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Abstract 

This paper presents a model-based method for the system identification of a 

rectangular enclosure with an unknown number of air leakages subjected to uniform 

external noise, according to the probabilistic approach. The method aims to identify 

the number and corresponding locations and sizes of air leakages utilizing a set of 

measured, interior, sound pressure data in the frequency domain. 

System identification of an enclosure with an unknown number of air leakages is 

not trivial. Different classes of acoustic models are required to simulate an enclosure 

with different numbers of leakages. By following the traditional system of 

identification techniques, the “optimal” class of models is selected by minimizing the 

discrepancy between the measured and modelled interior sound pressure. By doing 

this, the most complicated model class (that is, the one with the highest number of 

uncertain parameters) will always be selected. Therefore, the traditional system 

identification techniques found in the literature to date cannot be employed to solve 

this problem. 

Our proposed system identification methodology relies on the Bayesian 
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Information Criterion (BIC) to identify accurately the number of leakages in an 

enclosure. Unlike all deterministic system identification approaches, the proposed 

methodology aims to calculate the posterior (updated) probability density function 

(PDF) of leakage locations and sizes. Therefore, the uncertainties introduced by 

measurement noise and modelling error can be explicitly addressed. The coefficient of 

variable (COV) of uncertain parameters, which can be easily calculated from the PDF, 

provides valuable information about the reliability of the identification results. 

 

1 Introduction 

The modelling of an acoustic enclosure is an important issue, and many 

researchers (Pretlove, 1965; Pretlove, 1966; Narayanan and Shanbhag, 1981; Oldham 

and Hillarby, 1991a; Pan et al., 1999) have developed different theoretical methods to 

address this problem. Oldham and Hillarby (1991a, 1991b) and Pan et al. (1999) 

carried out both theoretical and experimental studies of the modelling of acoustic 

enclosures. In their findings, they reported that some assigned model parameters were 

not accurate due to the uncertainties associated with the boundary conditions, material 

properties and damping of the system. System identification allows researchers and 

engineers to increase the accuracy of model parameters and to obtain a representative 

model, which can then be employed for predictions and controls. McKelvey et al. 

(1996) proposed a subspace system identification method to identify the acoustic 

model of a regular duct using frequency response data. Henry and Clark (2002) set up 

the transfer functions for particular inputs and outputs of an acoustic model, which 

was then used in the design of a control system based on system identification. Fang 

et al. (2004) presented a paper on the modelling, system identification and control of 

acoustic-structure interaction dynamics of enclosure systems. The transfer function 

and state-space models were obtained from experimental data using system 
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identification techniques. The identified model was then used for controller design. 

Lee et al. (2006) proposed a probabilistic approach to identify the uncertain 

parameters of the acoustic model of a room utilizing the measured interior sound 

pressure. The identified acoustic model was then used to reconstruct the interior 

sound pressure distribution. Lardies (2007) utilized the wavelet transform of free 

responses for the identification of eigen frequencies of damped signals. The method 

has been demonstrated using numerical and experimental results from an acoustic 

enclosure. 

The main objective of this paper is to develop a probabilistic method for the 

system identification of an enclosure with an unknown number of leakages, utilizing 

measured interior sound pressure introduced by uniform external noise. There are 

many system identification methods in the existing literature. The basic idea of most 

of them is to minimize the discrepancy between the measured and calculated, or 

predicted, model outputs. It must be pointed out that the idea of minimizing the 

discrepancy is not applicable in the system identification of enclosures with an 

unknown number of leakages. This is because different classes of models are needed 

to represent enclosures with different numbers of leakages. The model class of an 

enclosure with more leakages consists of more model parameters, and therefore, is 

more complex than the model class of an enclosure with fewer leakages. As a more 

complex model class can always better accommodate the measured interior sound 

pressure than a less complex one, the most complex model class will always be 

selected when following this approach. To overcome this difficulty, our proposed 

methodology relies on the Bayesian Information Criterion (BIC) by identifying the 

“optimal” model class for a given set of measured interior sound pressures, with the 

objective of determining the number of air leakages. 

The proposed system identification methodology not only identifies the model 
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parameters, but also the associated uncertainties. This can be achieved by calculating 

the posterior (updated) probability density function (PDF) of the leakage locations 

and their corresponding sizes. With the calculated PDF, the coefficient of variation 

(COV) of the identified parameters can be easily calculated. The COV provides 

valuable information on the reliability of the system identification results. This 

information cannot be obtained by any deterministic system identification methods. 

A series of comprehensive case studies were carried out to verify and 

demonstrate the proposed methodology. The results are very encouraging. By using 

our proposed methodology, we studied the effects of measurement noise, modelling 

error, the number of leakages and the number of measurement stations on the results 

of system identification through numerical simulation. 

 

2 Proposed Methodology 

The proposed methodology is directed at the system identification of a 

rectangular enclosure with an unknown number of square leakages, as shown in 

Figure 1, in which Lx, Ly and Lz are the dimensions of the enclosure, and Nl is the 

number of leakages. By assuming that all leakages are square and on the side wall, 

with x = Lx (see Figure 1), each leakage can be represented by three model parameters 

(that is, the y- and z- coordinates of the lower left corner of the leakage, and its size). 

