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affected in the presence of a uniform background magnetic field. We focus on wave functions in

the Landau and Coulomb gauges. We observe the formation of a scalaru-d diquark pair within

the proton in Landau gauge, which is not present in Coulomb gauge. The overall distortion of the

wave functions under a very large magnetic field, as demandedby the quantisation conditions on

the field, is quite small.
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1. Introduction

The wave functions of a baryon on the lattice provides an insight into the shape and properties
of the particle. Further to this, the wave functions also provide a diagnostic tool for the lattice, being
able to determine how well a particular state fits on the lattice volume. The earliest work on wave
functions on the lattice was carried out on small lattices, for the pion and rho, initially inSU(2) [1].
Further progress was made in the early nineties, where gaugeinvariant Bethe-Salpeter amplitudes
were constructed for the pion and rho [2] by choosing a path ordered set of links between the
quarks. This was then used to qualitatively show Lorentz contraction in a moving pion. Hecht and
DeGrand [3] conducted an investigation on the wave functions of the pion, rho, nucleon and Delta
using a gauge dependent form of the Bethe-Salpeter amplitude, primarily focusing on the Coulomb
gauge.

The background field method [4] for placing an external electromagnetic field on the lattice
has been used extensively in lattice QCD to determine magnetic moments of hadrons. Early studies
on very small lattices with only a few configurations [5, 6] showed remarkable agreement with the
experimental value of the magnetic moments of the proton andneutron. More recent studies on
magnetic moments [7] show good agreement with experimentalvalues of the magnetic moments of
the baryon octet and decuplet. This method has also been extended to the calculation of magnetic
and electric polarisabilities [8, 9]. We are able to use the wave function to determine the effect of
the background magnetic fields on the shape of the proton.

As background field methods have become more widely used, it is apparent that large uniform
fields demanded by the quantisation conditions should causesome concern with regards to the
calculation of moments and polarisabilities. It is entirely possible that the distortion caused by
these fields could be so dramatic that the particle under investigation bears little resemblance to
its zero-field form. For this reason, we will use the wave function as a tool to investigate the
deformation caused by a background field on a particle like the proton.

2. Lattice Techniques

In order to calculate the wave function on the lattice, we modify the standard interpolating
fields used in the two-point Greens functions such that at thesink,

χP(~x,~y, ~d1, ~d2) = εabc(uT
a (~x+ ~d1)Cγ5db(~x+~y))uc(~x+ ~d2), (2.1)

where~d1 = (d1,0,0), ~d2 = (d2,0,0). For separations of theu quarks across even numbers of lattice
sites,d1 = −d2, and for odd separations,d1+1= −d2. The normalisation chosen for the density
distributions is to scale the raw correlation function datasuch that the sum over~x and~y from
Eq. (2.1) is 1. We consider eight values for the separation ofthe quarks in Eq (2.1), between 0 and
7 lattice spacings.

We use an ensemble of 200 quenched configurations with a lattice volume of 163×32, gen-
erated using the Luscher-WeiszO(a2) improved gauge action [10]. TheO(a) improved FLIC
fermion action [11] is used to generate the quark propagators. We useβ = 4.53, corresponding to
a lattice spacing ofa = 0.128fm, determined by the Sommer parameter,r0 = 0.49fm. We employ
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50 sweeps of gauge invariant Gaussian smearing to the fermion source. Two values for the hop-
ping parameter are used,κ = 0.12885 and 0.12990, corresponding to pion masses of 0.697GeV
and 0.532GeV. The gauge fields generated are fixed to the Landau and Coulomb gauges using the
conjugate gradient Fourier acceleration method for improved actions [12], to an accuracy of 1 part
in 1012.

A background electromagnetic field is placed on the lattice in the form of a phase,Uµ(x,y),
that multiplies theSU(3) links [4]. This phase for a constant magnetic field in thez direction given
by

Uy(x,y) = e iaeBx. (2.2)

Due to the periodic boundary conditions, we also require

Ux(x,y) = e−iaeBNxy, (2.3)

along the boundaryx = Nx, with all otherUµ(x,y) = 1. Furthermore, a quantisation condition of
eB = eBz =

2π
NxNya2 is induced by the boundary conditions.

3. Zero-Field Results

We begin by looking at the wave function without a backgroundfield in the Landau gauge.
The wave function constructed from Eq. (2.1) is not symmetric around the centre of mass of the
proton. We find a peak is centered around theu quark that resides in the scalar pairing with thed
quark in Eq. (2.1). This leads us to believe that theu andd quark tend to form a scalar pair within
the proton. At this point, we choose to symmetrise theu quarks around the centre of the lattice,
changing our annihilation operator from Eq. (2.1) to

χP(~x,~y, ~d1, ~d2) = εabc(uT
a (~x+ ~d1)Cγ5db(~x+~y))uc(~x+ ~d2)

+ εabc(uT
a (~x+ ~d2)Cγ5db(~x+~y))uc(~x+ ~d1). (3.1)

This choice is motivated by the fact that the interpolating field places one of theu quarks perma-
nently within the scalar pair, however, physically, this would not be the case, as theu quarks within
the proton should be indistinguishable.

Upon implementing this symmetrisation, we see no evidence that diquark clustering is occur-
ring at smallu-quark separations. Rather, the wave function broadens andflattens around the centre
of mass of the system. However, when we move to a separation offive or more lattice units, or
0.640fm, we see two distinct peaks form. At this stage, theu quarks are separated further than was
considered in [3].

