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Insulin Increases Epiblast Cell Number
of In Vitro Cultured Mouse Embryos
via the PIBK/GSK3/p53 Pathway

Jared M. Campbell,; Mark B. Nottle? lvan Vassiliev;> Megan Mitchell? and Michelle Lane®

High-quality embryos give rise to embryonic stem cells (ESCs) at greater efficiencies than poor-quality embryos.
However, most embryos available for human ESC derivation are of a reduced quality as a result of culture in
relatively simple media up to 10 years earlier, before cryopreservation, or before compaction. In the present
study, we used a mouse model to determine whether a culture with insulin from the 8-cell stage could increase
the number of ESC progenitor epiblast cells in blastocysts, as well as endeavor to determine the molecular
mechanism of the insulin’s effect. Culture in media containing 1.7 pM insulin increased epiblast cell number
(determined by Oct4 and Nanog co-expression), and proportion in day 6 blastocysts. The inhibition of phos-
phoinositide 3 kinase (PI3K) (via LY294002), an early second messenger of the insulin receptor, blocked this
effect. The inhibition of glycogen synthase kinase 3 (GSK3) or p53, 2s messengers inactivated by insulin sig-
naling (via CT99021 or pifithrin-o, respectively), increased epiblast cell numbers. When active, GSK3 and p53
block the transcription of Nanog, which is important for maintaining pluripotency. A simultaneous inhibition of
GSK3 and p53 had no synergistic effects on epiblast cell number. The induced activation of GSK3 and p53, via
the inhibition of proteins responsible for their inactivation (PKA via H-89 and SIRT-1 via nicotinamide, re-
spectively), blocked the insulin’s effect on the epiblast.From our findings, we conclude that insulin increases
epiblast cell number via the activation of PI3K, which ultimately inactivates GSK3 and p53. Furthermore, we
suggest that the inclusion of insulin in culture media could be used as a strategy for increasing the efficiency with
which the ESC lines can be derived from cultured embryos.

Introduction

HILE MOUSE EMBRYONIC STEM cells (mESCs) are pri-

marily isolated from in vivo derived blastocysts, hu-
man ESCs (hESCs) are typically isolated from frozen-assisted
reproduction technology embryos donated for research after
the completion of treatment, often up to 5-10 years after the
embryos were produced [1,2]. As a consequence, many em-
bryos donated for hESC derivation have been cultured under
a range of conditions, including relatively simple media,
subsequently shown to compromise development [3-6]. The
quality of an embryo and the number of epiblast cells, iden-
tified as cells that co-express the pluripotency markers Oct4
and Nanog [7], is known to be of key importance to that
embryo’s capacity to give rise to an hESC line [8]. Therefore,
the efficiency and quality of the ESC lines will likely be im-
proved by optimizing conditions for the 8-cell embryo (the

stage around which human embryos typically become avail-
able for ESC derivation) to increase blastocyst quality and the
number of pluripotent cells. A significant number of stored
human embryos for donation have been frozen at the cleavage
stage before compaction [9-11], and in a previous study using
a mouse model, we reported that subsequent culture from the
8-cell stage to the expanded blastocyst stage can influence the
number of epiblast cells [12], which are the progenitor cells
that give rise to ESC lines [13-15].

The addition of insulin to embryo culture media for de-
velopment from the zygote or 2-cell stage has been previ-
ously shown as having beneficial effects, with an increased
blastocyst formation rate [16], accelerated development
[16,17], increased blastocyst cell number [16], stimulated
protein synthesis [18-20], reduced protein degradation [19],
and increased protein uptake [19]. While the capacity of in-
sulin or any other growth factor—many of which have
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similar effects to those just described [21,22]—to increase the
number of epiblast cells is unknown, insulin differs from
most in that it increases total cell number (TCN) by in-
creasing inner cell mass (ICM) cell number [16]. The aim of
the present study, therefore, was to determine whether the
addition of insulin from the 8-cell stage increases the number
of epiblast cells in the expanded blastocyst. We then under-
took a series of experiments to investigate the involvement of
phosphoinositide 3 kinase (PI3K), glycogen synthase kinase 3
(GSK3), and p53 in insulin’s effect on epiblast cell number, as
these are known pathways for insulin stimulation in other
tissues [23-26].

