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In a finite volume, resonances and multi-hadron states @mtiftbd by discrete energy levels.
When comparing the results of lattice QCD calculations tétstag experiments, it is important
to have a way of associating the energy spectrum of the fioitegme lattice with the asymptotic
behaviour of the S-matrix. A new technique for comparingrgnesigenvalues with scattering
phase shifts is introduced, which involves the construmobiban exactly solvable matrix Hamilto-
nian model. The model framework is applied to the casé ef Nt decay, but is easily general-
ized to include multi-channel scattering. Extracting remtce parameters involves matching the
energy spectrum of the model to that of a lattice QCD cal@uiatThe resulting fit parameters
are then used to generate phase shifts. Using a sample sstwafqlata, it is found that the ex-
traction of the resonance position is stable with respeebtome for a variety of regularization
schemes, and compares favorably with the well-known Lisetethod. The model-dependence
of the result is briefly investigated.
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1. Introduction

Luscher’s method [1] constitutes the principal method for relating the déeserergy spectrum
calculated in lattice QCD with the continuous asymptotic states measured in hadtbtering
experiments [2, 3, 4, 5, 6, 7, 8, 9]. By matching the asymptotic behaviaie& matrix onto the
energy spectrum of the toroidal topology of the lattice, a geometric equatabtaged, which is
valid only for the scattering of two well-separated particles in a finite volumextending to more
complicated cases e.g. multi-channel scattering, the interpretation of Lrigsetethod becomes
more difficult; however, such a development remains a promising and cpiai¢earea of ongoing
research [2, 10, 11, 12, 13].

An alternative method for identifying resonance parameters in finite-volgatéesing is pro-
posed, which has the compelling property of being easily generalized ta@éolore complicated
interactions and additional channels. The method involves the construtfanairix Hamiltonian
model in a finite volume, such that its eigenvalue equation matches directly arab effective
field theory in the low-energy limit.

As a test example, the matrix Hamiltonian approach is appli¢tl-te N7t decay. An energy
spectrum can be generated from the model, and these energy leveésroatched directly to those
of a lattice QCD calculation, fitting the free parameters of the model. With thesaeréihgeters,
the position of the resonance pole may then be obtained from the standammtmeflscattering
theory. The robustness of this Hamiltonian technique is tested by generéitiitg-&olume energy
spectrum as ‘pseudodata’, and matching this spectrum to that of an tiltewesion of the model.
Thus, a picture of the model-dependence is developed.

2. The finite-volume matrix Hamiltonian model

Consider a matrix Hamiltonian model for tleN 7T interaction, such that the finite-volume
energy spectrum can be solved exactly. The Hamiltonian may be written asasefree and
interaction partsH = Ho + H,, where the free Hamiltonian includes the energies of the pion-
nucleon system

Ny O 0
0 wnlks) O -

wherewr(ky) = /kZ+ mg, and4 is the bare mass of the baryon. The rows and columns of
H represent the momentum states of the pion relative to the nucleon. The gélmesnentum-
squared available in a finite volumie’, arek3 = (F7)?(nZ+ng+nZ) = (§7)n, whereniis a squared
integer.

Including a direct coupling to A baryon, the interaction Hamiltonian takes the form

0 giu(k) ak(ke) -

gin(ke) 0 0
H=lgnt) o o0 (2.2)
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The coupling,ng",ll(kn), is obtained from chiral effective field theory, and includes appropuda
mensional factors for a finite-volume calculation

_ 3/2
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for XA:32?rf%§ (2.5)

using f; = 924 MeV, and the S(B) value¥ = —1.52. The normalizatiol€3(n) represents the
number of ways of summing three squared integers to egudie introduction of a regulator func-
tion, u(k,), into the model serves to keep the range of the interaction finite. In gergeaasi@mmple
set of pseudodata, a dipole regulator with a mags ef0.8 GeV is chosen, being well-matched to
phenomenology in the nucleon-pion sector [14, 15, 16]. However, iteillemonstrated that the
regularization scheme has limited impact on the consistency of the final extra€tloe resonance
position.

The eigenvalue equation of the Hamiltonian,(#et AT) = O, takes the form

fin 2
A=0— zlism (2.6)
B Xa kﬁuz( )
. 2n2( >zc e 2.7)

and the lowest-lying energy levels from the discrete spectrum of eigaas/ale= E;, are shown as
a function of lattice box size in Fig. 1. Note that the formulae in Egs. (2.6) & (@atch the one-
loop N7t contribution to theA baryon self-energy in effective field theory near the pole position:
A ~ Ep =292 MeV.