The basic strategy of the proposed methodology is to adopt different classes of 

acoustic models to represent a rectangular enclosure with different numbers of 

leakages. The identification of the number of leakages is then equivalent to the 

selection of the “optimal” class of models for a given set of measured interior sound 

pressure. It must be pointed out that a model class with more model parameters can 

better accommodate the measurement when compared to a model class with fewer 

model parameters. In the presence of measurement noise, the optimal model in the 
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model class, say 3M , can fit the measurement better than that in 2M , as the three 

additional parameters can compensate for the effect of measurement noise to some 

extent. The selection of the “optimal” model class, based solely on the fit between the 

modelled and the measured interior sound pressure, is very misleading, as the most 

complex model class will always be selected. Our proposed methodology uses the 

probabilistic approach to address this problem. By following the Bayesian statistical 

framework (Beck & Katafygiotis, 1998), the conditional probability of a model class 

for a given set of data D can be approximated asymptotically. Under the assumption 

of a large number of measured data points, this probability can be further simplified 

as the BIC (Schwarz, 1978). The formulation of the BIC for a class of models is 

presented in Section 2.2. 

 To quantify the uncertainties associated with the identification results, the 

posterior PDF of the set of uncertain model parameters (e.g., leakage locations and 

sizes) are calculated by again employing the Bayesian statistical framework (Beck & 

Katafygiotis, 1998), which is briefly reviewed in Section 2.3. The modelling of the 

rectangular enclosure with a given number of leakages is first given in the following 

section. 

 

2.1 Modelling of an enclosure with leakages 

A rectangular enclosure is shown in Figure 1. The dimensions of the enclosure 

are x y zL L L× × . It is assumed that the enclosure is subject to a steady-state uniform 

distributed sound pressure. The complex acoustic pressure ( )f r  in the enclosure can 

be described by the frequency domain acoustic wave equation (Pan etal, 1999) 

 ( ) ( ) ( )2 2
0k f j qρ ω∇ + = −r r , (1) 

where /k cω=  is the wavenumber; c  is the sound speed; 0ρ  is the air density; 
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ω  is the angular frequency of the sound waves; r  is the position vector; and ( )q r  

is the strength of the sound source describing the volume velocity per unit volume.  

Based on the model expansion approach (Pan et al., 1999), the acoustic pressure 

field can be described by a trial solution ( ) ( )fNf r , and the residual of Equation (1) is 

defined as 

 ( ) ( )( ) ( ) ( ) ( ) ( )2 2
0

f fN NR f k f j qρ ω= ∇ + +r r r . (2) 

The trial solution ( ) ( )fNf r  is assumed to be 

 ( ) ( ) ( )
1

f
f

N
N

J J
J

f F φ
=

=∑r r , (3) 

where fN  are the number of acoustic modes considered; JF  is the pressure 

amplitude of the J-th acoustic mode; ( )Jφ r  are the shape functions that satisfy the 

geometrical boundary conditions of the sound field and are all orthogonal to the 

residual, that is, ( )( ) ( ( )) 0fN
JV

R f r dVφ =∫ r . The following equation can be thus 

derived for each ( )Jφ r : 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
0

f fN N
J J JV V V

f dV k f dV j q dVφ φ ρ ω φ∇ + = −∫ ∫ ∫r r r r r r . (4) 

The first term on the left-hand side of Equation (4) can be expressed as  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2f f

f

f

N N
J JV V

N
NJ

JS S

f dV f dV

f
dS f dS

n n

φ φ

φ
φ

∇ = ∇

∂ ∂
+ −

∂ ∂

∫ ∫

∫ ∫

r r r r

r r
r

. (5) 

Assuming the rectangular enclosures are constructed by rigid walls, the shape 

functions are 

 ( ) ( ) cos cos cosJ lmn
x y z

l x m y n z
L L L
π π πφ φ= =r r , (6) 

and the boundary conditions are 
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0 00

0, 0, 0
x zyx x L z z Ly y Lx x y y z z

φ φ φ φ φ φ
= = = == =

∂ ∂ ∂ ∂ ∂ ∂= = = = = =
∂ ∂ ∂ ∂ ∂ ∂

. (7) 

where l , m  and n  are integers. 

Using Equations (4) and (5), the generalized coordinates JF  are 

 ( )
( ) ( ) ( )2 2

0

fN

J J J J J JS V

f
k j k k k F dS j q dV

n
ζ φ ρ ω φ

∂
− − Λ = − −

∂∫ ∫
r

r  (8) 

for 1,2,..., fJ N= , where ζ  is the damping ratio; 2 ( )J JV
dVφΛ = ∫ r ; and the second 

term of the right-hand side is related to the point sound source within the enclosure. In 

Figure 1, it is assumed that lN  ( 1,..., ,... ll i N= ) air leakages are located at i xx L= , 

ii i yy y y L′≤ ≤ +  and 
ii i zz z z L′≤ ≤ + . 

iy
L′ , and 

iz
L′  are the width and length of the 

i-th air leakage. The first term of the right-hand side in Equation (8) represents the 

contribution from non-rigid boundary conditions, and it can be expressed as 

 
( )

0
( ) ( , )

fNf j v y z
n

ρ ω∂ = −
∂
r . (9) 

Jk  is the wavenumber of the J-th rigid mode, and it is  

 
22 2

J lmn
x y z

l m nk k
L L L

π
⎛ ⎞⎛ ⎞ ⎛ ⎞

= = + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. (10) 

 The velocity profiles at the air leakages are assumed to be double sine function 

as follows. 

