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[1] Non-stationarity in extreme precipitation at sub-daily and daily timescales is assessed 6

using a spatial extreme value model based on max-stable process theory. This approach, 7

which was developed to simulate spatial fields comprising observations from multiple point 8

locations, significantly increases the precision of a statistical inference compared to standard 9

univariate methods. Applying the technique to a field of annual maxima derived from 30 sub-10

daily gauges in east Australia from 1965 to 2005, we find a statistically significant increase of 11

18% for 6-minute rainfall over this period, with smaller increases for longer duration events. 12

We also find an increase of 5.6% and 22.5% per degree of Australian land surface 13

temperature and global sea surface temperature at 6-minute durations, respectively, again 14

with smaller scaling relationships for longer durations. In contrast, limited change could be 15

observed in daily rainfall at most locations, with the exception of a statistically significant16

decline of 7.4% per degree land surface temperature in southwest Western Australia. These 17

results suggest both the importance of better understanding changes to precipitation at the18

sub-daily timescale, as well as the need to more precisely simulate temporal variability by 19

accounting for the spatial nature of precipitation in the statistical model.20

1. Introduction21

[2] The question of how extreme precipitation will change under a future climate represents 22

an urgent research problem, not least because of the significant societal impacts that would 23

result from an increase in precipitation-induced flooding [Wilbanks et al., 2007]. To better 24

constrain future projections, an important line of evidence comes from statistical assessments 25

of changes to extreme precipitation in the observational record, with a large number of such 26

studies recently having been published [e.g. Alexander et al., 2006; Frich et al., 2002; 27

Groisman et al., 2005]. These studies, which typically focus on the detection of trends from28

daily gauged precipitation data, find increases in extremes throughout most of the world 29

including in many locations where mean annual precipitation is decreasing, with these30

changes generally being of similar sign but greater in magnitude than expected from climate 31



  

model simulations [Allan and Soden, 2008; Allan et al., 2010]. Nevertheless, there remains 32 

significant uncertainty associated with quantifying long-term trends from these limited 33 

observational records [O'Gorman and Schneider, 2009], particularly for smaller spatial 34 

domains and at sub-daily timescales.   35 

[3] Despite the obvious importance of such observational studies, surprisingly little attention 36 

has been given in the climate literature to the development of statistical methods that are able 37 

to provide inference on observed changes in extremes at the necessary levels of precision. In 38 

particular, assuming by way of example that extreme precipitation will scale at a rate of 39 

7%/ C in proportion to the water holding capacity of the atmosphere [Min et al., 2009; 40 

O'Gorman and Schneider, 2009; Trenberth et al., 2003], and considering a global warming 41 

trend over the 20
th

 century of about 0.74 C [IPCC, 2007], methods of detection would need 42 

to be sensitive to changes in the order of only 5% over the historical record. Univariate 43 

methods applied to point precipitation data generally are not appropriate in this context: when 44 

analysing the statistical power of four approaches to modelling trends in extreme rainfall 45 

(including annual maxima and r-largest maxima approaches from extreme value theory), 46 

Zhang et al [2004] found that such trends would be detected at the 5% significance level in 47 

less than 20% of cases [see also Frei and Schar, 2001].  48 

[4] To address these deficiencies, many studies use extreme precipitation indices based on 49 

averaging over either space or time, in an effort to increase the signal-to-noise ratio and thus 50 

improve the detectability of any trends which might be present. For example, based on 51 

climate model outputs, Hegerl et al. [2004] find that anthropogenic influences in precipitation 52 

can be best detected in an index representing the averages of the 5 or 10 wettest days of the 53 

year, with changes to rarer events being more difficult to detect. Similarly, numerous studies 54 

have pooled data from multiple locations across some spatial domain [e.g. Alexander et al., 55 

2006; Fowler and Wilby, 2010; Groisman et al., 2005] in order to improve statistical 56 

inference, with Min et al. [2009] finding that trends in extreme precipitation might become 57 

detectable when pooling data to global or hemispheric scales. Difficulties with this approach, 58 

however, include differences in scale (in particular it is often unclear how to standardise the 59 

data prior to averaging, with different approaches likely to yield different outcomes) and the 60 

development of correct inferential techniques, particularly in the presence of spatial 61 

correlation between the original gauged data. Furthermore, local-scale information is lost by 62 



  

pooling the data in this manner, particularly in terms of the marginal distributions of the 63 

original point-based gauged data. 64 

[5] A more elegant solution involves fitting a spatial extreme value model to multiple point 65 

locations within the spatial domain of interest, accounting for both the spatial and temporal 66 

variability in model parameters as well as the dependence between individual point-based 67 

records [e.g. see discussion in Aryal et al., 2009; Frei and Schar, 2001; Katz, 2010]. The 68 

natural class of model to simulate such data is known as a max-stable process [de Haan, 69 

1984; de Haan and Pickands, 1986; Resnick, 1987], which in terms of asymptotic 70 

motivations can be directly regarded as the spatial analogue of the univariate generalised 71 

extreme value (GEV) distribution. The max-stable model differs from the more commonly 72 

used "spatial GEV" model, in which univariate GEV parameters are modelled as a function 73 

of spatial location and potentially other covariates. The spatial GEV typically assumes spatial 74 

independence of the precipitation process conditional on the model parameters [Buishand, 75 

