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Dealing With Zero Flows in Solving the Non-Linear Equations

for Water Distribution Systems

Sylvan Elhay∗ Angus R. Simpson†, M.ASCE

Abstract

Three issues concerning the iterative solution of the non-linear equations governing the flows

and heads in a water distribution system network are considered. Zero flows cause a computation

failure (division by zero) when the Global Gradient Algorithm of Todini and Pilati is used to

solve for the steady–state of a system in which the head loss is modeled by the Hazen-Williams

formula. We propose a regularization technique which overcomes this failure as a solution to

this first issue. The second issue relates to zero flows in the Darcy-Weisbach formulation. We

explain for the first time why zero flows do not lead to a division by zero where the head loss is

modeled by the Darcy-Weisbach formula. We show how to handle the computation appropriately

where there is laminar flow (the only instance in which zero flows may occur). However, as is

shown, a significant loss of accuracy can result if the Jacobian matrix, necessary for the solution

process, becomes poorly conditioned and so it is recommended that the regularization technique

be used for the Darcy-Weisbach case as well. Only a modest extra computational cost is incurred

when the technique is applied. The third issue relates to a new convergence stopping criterion for

the iterative process based on the infinity-norm of the vector of nodal head differences between

one iteration and the next. This test is recommended because it has a more natural physical

interpretation than the relative discharge stopping criterion that is currently used in standard

software packages such as EPANET. In addition, we recommend that the infinity norms of the

residuals are checked once iteration has been stopped. The residuals test ensures that inaccurate

solutions are not accepted.

∗School of Computer Science, University of Adelaide, South Australia, 5005.
†School of Civil, Environmental and Mining Engineering, University of Adelaide, South Australia, 5005.
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INTRODUCTION

Water distribution systems analysis involves determination of flow rates and pressures in a network.

The equations governing the flows and heads in a water distribution system are non-linear and often

a Newton iterative solution algorithm is used in which a linearized set of equations is solved at each

iteration. Since the advent of computers a number of papers have been written describing methods

for solving the pipe network equations in a water distribution system (Martin & Peters 1963, Shamir

& Howard 1968, Epp & Fowler 1970, Wood & Charles 1972, Wood & Rayes 1981, Ormsbee & Wood

1986, Nielsen 1989, Boulos & Wood 1990). Jeppson (1976) also detailed a number of solution methods

in his book. The most commonly used formulation models the flow and head equations in terms of the

unknown flows and unknown nodal heads. For this formulation Todini & Pilati (1988) developed a fast

algorithm consisting of a two-step process where the heads and then flows are solved for, consecutively,

at each iterative step during the solution procedure.

We consider three related issues which are associated with the solution of pipe network models.

The first issue concerns the difficulty that arises in the solution method proposed by Todini & Pilati

(1988), later called the Global Gradient Algorithm (GGA) (Todini 2006), when some of the pipes in a

network, in which the head losses are modeled by the Hazen-Williams formula, have zero flows. When

that happens a key matrix in the method becomes singular and prevents further computation. To

overcome this difficulty we propose a new regularization method that is a variation of the standard

GGA and allows for zero flows. Zero flows occur relatively commonly in networks especially at dead

end branched sections that have zero demands. This is particularly true for “all pipes” models that

include the offtakes to residences. If an extended period simulation is run to model water usage during

the day then many of these offtakes will have zero demands and, hence, zero flows. Results from case

study networks to demonstrate the effectiveness of the new algorithm are presented.

The second issue we address concerns the GGA applied to networks in which the head loss is

modeled by the Darcy-Weisbach formula. We give a computational formula for the Jacobian which

recognizes that the head loss for laminar flow is proportional to velocity, rather than the square of
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velocity as in turbulent flow. Thus, the method we propose avoids the failure that would otherwise

occur with zero flows for this case.

The third issue discussed relates to the stopping test for convergence that is applied in the iterative

process used to solve the non–linear equations. A test based on the infinity norm of the vector of

nodal head differences between one iteration and the next is recommended because it has a more

natural physical interpretation than the relative discharge stopping criterion that is currently used in

standard software packages such as EPANET. In addition, we recommend that the infinity norms of

the residuals are checked once iteration has been stopped. Any solution for which the residual is large

can be rejected as inaccurate.

THE NETWORK EQUATIONS

Hazen-Williams head loss equation

The relation between the heads at two ends, node i and node k, of a pipe pj and the flow in the pipe

is defined, for the Hazen-Williams head loss model using SI units, by Hi −Hk = rjQj|Qj |n−1 where

n = 1.852 and rj = 10.670Lj/(C
n
j D

4.871
j ), where the pipe length is Lj, Hazen-Williams coefficient is

Cj and diameter is Dj .

Denote the vector of flows by q = (Q1, Q2, . . . , Qnp
)T , where np is the number of pipes. We define

a square, diagonal matrix G which, for the Hazen-Williams formulation, has elements

[G]jj = rj |Qj|n−1, j = 1, 2, . . . , np, (1)

Note that rj in (1) does not depend on the flow Qj.

The flow and head equations

The energy and continuity equations describing the flows and nodal heads in a water distribution

system are

Gq −A1h−A2eℓ = 0, (2)
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−AT
1 q − dm = 0, (3)

where A1 is the np × nj unknown head node incidence matrix, nj is the number of unknown head

nodes, h = (H1, H2, . . . , Hnj
)T is the vector of unknown heads, A2 is the np × nf fixed head node

incidence matrix, nf is the number of fixed head nodes, eℓ is the nf–dimension vector of fixed head

node elevations and dm is the nj–dimension vector of nodal demands.