 ( )
( ) ( )

1 1

sin sin for the th air leakage
,

0 for the rigid wall

i i
i

y z

y y z z
j B i

v y z L L
π π

ω
⎧ ⎛ ⎞ ⎛ ⎞− −

−⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′= ⎨ ⎝ ⎠ ⎝ ⎠
⎪
⎩

, (11) 

where iB  are the air particle displacement amplitudes at the i-th air leakage. Thus, 

Equation (9) becomes 

 
( ) ( ) 2

0
1

f l
N N

J i iJS
i

f
dS B

n
φ ρ ω α

=

∂
=

∂ ∑∫
r

, (12) 
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where iJα  are the modal coupling coefficients of the J-th acoustic mode, which 

depends on the location and size of the i-th air leakage, as given below. 

 ( ) ( ) ( )sin sin
i

i i

i i
iJ JS

y z

y y z z
dS

L L
π π

α φ
⎛ ⎞ ⎛ ⎞− −

= ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′⎝ ⎠ ⎝ ⎠
∫ r , (13) 

where 
i ii y zS L L′ ′=  are the i-th leakage area. 

 The displacement equation of movement at the i-th air leakage in the frequency 

domain is 

 i i i i em w j Q w f fω ω2− + = − , (14) 

where 0m hρ=  are the equivalent air mass at the leakages; h  is the wall thickness; 

2
0 / 2i iQ ck Sρ π=  is the equivalent sound radiation impedance at the leakages 

(Kinsler et al., 2000); iw  is the average air particle displacement; if  and ef  are 

the interior sound pressure at the i-th air leakage and external sound pressure acting 

on the air piston, respectively. They are given as 

 
( )

( ) ( )
2

sin sin, 2i
i ii

i i
i S

y zS
i i

i i

y y z z
B dSw y z dS L L

w B
S S

π π

π

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ⎛ ⎞⎝ ⎠ ⎝ ⎠= = = ⎜ ⎟⎝ ⎠

∫∫
 (15) 

and 

 
( )

1

1

f

f
i

N

NI IS
I

i I iI
Ii

F dS
f F

S

φ
β=

=

= =
∑∫

∑
r

, (16) 

where iIβ  are the coefficients in terms of the velocity mode of the air piston and 

given as 

 
( )

i
IS

iI
i

dS

S

φ
β =

∫ r
. (17) 

By using Equations (12), (14), (15) and (16); and then substituting the resulting 

equations into Equation (8), the displacement amplitude of i-th air leakage iB  can be 
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obtained, and the pressure amplitude of the J-th acoustic mode JF  ( 1,2,..., fJ N= ) 

can be calculated from the following equation (see Appendix). 

 
( )

2 2
2 2 0 1

2
1

2 2
0

2
1

4

4

f

l

l

N

N iJ I iI
I

J J J J
i i

N
iJ e

i i

F
k j kk k F

m j Q

f
m j Q

α βρ ω πζ
ω ω

ρ ω π α
ω ω

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟− − Λ +
⎜ ⎟− +
⎜ ⎟
⎝ ⎠

⎛ ⎞
= ⎜ ⎟− +⎝ ⎠

∑
∑

∑

, (18) 

The sound pressure in the frequency domain within the enclosure can then be 

obtained by substituting JF  into Equation (3). 

 In this study, all air leakages are assumed to be square, so the variable 

representing the size of the i-th air leakage becomes 
i ii y zL L L′ ′ ′= = . In the proposed 

methodology, the air leakage locations ( iy  and iz ) and the corresponding sizes ( iL′ ) 

are considered to be uncertain parameters in the identification process. As the 

damping ratio is usually uncertain and difficult to identify when compared to other 

model parameters, the damping ratio (ζ ) is also treated as an uncertain parameter in 

the identification process. The uncertain parameter vector for a rectangular enclosure 

with k square air leakages is thus 

 { }1 2 1 2 1 2, , ,..., , , ,..., , , ,..., T
k k k ky y y z z z L L Lζ ′ ′ ′=θ . (19) 

The total number of uncertain parameters is 3 1kN k= + . 

 

2.2 Identification of the number of leakages and the corresponding 

locations and sizes 

We now consider the general case of an enclosure with k air leakages on the side 

wall, with x = Lx (see Figure 1). The model class to be considered is kM , for 

1,2,..., Mk N= , where MN  is the maximum number of air leakages to be considered 
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in the system identification process. From Equation (19), ( ) kN
k kS R∈ ⊂θ θ  is the 

vector of uncertain model parameters, such as the leakage locations and sizes, to be 

identified in accordance with the Bayesian statistical framework, where kN  is the 

dimension of kθ . By relying on Bayes’ theorem, the posterior (or updated) 

probability density function (PDF) ( )| ,k kp D Mθ  for a given set of measurements D 

and model classes kM , can be expressed as 

 ( ) ( ) ( )| , | | ,k k k k k k kp D M c p M p D M=θ θ θ , (20) 

where kc  is a normalizing constant such that the integration of ( )| ,k kp D Mθ  over 

the domain is equal to unity, and ( ) ( )|k k kp M π=θ θ  is the prior PDF of the set of 

uncertain model parameters kθ , which allows the judgment about the relative 

plausibility of the values of the uncertain parameters to be incorporated. A uniform 

prior PDF, such that the posterior PDF depends solely on the data, is employed in this 

study; ( )| ,k kp D Mθ  is the likelihood of the data given kθ  of model class kM . 