1991], which can lead to unrealistic spatial inference and prediction [see Katz et al., 2002 for 76 

a discussion of this issue, and Section 2.1 of this paper for an example of the implicaitons of 77 

ignoring data-level spatial dependence].  78 

[6] Although much of the theory for  multivariate max-stable models was derived over 20 79 

years ago, computational challenges and the absence of a proper inferential framework for 80 

analysing spatial extremes have provided a significant barrier to the wider uptake of the 81 

method [e.g. see Coles, 1993; Smith, 1990 for early work on fitting max stable process 82 

models]. However, standard likelihood-based fitting techniques have recently been developed 83 

[Padoan et al., 2010], paving the way for their routine implementation in applied research. 84 

[7] This study provides one of the first applications of a max-stable process model to simulate 85 

both spatial and temporal variability, using a synthetic dataset and two different sets of 86 

observational records of annual maximum precipitation in Australia. The objectives of the 87 

synthetic study are to highlight the benefits of fitting a spatial model to multiple point 88 

locations, assess the implications of spatial dependence between data, and answer the 89 

question: how much data is required to derive a given level of inference? Two Australian 90 

precipitation datasets are used to demonstrate this model in the detection and attribution of 91 

temporal change. The first is the east-Australian sub-daily (pluviograph) precipitation record, 92 

which is of interest due to the recent evidence that changes to extremes are most likely to be 93 

found in short-duration precipitation events [Haerter et al., 2010; Hanel and Buishand, 2010; 94 



  

Hardwick-Jones et al., 2010; Lenderink and van Meijgaard, 2008], the importance of sub-95 

daily rainfall for urban drainage and flood estimation [Berne et al., 2004] and the 96 

abovementioned difficulties associated with detecting change from short observational 97 

records. The second dataset is a longer record of daily-read gauges located throughout 98 

Australia, and is used as an independent dataset for comparison with the pluviograph record, 99 

while also providing additional information at locations where pluviograph data is 100 

unavailable.  101 

[8] The remainder of the paper is structured as follows. In the following section a brief 102 

overview is provided of the max-stable process methodology, followed by a synthetic study 103 

which highlights the benefits of using the technique in the detection of trends. In Section 3 104 

we present the data used in the analysis, comprising both daily-read and pluviograph records 105 

across Australia. The results are then presented in Section 4, followed by conclusions in 106 

Section 5. 107 

2. Methodology 108 

[9] In this section we provide a description of max-stable process models and the relevant 109 

statistical fitting procedures, before presenting a synthetic study to assess how much data is 110 

required to result in a particular level of statistical significance of trend detection in extremes, 111 

as related to the strength of spatial dependence between point locations.  112 

2.1 Models for spatial extremes 113 

[10] Classical univariate extreme value theory describes the statistical behaviour of 114 

 for large n, where  is a sequence of independent (or weakly 115 

dependent) observations having a common distribution function [e.g. Leadbetter et al., 1983]. 116 

For example,   might represent the daily precipitation recorded at a particular rain gauge on 117 

day t, and if n=365 then  would correspond to the annual maximum daily rainfall [e.g. 118 

Coles, 2001]. Asymptotic results state that under some regularity conditions (such as 119 

continuity of the underlying distribution function of ), normalising sequences  and 120 

can be found such that 121 

 



  

as , for a non-degenerate distribution function G. It follows [e.g. Jenkinson, 1955; von 122 

Mises, 1954] that G belongs to the Generalized Extreme Value (GEV) family, with 123 

distribution function 124 

 

defined on the set  where  and  are location and scale 125 

parameters respectively. The shape parameter, , determines the type of tail behaviour: 126 

  and  correspond to the Weibull, Gumbel (in the limit as ) and 127 

Fréchet sub-families of distributions respectively. 128 

 129 

[11] Although the above theory applies in the general case only in the limit as , in 130 

practice this result allows the GEV distribution to be substituted as an approximation to the 131 

actual distribution of observed block maxima for finite n. For example, the GEV distribution 132 

could be used to model the annual maximum daily rainfall over a number of years [Coles et 133 

al., 2003]. The unknown normalisation constants,  and , may be absorbed into 134 

the model parameters, which can then be estimated through standard statistical procedures 135 

such as maximum likelihood [Coles, 2001; Sisson et al., 2006], probability-weighted (L-136 

weighted) moments [Hosking et al., 1985; Kharin and Zwiers, 2000; Perkins et al., 2009] or 137 

Bayesian inference [Coles et al., 2003]. Predictions of future maxima at the point location 138 

can then be made via inversion of the distribution function. Extreme value modelling via 139 

GEV distributions has had much application in the hydrological sciences (see above 140 

references). See e.g. Leadbetter et al. [1983], Resnick [1987] and Coles [2001] for further 141 

discussion and alternative representations of extreme value models. 142 

[12] The statistical theory and practice of univariate extremes is well developed. However 143 

many environmental processes have a natural spatial domain. Several authors have proposed 144 

modelling spatially dependent extremes through hierarchical models [e.g. Sang and Gelfand, 145 

2007; Zhao and Chu, 2010], whereby dependence between neighbouring sites is achieved by 146 

enforcing strong relationships between the GEV parameters at each site. However, this 147 

approach typically assumes that the data are conditionally independent given the parameters, 148 

and as such, the models are unable to account for data-level dependence unless this is 149 

explicitly built into the model. For example, under a stationary environmental process 150 

(whereby the GEV parameters are constant at each site) prediction under the spatial GEV 151 

model effectively assumes independent predictions at each spatial location. Hence an 152 



  

observed 1 in 100-year event (such as a storm) occurring simultaneously over two closely 153 

neighbouring spatial locations will predicatively occur under the spatial GEV model once in 154 

every 100 100 years - a serious underestimate. One alternative approach for modelling 155 

spatial extremes that naturally accounts for spatial data-level dependence is through max-156 

stable processes. 157 

[13] Max-stable processes are a spatial analogue of multivariate extreme value models [de 158 