Equations (2) and (3) can be written more conveniently in matrix form as

f (x) =





G −A1

−AT
1 O









q

h



−





A2eℓ

dm



 = 0, (4)

where x = (qT ,hT )T is the np + nj dimensional, real vector of unknown flows and heads in the

system, and O is an nj × nj zero matrix. Todini & Pilati (1988) presented the GGA to solve (4) for

the Hazen-Williams head loss formulation. The matrix A1 is constant but G usually depends on the

unknown pipe flows in q and this makes the system in (4) non–linear.

Solving the non–linear pipe network equations

Systems of non–linear equations f(x) = 0 in (4) are frequently solved by Newton’s iterative

method J(x(m))(x(m+1) − x(m)) = −f(x(m)), m = 0, 1, 2, . . . , with x(0) prescribed and J(x) the

Jacobian of f(x), which in the case of (4) can be written

J =





F −A1

−AT
1 O



 . (5)

For the Hazen-Williams head loss model this matrix has the form

F = nG = 1.852G, (6)

with the diagonal elements of G given by (1).

AN ALTERNATIVE CONVERGENCE CRITERION

We now propose (i) the use of a new test based on the infinity norm of the nodal head differences

from one iteration to the next to stop the iteration process and (ii) that the equation residuals be
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examined when iteration has ceased to avoid accepting an inaccurate solution. Define the infinity–

norm of the vector x = (x1, x2, . . . , xk)
T by ‖x‖∞ = max1≤j≤k |xj |. In the proposed test one would

stop iterating when the infinity norm of the vector of nodal heads differences satisfies

φ∞(h(m))
def
=
∥

∥

∥h
(m) − h(m−1)

∥

∥

∥

∞
= max

i

∣

∣

∣H
(m)
i −H

(m−1)
i

∣

∣

∣ ≤ ǫstop, (7)

where ǫstop is a preset stopping parameter.

Once the iterative solution process has been stopped by (7), the residuals of the computed solution

for equation (4) should be checked. Residuals that are too large indicate an inaccurate solution. The

energy residual

ρe(q,h) = Gq −A1h−A2eℓ,

and the continuity residual

ρc(q,h) = AT
1 q + dm

will both be zero at the exact solution. A computed solution which satisfies (7) should be considered

unacceptable if

‖ρe(q,h)‖∞ > u1ǫstop or ‖ρc(q,h)‖∞ > u2ǫmach, (8)

where ǫmach is defined in (20) and where u1 = 1 and u2 = 100 have been found by the authors to be

suitable choices for networks with up to 10,000 pipes. Rejecting any solution for which one or both

of (8) hold safeguards against accepting an inaccurate solution. It should be noted, however, that a

small residual does not guarantee an accurate solution.

By comparison with (7) the EPANET program (the widely used open source network modeling

package developed by Rossman (2000)) is designed to stop iterating when the relative flow is smaller

than a preset stopping parameter, δstop,

φE(q(m))
def
=

∑np

k=1

∣

∣

∣Q
(m)
k −Q

(m−1)
k

∣

∣

∣

∑np

k=1

∣

∣Q(m)
∣

∣

≤ δstop. (9)

Modelers using an iterative procedure are sometimes tempted, where the iteration process has signaled

a failure to converge, to relax the stopping test by increasing the stopping tolerance (e.g. from the

EPANET minimum value of δstop = 10−5 to, say, δstop = 10−2). This is a dangerous practice and

without the residual check (8) can lead to an inaccurate solution being accepted as satisfactory.
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THE GLOBAL GRADIENT ALGORITHM

The Newton system to solve for the heads and flows (Simpson & Elhay 2010) is





F −A1

−AT
1 O









q(m+1)

h(m+1)



 =





F −G o

oT O









q(m)

h(m)



+





A2eℓ

dm



 , (10)

where o is an np × nj zero matrix. The (1,1) block of the Jacobian here should be written F (m) to

indicate that it depends on q(m) and so changes every iteration but, in the interests of clarity, we omit

the superscript except where necessary.

Denote the nj–square matrix V = AT
1 F

−1A1. Provided F and V are invertible, the two stage

GGA equations are

h(m+1) = −V −1
[

dm +AT
1 F

−1
(

(F −G)q(m) +A2eℓ

)]

(11)

and

q(m+1) = q(m) + F−1
(

A1h
(m+1) −Gq(m) +A2eℓ

)

. (12)

A NEW REGULARIZATION METHOD FOR THE CASE OF ZERO FLOWS

Consider the case of a network in which the head loss is modeled by the Hazen-Williams formula.

If, as a result of zero flows, any of the diagonal elements of F given by (6) become zero then neither

the diagonal matrix F−1 (with terms 1/(nrj|Qj |n−1)) nor the matrix V = AT
1 F

−1A1 exist. When

the steady state solution being sought has one or more zero flows the method fails catastrophically.