Materials and Methods
Experimental design

To determine the effect of insulin on epiblast cell number,
an embryo culture medium was supplemented with 0, 0.17,
1.7, and 1,700 pM insulin from the 8-cell stage in Experiment
1. In Experiment, 2 the effect of LY294002 [27], an inhibitor of
PI3K—a second messenger present in the mouse preim-
plantation embryo involved in the maintenance of pluri-
potency [25,28]—was examined in the presence or absence of
insulin to determine whether insulin was acting via PI3K.
Since the PI3K second messenger pathway involves the
subsequent phosphorylation and inactivation of GSK3 [29],
which has been shown to be beneficial for maintaining cells
in a pluripotent state in outgrown ICMs [30], we hypothe-
sized that the activation of GSK3 would inhibit the positive
response of insulin, while inactivation would mimic the ef-
fects of insulin. This hypothesis was tested in Experiment 3
using H-89 [31] in the presence or absence of insulin and
CT99021 [32] for GSK3 activation and inhibition, respec-
tively. Stimulation of the PI3K second messenger pathway
can also result in the ubiquitination, inactivation, and deg-
radation of pro-apoptotic protein p53 [23,33,34]. In the nu-
cleus, p53 is known to directly inhibit the transcription of
Nanog [35] and, therefore, inhibit pluripotency. To establish
whether the positive effects of insulin on the epiblast were
mediated via p53, Experiment 4 was performed where p53
was indirectly activated via acetylation due to nicotinamide
[36,37] in the presence or absence of insulin and inhibited by
pifithrin-o [38]. Finally, p53 and GSK3 are known to have
significant cross talk, with GSK3 inactivation leading to p53
build up [39] and resultant apoptosis [40], or loss of p53
activity in different circumstances [41-43]. In Experiment 5,
we inhibited both factors at once to determine whether there

was synergy.

Insulin and inhibitors

Chemicals used were purchased from Sigma-Aldrich,
(St. Louis, MO) except where otherwise noted. In this study,
all the chemicals and consumables used for standard embryo
culture were tested for compatibility with embryo develop-
ment in a one-cell mouse embryo assay [44]. Bovine insulin
was used at concentrations of 0, 0.17, 1.7, and 1,700 pM.
LY294002 was used at 50 uM to inhibit PI3K; this concen-
tration has been shown to reduce the phosphorylation of Akt
and P70%°* in mESCs, which are phosphorylated as a result
of PI3K activity (in the same experiment, LY294002 was
shown to have the same effect on blastocyst cells as ESCs
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(induce apoptosis)) [27]. LY294002 has also been directly
shown to be effective in decreasing PI3K activity in blasto-
cysts, as evidenced by the decreased Akt phosphorylation
at 250 uM [45]. Additionally, the treatment of ESCs with
LY294002 reduced the phosphorylation of Akt at 5-30 uM, as
well as S6 and GSK3 at 10-60 uM, which are also phos-
phorylated as a result of PI3K activity [46]. In an in vitro
assay, LY294002 was shown to completely abolish PI3K ac-
tivity at 100 uM [47]. CT99021 (Axon Medchem, Groningen,
The Netherlands) was used to inhibit GSK3 (the concentra-
tions studied were 0.04, 0.3, 3.0, and 15puM; initial experi-
ments using CT99021 at 30 pM showed a significant negative
effect on the development of embryos). In [48], CT99021 at
3 uM was shown to decrease the phosphorylation of B-catnin,
a GSK3 target in ESCs. Furthermore, a culture of ESCs in
which GSK3 o and B had been deleted with CT99021 did not
produce the effects seen when wild-type ESCs were cultured
with CT99021 [48]. This decrease in B-catnin phosphorylation
was also observed in embryos (bovine 2-cell) cultured with
CT99021 at 3 uM, an effect that was the same as LiCl, another
recognized inhibitor of GSK3 [49]. CT99021 at 1pM was
shown to reduce GSK3p activity to 1% in an in vitro assay in
which the inhibitor was shown to be highly specific [32].
H-89 at 10 uM was used to activate GSK3, as it is a robust
activator of GSK3 whose inclusion in culture medium has
been shown to prevent or inhibit the phosphorylation of
GSK3 (which would inactivate GSK3) in embryonic kidney
cells at 10 uM [31,50], muscle cells at 50 uM [51], sperma-
tozoa at 100puM [52], and glioma cells at 10uM [53].
Pifithrin-o. was used to inhibit p53 at 30 uM [38], as it has
been established as an effective inhibitor of p53 that blocks
the activation of p53 responsive LacZ in ConA cells, and
inhibits p53-mediated apoptosis at 10-20 pM [54]. Pifithrin-
o at 10-20 uM is also able to affect p53-dependent cell-cycle
checkpoint control, as it prevents gamma irradiation-
induced arrest, but not in cells with no functional p53 [54].
Embryos cultured in the presence of pifithrin-o at 10-30 pM
reproduced the effect of p53 deletion, and reversed the ef-
fect of culture in conditions known to induce increased p53
activity [38]. Pifithrin-o. lowers the level of nuclear p53 at
1020 pM in vitro and 2.2mg/mL when injected in vivo
[54,55]. Nicotinamide at 10 uM was used to activate p53; our
group has previously used this inhibitor in embryo culture
[36], as it has been shown to increase the levels of acetylated
p53 (active p53) in lung, breast, and bone cancer cells [37]
and induce apoptosis in a p53-dependent manner in chronic
lymphocytic leukemia cells as well as increase p53 acety-
lation [56]. Where dimethyl sulfoxide (DMSO) was used to
dissolve inhibitors, a vehicle control of an equal quantity of
DMSO was included.

