure until the transient simulation time is reached. Interior
sections are alternatively solved at every time step while the boundary conditions are solved
at every other time step. The integrated EPANET/HAMMER model provides a hydraulic
model base for optimisation of water distribution system including water hammer. The

modelling system has been used in this research to simulate water hammer event in a low
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head irrigation system. The results have been verified by using a widely-distributed

commercial program LIQT in the following sections.

8.6 A Low Head Irrigation System

Irrigation areas are usually supplied by reservoirs (or storage tanks) at the upstream end of
an irrigation distribution network. In a low pressure system, the minimum allowable
pressure head is usually in the order of 2 to 5 meters. Velocities depend on the particular
location of a pipe in the network and the demand distribution in the network. A sudden
change of the water demand by an irrigator, for instance by closing the valve, may cause a
severe water hammer pressure. Thus the system must be designed in such a way that the
pipeline can sustain the maximum water hammer pressure. The computer model described in
Section 8.5 has been applied to simulating the transient behaviour of a low head irrigation
system as depicted in Figure 8-3. A comprehensive investigation of different water hammer

events has been carried out to identify the critical water hammer loading for the system

design.

8.6.1 System description

An existing irrigation system, called Loveday irrigation network as shown in Figure 8-3, has
been chosen as a case study in this Chapter. The Loveday irrigation area is adjacent to the
River Murray in the Riverland region of South Australia. It was managed by the South
Australia Water Corporation until 1 July 1997 when the Central Irrigation Trust was

formed. Most of the system was constructed in the 1920’s. An extensive rehabilitation of
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the existing aged pressurised system is presently being undertaken. The network data and

wave speeds used for the transient analysis are given in Appendix B.

Figure 8-3 Layout of Loveday Irrigation Network

8.6.2 Transient events and boundary conditions

The possible water hammer events for this case study are sudden change of water demand
i.e. closing the valve at the outlet from the pipeline. The boundary conditions associated
with the simulation of the water hammer events in the Loveday irrigation system are the
reservoir and the outlet valves in the network.

There are 11 operating valves considered in this study. The valves are at nodes 11,
14, 28, 31, 34, 40, 43, 44, 46, 49, and 48 as shown in Figure 8-3. The transient that results
by operating each of the valves is independently simulated. In other words, for the
simulation of the transient behaviour generated by operating each of the 11 valves
separately, with only one valve being assumed to be operating (with all other outlets closed)
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and water hammer is created by instantaneous closure of that valve. A steady state
simulation is performed for each fully opened valve to establish the initial flow condition for

the water hammer simulation, and then the transient simulation is carried out for the

instantaneous closure of the valve.

8.6.3 Transient evaluation

In proceeding with the analysis of the different water hammer events, a question arises as to
how to measure the severity of a specific transient event. The severity of the transient event
can be evaluated not only in terms of the magnitude of the maximum water hammer
pressure generated by the event, but also the region of the network affected by the event.
Thus a measure for evaluating the severity of the transient event is introduced as the total

length of the pipes where the maximum associated pressure is greater than a certain

pressure threshold. The affected length is defined as:

N
Laﬂ'a:kd = Z Li when H im‘x >H, threshold (8 1 7)
i=1

where Lgqea= total length of pipes affected by water hammer events; L; = length of pipe i;

H™ = the maximum transient pressure of pipe i; H,. = transient pressure threshold and N

= total number of pipes.

8.6.4 Simulation results

A comprehensive investigation of the transient events caused by operating one valve in
every transient run has been carried out for Loveday irrigation network. The transient

events that have been simulated include (1) instantaneous closure of valve 28 in 2 transient
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runs for concrete and Hobas pipes; (2) instantaneous closure of 10 valves in 10 transient
runs for concrete pipes and (3) closure of 11 valves in 10 seconds and S seconds in 22
transient runs for concrete pipes. The transient simulations of 34 transient runs provide a
comparison of the transient behaviour for different pipe materials and different events, and

an evaluation of the transient events and also the envelope of transient pressure heads for

Loveday irrigation system.

(a) Different pipe materials

Two different pipe materials have been considered including reinforced concrete pipes and
Hobas pipes. The modulus of elasticity (E) of these two materials is quite different, and thus
contributes to different wave speeds for water hammer events. For the reinforced concrete,
Young’s modulus is £ = 45x10° Pa while for Hobas £ = 10x10° Pa. Figure 8-4 shows that
reinforced concrete and Hobas pipes have a similar transient behaviour for the same water
hammer event of instantaneously closing valve 28, but a different magnitude of transient
pressure occurs due to the different modulus of elasticity of pipe materials. The transient
pressures in a concrete pipe system are higher than in a Hobas pipe system. This implies that
a severe hydraulic transient may occur not only in a simple pipeline, but also in complicated

networks of low elasticity pipes namely high Young’s modulus pipe material such as

reinforced concrete.
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Figure 8-4 Comparison of Maximum Pressure by Instantaneous Closure of Valve 28

for Both Concrete and Hobas Pipes

(b) Evaluation of transient events

The transient events are evaluated by the measure introduced above with pressure head
threshold of 40 meters. As shown in Figure 8-5, the operation of valve 28 generated the
most severe transient pressure for both reinforced concrete and Hobas pipes. The transient
in the network of reinforced concrete pipes is much more severe than the Hobas pipes for
all the water hammer events. Although the total length of the pipes affected by the water
hammer event caused by an instantaneous closure of valve 28, 31, 34, 11, 14, 40 is very
much same, the locations of pipes affected by the valve closure are different. As shown in
Figure 8-6, 8-7 and 8-8 (for reinforced concrete pipes), the maximum transient pressure
normally occurs just upstream of the valve which has been closed. Thus not a single water
hammer event (loading) can represent a critical transient loading for the design of the

network.
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Figure 8-5 Evaluation of Different Transient Events
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Figure 8-6 Maximum Pressure Heads of Loveday Network by Operating Valve 11
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8. Modelling hydraulic transients in water distribution networks

(¢) Transient pressure envelope

The maximum and minimum transient pressure heads usually govern the transient design of
water distribution networks. Different pipes in the network have different responses to the
different water hammer events. The pipe maximum and minimum pressure heads of
Loveday irrigation network (concrete pipes) are considered the highest and lowest pressure
heads that occur among all the computation points of the pipe over the time of all the
possible water hammer events. This provides an envelope of the maximum and minimum
transient pressures for the Loveday system, as shown in Figure 8-9. It has been observed
that the gap between the maximum and minimum transient pressures is quite large for most
of the pipes. Thus a comprehensive analysis of hydraulic transients must be carried out to

identify the critical water hammer loadings for the cost-effective selection of the water

hammer control measures for the water distribution networks.
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Figure 8-9 Pressure Envelope of Loveday Irrigation System by Operating 11 Valves
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(d) Different valve operating times

The transient events of closing the outlet valves in different time periods generate
significantly different transient pressures as shown in Figure 8-10. The transient simulations
of 22 runs for closing 11 valves in 10 seconds and 5 seconds have been carried out for
Loveday irrigation system of concrete material. The maximum transient pressure head of
each pipe over the transient events of closing 11 valves in 5 seconds and 10 seconds is
compared with the maximum transient pressure heads generated by instantaneous closure of
the valves. Figure 8-10 shows that the instantaneous valve closure generates the most
severe transient pressure in all the pipes and that the transient events of valve closure in §
seconds and 10 seconds significantly reduced the maximum transient pressure heads. Thus a

pipeline network must be designed to sustain the most severe transient event.

180
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Figure 8-10 Comparison of Maximum Pressure Heads of Loveday Network by

Operating 11 Valves in Different Periods of Time
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8.7 Verification of the Transient Model

The hydraulic transient model established above for Loveday network has been verified by
using LIQT, a commercial computer program developed by Stoner Associates for transient
analysis in pipeline systems. The verification has been carried out for Loveday irrigation

system of concrete pipes with and without surge tank at node 23. The comparison of the

simulation results by HAMMER and LIQT is described in this section.

8.7.1 Verification without a surge tank

The transient event used for the verification of the water hammer model of Loveday
network without a surge tank is initiated by the instantaneous closure of valve 28. The
simulation results by HAMMER are compared with those obtained by LIQT. The
comparisons include a transient pressure head envelope, namely the maximum and minimum
transient pressure heads of the pipes, and the time series of transient hydraulic grade lines at
nodes 11 and 28.

The verification of the water hammer simulation of the Loveday network has been
carried out by increasing the reservoir level from 51.3 m to 100.0 m. It is observed that the
simulation results by HAMMER can not match with that by LIQT over the whole period of
transient simulation time but just the first 15 seconds. This is because the function of
simulating column separation is not incorporated into HAMMER properly. It is found that
raising the reservoir level to 100 m is able to get rid of the column separation in Loveday
network. Thus it helps to compare the consistent HAMMER simulation with LIQT.

Figure 8-11 shows the comparison of transient pressure head envelope for the pipes

in Loveday network. It has been observed that the maximum and minimum transient
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pressure heads by both HAMMER and LIQT match very well. The differences between the
transient pressure head envelops by HAMMER and LIQT are shown in Figure 8-12. The
discrepancy between the two computer program simulations is within a range of +0.4
metres. The time series of the transient grade at node 11 and 28 are compared in Figure 8-
13(a) and Figure 8-14(a). The differences of the transient grades by LIQT and HAMMER
are illustrated in Figure 8-13(b) and 8-14(b). They are not more than +0.6 metres at node
11 and +0.8 metres at node 28. Thus it is validated that HAMMER s able to produce quite

accurate results for transient analysis of water distribution networks without a surge tank.

8.7.2 Verification with a surge tank

The verification of Loveday network with a surge tank at node 23 has been carried out in
the same way as the verification without the surge tank. The simulation results compared
include the transient pressure head envelope for the pipes, the time series of transient
hydraulic grade lines at nodes 20 and 28, and also the water level of the surge tank. As
described in Section 8.7.1, the verification has been carried out by raising the reservoir level
from 51.3 m to 200.0 m to get rid of the column separation when simulating the water
hammer events with the surge tank at node 23.

It has been found that the transient model by HAMMER predicts accurate results
for the Loveday network with the surge tank by comparing with the results by LIQT. Figure
8-15 shows that the maximum and minimum transient pressures occur in a small number of
pipes due to the surge tank protection of the transient flow. The discrepancy of the
maximum and the minimum pressure by LIQT and HAMMER is given in Figure 8-16. It
shows that the differences are within a range of 0.4 metres. The comparison of time series

of the transient grade at node 20 and 28 is shown in Figure 8-17 and 8-18. The difference of
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the time series by HAMMER and LIQT for Loveday network with the surge tank is in the
same scale as the verification of the network without the surge tank. The water level of the
surge tank by HAMMER is also compared with the level predicted by LIQT in Figure 8-19.
Because of the rounding error of LIQT program for preparation of plots, the curve shape of
the time series of the tank level by LIQT is different from that by HAMMER. But it can be
observed that the amplitude and the phase of the surge levels are very similar and that the
difference between the tank levels by both computer programs is not more than 10.5
metres. These results presented in this Chapter prove that the transient model HAMMER
program is able to accurately simulate the behaviour of water hammer events of water
distribution systems with and without the surge tanks. Thus the model implemented in this
Chapter provides a computational tool for the comprehensive transient analysis and the

cost-effective transient design of the water distribution systems.
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Figure 8-13 Comparison of Time Series of Hydraulic Pressure at Node 11 of Loveday

Network Without a Surge Tank
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Figure 8-17 Comparison of Time Series of Hydraulic Pressure at Node 20 of Loveday

Network with a Surge Tank
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Network with a Surge Tank

209



Water level of surge tank at

8. Modelling hydraulic transients in water distribution networks

201.5
201 e
£ 2005
-¥]
g
£ 200
(22}
o
[*]
B 1995
=
199 LQr /™
198.5 1 ! i L L 1 1 i
0 100 200 300 400 500 600 700 800

Time (sec.)

Figure 8-19 Comparison of Water Levels of the Surge Tank at Node 23

8.8 Summary

A computer model for water hammer simulation of water distribution systems has been
developed and applied to the investigation of transient behaviour of a low head irrigation
system. The transient model, based on the method of characteristics, has been integrated
with a hydraulic solver EPANET and is able to perform the simulation of the steady and
transient flow in the pipeline network with reservoirs, nodes, junctions, in-line valves, outlet

valves and surge tanks. It provides a computational tool for transient analysis of water

distribution systems.
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A comprehensive analysis of the transient events has been carried out for Loveday
irrigation system in South Australia. This example has contributed to a better understanding
of the system behaviour under possible water hammer loadings, and thus enables engineers
to select the cost effective water hammer control devices. The simulation results obtained
for Loveday irrigation system show that different water hammer events create different
levels of pressure surge in different pipes within the system. It indicates that water hammer
events generate a severe transient pressure not only in a simple series pipeline, but also in
networks.

A criteria for the evaluation of the transient events has been developed by
considering the total length of pipes where the transient pressure surge by a water hammer
event is greater than a threshold of transient pressure heads. It provides engineers with a
method for identifying the critical water hammer events for the cost effective and transient
protective design of water distribution systems. The identification of the critical water
hammer events is particularly useful for the optimisation of design of water distribution

systems including water hammer loadings, which will be discussed in Chapter 9.
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9. OPTIMAL TRANSIENT DESIGN OF WATER

DISTRIBUTION NETWORKS

9.1 Introduction
The research to this point in the thesis has been undertaken to optimise the selection of pipe
diameters such that the pipeline cost is minimised. A complete design, however, includes
not only selecting pipe diameter sizes but also selecting pipe wall thicknesses (referred to as
pipe classes) and sizing water hammer control devices such as surge tanks. Thus a
comprehensive optimisation of the water distribution system should be carried out not only
under steady state flow conditions but also under unsteady state conditions where water
hammer may occur. The maximum transient pressure governs the selection of pipe classes.
Different genetic algorithm paradigms including the standard GAs and the messy
GAs have been compared for the optimisation of water distribution networks in earlier
Chapters. It has been shown that the fast messy GA is the most efficient GA paradigm for
the discrete optimisation of the water distribution networks. In this Chapter, an optimisation
model has been developed for optimal design of the networks including consideration of
both steady state and water hammer loadings. This model is integrated with the transient
model HAMMER developed in Chapter 8. Both models are further incorporated into the
computer program fmGANET described in Chapter 6. The integrated approach provides
engineers a comprehensive methodology for optimisation of water distribution networks
including consideration of water hammer pressures. Two case studies are presented to
investigate the efficiency and effectiveness of the integrated models. The first example is a

hypothetical branched system. The search space was completely enumerated to check the
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optimality of the solution found by the fast messy GA. The second example is a real water

irrigation system in South Australia. The network is fairly complicated to demonstrate the

application of the technique.

9.2 Design for Transient or Water Hammer Events

Water distribution systems are costly to build, operate and maintain. One source of the
system loading that may cause component failure including pipe breakage and that is
sometimes neglected in water distribution system analysis is water hammer or transient flow
conditions. As shown in Chapter 6, transient events such as closing outlet valves may
generate quite high transient pressures even in a complex looped water distribution system.
However, the necessity of taking the transient loadings into account in the design procedure
for design of water distribution network is controversial.

Transient analysis is a complicated area, and thus is often referred to experts. The
complexity of the transient analysis has led practitioners to adopt either a design with
simplified transient loading or a high-safety design without considering water hammer
loading. The former facilitates that the complex components and other complications in the
physical system itself may be ignored and that the range of loading and operation conditions
is reduced. This may lead to the underdesign of these systems. The latter usually leads an
overdesign of the water distribution systems. To break the cycle of the current standing-in
design procedure for water distribution networks, the comprehensive transient analysis must
be included in the design procedure.

Over the last decade, a great effort has been made at improving the accuracy and
efficiency of transient analysis. Particularly, advancement of computer technology in terms
of speed and memory size make it feasible to model transient behaviour of large complex
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networks. This provides an opportunity for developing a methodology for optimisation of
design of the water distribution networks to include consideration of transient conditions.
The fast messy GA, the most efficient search algorithm, has been integrated with the
hydraulic transient model developed in this research. Employing state-of-the-art
optimisation techniques and computer technology as a implementation vehicle will

tremendously reduce the cost associated with the transient analysis and design.

9.3 A Model for Optimal Transient Design

A complete design of water distribution system often requires selecting pipe diameter and
pipe class (i.e. wall thickness) for each pipe, and also requires sizing the transient pressure
relief devices such as surge tanks, which are often used as pressure surge protection devices
in water distribution systems. Optimisation of such a complete design is to search for the
best combination of the pipe sizes, pipe wall thicknesses and surge tank sizes such that the
total cost of the system components is minimised subject to satisfying the constraints
including minimum allowable pressure heads, available pipe sizes and maximum allowable
transient pressure heads.

The objective is to search for a set of pipe diameters D = (d,.d ,dy,....dy) and
pipe classes CLS :(cls,,clsz,cls3,...,cIsN) for each pipe in the network, where d, is the

diameter of the n-th pipe and c/s, is the class of the n-th pipe. Pipe sizes (pipe diameter and

pipe class) of each pipe are selected from a list of commercially available pipe sizes, namely
vd, eD° = (dy,d ... dy) and Vels, CLS® =(clsy.clsy,...cls%;) . The unit cost of every
pipe is the function of the pipe diameter and pipe class, that is noted as c.(d, , cls, ). Thus

the cost of the pipeline networks is given as
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N
Cpipe(D' CLS) = ch(dn'CISn )Ln (91)
n=1

where L, is the length of pipe n and N is the total number of the pipes. The cost of the
surge tank is the function of tank diameter Dint and tank height Hiane. The unit cost of the

tank is given as the cost per unit perimeter area of the surge tank, thus the tank cost is

formulated as

Crank = "CoauDrank Htank .2)

where cm = the cost of unit perimeter area of the surge tank, Hyn = the height of the
surge tank determined by the maximum transient pressure head and Dy = the diameter of
the tank. The diameter of the surge tank is the variable to be optimised.

The total cost Ciow of the pipeline networks is the sum the pipeline cost Cppe and

the surge tank cost Ceam, given as
Ctoml = Cpipe + Clank (93)

The model for the optimisation of transient design for water distribution systems is
formulated to minimise the total cost of the water distribution network by searching for the
optimal pipe diameters, pipe wall thicknesses (i.e. pipe classes) and the surge tank diameter
such that the design alternative meets the minimum allowable pressure head requirements

and the maximum transient pressure heads. It can be mathematically written as follows.
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searching for (D, CLS, Diant)
minimising  Ciotal
subject to

vd, €D’ ={d}, k=0,....K}

Vels, eCLS® = {clsg., ci=0,..., C]}
VD, € D%y ={do.tn=1,..., TN}
H,>H™j=1..J i=1..]
H% <H™,n=1..,N w=1, .., TR

where d,f - k-th commercially available pipe diameter in set D% K = number of the

commercially available pipe sizes; cls, = pipe class of the n-th pipe; cls® = the ci-th
commercially available pipe class; C/ = the number of the commercially available pipe
classes; H;; = hydraulic grade at node j under steady state loading 7; / = number of steady

state loadings, H;"" = minimum allowable hydraulic grade at node j under steady state

demand loadings; and J = number of nodes in system (excluding fixed grade nodes); H;¢=
maximum transient pressure head of pipe » under transient loading #; TR = number of

transient loadings; and H"™ = maximum allowable transient pressure head of pipe ».

9.4 Incorporation of HAMMER into fmGANET

Optimisation of the water distribution systems, formulated earlier, is required to satisfy the
minimum pressure heads under steady state demand conditions and to withstand the
maximum pressure heads at water hammer events, Thus both steady state simulation and
transient simulation are required for providing the pressure head information for the

optimisation procedure. The simulation of water hammer provides the maximum transient
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pressure for each pipe. This information of the maximum pressure of the pipes is used to
guide the optimisation procedure to search for the optimal combination of pipe wall
thickness (or classes), while the pressure heads at normal steady state operation conditions,
simulated by steady state solver such as EPANET, are used to search for the optimal
combination of pipe diameters.

