ACCEPTED VERSION

McMichael, Gai Lisette; Girirajan, Santhosh; Moreno-De-Luca, Andres; Gecz, Jozef; Shard, Chloe Leigh; Nguyen, Lam Son; Nicholl, Jillian; Gibson, Catherine Sue; Haan, Eric Albert; Eichler, Evan E.; Martin, Christa Lese; MacLennan, Alastair Harvey

Rare copy number variation in cerebral palsy

European Journal of Human Genetics, 2014; 22(1):40-45

© 2013 Macmillan Publishers Limited; All rights reserved

Published version available at:

http://www.nature.com/ejhg/journal/v22/n1/full/ejhg201393a.html

PERMISSIONS

http://www.nature.com/authors/policies/license.html

This publishers' policy applies to all journals published by the Nature Publishing Group (NPG), including the Nature journals.

NPG does not require authors of original (primary) research papers to assign copyright of their published contributions. Authors grant NPG an exclusive licence to publish, in return for which they can reuse their papers in their future printed work without first requiring permission from the publisher of the journal. For commissioned articles (for example, Reviews, News and Views), copyright is retained by NPG.

When a manuscript is accepted for publication in an NPG journal, authors are encouraged to submit the author's version of the accepted paper (the unedited manuscript) to PubMedCentral or other appropriate funding body's archive, for public release six months after publication. In addition, authors are encouraged to archive this version of the manuscript in their institution's repositories and, if they wish, on their personal websites, also six months after the original publication.

11 February 2014

http://hdl.handle.net/2440/80377

Rare Copy Number Variation in Cerebral Palsy

Gai McMichael, ¹ Santhosh Girirajan, ² Andres Moreno-De-Luca, ³ Jozef Gecz, ^{4,5} Chloe

Shard,⁵ Lam Son Nguyen,⁵ Jillian Nicholl,⁴ Catherine Gibson,¹ Eric Haan,⁶ Evan

Eichler,² Christa Lese Martin,⁷ Alastair MacLennan¹

¹Robinson Institute, The University of Adelaide, Adelaide, Australia.

²Department of Genome Sciences, University of Washington School of Medicine,

Seattle, Washington, USA.

³Autism and Developmental Medicine Institute, Genomic Medicine Institute, and

Department of Pediatrics, Geisinger Health System, Danville, Pennsylvania, USA.

⁴Genetics and Molecular Pathology, SA Pathology at Women's and Children's

Hospital, Adelaide, Australia.

⁵The University of Adelaide, Department of Paediatrics at the Women's and Children's

Hospital, Adelaide, Australia.

⁶South Australian Clinical Genetics Service, SA Pathology at Women's and Children's

Hospital, and Discipline of Paediatrics, The University of Adelaide, Adelaide, Australia.

⁷Department of Human Genetics, Emory University School of Medicine, Atlanta,

Georgia, USA.

Correspondence to

Gai McMichael

1

The University of Adelaide,

Robinson Institute,

Lvl 3, Norwich Bld,

55 King William Street,

North Adelaide,

South Australia 5005

Australia

Telephone +61 8 8161 7619

Fax +61 8 8161 7652

gai.mcmichael@adelaide.edu.au

Key words copy-number, cerebral palsy (CP), microarray

Word count 3,186

Recent studies have established the role of rare copy number variants (CNVs) in several neurological disorders but the contribution of rare CNVs to cerebral palsy (CP) is not known. Fifty Caucasian families having children with CP were studied using two microarray designs. Potentially pathogenic, rare (<1% population frequency) CNVs were identified, and their frequency determined, by comparing the CNVs found in cases with 8,329 adult controls with no known neurological disorders. Ten of the 50 cases (20%) had rare CNVs of potential relevance to CP; there were a total of 14 CNVs, which were observed in <0.1% (<8/8,329) of the control population. Eight inherited from an unaffected mother: a 751 kb deletion including FSCB, a 1.5 Mb duplication of 7q21.13, a 534 kb duplication of 15q11.2, a 446 kb duplication including CTNND2, a 219 kb duplication including MCPH1, a 169 kb duplication of 22q13.33, a 64 kb duplication of MC2R, and a 135 bp exonic deletion of SLC06A1. Three inherited from an unaffected father: a 386 kb deletion of 12p12.2-p12.1, a 234 kb duplication of 10q26.13 and a 4 kb exonic deletion of COPS3. The inheritance was unknown for three CNVs: a 157 bp exonic deletion of ACOX1, a 693 kb duplication of 17q25.3 and a 265 kb duplication of DAAM1. This is the first systematic study of CNVs in CP and although it did not identify de novo mutations, has shown inherited, rare CNVs involving potentially pathogenic genes and pathways requiring further investigation.