Haan, 1984; de Haan and Pickands, 1986; Resnick, 1987] - a direct extension of the 159 

univariate GEV model into the spatial domain, which goes beyond the limitations of the 160 

spatial GEV model. Max-stable processes provide a general framework for modelling 161 

multivariate extremes with spatial and temporal dependence [Coles, 1993; Padoan et al., 162 

2010; Smith, 1990]. In analogy with the univariate theory, suppose that  for 163 

 are now  independent realisations of a continuous process indexed by , where 164 

 commonly represents the bivariate spatial domain. As before, if the limit 165 

 

exists for all  with normalising constants  and , then  is a max-166 

stable process [de Haan, 1984]. It follows [de Haan and Resnick, 1977] that for a fixed point 167 

in space, , each one-dimensional marginal distribution belongs to the univariate GEV 168 

family, and that any K-dimensional marginal distribution (i.e. for multiple locations, )  169 

belongs to the class of multivariate extreme value distributions. In practice, this means that 170 

the resulting parameters ,  and  are now continuous spatial functions to be 171 

estimated. However, unlike spatial GEV models, the max-stable process naturally permits 172 

modelling and prediction with data-level spatial dependence. 173 

[14] A useful interpretation of stationary max-stable processes (e.g. with unit Fréchet one-174 

dimensional "GEV" margins) is the storm profile model [Schlather and Tawn, 2003; Smith, 175 

1990]. This is based on a Poisson process  of "storms" centred at  with 176 

magnitude  where each storm has a shape governed by a non-negative, measurable 177 

function  such that  for fixed . For example,  could be a 178 

Gaussian density function [Smith, 1990]. If these storms are observed from a fixed location in 179 

space, , the maximum observed event at that location is given by 180 



  

 

The process, , defines a stationary max-stable process. An illustration of this idea in one 181 

and two dimensions is given in Figure 1 based on a Gaussian storm profile. Figure 1(a) 182 

displays  independent "storm" realisations, with the resulting process maxima 183 

highlighted (black line). The process maxima is not itself a realisation from a max-stable 184 

process as this requires  (suitably scaled) realisations. Similarly to univariate GEV 185 

models, the max-stable process limit can be used to approximate the distribution of the 186 

process maxima as   gets large. Figure 1(b) shows a realisation of a two-dimensional max-187 

stable process. In both images, it is clear that two locations separated by a spatial distance 188 

within the range of the storm profile will tend to exhibit closely related data observations.  189 

 190 

INSERT FIGURE 1 HERE 191 

 192 

[15] Given a series of  observed data points  for  at  spatial locations 193 

, the aim of a statistical analysis would be to fit a max-stable process using 194 

assumed parametric (or non-parametric) forms for the parameters ,  and , 195 

while also estimating spatial dependence through the storm profile, . However, for more 196 

than  spatial locations, the distribution function of the general max-stable process has 197 

no analytically tractable form [e.g. Padoan et al., 2010], which thereby presents a problem 198 

for flexible and practical statistical model fitting through e.g. standard likelihood methods, 199 

and so ad-hoc procedures are usually adopted [e.g. Smith, 1990]. 200 

 201 

[16] When considering exactly  spatial locations, a bivariate class of spatial models 202 

with locations  and  is available when the storm profile model, , is a bivariate 203 

Gaussian density [de Haan and Pereira, 2006; Smith, 1990]. In this case the bivariate 204 

distribution function of  is 205 

 

where  0 is the origin,  is the standard univariate Gaussian distribution 206 

function,  and  is the (unknown) covariance matrix of . From the 207 

above, the density function of    may be derived [e.g. Padoan et al., 2010]. Note 208 

that  measures the strength of extremal dependence between   and    209 



  

indicates complete dependence and  represents complete independence [de Haan 210 

and Pereira, 2006]. A general max-stable process with a Gaussian storm profile, , is known 211 

as a Gaussian extreme value process [Smith, 1990]. An alternative analytically tractable 212 

bivariate distribution function, based on a different storm process, is given by Schlather 213 

[2002]. 214 

[17] In order to model more than  spatial locations, Padoan et al [2010] proposed a 215 

pairwise composite likelihood approach. Here an approximate likelihood function is 216 

constructed as a product of density terms for each pair of locations  and  , , where 217 

the density is derived from the distribution function of  , above. Subject to 218 

suitable regularity conditions [Padoan et al., 2010], the maximum likelihood estimate of the 219 

pairwise composite likelihood provides consistent and unbiased parameter estimates and 220 

confidence intervals, when the standard maximum likelihood estimate of the full (but 221 

intractable) max-stable likelihood model is unavailable. Perhaps most usefully, as this 222 

approach is likelihood-based, the usual suite of statistical techniques become available 223 

(suitably modified to account for the model mis-specification), resulting in a powerful and 224 

flexible inferential framework. For example, it is then trivial to build in e.g. regression-based 225 

forms for the parameters ,  and  and estimate spatial dependence 226 

parameters (e.g. ). See Padoan et al [2010] for further details, and the accompanying code 227 

for model fitting in the R statistical programming language. 228 

2.2 Detecting trends in extremes: spatial dependence and sample size 229 

[18] We now present a synthetic study to assess the effect of spatial dependence and the 230 

length of the observed data record in statistically detecting location trends in extremes. We 231 

commence with a univariate analysis, where the data are drawn from a non-stationary GEV 232 

distribution with a linear temporal trend so that , with , 233 

where the indexing of the parameter  is now with respect to time. The remaining parameters 234 

 and , with unless stated otherwise. The aim is to determine 235 

the value of  which can be found to be statistically significant at the 5% significance level. 236 

