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Abstract 26 

 27 

The aim of this study was to determine the influence of altering glycolytic pathway activity 28 

during bovine IVM on the meiotic maturation rate, oxidative activity, mitochondrial 29 

activity, and the mitochondrial distribution within oocytes. Glycolytic activity was 30 

manipulated using two inhibitors (ATP, NaF) and a stimulator (AMP) of key enzymes of 31 

the pathway. Inhibition of glucose uptake, lactate production and meiotic maturation rates 32 

was observed when media was supplemented with ATP or NaF. The addition of AMP in 33 

the maturation medium had no effect on glucose uptake, lactate production and meiotic 34 

maturation. However, in the absence of gonadotrophin supplementation, AMP stimulated 35 

both glucose uptake and lactate production. However, AMP also decreased cytoplasmic 36 

maturation, as determined by early cleavage. During IVM, oocyte oxidative and 37 

mitochondrial activity was observed to increase at 15 and 22 h of maturation. Inhibiting 38 

glycolysis with ATP or NaF led to a reduced oxidative and mitochondrial pattern compared 39 

with their respective control groups. Stimulation of the pathway with AMP increased 40 

oxidative and mitochondrial activity. A progressive mitochondrial migration to the central 41 

area was observed during maturation; oocytes treated with ATP, NaF or AMP showed 42 

limited migration.  This study reveals the impact of altering the glycolytic pathway activity 43 

in COCs, revealing the link between glycolysis of the COC and oxidative and 44 

mitochondrial activity of the oocyte. 45 

 46 
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Introduction 49 

Once the germinal vesicle (GV) oocyte is released from the ovarian antral follicle, it 50 

will mature spontaneously in vitro under appropriate conditions. The maturation process 51 

that is manifested initially by the germinal vesicle breakdown (GVBD) also involves 52 

cumulus expansion and cytoplasmic maturation. In cattle oocytes, an adequate 53 

concentration of glucose in the maturation media is necessary for this maturation process 54 

and also for subsequent embryo development (Rose-Hellekant et al. 1998; Lim et al. 1999; 55 

Khurana and Niemann 2000).  Indeed, manipulation of glucose concentration during 56 

maturation can affect the kinetics of bovine oocyte meiosis (Sutton-McDowall et al. 2005).  57 

As in other cell types, cumulus oocyte-complexes (COCs) metabolize glucose via 58 

glycolysis, pentose phosphate pathway and the hexosamine biosynthesis pathway (Downs 59 

and Utech 1999; Sutton et al. 2003; Gutnisky et al. 2007), as well as the polyol pathway 60 

(reviewed by Sutton-McDowall et al. 2010). However, cumulus cells have a great capacity 61 

for glycolysis, and this represents the predominant pathway in COCs. It has been suggested 62 

that cumulus cell glycolytic activity is high in order to generate ATP and produce pyruvate, 63 

lactate, malate and/or oxalacetate, which are readily used as oxidative substrates by the 64 

oocyte (Bracket and Zuelke 1993; Cetica et al. 1999; 2002; 2003).  In contrast, oocytes 65 

appears to lack capacity to undertake significant glucose metabolism (Dumollard et al. 66 

2006; Sutton et al. 2003; Zuelke and Bracket 1992).  In agreement with these observations, 67 

cumulus cells express a high affinity glucose transporter, Glut 4 (Roberts et al. 2004), 68 

whereas the oocyte does not.  69 

In mice, a high glucose concentration in the maturation media inhibits maturation by 70 

increasing intracellular ATP levels (Downs and Mastropolo 1994). It has also been 71 

proposed that the metabolic activity of the oocyte increases in the latter half of the meiotic 72 



maturation process, coinciding with a rise in the lactate production, which has been 73 

proposed as an indicator of oocyte quality (Preis et al. 2005). 74 

In somatic cells, the major regulatory point of the glycolytic pathway is the enzyme 75 

phosphofructokinase 1 (E.C.2.7.1.11), with AMP and ATP having important positive and 76 

negative allosteric regulating roles, respectively (Schrimer and Evans 1990; Clarenburg 77 