Under the assumption of independent Gaussian prediction errors, it is given by 

 ( )
( )

( )2

1| , exp | ,
22

D

D
k k k kN

kk

Np D M J D M
σπσ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
θ θ , (21) 

where kσ  is the optimal standard deviation of the target error; D ON NN=  is the 

total number of measured data points; N is the total number of frequency steps 

considered in the system identification process; and ON  is the number of 

measurement stations. The function ( )| ,k kJ D Mθ  in Equation (21) is the 

contribution of the measured data, and is given (Beck & Katafygiotis, 1998) by 

 ( ) ( ) ( ) ( ) ( )
2

1

1 ˆ| , ; ,
O

f f
N

N N
k k n n k k

nD

J D M f f M
N =

= −∑θ r r θ , (22) 

where ( ) ( ); ,fN
n k kf Mr θ  is the vector of the calculated interior sound pressure at the 



 12 

n-th measurement station for a given model kθ  in kM ; nr  is the position vector of 

the n-th measurement station; ( ) ( )ˆ fN
nf r  is the vector of measured interior sound 

pressure at the n-th measurement station, both ( ) ( ); ,fN
n k kf Mr θ  and ( ) ( )ˆ fN

nf r  are 

of dimensions N  by 1; and .  denotes the Euclidean norm of a vector. A smaller 

value of ( )| ,k kJ D Mθ  in Equation (22) implies a better fit to the measurement by 

the corresponding model kθ . The “optimal” (or “best”) model ˆ kθ  in a given model 

class kM  for a given set of data D, can be identified by maximizing the posterior 

PDF ( )| ,k kp D Mθ , as in Equation (20). When a uniform prior PDF 

(non-informative prior) is chosen in Equation (20), this is equivalent to maximizing 

the likelihood of ( )| ,k kp D Mθ  in Equation (21) or minimizing the ( )| ,k kJ D Mθ  

function in Equation (22). 

 To select the “optimal” class of models from the MN  model classes, the 

proposed methodology allows the calculation of the probability of the model class 

conditional on a set of measured interior sound pressure D. Based on the Bayes’ 

theorem, 

 ( ) ( ) ( )
( ) ( )

1

|
|

|
m

K k
k N

i i
i

P M P D M
P M D

P M P D M
=

=

∑
 for 1,..., Mk N= , (23) 

where ( ) ( )
1

1 |
mN

i i
i
P M P D M

=
∑  is a normalizing constant. As the number of leakages 

is not known, the prior probability ( )kP M  is taken as 1/ MN . The most important 

term in Equation (23) is the probability of getting the set of measurement D 

conditional on the class of models kM . This conditional probability is called the 

evidence of the model class kM . For a globally identifiable case (Beck & 

Katafygiotis, 1998; Katafygiotis & Beck, 1998), the evidence of kM  can be 
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calculated based on the asymptotic approximation (Papadimitriou et al., 1997; Beck 

& Yuen 2004) 

 ( ) ( )( ) ( ) ( )
1
22ˆ ˆ ˆ| | , 2 |

kN

k k k k k k kP D M p D M p Mπ
−

≈ θ θ H θ  for 1,..., Mk N= , (24) 

where ˆ kθ  denotes the optimal model in the model class kM . kN  is the number of 

uncertain model parameters in ˆ kθ , and ( )ˆk kH θ  is the Hessian of the function 

( )kg θ  evaluated at the optimal model ˆ kθ , where ( )kg θ  is given by 

 ( ) ( ) ( )ln | | ,k k k k kg p M p D M= − ⎡ ⎤⎣ ⎦θ θ θ . (25) 

When the value of DN  increases, the determinant of the Hessian ( )ˆk kH θ  can be 

approximated as 

 ( ) ( )ˆ ˆkN
k k D kN≈H θ Q θ , (26) 

where ( )ˆ kQ θ  is the Fisher information matrix (Rissanen, 1996). By substituting 

Equation (26) into Equation (24), the logarithm of the evidence of kM  can be 

expressed as 

 
( ) ( ) ( )

( ) ( )

ˆln | ln | , ln 2 ln
2

1ˆ ˆln | ln
2

k
k k k D

k k k k

NP D M p D M N

p M

π≈ + −

+ −

θ

θ Q θ
. (27) 

Asymptotically, the prior distribution of uncertain parameters ( )ˆ |k kp Mθ  can be 

approximated by a multivariate Gaussian distribution with means ˆ kθ  and covariance 

( )1 ˆ
k

−Q θ . As a result, the Bayesian Information Criterion (BIC) (Schwarz, 1978) of 

the model class kM  can be obtained from Equation (27). 

 ( ) ( )ˆln | ln | , ln
2
k

k k k k D
NBIC P D M p D M N= ≈ −θ . (28) 

The kBIC  in Equation (28) consists of two factors. The first factor, ( )ˆln | ,k kp D Mθ , 
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is the logarithm of the likelihood. This will be larger for model classes that 

correspond more closely with the interior sound pressure D . This favours model 

classes with more parameters (model classes with higher complexity). The second 

factor, ( / 2) lnk DN N , is a penalty for the complexity of the model class. The penalty 

increases with the number of data points DN  and the number of uncertain 

parameters kN  in the class of models. Thus, it provides a penalty against 

parameterization. The combining effect of these two elements makes it possible to 

select a model class that, on one hand, is complex enough to accurately accommodate 

the measurement D, and, on the other hand, is simple enough to prevent excessive 

“fitting” of the noise portion of the measured data. 