We now introduce a regularization technique for the GGA which allows computation to continue

even when some zero flows cause the diagonal elements of the F matrix to become zero (provided the

Jacobian remains invertible - see Appendix A for a discussion of the conditions for the invertibility of

the Jacobian when there are zero flows). The regularization is applied at each iteration by identifying

those elements on the diagonal of the F matrix that present a difficulty and then defining a corrective

element which counteracts the problem.
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Define a np–square matrix

T = diag
{

t1, t2, . . . , tnp

}

where

{

ti = 0 if Qi 6= 0,

ti > 0 if Qi = 0.
(13)

(Small non-zero flows can also cause problems. These are discussed later.) The iterative scheme (10)

seeks the exact q and h which satisfy the equation





F −A1

−AT
1 O









q

h



 =





F −G o

oT O









q

h



+





A2eℓ

dm



 . (14)

Adding the term





T o

oT O









q

h



 to both sides of equation (14) gives





F + T −A1

−AT
1 O









q

h



 =





F −G+ T o

oT O









q

h



+





A2eℓ

dm



 , (15)

which has the same solution as (14). This suggests the iteration





F + T −A1

−AT
1 O









q(m+1)

h(m+1)



 =





F −G+ T o

oT O









q(m)

h(m)



+





A2eℓ

dm



 , (16)

which leads to the following two-stage iterative scheme:

h(m+1) = −W−1
(

dm +AT
1 (F + T )−1

[

(F −G+ T ) q(m) +A2eℓ

])

, (17)

where W = AT
1 (F + T )−1A1, and

q(m+1) = (F + T )−1
(

A1h
(m+1) +

[

(F −G+ T )q(m) +A2eℓ

])

. (18)

Provided J in (5) remains invertible, relations (17) and (18) can be used even if some of the flows are

zero because, with the elements of the diagonal matrix T chosen as in (13), the submatrix F + T is

always invertible. We now propose a bound minimization strategy for choosing the elements of T .

An important number in the solution of the system of linear equations Ax = b is the 2–norm

condition number of A, cond2(A) = ‖A‖2
∥

∥A−1
∥

∥

2
where ‖·‖2 is the matrix 2–norm (see (B-1) in

Appendix B). A useful rule of thumb is that one decimal digit of reliability in the solution of the well–

scaled system of equations Ax = b is lost for every power of ten increase in the condition number. The

computed solutions of matrix systems with large condition numbers are unreliable. Thus, we should
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choose T so that the condition of the matrix W , in (17), is kept small relative to the arithmetic

precision.

In Appendix B we show that

cond2

(

AT
1 (F + T )−1A1

)

≤ cond2(F + T )cond2(A1)
2. (19)

The best we can achieve therefore is to limit the bound on cond2

(

AT
1 (F + T )−1A1

)

at each iteration

by choosing T to limit the size of cond2(F + T ).

For the special case of the diagonal matrix F+T , which has only positive elements on the diagonal,

the 2–norm condition number is given by the ratio of the largest to the smallest diagonal element,

cond2(F + T ) =
maxj ([F ]jj + [T ]jj)

minj ([F ]jj + [T ]jj)
.

The algorithm we discuss below, which chooses the elements of the regularization matrix T to limit

the size of cond2(F + T ) to some predetermined value, is intended to clearly illustrate the method

rather than to compute T efficiently.

Before starting the first iteration, we select a threshold value, κ, above which we will not allow

the condition number cond2(F
(m) + T (m)) to grow throughout the iteration process (e.g. κ = 1000).

Suppose that for the m–th iteration F (m) = diag
{

σ
(m)
1 , σ

(m)
2 , . . . , σ

(m)
np

}

, σ
(m)
j ≥ 0. Assume, for

simplicity, that the σ
(m)
j are in non-decreasing order along the main diagonal from top to bottom.

This makes σ
(m)
1 = σ

(m)
max and σ

(m)
np = σ

(m)
min.

The algorithm is:

(1) Set all the elements of the regularization matrix T (m) to zero.

(2) At the m-th iteration identify the minimum diagonal element of the F + T matrix σ
(m)
min. (The

first time through σ
(m)
min = σ

(m)
np .)

(3) If the condition number for the matrix, σ
(m)
max/σ

(m)
min, is smaller than κ, no regularization is

necessary. Exit. Otherwise choose the regularization parameter t
(m)
np such that

σ
(m)
max

σ
(m)
np + t

(m)
np

= κ.
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This ensures that σ
(m)
np does not cause the condition of the F + T matrix at the m–th iteration

to be greater than κ. Thus,

t(m)
np

=
σ
(m)
max

κ
− σ(m)

np

and the regularized value of the last element in the matrix is now

σ(m)
np

+ t(m)
np

=
σ
(m)
max

κ
.

Repeat steps (2) and (3) with σ
(m)
min set in turn to σ

(m)
np−1, σ

(m)
np−2, . . . until exit occurs at step (3). If

more than nj of the σ
(m)
j values are zero then the Jacobian is singular and the system has no unique

solution. Cease execution.

This algorithm can be described more succinctly by

σ
(m)
j = max

(

σ
(m)
j ,

σ
(m)
max

κ

)

, j = 1, 2, . . . , np,

but, of course, the number of σ
(m)
j which are too small still need to be counted.

The regularization method of (17) and (18) is no longer a true Newton scheme. However, we

have found the rate of convergence to be close to quadratic when κ = 1000 was used on the example

networks we tested.

The strategy of replacing a zero diagonal element of F by a small non-zero number to avoid

singularity (thereby changing cond2(F ) from a value of ∞ to a large finite number) actually solves

the wrong set of equations while the proposed regularization method avoids this.

EXAMPLE NETWORKS

All the calculations in this paper were performed using two programs: one written by the authors

in Matlab (Mathworks 2008), and the other the package EPANET V2.00.12. Both codes use IEEE

standard double precision arithmetic with precision, measured by machine epsilon (Forsythe & Moler

1967), of

ǫmach ≈ 2× 10−16. (20)

The EPANET program was (slightly) modified and verified as described in Simpson & Elhay (2010).
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Example 1 We consider the symmetric network shown in Figure 1. It has eleven pipes, seven junc-

tions at which the head is unknown and one fixed head node reservoir at 40 m elevation and all other

nodes are at zero elevation. All pipes have diameters, Dj, of 250 mm and lengths, Lj of 1000 m. Node

8 has a demand of 80 L/s and all other nodes have zero demands. In the steady state this network

has zero flow in Pipes 2, 6, 9 because of symmetry.