INTRODUCTION

Cerebral palsy (CP) is the most common motor disorder of childhood, with a prevalence of 2-2.5/1,000 live births.^{1, 2} Cerebral palsy has been defined as "a group of permanent disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain. The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, perception, cognition, communication, and behaviour, by intellectual disability, autism and epilepsy, and by secondary musculoskeletal problems".³ Evidence of intrapartum fetal compromise is found at birth in less than 10% of cases.⁴ There are a number of known major epidemiological risk factors for CP, including preterm delivery, intrauterine growth restriction (IUGR), intrauterine infection and multiple pregnancy.⁵

There is evidence of genetic susceptibility to CP but little is known about possible mechanisms.⁶ Monozygotic twins have a significantly higher (p = 0.0026) concordance rate for CP compared to dizygotic twins.⁷ Several family studies have determined the likely inheritance pattern responsible for different clinical manifestations of CP.^{8, 9} SNP association studies have been reported but have provided inconclusive results because of small sample sizes.¹⁰

A genetic linkage study mapped an autosomal recessive type of spastic CP to a locus on chromosome 2p24-25¹¹ and subsequently, a missense variant was found in the *GAD1* gene, which segregated with the CP phenotype (LOD score 5.75).¹² However, the functional effect of this variant was not assessed and no *GAD1* variants have since been found in other individuals with CP. In another genetic linkage study, ataxic CP

affecting four children from a complex consanguineous family was mapped to chromosome 9p12-q12 (LOD score 3.4).¹³

More recently, mutations in all four subunits of the adaptor protein complex-4 (*AP4E1*, *AP4M1*, *AP4B1*, and *AP4S1*) were reported to cause a CP-like motor disorder. The phenotype of the affected individuals included slowly progressive spasticity and therefore does not fit the classical definition of CP, which assumes non-progression. A very slowly progressive neurological disorder may be classified as CP at one point in time, with the need to change the diagnosis after a longer period of observation. It is now clear that *de novo* and inherited copy number variants (CNVs) contribute to the aetiology of various neurological disorders such as autism, intellectual disability, 20, 21 and epilepsy. The extent to which this is based on single 'hits' of large effect, or two or more hits of smaller effect acting synergistically, is uncertain. The contribution of CNVs to CP has not yet been systematically investigated; this work addresses this knowledge gap by testing a selected cohort of 50 cases with CP using two customised microarray platforms.

METHODS

DNA samples and study cohort

To determine whether rare CNVs (<1% population frequency) contribute to CP causation, we used two separate custom microarrays to study DNA samples from 50 Caucasian children with a diagnosis of CP confirmed by a specialist. All cases were identified from the South Australia CP Register and recruited through paediatric rehabilitation specialists at the Women's and Children's Hospital, Adelaide. Parents were tested when potentially relevant CNVs were found and parental samples were available. No other selection criteria were applied. Clinical data were collected for each case, including gender, details of pregnancy and birth, gestational age, Apgar scores, birth weight and head circumference, and neonatal events. Also collected, were type of CP and co-morbidities such as intellectual disability, autism, and epilepsy. Growth restriction was assessed using a customised birth weight centile program. 24

Results were compared to 8,329 samples from adults with no known neurological disorders.²¹ This control dataset has been described previously in detail.²¹ Results were also compared with the frequency of events in 337 National Institute of Mental Health (NIMH) controls analysed using the same 135K array.²⁵

DNA isolated from lymphoblastoid cell lines was used for CNV analyses, and DNA isolated from whole blood was used for subsequent CNV validations. Parental DNA was isolated from whole blood only. Signed parental consent and ethics approval from the Adelaide Women's and Children's Health Network Human Research Ethics Committee were obtained.

CNV discovery

Two customised microarray platforms were used. The first was a customised 180K chromosomal microarray with targeted plus whole genome coverage (Agilent Technologies, CA, US). The targeted coverage included clinically relevant regions such as known deletion/duplication syndrome regions, telomeres and centromeres at a resolution of ~20-50 kb plus exon-level coverage of >1200 genes involved in neurodevelopmental disorders. The whole-genome backbone results in a resolution in unique DNA of ~225 kb. Feature Extraction (version 10.5.1.1) and DNA Analytics (Version 4.0.81) software (Agilent Technologies) was used to perform data analysis.

The second array platform was a customised 135K microarray (Roche NimbleGen, Madison, WI, US), with one probe every 2.5 kb in the genomic hotspots (regions flanked by segmental duplications) and 35 kb density in the genomic backbone. All microarray hybridization experiments were performed as described previously, 26 using a single unaffected male (GM15724 from Coriell) as reference. The empirically determined detection resolution for this array was >50 kb within the hotspots and > 350 kb in the genomic backbone. All microarrays were analysed by mapping probe coordinates to the human genome assembly Build 36 (hg18). To minimise false positives on both array platforms, deletions and duplications were determined by a minimum of four consecutive probes beyond a mean significance Log 2 ratio of -0.26 and 0.3 respectively. All CNV calls were manually inspected by loading the signal intensity data onto a custom University of California Santa Cruz (UCSC) browser. CNV regions of interest identified in CP cases and their parents, were validated by quantitative real time PCR (qPCR) (Supplementary Table 1).