The transient model developed and verified in Chapter 8 has been incorporated into
the fast messy GA (fnGANET) to enable the optimal transient design of water distribution
systems. The integrated system is called fmGAHAM as shown in Figure 9-1. The
fmGAHAM is an extension of fmGANET that was implemented by integrating the fast
messy GA with EPANET in Chapter 6. The extended fmGANET is able to carry out
optimisation of design and rehabilitation under steady and unsteady state loadings by
searching for the cost effective combination of pipe diameters and classes for new pipes to
be added to the system, the optimal rehabilitation strategy for the existing pipes and the best
sizes of surge tanks for protection of transient pressure surge. Figure 9-1 shows that the
fmGAHAM has a similar programme structure to fmGANET except the transient model
HAMMER is integrated into the system. For a problem of design that requires sizing the
pipe classes and surge devices, the transient simulations are performed for each of the
design alternatives (combinations of possible pipe classes and surge protection devices)
before evaluating the cost of the solution. The cost of the transient design solution is
associated with not only pipe diameters but also the pipe classes. The total cost is the sum
of the pipe cost and surge tank cost as described in last section.

The integrated approach for optimisation of water distribution system including
water hammer loading has been applied to two case studies in the following sections. The

first case study is a hypothetical and simple pipeline system, which is used to test the
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effectiveness of the implemented model. The second case study is for a real irrigation

network in South Australia.

N Hydraulic simulation
Fast messy GA optimisation Cost evaluation

era=1

Probabilistically
complete initialisation

Steady state simulation
EPANET

Fitness Transient simulation
@ﬁlding block ﬁltering}e evaluation HAMMER
,Juxtapositional phase

-era=era+1

network cost + penalt

Cost function = J
y

Figure 9-1 Conceptual Structure of The Program fmGAHAM for Optimal Transient

Design
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9.5 A Simple Pipeline Case Study
A pipeline, as shown in Figure 9-2, is a simple hypothetical water system established to test
the integrated approach for the optimal transient design. The pipeline system consists of a

reservoir at the upstream end, a surge tank between the junction and the reservoir, and also

two branches at the downstream of the surge tank.

[1600]
152,00 U
VL [1], 1500 (L115) [2], 500
[900] [1000] (2, 115)
Pipes: [pipe No., length (m) Surge tank: 1 4iameter (mm)] 600 L/s

[diameter (mm)]
(node No., elevation)

Nodes: (O (node No., elevation)

Figure 9-2 Layout of a Simple Hypothetical Pipeline System

Table 9-1 Steady State Flow of the Hypothetical System Under Different Demand

Loadings

Flow velocities (m/s) Hydraulic grade (m)

Pipe Demand nodes Node Demand nodes

Id { Node4 | Node3 |Node3and4| Id | Node4 { Node 3 | Node 3 and 4
(1] 0.94 0.94 1.89 1 151.06 | 151.06 148.56

(21| 0.76 0.76 1.53 2 150.87 | 150.87 147.88
(31 0.00 1.36 1.36 3 150.87 | 150.11 147.12
(41 136 0.00 1.36 4 14972 { 150.87 146.73
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It is Assumed that there are two outlet valves at downstream of the system. Each of
the two valves is to supply 600 L/s. A Hazen-William coefficient C of 120 is assumed for all
the pipes. The steady state flow simulated by using EPANET is given in Table 9-1. The
system will be designed to meet a minimum allowable pressure head of 30 metres at all
nodes under a steady state operating condition and to withstand the maximum water
hammer pressure at transient events generated by operating the two outlet valves in 10
seconds. The available pipe sizes and associated classes are given in Table 9-2 while the
available sizes for surge tank are given in Table 9-3. The maximum allowable pressure

heads for class 4, 6 and 10 are 40, 60 and 100 meters respectively.

Table 9-2 Available Pipe Sizes and Associated Cost

Diam. Class 4 Class 6 Class 10
(mm) | cost ($/m) | thickness | cost ($/m) | thickness | cost ($/m) | thickness
(mm) (mm) (mm)
750 233.94 16.00 250.13 15.00 296.4 15.00
900 273.60 17.00 294.39 17.00 343.88 16.00
1000 325.70 19.00 354.56 18.00 413.70 18.00
1200 425.02 23.00 459.23 22.00 555.10 21.00

Hobas pipe (as shown in Table 9-2) is made stronger by adding more resin to the pipe wall mixture rather

than necessarily by increasing the pipe wall thickness.
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Table 9-3 Available Surge Tank Sizes and Associated Costs

Surge tank diameter (m) Unit height cost ($/m)
T 1.00 600.00
1.5 800.00
2.00 1000.00
2.50 1200.00

9.5.1 Critical transient loading
In order that the hypothetical water system is designed to be able to withstand the most
severe water hammer pressure, the transient event that generates the maximum transient
pressure in the system needs to be identified. All the water hammer events that can possibly
occur in this simple system are as follows.

@)) Event 1: valve 3 is open while valve 4 is shut in 10 seconds;

(2)  Event 2: valve 3 is shut in 10 second while valve 4 is kept open;

(3)  Event 3: no demand at valve 3 while valve 4 is shut in 10 seconds;

(49)  Event 4: no demand at valve 4 while valve 3 is shut in 10 seconds.
A water hammer model has been established by using the transient simulation program
HAMMER developed in Chapter 8. It is assumed that the pipes are made of steel (Young’s
modulus E = 2.07 x 10*!) and are class of 4. The corresponding wave speed of each pipe is
computed by Eq. (8.3) in Chapter 8. The information of the pipes and nodes is shown as
Figure 9-2. The minimum available pipe diameter of 750mm is used for pipe [3] and [4],
which is believed to generate the severe transient pressure at the upstream of the outlet
valves. The four transient events given above are simulated and the results of the maximum

transient pressure head for each pipe over four water hammer loadings are shown in Figure
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9-3. It is observed that the transient events 3 and 4 are the severe water hammer loading.

Events 3 and 4 are considered for the optimal transient design of the hypothetical system.

|

[Devent 1 E event 2
M event 3 event 4

8

L
o

8

Pressure Head (m)

| 2 3 4
Pipe Number

Figure 9-3 The Maximum Transient Pressure Head of the Hypothetical Pipeline System

9.5.2 Optimal solution

The optimal transient design of the hypothetical pipeline system has been found by using
fmGAHAM under severe transient event 3 and 4 as identified in section 9.5.1. Two binary
bits were used to code 3 pipe classes for each of 4 pipes while 2 binary bits were used to
code 4 pipe diameter sizes for each of 4 pipes and another 2 binary bits were used to code 4
surge tank diameters. A total of 18 binary bits were used for the genotype coding of a
solution for the hypothetical pipeline system. The fast messy GA parameters used for this
case study are given in Table 9-4. The edge search of the genetic algorithm optimisation by

adapting the penalty factor as described in Chapter 7 has been employed in this case study.
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The initial lower and upper bounds of penalty factor are $5000/m and $100,000/m
respectively. The final penalty adapted for the optimal solution is $20,000/m.

The optimal solution of the system including transient design for the hypothetical
system is shown in Table 9-5. The steady state pressure heads at nodes and the maximum
transient pressure heads for each pipe are given in Table 9-6 and 9-7. It shows that the

solution found by fmGAHAM meets all the steady state and transient design criteria

conditions.

Table 9-4 Parameters Used by the Fast Messy GA for the Simple Case Study

Parameters Value |Parameters Value
Splice probability 1.000 |Maximum number of eras 3
Cut probability 0.016 |Initial population size 90

Allelic mutation probability | 0.030 [juxtapositional population size| 100

Genic mutation probability | 0.030 |Maximum number of
generations in a era 20

Thresholding on [random seed 0.76

This optimal result has been verified by enumerating all the possible alternatives for
the hypothetical system. Table 9-8 shows top 20 optimal solutions for the transient design
of the simple system. The enumerative solutions verify the effectiveness of the fast messy
GA approach for the optimal transient design of water distribution systems. The
convergence of the fast messy GA approach has been shown in Figure 9-4. It shows that the
fast messy GA found the optimal solution by evaluating about 1,300 possible solutions. The
total search space for the simple problem is 82,944 design alternatives. The fast messy GA

reached the global optimal solution by searching about 1.5% of the search space.
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Table 9-5 Optimal Transient Design Solution of the Hypothetical System

Components | Diameter (mm) | Pipe class or surge tank height (m)
Pipe 1 750 4
Pipe 2 900 6
Pipe 3 750 6
Pipe 4 750 6
Surge tank 2500 39.7

Table 9-6 Steady State Pressure of the Optimal Transient Design Solution

Node | Pressure head (m) Minimum pressure head (m) Pressure excess
1 34.70 30.00 4.70
2 34.39 30.00 439
3 39.39 30.00 939
4 38.23 30.00 8.23

Table 9-7 The Maximum Water Hammer Pressure of the Optimal Transient Design

Pipe Maximum Pipe | Allowable maximum | Allowable pressure head
ID |pressure head (m)| class | pressure head (m) residual (m)
1 39.70 4 40.00 0.30
2 46.98 6 60.00 13.02
3 56.49 6 60.00 3.51
4 59.04 6 60.00 0.96
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Figure 9-4 Convergence of the fmGA Search for the Optimal Transient Design of the
Hypothetical Pipeline System

Table 9-8 Lowest Cost 20 Transient Solutions for the Simple Hypothetical Pipeline

System by Complete Enumeration

Solution| Pipe 1 Pipe 2 Pipe 3 pipe 4 Surge tank Cost
rank | Diam. |Class| Diam. |Class| Diam. |Class|{ Diam. |Class{Height{ Diam. |(Dollars)
(mm) (mm) (mm) (mm) (m) | (mm)
1 750 | 4 | 900 | 6 | 750 | 6 [ 750 | 6 | 39.7 | 2,500 | 858,406
2 750 4 | 750 6 | 750 | 6 | 750 | 10 | 39.7 | 2,500 | 866,656
3 750 4 | 900 | 6 | 750 | 10 | 750 | 6 | 39.7 | 2,500 | 878,661
4 750 4 1900 | 6 [ 90| 6 | 750 | 6 [ 39.7| 2,500 | 880,530
5 750 6 | 900} 6 | 750 | 6 | 750 | 6 | 39.7 | 2,500 | 882,691
6 750 4 {900 |10} 750 | 6 | 750 | 6 | 39.7 | 2,500 | 883,151
7 750 6 | 750 | 6 | 750 | 6 | 750 | 10 | 41 | 2,000 | 884,354
8 750 4 | 750 1 6 | 750 ] 10 | 750 | 10 | 39.7 | 2,500 | 886,911
9 750 4 | 750 { 10} 750 | 6 | 750 | 10 | 39.7 | 2,500 | 886,911
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Solution Pipe 1 Pipe 2 Pipe 3 pipe 4 Surge tank Cost
rank | Diam. |Class|Diam. |Class| Diam. |Class| Diam. |Class|Height| Diam. |(Dollars)
(mm) (mm) (mm) (mm) (m) | (mm)
10 | 750 | 4 [1000] 6 [ 750 | 6 [ 750 [ 6 |39.7 | 2,500 | 888,488
11 750 4 | 750 | 6 | 900 | 6 | 750 [ 10 | 39.7 [ 2,500 | 888,777
12 750 4 | 900 { 6 | 750 § 6 | 750 | 10 | 39.7 | 2,500 | 888,789
13 750 6 | 750 | 6 | 750 { 6 | 750 [ 10 | 39.7 | 2,500 | 890,941
14 750 | 4 [ 900 | 6 | 750 | 6 | 900 | 6 | 39.7| 2,500 | 891,590
15 750 6 | 750 | 6 | 750 | 10 | 750 [ 10 | 46.9 | 1,000 | 891,688
16 750 6 | 750 | 6 | 750 { 10 | 750 | 10 | 43 | 1,500 | 897,944
17 750 6 [1000| 6 | 750 | 6 | 750 | 6 43 1,500 | 899,520
18 750 | 6 | 750 | 6 | 900 | 6 | 750 | 10 | 43 | 1,500 | 899,824
19 750 6 | 900 { 6 { 750 [ 10 | 750 | 6 | 39.7 | 2,500 | 902,946
20 750 4 | 90 | 10| 750 | 10 | 750 | 6 | 39.7 | 2,500 | 903,406

9.6 A Real System Case Study — Loveday Irrigation Network

The comprehensive transient analysis for Loveday network in Chapter 8 shows that there is
no single transient event that governs the design of the network. The network must be
designed under multiple transient loadings, namely the transient events generated by closing
one of three outlet valves 28, 31 and 14 with the other two valves shut are considered in
optimal transient design. The fast messy GA has been employed to carry out the optimal
transient design in two stages. It has been observed that optimisation of pipe diameters, pipe
classes and surge tank in one model becomes very complicated and also requires massive
computation. Thus a two-stage optimisation approach is proposed to solve the problem of
optimal transient design of the real network. In the first stage, the optimal design is carried

out by just considering steady state demand loadings to search for the optimal pipe
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diameters. Then the optimal pipe diameters are locked in and the second stage allows the

optimal model search for the optimal pipe classes and surge tank dimensions by considering

the three transient loadings.

9.6.1 Stage-one optimisation

In the first stage, the optimisation of design of Loveday network was carried out by just
considering the steady state demand loadings as given in Table 9-9. Awvailable pipe sizes
(diameters), as shown in Table 9-10, are the combination of the concrete pipes and the
uPVC pipes. There are 3 classes available for each pipe size, but only class I pipes (the
minimum cost class) were considered in this stage. The concrete pipes provide large sizes
for the trunk main of the network while the uPVC pipes are mainly used for the branches in
the downstream portion of the network.

The boundary fast messy GA search approach developed in Chapter 7 has been
employed for the stage-one optimisation of Loveday network. There are 54 pipes to be
optimised in the stage-one optimisation. Four binary bits were used for each of 54 pipes to
represent 11 pipe sizes, and 4 binary bits were used to coding the penalty factor in an
interval from 5,000,000 to 10,000,000. A total of 220 binary bits were used for the
genotype coding of an alternative for stage-one optimisation. The fast messy GA parameters
were initial population sizes = 200; juxtapositional population size = 500; maximum era =
20; thresholding = on; tiebreaking = off; bitwise cut probability = 0.0166; splice probability

= 0.95; and mutation probability = 0.01.
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Table 9-9 Steady State Demand Loadings for Loveday Network

Node Demand (L/s) Node Demand (L/s)
Id loading 1 loading 2 Id loading 1 loading 2
2 0.00 0.00 28 10.00 80.00
3 0.00 0.00 29 30.00 16.00
4 0.00 0.00 30 90.00 47.00
5 0.00 0.00 31 20.00 120.00
6 60.00 31.00 32 0.00 0.00
7 60.00 31.00 33 130.00 67.00
8 60.00 31.00 34 10.00 120.00
9 0.00 0.00 35 40.00 21.00
10 80.00 41.00 36 0.00 0.00
11 55.00 120.00 37 140.00 73.00
12 0.00 0.00 38 30.00 16.00
13 0.00 0.00 39 0.00 0.00
14 40.00 120.00 40 25.00 120.00
15 60.00 31.00 41 30.00 16.00
16 0.00 0.00 42 0.00 0.00
17 0.00 0.00 43 120.00 120.00
18 0.00 0.00 44 60.00 120.00
19 0.00 0.00 45 45.00 0.00
20 80.00 41.00 46 45.00 120.00
21 0.00 0.00 47 30.00 0.00
22 80.00 41.00 48 30.00 120.00
23 90.00 47.00 49 240.00 240.00
24 20.00 10.00 50 60.00 31.00
25 60.00 31.00 51 0.00 0.00
26 60.00 31.00 52 60.00 31.00
27 70.00 36.00 - - -

Table 9-10 Available Pipe Sizes and Associated Cost for Stage-One Optimisation

Pipe diameter Material Cost
(mm) ($/m)
233.60 uPVvC 50.00
258.20 uPvVC 74.00
310.30 uPVC 77.00
384.40 uPVC 100.00
457.00 Concrete 128.00
534.00 Concrete 143.00
610.00 Concrete 153.00
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Pipe diameter Material Cost

{mm) ($/m)
762.00 Concrete 170.00
915.00 Concrete 252.00
1066.00 Concrete 305.00
1219.00 Concrete 410.00

Table 9-11 Optimal Solutions for Loveday Network Under Steady State Demand

Loadings
Pipe Optimal diameters (mm)
Id fmGAl | fmGA2 | fmGA3 | fmGA4 | fmGAS5S | fmGA6 | fmGA7
1 12190 | 12190 | 12190 | 1219.0 | 12190 | 12190 | 1219.0
2 1219.0 1219.0 1219.0 1219.0 1219.0 1219.0 1219.0
3 3103 3103 3103 3103 3103 310.3 310.3
4 1219.0 1219.0 1219.0 1219.0 1219.0 1219.0 1219.0
5 534.0 610.0 1066.0 610.0 915.0 762.0 762.0
6 534.0 5340 | 384.4 384.4 534.0 534.0 534.0
7 12190 | 12190 | 9150 | 12190 | 10660 | 1219.0 | 1066.0
8 762.0 762.0 1066.0 762.0 915.0 762.0 762.0
9 534.0 384.4 1066.0 4570 915.0 762.0 762.0
10 384.4 3844 1066.0 384.4 915.0 3844 762.0
11 310.3 2336 | 10660 | 3844 762.0 384.4 762.0
12 233.6 233.6 915.0 310.3 762.0 384.4 610.0
13 233.6 233.6 | 10660 | 384.4 762.0 384.4 610.0
14 762.0 762.0 915.0 762.0 534.0 534.0 233.6
15 457.0 457.0 3844 534.0 3844 762.0 534.0
16 1219.0 1219.0 1066.0 1219.0 1066.0 1219.0 1219.0
17 1066.0 1219.0 762.0 1066.0 1066.0 1066.0 1066.0
18 3103 3103 3103 3844 3844 3103 3103
19 1219.0 1066.0 1066.0 1066.0 915.0 1066.0 1066.0
20 1219.0 1219.0 762.0 1066.0 1066.0 1066.0 1066.0
21 3103 3103 3103 3103 3103 3103 310.3
22 1219.0 1219.0 762.0 1219.0 1066.0 1219.0 1066.0
23 1066.0 1219.0 762.0 1219.0 1066.0 1066.0 1066.0
24 534.0 3103 762.0 610.0 762.0 1066.0 915.0
25 1219.0 1219.0 762.0 1066.0 762.0 1066.0 762.0
26 534.0 457.0 7620 | 10660 | 762.0 915.0 1066.0
27 384.4 233.6 762.0 1066.0 762.0 915.0 915.0
28 233.6 762.0 610.0 915.0 610.0 762.0 1066.0
29 762.0 762.0 233.6 610.0 384.4 762.0 762.0
30 762.0 762.0 762.0 610.0 610.0 762.0 762.0
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Optimal diameters (mm)

Pipe
Id fmGAl | fmGA2 | fmGA3 | fmGA4 | fmGAS | fmGA6 | fmGA7
31 762.0 610.0 762.0 534.0 534.0 534.0 762.0
32 4570 | 4570 | 4570 | 5340 534.0 534.0 457.0
33 4570 | 4570 | 3844 | 3844 | 3844 | 3844 384.4
34 310.3 310.3 3844 384.4 3844 384.4 384.4
35 3844 384.4 457.0 457.0 3844 3844 384.4
36 534.0 384.4 3844 762.0 233.6 534.0 762.0
37 384.4 3844 3103 384.4 233.6 534.0 384.4
38 384.4 258.2 3103 3103 384.4 258.2 258.2
39 233.6 610.0 610.0 762.0 457.0 762.0 762.0
40 1066.0 1066.0 762.0 610.0 762.0 3844 233.6
4] 915.0 915.0 762.0 384.4 534.0 233.6 384.4
42 762.0 1066.0 762.0 384.4 3103 233.6 384.4
43 762.0 384.4 384.4 233.6 610.0 233.6 233.6
44 610.0 384.4 457.0 233.6 610.0 233.6 233.6
45 3844 | 3103 | 3103 | 3844 | 3844 | 3844 384.4
46 1066.0 1219.0 233.6 762.0 610.0 762.0 384.4
47 3844 384.4 384.4 384.4 3844 3103 3844
48 3844 384.4 384.4 384.4 384.4 384.4 384.4
49 310.3 310.3 3103 | 3103 3844 | 3844 310.3
50 384.4 3844 457.0 384.4 3103 384.4 3844
51 3103 3103 310.3 3103 3103 3103 3103
52 384.4 384.4 457.0 457.0 384.4 3844 3844
53 381.0 384.4 3103 2582 3103 3103 3103
54 384.4 384 .4 384.4 3844 3844 384.4 3844
Deficit (m) | 0.00 0.00 0.01 0.00 0.03 0.00 0.06
Total cost | 6,036,782 6,057,513 | 5,916,330 | 5,904,404 | 5,695,566 | 5,686,397 | 5,492,674
Evaluations | 395,120 | 541,820 | 544,320 | 271,710 | 536,820 | 535,320 | 538,820
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Table 9-12 Pressure Heads and Deficits of Optimal Solutions fmGAJ, 5, 6 and 7 for