[19] Throughout this study, parameters are estimated using maximum likelihood, with the 237 

univariate models implemented using the R package "ismev" (http://www.r-project.org/) [see 238 

also Coles, 2001] and max-stable model with composite likelihoods through the R package 239 

"SpatialExtremes" [Padoan et al., 2010]. For each setting, a total of 10,000 replicates were 240 



  

generated, each of   observed sample points, and confidence intervals of the linear trend 241 

parameter  were estimated using the profile likelihood, as described by [Coles, 2001]. The 242 

probability of detecting a trend was estimated as the proportion of the 10,000 replicates for 243 

which the trend parameter was statistically significantly different from zero at the 5% 244 

significance level. This is a practically useful means of presenting the results, as one often 245 

wishes to know the probability of being able to detect a trend of given magnitude from an 246 

observational record of finite length.  247 

 [20] The value of the trend coefficient, , that can be detected with 50%, 95% and 99% 248 

probability is shown in Figure 2(a) as red solid, dashed and dotted lines, respectively, as a 249 

function of the observed sample length . As expected, the statistical power increases with 250 

the sample length, so that smaller trends are detectable with larger datasets, with this increase 251 

being approximately linear on a log-log scale. Furthermore, there also is a clear relationship 252 

between the size of the coefficient and the probability of being able to detect this trend at a 253 

given significance level (here 5%). For example, if it is desirable to have a 99% probability of 254 

detecting a significant trend at the 5% significance level, it would be necessary to have nearly 255 

twice the sample length ( ) than if one would be satisfied with only a 50% probability of 256 

detecting that trend. This type of reasoning becomes important when identifying data 257 

requirements for studies into the detection of trends. 258 

INSERT FIGURE 2 HERE 259 

[21] The influence of different values of  is also shown in Figure 2(a) (solid lines) for a 260 

50% probability of trend detection; this information is plotted in more detail in Figure 2(b). 261 

As can be seen, the greater the absolute value of , the lower the value of  that can be 262 

detected at a given significance level, with this becoming particularly noticeable for larger 263 

values of . This occurs as holding the scale parameter fixed (at 264 

data that are more clustered around the location (  for increasing , than for , thereby 265 

allowing more precise estimates of the location coefficients. As will be discussed further in 266 

Section 4, in the present analysis we find values of  on average slightly positive (~0.17) with 267 

a range of between -0.1 and 0.4 depending on the specific site. With sample sizes of 41 (sub-268 

daily gauges) and 96 (daily gauges), such an average value of  would allow for an 269 

approximately 5% smaller value of  to be detected compared to the case where  . 270 



  

[22] We now consider the influence of estimating a trend using a number of spatial locations, 271 

assuming a fixed record length of   at each site. The data was generated at K random 272 

locations within a unit square, under both the case of spatial independence (i.e. using the 273 

spatial GEV model) as well as including different degrees of spatial dependence (i.e. using 274 

the max-stable process model). Without loss of generality we assumed identical marginal 275 

parameters across the spatial domain (i.e.   with , ). 276 

[23] Figures 2(c) and (d) show the values of  that have a 50% and 95% probability, 277 

respectively, of being detected as a statistically significant trend (at the 5% level), as a 278 

function of the number of spatial locations, K. In the case of spatial independence, the results 279 

are qualitatively similar to the case of increasing sample length : namely, the value of  280 

that can be detected at the 5% level decreases linearly as the number of spatial locations 281 

increases. This is an obvious consequence of using more data. However, for a fixed number 282 

of spatial locations, the presence of spatial dependence effectively reduces the amount of 283 

independent data in the sample, thereby increasing the value of  that can be detected. The 284 

value of  which can be detected at a given probability decreases more slowly with greater 285 

dependence, highlighting that the inclusion of spatial information is most beneficial when 286 

dependence is low. Interestingly, the rate of decrease of  is approximately an order of 287 

magnitude lower for adding spatial information compared with temporal information. This 288 

clearly highlights that although spatial information significantly increases signal detectability, 289 

it remains a poor substitute for increasing length of record when this information is available.  290 

[24] Having demonstrated the advantages of explicitly considering spatial information in the 291 

detection and attribution of trends in extremes, we now apply the max-stable process model 292 

to the annual maxima of daily and sub-daily precipitation at different locations in Australia. 293 

The data used for this analysis is described below.  294 

3. Data 295 

[25] Two alternative precipitation datasets were used in this analysis. The first was a subset 296 

297 

increments of 6 minutes at 1397 locations around Australia [see description in Westra et al., 298 

2010]. For this study we considered only near-complete data over the period from 1965 to 299 

2005. The data was carefully quality controlled, with only years included that had less than 300 

15% of the within-year record classified as missing 301 



  

, as well as only including stations with less than 5 years missing. 302 

Furthermore, annual cumulative precipitation plots for the sub-daily record were compared 303 

visually with the annual cumulative plots for the daily-read gauged record collected at the 304 

same location, and years for which the annual cumulative rainfall from the sub-daily gauges 305 

departed from the annual cumulative rainfall from the daily gauges by more than 15% were 306 

This filtering process yielded a total of 35 stations in Australia 307 

with an average of 5.6% of years missing throughout the record across all stations, with 308 

locations shown in Figure 3. Due to the sparse sampling of data throughout most of the 309 

Australian continent, only the east Australian (EA) region was considered in this analysis 310 

(comprising 30 stations), with the domain shown in Figure 3. At each station, series of 311 

annual (block) maxima were derived for durations from 6 minutes through to 72 hours.  312 