Embryo collection, culture, and assessment

Approval for all procedures was obtained from The
University of Adelaide Animal Ethics Committee, in com-
pliance with the Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes. Mice were fed
ad libitum, and kept in a 14:10 light:dark cycle. C57BL/6
female mice aged 3-4 weeks were injected intraperitonealy
with of 51U equine chorionic gonadotropin (Folligon, In-
tervet Australia Pty Ltd, Bendigo, Victoria), followed by
5IU human chorionic gonadotropin (hCG; Pregnyl,
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Organon, Sydney, Australia) 48 h later, inducing ovulation.
The ovulating females were placed with a male mouse of
the same strain, and mating was assessed the next morning
by the presence of a vaginal plug. Zygotes were collected
22h post hCG in MOPS-G1 [57], and cumulus cells were
removed with 50 IU/mL hyaluronidase. Zygotes were cul-
tured in 20 pL of G1.2 medium [44], in groups of 10 at 37°C
in 6% CO,, 5% O,, and 89% N, for 48h. Embryos that
reached the 8-cell stage after 48 h of culture were transferred
to 20pL drops of G2.2 supplemented with the relevant
treatment, and cultured individually at 37°C in 6% CO,, 5%
O,, and 89% N, from 48 to 115h. Since embryos secrete
exogenous factors, which affect development when they are
cultured in groups [58,59], individual culture was used to
minimize the potentially confounding paracrine growth-
factor effect.

Embryo development was assessed at 94 and 115h. Em-
bryos were scored as being in the following stages of de-
velopment: arrested (embryos that failed to develop from the
8-cell stage), early blastocysts (embryos where the blastocoel
cavity was <2/3rds the volume), blastocysts (embryos with
a blastocoel cavity >2/3rds the volume), hatching blasto-
cysts (embryos with cells herniating from the zona pelluci-
da), and hatched blastocysts (embryos that had hatched
completely from the zona pellucida).

