December 5, 1942

Desr Dr Discombe.

Yes, as you thought, your problem is quite a straightforward one, though a little confusing owing to the factors which enter into it, e.g., the number of leucocytes is estimated to be n, but this is based on a count, not of n but of a cells observed in the massocotytemeter. The variance of n is a, so the variance of n is

$$\frac{n^2}{n^2} \times a = \frac{n^2}{n^2}$$

and the variance of log \underline{n} is simply $\frac{1}{n}$.

If p is the proportion of a particular kind of leucocyte observed im a sample of b, then the sampling variance of p is, as is well known,

so the sampling variance of log p is

$$\frac{1-p}{pb}$$
.

As \underline{n} and \underline{p} have been estimated independently, we may now say that the sampling variance of the log of the absolute estimate up is

$$\frac{1}{a} + \frac{1-p}{pb}$$
.

ing Multiply/this by the square of the estimated np will give the sampling variance of this estimate.

I have set the above out in full, as I thought you would prefer to see the detailed working to my sending you a dogmatic formula, which has the disadvantage that its symbolism may be misunderstood.

Yours sincerely