1992). Sodium fluoride (NaF) is also a well known inhibitor of the pathway, inactivating 78 

the glycolytic enzyme enolase (E.C. 4.2.1.11) (Mayes and Bender 2004).  The intermediary 79 

metabolism of glucose also produces the reducing equivalent, NADH. This metabolite is 80 

mainly synthesized by cumulus cells in the glycolytic pathway by the glyceraldehyde 3-P 81 

dehydrogenase and by the oocyte through the reaction catalyzed by the α-ketoglutarate 82 

dehydrogenase and malate dehydrogenase. NADH, besides being used for oxidative 83 

phosphorylation oras a co-factor for anabolic pathways, is a key REDOX regulator 84 

molecule (Dumollard et al. 2007), important in both cystolic and mitochondrial REDOX 85 

regulation. The REDOX state describes the sum of interactions between oxidized and 86 

reduced forms of a variety of molecules that includes NAD(P):NAD(P)H; FAD:FADH2, 87 

GSH:GSSG  (reviewed by Harvey et al. 2002; Herrick et al. 2006).  88 

Oocyte maturation also includes cytoplasm changes such as synthesis and 89 

accumulation of mRNA, proteins, transcription factors and the redistribution of organelles, 90 

especially mitochondria. Mitochondrial activity is essential for oocyte competence, and 91 

ATP content of oocytes generated from the reducing equivalents derived from carboxylic 92 

acid metabolism through the TCA cycle is highly correlated to oocyte competence 93 

(Stojkovic et al. 2001; Dumollard et al. 2007).  94 

Mitochondrial distribution differs within in vitro maturing oocytes between different 95 

species.  In mouse oocytes, mitochondria aggregate around the nucleus from the GV-stage 96 



through to GVBD. With the movement of the nucleus throughout maturation, mitochondria 97 

concentrate around the nucleus (Nishi et al. 2003). In pig oocytes, mitochondria accumulate 98 

in the perinuclear area during meiotic progression from GVBD to anaphase I. In matured 99 

oocytes, mitochondrial foci are formed and moved to the inner cytoplasm (Sun et al. 2001). 100 

On the other hand, in bovine oocytes after 12 - 18 h of in vitro maturation, the mitochondria 101 

move from a peripcorticalheral location to an evenly distributed pattern (Hyttel et al. 1986).  102 

Furthermore, there appears to be an association between the oocyte ATP content and 103 

mitochondria redistribution; specifically for oocytes with low ATP content, mitochondria 104 

migration does not happen occur (Stojkovic et al. 2001).  105 

Although it was proposed that glycolytic end products produced by cumulus cells 106 

are metabolized by the bovine oocyte during IVM, there are not studies that evaluate the 107 

influence of glycolytic activity in COCs on oocyte oxidative metabolism and maturational 108 

capacity. Thus, the main aim of this work was to study the glycolytic pathway activity 109 

during cattle oocyte IVM, analyzing the effects of two inhibitors (ATP, NaF) and a 110 

stimulator (AMP) of the key enzymes of glycolysis on the maturation rate, the oxidative 111 

and mitochondrial activity, and the mitochondrial distribution in the oocytes. 112 

 113 

Matherials and Methods  114 

Materials 115 

Unless specified, all chemicals and reagents were purchased from Sigma Chemical 116 

(St. Louis, MO, USA). 117 

 118 

Recovery of cumulus-oocyte complexes 119 



Bovine ovaries were collected at an abattoir within 30 min of slaughter and kept 120 

warm (30˚C) during the 2 h journey to the laboratory. Ovaries were washed with 121 

physiological saline containing 100000 IU L
-1

 penicillin and 100 mg L
-1 

streptomycin. 122 

COCs were recovered by aspiration of antral follicles (2-5 mm in diameter) and only 123 

oocytes completely surrounded by a compact and multilayered cumulus oophorus were 124 

used.  125 

 126 

In vitro maturation of cumulus-oocyte complexes 127 

COCs were cultured in Medium 199 (Earle´s salts, L-glutamine, sodium bicarbonate 128 