 A computationally efficient algorithm is developed for identifying the number of 

leakages in the enclosure without assuming the value of NM. The algorithm consists of 

a series of iteration steps, as shown in Figure 2, and begins by initializing the iteration 

counter k, which represents the number of leakages at the current iteration step. When 

k = 0, the algorithm checks whether the measured sound pressure data ( )ˆ
nf r , for n = 

1 to NO, in Equation (22) is a null vector. When there is no leakage, the measured 

interior sound pressure in all stations must be zero. If this is the case, then the 

algorithm stops, as there is no leakage. Otherwise, the algorithm will increase the k 

counter by 1 (k = 1) and calculate the values of BICk and BICk+1. If the value of BICk 

is larger than that of BICk+1, then the algorithm stops, and the number of leakages is 

equal to the value of the counter k. Otherwise, the algorithm will start the next 

iteration by increasing the counter k by 1 (k = k + 1), then it will compute and 

compare the values of BICk and BICk+1 again. The iteration will continue until the 

value of BICk is larger than that of BICk+1 (see Figure 2). 
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2.3 Calculation of the posterior probability density function of the 

model parameters 

 

After identifying the number of air leakages, for example lN , the next step of the 

proposed methodology is to calculate the posterior PDF ( )| ,
l lN Np D Mθ  of the set of 

uncertain parameters 
lN

θ  in the model class 
lN

M  for a given set of data D. For 

identifiable cases, the posterior PDF ( )| ,
l lN Np D Mθ  can be approximated as a 

weighted sum of Gaussian distributions centred at the qN  optimal models (Beck & 

Katafygiotis, 1998): 

 ( ) ( ) ( )( )( )1

1

ˆ ˆ| , ,
q

l l l ll

N
q q

N N q N N NN
q

P D M w A−

=

≈∑θ N θ θ , (29) 

where ( ),N µ Σ  denotes a multivariate Gaussian distribution with mean µ  and 

covariance matrix Σ . The covariance matrix ( )( )1 ˆ
l

q
N NA− θ  is the Hessian of the 

function ( )ln | ,
l lK N NN J D Mθ , where ( )1 / 2K oN NN= −  is evaluated at ( )ˆ

l

q
Nθ , 

where ( )| ,
l lN NJ D Mθ  is given by Equation (22) by replacing the variable k with the 

identified leakage number Nl. The weighting coefficients in Equation (29) are given 

by 

 

1

q

q
q N

q
q

w
w

w
=

′
=

′∑
, where ( )( ) ( )( )

1
2ˆ ˆ

l l

q q
q N N Nw Aπ

−
′ = θ θ , (30) 

and where ( )( )ˆ
l

q
Nπ θ  is the prior PDF ( )|

l lN Np Mθ  of the set of uncertain model 

parameters 
lN

θ  evaluated at ( )ˆ
l

q
Nθ . Instead of pinpointing the leakage locations and 

sizes, the proposed methodology aims to calculate the posterior PDF of the 



 16 

parameters 
lN

θ . As a result, the level of confidence in the results of the identification 

can be quantified. 

 

3 Numerical Case Study 

A rectangular enclosure with dimensions 6xL m= , 4yL m=  and 3zL m= , 

subjected to a uniform random sound pressure, is used as a verification example (see 

Figure 1), and the dimensions and material properties of the enclosure are 

summarized in Table 1. Three interior sound pressure measurement stations are 

located at ( x = 1.05m, y = 2.15m, z = 1.15m), ( x =3.15m, y = 3.30m, z = 2.15m) 

and ( x =4.45m, y = 0.95m, z = 0.75m). One external sound measurement is used for 

the identification process. For cases that consider the effect of modelling error, the 

measured and modelled interior sound pressures are simulated by the lowest 20 and 

18 acoustic modes ( JN ), respectively. The frequency range of the external sound 

pressure is from 20 to 120Hz with 1Hz frequency step. Measurement noise is 

considered by adding a 5% white noise to the calculated interior sound pressures. 

In this paper, six cases (Cases A to F) are considered to verify and demonstrate 

the proposed system identification methodology. A summary of all cases is given in 

Table 2. Case A considers a single air leakage (at 1 0.92my =  and 1 1.65mz =  with 

size 1 0.3mL′ = ) without considering the effect of modelling error. Both of the 

measured and modelled interior sound pressures are generated by using the lowest 20 

acoustic modes. Case B is the same as Case A, except that it considers the effect of 

modelling error. Case C is the same as Case B, except that the measurement noise in 

Case C is 15% (10% higher than that in Case B). Cases A and B can thus be used to 

study the effect of modelling error, whereas Cases B and C can be used to study the 

effect of measurement noise. Cases D and E consider two and three air leakages, 
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respectively. The locations and sizes of these are ( 1 2.42my = , 1 0.75mz = , 

1 0.25mL′ = ) and ( 2 0.92my = , 2 1.65mz = , 2 0.3mL′ = ) for Case D, and 

( 1 2.42my = , 1 0.75mz = , 1 0.25mL′ = ), ( 2 0.92my = , 2 1.65mz = , 1 0.3mL′ = ) and 

( 3 2.55my = , 3 1.95mz = , 3 0.2mL′ = ) for Case E. Cases B, D and E are employed to 

demonstrate the proposed methodology in identifying the enclosure with different 

numbers of air leakages. Case F is the same as Case E, except that the former uses 

only two measurement stations, which are located at ( x = 3.15m, y = 3.32m, 

z = 2.15m) and ( x =4.45m, y = 0.95m, z = 0.75m). The effect of the number of 

measurement stations can thus be studied by comparing the results in Cases E and F. 