Immunohistochemistry

Oct4 and Nanog, whose co-expression marks epiblast
cells, were assessed in blastocysts at 115h of culture using
immunohistochemistry and confocal microscopy. Blasto-
cysts were fixed overnight in 4% paraformaldahyde at 4°C.
After fixation, the embryos were incubated for 5min in
0.1IM glycine in phosphate-buffered saline (PBS) at room
temperature (RT). Blastocysts were permeablized in PBS
with 0.25% TritonX-100 (PBS-TX) for 30min at RT, then
blocked in 10% Normal Donkey Serum (Sapphire
Bioscience, Redfern, New South Wales, Australia) for 1h at
RT. Embryos were incubated with Nanog rabbit anti-
mouse polyclonal antibody (Sapphire, Cat#120-21603 or
Cosmo Bio, Tokyo, Japan, Cat#REC-RCAB0002P-F) at 1:200
and Oct-3/4 goat anti mouse polyclonal antibody (Santa
Cruz Biotechnology inc, Santa Cruz, CA; sc-8628) at 1:100
overnight in PBS-TX at 4°C. Blastocysts were then washed
in PBS-TX, and incubated with donkey anti-rabbit sec-
ondary antibody (1:100) conjugated to FITC (Australian
Laboratory Services, Homebush New South Wales, Aus-
tralia) and donkey anti-goat secondary antibody (1:100)
conjugated to Rhodamine (Jackson immunoResearch, West
Grove, PA; 705-025-003) for 2h at 37°C. Embryos were
then incubated with 3nM of 4’-6-diamidino-2-phenylindole
(DAPI), a nuclear stain, for 2-3min at RT, before being
examined by confocal microscopy (Nikon, EZ-C1 software
or Calcium Lecia SP5, Lecia SP5 software). The number of
cell nuclei stained blue by DAPI gave TCN; ICM cell
number was the number of cells whose nuclei were
stained red by rhodamine, indicating the presence of Oct4,
and epiblast cell number was the number of red ICM
nuclei that were also stained green by FITC, indicating the
presence of both Oct4 and Nanog. Trophectoderm cell
number was TCN minus ICM cell number, and primitive
endoderm cell number was ICM cell number minus epi-
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blast cell number. A cell was counted as being positive for
the flurophore in question when the intensity of the stain
was sufficient for the nucleus to be clearly distinguished
from the background. A negative control was assessed
where the primary antibody was not applied.

Statistics

All data are expressed as meanz*sem. The treatment
group was fitted as a fixed factor, and the replicate was fitted
as a cofactor in all analyses. Data were analyzed using
Univariate General Linear Model using PASW Statistics 17 or
chi-square tests. Between-treatment differences were as-
sessed using the Least Significant Difference method. Values
such as P<0.05 were considered significant.

Results

Experiment 1: effect of insulin on epiblast
cell number

The supplementation of culture medium with insulin (0,
0.17,1.7, and 1,700 pM) from the 8-cell stage had no effect on
the development at 94h (blastocyst or hatching blastocysts
for all treatments, range 81% —87%) or 115h (hatching blasto-
cyst or hatched blastocyst for all treatments, range 77% —
86%). At 115 h of culture, there was no effect of the insulin on
TCN, ICM, trophectoderm, or primitive endoderm cell
numbers (Fig. 1A, B, E, and F). However, culture in the
presence of 1.7 pM insulin significantly increased epiblast cell
number (P<0.05, Fig. 1C). Since the epiblast exists as a
subpopulation of the ICM, this meant that there was an in-
crease in the proportion of ICM cells which were ESC pro-
genitor epiblast cells in the presence of 1.7pM insulin
(P<0.05, Fig. 1D). Representative images of blastocysts cul-
tured in the control treatment or 1.7 pM of insulin and
stained for Oct4, Nanog, and TCN are supplied in Fig. 2.

Experiment 2: effect of PI3K inactivation on epiblast
cell number in embryos cultured in the presence
or absence of insulin

To determine whether the effect of insulin was a result of
PI3K stimulation, PI3K was inactivated with 1Y294002 at
50 puM [27] in the presence or absence of insulin. At 94h of
culture, LY294002 prevented hatching in either the presence
or absence of insulin, and significantly increased the number of
arrested or degenerate embryos in the presence of insulin
(P<0.01, Table 1). At 115h, the inhibition of PI3K in the pres-
ence of insulin significantly reduced the percentage of embryos
that developed in the blastocyst stage, with hatching reduced
in either the presence or absence of insulin (P <0.001, Table 2).