INSERT FIGURE 3 HERE 313 

[26] The second precipitation dataset was the longer and more complete record obtained from 314 

a quality-controlled daily-read dataset from 1910 to 2005, described more fully in [Haylock 315 

and Nicholls, 2000; Lavery et al., 1992]. As described in these papers, the quality control 316 

undertaken for this particular dataset included: investigation of the station history 317 

documentation to remove stations with changes to observing practices, changes in the 318 

exposure of the rain gauge, changes in rain gauge type, together with detailed statistical 319 

testing to check station integrity.  320 

[27] In more than 95% of cases, the station sites of the daily-read gauges were at different 321 

locations to the sites for the sub-daily gauges described above, such that this dataset is largely 322 

independent of the sub-daily dataset and therefore can be used as an independent means of 323 

evaluating the sub-daily results. Only stations with less than 10% of years classified as 324 

missing  were considered, totalling 93 stations, with an average of 3.8% of years classified 325 

as missing across all the stations. Due to the larger number of locations for daily data, the 326 

southwest Western Australia (SWWA) and southeast Australia (SEA) regions defined in 327 

Figure 3 were also analysed in addition to the SE region considered for the sub-daily dataset. 328 

[28] Dealing with missing data in all cases is difficult, and in particular in the case of the sub-329 

daily record for which there are limited sub-daily gauges nearby from which to infill. As 330 

such, the primary quality control measure used here was to minimise the number of years 331 

classified as missing. Of the data that was missing, three alternative infilling techniques were 332 



  

adopted. The first involved substituting the mean annual maxima for that year across all the 333 

remaining locations where data was available, after adjusting for the station mean. The 334 

second technique involved substituting the mean annual maxima at that station across all 335 

years with data. Finally a stochastic infilling technique was used in which annual maxima 336 

were drawn from other years at the same station. Although none of these infilling techniques 337 

can expected to result in an accurate estimate of annual maximum precipitation for the 338 

missing years, the use of three alternative techniques allows testing of the robustness of the 339 

results described in subsequent sections to different treatments of missing data. In all cases, 340 

the different infilling approaches did not make any substantive differences to any of the 341 

results presented, with this being due to the relatively small number of records missing and 342 

the benefits of using multiple spatial locations to limit the reliance on individual data points. 343 

The results presented in the subsequent section are those derived using the first infilling 344 

method. 345 

[29] Of greater concern is the potential for inherent measurement biases in rainfall gauging. 346 

In particular, the sub-daily rainfall gauges were replaced at many locations throughout 347 

Australia in the 1990s and early 2000s, with the most common instrument change being from 348 

a Dines pluviograph recorder to a Tipping Bucket Rain Gauge (TBRG). A detailed inventory 349 

of gauge changes at each station was obtained from the Australian Bureau of Meteorology, 350 

and two alternative approaches were considered to test whether such gauge changes 351 

influenced the results. In the first approach, a univariate non-stationary GEV model with both 352 

trend and step-change covariates was applied at each location (without consideration of 353 

whether the trend or step change was statistically significant), with the date of the step change 354 

selected based on the recorded date of the gauge change. Of the 30 sub-daily stations, step 355 

changes at 17 of the locations were positive (suggesting that the trend after accounting for the 356 

step change is smaller than by ignoring the step change), with step changes at the remaining 357 

13 locations being negative. This result alone suggests the impact of the step change on the 358 

trend results is likely to be minor, as one would expect any systematic biases due to shifting 359 

from the Dines to the TBRG should result in step changes of the same sign and similar 360 

magnitude. As a further means of evaluating the implication of any systemic effects due to 361 

gauge changes, these step changes were then removed from each univariate time series, and 362 

the max-stable process model was fitted to this adjusted data. The results from this analysis 363 

were almost identical to the case where the step change was not accounted for. Finally, the 364 

spatial GEV model was applied using only data from 1965-1990 (with this data being almost 365 



  

completely before any instrumentation change) and the results were consistent with the 366 

longer records except for wider confidence intervals due to the shorter record length. This 367 

analysis shows that the implications of gauge changes do not appear to have any notable 368 

impact on the results and conclusions presented in this paper, and therefore the remaining 369 

analysis uses the complete record without explicitly modelling the implications of any gauge 370 

changes.  371 

[30] Finally, four separate temporal covariates were considered. The first represents a linear 372 

trend, which is simply constructed as the sequence from zero to the number of observations 373 

minus one. The second comprises a time series of average Australian annual land surface 374 

temperature, obtained from the Australian Bureau of Meteorology 375 

(http://www.bom.gov.au/cgi- bin/silo/cli_var/area_timeseries.pl). Here, this is used as a 376 

surrogate of the land-surface temperature trend at the time of the storm event [Hardwick-377 

Jones et al., 2010; Lenderink and van Meijgaard, 2008], due to the difficulties in averaging 378 

land-surface temperature prior to each storm event when considering annual maxima at 379 

multiple locations. The third represents the global average sea surface temperature time series 380 

obtained from the International Comprehensive Ocean-Atmosphere Data Set (ICCODS) sea 381 

surface temperature anomaly record (http://jisao.washington.edu/data/global_sstanomts/), and 382 

is used as a surrogate for the temperature of the moisture source region as discussed in 383 