The head loss is modeled by the Hazen-Williams equation and each pipe has a Hazen-Williams

coefficient Cj = 120. The computation was set to use the stopping test defined by (7). The iteration

was run until φ∞(h(m)) < 10−10. We use a smaller than practical tolerance in order to better illustrate

the points discussed.

When the GGA of (11) and (12) is applied to this network the iterates trend towards the solution

and the flows in Pipes 2, 6, 9 approach zero. As this happens, the condition number of the matrix F

grows larger (the matrix approaches singularity more and more closely), the matrix V = AT
1 F

−1A1

becomes more and more badly conditioned and the solution computed with (11) becomes less and less

reliable. This in turn takes the iterates away from the solution and as a result the flows which are

near zero are replaced by larger flows which improve the condition of F . Thus, as shown clearly in

Column 2 of Table 1, the iterates move, alternately, towards and away from the solution but never

converge to it. The last two columns of Table 1 show the condition numbers for the matrices F and

V . At each iteration the accuracy achieved in the heads is entirely consistent, for IEEE standard

double precision arithmetic (20), with the size of the condition number of V .

Now, using instead the regularized method of (17) and (18) and choosing T so that the condition

of F + T does not exceed 1000 we get rapid convergence as shown in Table 2. Even though the

condition of F becomes very large and eventually may become infinite, the method finds the solution

rapidly because the matrix F + T is guaranteed to be well conditioned by the appropriate choice of

T . The order of convergence of the regularized method appears to be close to quadratic. Limiting the

growth of cond2(F +T ) constrains cond2(W ) at convergence to 1.3× 104. The energy and continuity

residuals for the regularized solution are, respectively, 1 × 10−13 m, and 5 × 10−14 m3/s while those

of the EPANET solution are larger at 5 × 10−13 m and 2 × 10−8 m3/s. We therefore conclude that
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the Matlab solution is the more accurate.

Computing the steady state solution directly for the network in Figure 1 using the full matrix

formulation of the Newton method (10), i.e. solving the matrix equation directly rather than using

the GGA, produces quadratic convergence to the correct solution because the Jacobian matrix in

this particular case is invertible even when there are zero flows in Pipes 2, 6, 9. Table 3 shows this

case. Note that the full matrix formulation and the GGA give almost identical results when both

the matrices F and V are well conditioned. Note also that when using the full Newton system as it

stands we invert an 18× 18 (np + nj × np + nj) matrix in contrast to the GGA in which the matrix

to be inverted has dimension 7× 7 (nj × nj).

Applied to the same problem EPANET V2.00.12, modified to allow a stopping tolerance of δstop =

10−10, as defined in (9) fails to converge after 71 iterations when the EPANET parameter controlling

the maximum number of iterations allowed is set to 50. Although the EPANET stopping test (9) differs

from that used by our implementation the failure of both the Matlab code without regularization and

the EPANET code to find a solution to the required accuracy illustrates the problem we wish to

address. It can be seen from the fifth column of Table 1 that using a stopping tolerance of 10−5, the

smallest allowed in EPANET, the program signals convergence after four iterations. The energy and

continuity residuals for this EPANET solution are well within practical engineering requirements.

The steady-state flows and heads/pressure heads (all elevations for this network are zero) for this

case are shown in Table 4.

Example 2 We also considered a network based on the network shown in Figure 1 but with pipes

5 and 8 removed. Pipe 6 then has zero flow because Node 5 has zero demand. Dead–end pipe

configurations such as this are of interest because they occur frequently in the modeling of water

distribution systems. The results for this example are similar to the results for the previous example:

the unregularized method fails because of the ill–condition of V and the regularized method, with

parameters chosen as in the previous example, rapidly finds the solution.

ZERO FLOWS IN SYSTEMS WITH THE DARCY-WEISBACH HEAD LOSS MODEL
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In this section we consider the second issue of the effect of zero flows when the GGA is applied to

networks in which the Darcy-Weisbach head loss model is used.

Simpson & Elhay (2010) give formulae for the diagonal elements of the G and F matrices when

the Darcy-Weisbach head loss model is used in the GGA of (11) and (12). From those formulae it is

immediately clear that zero flows can occur only when the Reynolds number lies in the laminar flow

range. However, an important observation is that, in this range, the corresponding term on diagonal

of the matrix F is actually a constant value independent of Qj.

To see this consider the case of a pipe in which the head loss is modeled by the Darcy-Weisbach

formula. The head loss for this pipe is given, for friction factor f , by

hf = f
LV 2

2gD
= f

LQ2

2gDA2
= f

8LQ2

π2gD5
. (21)

Now, for laminar flow, with R < 2000,

f =
64

R =
64ν

V D
=

16πνD

Q
(22)

and so, substituting (22) into (21) gives the head loss for laminar flow as

hL =

(

128ν

πg

)

L

D4
Q = rLQ (23)

where the laminar flow resistance factor

rL =

(

128ν

πg

)

L

D4
. (24)

is seen to be independent of the flow Q. Thus, it is important to use (23) rather than (21) when

dealing with laminar flows which are very small or zero.

In the computation of the Jacobian elements for pipes in which the flow is laminar, we are required

to differentiate terms which are of the form rLQ with respect to Q. Hence, the term rL is exactly the

term on the diagonal of the matrix F for those pipes. It follows that when the Darcy-Weisbach formula,

(23), is used to model head loss in a network the matrix F cannot be singular as a result of flows

being zero. Thus, the GGA applied to this system will not fail if the correct Darcy-Weisbach formula,

(23), is used. But in practice it may still be that case that, for certain networks, the condition of the

matrix F , and so the condition of the whole Jacobian, is too large for the precision of the arithmetic
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engine that is being used. In such a case the regularization strategy we have proposed can still be

used to avoid a degradation of accuracy in the calculation.