2.2 mg L
-1

 GIBCO, Grand Island, NY, USA) supplemented with 5% (v/v) fetal bovine 129 

serum (FBS; GIBCO), 0.2 mg porcine L
-1

 follicle-stimulating hormone (FSH; Folltropin-V; 130 

Bioniche, Belleville, Ontario, Canada), 2 mg L
-1 

porcine luteinizing hormone (LH; 131 

Lutropin-V; Bioniche) and 50 mg L
-1

 gentamicine sulfate under mineral oil at 39˚C for 22 h 132 

in an atmosphere of humidified 5% CO2 in air.  133 

To study the effect of different enzyme modulators of glycolysis on COC glycolytic 134 

pathway activity and oocyte meiotic maturation, COCs were individually cultured in 20 135 

µl drops of maturation media supplemented with increasing concentrations of ATP (1, 10, 136 

20 and 40 mM), NaF (2, 3 ,4 and 5 mM) or AMP (1, 10, 20 and 40 mM) under the 137 

conditions described above.  138 

To study the effect of manipulating COC glycolytic pathway activity on subsequent 139 

oxidative activity, mitochondrial activity, mitochondrial distribution and oocyte nuclear 140 

morphology in the oocytes, COCs were cultured in groups of 50 in 500 µl drops of 141 

maturation media supplemented with 10 mM of ATP or 3mM of NaF ( determined as 142 

inhibitory concentrations in the previous experiments) during 9, 15 and 22 hs hr and AMP 143 



10 mM (determined as stimulatory concentration in the previous experiment) without 144 

gonadotrophins supplementation. These maturations time points were chosen for being 145 

consecutives to key events of the maturation process: GVBD, metaphase I and extrusion of 146 

the first polar body, respectively (Fleming and Saacke 1972; Kruip et al. 1983; Gordon 147 

1994).  148 

 149 

Determination of glycolytic activity of COCs 150 

COCs were removed from each 20 µl drop and the glucose content was determined 151 

from the spent maturation medium. Glucose concentration was measured using a 152 

spectrophotometric assay based on the oxidation of glucose by glucose oxidase and 153 

subsequent revealed production of hydrogen peroxide involved (Trinder 1969). Positive 154 

controls comprising 20 µl drops of maturation media were included in each experiment. 155 

The determination of lLactate production in the culture medium was conducted 156 

determined in the same droplets that as glucose uptake was determined. Lactate production 157 

was measured using a spectrophotometric assay based on the oxidation of lactate and 158 

subsequent revealed production of hydrogen peroxide (Trinder 1969; Barhan and Trinder 159 

1972). 160 

 161 

Evaluation of oocyte meiotic maturation 162 

The removed COCs from each 20 µl drop were used to evaluate meiotic 163 

maturation rates. Oocytes were denuded mechanically by repeated pipetting in PBS with 164 

1 g L
-1

 hyaluronidase. Denuded oocytes were placed in a hypotonic medium of 2.9 mmol L
-

165 

1
 sodium citrate at 37˚C for 15 min, fixed on a slide with 3:1 ethanol: acetic acid 166 

(Tarkowski 1966), stained with 5% (v/v) Giemsa (Merck, Darmstadt, Germany) for 15 167 



minutes and observed under a light microscope at magnifications of x100 and x400. 168 

Oocytes were considered mature when a metaphase II chromosome configuration was 169 

present. 170 

 171 

Evaluation of oocyte cytoplasmic maturation 172 

Immature COCs were divided into three groups for in vitro maturation in the media 173 

described above (positive control), without supplementation of gonadotrophins (negative 174 

control) and only supplemented with AMP 10 mM. After 21 h of maturation, in vitro 175 

fertilisation was performed using frozen–thawed semen from a Holstein bull of proven 176 

fertility. Semen was thawed at 37
◦
C in modified synthetic oviduct fluid (mSOF; Takahashi 177 

and First 1992), centrifuged twice at 500 xg for 5 min and then resuspended in fertilisation 178 

medium to a final concentration of 2×10
9
 motile spermatozoa L

−1
 after 30 min of sperm 179 

selection by swim up (Hallap et al. 2004). Fertilisation was performed in IVF-mSOF, 180 

consisting of mSOF supplemented with bovine serum albumin (BSA) and heparin under 181 

mineral oil at 39◦C, in 5% CO2 in air and 100% humidity for 20 h. Zygotes were denuded 182 

by repeated pipetting and placed  in 500µL of in vitro culture (IVC)-mSOF, consisting of 183 

mSOF supplemented with Minimum Essential Medium (MEM) amino acids (GIBCO), 184 

MEM non-essential amino acid (GIBCO), glutamine, 6 g L
−1

 BSA and 5% (v/v) FBS 185 

(GIBCO), under mineral oil at 39ºC in 90% N2 : 5% CO2 : 5% O2 and 100% humidity for 186 