PI3K inhibition significantly reduced TCN and ICM cell
number, irrespective of the presence of insulin (P<0.01, Fig.
3A, B). However, while the inhibition of PI3K in the absence
of insulin did not affect epiblast cell number compared with
the control, PI3K inhibition prevented the stimulatory effect
of insulin on epiblast cell number (P<0.01, Fig. 3C).

Interestingly, insulin in the presence of PI3K inhibition
increased ICM size compared with embryos cultured in
LY294002 alone (P <0.01, Fig. 3B), suggesting that insulin is
able to affect ICM size through signaling pathways other
than PI3K.
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FIG.1. Blastocyst culture in the presence of insulin. (A) TCN as shown by DAPI staining, (B) ICM cell number as shown by
Oct4 staining, (C) epiblast cell number as shown by Oct4 and Nanog staining, (D) percentage of ICM cells that are epiblast
cells, (E) Trophectoderm cell number as shown by TCN minus ICM cell number, and (F) primitive endoderm cell number as
shown by ICM minus epiblast cell number in the blastocysts of embryos cultured in insulin at the concentrations indicated.
Data are mean*sem. Superscripts a and b are significantly different at P<0.01, n>34 blastocysts per treatment. TCN, total
cell number; ICM, inner cell mass; DAPI, 4’-6-diamidino-2-phenylindole.
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FIG. 2. Representative im-
ages of blastocysts stained for
Oct4, Nanog, and TCN after
culture in control medium
and medium supplemented
with 1.7 pM insulin. (A) DAPI
staining all cell nuclei blue,
(B) rhodamine staining Oct4
positive ICM nuclei red, (C)
FITC staining Nanog positive
nuclei green, (D) an overlay of
all stains. Scale bar is 50 uM.
Color images available online
at www liebertonline.com/scd

Experiment 3: effect of GSK3 activation/inhibition
on epiblast cell number in embryos cultured
in the presence or absence of insulin

GSK3 activation by the PKA inhibitor H-89 [31] had no
effect on the development at 94h of culture (blastocyst or
hatching blastocysts for all treatments, range 84% —94%);
however, it significantly reduced the number of blastocysts
that had hatched in the presence or absence of insulin after
115h of culture (P<0.01, Table 3). Furthermore, GSK3
activation did not alter TCN (Fig. 4A), but significantly
decreased the ICM cell number with or without insulin
(P<0.05, Fig. 4B). The activation of GSK3 in the absence
of insulin did not affect epiblast cell numbers relative to
the control, but insulin’s stimulation of epiblast cell num-
ber was prevented by the activation of GSK3 (P<0.05,
Fig. 4C). The percentage of the ICM that was epiblast was
unchanged with GSK3 activation with or without insulin
(Fig. 4D).

The inactivation of GSK3 with CT99021 had no effect on
the development at 94 h (blastocyst or hatching blastocyst for
all treatments, range 75% —85%) or 115 h (hatching blastocyst

TABLE 1. DEVELOPMENTAL MORPHOLOGY AFTER 94 H
OF PHOSPHOINOSITIDE 3 KINASE INHIBITION

Early Hatching

Arrested blastocyst Blastocyst blastocyst
(%) (%) (%) (%)
G2 (control) 7.0 8.8 68.4 15.8%
Insulin 1.7 34 75.9 19.0°
LY294002 12.7 18.2 69.1 0.0°
Insulin+1Y294002 21.8% 21.8 56.4 0.0°

CAMPBELL ET AL.

or hatched blastocyst for all treatments, range 54% —67%) of
the culture. However, GSK3 inhibition significantly in-
creased ICM cell number (20.1+1.2 compared with control
15.9+1.2 P<0.01; n>50) and epiblast cell number (5.1+0.3
compared with control 3.2+0.3 P<0.001; n=50), although
the epiblast proportion (23.2+2.5 compared with control
23.8+2.5NS; n=250) and TCN (111.7+4.4 compared with
control 107.2+4.4NS; n>50) were not affected.