To make the point that the matrix F can be ill–conditioned even though no flows are zero, we

show that realistic ranges of network parameters can lead to an ill–conditioned F . Recall that the

condition of a diagonal matrix with positive elements is the ratio of its largest to its smallest element.

Suppose a network with head loss modeled by the Darcy-Weisbach formula contains two pipes with

the parameters shown in Table 5. Suppose also that the water in these pipes has kinematic viscosity

ν = 1.01 × 10−6 (m2/s) and that the gravitational constant g is 9.81m/s2. If the two pipes under

consideration have the parameters shown in Columns 2 to 7, of Table 5 then the associated elements

on the diagonal of the F matrix for the two pipes are as shown in the eighth column of Table 5. The

condition of the corresponding matrix F is therefore at least 4.1× 104/2.7× 10−7 ≈ 1.5× 1011. The

solution to such a system in IEEE Standard Single Precision arithmetic would have no reliable digits

in it while in IEEE Standard Double Precision it would have lost at least 11 digits of reliability. Thus,

we recommend that the regularization algorithm be included in the implementation of the GGA for

the Darcy-Weisbach head loss formula to ensure it is robust since the additional (overhead) cost of

computation is small.

CONCLUSIONS

This paper considers three issues concerning the iterative solution of the non-linear equations

governing the flows and heads in a water distribution system network.

The first issue relates to dealing with zero flows in the iterative solution process for a network

in which the Hazen-Williams head loss model is used. A regularization procedure for the GGA has

been proposed in which we add a diagonal matrix T with carefully chosen elements into the Jacobian

matrix (and to the right hand side) when the matrix to be inverted becomes ill–conditioned. This

prevents failure of the solution process if a flow in the network is ultimately zero or near-zero. The

condition number of the Jacobian matrix is controlled by the selection of T so that the matrix

W = AT
1 (F + T )−1A1 always remains invertible when the Jacobian is invertible. The speed of

Page 13

Journal of Hydraulic Engineering. Submitted October 27, 2009; accepted February 23, 2011; 
     posted ahead of print February 25, 2011. doi:10.1061/(ASCE)HY.1943-7900.0000411

Copyright 2011 by the American Society of Civil Engineers



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

convergence of the regularization process is relatively insensitive to the selection of T for all the

examples tested by the authors. Examples which illustrate the application of the method have been

given. The regularization procedure leads to the correct solution for a network with zero flows within

a relatively small number of iterations.

The second issue concerns the fact that where the Darcy-Weisbach head loss model is used, zero

flows do not cause the key matrices of the GGA to become singular if the laminar flow case is

correctly handled. This is the second key finding of the paper. We nevertheless recommend that the

regularization procedure of (17) and (18) be implemented for the solution of Darcy-Weisbach head

loss networks to avoid loss of accuracy where the F matrix becomes ill–conditioned.

The third issue introduced concerns (i) a new convergence stopping criterion based on the infinity-

norm of the nodal heads differences vector from one iteration to the next and (ii) testing of the

norms of the energy and continuity residuals vectors after iteration has ceased. The new stopping

criterion is recommended because the infinity-norm test is easier to interpret physically than the

relative discharge stopping criterion that is currently used in EPANET. The residuals test of (ii)

guards against the acceptance of an inaccurate solution.
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APPENDIX A. CONDITIONS FOR THE INVERTIBILITY OF THE JACOBIAN

WITH SOME ZERO FLOWS

The Jacobian J of (5) for the Hazen-Williams head loss formulation may be invertible even though

the matrix F in (6) is singular. We briefly review here the theorem (Benzi, Golub & Liesen 2005)

which underpins the discussion of how zero flows in the system affect the invertibility of the Jacobian

matrix.

Provided that F is invertible, the matrix J of (5) admits the factoring

J =





F −A1

−AT
1 O



 =





Inp
o

AT
1 F

−1 Inj









F o

oT S









Inp
F−1A1

oT Inj





where S = −AT
1 F

−1A1, and Im is an m–square identity. Thus, det(J) = det(F ) det(S) and so

provided F is invertible then J is invertible if and only if S is invertible.

Recall that a matrix M is said to be






Positive definite
Non–negative definite

Negative definite







if xTMx







> 0
≥ 0
< 0







for all x 6= 0.

It follows from these definitions that positive definite and negative definite matrices are invertible and

that all the diagonal elements of a positive definite matrix are positive. It also follows that, if all the

diagonal elements of F are positive, then S = −AT
1 F

−1A1 is negative definite. From (1) we see that

all the elements on the diagonal of F are non-negative. Suppose for a moment that none of the flows

is zero. Then all the elements on the diagonal of F are positive and so F is invertible. Now, the

unknown head node incidence matrix A1 has full column rank (Welsh 1976) and, since F is positive
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definite then S is symmetric, negative definite and so it too is invertible. Thus, if F is invertible then

J is invertible.

Suppose now that we allow zero flows. If one or more of the flows is zero then neither F−1 nor

S exist and relations (11) and (12) cannot be used. But the singularity of the matrix F does not, of

itself, imply the singularity of the Jacobian matrix (5). Certainly, if more than nj of the flows are

zero then the Jacobian J is necessarily singular. However, if fewer than nj of flows are zero then the

Jacobian matrix may be invertible even though F is singular.