24 h. The cytoplasmic maturation was evaluated by the ratio of cleaved embryos. An 187 

additional cohort of 10 oocytes from each replicate was maintained through the fertilisation 188 

procedure without exposure to sperm to test for parthenogenesis. 189 

 190 

Evaluation of oxidative activity, mitochondrial activity and mitochondrial distribution 191 



From the total number of the oocytes usedrecovered, 2/3 were fated utilised to 192 

determine the oxidative activity, mitochondrial activity and mitochondrial 193 

distribution at 0, 9, 15 and 22 h of maturation. These time points were chosen as they 194 

correlate to key events of the maturation process: GVBD (6 – 8 h), metaphase I (12 – 14 h) 195 

and extrusion of the first polar body (18 – 21 h). 196 

The cumulus cells were removed mechanically by repeated pipetting in PBS with 1 197 

g L
-1

 hyaluronidase before the zona pellucida was dissolved with 5 g L
-1 

pronase for 1 min.  198 

 Fluorescent probes and confocal microscopy were used to analyze the parameters 199 

mentioned above. The dual stains of RedoxSensor red CC-1 and MitoTracker green FM 200 

were used in this experiment. Oocytes were coincubated with a final concentration of 1nM 201 

RedoxSensor red CC-1 and 0.5 nM MitoTracker green FM, for 30 min at 37˚C in the dark 202 

and then washed twice in PBS. Stained oocytes were then placed between slide and 203 

coverslip for the observation in a laser confocal microscope (Nikon C1 confocal scanning 204 

head, Nikon TE2000E). One optical section was examined for each oocyte. The images 205 

obtained were saved and then analyzed using the Adobe Photoshop CS2 (version 9). 206 

 Both red and green fluorescence emission intensities were determined in four 207 

different regions (squares) within three areas (1 - 3) of the oocyte, as depicted in Fig 1A?? 208 

(Wakefield et al. 2007). 209 

 The oxidative activity was calculated as the sum of the average red fluorescence 210 

intensity in the three areas of the same oocyte. The mitochondrial activity was calculated as 211 

the sum of the average green fluorescence intensity in the three areas of the same oocyte. 212 

Ratios of green fluorescence intensity between areas 3 and 1 were then calculated to 213 

compare the distribution of active mitochondria.  214 

 215 



Evaluation of oocyte  nuclear morphology 216 

 The remaining 1/3 of the oocytes were used to evaluate the nuclear morphology 217 

at 0, 9, 15 and 22 h of maturation. Denuded oocytes were fixed in a 40 mg L
-1

 218 

paraformaldehide solution for an hour and then incubated in a permeabilizing solution for 219 

an hour and a half. Finally the fixed oocytes were stained with 10 mg L
-1

 Hoechst 33342 220 

solution for 15 min. 221 

 Oocyte nuclear status was observed at x400 under a Jenamed II epifluorescence 222 

microscope (Carl Zeiss Jena) with a 410 nm filter at each time point. 223 

 224 

Statistical analysis  225 

The results of glucose uptake, lactate production, oxidative activity, mitochondrial activity 226 

and the ratio of green fluorescence intensity between area 3 and 1 to evaluate mitochondrial 227 

distribution are expressed as the mean ± s.e.m. In the studies evaluating glucose uptake and 228 

lactate production the comparisons were made by analysis of variance (ANOVA) followed 229 

by Bonferroni post-test. The oxidative activity, the mitochondrial activity and the 230 

mitochondrial distribution were compared using a 2 x 4 or 3 x 4 factorial design. Meiotic 231 

and cytoplasmic maturation rates between treatments were compared using a chi-square 232 

analysis for non-parametric data. In all tests, significance was set at p<0.05. 233 