Loveday Network at Critical Nodes (m)

Node fmGA4 fmGAS fmGA6 fmGA7
ID head | excess | head |excess| head |excess| head |excess
10 | 386 | 086 | 547 | 247 | 3.11 | 0.11 | 381 | 081
11 | 302 | 002 [ 378 | 078 | 3.02 | 0.02 | 2.94 | -0.06
12 3.97 0.97 6.46 3.46 3.96 0.96 3.88 0.88
23 | 338 | 038 | 379 | 079 | 404 | 1.04 | 384 | 084
24 3.15 0.15 297 [ -0.03 | 3.29 0.29 3.65 0.65
26 3.56 0.56 3.38 0.38 4.14 1.14 4.57 1.57
28 3.33 0.33 3.33 0.33 3.52 0.52 3.67 0.67
31 5.05 2.05 3.64 0.64 3.15 0.15 3.23 0.23
34 3.02 0.02 3.01 0.01 3.37 0.37 299 | -0.01
37 5.77 2.77 6.08 3.08 3.01 0.01 3.09 0.09
38 4.38 1.38 441 1.41 5.28 2.28 3.19 0.19
39 | 436 | 136 | 416 | 1.16 | 416 | 1.16 | 295 | -0.05
40 | 530 | 230 | 509 | 209 | 597 | 297 | 3.88 | 088
43 435 1.35 3.17 0.17 3.17 0.17 3.17 0.17
46 | 311 | 011 | 766 | 466 | 3.15 | 0.15 | 2.94 | -0.06
49 | 336 | 036 | 297 |-0.03| 3.02 | 002 | 3.31 | 031

The fmGANET has been run by using different random seeds, a set of cost effective
solutions have been obtained as given in Table 9-11. It shows that the boundary fast messy
GA reached the optimal or near-optimal solutions by evaluating about 540,000 alternatives
in a total possible combination of 2%, which is about 1.68 x 10%. The boundary fast messy
GA has been shown very efficient at searching for the optimal and/or near-optimal
solutions.

The optimal or near-optimal solutions found in this stage are observed to be very
close to the boundary of the hydraulic pressure requirements as shown in Table 9-12. The
pressure heads of 4 best solutions at critical nodes are given in Table 9-12. Although the

minimum cost solution fmGA 7 has the maximum pressure head violation of 0.06 metres, it
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is considered the optimal solution from the first stage optimisation and will be adopted in

stage-two optimisation.

Table 9-13 Material Data of Pipe Class I

Diameter Cost Wall thickness Allowable
(mm) (§/m) (mm) pressure (m)
233.60 50.00 9.70 90.00
258.20 74.00 10.70 90.00
310.30 77.00 12.90 90.00
384.40 100.00 15.90 90.00
457.00 128.00 38.00 52.00
534.00 143.00 41.00 41.20
610.00 153.00 44.00 30.00
762.00 170.00 51.00 32.00
915.00 252.00 63.00 32.00
1066.00 305.00 63.00 32.00
1219.00 410.00 63.00 32.00

Table 9-14 Material Data of Pipe Class I

Diameter Cost Wall thickness | Allowable
(mm) ($/m) (mm) pressure (m)
233.60 60.00 12.00 120.00
258.20 86.00 14.00 120.00
310.30 92.00 17.00 120.00
384.40 130.00 20.90 120.00
457.00 140.00 54.00 53.00
534.00 148.00 51.00 47.10
610.00 158.00 57.00 4120
762.00 210.00 63.00 37.50
915.00 280.00 76.00 37.50
1066.00 370.00 76.00 37.50
1219.00 545.00 76.00 34.30
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Table 9-15 Material Data of Pipe Class I1I

Diameter Cost Wall thickness | Allowable
(mm) ($/m) (mm) pressure (m)
233.60 75.00 16.80 160.00
258.20 102.00 18.50 160.00
310.30 112.00 22.20 160.00
384.40 140.00 27.50 160.00
457.00 150.00 70.00 55.90
534.00 158.00 61.00 51.00
610.00 178.00 76.00 48.00
762.00 255.00 76.00 42.00
915.00 312.00 89.00 42.00
1066.00 425.00 89.00 42.00
1219.00 680.00 89.00 42.00

9.6.2 Stage-two optimisation

In the second stage, the pipe classes and the surge tank of the Loveday network have been
optimised by using the optimal pipe diameters found in stage-one. There are 3 classes for
each of 11 available pipe diameters as shown in Table 9-13, 9-14 and 9-15. The surge tank
is allocated at node 23 and a cost of $245/m’ of the tank perimeter surface area. The unit
tank cost is based on the construction cost information provided by the pipeline contractors
in South Australia. It was used for evaluation of the tank alternatives. Two cases including
optimisation of pipe classes and optimisation of pipe classes and surge tank have been
carried out for Loveday network in this stage. The optimal diameters of solution fmGA7
obtained in stage-one is fixed in stage-two optimisation.

The boundary GA search strategy has also been employed in stage-two optimisation
of Loveday network. Two binary bits were used for the representation of 3 pipe classes for
each of 54 pipes, 4 binary bits were used for coding the surge tank diameters in range from
1.0 metre to 3.0 metres in diameter and other 4 binary bits were used for coding the penalty

factor in a interval of [500,000 1,000,000]. Thus 112 binary bits were used for the
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optimisation of the pipe class in stage two, and 116 bits were used for the optimisation of
the pipe class and the surge tank. The critical transient loadings, as identified in Chapter 8,
are the independent instantaneous closure of valves 28, 31 and 14. The optimal transient
design solutions have been achieved by using the same set of the fast messy GA parameters

as in the first stage.

Table 9-16 Optimal Solutions of Stage-two Optimisation

Pipe Minimum Optimal thickness
Pipe diameters | thickness | notank | with tank
ID (mm) (mm) (mm) (mm)
1 1219.0 63.0 63.0 63.0
2 1219.0 63.0 63.0 63.0
3 3103 12.9 12.9 12.9
4 1219.0 63.0 63.0 63.0
5 762.0 51.0 51.0 51.0
6 534.0 41.0 41.0 41.0
7 1066.0 63.0 63.0 63.0
8 762.0 51.0 51.0 51.0
9 762.0 51.0 51.0 51.0
10 762.0 51.0 51.0 51.0
11 762.0 51.0 51.0 51.0
12* 610.0 44.0 57.0 57.0
13 610.0 44.0 57.0 57.0
14 233.6 9.7 9.7 9.7
15 534.0 41.0 41.0 41.0
16 1219.0 63.0 63.0 63.0
17 1066.0 63.0 63.0 63.0
18 3103 12.9 12.9 12.9
19 1066.0 63.0 63.0 63.0
20 1066.0 63.0 63.0 63.0
21 3103 12.9 12.9 12.9
22 1066.0 63.0 63.0 63.0
23 1066.0 63.0 63.0 63.0
24 915.0 63.0 63.0 63.0
25 762.0 51.0 51.0 51.0
26 1066.0 63.0 63.0 63.0
27 915.0 63.0 63.0 63.0
28 1066.0 63.0 63.0 63.0
29 762.0 S1.0 63.0 63.0
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Pipe Minimum Optimal thickness
Pipe diameters | thickness | notank | with tank
ID (mm) (mm) (mm) (mm)
30 762.0 51.0 51.0 51.0
31 762.0 51.0 76.0 76.0
32 457.0 38.0 54.0 54.0
33 384.4 15.9 15.9 15.9
34 384.4 15.9 15.9 15.9
35 3844 15.9 15.9 15.9
36 762.0 51.0 76.0 63.0
37 384.4 159 15.9 15.9
38 258.2 10.7 10.7 10.7
39 762.0 51.0 76.0 76.0
40 233.6 9.7 9.7 9.7
41 3844 159 15.9 15.9
42 3844 159 159 15.9
43 233.6 9.7 9.7 9.7
44 233.6 9.7 9.7 9.7
45 3844 15.9 15.9 15.9
46 3844 15.9 15.9 15.9
47 384.4 15.9 159 159
48 3844 15.9 15.9 15.9
49 310.3 12.9 12.9 12.9
50 3844 15.9 15.9 15.9
51 3103 12.9 12.9 12.9
52 3844 15.9 15.9 15.9
53 3103 12.9 12.9 12.9
54 384.4 15.9 15.9 15.9
Surge tank Diameter (m) - - 1.0
Surge tank Hight (m) - - 18.0
Pipe cost 5,492,674 | 5,737,509 | 5,700,384
Surge tank cost - - 24,090
Total cost 5,492,674 | 5,737,509 | 5,724,474

*pipes chosen with a higher class than the minimum class are in bold.
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The optimal solutions of transient design of Loveday network have been obtained by
fmGAHAM for the design without the surge tank and with the surge tank as given as in
Table 9-16. The first stage optimal design was obtained by using the cost information of the
class I pipes, which correspond to the minimum pipe wall thickness. Thus it resulted in a
lower cost solution than the optimal transient design solutions in the second stage. The
maximum water hammer pressure heads of the stage-one optimal solution are greater than
the allowable transient pressure heads at node 12, 13, 29 and 39. This indicates that the
optimal solution under steady state demand loadings has no safety guarantee for the
pressure surge protection although it may provide a lower cost design solution.

Table 9-16 and Table 9-17 show that the transient design including the surge tank is
the optimal solution for Loveday network, both in terms of the capital cost and the surge
pressure protection. The second stage optimal design considering pipe classes without a
surge tank chooses higher pipe classes for a few pipes as highlighted in bold in Table 9-16
than the first stage optimal design. Consequently the safety of water hammer protection is
guaranteed as shown in Table 9-17. The total cost of the optimal design solutions increased
from 5,492,674 in stage one to 5,737,509 in stage two. The optimal transient design
solution considering the surge tank at node 23 brings the class down from class III to class
II for pipe 36, as shown as in Table 9-16, namely the pipe wall thickness for pipe 36 is
reduced from 76.0 mm to 63.00 mm. A surge tank with the height of 18.0 metres and the
diameter of 1.0 metre is chosen for the pressure surge protection. Although the tank costs
$24,090 the pipe cost decreases more than the cost of the surge tank. The total cost of the
optimal transient design with surge tank still provides a lower cost solution than that
without a surge tank. It also provides more safety margin for the protection of the water

hammer pressures as given in Table 9-17. Therefore we are able to conclude that the
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optimal transient design is not only able to provide a lower cost design solution but also a

safer solution in terms of pressure surge protection.

Table 9-17 Comparison of Transient Pressure Head Residual of Optimal Solutions

Pipe| Allowable transient head residual (m) |Pipe|Allowable transient head residual (m)
ID Stage-one Stage-two ID Stage-one Stage-two
minimum class| notank | withtank minimum class | no tank | with tank
1 13.02 16.69 16.69 28 16.73 7.91 8.58
2 11.71 12.69 12.69 29 -2.74 2.72 2.73
3 73.32 69.64 69.64 30 5.38 0.23 0.26
4 11.78 12.69 12.69 31 3.00 2.03 2.05
5 14.76 16.69 1669 | 32 8.73 2.21 2.29
6 2539 25.89 25.89 33 72.92 43 .49 41.78
7 14.32 16.69 16.69 34 48.26 36.74 35.33
8 14.80 18.68 18.68 35 50.73 54.51 54.74
9 11.47 18.68 18.68 | 36 0.95 3.75 1.26
10 11.82 18.68 18.68 | 37 51.97 51.03 | 51.79
11 6.88 9.66 12.10 38 17.65 19.15 19.15
12 -10.56 5.47 7.96 39 -7.89 2.66 2.66
13 -10.64 5.47 796 | 40 66.41 5291 | 45.78
14 65.67 64.32 66.88 41 66.38 52.62 52.63
15 14.12 20.15 22.26 42 55.26 55.22 55.23
16 12.48 6.25 10.55 43 70.73 52.58 53.05
17 11.81 6.25 10.55 44 64.94 48.37 48.33
18 70.48 59.60 66.11 45 73.73 62.90 67.13
19 16.30 8.92 13.46 46 75.16 62.10 67.64
20 16.28 9.21 14.16 47 66.78 58.62 64.59
21 71.72 61.77 68.02 | 48 75.16 5031 | 65.13
22 16.39 9.40 14.16 | 49 60.20 5524 | 63.50
23 18.03 9.94 14.85 S0 59.93 54.63 64.52
24 13.92 1.75 13.35 51 69.23 54.82 59.61
25 16.03 7.64 1281 | 52 77.94 76.64 | 76.64
26 13.92 6.53 1274 | 53 69.72 5762 | 6558
27 12.09 6.00 12.56 | 54 77.03 6024 | 67.19
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9.7 Sensitivity of Optimal Transient Solution

Section 9.6 shows that the two-stage optimisation is effective at finding a low cost solution
of the transient design of Loveday network. The optimal transient design, however, is based
on the optimal diameters obtained in stage-one by using the minimum thickness (class I)
pipes. A question arises as to how sensitive the optimal transient solution is to the pipe class
being fixed in stage-one optimisation. In other words, does the approach produce a similar
low cost solution of the transient design based on optimal diameters found in stage-one
using pipes of another class. In this section, the optimisation of transient design of Loveday
network has been carried out by using the stage-one optimal diameters of class II pipes.
First of all, the stage-one optimal diameters of Loveday irrigation network have been
obtained by using the cost information of class II pipes. The stage-one optimal diameters
are then used for the stage-two optimisation of transient design of Loveday network. The

results from both stage one and two are compared with that obtained in Section 9.6 using

the cost information of class I pipes in stage one.

Table 9-18 Comparison of Stage-one Optimal Solutions Using Pipe Class I and IT Cost

Pipe Optimal pipe Optimal pipe Pipe | Optimal pipe | Optimal pipe
diameter using diameter using diameter using | diameter using
ID class I unit cost class IT unit cost |{ID |class I unit cost|class IT unit cost
(mm) (mm) (mm) (mm)

1 1219 1219 28 1066 762

2 1219 1219 29 762 762

3 3103 3103 30 762 762

4 1219 1219 31 762 534

5 762 762 32 457 534

6 534 384.4 33 384.4 384.4

7 1066 1066 34 384.4 384.4

8 762 762 35 384.4 610

9 762 762 36 762 233.6

10 762 610 37 384.4 233.6
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Pipe | Optimal pipe Optimal pipe  |Pipe | Optimal pipe | Optimal pipe
diameter using diameter using diameter using | diameter using
ID class I unit cost class Il unit cost {ID |class I unit cost|class II unit cost
(mm) (mm) (mm) _ (mm)

11 762 762 38 258.2 3103

12 610 762 39 762 457

13 610 762 40 233.6 610

14 233.6 233.6 41 384.4 610

15 534 457 42 384.4 233.6

16 1219 1066 43 233.6 610

17 1066 1066 44 233.6 534

18 310.3 3844 45 3844 384 .4

19 1066 1066 46 3844 762

20 1066 1066 47 384 .4 3844

21 310.3 3103 48 3844 384 .4

22 1066 1066 49 3103 384 .4

23 1066 1066 50 3844 381

24 915 915 51 3103 3103

25 762 762 52 3844 457

26 1066 762 53 3103 3103

27 915 915 54 3844 384 4
Pressure deficit (m) 0.06 0.03
Total cost evaluated by using class I pipe cost 5,492,674 5,596,651*
Total cost evaluated by using class II pipe cost 6,764,152* 6,710,189
Number of genetic algorithm evaluations 538,820 496,940

*total cost evaluated after optimisation for comparison.

The stage-one optimisation model of Loveday network was rerun by using the cost

information of class II pipes. The cost variation of class II pipes, as shown in Figure 9-5, is

similar to that of class I pipes. The other model parameters in the genetic algorithm

optimisation are the same as used in Section 9.6.1. A set of lower cost solutions have been

found for Loveday irrigation network. The optimal solution (see Appendix C for all the

solutions) has been compared, as shown in Table 9-18, with the least cost solution fmGA7

using class I pipes. The solutions are evaluated by using the cost of both class I and class II

pipes. It shows that the optimal solution corresponds to a lower cost than that of the

solution evaluated by using the cost of the other class pipes. For example, the optimal
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solution of class I pipes is less costly than that evaluated by using the cost of class II pipes.
This indicates that the stage-one optimisation model has been effective at achieving the

optimal solution according to the cost information being used in the model.
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Figure 9-5 Cost Structure of Class I, II and III Pipes
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Figure 9-6 Pipe Length of Optimal Diameters of Stage-one Solutions Using Class I

and II Pipe Cost

The stage-one optimal pipe sizes of both class I and class II pipes are classified by

the plot of the pipe length of a individual pipe diameter as shown in Figure 9-6. It

demonstrates that the stage-one optimisation of both class I and II pipes has chosen similar

pipe sizes for the large pipes of diameters of 762.0, 915.0, 1006 and 1219 millimetres. The

class I pipes favour small uPVC pipes of diameters from 233.6 to 384.4 millimetres, while

the class II pipes favour reinforced concrete pipes of diameters of 457.0, 534.0 and 610.0

millimetres. The optimal solution of class II pipes is fixed for optimal selection of pipe

thicknesses (pipe classes) and the size of the surge tank for Loveday network under water

hammer loading. The results from the stage-two optimisation are compared with the

optimal solutions presented in Section 9.6.2.
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Table 9-19 Comparison of Stage-two Optimisation Based on Stage-one Solutions

Using Class I and II Pipe Cost

Based on stage-one optimisation

Based on stage-one optimisation

by using class I pipe cost by using class II pipe cost
Pipe| Diameters no tank | with tank | Diameters | no tank with tank
wall wall wall wall
thickness | thickness thickness | thickness

ID (mm) (mm) (mm) (mm) (mm) (mm)
1 1219 63 63 1219 63 63
2 1219 63 63 1219 63 63

3 3103 12.9 12.9 3103 12.9 12.9
4 1219 63 63 1219 63 63
5 762 51 51 762 51 51

6 534 41 41 384 .4 15.9 15.9
7 1066 63 63 1066 63 63
8 762 51 51 762 51 51
9 762 51 51 762 51 51
10 762 51 51 610 44 44
11 762 51 51 762 51 51
J2 610 57 57 762 63 63
13 610 57 57 762 63 63
14 233.6 9.7 9.7 233.6 9.7 9.7
15 534 41 4] 457 38 38
16 1219 63 63 1066 63 63
17 1066 63 63 1066 63 63

18 310.3 12.9 12.9 384 4 15.9 15.9
19 1066 63 63 1066 63 63
20 1066 63 63 1066 63 63

21 3103 12.9 12.9 3103 12.9 12.9
22 1066 63 63 1066 63 63
23 1066 63 63 1066 63 63
24 915 63 63 915 63 63
25 762 51 51 762 51 51
26 1066 63 63 762 51 51
27 915 63 63 915 63 63
28 1066 63 63 762 51 51
29 762 63 63 762 63 63
30 762 51 51 762 63 63
31 762 76 76 534 61 61
32 457 54 54 534 61 61