Experiment 4: effect of p53 activation/inhibition
on epiblast cell number in embryos cultured
in the presence or absence of insulin

The activation of p53 by nicotinamide in the presence or
absence of insulin had no effect on embryo development at
94h (blastocyst or hatching blastocyst for all treatments,
range 88%—98%) or 115h (hatching blastocyst or hatched
blastocyst for all treatments, range 69% —84%), nor TCN (Fig.
5A). However, the activation of p53 significantly reduced
ICM cell number both with and without insulin (P <0.05, Fig.
5B). The activation of p53 did not affect epiblast cell numbers
compared with control-treated embryos; however, insulin’s

TABLE 2. DEVELOPMENTAL MORPHOLOGY AFTER 115H
oF PHOSPHOINOSITIDE 3 KINASE INHIBITION

Total Hatching Hatched

Arrested blastocyst Blastocyst blastocyst blastocyst
Total (%) (%) (%) (%) (%)
G2 3.5 96.5 26.3° 421° 28.1°
Insulin 52 948 276" 328" 345"
LY294002 16.4 83.6 83.67 0.0 0.0%
Insulin + 200 80 72.7° 5.5 1.8

LY294002

Mean percentage of embryos at stage of development after 94 h of
culture in the specified treatment.

n =55 per treatment.

Like pairs, * and P are significantly different (P<0.01).

Mean percentage of embryos at stage of development after 115h of
culture in the specified treatment.

n =55 per treatment.

Like pairs, * and b are significantly different (P <0.001).
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FIG. 3. PI3K inhibition during blastocyst culture in the presence of insulin. (A) TCN as shown by DAPI staining, (B) ICM
cell number as shown by Oct4 staining, (C) epiblast cell number as shown by Oct4 and Nanog staining, and (D) percentage of
ICM cells that are epiblast cells in the blastocysts of embryos cultured in insulin at 1.7 pM and/or 50 uM of the PI3K inhibitor
LY294002 (LY). Data are meanz+sem. Superscripts a, b, and c are significantly different at P<0.01, n>34 blastocysts per

treatment. PI3K, phosphoinositide 3 kinase.

increase of epiblast cell numbers was prevented (P <0.05, Fig.
5C). The inactivation of p53 had no significant effect on the
percentage of the ICM that was epiblast (Fig. 5D).

The inhibition of p53, with pifithrin-a: (30 uM) [38], was
able to mimic the effects of insulin with no effect on blasto-

TABLE 3. DEVELOPMENTAL MORPHOLOGY AFTER 115H
OF GLYCOGEN SYNTHASE KINASE 3 ACTIVATION

Total Hatching Hatched

Arrested blastocyst Blastocyst blastocyst blastocyst
(%) (%) (%) (%) (%)
G2 13.5 86.5 16.2 43.2 27.0°
Insulin 2.8 97.2 13.9 30.6° 52.8°
H89 6.9 93.1 24.1 69.0 0.0%
Insulin+H89 2.6 97.4 17.9 744" 5.1°

Mean percentage of embryos at stage of development after 115h of
culture in the specified treatment.

n=29 per treatment.

Like pairs, @ and " are significantly different (P<0.01).

cyst development at 94h (blastocyst or hatching blastocyst
for all treatments, range 85% —86%) or 115h (hatching blas-
tocyst or hatched blastocyst for all treatments, range 75% —
80%). However, TCN was increased (132%7.0 compared
with control 111.7+6.6 P<0.05; n>24) as was ICM (30.5+2.4
compared with control 18.1+2.2 P<0.001; n>24) and epi-
blast cell number (7.1+0.6 compared with control 4.1£0.6
P<0.01; n>24) that were increased by p53 inhibition, while
the percentage of ICM that was epiblast was unchanged
(14.8£3.7 compared with control 13.6+£3.4NS; n>24).

Experiment 5: interaction of GSK3
and p53 signaling

Our results show that insulin acts on the epiblast via the
inactivation of GSK3 and p53. The inactivation of one factor
may reduce the other’s activity [41-43], but the inactivation
of GSK3 can also lead to p53 accumulation [39] and apop-
tosis [40]. If the inactivation of GSK3 causes p53 accumula-
tion, then inactivation of both GSK3 and p53 may have a
synergistic effect.
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GSK3, glycogen synthase kinase 3.