 234 

Results 235 

Glycolytic activity of COCs and oocyte maturation 236 

In order to study the glycolytic pathway, COCs were incubated during maturation 237 

with increasing concentration of the pathway modulators. COCs matured in the presence of 238 

ATP showed a dose dependant inhibition in glucose uptake and lactate production 239 



(p<0.05). A co-dependent inhibition on their progression to metaphase II was also observed 240 

(p<0.05) (Fig 2 a). 241 

The addition of increasing concentrations of NaF in the maturation medium 242 

produced a dose-dependent inhibition of both lactate production and nuclear maturation 243 

(p<0.05). However, the inhibition of glucose uptake was not dose-dependent (p<0.05) (Fig 244 

2 b).  245 

The addition of AMP to the maturation media had no effect on glucose uptake and 246 

lactate production or on rates of nuclear maturation compared with the control group (Fig 2 247 

c). In order to test if the gonadotrophins (FSH, LH) were masking an effect of AMP, the 248 

experiment was repeated with maturation media devoid of gonadotrophins. In the absence 249 

of FSH and LH, AMP had both stimulatory effect on glucose uptake and lactate production 250 

(p<0.05) with no effect on the nuclear maturation (Fig 2 d).  251 

As the rate of nuclear maturation had not been altered with the addition of AMP, we 252 

evaluated the cytoplasmic maturation of the oocytes cultured with 10 mM AMP without 253 

gonadotrophin supplementation. We chose this concentration because it was the lowest that 254 

stimulated the glycolytic pathway in the COCs. A significant decrease in the cleavage rates 255 

compared with both control groups (matured with and without gonadotrophins) was 256 

observed in the group of COCs matured in the presence of AMP (p0.05) (Fig 3). 257 

 258 

Oxidative activity of the oocyte  259 

 To confirm the participation of the COC glycolysis in the oxidative metabolism, 260 

oocytes were stained with Redox Sensor red to quantify mitochondrial oxidative activity at 261 

different time points (0, 9, 15 and 22 hs). In these experiments, 10 mM ATP and 3 mM 262 



NaF were at the minimum inhibitory concentrations observed for glucose uptake and lactate 263 

production. For glycolytic pathway stimulation we used 10 mM AMP to stimulate glucose 264 

uptake and lactate production. 265 

 Oocytes showed changes in their oxidative activity throughout maturation, an 266 

increase in the oxidative activity was observed at 15 and 22 h of maturation compared with 267 

time 0 h (p<0.05). Although similar changes in oxidative activity were also observed in the 268 

oocytes matured in the presence of ATP or NaF, overall activity was significantly lower 269 

than the values obtained for the control group (p<0.05) (Fig 4 a and 4 b).  In contrast, AMP 270 

(in the absence of gonadotrophins) stimulated oxidative activity at 15 and 22 h maturation 271 

(p<0.05) compared to 0 h.  Nevertheless, at 15 h the increase was significantly lower for the 272 

oocytes matured with AMP and the control without gonadotrophins respect to the control 273 

with FSH + LH (p<0.05). Additionally, oocytes matured with AMP showed the highest 274 

oxidative activity at hour 22 of maturation (p<0.05) (Fig 4 c).  275 

 276 

Mitochondrial activity of the oocyte 277 

To study the effect of manipulating glycolytic activity on mitochondrial activity 278 

within oocytes, fluorescence intensity of Mitotracker green was analyzed at the same time 279 

points and using the same ATP, NaF and AMP concentrations described in the experiment 280 

above. 281 

 The intensity of green fluorescence varied throughout maturation. A significantly 282 

increase in intensity was observed at hour 15 and 22 of maturation compared with hour 0 283 

(p<0.05). A partial increase was observed in the ATP group at hour 15 (p<0.05) while no 284 

changes were observed for the NaF group (Fig 5 a and 5 b).  Stimulation of glycolysis with 285 