[Hardwick-Jones et al., 2010]. Finally, the Southern Oscillation Index (SOI) is used as a 384 

measure of the El Niño-Southern Oscillation (ENSO) phenomenon, and was obtained from 385 

the Australian Bureau of Meteorology website 386 

(http://www.bom.gov.au/climate/current/soihtm1.shtml). With the exception of the linear 387 

trend, each covariate is plotted from 1910 to 2005 in Figure 4. 388 

INSERT FIGURE 4 HERE 389 

4. Results 390 

[31] We now apply the max-stable process model described in Section 2, to both the sub-391 

daily rainfall data for the east Australian domain, as well as the longer daily data record in 392 

each of the three domains shown in Figure 3. The results of these analyses are described in 393 

turn below.  394 

4.1 Sub-daily rainfall 395 



  

[32] We commence by considering the sub-daily precipitation observations at multiple point 396 

locations in eastern Australia. By way of a preliminary analysis, we fit a non-stationary 397 

univariate GEV model using a linear trend as the covariate as described in [Coles, 2001] to 398 

each of the gauged locations, and then evaluate both the sign and the significance of this 399 

trend. These results are shown for the 6-minute data in Figure 5, with red (blue) indicating 400 

downward (upward) trends and filled circles indicating a statistically significant trend at the 401 

10% significance level. As can be seen, although the magnitude of increase in extreme 402 

precipitation varies considerably from location to location, there is no clear spatial pattern 403 

associated with physiographic features such as coastlines or mountain ranges, nor any clear 404 

relationship with major climate zones such as the winter-dominated rainfall patterns in the 405 

southern parts of the country, summer-dominated monsoonal rainfall in the north, arid 406 

climate in the centre and largely uniform rainfall in the southeast [e.g. see Gallant et al., 2007 407 

for a possible depiction of relevant climate zones for the detection of change to extreme 408 

rainfall]. For the remainder of the sub-daily analysis we therefore focus on the east Australian 409 

domain as a single homogenous region, as this maximises the number of stations to include in 410 

the model.  411 

INSERT FIGURE 5 HERE 412 

[33] The location and scale parameters are modelled spatially as a linear function of 413 

longitude, latitude, elevation and distance to coast (including the square root of these 414 

variables), with the exact form of model derived using a forward stepwise selection procedure 415 

informed by the (composite) likelihood ratio statistic. The shape parameter was modelled 416 

uniformly across the domain, and was found to be on average slightly positive (~0.17) with 417 

some variation depending on the storm burst duration that was analysed. The models that 418 

were selected for each of the rainfall durations are shown in Table 1, and highlight that 419 

complex combinations of the covariates are required to describe the spatial variability in 420 

location and scale parameters. This is expected due to the large area covered by the domain, 421 

and alternative formulations of predictors to estimate spatial variability in the GEV 422 

parameters are likely to be equally valid. Nevertheless a comparison of the parameters 423 

derived from the models given in Table 1 with the point estimates of the parameters by 424 

fitting a univariate GEV model to each location showed reasonable consistency, indicating 425 

adequate spatial modelling of the max-stable process parameters. Furthermore, a sensitivity 426 

analysis using slightly different sets of spatial covariates did not have a significant impact on 427 



  

the value of the temporal covariates which are the focus of this study, and therefore the 428 

models described in Table 1 are considered suitable for the ensuing analysis.  429 

[34] The magnitude of the temporal variation of extremes using each of the four covariates is 430 

shown in Figure 6, using the sub-daily information for durations from 6 minutes to 72 hours. 431 

The results using daily data in the east Australian domain from 1965 to 2005 are also 432 

provided to check for consistency between the two datasets. The results are presented in 433 

terms of: the percentage change from the beginning to the end of the record for the trend 434 

covariate (Figure 6a); the percentage change per degree change in temperature for the 435 

Australian temperature and global sea surface temperature covariates (Figures 6b and 6c); 436 

and the percentage change per standard deviation of the southern oscillation index (Figure 437 

6d).  438 

INSERT FIGURE 6 HERE 439 

[35] To highlight the implications of spatial correlation, point estimates and confidence 440 

bounds were generated assuming that the data are spatially independent (solid and dotted blue 441 

lines), or modelling spatial dependence using the Gaussian extreme value process model of 442 

[Smith, 1990] (solid and dotted red lines). The 90% confidence intervals were estimated using 443 

the profile likelihood, with the likelihood statistics adjusted appropriately using the approach 444 

described by [Rotnitzky and Jewell, 1990] due to the misspecification of the likelihood 445 

function [Padoan et al., 2010]. As can be seen, in all cases the confidence interval using the 446 

max-stable process model was wider than the confidence interval assuming spatial 447 

independence, as expected from the results from the synthetic study described earlier. 448 

Interestingly, although this effect was small for the sub-daily data, significant difference in 449 

confidence intervals could be found for the daily data, highlighting that although more spatial 450 

locations are available at the daily scale, this does not necessarily translate to a large increase 451 

in information for the max-stable extreme value model.  452 

[36] We now evaluate the implication of different temporal covariates on the east Australian 453 

extreme precipitation series. Considering firstly the implications of a linear trend (Figure 6a), 454 

it can be seen that short duration extreme rainfall has been increasing significantly over the 455 

period of record from 1965 to 2005, with the mean annual maximum rainfall at the shortest 456 

duration (6-minute) increasing by 18% (10% to 25%). This rate of increase is heavily 457 

dependent on storm burst duration, with half hourly annual maxima increasing by 9.9% 458 



  

(1.4% to 17%) and hourly rainfall increasing by only 4.6% (-3.1% to 12%) over this same 459 

period. When looking at 24-hour rainfall, we do not find strong evidence of any trend, and at 460 

longer-duration timescales there is some evidence of decreasing annual maximum rainfall.  461 