33 384.4 15.9 15.9 384.4 15.9 15.9

34 384.4 15.9 15.9 384.4 15.9 15.9
35 384.4 15.9 15.9 610 57 57
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Based on stage-one optimisation Based on stage-one optimisation
by using class I pipe cost by using class II pipe cost
Pipe| Diameters no tank | with tank | Diameters | no tank with tank
wall wall wall wall
thickness | thickness thickness | thickness
ID (mm) (mm) (mm) (mm) (mm) (mm)
36 762 76 63 233.6 9.7 9.7
37 384.4 15.9 15.9 233.6 9.7 9.7
38 258.2 10.7 10.7 310.3 12.9 12.9
39 762 76 76 457 38 38
40 233.6 9.7 9.7 610 57 57
41 384.4 15.9 15.9 610 57 57
42 384.4 15.9 15.9 233.6 9.7 9.7
43 233.6 9.7 9.7 610 57 57
44 233.6 9.7 9.7 534 41 41
45 384.4 15.9 15.9 384.4 15.9 15.9
46 384.4 15.9 15.9 762 51 51
47 384.4 15.9 15.9 3844 159 15.9
48 384.4 15.9 15.9 384.4 15.9 15.9
49 3103 12.9 12.9 384.4 15.9 15.9
50 384.4 15.9 15.9 384.4 15.9 159
51 3103 12.9 12.9 310.3 12.9 12.9
52 384.4 159 159 457 38 38
53 3103 12.9 12.9 3103 12.9 12.9
54 384.4 159 159 334.4 15.9 15.9
Pipe cost 5,737,509 | 5,700,384 5,701,021 | 5,701,021
Surge tank diam. (m) - 1.0 - 10
Surge tank height (m) - 18.0 - 18.2
Surge tank cost - 24,090 - 24.293
Total cost 5,737,509 | 5,724,474 5,701,021 | 5,725,314
Minimum transient
head residual (m) 0.23 0.26 0.6 06

*pipes chosen higher class than the minimum class are in bold.
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The stage-two optimal selection of pipe classes and surge tank sizes based on the
stage-one optimal diameters of class II pipes has been carried out for the case without a
surge tank and the case with surge tank at node 23. The optimal pipe thicknesses and/or
surge tank sizes are tabulated in Table 9-19 and compared with the optimal transient design
solutions in Section 9.6.2. It shows that the stage-two optimisation model based on stage-
one optimal diameters of class II pipes has chosen the same optimal pipe thicknesses for
both the case without a surge tank and the case with a surge tank in the system. A minimum
diameter of 1.0 metre has been chosen for the surge tank, which is associated with a cost of
$24,293. Thus, the optimal transient design solution for the case with a surge tank in the
system is more costly than the optimal transient solution without a surge tank. However, the
cost of the optimal transient design solution based on the optimal diameter of class II pipes
is similar to that based on the optimal diameters of class I pipes. This implies that the
optimal transient solution without a surge tank, based on the optimal diameters of class II
pipes, is economically and hydraulically equivalent to the optimal transient design solution
with a surge tank based on the optimal diameters of class I pipes. This is because the stage-
one optimisation model using class II pipe costs has chosen more reinforced concrete pipes
of diameters of 457.0, 534.0 and 610.0 mm, as shown in Figure 9-6, than that using class I
pipe costs. It is the large reinforced concrete pipes that provide a similar transient protection
capacity to that provided by the surge tank of the optimal transient design solution based on
the optimal diameters of class I pipes. This indicates that the two-stage optimisation
approach for transient design of water distribution systems is effective at finding the least
cost solution with a satisfied security margin of water hammer protection, and also that the

cost of the optimal transient design solution is not really sensitive to the pipe class being

fixed in stage-one.
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9.8 Summary

A model of optimisation of transient design of water distribution systems has been
formulated in this Chapter and implemented by incorporating the water hammer simulation
model HAMMER into the computer program fmGANET developed in Chapter 6. The
boundary GA search strategy based on self-adaptive penalty has also been incorporated into
the integrated computer program fmGAHAM for optimal transient design. This approach
has been applied to two case studies to investigate the effectiveness and efficiency of the
methodology.

The first example is a simple hypothetical pipeline system. A complete enumeration
of the transient design alternatives has been carried out. It provides a comparison basis for
verifying the optimal solution by fmGAHAM. The results obtained shows that fmnGAHAM
is effective at finding the optimal solution. The second example is a real water distribution
system in South Australia. It is a low head irrigation system and consists of 54 pipes to be
sized. The optimal transient design has been carried out in two stages. In the first stage,
only the pipe diameters were optimised by using a fixed thickness (or a class) pipes under
steady state demand loadings. A set of lower cost solutions have been found for the system.
In the second stage, the pipe class and the surge tank have been optimised by using the
optimal diameter given in stage one. Although the total cost of the optimal transient designs
are higher than that without considering water hammer events, the transient design provides
the safety guarantee for the pressure surge protection. The optimal transient design
including the pipe classes and the surge tank is not only able to demonstrate the economic
benefit but also to ensure the safety of the transient pressure surge that is generated by

operation of the water distribution system.
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The optimisation of the transient designs based on optimal diameters of class II
pipes has also been carried out for Loveday irrigation network and compared with the
optimal transient designs based on the optimal diameters of class I pipes. It shows that the
model at stage one is able to produce the optimal design solutions according to the cost
information being used in the model. The total cost of the optimal transient design produced
at stage two optimisation does not appear to be sensitive to the pipe class being fixed in
stage-one optimisation. Thus it is concluded that the approach for the optimisation of
transient design of water distribution system is effective and efficient at finding the optimal

solution for design of water distribution systems including water hammer loadings.
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10. CONCLUSIONS AND RECOMMENDATIONS

10.1 Introduction
This dissertation was motivated to achieve two goals:

e To develop an efficient and effective optimisation technique for design and
rehabilitation of water distribution systems.

e To develop a generic methodology for optimal design of water distribution
systems considering water hammer loadings.

The goals have been achieved by the accomplishments outlined in this thesis that have
been carried out as follows:

» The development of a generalised genotype representation and mapping scheme
for genetic algorithm optimisation of water distribution systems.

e The development of a discrete pipe model for optimisation of design and/or
rehabilitation of water distribution systems.

o The analysis of a continuous pipe formulation and development of a split pipe
model for optimisation of water distribution systems.

» The implementation of both the discrete pipe and split pipe models by integrating
the messy GA with the hydraulic network solver. The integrated approach has
been applied to a number of previously studied networks.

e The comparison of GA paradigms for optimisation of water distribution systems.

o The development of the fast messy GA for optimisation of water distribution
system and its application to a large-scale real network.

o The development of a boundary search of genetic algorithm optimisation by

coevolution of self-adaptive penalty functions.
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e The development and analysis of water hammer simulation of water distribution
systems.
e The development of an approach for optimal transient design of water
distribution systems under steady state and water hammer loading.
The conclusions drawn from this work and recommendations made for the future work will

be discussed in the following sections.

10.2 Conclusions

The conclusions that can be drawn from this work are:

1. The messy genetic algorithm is more efficient and effective at optimisation of

water distribution system than the standard GA and/or improved GA.

A generalised formulation for genetic algorithm optimisation of water distribution systems
has been developed in Chapter 3. It includes (1) a discrete pipe model; (2) a genotype and
phenotype representation and (3) a scheme for mapping a genotype (a string) to a
phenotype (a solution). The optimisation problem was solved by using the original messy
GA. The messy GA has been integrated with the hydraulic network solver EPANET. The
integrated program mGANET has been tested on previously studied examples, the two
reservoir network and the New York city tunnels problem. The messy GA uses variable-
length strings, thresholding selection and messy operators of cut and splice. It starts by
enumerating a certain order of building blocks and is followed by a primordial phase and a
juxtapositional phase. In the primordial phase, tournament thresholding selection occurs
only to allow highly fit strings to be enriched in a population. The strings are evolved in
the juxtapositional phase by performing the messy genetic operations of cut and splice. The
results have shown that the messy GA approach to optimal sizing and rehabilitation of

water distribution networks is more efficient than the standard GA and/or the improved
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GA approach. The approach will be able to provide the decision-maker a set of lower cost

solutions for the design of the water distribution systems.

2. The genetic algorithm split pipe model is able to produce lower cost solutions than
GA discrete pipe optimisation for design and rehabilitation of water distribution
systems.

A split pipe formulation for the genetic algorithm optimisation of water distribution

systems has been developed in Chapter 4. An analysis showing a comparison of the

continuous pipe formulation and the split pipe formulation has been presented. It indicates
that there is no guarantee, in general, that the continuous pipe size model using a fitted
convex cost function will reach the optimal split pipe solution. The split pipe optimisation
model, allowing the split pipe sizes to be used in the optimisation procedure, has been
formulated to search for the optimal split pipe solution. This model has been implemented
in a genetic algorithm formulation and tested on two previously studied examples of
optimisation of water supply networks. The results have shown that the genetic algorithm
split pipe mode! for optimal sizing and rehabilitation of water distribution networks is able

to give lower cost solutions than genetic algonthm discrete pipe optimisation.

3. The messy genetic algorithm has been shown to be particularly suitable to solve
the problems of optimal rehabilitation of water distribution systems.

The model developed for optimal design of water distribution systems in Chapter 3 has

been extended to deal with optimal rehabilitation of the systems as discussed in Chapter 5.

The optimal rehabilitation model has been formulated to select a rehabilitation action for

each pipe from a set of possible rehabilitation actions such as duplicating, cleaning,

relining, replacing or just leaving a pipe as it is. The pipe size associated with a
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rehabilitation action is chosen from a list of commercially available discrete pipe sizes, and
a pumping capacity is employed so that the water demand and the minimum allowable
hydraulic pressures at all the nodes are satisfied while the total cost of the rehabilitation is
minimised. The total cost considered includes both the pipe rehabilitation cost and the
pumping cost. To minimise the total cost, an integrated program mGANET, which has
coupled the messy genetic algorithm and a hydraulic network solver EPANET, has been
employed to search for the optimal rehabilitation strategy. The results of the case study
have shown that the messy GA is efficient at searching for the optimal solution. It provides

a decision-maker with a set of least cost solutions, which then can be judged by using other

non-quantifiable criteria.

4. The fast messy genetic algorithm is the most efficient genetic algorithm at

optimisation of water distribution system among the GA paradigms.
The standard genetic algorithm has been compared with the messy genetic algorithm in
Chapter 6. The standard GA defines the relations and classes implicitly by using a fixed-
length representation. It combines the relation space, the class space and the sample space
all together, thus a poor and noisy decision process occurs. Increasing the tournament
selection pressure can improve the search efficiency of the standard GA, but too much
pressure may leads the search to a local optimal.

Messy GAs emphasise searching for appropriate relations. The original messy GA
uses a competitive template and explicit enumeration of good classes—building-blocks—
to ensure correct decision making. However, using an initialisation procedure where
building-blocks are explicitly enumerated essentially limits the messy GA so that it cannot
be applied to a highly dimensional problem. The probabilistically complete initialisation

and the building-block filtering process are introduced into the fast messy GA to detect
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better classes from better relations. An empirical comparison study of the messy GAs for
optimisation of pipeline networks has been carried out and shows that the fast messy GA is
the most efficient algorithm among the genetic-based search paradigms. It eliminates the
major bottleneck of the original messy GA—the explicitly enumerative initialisation and
thus provides a promising optimisation algorithm for solving highly dimensional discrete
optimisation problems. The fast messy GA has been implemented and integrated with
hydraulic network solver EPANET. The integrated approach has been applied to the
optimal rehabilitation of a real water system in Morocco. This application has

demonstrated that the fast messy GA is very efficient at solving large-scale optimisation

problems.

5. The boundary search approach by co-evolution of self-adaptive penalty improves
the efficiency and effectiveness of genetic algorithm optimisation.
A strategy of boundary search of GA optimisation has been developed by co-evolution of
the penalty factor and self-adaptation of the penalty factor, and also applied to optimisation
of water distribution systems. The optimal solution of design and rehabilitation of water
networks has been observed to be achieved at the boundary of the feasible and infeasible
regions of the search space. It is a boundary optimisation problem. A heuristic rule is
specifically proposed for adapting the penalty factor range in such a way that the genotype
population is forced towards the boundary of the feasible and infeasible regions.
Optimisation of New York city tunnels problem has been chosen to demonstrate the
application of this boundary GA search strategy. The results obtained by using the
boundary GA search strategy have been carefully analysed and compared with the
conventional penalty GA optimisation approach. It has been found that the conventional

approach is quite sensitive to the penalty factor. Too large a penalty value may preserve the
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feasibility of the genotypes and the search normally converges to an internal point of the
feasible region, which is not real optimal solution. Too small a penalty value forces the GA
to select an alternative solution outside the feasible region, which eventually leads the
search to converge to an infeasible solution. The boundary search strategy has been shown
to be effective and efficient at adapting the feasibility of the GA population within a large
range of the penalty factors. It automatically adjusts the penalty range and co-evolves the
penalty factor during the GA optimisation process. The boundary search strategy is not
only generally applicable to the optimisation of water distribution system, but also to other
boundary optimisation problems, which are often found in engineering design. It has been

successfully applied to the optimisation of design of water distribution system including

water hammer loadings.

6. Consideration of the transient loading is essential for design of pipeline networks.

A computer model for the water hammer simulation of water distribution systems has been
developed and applied to investigation of transient behaviour of low head irrigation
systems. The transient model, based on the method of characteristics, has been integrated
with the hydraulic solver EPANET. The integrated model HAMMER/EPANET is able to
perform the simulation of the steady and unsteady flow in the pipeline network with
reservoirs, nodes, junctions, in-line valves, outlet valves and surge tanks. A comprehensive
analysis of the transient events has been carried out for the Loveday irrigation pipe system
in South Australia. The simulation results obtained show that water hammer events
generate a severe transient pressure not only in a simple series pipeline, but also in a
complicated networks. An approach for evaluation of the transient events has been

developed and is applied to the evaluation of the transient pressure surge by the water
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hammer events. This provides engineers with a method for identifying the critical water

hammer events for the cost effective transient design of water distribution systems.

7. An approach of the two-stage messy genetic algorithm optimisation that has been
developed in Chapter 9 is effective at searching for the optimal solution of design
of water distribution systems including consideration of water hammer.

A model for the optimisation of transient design of water distribution systems has been

formulated and implemented by incorporating the water hammer simulation model into the

computer program fmGANET developed in Chapter 6. The boundary GA search strategy
based on self-adaptive penalty has also been incorporated into the computer program
fmGAHAM for the optimal transient design.

This approach has been applied to two case studies of optimal transient design of
water distribution systems. The optimal solution of the first example, a simple hypothetical
pipeline system, has been verified by a complete enumeration of the transient design
alternatives. The results obtained show that the approach is effective at finding the optimal
solution. For a complicated network, it is recommended that the optimisation of transient
design of water distribution systems be carried out in two stages. In the first stage, only the
pipe diameters are optimised by using the cost information of a fixed pipe class under
steady state demand loadings. A set of optimal diameters are found for the system. In the
second stage, the diameters are locked in, the pipe classes and water hammer protection
devices (e.g. a surge tank) are then optimised.

Optimisation of transient design of Loveday irrigation network, a real water system
in South Australia, has been carried out by applying the two-stage approach. It is a low
head irrigation system and consists of 54 pipes to be sized. A set of optimal diameters of

class I pipes have been found for the system under steady state demand loadings. In the
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second stage, the pipe class and the surge tank have been optimised by using the optimal
diameters found in stage one. Although the total cost of the optimal transient designs based
on the optimal diameters of class I pipes are higher than that without considering water
hammer events, the optimal transient design provides the safety guarantee for the pressure
surge protection. Thus it is concluded that the optimal transient design of water distribution
systems is not only able to demonstrate the economic benefit but also to ensure the safety
of the transient pressure surge that is generated by operation of the water distribution
systems.

The optimisation of the transient design of Loveday irrigation network, based on
optimal diameters of class II pipes, has also been carried out. The results have been
compared with the optimal transient designs based on the optimal diameters of class I
pipes. It shows that the model is able to produce the optimal transient design solutions. The
cost of the optimal transient design is observed not being sensitive to the pipe class being
fixed in stage-one. The two-stage optimisation process is likely to lead to a suboptimal
design solution, although it is shown that the approach is effective and efficient at finding

the near optimal or cost effective solutions for the design of water distribution systems

including consideration of water hammer loadings.

10.3 Recommendations

To further improve the efficiency and accuracy of optimisation of water distribution

systems, a number of research avenues for future consideration are suggested as follows:

e Incorporation of Pump operation (scheduling) into optimal design and/or
rehabilitation of water distribution systems. Chapter 5 shows that the cost of the
rehabilitation is dominated by the pump energy cost, which is almost 90% of the total
cost. This implies that the optimal rehabilitation of water distribution system must

consider not only pump useful horse power but also the pump operation (scheduling).
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The consideration of pump operation will provide more accurate information to
evaluate the rehabilitation strategies in an optimal rehabilitation model of the water
distribution systems in the future.

e Transient sensitivity analysis. It is the simulation of transient loadings that takes the
most of computation time to run the optimal transient design program. The sensitivity
study will identify what parameters (diameters, pipe wall thickness, materials or surge
protection devices) are the most sensitive to the maximum transient pressure in pipes.
This will lead to a simplification of the model for optimal transient design and/or the

model for transient simulation of water distribution systems.

e Approximate transient simulation. A simplified model for simulation of transient
events could be developed to improve the efficiency of optimisation of transient

design. The approximate simulation model can be formulated by just considering the

most sensitive parameters.

e Optimal allocation of transient surge protection devices. The model developed in
this research could be improved to taking into account selecting the optimal location of
a water hammer protection device (eg. a surge tank). This could further increase the

economic benefit of the optimal transient design and also provide better protection of

the transient pressure surge within pipeline systems.