AMP revealed an increase in mitochondrial activity at 15 and 22  h of maturation compared 286 



with 0 h (p<0.05), and an increase in the same parameter compared with the respective 287 

controls at hours 9 and 22 of maturation (p<0.05); (Fig 5 c). 288 

A high positive correlation between oxidative activity and mitochondrial activity of oocytes 289 

was observed for each treatment (r>0.82, n=199-211, p<0.05). 290 

 291 

Mitochondrial distribution in the oocyte 292 

 Changes in the mitochondrial distribution were observed during maturation. The 293 

distribution in immature oocytes was cortical (Picture 1), however a progressive 294 

mitochondria migration to the central area was observed (Picture 1) during maturation. This 295 

observation was confirmed analyzing the ratio between the intensity of green fluorescence 296 

between area 3 and area 1 of the oocyte (p<0.05). On the other hand, oocytes treated with 297 

ATP, NaF or AMP showed a partial migration compared with their respective controls 298 

(p<0.05);(fig 6 a, 6 b and 6 c).    299 

 300 

Oocyte nuclear morphology 301 

 To determine which stage of nuclear maturation is affected by glycolysis inhibition, 302 

COCs were also analyzed with the fluorochrome Hoechst 33342 at the different time 303 

points. In the control group 70.8% of the oocyte had passed GVBD state after 9 hours of 304 

maturation, while the oocytes matured with ATP or NaF showed significantly lower rates 305 

(p<0.05). The rates of oocytes in MI was also significantly lower in the treatments with 306 

ATP and NaF at hour 15 of maturation (p<0.05). The extrusion of the first polar body was 307 

observed in the 81.5% of the control oocytes at hour 22 but diminished in the treated 308 

oocytes (p<0.05), mostly staying arrested at the germinal vesicle stage (Table 1). Oocytes 309 

treated with AMP did not show differences in metaphase II rates at hour 22 of maturation 310 



respect to controls, so we did not include the analysis of oocyte nuclear morphology in this 311 

experiment.  312 

 313 

Discussion 314 

The present study describes the effect of the addition of glycolytic modulators 315 

during bovine oocyte IVM on glucose uptake and lactate production of COCs, and on the 316 

maturation rate, oxidative activity, mitochondrial activity and mitochondrial distribution of 317 

the oocytes.  318 

When ATP or NaF was added in the maturation media, a reduction in glucose 319 

uptake and lactate production was observed, as were the meiotic maturation rate, suggesting 320 

a relationship between COC glycolytic activity and nuclear maturation capacity of the 321 

oocyte. Although a dose-dependent inhibition in lactate production was observed with both 322 

modulators, only COCs matured with ATP showed a dose-dependent inhibition of glucose 323 

uptake; this difference might be related to a difference in the intracellular mechanisms of 324 

action. NaF is a specific pharmacological inhibitor of the glycolytic pathway by inhibiting 325 

the enzyme enolase, whereas ATP is both a physiological modulator of 326 

phosphofructokinase 1 as well as other glucose-dependent metabolic pathways. Both have 327 

their effects at different levels within the glycolytic pathway: ATP inhibits the pathway at 328 

the preparatory phase, whereas NaF acts at the payoff phase of the pathway (Nelson and 329 

Cox 2005). The distal inhibition of glycolysis by NaF might allow a flux of intermediary 330 

metabolites to enter other pathways.  331 

The dose-dependent inhibition of oocyte nuclear maturation in presence of either 332 

ATP or NaF may be attributed a reduced contribution of oxidative substrates, such as 333 

pyruvate and lactate, by the cumulus cells. These substrates are essential for the bovine 334 



oocyte and reflects the very low capacity for glucose metabolism by the oocyte (Cetica et 335 

al. 1999; Zuelke and Brackett 1992), as demonstrated by the considerably lower activity of 336 

phosphofructokinase 1 in denuded oocytes than in cumulus cells (Cetica et al. 2002). 337 

In a previous report, we demonstrated that FSH/LH caused a significant (30.5%) 338 

increase in glucose uptake by COCs (Gutnisky et al. 2007).  In the present work, we found 339 

that the dose-dependent stimulation of glycolysis by AMP is not synergistic with FSH/LH 340 

stimulation. Furthermore, although the kinetics of meiotic maturation was not altered when 341 

AMP was added to the culture media, the subsequent cleavage rates following IVF were 342 

diminished significantly, suggesting that stimulation of the glycolytic pathway by AMP 343 

may affect cytoplasmic maturation of bovine oocytes. In line with these results, Preis et al. 344 