Comparing these results with the daily annual maxima dataset, which as discussed were 462 

derived from different types of gauges largely located in different point locations within the 463 

same east Australian domain, we find the results to be consistent, with the trend in daily 464 

maxima also not being statistically different from zero.  465 

[37] To better understand the nature of these changes, the influence of two temperature-466 

related covariates  Australian annual average temperature (Figure 6b) and global sea 467 

surface temperature (Figure 6c)  were also considered. At the shortest duration, 468 

precipitation was found to increase by about 5.6% (-0.7 to 11.0%) per degree of Australian 469 

annual average temperature, and 22.5% (10.8 to 33.7%) per degree of global sea surface 470 

temperature. Given the increase in Australian annual average temperature has been less than a 471 

degree over this period (e.g. CSIRO, 2007), these results show that average annual land 472 

surface temperature change does not completely explain the observed increase of 18% over 473 

this period as described in the previous paragraph. Furthermore, even at the 6-minute 474 

timescale the relationship between extreme precipitation and Australian land surface 475 

temperature is not statistically significant at the 5% significance level, suggesting that 476 

average annual land surface temperature may be a poor predictor of change to extreme 477 

precipitation. In contrast, the global sea surface temperature covariate shows a much stronger 478 

relationship, and is significantly different from zero for all sub-hourly durations. Once again, 479 

however, the increase in global SST was only about 0.4°C, yielding an expected increase due 480 

to SST of about half the rate that has been observed based on the linear trend results. The 481 

attribution of the strong increase in sub-daily precipitation therefore remains an area requiring 482 

further investigation, potentially with the aid of dynamical modelling approaches to better 483 

understand the large-scale atmospheric drivers of short-duration precipitation.  484 

[38] Finally, the southern oscillation index was used as an indicator of the ENSO 485 

phenomenon, the leading mode of climate variability affecting Australian rainfall at the inter-486 

annual timescale. The results of this analysis show that the strongest relationship between 487 

annual maximum precipitation and the SOI occurs at the daily timescale, with an increase in 488 

average 24-hour rainfall of 3.2% (0.97% to 5.4%), and for daily rainfall of 4.6% (2.3% to 489 

7.1%) per standard deviation of the SOI. Interestingly, the relationship weakens for shorter 490 



  

durations, and is no longer statistically significant for durations below about 3 hours, 491 

suggesting that the SOI is most influential for longer-duration storm events. 492 

4.2 Daily rainfall 493 

[39] Although results from the daily rainfall record were presented for east Australian data in 494 

the previous section, this was only based on information from 1965 to 2005 to ensure 495 

consistency with the sub-daily record. Here we consider the full record from 1910 to 2005 for 496 

east Australia, as well as two other regions shown in Figure 3. Only the results using the 497 

max-stable process model are presented here, as the spatially independent extreme value 498 

model is not likely to be realistic for the more densely gauged daily data.  499 

[40] The results for the Australian temperature trend, global SST trend and the SOI are 500 

presented in Table 2. The linear trend was not considered here as a linear change is expected 501 

to be a poor representation of change to precipitation data over such a long period. 502 

Considering east Australia, the results are consistent with the results presented in Figure 6 503 

for each of the indices, with an absence of a statistically significant relationship between 504 

daily annual maximum rainfall and Australian average temperature and the globally averaged 505 

SST field, and with a statistically significant increase of annual maximum rainfall of 2.8% 506 

per standard deviation of the SOI.  The confidence intervals are approximately half as wide as 507 

compared to those shown in Figure 6, highlighting the benefits of considering longer data in 508 

providing more precise statistical inferences. 509 

[41] Considering the remaining locations, it can be seen that there is a decrease in annual 510 

maximum precipitation as a function of Australian temperature which is not statistically 511 

significant in southeast Australia but is significant at the 90% level in southwest Western 512 

Australia. This confirms the results of other studies such as [Alexander et al., 2007; Gallant 513 

et al., 2007] who suggest that extremes in daily rainfall may be decreasing in areas where 514 

there are large decreases in mean annual rainfall, with such decreases having been observed 515 

in southwest Western Australia.  516 

[42] Finally, there is a negative, but statistically insignificant, relationship with global SST at 517 

all locations, and a positive and statistically significant relationship with the SOI, suggesting 518 

that the SOI exerts a small but statistically significant influence on extreme daily rainfall in 519 

all the regions analysed. 520 



  

Conclusions 521 

[43] In this paper we present one of the first applications of a non-stationary generalised 522 

extreme value model based on max-stable process theory, in which data-level and parameter-523 

level dependence between precipitation data at individual point locations is explicitly 524 

accounted for within the modelling framework. The advantages of such a modelling 525 

framework were shown using a synthetic example, in which the probability of detecting a 526 

statistically significant trend in the location parameter was evaluated for a range of record 527 

lengths, number of spatial locations, and spatial dependence. In particular, the inclusion of 528 

numerous spatial locations resulted in significant increases in the probability of being able to 529 

detect a statistically significant trend, particularly when data-level dependence was low. As 530 

data-level dependence increases, the max-stable process model was able to account for the 531 

decrease in information via wider confidence intervals, whereas the spatial GEV model 532 

would have resulted in unrealistically high levels of confidence in any temporal trends.  533 

[44] Using this method, it was possible to detect a strong, statistically significant trend in sub-534 

daily (and particularly sub-hourly) precipitation across eastern Australia, with these increases 535 

contrasting with the absence of any statistically significant changes at the daily timescale. 536 

This finding is unsurprising for several reasons. Firstly, as described earlier the temperature 537 

scaling of extreme precipitation in Australia also shows very different behaviour for short-538 

duration precipitation compared with daily precipitation, with maximum sensitivity with 539 

surface temperature also occurring for sub-hourly durations [Hardwick-Jones et al., 2010].  540 