Work on these suggestions will be fruitful in directly improving the optimisation of water

distribution systems or indirectly exploring many other ways to solve real-world

optimisation problems.
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Appendix A OPTIMAL SOLUTIONS FOR REHABILITATION OF
THE MOROCCAN NETWORK

A.1 Optimal Solution of fmGAS

Rehabilitation for old_pipe

ID Action Diam C coeff.
1 duplication 400.0 130
2 leave 400.0 120
3 leave 200.0 90
q leave 350.0 120
5 leave 100.0 20
6 duplication 80.0 130
7 leave B80.0 B8O
8 leave B80.0 90
9 leave 100.0 70
10 leave 100.0 90
11 leave 100.0 90
12 leave 300.0 120
13 leave 350.0 120
14 leave 100.0 90
15 leave 100.0 90
16 leave 80.0 30
17 leave 100.0 80
18 leave 100.0 80
19 leave 100.0 B8O
20 leave 100.0 70
21 duplication 80.0 130
22 duplication 80.0 130
23 leave 100.0 90
24 leave 100.0 90
25 leave 300.0 120
26 duplication 150.0 130
217 leave 100.0 90
28 leave 100.0 90
29 leave B80.0 100
30 leave 100.0 100
31 duplication 300.0 130
32 duplication 150.0 130
33 leave 80.0 90
34 leave 100.0 90
35 leave 200.0 120
36 leave 100.0 100
37 leave 200.0 120
38 leave B80.0 80
39 leave 100.0 80
40 leave 100.0 a0
41 leave 100.0 70
42 duplication 300.0 130
43 leave 100.0 100
44 leave 80.0 100
45 leave 100.0 100
46 leave 100.0 100
47 leave 100.0 100
48 leave 80.0 100
49 leave 100.0 100
50 leave 100.0 100
51 leave 100.0 100
52 leave 80.0 100
53 leave 100.0 100
54 leave 100.0 100
55 leave 100.0 100
56 leave 100.0 100
57 leave 80.0 100
58 duplication 100.0 130
59 leave BO.O 100
60 leave 100.0 BO
61 leave 100.0 80
62 leave 100.0 100
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63 leave 80.0 100
64 leave 150.0 100
65 reline 150.0 120
66 leave 150.0 BO

67 leave 150.0 90

68 leave 100.0 B8O

69 leave 80.0 100
70 leave 100.0 100
71 leave 100.0 100
72 leave 100.0 100
73 leave 150.0 100
74 leave 100.0 90

15 leave 150.0 90

76 leave 100.0 100
& leave 150.0 100
18 leave 100.0 100
79 leave 100.0 100
80 leave 100.0 100
81 leave 80.0 100
82 leave 100.0 100
83 leave 100.0 100
84 leave B80.0 80

85 leave 300.0 70

86 leave 300.0 90

B7 leave 100.0 100
B8 leave 300.0 100
89 duplication 150.0 130
90 leave 400.0 100
91 leave 300.0 100
92 leave 150.0 100
93 leave 150.0 80

94 leave 80.0 BO

95 leave 150.0 :10]

96 leave 150.0 70

97 duplication 150.0 130
98 reline 100.0 120
99 duplication 80.0 130
100 leave 80.0 120
101 leave 100.0 120
102 leave 100.0 110
103 leave 100.0 110
104 leave 60.0 90

105 leave 80.0 120
106 leave 100.0 120
107 leave 80.0 100
108 reline 100.0 120
109 duplication 80.0 130
110 leave 150.0 120
111 leave 100.0 100
112 leave 60.0 120
113 leave 100.0 90

114 leave B80.0 120
115 duplication 80.0 130
116 leave 60.0 120
117 leave 60.0 120
118 leave 60.0 120
119 leave 150.0 120
120 leave 150.0 100
121 leave 150.0 100
122 leave 60.0 120
123 leave 80.0 120
124 leave BO0.0O 120
125 leave 100.0 120
126 reline 100.0 120
127 leave 80.0 100
128 reline 100.0 120
129 duplication 200.0 130
130 leave 100.0 80

131 leave 60.0 120
132 leave 80.0 100
133 leave 100.0 120
134 leave 60.0 120
135 duplication 150.0 130
136 leave 60.0 120
137 leave 80.0 100
138 leave 400.0 100
139 reline 150.0 120
140 leave 100.0 100
141 leave 350.0 120
142 leave 100.0 100
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143 reline 100.0 120
144 leave 100.0 100
145 leave 100.0 100
146 leave 100.0 120
147 leave 150.0 120
148 duplication 80.0 130
149 leave 250.0 120
150 duplication 80.0 130
151 leave 200.0 120
152 leave 80.0 120
153 leave 150.0 120
154 leave 100.0 120
155 leave 100.0 120
156 leave 100.0 120
157 leave 80.0 90
158 leave 100.0 90
Optimum_Size_ for new_pipes

1 B80.0

2 150.0

3 BO.0O

4 80.0

5 80.0

6 80.0

7 150.0

8 80.0

9 80.0

Pressure_at_Nodes

D Grade min_G Deficit
2 25.54 20.00 5.54
3 25.12 20.00 5.12
4 22.47 20.00 2.47
5 24.58 20.00 4.58
6 28.31 20.00 8.31
7 28.09 20.00 8.09
8 28.68 20.00 8.68
9 27.34 20.00 7.34
10 25.48 20.00 5.48
11 30.47 20.00 10.47
12 35.15 20.00 15.15
13 26.34 20.00 6.34
14 27.70 20.00 7.70
15 28.24 20.00 B.24
16 26.80 20.00 6.80
11 32.96 20.00 12.96
18 32.12 20.00 12.12
19 29.89 20.00 9.89
20 33.03 20.00 13.03
21 33.82 20.00 13.82
22 32.29 20.00 12.29
23 32.01 20.00 12.01
24 33.62 20.00 13.62
25 28.36 20.00 8.36
26 27.99 20.00 7.99
27 27.78 20.00 7.78
28 28.26 20.00 B.26
29 32.24 20.00 12.24
30 32.54 20.00 12.54
31 30.83 20.00 10.83
32 31.89 20.00 11.89
33 31.42 20.00 11.42
34 32.57 20.00 12.57
35 29.79 20.00 9.79
36 28.65 20.00 B.65
37 28.59 20.00 B.59
38 27.66 20.00 7.66
39 31.46 20.00 11.46
40 30.87 20.00 10.87
41 31.45 20.00 11.45
42 27.25% 20.00 7.25
43 27.28 20.00 7.28
44 30.91 20.00 10.91
45 29.10 20.00 9.10
46 29.81 20.00 9.81
47 30.09 20.00 10.09
48 29.95 20.00 9.95
49 30.63 20.00 10.63
50 31.49 20.00 11.49
51 29.79 20.00 9.79
52 28.59 20.00 8.59
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53 28.82 20.00 B.B2
54 26.45 20.00 B.45
55 30.77 20.00 10.77
56 31.58 20.00 11.58
57 27.01 20.00 7.01
58 34.41 20.00 14.41
59 20.87 20.00 0.87
60 31.30 20.00 11.30
61 33.20 20.00 13.20
62 34.66 20.00 14.66
63 29.71 20.00 9.71
64 30.13 20.00 10.13
65 27.80 20.00 7.80
66 23.63 20.00 3.63
67 22.42 20.00 2.42
68 22.38 20.00 2.38
69 20.01 20.00 0.01
70 21.43 20.00 1.43
71 21.79 20.00 1.79
T2 24,27 20.00 4.27
13 26.22 20.00 6.22
74 26.95 20.00 6.95
15 27.38 20.00 7.38
76 29.83 20.00 9.83
77 30.37 20.00 10.37
18 29.88 20.00 9.88
79 26.92 20.00 6.92
80 23.16 20.00 3.16
81 26.00 20.00 6.00
B2 24.00 20.00 4.00
83 26.21 20.00 6.21
B4 33.30 20.00 13.30
B85 35.49 20.00 15.49
B6 28.91 20.00 8.91
87 20.02 20.00 0.02
88 29.77 20.00 9.77
89 29.85 20.00 9.
a0 27.13 20.00 7.13
91 25.57 20.00 5.
92 25.10 20.00 5.10
93 26.09 20.00 6.09
94 32.36 20.00 12.36
95 32.69 20.00 12.69
96 27.40 20.00 7.40
97 25.10 20.00 5.10
98 22.71 20.00 2.71
99 24.49 20,00 4.49
100 31.11 20.00 11.11
101 32.15 20.00 12.15
102 30.53 20.00 10.53
103 28.74 20.00 8.74
104 26.48 20.00 6.48
105 22.96 20.00 2.96
106 24.00 20.00 4.00
107 23,30 20.00 3.30
108 26.21 20.00 6.21
109 20.49 20.00 0.49
110 30.96 20.00 10.96
111 20.13 20.00 0.13
112 32.60 20.00 12.60
113 25.32 20.00 5.32
114 22.58 20.00 2.58
115 23.74 20.00 3.74
MaxPressureDiff= 0.00

PenaltyCst=0.00
NetworkCst=1194363.00
EnergyCost=0.00

Total Cost=1194363.00

Fitness =1194363.00

Repairing pipe cost = 224083.00
Relining/cleaning cost = 54600.00
Replacing pipe cost = 0,00
puplicating pipe cost = 606480.00
New pipe cost = 309200.00
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A.2 Optimal Solution of fmGA6

1D Action Diam C coeff.
1 duplication 300.0 130
2 leave 400.0 120
3 duplication B80.0 130
4 leave 350.0 120
-] leave 100.0 90
6 leave B0.0 BO
1 leave 80.0 BO
8 leave 80.0 a0
9 leave 100.0 70
10 leave 100.0 90
11 leave 100.0 90
12 duplication 200.0 130
13 leave 350.0 120
14 leave 100.0 920
15 leave 100.0 90
16 leave 80.0 90
17 leave 100.0 80
18 leave 100.0 80
19 leave 100.0 80
20 leave 100.0 70
21 leave 100.0 70
22 leave 350.0 120
23 leave 100.0 90
24 leave 100.0 %0
25 leave 300.0 120
26 leave 200.0 120
2 leave 100.0 90
28 leave 100.0 90
29 leave 80.0 100
30 leave 100.0 100
31 leave 150.0 120
32 leave 150.0 120
33 leave B0.0 90
34 leave 100.0 90
39 leave 200.0 120
36 leave 100.0 100
37 duplication 300.0 130
38 leave 80.0 80
39 leave 100.0 80
40 leave 100.0 90
41 leave 100.0 70
42 leave 150.0 120
43 leave 100.0 100
44 leave 80.0 100
45 reline 100.0 120
46 leave 100.0 100
47 duplication 80.0 130
48 leave 80.0 100
49 leave 100.0 100
50 leave 100.0 100
51 leave 100.0 100
52 leave 80.0 100
53 leave 100.0 100
54 leave 100.0 100
55 leave 100.0 100
56 leave 100.0 100
57 leave B0.0 100
58 leave 100.0 100
59 leave 80.0 100
60 leave 100.0 80
61 leave 100.0 80
62 leave 100.0 100
63 leave B80.0 100
64 duplication 80.0 130
65 leave 150.0 70
66 leave 150.0 80
67 leave 150.0 90
68 leave 100.0 B8O
69 leave 80.0 100
70 leave 100.0 100
71 leave 100.0 100
72 leave 100.0 100
73 leave 150.0 100
74 leave 100.0 90
15 duplication 80.0 130
76 leave 100.0 100
27 duplication 80.0 130
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78 leave 100.0 100
79 reline 100.0 120
80 leave 100.0 100
81 leave B80.0 100
82 leave 100.0 100
B3 leave 100.0 100
B4 leave B0.0O BO

85 reline 300.0 120
86 leave 300.0 90

87 leave 100.0 100
BB leave 300.0 100
89 leave 300.0 100
90 leave 400.0 100
91 leave 300.0 100
92 leave 150.0 100
93 leave 150.0 80

94 leave 80.0 80

95 leave 150.0 BO

96 reline 150.0 120
97 leave 100.0 100
98 leave 100.0 100
99 leave 100.0 100
100 leave 80.0 120
101 leave 100.0 120
102 leave 100.0 110
103 leave 100.0 110
104 leave 60.0 90

105 leave 80.0 120
106 duplication 300.0 130
107 leave 80.0 100
108 reline 100.0 120
109 leave 100.0 120
110 leave 150.0 120
111 leave 100.0 100
112 leave 60.0 120
113 leave 100.0 a0

114 leave 80.0 120
115 duplication 80.0 130
116 leave 60.0 120
117 leave 60.0 120
118 leave 60.0 120
119 leave 150.0 120
120 leave 150.0 100
121 leave 150.0 100
122 leave 60.0 120
123 leave 80.0 120
124 leave 80.0 120
125 leave 100.0 120
126 leave 100.0 120
127 leave B0.0 100
128 leave 100.0 BO

129 reline 100.0 120
130 reline 100.0 120
131 leave 60.0 120
132 leave 80.0 100
133 leave 100.0 120
134 leave 60.0 120
135 leave 100.0 90

136 replace 80.0 130
137 leave 80.0 100
138 leave 400.0 100
139 duplication 150.0 130
140 leave 100.0 100
141 leave 350.0 120
142 reline 100.0 120
143 duplication 80.0 130
144 leave 100.0 100
145 duplication 80.0 130
146 leave 100.0 120
147 leave 150.0 120
148 leave 200.0 120
149 leave 250.0 120
150 leave 150.0 120
151 leave 200.0 120
152 leave 80.0 120
153 leave 150.0 120
154 leave 100.0 120
155 leave 100.0 120
156 leave 100.0 120
157 leave 80.0 a0
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158 leave 100.0 90
Optimum_Size for new plpes

80.0

150.0

80.0

80.0

80.0

80.0

150.0

BO.O

80.0

WO SO0 as WM

Pressure_at_Nodes

ID Grade Grade Deficit
2 25.04 20.00 5.04
3 24.62 20.00 4.62
4 22.64 20.00 2.64
5 22.60 20.00 2.60
6 26.66 20.00 6.66
7 26.50 20.00 6.50
8 28.68 20.00 B8.68
9 27.33 20.00 7.33
10 25,30 20.00 5.30
11 30.41 20.00 10.41
12 34.96 20.00 14.96
13 26.16 20.00 6.16
14 27.63 20.00 7.63
15 28.08 20.00 8.08
16 26.55 20.00 6.55
17 32.98 20.00 12.98
18 32.25 20.00 12.25
19 29.61 20.00 9.61
20 32.82 20.00 12.82
21 33.45 20.00 13.45
22 31.74 20.00 11.74
23 31.47 20.00 11.47
24 33.08 20.00 13.08
25 27.84 20.00 7.84
26 27.49 20.00 7.49
27 27.09 20.00 7.09
28 28.14 20.00 B.14
29 31.74 20.00 11.74
30 32.32 20.00 12.32
31 31.26 20.00 11.26
32 31.94 20.00 11.94
33 31.29 20.00 11.29
34 32.10 20.00 12.10
35 29.32 20.00 9.32
36 28.18 20.00 8.18
37 28.16 20.00 8.16
38 27.18 20.00 7.18
39 30.57 20.00 10.57
40 30.01 20.00 10.01
11 30.61 20.00 10.61
42 26.43 20.00 6.43
43 27.19 20.00 7.19
44 30.94 20.00 10.94
45 27.88 20.00 7.88
46 28.23 20.00 8.23
47 29.97 20.00 9.97
18 29.57 20.00 9.57
49 30.20 20.00 10.20
50 30.53 20.00 10.53
51 29.07 20.00 9.07
52 27.89 20.00 7.89
53 28.31 20.00 B.31
54 27.94 20.00 7.94
55 30.79 20.00 10.79
56 31.64 20.00 11.64
57 26.88 20.00 6.88
58 33.92 20.00 13.92
59 20.07 20.00 0.07
60 30.86 20.00 10.86
61 32.92 20.00 12.92
62 34.10 20.00 14.10
63 29.97 20.00 9.97
64 30.28 20.00 10.28
65 28.06 20.00 B.06
66 23.52 20.00 3.52
67 22.38 20.00 2.38

274



Appendix A Optimal solutions for rehabilitation of the Moroccan network

68 22.44 20.00 2.44
69 20.00 20.00 0.00
70 21.45 20.00 1.45
71 21.75 20.00 1.75
72 22.69 20.00 2.69
73 24.50 20.00 4.50
74 27.00 20.00 7.00
75 27.12 20.00 7.12
16 29.28 20.00 9.28
77 30.39 20.00 10,39
78 29.95 20.00 9.95
79 26.79 20.00 6.79
80 22.70 20.00 2.70
81 25.96 20.00 5.96
B2 23.03 20.00 3.03
83 24.57 20.00 4.57
B4 31.61 20.00 11.61
BS 33.14 20.00 13.14
86 27.80 20.00 7.80
87 20.20 20.00 0.20
88 30.00 20.00 10.00
B89 30.52 20.00 10.52
20 27.03 20.00 7.03
91 25.54 20.00 5.54
92 25.11 20.00 5.11
93 26.19 20.00 6.19
94 33.09 20.00 13.09
95 32,14 20.00 12.14
926 27.31 20.00 7.31
97 24.66 20.00 4.66
%8 22.50 20.00 2.50
99 24.36 20.00 4.36
100 31.26 20.00 11.26
101 31.99 20.00 11.99
102 29.35 20.00 9.35
103 28.27 20.00 8.27
104 24.60 20.00 4.60
105 23.01 20.00 3.01
106 23.56 20.00 3.56
107 22.50 20.00 2.50
108 26.11 20.00 6.11
109 20.58 20.00 0.58
110 29.35 20.00 9.35
111 19.99 20.00 -0.01
112 32.81 20.00 12.81
113 25.42 20.00 5.42
114 22.68 20.00 2.68
115 23.13 20.00 3.13
MaxPressureDiff= 0.00

PenaltyCst=0.00
NetworkCst=1206343.00
EnergyCost=0.00

Total Cost=1206343.00

Fitness =1206343.00

Repairing pipe cost = 195863.00
Relining/cleaning cost = 173300.00

Replacing pipe cost = 12100.00

Duplicating pipe cost = 515880.00
New pipe cost = 309200.00

A.3 Optimal Solution of fmGA7

Rehabilitation_for_old pipe

1D Action Diam C coeff.
1 leave 400.0 120
2 duplication 500.0 130
3 replace 80.0 130
q leave 350.0 120
5 leave 100.0 90
6 leave 80.0 80
7 leave B80.0 B8O
B leave B0.0O 90
9 leave 100.0 70
10 leave 100.0 a0
11 leave 100.0 90
12 leave  300.0 120
13 leave 350.0 120
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14 leave 100.0 20
15 leave 100.0 90
16 leave 80.0 90
17 leave 100.0 80
18 leave 100.0 80
19 reline 100.0 120
20 leave 100.0 70
21 replace 80.0 130
22 leave 350.0 120
23 leave 100.0 a0
24 leave 100.0 90
25 leave 300.0 120
26 leave 200.0 120
27 leave 100.0 a0
28 leave 100.0 90
29 leave 80.0 100
30 leave 100.0 100
31 leave 150.0 120
32 duplication 200.0 130
33 leave BO.O 90
34 leave 100.0 90
35 leave 200.0 120
36 leave 100.0 100
37 duplication 300.0 130
38 leave 80.0 BO
39 leave 100.0 BO
40 leave 100.0 a0
41 leave 100.0 70
42 replace  300.0 130
43 leave 100.0 100
44 leave 80.0 100
45 leave 100.0 100
46 leave 100.0 100
47 duplication 150.0 130
48 leave 80.0 100
49 leave 100.0 100
50 leave 100.0 100
51 leave 100.0 100
52 leave B80.0 100
53 leave 100.0 100
54 duplication 100.0 130
55 duplication 150.0 130
56 leave 100.0 100
57 leave 80.0 100
58 duplication 200.0 130
59 leave B0.0 100
60 duplication 150.0 130
61 leave 100.0 BO
62 leave 100.0 100
63 leave 80.0 100
64 duplication 150.0 130
65 leave 150.0 70
66 reline 150.0 120
67 leave 150.0 920
68 leave 100.0 80
69 leave 80.0 100
70 leave 100.0 100
71 leave 100.0 100
72 leave 100.0 100
73 reline 150.0 120
74 leave 100.0 20
75 leave 150.0 90
76 leave 100.0 100
77 leave 150.0 100
78 leave 100.0 100
79 leave 100.0 100
80 leave 100.0 100
81 leave 80.0 100
82 reline 100.0 120
83 leave 100.0 100
B84 leave 80.0 80
85 reline 300.0 120
86 leave 300.0 a0
87 leave 100.0 100
88 leave 300.0 100
89 leave 300.0 100
50 leave 400.0 100
91 leave 300.0 100
92 reline 150.0 120
93 leave 150.0 80
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94 reline 80.0 120
95 leave 150.0 BO

96 reline 150.0 120
97 leave 100.0 100
98 leave 100.0 100
99 leave 100.0 100
100 leave 80.0 120
101 leave 100.0 120
102 leave 100.0 110
103 leave 100.0 110
104 leave 60.0 90

105 leave 80.0 120
106 duplication 150.0 130
107 leave 80.0 100
108 replace 300.0 130
109 leave 100.0 120
110 leave 150.0 120
111 leave 100.0 100
112 leave 60.0 120
113 leave 100.0 90

114 leave 80.0 120
115 leave 100.0 90

116 leave 60.0 120
117 leave 60.0 120
118 leave 60.0 120
119 leave 150.0 120
120 leave 150.0 100
121 leave 150.0 100
122 leave 60.0 120
123 leave 80.0 120
124 leave B0.0 120
125 leave 100.0 120
126 leave 100.0 120
127 leave 80.0 100
128 leave 100.0 80

129 replace 100.0 130
130 duplication 80.0 130
131 leave 60.0 120
132 leave 80.0 100
133 leave 100.0 120
134 leave 60.0 120
135 reline 100.0 120
136 leave 60.0 120
137 duplication 100.0 130
138 leave 400.0 100
139 reline 150.0 120
140 leave 100.0 100
141 leave 350.0 120
142 replace 100.0 130
143 leave 100.0 100
144 leave 100.0 100
145 reline 100.0 120
146 leave 100.0 120
147 leave 150.0 120
148 duplication 200.0 130
149 duplication 500.0 130
150 leave 150.0 120
151 leave 200.0 120
152 leave 80.0 120
153 leave 150.0 120
154 leave 100.0 120
155 leave 100.0 120
156 leave 100.0 120
157 leave 80.0 90