RESULTS

Clinical details of cases with rare CNVs

We studied 50 cases of CP, all born to non-consanguineous parents of Caucasian (northern European) descent. There were 28 males and 22 females. Twenty-four (48%) were born at term, and the remaining 26 (52%) were born at <37 weeks gestation. The mean birth weight was 2352 g (680–4650 g). One out of the 50 cases (2%) had documented intrauterine growth restriction. Spastic hemiplegia was the most prevalent type of CP with 22 cases (44%), followed by diplegia with 13 cases (26%), quadriplegia with 13 cases (26%), and triplegia with 2 cases (4%). The gross motor function classification system (GMFCS) was used to measure severity: level 1 which indicated independent walking through to level 5 where the individual is wheelchair dependent.²⁷ Twelve cases (24%) were documented at level 1, 8 cases (16%) at level 2, 4 cases (8%) at level 3, 5 cases (10%) at level 4, 8 cases (16%) at level 5 and for 13 cases GMFCS was not documented. Sixteen cases (32%) had intellectual disability, 16 cases (32%) had epilepsy, and autism was reported in 5 cases (10%). The mean maternal and paternal ages were 30 years (22–42 years) and 32 years (23–47 years), respectively (Supplementary Table 2).

CNV burden in cerebral palsy

We assessed the total CNV load in individuals with CP (n=50) compared to those from previously published CNV data on autism (n = 350), intellectual disability (n=501), and controls from the NIMH cohort.²⁵ Notably, all these CNVs were discovered using the same array design facilitating comparison across disease cohorts. CNV load in CP was similar to that in controls or the dyslexia cohort (Figure 1).

Rare CNV discovery and validation

For rare CNV detection, we utilized CNV calls from both array platforms (see methods). Eighty-four variants were identified by using both arrays, therefore considered validated. Based on comparison to CNV calls from population controls these CNVs were classified as rare, potentially pathogenic events, benign, or common variants (>1% population frequency) (Supplementary Table 3).

Fourteen different rare (observed in <0.1% [<8/8,329] of the control population) potentially pathogenic, CNVs, were found in 10 out of the 50 cases (20%) were studied.²¹ Their mean genomic size was 355 kb (range 135 bp to 1.5 Mb). There were five (36%) deletions with mean size 228 kb (135 bp to 741 kb) and nine (64%) duplications with mean size of 466 kb (65 kb to 1.5 Mb). None of these rare potentially pathogenic variants were observed among the NIMH controls, but the small sample sizes precludes statistical rigor (Table 1).

Eight of the 14 CNVs were maternally inherited. Five involved single genes: a 751 kb deletion involving the entire *FSCB* gene, a 446 kb duplication which included the first exon of *CTNND2*, a 219 kb duplication involving the first exon of *MCPH1*, and a 64 kb duplication involving the entire *MC2R* gene and a 135 bp exonic deletion involving *SLC06A1*. The other three maternally inherited CNVs contained several genes each: a 1.5 Mb duplication of 7q21.13 (*ZNF804B*, *MGC26647*, *STEAP1*, *STEAP2*, *FLJ21062*), a 535 kb duplication of 15q11.2 (*TUBGCP5*, *CYFIP1*, *NIPA2*, *NIPA1*), and a169 kb duplication of 22q13.33 (*SAPS2*, *SBF1*, *ADM2*, *MIOX*, *LMF2*, *NCAPH2*, *SCO2*, *TYMP*, *LOC440836*). Three of the 14 CNVs were paternally inherited. One involved a single gene; a 4 kb deletion including exons 6 - 8 of the *COPS3* gene. The other two paternally inherited CNVs

contained several genes each: a 387 kb deletion on 12p12.2-p12.1 (*SLCO1B3*, *LST-3TM12*, *SLCO1B1*) and a 234 kb duplication of 10q26.13 (*METTL10*, *KIAA0157*, *ZRANB1*, *CTBP2*). Of these eleven CNVs, two (12p12.2-p12.1 and *COPS3*) were inherited from father to daughter and six (*MCPH1*, *FSCB*, *MC2R*, *SLCO6A1*, 15q11.2 and 22q13.33) were inherited from mother to son. We could not determine whether the remaining three CNVs were inherited or *de novo* due to the unavailability of parental DNA. These included two single-gene CNVs: a 157 bp exonic deletion of *ACOX1* and a 265 kb duplication of exons 1-4 of *DAAM1*, and one CNV containing several genes: a 693 kb duplication of 17q25.3 (*HRNBP3*, *ENPP7*, *CBX2*, *CBX8*). Five of the 14 CNVs were identified by both arrays, nine were found on the 180K array only as the 135K array did not have sufficient probe coverage for these regions. Each of these fourteen CNVs was validated by qPCR (Table 1).