 

3.1 Effects of the modelling error 

As the modelling error is only introduced in Case B, its effects on the results of 

system identification can be studied by comparing the results from Cases A and B.

 The proposed methodology begins by checking the measured interior sound 

pressures. If the measured interior sound pressure vector is not null, then there must 

be at least one leakage in the enclosure. The next step is to calculate the relative 

kBIC  (the values of BIC are normalized such that the maximum is equal to unity for 

easy comparison) of the model classes 1M  and 2M , which are the model classes of 

enclosures with one and two air leakages, respectively. The calculated results are 

summarized in Tables 3 and 4. It is clear from the tables that the relative 1BIC  (1 for 

both Cases A and B) is larger than the relative 2BIC  (3.07 410−×  for Case A and 

9.03 410−×  for Case B), and therefore, it can be concluded that there is only one air 

leakage in the enclosure. Use of the proposed methodology allows for the successful 

identification of the true number of air leakages ( lN =1) in both cases. Tables 3 and 4 

also show the logarithms of the likelihood factor and penalty. The results show that 
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the logarithm of likelihood and penalty are larger for more complex model classes. If 

the optimal model class is selected based solely on the logarithm of the likelihood 

factor, the most complex model class will always be chosen. It is shown in the table 

that the likelihood factor of the optimal model class in Case A is larger than that of 

the optimal model class in Case B. This is because the match between the modelled 

and measured interior sound pressure in Case B is affected by the modelling error. 

 The optimal model 1θ̂  and the updated PDF of the set of model parameters 1θ  

can then be calculated using the proposed methodology. The normalized marginal 

PDF of the air leakage location ( 1y  and 1z ) for both Cases A and B are plotted in 

Figures 3 and 4, respectively. First of all, there is only one peak in both figures, which 

shows that there is only one optimal model within the domain of interest. Second, the 

PDF value in both figures drops significantly when one moves away from the optimal 

model in any direction. This is a typical characteristic of an identifiable case 

(Katafygiotis and Lam, 2002; Lam et al. 2007). Both figures are in the same scale for 

comparison. It is clear that the drop in PDF value in Case A (Figure 3) occurs much 

more quickly than that in Case B (Figure 4). This is due to the fact that the 

uncertainties associated with the identification results in Case B (with modelling error) 

are higher than those associated with the identification results in Case A (without the 

modelling error). Figures 5 to 10 show the marginal cumulative distributions of the 

optimal air leakage locations and sizes ( 1y , 1z  and 1L′ ) for Cases A and B. These 

figures provide detailed information about the uncertainties associated with the 

identified results. When Figures 5, 6 and 7 are compared to Figures 8, 9 and 10, 

respectively, it may be concluded again that the uncertainties associated with the 

identified results in Case A are less that those associated with the identified results in 

Case B. 
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The uncertainties can also be quantified by the coefficients of variation (COVs) 

for all uncertain model parameters, which are calculated based on the updated PDFs. 

The calculated COV values are summarized together with the optimal parameters in 

Table 9. From the second to the fourth rows of the table, the optimal air leakage 

location and the corresponding size are 1y = 0.9198m, 1z =  1.6495m and 1L′ = 

0.3000m for Case A, with COV values 0.11%, 0.06% and 0.03%, respectively. For 

Case B, the results are 1y =0.9152m, 1z =  1.6509m and 1L′ = 0.2998m, with COV 

values 0.39%, 0.23% and 0.09%, respectively. The identified damping ratio is shown 

in the fifth row of the table, and the results are ζ =0.01 for both cases, with COV 

values 0.21% and 0.77%. The results are very encouraging, as all of the identified 

results are very close to the true values. Furthermore, the values of the COV clearly 

show that modelling error increases the uncertainties associated with the results of 

system identification. This conclusion is aligned with the observation from the 

normalized marginal PDF (Figures 3 and 4) and marginal cumulative distribution 

plots (Figures 5 to 10). 

 

3.2 Effects of the measurement noise 

Case C is the same as Case B, except that the measurement noise in Case C is 

15% (that is, 10% higher than that in Case B). Because the measured interior sound 

pressure is not zero, there is at least one leakage in the enclosure in Case C. 

According to the proposed methodology, the next step is to calculate the BIC values 

for model classes M1 and M2. Table 5 clearly shows that the relative 1BIC  (1) is 

larger than 2BIC  (5.16 410−× ). Therefore, it can be concluded that there is only one 

leakage in the enclosure in Case C. Using the proposed methodology, we successfully 

identified the true number of air leakages ( lN =1). By comparing the likelihood 
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factors of the optimal model class in Cases B and C, it can be concluded that the 

uncertainties of the identified results in Case C are higher due to the increase in 

measurement noise. 

Table 9 shows the optimal air leakage location and size, together with the 

damping ratio. All of the identified results are very close to the true values. It is clear 

that the COV values in Case C are larger than those in Case B. Because Case C has a 

higher measurement noise than Case B, the increase in the uncertainties associated 

with the identified results is expected. 