In the Coulomb gauge, diquark clustering is present as evidenced in the unsymmetrised wave
function, however, the support in the centralized region hides the diquark clustering upon sym-
metrisation. Fig. 1 illustrates results foru quarks separated by 7 lattice units.

In both the Landau and Coulomb gauges, the mass dependence ofthe wave functions is almost
negligible, as there are no significant differences in the shape of the wave function when the quark
mass is changed, as was noted in [1].

We note that there are several reasons that we are able to see the diquark clustering in the
Landau gauge where Ref. [3] did not. Our use of large smeared sources, the averaging over~x
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Figure 1: (Colour Online) The wave function for thed quark in the plane of theu quarks separated by 7
lattice units, in the Landau gauge (left), and the Coulomb gauge (right). Two distinct peaks have formed
over the location of theu quarks in the Landau gauge wave function, whereas a single, broad peak is visible
over the centre of mass of the system in the Coulomb gauge. Thescale is such that the largest value of all
of the fixed quark separations will sit at the top of the grid, with all other points of the wave function scaled
accordingly.

in Eq. (2.1), as well as using improved actions for both the quarks and the gauge fields and the
consideration of hundreds of gauge fields provides far better statistics, allowing access to further
u quark separations with a high signal-to-noise ratio, as well as investigating lighter quark masses.
Furthermore, our lattices extend twice as far in the temporal direction, thus reducing the chance of
any contamination from states propagating through the periodic boundary conditions.

Although models featuring diquarks within hadrons have been used extensively for many years
[13], there has been little, if any, direct evidence for the existence of such a cluster within a particle.
Earlier lattice studies that have paired two light quarks with a static quark [14, 15] have shown a
large diquark (O(1) fm) can form inside of a baryon, though with limited effect onthe structure
of the particle. More recently, light quarks have been paired with various diquark correlators [16]
which suggest that diquarks are not a significant factor in light baryons. To the best of our knowl-
edge, this is the first time that such a diquark configuration has been shown in a baryon composed
of three light quarks.

4. Background Magnetic Field Results

The first notable result from the use of the aforementioned method of placing a background
field on the lattice is that an asymmetry is produced in the direction of the vector potential. This
asymmetry occurs in both the Landau gauge and Coulomb gauge to the same extent. This is an
unphysical result of the method in which we place the field on the lattice, which can be shown by
applying the gauge transformationG(x,y) = e−iBxy to the field described above. Upon doing this,
the asymmetry in the wave function can be seen to move to the direction of the vector potential
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once again as shown in Fig. 2. In order to minimise the gauge effect of the choice of background
field on the wave function, we choose an average over four implementations of the background
field. The two implementations described above and two in which a gauge transformation has been
applied such that the magnitude of the vector potential decreases across the lattice.

Figure 2: (Colour online) The wave function for thed quark cut in the plane of theu quarks, in the presence
of a background magnetic field in the Landau gauge, with the original implementation (left), and upon
implementing the gauge transformation described above (right). In this image, the field,~B is pointing into
the page. There is a clear asymmetry perpendicular to the field that changes with the vector potential,Aµ , in
spite of the background field not changing.

Once averaging over the four vector potentials has been applied, we look at the wave function
in thexz-plane. In spite of the very large magnetic field strength imposed by the boundary condi-
tions, the change in the wave function is quite small, with approximately one half lattice spacing de-
viation from being spherical (Fig. 3). This subtle result isconsistent with that expected from the po-
larizability as the current experimental value for the proton polarizability isβM = 1.9(5)×10−4 fm3

which gives the second order response to the field of around,1
2βMe2B2 = 0.4MeV. Compared to

the zero field results, the wave function is enhanced closer to the centre, and falls off faster.
As the quarks are separated, the wave functions in the background field tend to be more lo-

calized than the same wave functions without a background field. Some stretching along the field
orientation at the centre of the distribution is apparent, making the distribution more spherical
(Fig. 4).

5. Conclusion

In this study, we have performed the first examination of the wave function of the proton in
the presence of a background magnetic field in both the Landauand Coulomb gauges. We have
shown that there is a distinct difference between the wave functions in the Landau and Coulomb
gauge, with the Landau gauge exhibiting clear diquark clustering, whereas the wave functions in
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Figure 3: (Colour online) The wave function from for thed quark cut in the plane of theu quarks, after
symmetrising the vector potential,Aµ in the presence of the background magnetic field,B, in the Coulomb
gauge (left), and in the Landau gauge (right). In this image,the field is pointing to the top of the page. In
spite of the magnitude of the field, a fairly small deviation from spherical is seen in both gauges, although
slightly more pronounced in the Landau gauge.

Figure 4: (Colour online) The wave function in the Coulomb gauge cut inthex− z plane of theu quarks,
which are separated by seven lattice units in the transversedirection with zero background field (left) and in
the presence of the field (right). The direction of the field isup the page and the spheres denote the positions
of theu quarks. The smallest value shown for the wave function is 20%of the peak value.
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the Coulomb gauge did not. The wave functions in the Landau gauge were broader than those in
the Coulomb gauge. We have also confirmed that the wave function exhibits very little, if any, mass
dependence.

On the application of the background field, we revealed a gauge-dependent change in the wave
function in the direction of the vector potential. A symmetrisation was performed to rectify this.
Despite the very large magnetic field strength used, the change in the wave function is small. Be-
cause of this, we anticipate that the background field approach of determining the magnetic moment
of baryons to be effective, even in a strong background field.Full results of this investigation can
be found in Ref. [17].
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