Several of these CNVs involve known OMIM (Online Mendelian Inheritance in Man) genes. These included *CTNND2* (OMIM 604275), *MCPH1* (OMIM 607117, 251200), *NIPA2* (OMIM 608146), *NIPA1* (OMIM 608145), *ACOX1* (OMIM 264470) and *MC2R* (OMIM 607397). Four of these genes are also reported in Decipher as having a predicted likelihood of haploinsufficiency (HI): *CTNND2* (26.1%), *NIPA1* (25.3%), *COPS3* (19.5%) and *DAAM1* (8.2%).

DISCUSSION

This is the first study to assess the potential contribution of CNVs to the aetiology of CP. Two different customised, microarray platforms were utilized to maximize CNV detection in this cohort. Both platforms had been designed and validated for clinical testing of disorders found in high prevalence in the population including intellectual disability, autism, and epilepsy, disorders that are common co-morbidities of CP. We identified 14 CNVs that are plausible contributors to the aetiology of CP in 10 of 50 (20%) affected individuals. All are rare (<1% population frequency). Ten of the 14 CNVs were larger than 150 kb. Five of the 14 CNVs were deletions with an average size of 228 kb and one of them involved a gene, *COPS3* that is predicted to be dosage sensitive. Nine of the 14 CNVs were duplications with an average size of 466 kb (the largest spanning 1.5 Mb), and three involved genes (*CTNND2*, *NIPA1* and *DAAM1*) that are predicted to be dosage sensitive.

All 14 CNVs involve genes expressed in the brain, several of which have been reported to participate in the pathogenesis of other neurological disorders. These include: i) *ACOX1* 157 bp exonic deletion found in case P023. *ACOX1* is the first enzyme in the peroxisomal β-oxidation very-long-chain fatty acids. Autosomal recessive mutations in *ACOX1* cause peroxisomal acyl-CoA oxidase deficiency (OMIM 264470) and involve the nervous system. Clinical phenotypes with *ACOX1* deficiency include white matter abnormalities, early onset hypotonia, neonatal seizures and psychomotor delay.²⁸ ii) A small 4kb deletion of exons 4 - 6 of *COPS3* in case P020. *COPS3* is one of eight subunits of the COP9 signalosome protein complex and is involved in a variety of cellular and developmental processes and in signal transduction ²⁹. Previous studies have shown that lack of any of the eight subunits of

COP9 can destabilize the structure of the entire complex.³⁰ COPS3 maps to chromosome 17p11.2, within the Smith-Magenis Syndrome (SMS) and Potocki-Lupski Syndrome (PTLS) critical interval. 31 32 Autism spectrum disorder, the main feature of PTLS, has been reported in approximately 80% of cases.³³ As with SMS, PTLS is also characterised by congenital abnormalities and intellectual disability.³³ iii) A 534 kb duplication on 15q11.2 found in case P025 includes four highly conserved genes: TUBGCP5, CYFIP1, NIPA2 and NIPA1. TUBGCP5 is expressed in the subthalamic nuclei and CYFIP1 is widely expressed in the central nervous system. Deletions of 15q11.2 map to the critical region of the Prader-Willi syndrome/Angelman syndrome³⁴ (OMIM 608145, 608146). Microdeletions of 15q11.2 region have also been reported in cases with delayed motor and speech development, autism, obsessive-compulsive disorder and dysmorphic features without Prader-Willi/Angelman syndrome, suggesting haploinsufficiency for TUBGCP5, CYFIP1, NIPA2 and NIPA1.³⁵ While observed in control individuals, the role of 15q11.2 duplications is yet to be unravelled. iv) CTNND2 446 bp duplication in case P036. CTNND2 is highly expressed in fetal brain and plays an important role in neuronal functioning, adhesion, and migration.³⁶, ³⁷. It is involved in early embryogenesis and encodes an adhesive junction associated protein of the armadillo/beta-catenin superfamily. ³⁸ CTNND2 has been associated with intellectual disability in cri-du-chat syndrome³⁶ (OMIM 604275), autism when deleted, ^{38, 39} and schizophrenia when duplicated.³⁷ Previous studies have reported both dosage variation and disruptive effects resulting from CNVs involving CTNND2.^{37, 40} This gene has a predicted HI of 26.1%. v) A 219 bp duplication in case P025 involving exon 1 of MCPH1. Microcephalin, the product of MCPH1, highly expressed in the fetal cerebral cortex⁴¹ is involved in neurogenesis and regulation of cerebral cortex size. Homozygous loss of function mutations of the *MCPH1* gene (OMIM 607117, 606858 and 251200) cause autosomal recessive disorders including premature chromosome condensation syndrome,⁴² intellectual disability,⁴² and microcephaly.⁴³ Heterozygous deletions and duplications of *MCPH1* have been reported in families with autism spectrum disorders, supporting the concept that *MCPH1* is a dosage sensitive gene, with considerable mutation pleiotropy.⁴⁴ vi) A 64 kb duplication of *MC2R* identified in case P053. *MC2R* can result in the rare autosomal recessive disorder, familial glucocorticoid deficiency. Clinical characteristics related to hypoglycaemia can include hypertonic seizures, skin hyperpigmentation and muscle weakness.⁴⁵