 

3.3 Effects of the number of air leakages  

Cases D and E consider the same measurement noise and modelling error, but the 

numbers of leakages are different. Case D has two air leakages, whereas Case E has 

three. When compared to Case B, Case D has an additional small air leakage 

( 2L′ =0.25). When compared to Case E, Case D has one less air leakage with size 

2L′ =0.2. Because the measured interior sound pressure in both cases is not zero, there 

is at least one leakage in each case. The relative kBIC  for 1M  and 2M  is then 

calculated for both examples. Tables 6 and 7 show the calculated relative kBIC  

values. From Table 6 (Case D), it is clear that the relative 2BIC  (1) is larger than 

1BIC  (1.47 27310−× ). According to the algorithm, there must be at least two leakages 

in Case D. The algorithm continues to calculate the relative 3BIC , which is equal to 

1.88 410−×  (see Table 6). Hence, it can be concluded that there are only two air 

leakages ( lN =2) in Case D. Similarly, Table 7 shows the relative kBIC  of model 

class 1M  (8.78 34510−× ), 2M  (3.27 9810−× ), 3M  (1) and 4M  (2.10 410−× ) in Case 

E. It is clear from the table that the relative 3BIC  is the largest. Again, the proposed 

methodology accurately identifies the true number of leakages. 
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The optimal model parameters, together with the corresponding COV values in 

Cases D and E, are summarized in Table 9. It is clear from the table that all of the 

identified model parameters are very close to the simulated values. Table 9 also shows 

that the COV values in Case D (two leakages) are in general larger than those in Case 

B (one leakage). Similarly, the COV values in Case E (three leakages) are in general 

greater than those in Case D (two leakages). These results reveal that the uncertainties 

of system identification will increase when the number of leakages increases. This can 

be explained by the fact that the number of uncertain model parameters increases 

when the number of leakages increases. For a given set of measurements (constant 

amount of information), the larger the number of uncertain parameters, the higher the 

associated uncertainties will be. 

 

3.4 Effects of the number of measurement stations 

Case F is the same as Case E, except that there are only two measurement stations 

in Case F. The calculated values of the relative kBIC  are summarized in Table 8, 

which shows that the relative kBIC  increases from 1M  to 3M  (from 9.95 20810−×  

to 1) and decreases from 3M  to 4M  (from 1 to 47.17 10−× ), demonstrating that the 

correct number of air leakages in Case F is three. The optimal air leakage locations 

and the corresponding optimal sizes, together with the optimal damping ratio, are 

summarized in Table 9. All of the identified results are close to the true values. 

Table 9 also shows the COV values of the identified results. It is clear from the 

table that the COV values in Case F are larger than those in Case E. This can be 

explained by the fact that the amount of information available for system 

identification in Case E (three measurement stations) is greater than that in Case F 

(two measurement stations). 
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4 Discussion and Conclusions 

In this paper, we presented a methodology for the system identification of a 

rectangular enclosure with an unknown number of air leakages. The locations and 

sizes of the air leakages, together with the damping ratio of the system, are treated as 

uncertain model parameters. Unlike other model-based identification techniques in the 

literature, the proposed methodology is applicable when the number of air leakages is 

not given in advance. The proposed methodology relies on the BIC to identify the 

number of air leakages, based on a set of measured interior sound pressure in the 

frequency domain. One outstanding advantage of the proposed methodology, when 

compared to other deterministic techniques, is that the uncertainties associated with 

the identification results can be quantified through the calculation of the posterior 

PDF of model parameters. 

 The numerical case studies investigate the effects of modelling error, 

measurement noise, the number of air leakages and the number of measurement 

stations in the accuracy of the identification results. The verification results show that 

the proposed methodology can successfully identify the simulated air leakages in the 

presence of measurement noise and modelling error. As expected, both the modelling 

error and measurement noise increase the uncertainty associated with the identified 

results. The case study also shows that the uncertainties of system identification will 

increase when the number of leakages increases. The increase in the number of 

measurement stations leads to a reduction in COV of the identified results. That is, the 

uncertainties of the identification results are reduced. This is to be expected as an 

additional measurement station increases the amount of information for the purpose of 

system identification. The series of case studies shows that the Bayesian approach 

provides a robust measure for quantifying uncertainty. 

 Although it was assumed in the derivation that the enclosure and the leakages are 
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rectangular, it is possible to modify the formulations for other shapes of enclosures 

and leakages. Furthermore, all leakages are assumed on one of the side walls in the 

case study, the proposed methodology can easily be extended to cases in which the 

leakages are on any of the side walls by considering more model classes. 
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6 Appendix 

This appendix shows the derivation of Equation (18). By combining Equations 

(14), (15) and (16), the air particle displacement amplitudes at the i-th air leakage iB  

can be represented as 
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By substituting Equation (A1) into (12), the following relation can be obtained 
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The result of Equation (A2) is then substituted into Equation (8) and omitting the 

second term at the right-hand side of Equation (8) which is related to the point sound 

source, the following expression can then be derived 
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The Equation (18) is finally obtained by rearranging Equation (A3). 

 

7 References 

[1] Beck, J.L. and Katafygiotis, L.S. 1998. Updating models and their 

uncertainties I: Bayesian statistical framework, Journal of Engineering 

Mechanics, ASCE, 124(4), pp. 455-461. 