2005 suggested that glucose uptake and lactate production by the COC is related to the 345 

capability of the oocyte to be fertilized. Moreover, AMP may be affecting the AMP/ATP 346 

ratio activating the AMP kinase. The activity of this enzyme is known to affect the nuclear 347 

maturation of the bovine oocyte (Bilodeau-Goeseels et al. 2007). 348 

In the present study it was detected a fluctuation in the oxidative activity and the 349 

mitochondrial activity of bovine oocytes during IVM. Additionally, both parameters are 350 

highly correlated and they depict similar variations during maturation. Interestingly, the 351 

oxidative fluctuations observed here are not coincident with the changes in reactive oxygen 352 

species concentration detected bovine oocyte maturation in vitro (Morado et al. 2009). Our 353 

results reveal that oxidative activity increases in bovine oocytes during maturation at 15 354 

and 22 hours of culture. The increase in the oxidative activity is coincident with key 355 

meiotic events of maturation, such as the formation of the metaphase plate of the first 356 

meiotic division and extrusion of the first polar body (Gordon 1994), respectively. Protein 357 

synthesis increases three fold during metaphase I compared to GV (reviewed by Ferreira et 358 



al. 2009), suggesting that the increase in the oxidative activity at hour 15 of maturation is 359 

related to new protein synthesis.  360 

The reduced glycolytic activity induced by ATP and NaF is coincident with a 361 

low oocyte oxidative activity at 15 and 22 hours of maturation, compared to untreated 362 

COCs. We also observed that inhibiting the glycolytic pathway arrested most of the 363 

oocytes at the GV stage. Although from these results it could be suggested that 364 

glycolytic activity of the COC may be decreased due to the inhibition of GVBD and 365 

oocyte maturation, we previously demonstrated that glycolytic activity in cumulus 366 

cells is not influenced by the presence of the oocyte (Sutton et al. 2003). Therefore, the 367 

pattern of oxidative activity would be dependent on the changes in glycolytic activity 368 

of the COCs, and therefore would reflect ATP demand. On the other hand, the 369 

stimulation of the pathway by AMP affected the pattern of oocyte oxidative activity with 370 

respect to the control group. The maintenance of a higher oxidative activity in the oocyte 371 

during IVM might in some way might be affecting the cytoplasmic maturation of the 372 

female gamete. 373 

Quantification of mitochondrial activity in untreated COCs increased significantly 374 

at 15 and 22 hours of maturation.  Inhibition of COC glycolysis prevented this increase in 375 

mitochondrial activity, most likely as a consequence of the inhibition in glycolytic activity 376 

in the COCs, causing a decrease in the supply of oxidative substrates to the oocyte. A 377 

similar observation was made for mitochondrial distribution: ; inhibition of glycolysis 378 

prevented mitochondrial migration during maturation. Stimulating the glycolytic pathway 379 

by AMP altered the pattern of mitochondrial activity compared to the control group. As 380 

discussed already in regard to the oxidative activity, the mitochondrial activity remained 381 

higher during IVM in the presence of AMP, suggesting the increased glycolytic activity of 382 



cumulus cells may increase the contribution of reduced coenzymes and/or oxidative 383 

substrates to the oocyte, augmenting mitochondrial activity. Nevertheless, this does not 384 

appear to improve cytoplasmic maturation. 385 

The Redox-Sensor Red staining (oxidative levels) and Mitotracker Green 386 

(mitochondrial activity) were closely co-localised and within the cytosolic compartment of 387 

the oocyte, this being congruent with the characteristic pattern of metabolically active cells 388 

(Chen and Gee; 2000). This relationship might be the result of an increase in cytosolic 389 

reductive agents, like lactate and malate, within the oocyte. These metabolites can act as 390 

reductive compounds when they are substrates of the lactate dehydrogenase and malate 391 

dehydrogenase, respectively (Cetica et al. 1999; 2003). It has been reported that 392 

mithochondrial reorganization and burst of ATP production during oocyte 393 

maturation were completely inhibited if cell cycle progression is inhibited (Yu et al. 394 