Eleven of the 14 CNVs that we identified were inherited from an unaffected parent and were considered to be of potential relevance to CP. Reasons for discordance between parent and child could include variable expressivity, ⁴⁶ incomplete penetrance, ⁴⁷ and epigenetic modification of gene expression. ⁴⁷ Expression of a clinical phenotype in the child but not in the parent could also be explained by the 'two hit' hypothesis, ^{20, 23} which postulates the additive effects of two or more *de novo* or inherited genetic abnormalities in the affected individual, with fewer such abnormalities in the unaffected parent. Other mechanisms include the presence of a point mutation on the other allele in the affected children, not identified by the CNV profiling, ⁴⁸ and various combinations of CNVs and point mutations affecting different genes. ²³ Genetic susceptibility may also be triggered by environmental risk factors for CP such as prematurity and IUGR. ⁵

In some cases, it will be the combination of genetic and non-genetic risk factors that trigger the causal pathway to CP. Four out of our ten cases were born prematurely

and two of these carried two or more CNVs. Another case, born at term, carried two maternally inherited CNVs: including a 535 kb duplication of 15q11.2 and a 219 kb duplication of *MCPH1*. Homozygous mutations involving *MCPH1* are known to cause autosomal recessive primary microcephaly. In this case microcephaly was absent, head circumference was normal at birth (35 cm) and again at seven months age (45 cm). Magnetic resonance imaging showed left porencephaly following periventricular leukomalacia, which would be atypical of microcephaly. Sequencing of the other *MCPH1* allele showed no other variant (unpublished data). Another case was born following an emergency caesarean section, performed because of non-reassuring fetal condition and diagnosed with IUGR and hypothyroidism. However, there did not appear to be a difference in perinatal risk factors between the 10 cases with CNVs and the other 40 cases in the cohort. Type and severity of CP and other comorbidities were also similar between these two groups.

The strengths of this initial study are the use of two array platforms, the design and criteria for CNV calling, the rigorous validation and the plausible role these individual CNVs might play in disrupting various neurodevelopmental pathways.

The weaknesses of this study are that no *de novo* CNVs were found and it remains to be determined whether the inherited CNVs described led to a CP phenotype due to co-genetic or environmental triggers. The small sample size and the inherited nature of the CNVs make it is difficult to determine their true pathogenicity. The cases collected for this study were by necessity from a heterogeneous group of volunteer families which was generally representative of the CP population in terms of gestational age, risk factors for CP, and CP subtype. No exclusions were made on the grounds of preconceived assumptions as to causation. Although the CNVs described

may be involved in plausible biological pathways, one of the two arrays was intentionally targeted at genes known to be involved in neurodevelopmental disorders. This potential bias was offset by the rarity of these events in the control population. Nevertheless their precise contribution to CP requires much more investigation.

Not all parents were tested and of the cases whose parents were tested, no de novo CNVs were identified at the resolution of the 180K array (20-50 kb targeted regions, 225 genomic backbone) and the 135K array (>50 kb hotspot region, >50 kb genomic backbone). An increased CNV burden was not observed compared to the NIMH control cohort. This may reflect the lack of statistical power in detecting rare events in this cohort, or could be due to the fact that both array platforms were underpowered for detecting genome-wide small CNVs. Therefore, the true CNV contribution to CP may be underestimated. There was potential bias in our study cohort with regards to subtype and severity of CP. Only thirteen out of 50 cases (26%) had a GMFCS score of ≥ 4 . It is possible that *de novo* pathogenic CNVs will have an increased yield in individuals with more severe CP subtypes. We identified 10 out of 50 cases with one or more potentially pathogenic CNVs for CP. Where parental DNA was available, 11 out of 14 CNVs were found to be inherited from an unaffected parent, suggesting a more complex genetic aetiology than a major causative effect. The contribution of other genetic or environmental factors to CP in this cohort was not investigated. Genome/exome sequencing has the potential to identify further sequence variation which likely contributes to CP and was not evaluated in this study. Evaluation of the contribution of CNVs to CP awaits further confirmation in a larger independent cohort. However, these data suggest that in this cohort CNVs may contribute to the pathogenicity of CP in up to 20% of cases.

Acknowledgements Our thanks to Corinne Reynolds, Dr Michael O'Callaghan, Jessica Broadbent, Drs Ray Russo, James Rice and Andrew Tidemann of the Paediatric

Rehabilitation Department at the Women's and Children's Hospital, Adelaide for help

with case recruitment. We especially thank the families that participated in this study.

Funding Work described by this study was funded by the Australian National Health

and Medical Research Council (Grant No. 1019928), CP Alliance Research

Foundation, Women's and Children's Hospital Foundation and the National Institute of

Health and National Institute of Mental Health (Grant No. 074090-08). DNA/Cell

lines were provided by Genetic Repositories Australia, an Enabling Facility supported

by the Australian National Health and Medical Research Council (Grant No. 401184).