158 reline 100.0 120
Optimum_Size_for new pipes

1 80.0

2 150.0

3 80.0

4 80.0

5 80.0

6 80.0

7 150.0

8 80.0

9 150.0

Pressure_at_Nodes

1D Grade min_G Deficit
2 23.79 20.00 3.79

3 24.08 20.00 4.08
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q 22.87 20.00 2.87
5 22.78 20,00 2.78
6 26.71 20.00 6.71
7 26.48 20.00 6.48
8 27.88 20.00 7.88
9 26.59 20.00 6.59
10 25.32 20.00 5.32

11 29,79 20.00 9.79
12 34.49 20.00 14.49
13 25.65 20.00 5.65
14 26.92 20.00 6.92
15 27.49 20.00 7.49
16 26.14 20.00 6.14
17 32.33 20.00 12.33
18 31.86 20.00 11.86
19 30.17 20.00 10.17
20 33.11 20.00 13.11
21 33.66 20.00 13.66
22 32.67 20.00 12.67
23 32.94 20.00 12.94
24 34.57 20.00 14.57
25 29.94 20.00 9.94
26 29.33 20.00 9.33
27 27.35 20.00 7.35
28 27.60 20.00 7.60
29 31.64 20.00 11.64
30 31.85 20.00 11.85
31 31.35 20.00 11.35
32 31.00 20.00 11.00
33 30.63 20.00 10.863
34 31.50 20.00 11.50
35 28.87 20.00 8.87
36 27.81 20.00 7.81
37 27.82 20.00 7.82
38 26.83 20.00 6.83
39 30.63 20.00 10.63
40 30.02 20.00 10.02
41 30.59 20.00 10.59
42 26.40 20.00 6.40
43 27.12 20.00 7.12
44 30.46 20.00 10.46
45 27.88 20.00 7.88
16 28.27 20.00 8.27
147 30.06 20.00 10.06
48 29.72 20.00 9.72
49 30.38 20.00 10.38
50 30.55 20.00 10.55
51 28.96 20.00 8.96
52 27.74 20.00 7.74
53 28.63 20.00 8.63
54 28.14 20.00 8.14
58 31.72 20.00 11.72
56 32.67 20.00 12.67
57 27.13 20.00 7.13
58 34.25 20.00 14.25
59 20.54 20.00 0.54
60 31.17 20.00 11.17
61 33.03 20.00 13.03
62 33.93 20.00 13.93
63 30.19 20.00 10.19
64 30.16 20.00 10.16
65 28.43 20.00 8.43
66 23.75 20.00 3.75
67 22.37 20.00 2.37
68 22.55 20.00 2.55
69 20.12 20.00 0.12
70 21.57 20.00 1.57
71 21.73 20.00 1.73
12 22.67 20.00 2.67
13 24.69 20.00 4.69
74 26.01 20.00 6.01
75 26.78 20.00 6.78
16 29,08 20.00 9.08
17 31.31 20.00 11.31
8 30.89 20.00 10.89
79 27.04 20.00 7.04
80 22.46 20.00 2.46
81 27.09 20.00 7.09
82 23.35 20.00 3.35
83 24.78 20.00 4.78
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B4 31.63 20.00 11.63
85 32.99 20.00 12.99
86 27.59 20.00 7.59
87 20.02 20,00 0.02
88 30.26 20.00 10.26
89 30.73 20.00 10.73
90 27.18 20.00 7.18
91 25.66 20.00 5.66
92 25.37 20.00.5.37
93 26.98 20.00 6.98
94 32.72 20.00 12.72
95 33.04 20.00 13.04
96 26.62 20.00 6.62
97 24.36 20.00 4.36
98 22.54 20.00 2.54
99 24.51 20.00 4.51
100 31.35 20.00 11.35
101 32.11 20.00 12.11
102 29.17 20.00 9.17
103 27.94 20.00 7.94
104 24.76 20.00 4.76
105 22.86 20.00 2.86
106 23.87 20.00 3.87
107 22.97 20.00 2
108 25.54 20.00 5
109 21.43 20.00 1.43
110 29,34 20.00 9.34
111 20.25 20.00 0.25
112 32.49 20.00 12.49
113 26.26 20.00 6.26
114 22.92 20.00 2.92
115 23.42 20.00 3.42
MaxPressureDiff= 0.00

PenaltyCst=0.00
NetworkCst=1384082.00
EnergyCost=0.00

Total Cost=1384082.00

Fitness =1384082.00

Repairing pipe cost = 158192.00
Relining/cleaning cost = 277200.00
Replacing pipe cost = 79120.00
Duplicating pipe cost = 543570.00
New pipe cost = 326000.00

A.4 Optimal Solution of fmGA8

Rehabilitation for old pipe

1D Action Diam C coeff.
1 duplication 500.0 130
leave 400.0 120
3 duplication 300.0 130
q leave 350.0 120
5 leave 100.0 90
6 leave 80.0 80
7 leave 80.0 80
8 leave 80.0 90
9 leave 100.0 70
10 leave 100.0 90
11 leave 100.0 90
12 leave 300.0 120
13 leave 350.0 120
14 leave 100.0 90
15 leave 100.0 90
16 leave 80.0 90
17 leave 100.0 80
18 leave 100.0 80
19 leave 100.0 80
20 leave 100.0 70
21 duplication 150.0 130
22 leave 350.0 120
23 leave 100.0 90
24 leave 100.0 a0
25 leave 300.0 120
26 duplication 100.0 130
27 leave 100.0 90
28 leave 100.0 a0
29 leave 80.0 100
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30 leave 100.0 100
31 reline 150.0 120
32 duplication 200.0 130
33 reline 80.0 120
34 leave 100.0 90

35 leave 200.0 120
36 leave 100.0 100
37 leave 200.0 120
38 leave B0.0 BO

39 leave 100.0 BO

40 leave 100.0 90

41 leave 100.0 70

42 leave 150.0 120
43 leave 100.0 100
44 leave 80.0 100
45 leave 100.0 100
46 leave 100.0 100
47 leave 100.0 100
48 leave 80.0 100
49 leave 100.0 100
50 duplication 80.0 130
51 leave 100.0 100
52 leave 80.0 100
53 leave 100.0 100
54 leave 100.0 100
55 reline 100.0 120
56 leave 100.0 100
57 leave 80.0 100
58 reline 100.0 120
59 leave 80.0 100
60 leave 100.0 B8O

61 leave 100.0 80

62 leave 100.0 100
63 leave 80.0 100
64 leave 150.0 100
65 leave 150.0 70

66 leave 150.0 80

67 leave 150.0 20

68 leave 100.0 80

69 leave 80.0 100
70 leave 100.0 100
71 leave 100.0 100
72 leave 100.0 100
73 leave 150.0 100
74 leave 100.0 90

75 leave 150.0 90

76 leave 100.0 100
17 leave 150.0 100
78 leave 100.0 100
79 duplication 150.0 130
B0 leave 100.0 100
81 leave 80.0 100
82 leave 100.0 100
B3 leave 100.0 100
84 reline 80.0 120
85 leave 300.0 70

86 duplication 100.0 130
B7 leave 100.0 100
B8 leave 300.0 100
89 leave 300.0 100
90 leave 400.0 100
91 leave 300.0 100
92 leave 150.0 100
93 duplication B0.0 130
94 leave 80.0 80

95 leave 150.0 80

96 leave 150.0 70

97 leave 100.0 100
98 reline 100.0 120
99 leave 100.0 100
100 leave B80.0 120
101 leave 100.0 120
102 leave 100.0 110
103 leave 100.0 110
104 leave 60.0 90

105 leave 80.0 120
106 leave 100.0 120
107 leave 80.0 100
108 reline 100.0 120
109 leave 100.0 120
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110 leave 150.0 120
111 leave 100.0 100
112 leave 60.0 120
113 leave 100.0 90

114 leave B0.0 120
115 leave 100.0 90

116 leave 60.0 120
117 leave 60.0 120
118 leave 60.0 120
119 duplication 150.0 130
120 duplication 80.0 130
121 leave 150.0 100
122 leave 60.0 120
123 leave B80.0 120
124 leave 80.0 120
125 leave 100.0 120
126 leave 100,0 120
127 reline 80.0 120
128 leave 100.0 80

129 replace 200.0 130
130 duplication BO.0O 130
131 leave 60.0 120
132 leave 80.0 100
133 leave 100.0 120
134 leave 60.0 120
135 leave 100.0 90

136 leave 60.0 120
137 leave 80.0 100
138 leave 400.0 100
139 leave 150.0 100
140 leave 100.0 100
141 duplication 80.0 130
142 leave 100.0 100
143 duplication 80.0 130
144 leave 100.0 100
145 leave 100.0 100
146 leave 100.0 120
147 leave 150.0 120
148 leave 200.0 120
149 leave 250.0 120
150 leave 150.0 120
151 leave 200.0 120
152 leave 80.0 120
153 leave 150.0 120
154 leave 100.0 120
155 leave 100.0 120
156 leave 100.0 120
157 duplication 80.0 130
158 leave 100.0 90

Optimum_Size_ for new_pipes

1 B80.0

2 300.0

3 80.0

4 B80.0

5 80.0

6 100.0

7 300.0

8 B0.0

9 80.0

Pressure_at_Nodes

ip Grade min_G Deficit
2 25.82 20.00 5.82
3 25.41 20.00 5.41
4 23.14 20.00 3.14
5 24.01 20.00 4.01
6 28.21 20.00 B.21
7 27.99 20.00 7.99
2} 29.01 20.00 9.01
9 27.67 20.00 7.67
10 25.90 20.00 5.90
11 30.78 20.00 10.78
12 35.46 20.00 15.46
13 26.60 20.00 6.60
14 28.06 20.00 8.06
15 28.59 20.00 8.59
16 27.01 20.00 7.01
17 33.42 20.00 13.42
18 32.45 20.00 12.45
19 30.26 20.00 10.26
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20 33.67 20.00 13.67
21 34.14 20.00 14.14
22 32.66 20.00 12.66
23 32.37 20.00 12.37
24 33.98 20.00 13.98
25 28.75 20.00 8.75
26 28.41 20.00 8.41
27 27.71 20,00 7.71
28 28.65 20.00 B.65
29 32.34 20.00 12.34
30 32.87 20.00 12.87
31 31.20 20.00 11.20
32 32.49 20.00 12.49
33 31.87 20.00 11.87
34 33.06 20.00 13.06
35 30.25 20.00 10.25
36 29.15 20.00 9.15
37 29.14 20.00 9.14
38 28.17 20.00 8.17
39 31.70 20.00 11.70
40 31.10 20.00 11.10
41 31.61 20.00 11.61
42 27.41 20.00 7.41
43 28.07 20.00 8.07
44 31.24 20.00 11.24
45 28.15 20.00 B8.15
46 28.37 20.00 8.37
47 29.54 20.00 9.54
48 29.45 20.00 9.45
49 30.16 20.00 10.16
50 30.71 20.00 10.71
51 29.54 20.00 9.54
52 28.66 20.00 B.66
53 28.33 20.00 8.33
54 27.94 20.00 7.94
55 30.51 20.00 10.51
56 31.33 20.00 11.33
57 27.13 20.00 7.13
58 34.35 20.00 14.35
59 21.42 20.00 1.42
60 31.31 20.00 11.31
61 33.77 20.00 13.77
62 34.97 20.00 14.97
63 30.34 20.00 10.34
64 30.68 20.00 10.68
65 29.31 20.00 9.31
66 24.41 20.00 4.41
67 23.03 20.00 3.03
68 22.91 20.00 2.91
69 20.48 20.00 0.48
70 21.93 20.00 1.93
71 22.40 20.00 2.40
72 24.17 20.00 4.17
73 25.94 20.00 5.94
14 27.26 20.00 7.26
15 27.58 20.00 7.58
16 29.65 20.00 9.65
17 30.10 20.00 10.10
18 29.52 20.00 9.52
79 27.04 20.00 7.04
80 23.72 20.00 3.72
81 26.37 20.00 6.37
82 24.58 20.00 4.58
83 26.03 20.00 6.03
B4 33.21 20.00 13.21
85 35.768 20.00 15.78
86 28.79 20.00 8.79
87 20.04 20.00 0.04
88 30.41 20.00 10.41
89 30.98 20.00 10.98
90 27.55 20.00 7.55
91 26.03 20.00 6.03
92 26.04 20.00 6.04
93 26.48 20.00 6.48
94 32.74 20.00 12.74
95 33.06 20.00 13.06
96 27.76 20.00 7.76
97 25.66 20.00 5.66
98 22.84 20.00 2.84
99 24.52 20.00 4.52
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100 30.67 20.00 10.67
101 31.65 20.00 11.65
102 30.41 20.00 10.41
103 29.24 20.00 9.24
104 26.02 20.00 6
105 23.24 20.00 3
106 24.01 20.00 4.01
107 23.85 20.00 3
108 26.52 20.00 6.
109 20.66 20.00 0.66
110 30.86 20.00 10.86
111 20.24 20.00 0.24
112 33.04 20.00 13.04
113 25.49 20.00 5.49
114 23.15 20.00 3.15
115 24.93 20.00 4.93
MaxPressureDiff= 0.00

PenaltyCst=0.00
NetworkCst=1395780.00
EnergyCost=0.00

Total Cost=1395780.00

Fitness =1395780.00

Repairing pipe cost = 213990.00
Relining/cleaning cost = 67510.00
Replacing pipe cost = 22400.00
Duplicating pipe cost = 614380.00
New pipe cost = 477500.00
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Appendix B OPTIMAL SOLUTIONS OF NEW YORK TUNNELS
PROBLEM BY BOUNDARY GA OPTIMISATION

B.1 Optimal Solution with Fixed Penalty Factor y = 5,000,000

Rehabilitation for old_pipe

ID Action Diam C coeff.
1 duplication 0 100
2 duplication 0 100
3 duplication 0 100
4 duplication 0 100
5 duplication O 100
6 duplication 0 100
7 duplication 120 100
B duplication 0 100
9 duplication 0 100
10 duplication 0 100
11 duplication 0 100
12 duplication 0 100
13 duplication 0 100
14 duplication 0 100
15 duplication 0 100

16 duplication 96 100
17 duplication 96 100
18 duplication 84 100
19 duplication 72 100
20 duplication 0 100
21 duplication 72 100

Pressure_at_Nodes
ID Node Grade min_Grade Deficit

2 294.24 255.00 39.24
3 286.23 255.00 31.23
4 283.88 255,00 28.88
5 281.81 255.00 26.81
6 280.20 255.00 25.20
7 277.68 255.00 22.68
8 276.38 255.00 21.38
9 273.55 255.00 18.55
10 273.52 255.00 18.52
11 273.65 255.00 18.65
12 274.94 255.00 19.94
13 277.93 255,00 22.93
14 285.46 255.00 30.46
15 293.28 255.00 38.28
16 259.84 260.00 -0.16
17 272.64 272.80 -0.16
18 260.96 255.00 5.96

19 254 .82 255.00 -0.18
20 260.49 255.00 5.49

MaxPressureDiff= 0.18

PenaltyCst=956772.02
NetworkCst=37629600.00

EnergyCost=0,00
Total_Coat-38586312.02

Fitness 38586372

B.2 Optimal Solution with Fixed Penalty Factor = 7,000,000

Rehabilitation_for old_pipe

ID Action Diam C coeff.
1 duplication 0 100
2 duplication O 100
3 duplication O 100
q duplication 0 100
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5 duplication 0 100
6 duplication 0 100
7 duplication 108 100
8 duplication 0 100
] duplication 0 100
10 duplication 0 100
11 duplication 0 100
12 duplication 0O 100
13 duplication 0 100
14 duplication 0 100
15 duplication 0 100

16 duplication 108 100
17 duplication 108 100
18 duplication 72 100
19 duplication 60 100
20 duplication 0 100
21 duplication B4 100

Pressure_at_Nodes
Db Node Grade min_Grade Deficit

2 294.26 255.00 39.26
3 286.28 255.00 31.28
q 283.95 255.00 28.95
5 281.89 255.00 26.89
6 280.29 255.00 25.29
7 277.79 255.00 22.79
8 276.21 255.00 21.21
9 273.42 255.00 18.42
10 273.39 255.00 18.39
11 273.55 255.00 18.55
12 274.86 255.00 19.86
13 277.86 255.00 22.86
14 285.41 255.00 30.41
15 293.26 255.00 38.26
16 261.27 260.00 127

17 272.80 272.80 0.00

18 265,57 255.00 10.57
19 255.47 255.00 0.47

20 257.74 255.00 2.74

MaxPressureDiff= 0.00

PenaltyCst=0.00
NetworkCst=39415200.00
EnergyCost=0.00
Total_Cost=39415200.00
Fitness 39415200

B.3 Optimal Solution with Fixed Penalty Factor y = 11,000,000

Rehabilitation_for_old_pipe

1D Action Diam C coeff.
1 duplication 72 100
2 duplication 0 100
3 duplication 0 100
4 duplication 0 100
5 duplication 0 100
6 duplication 0 100
7 duplication 108 100
8 duplication 0 100
9 duplication 0 100
10 duplication 0 100
11 duplication 0 100
12 duplication 0 100
13 duplication 0 100
14 duplication 0 100
195 duplication 0 100
16 duplication 96 100
17 duplication 96 100
14 duplication B4 100
19 duplication 72 100
20 duplication 0 100
21 duplication 72 100
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Pressure_at Nodes
1D Node Grade min Grade Deficit

2 295.05 255.00 40.05
3 286.96 255.00 31.96
4 284 .59 255.00 29.59
5 282.49 255,00 27.49
6 280.87 255,00 25.87
7 278.30 255.00 23.30
8 276.67 255.00 21.87
9 273.76 255.00 18.76
10 273.73 255.00 18.73
11 273.85 255.00 18.85
12 275.12 255.00 20.12
13 278.08 255.00 23.08
14 285.55 255.00 30.55
15 293.32 255.00 38.32
16 260.04 260.00 0.04

17 272.85 272.80 0.05

18 261.14 255.00 6.14

19 255.00 255,00 0.00

20 260.69 255.00 5.69

MaxPressureDiff= 0.00

PenaltyCst=0.00
NetworkCst=39694000.00
EnergyCost=0.00
Total_Cost=39694000.00
Fitness 39694000

B.4 Optimal Solution with Fixed Penalty Factor y = 2,000,000

Rehabilitation_for_old pipe

ID Action Diam C coeff.
1 duplication 0 100
2 duplication 0 100
3 duplication O 100
4 duplication O 100
5 duplication 0 100
6 duplication 0 100
7 duplication O 100
8 duplication 0 100
9 duplication 0 100
10 duplication 0 100
11 duplication O 100
12 duplication O 100
13 duplication 0 100
14 duplication 0 100
0 100

15 duplication
16 duplication 84 100
12 duplication 96 100
18 duplication 84 100
19 duplication 72 100
20 duplication 0 100
21 duplication 72 100

Pressure_at_Nodes
ID Node_Grade min_Grade Deficit

2 294.46 255.00 39.46
3 286.79 255.00 31.79
4 284.56 255.00 29.56
5 282.60 255.00 27.60
6 281.09 255.00 26.09
il 278.75 255.00 23.75
8 275.32 255.00 20.32
9 272.83 255.00 17.83
10 272.79 255.00 17.79
11 272.94 255.00 17.94
12 274.31 255.00 19.31
13 277.40 255.00 22.40
14 285.12 255.00 30.12
15 293.13 255,00 38.13
16 259.14 260.00 -0.86
17 271.46 272.80 -1.34
18 260. 37 255.00 5.37

19 254.24 255.00 -0.76
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20 259.81 255.00 4.81
MaxPressureDiff= 1.34

PenaltyCst=2676423.92
NetworkCst=32332600.00

EnergyCost=0.00

Total Cost=35009223.92

Fitness =35009223

Penalty factor for the solution= 2000000
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Appendix C DATA FOR TRANSIENT ANALYSIS OF LOVEDAY
IRRIGATION SYSTEM

