
PUBLISHED VERSION 

 

Chappell, James Michael; Lohe, Max Adolph; von Smekal, Lorenz Johann Maria; Iqbal, Azhar; Abbott, 
Derek - A precise error bound for quantum phase estimation, PLoS One, 2011; 6(5):e19663 
 
 
© 2011 Chappell et al. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/67236 

 

PERMISSIONS 

http://www.plosone.org/static/license  

Open-Access License 

 

No Permission Required 

PLOS applies the Creative Commons Attribution License (CCAL) to all works we publish (read the 
human-readable summary or the full license legal code). Under the CCAL, authors retain ownership of 
the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, 
and/or copy articles in PLOS journals, so long as the original authors and source are cited. No 
permission is required from the authors or the publishers. 

In most cases, appropriate attribution can be provided by simply citing the original article (e.g., 
Kaltenbach LS et al. (2007) Huntingtin Interacting Proteins Are Genetic Modifiers of Neurodegeneration. 
PLOS Genet 3(5): e82. doi:10.1371/journal.pgen.0030082). If the item you plan to reuse is not part of a 
published article (e.g., a featured issue image), then please indicate the originator of the work, and the 
volume, issue, and date of the journal in which the item appeared. For any reuse or redistribution of a 
work, you must also make clear the license terms under which the work was published. 

This broad license was developed to facilitate open access to, and free use of, original works of all 
types. Applying this standard license to your own work will ensure your right to make your work freely 
and openly available. Learn more about open access. For queries about the license, please contact us. 

 

 

4th July 2013 

http://hdl.handle.net/2440/67236
http://hdl.handle.net/2440/67236
http://www.plosone.org/static/license
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/
http://creativecommons.org/licenses/by/2.5/legalcode
http://www.plos.org/oa/
http://www.ploscompbiol.org/static/contact
http://creativecommons.org/licenses/by/2.5/


A Precise Error Bound for Quantum Phase Estimation
James M. Chappell1*, Max A. Lohe1, Lorenz von Smekal2, Azhar Iqbal3, Derek Abbott3

1 School of Chemistry and Physics, University of Adelaide, Adelaide, South Australia, Australia, 2 Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt,

Germany, 3 School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia, Australia

Abstract

Quantum phase estimation is one of the key algorithms in the field of quantum computing, but up until now, only
approximate expressions have been derived for the probability of error. We revisit these derivations, and find that by
ensuring symmetry in the error definitions, an exact formula can be found. This new approach may also have value in
solving other related problems in quantum computing, where an expected error is calculated. Expressions for two special
cases of the formula are also developed, in the limit as the number of qubits in the quantum computer approaches infinity
and in the limit as the extra added qubits to improve reliability goes to infinity. It is found that this formula is useful in
validating computer simulations of the phase estimation procedure and in avoiding the overestimation of the number of
qubits required in order to achieve a given reliability. This formula thus brings improved precision in the design of quantum
computers.
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Introduction

Phase estimation is an integral part of Shor’s algorithm [1] as

well as many other quantum algorithms [2], designed to run on a

quantum computer, and so an exact expression for the maximum

probability of error is valuable, in order to efficiently achieve a

predetermined accuracy. Suppose we wish to determine a phase

angle w to an accuracy of s bits, which hence could be in error,

with regard to the true value of w, by up to 2{s, then due to the

probabilistic nature of quantum computers, to achieve this we will

need to add p extra qubits to the quantum register in order to

succeed with a probability of 1{e. Quantum registers behave like

classical registers upon measurement, returning a one or a zero

from each qubit. Previously, Cleve et al. [3] determined the

following upper bound:

pC~q log2

1

2e
z

1

2

� �
r: ð1Þ

Thus the more confident we wish to be (a small e), for the output

to achieve a given precision s, the more qubits, p, will need to be

added to the quantum register. Formulas of essentially the same

functional form as Eq. (1), are produced by two other authors, in

[2] and [4], due to the use of similar approximations in their

derivation. For example, we have p~qlog2

1

2e
z2

� �
z log2 pr,

given in [4]. As we show in the following, these approximate error

formulas are unsatisfactory in that they overestimate the number

of qubits required in order to achieve a given reliability.

The phase angle is defined as follows, given a unitary operator

U , we produce the eigenvalue equation U DuT~e2piwDuT, for some

eigenvector DuT, and we seek to determine the phase w[½0,1) using

the quantum phase estimation procedure [5]. The first stage in

phase estimation produces, in the measurement register with a t
qubit basis fDkTg, the state [2]

D~wwTStage1~
1

2t=2

X2t{1

k~0

e2piwk DkT: ð2Þ

If w~b=2t for some integer b~0,1, . . . 2t{1, then

D~wwTStage1~
X2t{1

k~0

yk DkT , with yk~
e2pibk=2t

2t=2
, ð3Þ

is the discrete Fourier transform of the basis state DbT, that is, the

state with amplitudes xk~dkb. We then read off the exact phase

w~b=2t from the inverse Fourier transform as DbT~F {D~wwT.