Conflict of Interest The authors declare no conflict of interest.

Electronic-Database Information

Gestation Network (<u>www.gestation.net</u>)

University of California Santa Cruz (UCSC) browser

http://genome.ucsc.edu/cgi-bin/hgGateway.

Online Mendelian Inheritance in Man (http://www.omim.org)

Decipher - Wellcome Trust Sanger Institute (https://decipher.sanger.ac.uk).

Supplementary material Supplementary material is available online.

16

Figure 1 CNV burden analysis for cerebral palsy.

The figure shows the population frequency of the largest CNV (as a survivor funtion) in individuals with cerebral palsy compared to 337 controls from the NIMH cohort and as a comparison of CNV burden to CNV data from individuals with intellectual disability, autism and dyslexia (data from Girirajan *et al.* PLoS Genetics, 2011).

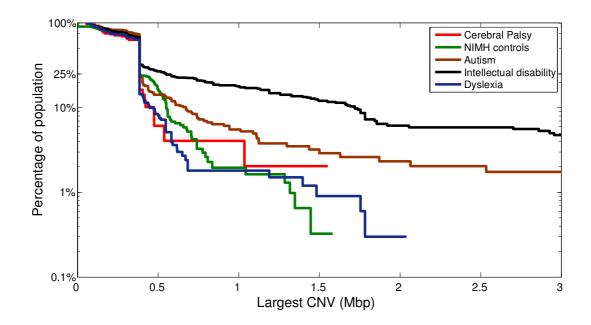


Table 1 Summary of CNVs in ten cases.

Case	Cytoband 180K array Build 36 (hg 18)	Gene Position	Size (bp)	CNV	Gene(s)	Inheritance	135K array Build 36 (hg 18)	qPCR	*Controls (8,329)	\$Controls NIMH (337)	Sex	Gestation (weeks)	НС	Subtype
P003	7q21.13	Chr7:88,152,747-89,720583	1,567,836	dup	ZNF804B, MGC26647, STEAP1.	maternal	yes	yes	4	NA	F	32	30	Dip
	12p12.2-p12.1	Chr12:20,908,843-21,295,433	386,590	del	STEAP2, STEAP2, STEAP2, FLJ21062 SLC01B3, LST-3TM12, SLC01B1	paternal	no	yes	2	NA				
P011	14q23.1	Chr14:58,593,026-58,804,264	265,283	dup	DAAM1	unknown	no	yes	0	0	F	30	28	Dip
P013	17q25.3	Chr17:74,722,430-75,415,451	693,021	dup	HRNBP3, ENPP7, CBX2, CBX2, CBX8	unknown	yes	yes	0	NA	F	40	U	Hem
P017	14q21.3 -	Chr14:43,617,568-44,369,205	751,637	del	FSCB	maternal	yes	yes	1	0	M	39	U	Quad
P020	17p11.2	Chr17:17,104,399-17,108,906	4,507	del	COPS3 intragenic	paternal	no	yes	NA	NA	F	40	U	Hem
P023	17q25.1	Chr17:71,467,868-71,468,025	157	del	ACOX1 exonic	unknown	no	yes	NA	NA	F	39	33.5	Quad
P025	15q11.2	Chr15:20,316,992-20,851,728	534,736	dup	TUBGCP5, TUBGCP5, CYFIP1, CYFIP1,	maternal	yes	yes	35	3	M	40	35	Hem
	8p23.1-p23.2	Chr8:6,072,234-6,291,658	219,424	dup	NIPA2, NIPA1 MCPH1 first exon	maternal	no	yes	0	0				
P036	5p15.2	Chr5:11,956,988-12,403,682	446,694	dup	CTNND2 first exon	maternal	yes	yes	0	0	F	41	33	Hem
P053	18p11.21	Chr18:13,861,404-13,925,908	64,504	dup	MC2R entire gene	maternal	no	yes	0	0	M	36	35	Quad
	22q13.33	Chr22:49,154,182-49,323,370	169,188	dup	SAPS2, SBF1, ADM2, MIOX, LMF2, NCAPH2,	maternal	no	yes	1	NA				
	5q21.1	Chr5:101,763,193-101,763,328	135	del	NCAPH2, SCO2, TYMP, TYMP, LOC440836	maternal	no	yes	NA	NA				
P057	10q26.13	Chr10:126,466,575-126,700,900	234,325	dup	SLCO6A1 exonic METTL10, KIAA0157, ZRANB1, CTBP2	paternal	no	yes	0	NA	M	29	U	Hem

^{*8,329} adult controls with no known neurological disorders; $^{\$}NIMH$ (National Institute of Mental Health); NA - denotes no data on controls due to low probe coverage, HC – head circumference, U – no available data, Hem – hemiplegia, Dip – diplegia, Quad - quadriplegia

