$h \quad \log h^{-1} \quad \log h^{-1}$
$-99 \quad 0100.5,0336$
$1.00503,36$
$\log \log$

1 :010 $0^{3}: 4$
log 4
Probability of ultimate survival of mutations with different favourable selective intensities
$.98 \quad 02020,0^{2} 8^{01}$
0050219
01008,47
$1.0205 \frac{4.44}{5}$
$.96 \quad 04082$, Hiss
1.03672.42
$93 \quad .975^{2} 9.06^{93}$
$-90 \quad 10536.0516 \quad 1.05360,22$
.0203408
03606.61
.0522178
$85 \quad 1625190$
1.08346 .00
$.08015,97$
$.75 \quad-28738.10$
1.15072 .80
-1447294
$.65 \quad .43078,24$
$1.23080,80$

- 20767,08
-55 -597\$3,70
1.32852 .67
-28407.06
$.45 \quad 79850,77 \quad 1 \cdot 45183.22$
$-37281,62$
$351.04982,22$
1.6.15.11.11
$25^{\circ} \quad 1 \cdot 38629.44$
1.84839.15
-20 1.60943.79
1.01179 .74

47940,77
67159649
2.18164 .45
$-69902,67$
.161 .8325814
.08. $2: 52572.86$
$2.74535,72$
-78009,71.
$1.09991,11$
$.04 \quad 3 \cdot 21887,58$
3 . 35299.56
$1.20985,41$
$.02 \quad 3.91202 .30$
3.9.9186.01
$1.38425,73$
-01 4.6051702
4.651h8,71
1.5372143

wher y is smale

$$
\begin{aligned}
& i=\frac{1}{2} q+\frac{5}{24} q^{2}+\frac{1}{8} q^{3}+\frac{151}{2560} q^{6}+\frac{19}{268} y^{5}+\frac{14087}{36288 \theta^{6}} \\
& q=2 i-\frac{5}{3} i^{7}+\frac{7}{9} i^{3}-\frac{13 i}{540} i^{6}+\frac{19}{376} i^{5}
\end{aligned}
$$

Probobilit 1 whtirat survival 1 mutolion with diffomer feovale solectivi intennities.