In general however, when w cannot be written in an exact t bit

binary expansion, the inverse Fourier transform in the final stage

of the phase estimation procedure yields a state

DwT:F{D~wwTStage1 , ð4Þ

from which we only obtain an estimate for w. That is, the

coefficients xk of the state DwT in the t qubit basis fDkTg will yield

probabilities which peak at the values of k closest to w.

Our goal now is to derive an upper bound which avoids the

approximations used in the above formulas and hence obtain a

precise result.

Results

In order to derive an improved accuracy formula for phase

estimation, we initially follow the procedure given in [3], where it
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is noted, that because of the limited resolution provided by the

quantum register of t qubits, the phase w must be approximated by

the fraction
b

2t
, where b is an integer in the range 0 to 2t{1 such

that b=2t~0:b1 . . . bt is the best t bit approximation to w, which is

less than w. We then define

d~w{b=2t,

which is the difference between w and b=2t and where clearly

0ƒdv2{t. The first stage of the phase estimation procedure

produces the state given by Eq. (2). Applying the inverse quantum

Fourier transform to this state produces

DwT~
X2t{1

k~0

xk DkT , ð5Þ

where

xk~
1

2t

X2t{1

‘~0

e2pi(w{k=2t)‘~
1

2t

1{e2pi 2td

1{e
2pi(d{k{b

2t )
: ð6Þ

Assuming the outcome of the final measurement is m, we can

bound the probability of obtaining a value of m such that

Dm{bDƒe, where e is a positive integer characterizing our desired

tolerance to error, where m and b are integers such that 0ƒmv2t

and 0ƒbv2t. The probability of observing such an m is given by

pr(Dm{bDƒe)~
Xe

‘~{e

Dxbz‘D2: ð7Þ

This is simply the sum of the probabilities of the states within e of

b, where

xbz‘~
1

2t

1{e2pi 2td

1{e2pi(d{‘=2t)
, ð8Þ

which is the standard result obtained from Eq. (6), in particular see

equation 5.26 in [2]. Typically at this point approximations are

now made to simplify x‘, however we proceed without

approximations. We have

Dxbz‘D2~
1

22t

1{cos(2p2td)

1{cos(2p(d{‘=2t))
: ð9Þ

Suppose we wish to approximate w to an accuracy of 2{s, that is,

we choose e~2t{s{1~2p{1, using t~szp, which can be

compared with Eq. 5.35 in [2], and if we denote the probability

of failure

E~p(Dm{bDwe), ð10Þ

then we have

E~1{
1{cos2p2td

22t

X2p{1

‘~{2p{1

1

1{cos2p(d{‘=2t)
: ð11Þ

This formula assumes that for a measurement m, we have a

successful result if we measure a state either side of b within a

distance of e, which is the conventional assumption.

This definition of error however is asymmetric because there

will be unequal numbers of states summed about the phase angle w
to give the probability of a successful result, because an odd

number of states is being summed. We now present a definition of

the error which is symmetric about w.

Modified definition of error
Given an actual angle w that we are seeking to approximate in

the phase estimation procedure, a measurement is called successful

if it lies within a certain tolerance e of the true value w. That is, for

a measurement of state m out of a possible 2t states, the probability

of failure will be

E~p D2p
m

2t
{wDw

1

2

2p

2s

� �
: ð12Þ

Thus we consider the angle to be successfully measured accurate

to s bits, if the estimated w lies in the range w+
1

2

2p

2s
. Considering

our previous definition Eq. (10), due to the fact that b is defined to

be always less than w, then compared to the previous definition of

E, we lose the outermost state at the lower end of the summation in

Eq. (11) as shown in Fig. (1). For example for p~1, the upper

bracket in Fig. (1) (representing the error bound) can only cover

two states instead of three, and so the sum in Eq. (11) will now sum

from 0 to 1, instead of {1 to 1, for this case.