At infinite volume, the real part of the one-pion loop integral takes the fatigiorm

VLSS
ReSan (K) = 2 / dk ﬁ 2.8)

W4 (W)
i / , 2.9
e o) — o€ (29
where & indicates that a principal value integral must be performed. This integrdtibutes

to the phase shift via thematrix for elasticN 7t scattering (with @ baryon intermediate). The
relationship between the phase shift and the on-shell quahtityt (k,k; E™), is

0 — b dosins (k). (2.10)
wr(K) —Bo—Zan(k)  TKr(K)
By solving Eqg. (2.10), the phase shii, may be plotted as a function of enerdy~ wr(k), to
obtain the curve shown in Fig. 2. The bare resonance nigssnay be tuned so that the final
resonance energy matches the physidéimass-splittingEx = 292 MeV, and hence serves as an
input for solving the finite-volume spectrum, via Eq. (2.1).
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Figure 1: (color online). The lowest-lying energy levels from thkl7r model (solid lines), and the corre-
sponding non-interacting energies (dotted lines).
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Figure 2: (color online). The infinite-volume phase shif, associated with elastid7 scattering via a\ baryon
intermediate state, plotted against the external pion en&r@whereE;t = My + E), as calculated from the on-shell

t-matrix.

3. Luscher’s Method

Luscher’s formula describes a fixed relationship between the scattdrasg ghiftd, and the
energy levels in a finite volume

I kjL
OkjL)=jm—¢ (27‘[) ; (3.2)
where j is an integer indexing the energy levels, = ka+mz. Lischer’s formula is derived

assuming that two identical particles of mamsscatter from a finite-range interaction (potential
V(r) =0 for rangeR < r), and are well-separate® r < L/2), i.e. the particle wavefunction is
in the asymptotic region. The angle functiap(q), takes the form of a three-dimensional Zeta-
like function (which must be regularized), defined in terms of dimensionlééselanomenta) =
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kL/(2m)
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The momenta corresponding to a lattice QCD spectkjrs, , /Ej2 —mZ, may be inputinto Llscher’s
formula to obtain phase shift§(kj;L). Alternatively, the energy levels may be fit directly to the
effective hadronic model described above, and the phase shifréandance position) can then
be extracted from thematrix in Eq. (2.10). Using a set of pseudodata generated fromhthe
model, the two methods will be compared in the following section.

4. An alternative method of phase shift extraction

Motivated by the general result that the potential is separable neaomare [17], a new
method is proposed for obtaining a phase shift from discrete enerdg,leueh as those of lattice
QCD. Using theAN7t model, the parametepg, andAo, are chosen to minimize the chi-square
between the energy levels of the model and the energy levels of a lattice @CDation. An
estimate of the phase shift can then be calculated frorrtingtrix formula of Eq. (2.10), using the
fitted values of the parameters.

In order to test this idea, energy levels for thid 7T model are treated as pseudodata. A mod-
ified version of the model is then constructed using a different regulatatibn, u(ky), such as a
Gaussian regulator. By matching the two sets of energy levels and obtainuadugs fory, and
Ao, phase shift estimates may be calculated for a range of box kizes,

In order to visualize the comparison between Lischer’'s method and theneéved, the be-
haviour of the resonance enerd.s, may be plotted as a function of/ll, as shown in Fig. 3.
Using Lischer’s method, an interpolation function must be chosen in toddatain the pole po-
sition from the phase shift. In the alternative method, two energy eigersvateechosen from the
pseudodata, which are closest to the resonance energy, as estimaigtbgr's formula. These
eigenvalues are then used to constrain the parameteaad/g. Evidently, matching the pseudo-
data to a model with a different regulator function leads to a result that iasttdemparable with
Luscher’'s method.

By varying the regularization scal&, a systematic uncertainty of only a few MeV is observed.
This is encouraging, because it suggests that approximating the undeplyysics of a lattice
calculation with a regulator, sensibly chosen, will lead to a result that isightyhdependent on
the features of the particular regulator function. Furthermore, one maty/tras an additional fit
parameter, and in this case, the closest three eigenvalues from thegatuare chosen for fitting.
Fig. 3 indicates that a Gaussian regulator parametéy €f0.6 GeV provides the best matching
with the pseudodata.

The result of using th&N7m model with regularization scale removed (i.A.— ) is also
displayed in Fig. 3. The pole extraction closely resembles that of Liscimethod.
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Figure 3: (color online). The resonance enerBs, plotted against AL. The experimental value is marked
with a square. The results from fitting pseudodata with sedsffit regulator, a Gaussian with= 0.5, 0.6
and 08 GeV, or treating\ as a fit parameter, are plotted. The result of effectivelyawny the regulator
(i.e. A — ) is also shown. For comparison, the approach using Luschegthod is marked with a solid
line.

5. Summary

An alternative method for the extraction of resonance parameters in a fohite® is investi-
gated. An exactly solvable matrix Hamiltonian is constructed to madel N7t decay in a finite-
volume, in anticipation of generalizing to more complicated multi-channel scatferitdems. By
matching the energy levels of the model to those of a lattice QCD calculation, thmeiers of
the model can be input into effective field theory in order to generateepitafis. The model is
tested by generating pseudodata, and extracting the resonance pasitppamalternative form of
the model. The results are comparable with Lischer's method, and thetiextrafthe phase shift
is stable with respect to volume.
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