2010). In agreement with these findings, we found outdetermined that alterations of 395 

oxidative and mitochondrial activity patterns are related with modifications in normal 396 

mitochondrial migration, suggesting that the same is true in bovine oocytes. 397 

 In conclusion, we report that the glycolytic pathway activity in COCs is necessary 398 

for successful IVM of the bovine oocyte. Modifications in the oocyte’s oxidative and 399 

mitochondrial activities are associated with increases at 15 and 22 hours of incubation 400 

during maturation. Inhibiting glycolysis reduced these parameters in the oocyte at these 401 

time points. Furthermore, an inhibition of mitochondrial migration in oocytes was detected. 402 

The stimulation of the glycolytic pathway by AMP in the absence of gonadotrophins also 403 

changes the oxidative behavior, which reduces oocyte cytoplasmic competence. 404 

 405 
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Fig 1:  585 

Schematic representation of the four different regions (squares) within three areas (1 - 586 

3) of the an oocyte (1 a) used for determining mitochondrial fluorescence.  587 

Oocytes stained with the dualtwo fluorescent probes,  of MitoTracker Green (A) and 588 

RedoxSensor Red (B) at the differennet time points (Original magnification x 400). Oocytes 589 

stained with Hoechst DNA fluorochrome to study determine nuclear maturation (C) at the 590 

different time points: Hour 0 (germinal vesicle), Hour 9 (GVBD), Hora Hour 15 (metaphase I) 591 

and Hour 22 (1
st
 polar body extrusion). The arrows show indicate the presence of metaphase 592 

II chromatin configuration and the lower arrow indicates the 1
st
 polar body. (Original 593 

magnification x 1000) (1 b). 594 
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Fig 2:  596 

Glucose uptake and lactate production in COCs matured with different 597 

concentrations of ATP (2 a), NaF (2 b), AMP (2 c) and AMP without gonadotrophin 598 

supplementation (2 d).  599 

a, b, c
 Bars of the same color with different super index differ significantly (p<0,05). 600 

n=30-40 COCs for each treatment.  601 

 602 

Fig 3:  603 

Cleavage percentage rate in following IVF from oocytes matured with AMP 10 mM 604 

without gonadotrophins. 605 

a, b, c
 Bars with different super index differ significantly (p<0,05). 606 

n=101-116 COCs for each treatment.  607 

 608 

Fig 4:  609 

Oxidative activity of thewithin oocytes matured in the presence of ATP 10 mM (4 a),  610 

NaF 3 mM (4 b) or AMP 10 mM (4 c). 611 

a, b, c
 Bars of the same color with different super index differ significantly (p<0,05). 612 

*^ Significant difference between treatments at the same time.  613 

n=30-40 COCs for each treatment.  614 

 615 

Fig 5:  616 

Mitochondrial activity of thewithin oocytes matured in the presence of ATP 10 mM (5 617 

a), NaF 3 mM (5 b) or AMP 10 mM (5 c). 618 

a, b, c
 Bars of the same color and different super index differ significantly (p<0,05). 619 

*^ Significant difference between treatments at the same time. 620 

n=30-40 COCs for each treatment.  621 

 622 

Fig 6:  623 

Active mitochondria distribution of within the oocytes matured in the presence of 624 

ATP 10 mM (6 a),  NaF 3 mM (6 b) or AMP 10 mM (6 c). 625 

a, b, c
 Bars of the same color and different super index differ significantly (p<0,05). 626 



* Significant difference between treatments at the same time. 627 

n=30-40 COCs for each treatment.  628 

 629 

Table 1:  630 

Effect of ATP 10 mM and Naf NaF 3 mM on nuclear morphology  631 

a, b, c
 Different superscript indicates index differ significantly differences in percentage of 632 

oocytes between treatments at the same time point and same nuclear stage. 633 

n=15-20 oocytes for each treatment.  634 

GV: Germinal vesicle, GVBD: Germinal vesicle Breakdown,  635 

MI: Metaphase I y PBE: Polar body extrusion. 636 
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Control ATP NaF
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Hour 0 100a 100a 100a

Hour 9 29,2a 70,8a 100b 0b 88,9b 11,1b

Hour 15 9,5a 90,5a 87,5b 12,5b 84,2b 15,8b

Hour 22 11,1a 7,4a 81,5a 100b 0a 0b 58,8c 17,7a 23,5c
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Figure 3: 662 
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Figure 5: 670 
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