The inactivation of GSK3 together with p53 had no effect
on the development at 94h (blastocyst hatching blastocyst
for all treatments, range 89%—97%), but significantly in-
creased the number of hatched blastocysts relative to the
culture with either inhibitor alone (P <0.05, Table 4). How-
ever, there were no further synergistic effects on TCN, ICM,
or proportion of epiblast compared with either inhibitor
alone (Fig. 6).

Discussion

The present study demonstrated that the culture of 8-cell
embryos with 1.7 pM insulin increases the number of epiblast
cells in the ICM without affecting the size of the ICM itself
and without increasing trophectoderm, primitive endoderm,
or TCN. This suggests that rather than acting as a nonspecific
mitogenic factor, insulin is specifically acting on the ICM to
shift the ratio of epiblast and primitive endoderm toward a
larger population of pluripotent cells. Since ESCs are derived
from the pluripotent epiblast [13,60], the number of pluri-
potent cells in a blastocyst is a key determinant of the capacity

of a blastocyst to give rise to an ESC line [7,48,61]. Therefore,
it is desirable to have conditions for the development of the
blastocyst that maximize the number of epiblast cells. Al-
though treatments using inhibitors can produce larger epi-
blasts [7,62], inhibitors frequently have nonspecific activities
[32,63], while insulin is present in vivo and a component of
routine ESC culture, although not routine in embryo culture.
As such, culture in insulin could be a useful strategy for
improving the pluripotential of embryos cultured in vitro,
such as human embryos that are often donated for hESC
derivation at the cleavage stage after 5-10 years of cryo-
preservation and culture in media now known to be per-
turbing [12]—without the use of inhibitors.

Insulin binds to the insulin receptor (IR), which phos-
phorylates tyrosine residues on the insulin receptor sub-
strates (IRS-1, IRS-2 and IRS-3), thus enabling the IRSs to
activate PI3K via its SRC homology 2 domains [64,65]. PI3K
is a second messenger known to be present in the mouse
preimplantation embryo [25]. Previous studies have dem-
onstrated that PI3K inhibition impairs embryo development
and reduces TCN [27,45], a result that we reproduced in this
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study. Importantly, in ESCs, PI3K has been shown to play a
role in maintaining pluripotency [28,46], and its inhibition in
ESCs decreases Nanog protein levels [28]. Our results sug-
gest that the activation of PI3K in the later-stage embryo is a
part of a signaling pathway involved in insulin’s stimulation
of epiblast cell numbers.

An intermediate of the PI3K signaling pathway, GSK3, has
been shown to decrease Nanog transcription and retention of

pluripotency via inactivation of B-catenin [66-68], Hedgehog
[69,70], and c-Myc [71,72]. Additionally, active GSK3 pro-
tects the intracellular domain of Notch from degradation
[73], increasing differentiation [74]. The indirect activation of
GSK3 by H-89 [31]—which inhibits PKA whose activity
would otherwise prevent GSK3 activation [75-77]—was
sufficient to block insulin’s ability to increase epiblast cell
number. We hypothesized that the inhibition of GSK3 would

TABLE 4. DEVELOPMENTAL MORPHOLOGY AFTER 115H OF BOoTH GLYCOGEN SYNTHASE KINASE 3 AND P53 INHIBITION

Total Arrested (%)  Total blastocyst (%)  Blastocyst (%)  Hatching blastocyst (%)  Hatched blastocyst (%)
Control 45 95.5 13.6 45.5 36.4

CT99021 2.3 97.7 20.5 43.2° 34.1°

Pft-o. (pifithrin-o) 5.1 94.9 15.4 56.4° 23.1°
CT99021 + Pft-o. 0 100 23.8 16.7%° 59.5%P

Mean percentage of embryos at stage of development after 115h of culture in the specified treatment.

n =39 per treatment.
Like pairs, @ and " are significantly different (P <0.05).
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have the opposite outcome and replicate the effects of insulin
on the epiblast. GSK3 inhibition increased epiblast cell
number, similar to that seen with insulin supplementation.
Taken together, these data suggest that insulin increases the
proportion of epiblast cells in the ICM through mechanisms
which involve the inactivation of GSK3.