C.1 Node Data

Elev Demand
ID (m) (L/s)
2 36.00 0.00
3 32.00 0.00
94 36.00 0.00
5 38.00 0.00
6 38.00 0.00
7 38.00 0.00
B 34.00 0.00
9 21.00 0.00
10 36.00 0.00
11 32.00 0.00
12 32.00 0.00
13 32.00 0.00
14 32.00 0.00
15 33.00 0.00
16 36.00 0.00
X7 37.00 0.00
18 37.00 0.00
19 38.00 0.00
20 38.00 0.00
21 36.00 0.00
22 36.00 0.00
23 36.00 0.00
24 36.00 0.00
25 25.00 0.00
26 33.00 0.00
20 31.00 0.00
28 31.00 B0O.00
29 29.00 0.00
30 32.00 0.00
31 31.00 0.00
32 30.00 0.00
33 32.00 0.00
34 32.50 0.00
35 32.00 0.00
36 32.00 0.00
37 33.00 0.00
38 36.00 0.00
39 35.00 0.00
40 30.50 0.00
41 36.00 0.00
42 38.00 0.00
43 38.00 0.00
44 31.00 0.00
45 31.00 0.00
46 31.00 0.00
47  33.00 0.00
48  32.50 0.00
49 36.00 0.00
50 31.00 0.00
51 36.00 0.00
52 38.00 0.00
C.2 Tank Data
1D water level
1 51.3
C.3 Pipe Data
Start End Length Diam  Rough.
ID Node Node m mm Coeff
1 1 2 918.0 1219 120
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2 o 3 554.0 1219 120

3 2 44 870.0 304 120

4 3 q 31750 1066 120

5 q 5 475.0 1372 120
[ 4 42 B0OO.0O 534 120

7 4 51 710.0 915 120

8 5 & B870.0 1372 120

9 6 T 824.0 1372 120
10 7 52 475.0 1372 120
11 52 8 475.0 1219 120
12 ] 9 665.0 915 120
13 9 10 840.0 915 120
14 10 38 875.0 162 120
15 10 49 220.0 534 120
16 51 15 875.0 915 120
17 15 16 206.0 915 120
18 15 45 845.0 381 120
19 16 17 160.0 915 120
20 17 18 348.0 915 120
21 17 47 375.0 381 120
22 18 19 554.,0 915 120
23 19 20 156.0 915 120
24 20 21 253.0 915 120
25 41 20 630.0 381 120
26 21 22 475.0 815 120
27 22 23 1267.0 162 120
28 23 24 317.0 685 120
29 29 24 760.0 457 120
30 24 50 475.0 685 120
31 50 25 713.0 610 120
32 25 26 917.0 457 120
33 26 27 887.0 457 120
34 27 28 507.0 381 120
39 33 34 300.0 457 120
38 33 32 825.0 229 120
37 32 30 270.0 229 120
36 30 31 187.0 381 120
35 30 29 1109.0 457 120
40 El:] a7 1700.0 685 120
41 37 36 400.0 685 120
42 36 29 380.0 381 120
43 36 35 400.0 610 120
44 35 33 1200.0 457 120
45 38 39 396.0 381 120
46 38 41 860.0 685 120
47 41 13 525.0 457 120
48 41 14 950.0 381 120
49 13 12 500.0 381 120
50 12 11 300.0 457 120
51 39 40 400.0 304 120
52 42 43 1780.0 457 120
53 45 46 375.0 381 120
54 47 48 970.0 381 120

C.4 Concrete Pipe Data for Transient Simulation
length Dia from to thickness wave speed

{m) (mm) node node (mm) (m/s)
918 1219 1 2 76 1098
554 1219 2 3 76 1121
870 304 2 44 29 1205
317 1066 3 4 16 1192
475 1372 4 5 76 1042
8OO 534 4 42 41 1170
710 915 4 51 63 1168
870 1372 5 6 16 1090
g24 1372 6 7 76 1084
475 1372 7 52 76 1042
475 1219 52 8 16 1136
665 915 ] 9 63 1167
840 915 9 10 63 1163
875 762 10 38 51 1151
220 534 10 49 41 1158
875 915 51 15 63 1151
206 915 15 16 63 1084
845 381 15 45 32 1170
160 915 16 17 63 1053
348 915 17 18 63 1145
375 381 17 47 32 1234
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554 915 18 19 63 1121
156 915 19 20 63 1026
253 915 20 21 63 1110
630 381 41 20 3z 1184
475 915 21 22 63 1136
1267 762 22 23 51 1111
317 685 23 24 18 1192
760 457 29 24 38 1176
475 685 24 50 48 1136
713 610 50 25 44 1173
917 457 25 26 38 1207
887 457 26 27 38 1167
507 381 27 28 32 1213
300 457 33 34 38 1128
825 229 33 32 25 1206
270 229 32 30 25 1184
187 381 30 31 3z 1230
1109 457 30 29 38 1167
1700 685 38 37 48 1147
400 685 37 36 48 1170
380 381 36 29 32 1250
400 685 36 35 48 1170
1200 457 35 33 38 1170
396 381 38 =} 32 1158
860 685 38 11 48 1132
525 457 41 13 38 1151
950 381 41 14 32 1190
500 381 13 12 32 1196
300 457 12 11 38 1128
400 304 39 40 29 1170
1780 457 42 43 38 1170
375 381 45 46 32 1234
970 381 47 48 32 1160

C.5 Hobas Pipe Data for Transient Simulation

length Dia from to thickness wave speed
(m) (mm) node node (mm) (m/s)
918 1200 1 2 17 358.59
554 1200 2 3 19 393.47
870 292 = 44 9 522.84
317 1050 3 4 19 412.76
475 1350 4 5 19 371.09
800 525 4 42 11 446.43
710 975 4 53 19 4126.68
870 1350 5 6 19 357.73
B24 1350 6 7 19 357.64
475 1350 7 54 19 371.09
475 1200 54 8 19 371.09
665 975 8 9 19 432.94
840 975 9 10 19 437.5
g75 750 10 38 19 488.28
220 525 10 49 11 429.69
B75 975 53 15 19 427.25
206 975 15 16 19 402. 34
845 370 15 45 9 471.54
160 975 16 17 19 416.67
348 975 17 18 19 453.13
375 370 17 47 9 488,28
554 975 18 19 19 432.81
156 900 19 20 19 406,25
253 900 20 21 19 494.14
630 370 41 20 9 447,44
475 900 21 22 19 463.87
1267 1750 22 23 19 471.35
317 675 23 24 19 495,31
760 450 29 24 9 424.11
475 675 24 50 11 495,12
713 600 50 25 11 461.98
917 450 25 26 11 417.6
B87 450 26 27 11 397.88
507 370 27 28 9 371.09
300 450 33 34 10 481.34
825 256 33 32 10 468,75
270 256 3z 30 12 703.13
187 370 30 31 9 585. 04
1109 450 30 29 11 486.98
1700 675 38 37 14 494.79
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400 675 37 36 14 426.14
380 370 36 29 9 520.83
400 600 36 35 19 446.43
1200 450 as 33 El 442.71
396 370 38 39 9 446,43
860 675 38 41 14 441.96
525 450 11 13 9 447.92
950 370 41 14 9 410.16
500 370 13 12 9 463.87
300 450 12 11 9 488.28
400 292 39 40 6 468,75
1200 450 42 43 9 126.14
375 370 45 46 9 488. 28
970 370 47 48 9 473.63
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Appendix D STAGE-ONE OPTIMAL SOLUTIONS FOR DESIGN
OF LOVEDAY NETWORK USING CLASS II PIPES

D.1 Output of Solution 1

The Optimal Pipe Class for Each Pipe

Pipe ID Pipe Diam Pipe thickness
1 1219 63
2 1219 63
3 310.3 13
4 1219 63
5 762 51
6 384.4 16
7 1066 63
[:] 762 51
9 762 51
10 610 44
11 762 51
12 762 51
13 762 51
14 233.6 10
15 457 38
16 1066 63
17 1066 63
18 384 .4 16
19 1066 63
20 1066 63
21 310.3 13
22 1066 63
23 1066 63
24 915 63
25 762 51
26 762 51
27 915 63
28 762 51
29 762 51
30 762 51
31 534 41
32 534 41
33 384.4 16
34 384 .4 16
35 610 44
36 233.6 10
37 233.6 10
38 310.3 13
39 457 38
40 610 44
41 610 44
42 233.6 10
43 610 14
44 534 41
45 384.4 16
46 762 51
47 384.4 16
48 384.4 16
49 384.4 16
50 38l 32
51 310.3 13
52 457 38
53 310.3 13
54 384.4 16

Optimum Surge Tank Size

Surge tank diameter = 0.00 meter
Surge tank height = 0.00 meter
Steady State Pressure at Nodes

Node Node_Grade min_Grade Deficit

1 13.18 3 10.18
2 16.03 3 13.03
3 11.37 3 B.37
4 8.79 3 5.79
5 7.73 3 4.73
6 6.85 3 3.85
7 9.19 3 6.19

292



Appendix D Stage-one optimal solutions for design of Loveday network using class Il pipes

8 21.75 3 18.75
9 6.2 3 3.2
10 4.12 3 1.12
11 5.11 3 2.11
12 6.68 3 3.68
13 5.34 3 2.4
14 10.91 3 7.91
15 7.585 3 4.55
16 6.26 3 3.26
17 5.75 3 2:75
18 3.92 3 0.92
19 3.69 3 0.69
20 5.5 3 2.5
21 4.65 3 1.65
22 3.84 3 0.84
23 3.43 3 0.43
24 13.34 3 10.34
25 4.49 3 1.49
26 3.88 3 0.88
27 3.12 3 0.12
28 10.14 3 7.14
29 4.05 3 1.05
30 3.38 3 0.38
31 5.95 3 2.95
32 3.64 3 0.64
33 3.04 3 0.04
34 5.19 3 2.19
35 5.53 3 2.53
36 4.75 3 1.75
37 3.67 3 0.67
38 3.43 3 0.43
39 4.36 3 1.36
40 4.33 3 1.33
41 6.86 3 3.86
42 4.45 3 1.45
43 10.42 3 7.42
44 10.26 3 7.26
45 6.91 3 3.91
46 6.92 3 3.92
47 4.37 3 137
18 5.13 3 2.13
49 8.28 3 5.28
50 9.82 3 6.82
51 5.56 3 2.56
Node Node Grade min_Grade Deficit
% 13.18 3 10.18
2 15.97 3 12.97
3 11227 3 8,27
4 8.37 3 5.37
5 6.71 3 3571
6 5.44 3 2.44
7 7.3 3 4.3
8 19.86 3 16.86
9 4.29 3 1.29
10 8.05 3 5.05
11 8.28 3 5.28
12 B8.65 3 5.65
13 8.65 3 5.65
14 11.07 3 8.07
15 7.73 3 4.73
16 6.47 3 3.47
17 5.95 3 2.95
18 4.12 3 1.12
19 3.89 3 0.89
20 5.64 3 2.64
21 4.47 3 1.47
22 3.47 3 0.47
23 3.04 3 0.04
24 12.65 3 9.65
25 3.88 3 0.88
26 4.56 3 1.56
27 4.54 3 1.54
28 9.84 3 6.84
29 5.26 3 2.26
30 6.2 3 3.2
31 7.09 3 4.09
32 4.56 3 1.56
33 4.06 3 1.06
34 5.4 3 2.4
35 5.64 3 2.64
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36 4.8 3 1.8
37 4.4 3 1.4
38 5.33 3 2.33
39 9.64 3 6.64
40 5.04 3 2.04
41 6.76 3 3.76
42 4.35 3 1,35
43 16.03 3 13.03
44 11.51 3 8.51
45 10.96 3 7.96
46 9.54 3 6.54
47 9.81 3 6.81
48 3.22 3 0.22
49 7.81 3 4.81
50 9.84 3 6.84
51 3.74 3 0.74

Maximum Steady State Pressure Deficit =0.00

PenaltyCst=0.00

Surgecost =0.00

Pipe cost =6710189.00
NetworkCst=6710189.00

Total Cost=6710189.00

Final lower bound of penalty = 656624.83
Final upper bound of penalty = 1313249.65
Penalty factor for the solution= 656624.83

Number of feasible solutions = 17945.00
Number of infeasible solutions = 9056.00

D.2 Output of Solution 2

The Optimal Pipe Class for Each Pipe

Pipe ID Pipe Diam Pipe_thickness
1 1219 63
2 1219 63
3 310.3 13
1 1219 63
5 162 51
6 534 41
7 1219 63
8 610 14
9 162 51
10 762 51
11 534 41
12 762 51
13 162 51
14 384.4 16
15 762 51
16 1066 63
17 1066 63
18 310.3 13
19 1066 63
20 1066 63
21 310.3 13
22 1066 63
23 1066 63
24 915 63
25 162 51
26 915 63
27 915 63
28 915 63
29 762 51
30 534 41
31 762 51
32 534 11
a3 534 41
34 310.3 13
35 534 11
36 610 44
37 534 41
38 310.3 13
39 610 a4
40 457 38
41 233.6 10
42 233.6 10
43 233.6 10
44 233.6 10
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45 384.4 16
16 762 51
47 310.3 13
48 384.4 16
49 534 41
50 384.4 16
51 310.3 13
52 384.4 16
53 384.4 16
54 384.4 16

Optimum Surge Tank Size

Surge tank diameter = 0.00 meter
Surge tank height = 0.00 meter
Steady State Pressure at Nodes

Node Node_Grade min_Grade Deficit

1 13.18 3 10.18
2 16.03 3 13.03
3 11537 3 B.37
4 8.89 3 5.89
S 6.28 8 3.28
6 5.56 3 2.56
7 7.55 3 4.55
B 20.21 a 17.21
9 4.79 3 1.79
10 3.22 3 0.22
11 4.17 3 1.17
X2 4.48 3 1.48
13 6.18 3 3.18
14 11.51 3 B8.51
15 B.12 3 5.12
16 6.82 3 3.82
17 6.27 3 3.27
18 4.39 3 1.39
19 4.15 3 1«15
20 5.86 3 2.86
21 5.33 3 2:33
22 4.05 = 1.05
23 3.78 3 0.78
24 133777 3 10,77
25 4.92 3 192
26 6.39 3 339
27 4.26 3 1.26
28 10.09 3 7.09
29 4.62 3 1462
30 3.95 3 0.95
31 6.29 3 3.29
32 377 3 0.77
33 3.08 3 0.08
34 4.99 3 1.99
35 6.73 3 3.73
36 6533 3 3.33
37 4.82 3 1.82
38 4.57 3 1.57
39 5.5 3 2.5
40 5.17 3 217
41 8.87 3 5.87
42 3.217 3 0.27
43 10.42 3 T.42
44 5.98 3 2.98
45 4.8 3 1.8
46 7.48 3 4.48
47 4.93 3 1.93
48 [ ) 3 o 19 |
49 7.93 3 4.93
50 10.52 3 7.52
51 5.21 3 2.21
Node Node Grade min_Grade Deficit
33 13.18 3 10.18
2 15.97 3 12.97
3 11 21 3 8.27
4 B.59 3 5.59
5 4.91 3 1.91
6 4 3 1

T 6.01 3 3.01
] 18.75 3 15.75
9 J. 42 3 0.42
10 7.95 3 4.95
11 8.17 3 5.17
12 B.24 3 5.24
13 B.96 3 5.96
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14 11.48 3 B.48
15 8.1 3 5.1
16 6.81 3 3.81
17 6.22 3 3.22
18 4.29 3 1.29
19 4.03 3 1.03
20 5.67 3 2.67
21 4.99 3 1.99
22 3.52 3 0.52
23 3.24 3 0.24
24 12.77 3 9.7
25 4 3 1

26 5.73 3 2.3
27 5.69 3 2.69
28 9.72 3 6.72
29 5.22 3 2.22
30 6.16 3 3.16
31 6.97 3 3.97
32 4.57 3 157
33 4.07 3 1.07
34 4.36 3 1.36
35 5.68 3 2.68
36 4.69 3 1.69
37 1.88 3 1.88
38 5.81 3 2.81
39 10.11 =) T2l
40 5.35 3 2.35
41 B.76 3 5.76
42 3.17 3 0.17
43 16.03 3 13.03
44 9.06 3 6.06
45 8.86 3 5.86
46 9.88 3 6.88
47 10.15 3 7.15
418 3.33 3 0.33
49 6.98 3 3.98
50 10.44 3 7.44
51 3.6 3 0.6

Maximum Steady State Pressure Deficit =0.00

PenaltyCst=0.00

Surgecost =0.00

Pipe cost =6800357.00
NetworkCst=6800357.00

Total Cost=6800357.00

Final lower bound of penalty = 437749.88
Final upper bound of penalty = §75499.77
Penalty factor for the solution= 437749.398

Number of feasible solutions = 19541.00
Number of infeasible solutions = 7460.00

D.3 Output of Solution 3

The Optimal Pipe Class for Each Pipe

Pipe 1D Pipe_Diam Pipe thickness
1 1219 63
2 1219 63
3 310.3 13
4 1219 63
5 534 41
6 534 41
7 1066 63
B 534 41
9 457 38
10 384.4 16
B 233.86 10
12 233.6 10
13 233.6 10
14 162 51
15 534 41
16 1219 63
17 1066 63
18 3B4.4 16
19 1219 63
20 1219 63
21 310.3 13
22 1219 63
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23 1066 63
24 915 63
25 1066 63
26 915 63
27 762 51
28 162 51
29 534 41
30 534 41
31 610 44
3z 534 41
33 384.4 16
34 384.4 16
35 534 q1
36 610 44
37 610 44
38 310.3 13
39 610 44
40 762 51
41 162 51
42 162 51
43 233.6 10
44 233.6 10
45 381 32
46 1066 63
47 310.3 13
48 384.4 16
49 457 38
50 457 38
51 310.3 13
52 384.4 16
53 310.3 13
54 381 32

Optimum Surge Tank Size

Surge tank diameter = 0.000000 meter
Surge tank height = 0.000000 meter
Steady State Pressure at Nodes

Node Node Grade min_Grade Deficit

1 13.18 3 10.18
2 16.03 3 13.03
3 11.37 3 B.37
4 8.97 3 5.97
5 8.22 3 5.22
6 7.27 3 4.27
7 7.47 3 4.47
B 19.83 3 16.83
9 4.02 3 1.02
10 3.19 3 0.19
11 3.6 3 0.6
12 4.28 3 1.28
13 5.97 3 2.97
14 10.79 3 7.79
15 725 3 4.25
16 6.03 3 3.03
17 5.63 3 2.63
18 3.98 3 D.98
19 3.63 3 0.63
20 5.49 3 2.49
21 5.24 3 2.24
22 3.88 3 0.88
23 3.61 3 0.861
24 13.28 3 10.28
25 4.43 3 1.43
26 3.81 3 0.81
27 3.06 3 0.06
28 9.95 3 6.95
29 4.5 3 1.5
30 3.83 3 0.83
31 6.33 3 3:33
a2 3j.e2 3 0.82
33 3.13 3 0.13
34 5.22 3 2.22
35 7.07 3 4.07
36 6.25 3 3.25%
37 4.44 3 1.44
33 4-14 ) 1'14
39 5.07 3 2.07
40 4.96 3 1.96
41 8.87 3 5.87
42 3.27 3 0.27
43 10.42 3 7.42
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4 10.13 3 7.13
45 6.79 3 3.79
46 6.69 3 3.69
47 4.01 3 1.01
48 3.51 3 0.51
49 7.77 3 4.77
50 9.19 3 6.19
51 6.58 3 3.58
Node Node_Grade min_Grade Deficit
1 13.18 3 10.18
2 15.97 3 12.97
3 11.27 3 8.27
1 8.31 3 5.31
5 6.54 3 3.54
6 4.54 3 1.54
7 4.64 3 1.64
8 18.15 3 15.15
9 3.79 3 0.79
10 7.66 3 4.66
11 Tall S 3 4.75
12 7.91 3 4.91
13 8.63 3 5.63
14 10.78 3 7.78
15 7.25 3 41.25
16 6.04 3 3.04
17 5.62 3 2.62
18 3.94 3 0.94
19 3.57 3 0.57
20 5.38 3 2.38
21 5.02 3 2.02
22 3.29 3 0.29
23 3 3 0