REFERENCES

- Nelson KB, Dambrosia JM, Grether JK, Phillips TM. Neonatal cytokines and coagulation factors in children with cerebral palsy. *Ann Neurol* 1998; 44: 665-75.
- 2. MacLennan A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. *BMJ* 1999; **319**: 1054-9.
- 3. Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M, Damiano D, et al. A report: the definition and classification of cerebral palsy April 2006. *Dev Med Child Neurol Suppl* 2007; **109**: 8-14.
- 4. Strijbis EM, Oudman I, van Essen P, MacLennan AH. Cerebral palsy and the application of the international criteria for acute intrapartum hypoxia. *Obstet Gynecol* 2006; **107**: 1357-65.
- 5. O'Callaghan ME, MacLennan A, C. G, McMichael G, Haan E, J. B, et al. Epidemiolgic Associations With Cerebral Palsy. *Obstetrics and Gynaecology* 2011; **118**: 576-82.
- 6. Moreno-De-Luca A, Ledbetter DH, Martin CL. Genomic insights into the causes and classification of the cerebral palsies. *Lancet Neurol* 2012; **11**: 283-92.
- 7. Petterson B, Stanley F, Henderson D. Cerebral palsy in multiple births in Western Australia: genetic aspects. *Am J Med Genet* 1990; **37**: 346-51.
- 8. Paneth N. Birth and the origins of cerebral palsy. *N Engl J Med* 1986; **315**: 124-6.
- 9. Wild NJ, Rosenbloom L. Familial cerebral palsy associated with normal intelligence. *Postgrad Med J* 1986; **62**: 827-30.

- O'Callaghan ME, MacLennan AH, Haan EA, Dekker G. The genomic basis of cerebral palsy: a HuGE systematic literature review. *Hum Genet* 2009; 126: 149-72.
- 11. McHale DP, Mitchell S, Bundey S, Moynihan L, Campbell DA, Woods CG, et al. A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24-25. *Am J Hum Genet* 1999; **64**: 526-32.
- 12. Lynex CN, Carr IM, Leek JP, Achuthan R, Mitchell S, Maher ER, et al. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders. *BMC Neurol* 2004; **4**: 20.
- 13. McHale DP, Jackson AP, Campbell, Levene MI, Corry P, Woods CG, et al. A gene for ataxic cerebral palsy maps to chromosome 9p12-q12. *Eur J Hum Genet* 2000; **8**: 267-72.
- 14. Verkerk AJ, Schot R, Dumee B, Schellekens K, Swagemakers S, Bertoli-Avella AM, et al. Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. *Am J Hum Genet* 2009; **85**: 40-52.
- 15. Abou Jamra R, Philippe O, Raas-Rothschild A, Eck SH, Graf E, Buchert R, et al. Adaptor protein complex 4 deficiency causes severe autosomal-recessive intellectual disability, progressive spastic paraplegia, shy character, and short stature. *Am J Hum Genet* 2011; **88**: 788-95.
- 16. Moreno-De-Luca A, Helmers SL, Mao H, Burns TG, Melton AM, Schmidt KR, et al. Adaptor protein complex-4 (AP-4) deficiency causes a novel autosomal

- recessive cerebral palsy syndrome with microcephaly and intellectual disability. *J Med Genet* 2011; **48**: 141-4.
- 17. Bauer P, Leshinsky-Silver E, Blumkin L, Schlipf N, Schroder C, Schicks J, et al. Mutation in the AP4B1 gene cause hereditary spastic paraplegia type 47 (SPG47). *Neurogenetics* 2012; **13**: 73-6.
- 18. Badawi N, Watson L, Petterson B, Blair E, Slee J, Haan E, et al. What constitutes cerebral palsy? *Dev Med Child Neurol* 1998; **40**: 520-7.
- 19. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. *Nature* 2010; **466**: 368-72.
- 20. Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, et al.

 A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. *Nat Genet* 2010; **42**: 203-9.
- 21. Cooper G, Coe B, Girirajan S, Rosenfeld J, Vu T, Baker C, et al. A copy number variation morbidity map of develomental delay. *Nat Genet* 2011;
- de Kovel CG, Trucks H, Helbig I, Mefford HC, Baker C, Leu C, et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. *Brain* 2010; **133**: 23-32.
- 23. O'Roak BJ, Deriziotis P, Lee C, Vives L, Schwartz JJ, Girirajan S, et al. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. *Nat Genet* 2011; **43**: 585-9.
- 24. Gardosi J. Customised assessment of fetal growth potential: implications for perinatal care. *Arch Dis Child Fetal Neonatal Ed* 2012; **97**: F314-7.