[2] Beck, J.L. and Yuen, K.V. 2004. Model selection using response 

measurement: A Bayesian probabilistic approach, Journal of Engineering 

Mechanics, ASCE, 130(2), pp. 192-203. 

[3] Fang, B., Kelkar, A.G., Hoshi, S.M. and Pota, H.R. 2004. Modelling, system 

identification, and control of acoustic-structure dynamics in 3-D enclosures, 

Control Engineering Practice, 12, pp. 989-1004. 

[4] Henry, J.K. and Clark, R.L. 2002. Active control of sound transmission 

through a curved panel into a cylindrical enclosure, Journal of Sound and 

Vibration, 249(2), pp. 325-349. 

[5] Katafygiotis, L.S. and Beck, J.L. 1998. Updating models and their 

uncertainties II: model identifiability, Journal of Engineering Mechanics, 

ASCE, 124(4), pp. 463-467. 

[6] Katafygiotis, L.S. and Lam, H.F. 2002. Tangential-projection algorithm for 

manifold representation in unidentifiable model updating problems, 

Earthquake Engineering & Structural Dynamics, 31 (4), pp. 791-812. 

[7] Kinsler, L.E., Frey, A.R., Coppens, A.B. and Sander, J.V. 2000. 

Fundamentals of Acoustics, 4th edition, Wiley, New York. 



 26 

[8] Lam, H.F., Ng, C.T. and Veidt, M. 2007. Experimental characterization of 

multiple cracks in a cantilever beam utilizing transient vibration data 

following a probabilistic approach, Journal of Sound and Vibration, 305, 

pp.34-49. 

[9] Lardies, J. 2007. Identification of a dynamical model for an acoustic 

enclosure using the wavelet transform, Applied Acoustics, 68, pp. 473-490. 

[10] Lee, Y.Y., Leung, A.Y.T., Lam, H.F. and Sun, H.Y. 2006. Reconstruction of 

the interior sound pressure of a room using the probabilistic approach, Journal 

of Sound and Vibration, 298, pp. 977-891. 

[11] McKelvey, T. Akcay, H. and Ljung, L. 1996. Subspace-based multivariable 

system identification from frequency response data, IEEE Transactions on 

Automatic Control, 41(7), pp. 960-979. 

[12] Narayanan, S. and Shanbhag, R.L. 1981. Sound transmission through 

elastically supported sandwich panels into a rectangular enclosure, Journal of 

Sound and Vibration, 77(2), pp. 251-270. 

[13] Oldham, D.J. and Hillarby, S.N. 1991a. The acoustical performance of small 

close fitting enclosure-part 1: theoretical models, Journal of Sound and 

Vibration, 150(2), pp. 261-281. 

[14] Oldham, D.J. and Hillarby, S.N. 1991b. The acoustical performance of small 

close fitting enclosure-part 2: experimental investigation, Journal of Sound 

and Vibration, 150(2), pp. 283-300. 

[15] Pan, J., Elliott, S.J. and Baek, K.H. 1999. Analysis of low frequency acoustic 

response in a damped rectangular enclosure, Journal of Sound and Vibration, 

223(4), pp. 543-566. 

[16] Papadimitriou, C., Beck, J.L., and Katafygiotis, L.S. 1997. Asymptotic 

expansions for reliability and moments of uncertain systems, Journal of 



 27 

Engineering Mechanics, ASCE, 123(12), pp. 1219-1229. 

[17] Pretlove, A.J. 1965. Free vibration of a rectangular panel backed by a closed 

rectangular cavity, Journal of Sound and vibration, 2(3), pp. 197-209. 

[18] Pretlove, A.J. 1966. Forced vibration of a rectangular panel backed by a 

closed rectangular cavity, Journal of Sound and vibration, 3(3), pp. 252-261. 

[19] Rissanen J.J. 1996. Fisher information and stochastic complexity, IEEE 

Transactions on Information Theory, 42(1), pp. 40-47. 

[20] Schwarz, G.. 1978. Estimating the dimension of a model. Annals of Statistics 

6(2), pp.461-464. 



 28 

Figures 
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Figure 1. The rectangular enclosure acoustic model with different numbers of air leakages. 

 
 

Consider model class Mk   where k = 0

Sound pressure ( )ˆ 0fNf ≠
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Figure 2. The proposed algorithm for identifying the number of air leakages. 
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Figure 3. Normalized marginal PDF of the air leakage location ( 1y  and 1z ) in Case A. 

 

 

Figure 4. Normalized marginal PDF of the air leakage location ( 1y  and 1z ) in Case B. 
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Figure 5. Marginal cumulative distribution of the air leakage location ( 1y ) in Case A. 
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Figure 6. Marginal cumulative distribution of the air leakage location ( 1z ) in Case A. 
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Figure 7. Marginal cumulative distribution of the air leakage size ( 1L′ ) in Case A. 
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Figure 8. Marginal cumulative distribution of the air leakage location ( 1y ) in Case B. 
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Figure 9. Marginal cumulative distribution of the air leakage location ( 1z ) in Case B. 
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Figure 10. Marginal cumulative distribution of the air leakage size ( 1L′ ) in Case B. 
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Tables 
 

Property Value 
Thickness of wall (h ) 0.1m 

Damping ratio of wall (ζ ) 0.01 
Sound speed ( c ) 343m/s 
Air density ( 0ρ ) 1.21 3/kg m  

Table 1. Dimensional and material properties of the enclosure. 
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