24 12,13 3 9.13
25 3.36 3 0.36
26 4.04 3 1.04
27 4.03 3 1.03
28 9.7 3 6.7
29 5.29 3 2.29
30 6.22 3 3.22
31 2517 3 4.17
32 4.81 3 1.81
33 4.31 3 1.31
34 4.81 3 1.81
35 6.8 3 3.8
36 5.94 3 2.9
37 4.45 3 1.45
38 5.38 3 2.38
39 9.68 3 6.68
40 5.02 3 2.02
41 B8.76 3 5.76
42 3.17 3 0.17
43 16.03 3 13.03
44 11.22 3 8.22
45 10.867 3 7.87
46 9.11 3 6.11
47 9.37 3 6.37
18 3.29 3 0.29
49 6.74 3 3.74
50 9.14 3 6.14
51 3.37 3 0.37

Maximum Steady State Pressure Deficit =0.00

PenaltyCst=0.00

Surgecost =0.00

Pipe cost =6983174.00
NetworkCst=6983174.00

Total Cost=6983174.00

Final lower bound of penalty = 437749.88
Final upper bound of penalty = 875499.77
Penalty factor for the solution= 437749.88

Number of feasible solutions = 17639, 00
Number of infeasible solutions = 9362.00

D.4 Output of Solution 4

The Optimal Pipe Class for Each Pipe
pipe 1D Pipe_Diam Pipe thickness
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1 1219 63
2 1219 63
3 310.3 13
4 1219 63
5 534 41
6 534 41
7 1219 63
8 534 41
9 457 ag
10 457 38
11 310.3 13
12 233.6 10
13 233.6 10
14 762 51
15 534 41
16 1219 63
17 1219 63
18 310.3 13
19 1219 63
20 1219 63
21 310.3 13
22 1066 63
23 1219 63
24 915 63
25 762 51
26 915 63
27 915 63
28 1066 63
29 762 51
30 534 41
31 534 41
az 162 51
33 457 3g
34 310.3 13
35 384.4 16
36 534 41
37 534 41
38 310.3 13
39 762 51
40 233.6 10
41 457 38
42 384.4 16
43 233.6 10
44 233.6 10
45 384.4 16
46 762 51
47 457 38
48 384.4 16
49 310.3 13
50 457 kY]
51 310.3 13
52 384.4 16
53 384.4 16
54 384.4 16

Optimum Surge Tank Size

Surge tank diameter = 0.00 meter
Surge tank height = 0.00 meter
Steady State Pressure at Nodes

Node Node Grade min_Grade Deficit

1 13:18 3 10.18
2 16.03 3 13.03
3 11:37 3 8.37
E 8.9 3 5.9
5 8.04 3 5.04
6 6.9 3 3.9
7 9.35 3 6.35
8 20.69 3 17.69
9 3.59 3 0.59
10 3.32 3 0.32
31 3.73 3 0'13
12 B8.19 3 5.19
13 5..91 3 2.91
14 11.87 3 8.87
15 8.59 3 5.59
16 7.38 3 4.38
17 6.98 3 3 98
18 4515 3 1.75
19 4.57 3 1.57
20 6.22 3 3.22
21 5057 3 2.57
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22 4 3 1

23 3.83 3 0.83
24 13.05 3 10.05
25 4.9 3 1.9
26 5.77 3 2.7
27 3.64 3 0.64
28 9.86 3 6.86
29 5.99 3 2.99
30 5.32 3 2.32
31 7.64 3 4.64
32 4.57 3 1.57
33 313 3 0.13
34 5.03 3 2.03
35 6.22 3 3.22
36 5.09 3 2.09
37 3.97 3 0.97
38 3.73 3 0.73
39 4.66 3 1.66
40 4.9 3 1.9
41 8.87 3 5.87
42 3.27 3 0.27
43 10.42 3 7.42
44 6.33 3 3.33
45 5.15 3 2.15
46 8.03 3 5.03
47 5.48 3 2.48
48 3.08 3 0.08
49 7.99 3 4.99
50 10.25 3 7.25
51 6.52 3 3u52
Node Node Grade min_Grade Deficit
1 13.18 3 10.18
2 15.97 3 12.97
3 11.27% 3 B8.27
4 8.17 3 517
5 6.17 3 3.17
6 3.77 3 0.717
7 5.89 3 2.89
8 18.89 3 15.89
9 3.88 3 0.88
10 8.07 3 5.07
11 8.17 3 5.17
12 9.22 3 6.22
13 9 3 6

14 11.84 3 8.84
15 8.57 3 5.57
16 7 3 4.37
17 6.95 3 3.95
18 4.67 3 1.67
19 4.48 3 1.48
20 6,02 3 3.02
21 5.14 3 2.14
22 3.19 3 0.19
23 3 3 0

24 11.58 3 8.58
25 3.44 3 0.44
26 4.88 3 1.88
27 4.83 3 1.83
28 9.09 3 6.09
29 5.56 3 2.56
30 6.5 3 3.5
31 7.29 3 4.29
32 4.46 3 1.46
33 3.95 3 0.95
34 < IS pE 3 0.71
35 4.56 3 1.56
36 3.1 3 0.1
37 4.48 3 1.48
38 5.41 3 2.41
39 9.72 3 6.72
40 5.39 3 2.39
41 8.76 3 5.76
42 3.17 3 0.17
43 16.03 3 13.03
44 9.41 3 6.41
45 9,22 3 6.22
46 10.44 3 7.44
47 10.7 3 7.7
48 3.38 3 0.38
49 6.74 3 3"]‘
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50 10.18 3 71.18
51 3.12 3 0.12
Maximum Steady State Pressure Deficit =0.00

PenaltyCst=0,00

Surgecost =0.00

Pipe cost =6781562.00
NetworkCst=6781562.00

Total Cost=6781562.00

Final lower bound of penalty = 291833.26
Final upper bound of penalty = 583666.51
Penalty factor for the solution= 311288.81

Number of feasible solutions = 16560.00
Number of infeasible solutions = 10441.00

D.5 Output of Solution §

The Optimal Pipe Class for Each Pipe

Pipe ID Pipe_Diam Pipe_thickness
1 1219 63
2 1219 63
3 310.3 13
4 1219 63
5 162 51
] 384.4 16
r | 1066 63
8 762 51
9 762 51
10 762 51
11 610 44
12 534 41
13 162 51
14 233.6 10
15 610 44
16 1219 63
17 915 63
18 457 38
19 1066 63
20 1066 63
21 310.3 13
22 1066 63
23 1066 63
24 1066 63
25 610 44
26 1066 63
27 1066 63
28 762 51
29 762 51
30 610 44
31 534 41
32 457 38
33 457 38
34 384.4 16
35 384.4 16
36 534 41
i 457 38
38 258.2 173
39 7162 51
40 233.6 10
41 384.4 16
42 457 38
43 233.6 10
44 233.6 10
45 384.4 16
46 534 41
47 384.4 16
48 384.4 16
49 384.4 16
50 384.4 16
51 310.3 13
52 534 41
53 258.2 11
54 384.4 16

Optimum Surge Tank Size

Surge tank diameter = 0.000000 meter
Surge tank height = 0.000000 meter
Steady State Pressure at Nodes
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Node Node Grade min_Grade Deficit
£ 13.18 3 10.18
2 16.03 <] 13.03
3 137 3 8.37
4 B.B2 3 5.82
5 7.81 3 4.81
6 6.98 3 3.98
7 9.53 3 6.53
8 20,23 3 17.23
9 4.72 3 I
10 4.13 3 1.13
11 5.07 3 2.07
12 6.64 3 3.64
13 5.31 3 2.31
14 11.79 3 B8.79
15 8.01 3 5.01
16 6.72 3 3.2
17 6.19 3 3.19
18 4.35 3 135
19 4.12 3 1.12
20 5.95 3 2.95
21 5.64 3 2.64
22 4.88 3 1.88
23 4.03 3 1.03
24 13.65 3 10.65
25 3.85 3 0.85
26 4.72 3 172
27 3.97 3 0.97
28 10.05 3 7.05
29 6.2 3 3.2
30 311 3 0.11
31 7.48 3 4.48
32 4.45 3 1.45
33 3.01 3 0.01
34 5.26 3 2.26
35 6.73 3 313
36 5.4 3 2.4
37 3.65 3 0.65
38 3.4 3 0.4
39 4.34 3 1.34
40 4.29 3 1.29
q1 6.86 3 3.86
42 5.73 3 2.73
43 10.42 3 7.42
44 12.65 3 9.65
45 4.46 3 1.46
46 7.37 3 4.37
47 4.83 3 1.83
48 4.45 3 1.45
49 B.59 3 5.59
50 9.8 3 6.8
51 6.57 <] 357
Node Node_Grade min_Grade Deficit
1 13.18 3 10.18
2 15.97 3 12.97
3 11.27 3 8.27
4 8.43 3 5.43
5 6.88 3 3.88
6 5.7 3 2.7

7 8 3 5

8 168.78 3 15.78
9 3.29 3 0.29
10 8.53 3 5.53
11 8.75 3 5.75
12 9.12 3 6.12
I3 9.12 3 6.12
14 11.85 3 8.85
15 8.12 3 512
16 6.85 3 3.85
17 6.32 3 3.32
18 4.46 3 1l.46
19 4.22 3 1.22
20 6 3 3

21 5.59 3 2.59
22 4.66 3 1.66
23 3.7 3 0.7
24 12.87 3 9.87
25 3.22 3 0.22
26 4.66 3 1.66
27 4.64 3 1.64
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28 9.78 3 6.78
29 6.28 3 3.28
30 7.13 3 4.13
31 7.74 3 4.74
32 4.98 3 1.98
33 4.47 3 1.47
34 4.75 3 1.75
35 6.06 3 3.06
36 3.95 3 0.95
37 5.06 3 2.06
38 5.99 3 2.99
39 10.29 3 7.29
40 5.51 3 2.51
41 6.76 3 3.76
42 5.63 3 2.63
43 16.03 3 13.03
44 13.18 3 10.18
45 11.85 3 8.85
46 9.92 3 6.92
47 10.19 3 719
48 3.02 3 0.02
49 8.04 3 5.04
50 9.8 3 6.8
51 517 3 2.117

Maximum Steady State Pressure Deficit =0.00

PenaltyCst=0.00

Surgecost =0.00

Pipe cost =6799206.00
NetworkCst=6799206.00
Total_Cost=6799206.00

Final lower bound of penalty = 194555.50
Final upper bound of penalty = 389111.00
Penalty factor for the solution= 207525.87

Number of feasible solutions = 19646.00
Number of infeasible solutions = 7355.00

D.6 Output of Solution 6

The Optimal Pipe Class for Each Pipe

pPipe ID Pipe_Diam Pipe thickness
1 1219 63
2 1219 63
3 310.3 13
4 1219 63
5 1066 63
6 384.4 16
7 915 63
8 1066 63
9 1066 63
10 1066 63
11 1066 63
12 1066 63
e 1066 63
14 915 63
15 384.4 16
16 1066 63
17 915 63
18 310.3 13
19 915 63
20 762 51
21 534 41
22 762 5]
23 915 63
24 762 51
25 610 44
26 162 51
27 162 51
28 162 51
29 310.3 13
30 162 51
31 534 41
32 457 38
a3 384.4 16
34 457 38
35 384 .4 16
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36 233.6 10
37 233.6 10
38 258.2 11
39 534 i1
40 762 51
41 762 51
42 457 38
43 162 51
44 534 41
45 310.3 13
46 233.6 10
47 384.4 16
48 381 32
49 384.4 16
50 310.3 13
51 310.3 13
52 534 41
53 310.3 13
54 310.3 13

Optimum Surge Tank Size

Surge tank diameter = 0.000000 meter
Surge tank height = 0.000000 meter
Steady State Pressure at Nodes

Node Node Grade min_Grade Deficit

1 13.18 3 10.18
2 16.03 3 13.03
3 11.37 3 8.37
4 8.87 3 5.87
5 7.96 3 q4.96
6 7.14 3 4.14
7 10.28 3 7.28
8 22.74 3 19.74
9 7.05 3 4.05
10 3.67 3 0.67
11 6.34 3 3..34
12 7.91 3 4.91
13 6.45 3 3.45
14 12.19 3 9.19
15 8.9 3 5.9
16 7.68 3 4.68
17 6.83 3 3.83
18 4.47 3 1.47
19 4.32 S 1.32
20 6.11 3 3.11
21 5:71 3 2571
22 4.87 3 1.87
23 4.71 3 1.71
24 14.63 3 11.63
25 4.82 3 1.82
26 42 3 1.2
27 3.88 3 0.88
28 10.49 3 7.49
29 6.21 3 3.21
30 3.13 3 0.13
31 B.22 3 5.22
32 6.23 3 AT
33 4.79 3 1.79
34 7.99 3 4,99
35 8.11 3 5.11
36 7.43 3 4.43
37 8:33 3 3,33
38 3.8 3 0.8
39 4.73 3 1.73
40 5.57 3 257
41 6.86 3 3.86
42 5.73 3 2.73
43 10.42 3 7.42
44 6.65 3 3.65
45 3.31 3 0.31
46 11.44 3 B.44
47 3.29 3 0.29
48 4.56 3 1.56
49 9.56 3 6.56
50 10 3 7

51 6.7 3 Dl
Node Node Grade min_ Grade Deficit
1 13.18 3 10.18
2 15.97 3 12.97
3 11.27 3 8.27
4 B8.69 3 5.69
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5 7.61 3 4.61
6 6.7 3 3.7
7 9.82 3 6.82
8 22.31 3 19.31
9 6.67 3 3.67
10 8.52 3 5.52
11 9.15 3 6.15
12 9.52 3 6.52
13 9.5 3 6.5
14 12.2 3 9.2
15 8.93 3 5.93
16 7.73 3 4.73
17 6.79 3 3.79
18 4.29 3 1.29
19 4.11 3 1.11
20 5.75 3 2.75
21 5.08 3 2.08
22 3.8 3 0.8
23 3.61 3 0.61
24 13.22 3 10.22
25 3.57 3 0.57
26 4.25 3 1.25
27 4.25 3 1.25
28 10.29 3 7.29
29 6.69 3 3.69
30 7.54 3 4.54
31 8.69 3 5.69
32 6.67 3 3.67
33 6.16 3 3.16
34 7.68 3 4.68
35 7.78 3 4.78
36 7.02 3 4.02
37 6.11 3 3.11
38 6.91 3 3.91
39 11,22 3 8.22
40 5.91 3 2.91
41 6.76 3 3.76
42 5.63 3 2.63
43 16.03 3 13.03
44 9.78 3 6.78
45 9.23 3 6.23
46 11.66 3 8.66
47 11.49 3 8.49
48 4.18 3 1.18
49 8.38 3 5.38
50 9.97 3 6.97
51 6.24 3 3.24

Maximum Steady State Pressure Deficit =0.00

PenaltyCst=0.00

Surgecost =0.00

Pipe cost =7154495.00
NetworkCst=7154495.00
TotalﬁCost=?154495.00

Final lower bound of penalty = 437749.88
Final upper bound of penalty = B75499,77
penalty factor for the solution= 496116.53

Number of feasible solutions = 18769.00
Number of infeasible solutions = 8232.00

D.7 Output of Solution 7

The Optimal Pipe Class for Each Pipe

Pipe ID Pipe Diam Pipe thickness
1 1219 63
2 1219 63
3 310.3 13
4 1219 63
5 762 51
6 384.4 16
1 1219 63
8 162 51
9 610 44
10 162 51
11 162 51
12 610 44
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13 762 51
14 310.3 13
15 762 51
16 1219 63
17 1066 63
18 310.3 13
19 1066 63
20 1066 63
21 310.3 13
22 1066 63
23 1066 63
24 762 51
25 915 63
26 762 51
27 610 44
28 610 44
29 457 38
30 534 41
31 762 51
32 534 41
33 457 38
34 310.3 I3
35 384.4 16
36 233.6 10
37 310.3 13
38 384.4 16
39 384.4 16
40 915 63
41 762 51
42 610 44
43 762 51
44 534 41
45 384.4 16
46 762 51
47 384.4 16
48 384.4 16
49 310.3 13
50 3B4.4 16
51 310.3 13
52 457 38
53 310.3 13
54 381 32

Optimum Surge Tank Size

Surge tank diameter = 0.00 meter
Surge tank height = 0.00 meter
Steady State Pressure at Nodes

Node Node Grade min_Grade Deficit
10.18

1 13.18 3

2 16.03 3 13.03
3 11.37 3 8.37
4 8.83 3 5.83
5 7.83 3 4.83
6 5.4 3 2.4
7 B8.66 3 5.66
B8 20.47 3 17.47
9 1.97 3 1.97
10 3.26 3 0.26
11 4.2 3 1.2
12 8.66 3 5.66
13 7.33 3 4.33
14 12.54 3 9.54
15 9.117 3 6.17
16 7.87 3 4.87
17 7:35 3 4.35
18 5.5 3 2.5
19 5.27 3 2.27
20 7.06 3 4.06
21 6.66 3 3.66
22 4.2 3 1.2
23 3.74 3 0.74
24 13.73 3 10.73
25 4.89 3 1.89
26 5.76 3 2.76
27 3.62 3 0.62
28 10.56 3 7.56
29 3.02 3 0.02
30 3.44 3 0.44
31 5.19 3 2.19
32 5.26 3 2.26
33 3.82 3 0.82
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34 7.51 3 4.51
35 7.67 3 4.67
36 6.98 3 3.98
37 4.77 3 1.77
38 4.52 3 1.52
39 5.46 3 2.46
40 6.31 3 3.31
il 6.86 3 3.86
42 4.45 3 1.45
43 10.42 3 7.42
44 i 3 4

45 3.66 3 0.66
46 8.53 3 5.53
47 5.85 3 2.85
48 4.88 3 1.88
49 1.9 3 4.9
50 10.55 3 7.55
51 5 3 2
Node Node Grade min_Grade Deficit
1 13.18 3 10.18
2 15.97 3 12.97
3 11.27 3 8.27
4 8.48 3 5.48
5 7.02 3 4.02
6 3.78 3 0.78
1 6.93 3 3.93
8 18.9 3 15.9
9 3.45 3 0.45
10 8.77 3 5.77
X1 8.99 3 5.99
12 10.05 3 7.05
13 10.05 3 7.05
14 12.52 3 9.52
15 9.16 3 6.16
16 7.89 3 4.89
17 7.34 3 4.34
18 5.46 3 2.486
19 5.21 3 2.21
20 6.92 3 3.92
21 6.37 3 3.37
22 3.43 3 0.43
23 3.01 3 0.01
24 12.55 3 9:55
25 3.78 3 0.78
26 5.21 3 2.21
27 5.16 3 2.16
28 10.08 3 7.08
29 4.94 3 1.94
30 5.92 3 2.92
31 7.02 3 4.02
32 5.89 3 2.89
33 5.38 3 2.38
34 7.15 3 4.15
35 7.27 3 4.27
36 6.59 3 3.59
37 4.63 3 1.63
38 5.56 3 2.56
39 9.86 3 6.86
40 6.44 3 3.44
41 6.76 3 3.76
42 4.35 3 1.35
43 16.03 3 13.03
44 10.09 3 7.09
45 9.55 3 6.55
46 10.96 3 7.96
47 11.21 3 B8.21
48 3.36 3 0.36
49 6.76 3 3.76
50 10.49 3 7.49
51 3.29 3 0.29

Maximum Steady State Pressure Deficit =0,00

PenaltyCst=0.00

Surgecost =0.00

Pipe cost =7021474.00
NetworkCst=7021474.00
Total_Cost=7021474.00

Final lower bound of penalty = 291833.26
Final upper bound of penalty = 583666.51
Penalty factor for the solution= 389111.01
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Number of feasible solutions = 18038.00
Number of infeasible solutions = 8963.00
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