Denote by ker(X) the null space of the matrix X: it is the space spanned by the set of all vectors

y such that Xy = 0.

Theorem 1 (Benzi et al. 2005) Assume that the diagonal matrix F is non–negative definite and that

A1 has full column rank. A necessary and sufficient condition for the matrix J of (5) to be invertible

is ker(F ) ∩ ker(AT
1 ) = {0}.

The intersection of the two nullspaces ker(F ) and ker(AT
1 ) is characterized by the nullspace of the

(np + nj) × np matrix ZT = (F T A1 ) . If ker(Z) is empty then the Jacobian matrix is invertible.

If more than nj of the flows, and hence the diagonal elements of F , are zero then the nullspace of Z

cannot be empty and J is necessarily singular. However, the nullspace of Z may be non-empty (and

hence J may be singular) for some particular combinations of incidence matrix A1 and zero flows

even though there are fewer than nj zero flows.

APPENDIX B. AN UPPER BOUND ON THE CONDITION OF AT
1 (F + T )−1A1

Before proving the bound given in (19) we briefly review some theory which is necessary for the

sequel. For a detailed treatment of the theory see Golub & Van Loan (1989).

Let the full column–rank matrix A ∈ R
m×k, m > k, have singular value decomposition (SVD)

A = USV T , U ∈ R
m×m, orthogonal, V ∈ R

k×k, orthogonal and S = diag {σ1, σ2, . . . , σk} ∈ R
m×k,

σ1 ≥ σ2 ≥ . . . ≥ σk > 0. The σi are called the singular values of A. Denote by σmin(A) the smallest

singular value of A and by σmax(A) the largest singular value of A.
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The matrix 2–norm, ‖A‖2, induced by the vector 2–norm, ‖x‖2 =
√
xTx, is defined by

‖A‖2
def
= sup

x6=o

‖Ax‖2
‖x‖2

= max
‖x‖

2
=1

‖Ax‖2 = σ1(A) = σmax(A). (B-1)

From this definition it follows that
∥

∥A−1
∥

∥

2
= 1/σmin. It also holds that

σmin(A) = σk(A) = inf
x6=o

‖Ax‖2
‖x‖2

= min
‖x‖

2
=1

‖Ax‖2 . (B-2)

For square, invertible matrices we define cond2(A)
def
= ‖A‖2

∥

∥A−1
∥

∥

2
and, in view of (B-1), we can

write

cond2(A) = σ1(A)/σk(A) = σmax(A)/σmin(A). (B-3)

In fact, (B-3) is used to extend the definition of condition number to apply to non–square matrices

(where standard inverses do not exist). Using the SVD of A we can write ATA = V STUTUSV T =

V STSV T and immediately cond2(A
TA) = (σmax/σmin)

2.

Let us now return to the bound shown in (19). Since F + T has only positive elements on

the diagonal, there exists a matrix, M , also with positive elements on the diagonal and such that

M2 = (F + T )−1. Hence, AT
1 (F + T )−1A1 = (MA1)

T
MA1 and so cond

(

(MA1)
T
MA1

)

=

cond2(MA1)
2 so let us consider the matrix MA1 in isolation.

Lemma 1 (Kautsky) Suppose M ∈ R
m×m and A ∈ R

m×k both have full column–rank. Then

cond2(MA) ≤ cond2(M )cond2(A).

Proof

We omit the subscripts on norms since only the 2–norm is used here.

From (B-2) we have σmin (MA) = min‖y‖=1 ‖MAy‖ . Suppose this minimum is achieved on the

vector y1, ‖y1‖ = 1, ie. σmin (MA) = ‖MAy1‖ . Also, σmin (A) = min‖y‖=1 ‖Ay‖ ≤ ‖Ay1‖ . Now,

σmin (M) = inf
y 6=o

‖My‖
‖y‖ ≤ ‖MAy1‖

‖Ay1‖
≤ σmin (MA)

σmin (A)
.

Thus,

σmin (MA) ≥ σmin (A) σmin (M) . (B-4)
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Turning to the largest singular values, we have σmax (MA) = max‖y‖=1 ‖MAy‖ . Suppose this maxi-

mum is realized with the vector y2, σmax (MA) = ‖MAy2‖ . Similarly, σmax (A) = max‖y‖=1 ‖Ay‖ ≥

‖Ay2‖ . Also,

σmax (M ) = sup
y 6=o

‖My‖
‖y‖ ≥ ‖MAy2‖

‖Ay2‖
≥ σmax (MA)

σmax (A)

from which it follows that

σmax (MA) ≤ σmax (M)σmax (A) . (B-5)

Putting together (B-4) and (B-5) we get

σmax (MA)

σmin (MA)
≤ σmax (M) σmax (A)

σmin (M) σmin (A)

which is the statement of the lemma. This completes the proof.

Thus, we see, noting that M is diagonal, that

cond2(MA)2 ≤ cond2(M)2cond2(A)2

= cond2(M
2)cond2(A)2

= cond2((F + T )−1)cond2(A)2.

In summary, we can write

cond2(A
T
1 (F + T )−1A1) ≤ cond2((F + T )−1)cond2(A1)

2.