This is in keeping with previous studies where GSK3
inactivation via BIO increased the percentage of epiblast in
outgrown ICMs and increased ESC derivation efficiency
[30]. Additionally, the GSK3 inhibitor CT99021 is one of
the 3 inhibitors that make up the 3i culture system which
improves ESC culture and derivation as well as increasing
epiblast proportion of the ICM to close to 100% (the other
2 inhibitors inhibit FGFR and MEK signaling) [7]. How-
ever, embryos cultured with GSK3 inhibitor LiCl have
reduced hatching and attachment rates [78] and often fail
to develop past the 2-cell stage [79]. In our own results,
we saw an increase in epiblast cell number at 0.3puM
CT99021, but this increase was reduced at 3 M and lost at
15uM (data not shown). Additionally, at 94h, 15uM re-
duced hatching, reproducing previous findings [78] but
with a different inhibitor, thereby suggesting that negative

effects are not due to nonspecific activity by the inhibitor
at high concentrations, but that GSK3’s broad influence
[80,81] makes moderate inhibition the key to a successful
embryo culture.

The activation of PI3K is also able to exert significant ef-
fects on p53 availability and activity. As a pro-apoptotic
protein, active p53 causes cell death and differentiation
[35,82]. Specifically, active p53 has been shown to cause
differentiation in ESCs by binding to the Nanog promoter
region and repressing expression [35]. Additionally, the in
vitro culture of embryos has been shown to increase p53
activity, with p53-dependant negative effects on embryo
development and viability [83], while culture with pifithrin-
o, an inhibitor of p53, has been shown to improve the pro-
portion of embryos that develop to the blastocyst stage [38].
When p53 was indirectly activated by inhibiting SIRT-1 [37]
with nicotinamide, insulin’s ability to increase epiblast cell
number was, as with GSK3 activation and PI3K inhibition,
ameliorated. Furthermore, the inhibition of p53 had the op-
posing effect of increasing TCN, ICM, and epiblast cell
numbers. This shows that the inhibition of p53 can mimic
insulin’s effect on the epiblast, suggesting that p53
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inactivation is involved in insulin-mediated increase of epi-
blast cell number.

The beta isoform of GSK3 (GSK3p) can phosphorylate and
form a complex with p53, which increases the activity of both
GSK3B and p53 [41-43]; however, active GSK3 activates
MDM?2 [39], which targets p53 for degradation. Therefore,
the inactivation of GSK3 can cause the accumulation of p53
[39] and apoptosis [40]. This makes it difficult to say whether
the effect of GSK3’s inhibition on epiblast cell number is
helped or hindered by its role in p53 regulation, and sug-
gested to us that GSK3 inactivation coupled with p53 inac-
tivation may be necessary for optimal epiblast increases.

However, the inhibition of both GSK3 and p53 produced
no additional synergistic effect on epiblast cell number,
suggesting that the effect of GSK3 inhibition at 0.3 pM
CT99021 on epiblast cell number is not being limited by an
increase in p53 due to the inactive GSK3’s inability to
phosphorylate and activate MDM2.

Our results show that the culture of embryos from the 8-
cell stage with insulin increases the number and percentage
of epiblast cells in the ICM of blastocysts via the activation of
PI3K, which, in turn, inactivates GSK3 and p53. While being
involved in many signaling pathways with many different
targets, in their active forms, both GSK3 and p53 inhibit
Nanog transcription [28,35], making it likely that insulin’s
apparent inactivation of these factors increases Nanog tran-
scription, resulting in more Nanog-positive epiblast cells.
Since epiblast cells are the progenitor cells that give rise to
ESCs, a culture with insulin offers a potential strategy, ef-
fective from the cleavage stage, for increasing the derivation
efficiency of ESCs from in vitro cultured embryos, though
this will require validation by the derivation of ESCs. This is
of particular importance for hESC derivation, which often
utilizes embryos cryopreserved at the cleavage stage after
culture 5-10 years ago in relatively simple media.
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