- 25. Girirajan S, Brkanac Z, Coe BP, Baker C, Vives L, Vu TH, et al. Relative Burden of Large CNVs on a Range of Neurodevelopmental Phenotypes. *PLoS Genet* 2011; **7**: e1002334.
- 26. Selzer RR, Richmond TA, Pofahl NJ, Green RD, Eis PS, Nair P, et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. *Genes Chromosomes Cancer* 2005; **44**: 305-19.
- 27. Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. *Dev Med Child Neurol* 1997; **39**: 214-23.
- 28. Carrozzo R, Bellini C, Lucioli S, Deodato F, Cassandrini D, Cassanello M, et al. Peroxisomal acyl-CoA-oxidase deficiency: two new cases. *Am J Med Genet A* 2008; **146A**: 1676-81.
- 29. Seeger M, Thierse HJ, Lange H, Shaw L, Hansen H, Lemke H. Antigen-independent suppression of the IgE immune response to bee venom phospholipase A2 by maternally derived monoclonal IgG antibodies. *Eur J Immunol* 1998; **28**: 2124-30.
- 30. Henke W, Ferrell K, Bech-Otschir D, Seeger M, Schade R, Jungblut P, et al. Comparison of human COP9 signalsome and 26S proteasome lid'. *Mol Biol Rep* 1999; **26**: 29-34.
- 31. Girirajan S, Vlangos CN, Szomju BB, Edelman E, Trevors CD, Dupuis L, et al. Genotype-phenotype correlation in Smith-Magenis syndrome: evidence that multiple genes in 17p11.2 contribute to the clinical spectrum. *Genet Med* 2006; 8: 417-27.

- 32. Potocki L, Chen KS, Park SS, Osterholm DE, Withers MA, Kimonis V, et al. Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. *Nat Genet* 2000; **24**: 84-7.
- 33. Molina J, Carmona-Mora P, Chrast J, Krall PM, Canales CP, Lupski JR, et al. Abnormal social behaviors and altered gene expression rates in a mouse model for Potocki-Lupski syndrome. *Hum Mol Genet* 2008; **17**: 2486-95.
- 34. Chai JH, Locke DP, Greally JM, Knoll JH, Ohta T, Dunai J, et al. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. *Am J Hum Genet* 2003; **73**: 898-925.
- 35. Mefford HC, Cooper GM, Zerr T, Smith JD, Baker C, Shafer N, et al. A method for rapid, targeted CNV genotyping identifies rare variants associated with neurocognitive disease. *Genome Res* 2009; **19**: 1579-85.
- 36. Medina M, Marinescu RC, Overhauser J, Kosik KS. Hemizygosity of delta-catenin (CTNND2) is associated with severe mental retardation in cri-du-chat syndrome. *Genomics* 2000; **63**: 157-64.
- 37. Vrijenhoek T, Buizer-Voskamp JE, van der Stelt I, Strengman E, Sabatti C, Geurts van Kessel A, et al. Recurrent CNVs disrupt three candidate genes in schizophrenia patients. *Am J Hum Genet* 2008; **83**: 504-10.
- 38. Gai X, Xie HM, Perin JC, Takahashi N, Murphy K, Wenocur AS, et al. Rare structural variation of synapse and neurotransmission genes in autism. *Mol Psychiatry* 2011;

- 39. Harvard C, Malenfant P, Koochek M, Creighton S, Mickelson EC, Holden JJ, et al. A variant Cri du Chat phenotype and autism spectrum disorder in a subject with de novo cryptic microdeletions involving 5p15.2 and 3p24.3-25 detected using whole genomic array CGH. *Clin Genet* 2005; **67**: 341-51.
- 40. Lupski JR, Stankiewicz P. Genomic disorders: molecular mechanisms for rearrangements and conveyed phenotypes. *PLoS Genet* 2005; **1**: e49.
- 41. Evans PD, Anderson JR, Vallender EJ, Choi SS, Lahn BT. Reconstructing the evolutionary history of microcephalin, a gene controlling human brain size. *Hum Mol Genet* 2004; **13**: 1139-45.
- 42. Trimborn M, Bell SM, Felix C, Rashid Y, Jafri H, Griffiths PD, et al. Mutations in microcephalin cause aberrant regulation of chromosome condensation. *Am J Hum Genet* 2004; **75**: 261-6.
- 43. Garshasbi M, Motazacker MM, Kahrizi K, Behjati F, Abedini SS, Nieh SE, et al. SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly. *Hum Genet* 2006; **118**: 708-15.
- 44. Ozgen HM, van Daalen E, Bolton PF, Maloney VK, Huang S, Cresswell L, et al. Copy number changes of the microcephalin 1 gene (MCPH1) in patients with autism spectrum disorders. *Clin Genet* 2009; **76**: 348-56.
- 45. Aza-Carmona M, Barreda-Bonis AC, Guerrero-Fernandez J, Gonzalez-Casado I, Gracia R, Heath KE. Familial glucocorticoid deficiency due to compound heterozygosity of two novel MC2R mutations. *J Pediatr Endocrinol Metab* 2011; **24**: 395-7.

- 46. Veltman JA, Brunner HG. Understanding variable expressivity in microdeletion syndromes. *Nat Genet* 2010; **42**: 192-3.
- 47. Raj A, Rifkin SA, Andersen E, van Oudenaarden A. Variability in gene expression underlies incomplete penetrance. *Nature* 2010; **463**: 913-8.
- 48. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. *Nat Rev Genet* 2006; **7**: 85-97.