APPENDIX C. NOMENCLATURE

A,B,C,D = arbitrary matrices

‖A‖2 = matrix 2–norm

A1 = unknown head node incidence matrix

A2 = fixed head node incidence matrix

Aj = area of pipe j

Cj = the Hazen-Williams head loss coefficient of pipe j

cond2(A) = 2–norm condition number of matrix A

Dj = diameter of pipe j
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dm = vector of nodal demands

eℓ = vector of fixed head node elevations

F = diagonal matrix (1,1) block of the full Jacobian

fj = Darcy-Weisbach friction factor for pipe j

G = diagonal matrix with elements rL or rj |Qj|n−1

GGA = Global Gradient Algorithm

g = gravitational acceleration constant

Hi = head at node i

h = (H1, H2, . . . , Hnj
)T = vector of heads

Ik = k–square identity matrix

J = Jacobian matrix

Lj = length of pipe j

M = defined by M2 = (F + T )−1

n = head loss equation exponent

nf = number of fixed–head nodes

nj = number of variable–head nodes

np = number of pipes

O = nj–square zero matrix

o = np × nj zero matrix

0 = an np–vector of zeros

pj = pipe j

Qj = flow in pipe j

q = (Q1, Q2, . . . , Qnp
)T = vector of flows

R = Reynolds number for pipe j, R = VjDj/ν

r = (r1, r2, . . . , rnp
)T = vector of resistance factors

rj = resistance factor for pipe j with turbulent flow

rL = resistance factor for pipe with laminar flow
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S = −AT
1 F

−1A1 = Schur complement for the discussion of the invertibility of the Jacobian matrix

T = diag
{

t1, t2, . . . , tnp

}

diagonal regularization matrix

U = orthogonal matrix in the singular value decomposition

u1, u2 = constants used in setting the residuals thresholds test

V = matrix for GGA (= AT
1 F

−1A1) or an orthogonal matrix in the singular value decomposition

Vj = average fluid velocity for pipe j

W = AT
1 (F + T )−1A1 = matrix used in the regularization method

X = arbitrary matrix

x =





q

h





‖x‖2 = vector 2–norm =
√
xTx

‖x‖∞ = vector ∞–norm = maxj |xj |

y = arbitrary vector

Z =





F

AT
1





δstop = EPANET stopping tolerance

ǫj = roughness height of pipe j

ǫmach = machine epsilon

ǫstop = infinity norm stopping tolerance for heads in iterative solution termination test

k = maximum threshold condition number

ν = kinematic viscosity of water

φE = EPANET stopping test measure

φ∞ = infinity–norm stopping test measure

ρc(q,h) the vector of continuity residuals

ρe(q,h) the vector of energy residuals

σi = diagonal element of matrix F

σmax = maximum diagonal element of matrix F

σmin = minimum diagonal element of matrix F
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APPENDIX D. TABLES

Table 1: The convergence data for network shown in Figure 1 with the Hazen-Williams head loss
model and no regularization ( (11) and (12)). At each iteration the accuracy achieved in the heads is
entirely consistent, for IEEE standard double precision arithmetic (20), with the size of the condition
number of V . Note that the residal norms in Columns 3 and 4 are displayed here for information but
are not necessary at each iteration. Only the residuals of the final iteration need to be examined to
exclude inaccurate solutions.

Hazen-Williams head loss model

m φ∞(h(m))
∥

∥

∥
ρ
(m)
e

∥

∥

∥

∞

∥

∥

∥
ρ
(m)
c

∥

∥

∥

∞
φE(q(m)) cond2(F

(m)) cond2(V
(m))

1 3.8e+ 001 3.3e+ 000 3.8e− 016 7.4e− 001 1.0e+ 000 3.6e+ 001

2 4.4e+ 000 2.4e− 002 6.5e− 016 5.2e− 002 2.5e+ 001 3.2e+ 002

3 2.0e− 002 2.2e− 005 1.2e− 014 1.2e− 003 3.3e+ 002 4.4e+ 003

4 1.0e− 005 3.5e− 010 3.3e− 012 2.7e− 006 5.1e+ 004 6.6e+ 005

5 3.8e− 006 6.1e− 013 1.6e− 008 1.5e− 007 5.6e+ 008 7.3e+ 009

6 2.4e− 005 1.7e− 011 6.4e− 008 1.1e− 006 1.1e+ 009 1.4e+ 010

7 2.6e− 005 1.8e− 011 2.5e− 008 1.1e− 006 2.1e+ 009 2.7e+ 010

8 2.0e− 005 1.4e− 011 1.1e− 007 8.1e− 007 4.1e+ 009 5.3e+ 010

9 4.9e− 005 9.6e− 011 2.7e− 007 2.0e− 006 7.8e+ 009 1.0e+ 011

10 7.4e− 005 2.0e− 010 9.3e− 009 3.0e− 006 1.5e+ 010 2.0e+ 011

11 9.4e− 005 5.0e− 009 1.7e− 006 8.0e− 006 2.9e+ 010 3.9e+ 011

12 5.9e− 005 4.2e− 009 3.1e− 007 6.6e− 006 5.7e+ 010 7.5e+ 011

13 6.2e− 004 2.1e− 007 9.4e− 006 4.1e− 005 1.1e+ 011 1.5e+ 012

14 6.5e− 004 1.8e− 007 1.6e− 008 4.3e− 005 2.2e+ 008 2.9e+ 009

15 8.7e− 006 1.5e− 012 8.4e− 009 3.6e− 007 4.3e+ 008 5.6e+ 009

16 1.2e− 005 2.7e− 012 4.7e− 008 4.8e− 007 8.2e+ 008 1.1e+ 010

17 8.0e− 006 2.8e− 011 8.2e− 008 4.8e− 007 1.6e+ 009 2.1e+ 010

18 1.9e− 005 7.9e− 011 1.0e− 007 1.1e− 006 3.1e+ 009 4.1e+ 010

19 8.2e− 006 6.4e− 011 4.7e− 008 6.0e− 007 9.1e+ 008 1.2e+ 010

20 2.2e− 005 1.2e− 011 4.8e− 008 9.1e− 007 1.8e+ 009 2.3e+ 010
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Table 2: The convergence data for network shown in Figure 1 with the Hazen-Williams head loss
model and the regularization method (17) and (18) applied. Rapid convergence is restored by the
regularization. Note that the residal norms in Columns 3 and 4 are displayed here for information
but are not necessary at each iteration. Only the residuals of the final iteration need to be examined
to exclude inaccurate solutions.