Furthermore, the sub-hourly timescale is generally regarded as the timescale for individual 541 

convective cells within thunderstorm systems [Wallace and Hobbs, 2006], and thus is the 542 

timescale which would be most sensitive to the moisture holding capacity of the atmosphere. 543 

Finally, international studies using regional climate models also have found much stronger 544 

scaling for hourly compared with daily precipitation [e.g. Hanel and Buishand, 2010].  545 

[45] At the daily timescale, no change in annual maximum rainfall could be detected with the 546 

exception of southwest Western Australia, where a 7.4% decrease in annual maximum 547 

rainfall per degree of land surface temperature was detected. Although the choice of suitable 548 

covariates to use for this type of analysis is likely to be debatable, the conclusions are 549 

generally consistent with other studies which show an absence of significant changes to 550 

extreme daily rainfall in most locations around Australia except for locations where the 551 

annual rainfall is decreasing strongly, most notably southwest Western Australia [Alexander 552 



  

et al., 2007; Gallant et al., 2007]. Finally, this study showed that although the influence of 553 

ENSO on annual maximum rainfall in Australia is small, it is nonetheless detectable using the 554 

max-stable process model described here. 555 

[46] These results therefore affirm the importance of understanding changes in precipitation 556 

at all timescales, and in particular at the scales of individual storm events rather than the daily 557 

timescale for which data is more readily available. Although the availability of sub-daily data 558 

in Australia is generally limited (with most records being too short, containing large 559 

quantities of missing data, and including numerous changes to instrumentation which might 560 

bias the results), making the application of this data for climate studies difficult, this paper 561 

highlights that a careful statistical analysis that explicitly accounts for the spatial nature of 562 

rainfall data, will be beneficial in recovering useful information from such an instrumental 563 

record.  564 
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 Tables 693 

Table 1: Covariates used for spatial model, selected via a forward selection approach using a likelihood ratio test. 694 
Predictors include latitude, longitude, elevation and distance to coast, and the square root of these variables.  695 
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 696 

Table 2: Relationship between daily rainfall from 1910-2005 and three covariates: Australian temperature, Global 697 
sea surface temperature (SST), and the Southern Oscillation Index (SOI). Relationship with temperature covariates 698 
is expressed as percentage change per degree change in the covariate, while relationship with SOI is expressed per 699 
standard deviation of the SOI. Numbers in parentheses represent the 5%  and 95%  confidence limits calculated using 700 
profile likelihood. 701 

 Australian Temperature Global SST SOI 

Eastern Australia -1.6 (-5.9 to 2.87) -0.25 (-4.6 to 4.3) 2.8 (1.2 to 4.3) 

Southeast Australia -2.6 (-6.5 to 1.5) -0.83 (-5.4 to 3.4) 2.0 (0.05 to 3.8) 

Southwest Western 

Australia 

-7.4 (-13.0 to 0.0) -1.3 (-8.7 to 5.8) 2.6 (0.17 to 5.2) 

 702 
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List of Figure Captions 704 

Figure 1: Max-stable processes  in one and two dimensions based on a Gaussian storm 705 

profile. Panel (a) illustrates  Gaussian "storms" in one dimension (grey lines) with the 706 

process maxima outlined in black. Panel (b) illustrates a max-stable process in two 707 

dimensions  with a positively correlated Gaussian storm profile. 708 

Figure 2: 1 to be statistically significant at the 5% significance level.  709 

(a) Implications of different sample lengths , with different percentage change of detection 710 

(i.e. 50%, 95% and 99% chance of detecting a statistically significant trend), and different 711 

values o712 

number of spatial locations assuming sample length , assuming differing degrees of 713 

spatial dependence, assuming 50% chance of detecting a statistically significant trend; and 714 

(d) as with (c) but assuming 95% change of detecting a statistically significant trend. 715 

Figure 3: Location of quality-controlled pluviograph (blue dots) and daily-read (gray dots) 716 

stations. The spatial extremes analysis was conducted for three regions for the daily data: 717 

southwestern Western Australia (SWWA), southeast Australia (SEA) and eastern Australia 718 

(EA), and for EA only for pluviograph data due to limited sampling density elsewhere. 719 

Figure 4: Covariates used in the study. 720 

Figure 5: Non-stationary univariate GEV model with a linear trend as covariate applied to 721 

each station for 6-minute annual maximum pluviograph data (left panel) from 1965 to 2005, 722 

and the daily dataset (right panel) from 1910 to 2005. Red and blue indicate downward and 723 

upward trends, respectively, with filled circles indicating the trend is statistically significant 724 

at the 10% significance level. 725 

Figure 6: Relationship between sub-daily precipitation across east Australia for durations 726 

from 6 minutes through to 72 hours, and the three temporal covariates. Solid blue line 727 

represents the results from a spatial GEV model (ignoring spatial dependence), while solid 728 

orange line represents results from max-stable model using the Smith spatial dependence 729 

function. Dotted lines represent the 95% confidence interval. The outcomes from the daily 730 

model is also shown (slightly offset for visual purposes), including red dots (spatial GEV) 731 

and green dots (max-stable distribution), together with associated 95% confidence interval. 732 
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 We dem onstrate application of a m ax-stable process m odel using extrem e rainfall data. 

 We show how this m odel im proves precision of inference by including spatial inform ation. 

 We find strong increases in sub-hourly extrem e precipitation in East Australia. 

 We find lim ited change to daily rainfall, except for a decrease in SW Australia. 
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