An optimal bound
Based on this new definition then for all cases we need to add 1

to the lower end of the summation giving

E~1{
1{cos2p2td

22t

X2p{1

‘~{2p{1z1

1

1{cos2p(d{‘=2t)
ð13Þ

and if we define a~2td and rearrange the cosine term in the

summation we find

Figure 1. Defining the limits of summation for the phase
estimation error. For the cases p~1,2,3, we show the measurements
which are accepted as lying within the required distance of w, shown by
the vertical arrow, which define the limits of summation used in Eq. (13).
doi:10.1371/journal.pone.0019663.g001
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E~1{
1{cos2pa

22tz1

X2p{1

‘~{2p{1z1

csc2 p

2t
(a{‘): ð14Þ

Next, we demonstrate that the right hand side of Eq. (14) takes

its maximum value at a~
1

2
. Since we know 0ƒav1, and since

we expect the maximum value of E~E(a,t,p) to lie about midway

between the two nearest states to generate the largest error, that is

at a~1=2, we will substitute a~
1

2
zD, where D%

1

2
. To

maximize E we need to minimize

cos2p
1

2
zD

� � X2p{1

‘~{2p{1z1

csc2 p

2t

1

2
{‘zD

� �
, ð15Þ

as a function of D. Expanding to quadratic order with a Taylor

series, we seek to minimize

1{p2D2zO(D4)
� �

c0zc1Dzc2D
2zc3D

3zO(D4)
� �

, ð16Þ

where ci are the coefficients of the Taylor expansion of cosecant2

in D. We find by the odd symmetry of the cotangent about ‘~
1

2
that

c1~
2p

2t

X2p{1

‘~{2p{1z1

cot
p

2t
(
1

2
{‘) csc2 p

2t
(
1

2
{‘)~0, ð17Þ

and so we just need to minimize

c0z(c2{c0p2)D2zO(D3): ð18Þ

Differentiating, we see we have an extremum at D~0, and

therefore E(a,t,p) has a maximum at a~1=2.

Substituting a~
1

2
we obtain

Eƒ1{
2

22t

X2p{1

‘~{2p{1z1

1

1{cos
2p

2t
(
1

2
{‘)

: ð19Þ

We note that the summation is symmetrical about ‘~1=2, and

substituting t~pzs, we obtain for our final result

E(s,p)~1{
1

22(pzs){2

X2p{1

‘~1

1

1{cos
p(2‘{1)

2(pzs)

: ð20Þ

That is, given a desired accuracy of s bits, then if we add p more

bits, we have a probability of success given by 1{E, of obtaining a

measurement to at least s bits of accuracy. Thus we have

succeeded in deriving a best possible bound for the failure rate

E~E(s,p).

Special Cases
Numerical calculations show that E(t,p) quickly approaches its

asymptotic value as t??, and this limit gives a fairly accurate

upper bound for E, for t greater than about 10 qubits. Using

cosx§1{
x2

2
which is valid for all x, and is accurate for

x~O(1=2t) as t??,

Eƒ1{
4

22t

X2p{1

‘~1

1

1{(1{
1

2
(

p

2t
(2‘{1))2)

~1{
8

p2

X2p{1

‘~1

1

(2‘{1)2

ð21Þ

An exact form for this can be found in terms of the trigamma

function, being a special case of the polygamma function as shown

in Abramowitz and Stegun [6], Eq. 6.4.5:

Eƒ
2

p2
y’

1z2p

2

� �
ð22Þ

where y’(z)~
dy

dz
is the trigamma function, y(z)~

C’(z)

C(z)
is the

digamma function, and C(z)~

ð?
0

tz{1e{tdt is the standard

gamma function.

Now considering the p?? limit, which also includes the t??
limit because t~pzs, we can find an asymptotic form in the limit

of large p also from [6], Eq. 6.4.12, namely

E~
4

p2
2{p, ð23Þ

which shows that the error rate drops off exponentially with p
extra qubits. The formula Eq. (23) can be re-arranged to give

p?~qlog2

2
ffiffiffi
2
p

p2E
r ð24Þ

which can be compared with the previous approximate formula

shown in Eq. (1).

We have checked the new error formula through simulations,

by running the phase estimation algorithm on a 2-dimensional

rotation matrix, and undertaking a numerical search for the

rotation angle that maximizes the error E, which has confirmed

Eq. (20) to six decimal places.

Discussion

An exact formula is derived for the probability of error in the

quantum phase estimation procedure, as shown in Eq. (20). That

is, to calculate w accurate to a required s bits with a given

probability of success 1{E we add p extra qubits, where p is given

by Eq. (20). If we have a large number of qubits then we can use

Eq. (22) valid at the t?? limit. In the p?? limit the asymptote

is found as a simple exponential form Eq. (23).

The exact formula avoids overestimating the number of qubits

actually required in order to achieve a given reliability for phase

estimation and we have also found this formula to be useful in

confirming the operation of classical simulators of the phase

estimation procedure.
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