Hazen-Williams head loss model

m φ∞(h(m))
∥

∥

∥
ρ
(m)
e

∥

∥

∥

∞

∥

∥

∥
ρ
(m)
c

∥

∥

∥

∞
φE(q(m)) cond2(F

(m) + T (m)) cond2(W
(m))

1 3.8e+ 001 3.3e+ 000 3.8e− 016 7.4e− 001 1.0e+ 000 3.6e+ 001

2 4.4e+ 000 2.4e− 002 6.5e− 016 5.2e− 002 2.5e+ 001 3.2e+ 002

3 2.0e− 002 2.2e− 005 1.2e− 014 1.2e− 003 3.3e+ 002 4.4e+ 003

4 1.0e− 005 3.5e− 008 5.6e− 014 2.7e− 006 1.0e+ 003 1.3e+ 004

5 1.1e− 008 5.9e− 011 4.7e− 014 4.5e− 009 1.0e+ 003 1.3e+ 004

6 2.1e− 011 1.0e− 013 5.0e− 014 7.5e− 012 1.0e+ 003 1.3e+ 004

Table 3: The convergence data for the network shown in Figure 1 with the Hazen-Williams head loss
model when the full matrix system (10) is solved directly at each iteration. Note that the residal
norms in Columns 3 and 4 are displayed here for information but are not necessary at each iteration.
Only the residuals of the final iteration need to be examined to exclude inaccurate solutions.

Hazen-Williams head loss model

m φ∞(h(m))
∥

∥

∥
ρ
(m)
e

∥

∥

∥

∞

∥

∥

∥
ρ
(m)
c

∥

∥

∥

∞
φE(q(m)) cond2(J

(m))

1 3.8e+ 001 5.6e+ 001 6.2e− 002 7.4e− 001 2.9e+ 004

2 4.4e+ 000 3.3e+ 000 1.4e− 017 5.2e− 002 1.6e+ 005

3 2.0e− 002 2.4e− 002 1.7e− 017 1.2e− 003 1.6e+ 005

4 1.0e− 005 2.2e− 005 9.8e− 018 2.7e− 006 1.6e+ 005

5 1.4e− 010 3.5e− 010 1.4e− 017 4.5e− 011 1.6e+ 005

6 3.6e− 015 6.2e− 015 9.8e− 018 2.2e− 017 1.6e+ 005

Table 4: The steady state flows and heads for the network shown in Figure 1 for the solution in Table
2.

Hazen-Williams head loss model
i/j Flow (L/s) in pipe j Head (m) at node i

1 4.0000e − 002 40.0000

2 1.9973e − 014 36.6813

3 4.0000e − 002 36.6813

4 4.0000e − 002 33.3626

5 4.0000e − 002 33.3626

6 3.0562e − 014 30.0440

7 4.0000e − 002 30.0440

8 4.0000e − 002 26.7253

9 −1.9743e− 014 −

10 4.0000e − 002 −

11 4.0000e − 002 −
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Table 5: The elements [F ]jj on the diagonal of the F matrix for two pipes using the Darcy-Weisbach
head loss model and with the parameters shown. Their ratio is a lower bound on the condition of the
matrix F .

Darcy-Weisbach head loss model
Pipe L(m) D(m) ǫ(m) Q(m3/s) V (m/s) R [F ]jj

1 1.0e+ 003 1.0e− 001 2.5e− 004 1.0e− 001 1.3e+ 001 1.3e+ 006 4.1e+ 004

2 1.0e+ 000 3.0e+ 000 2.5e− 004 1.0e− 002 1.4e− 003 4.2e+ 003 2.7e− 007

LIST OF CAPTIONS FOR TABLES AND FIGURES

Table 1. The convergence data for network shown in Figure 1 with the Hazen-Williams head loss

model and no regularization ( (11) and (12)). At each iteration the accuracy achieved in the heads is

entirely consistent, for IEEE standard double precision arithmetic (20), with the size of the condition

number of V . Note that the residal norms in Columns 3 and 4 are displayed here for information but

are not necessary at each iteration. Only the residuals of the final iteration need to be examined to

exclude inaccurate solutions.

Table 2. The convergence data for network shown in Figure 1 with the Hazen-Williams head loss

model and the regularization method (17) and (18) applied. Rapid convergence is restored by the

regularization. Note that the residal norms in Columns 3 and 4 are displayed here for information

but are not necessary at each iteration. Only the residuals of the final iteration need to be examined

to exclude inaccurate solutions.

Table 3. The convergence data for the network shown in Figure 1 with the Hazen-Williams head

loss model when the full matrix system (10) is solved directly at each iteration. Note that the residal

norms in Columns 3 and 4 are displayed here for information but are not necessary at each iteration.

Only the residuals of the final iteration need to be examined to exclude inaccurate solutions.

Table 4. The steady state flows and heads for the network shown in Figure 1 for the solution in

Table 2.

Table 5. The elements [F ]jj on the diagonal of the F matrix for two pipes using the Darcy-

Weisbach head loss model and with the parameters shown. Their ratio is a lower bound on the

condition of the matrix F .
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Figure 1. The network discussed in Example 1 and Example 2. np = 11, nj = 7 and nf = 1. Pipes

5 and 8 are removed for Example 2.
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