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Abstract 

Exposure to a maternal ‘junk food’ diet in utero and during the suckling period has 

been demonstrated to increase the preference for palatable food and increase the 

susceptibility to diet induced obesity in adult offspring. We aimed to determine 

whether the effects of prenatal exposure to junk food could be ameliorated by cross-

fostering offspring onto dams consuming a standard rodent chow during the suckling 

period. We report here that when all offspring were given free access to the junk food 

diet for 7 weeks from 10 weeks of age, male offspring of control (C) or junk food (JF) 

dams that were cross-fostered at birth onto JF dams (C-JF, JF-JF), exhibited higher fat 

(C-C 12.3±0.34g/kg/d, C-JF 14.7±1.04g/kg/d, JF-C 11.5±0.41g/kg/d, JF-JF 

14.0±0.44g/kg/d, P<0.05) and overall energy intake (C-C 930.1±18.56kJ/kg/d, C-JF 

1029.0±82.9kJ/kg/d, JF-C 878.3±19.5kJ/kg/d, JF-JF 1003.4±25.97kJ/kg/d, P<0.05) 

than offspring exposed to the junk food diet only before birth (JF-C) or not at all (C-

C). Female offspring suckled by JF dams, despite no differences in food intake, had 

increased fat mass as percentage of body weight (C-C 19.9±1.33%, C-JF 22.8±1.57%, 

JF-C 17.4±1.03%, JF-JF 22.0±1.0%, P<0.05) after 3 weeks on the junk food diet. No 

difference in fat mass was observed in male offspring. These findings suggest that the 

effects of prenatal exposure to a junk food diet on food preferences in females and 

susceptibility to diet-induced obesity in males can be prevented by improved nutrition 

during the suckling period.   

Key words: nutritional programming, food preferences, cross-fostering 

 

 

 

 

 

 

 

 



Introduction 1 

The worldwide incidence of obesity has doubled since 1980 1 and this epidemic has 2 

now spread to include women of reproductive age, with greater than 50 percent of 3 

women entering pregnancy either overweight or obese 2, 3. Whilst the causes of this 4 

rise in obesity prevalence are multi-factorial, the ready availability of ‘junk foods’ is 5 

an important contributing factor 4. The term ‘junk food’ can be applied to a range of 6 

foods which are high in fat, sugar or salt, nutrient poor, as well as highly palatable 5. 7 

The consumption of these types of foods during pregnancy and lactation has been 8 

shown in animal models to have long term consequences for the food preferences of 9 

the offspring. We and others have shown that the offspring of mothers fed a cafeteria 10 

diet (a well-established model of junk food feeding in the rodent 6) during the 11 

perinatal period have an increased preference for palatable foods as adults and also 12 

exhibit a greater susceptibility to diet-induced obesity when compared to the offspring 13 

of mothers fed a standard diet during the same time frame 7, 8.  14 

The detrimental effects of early life exposure to a cafeteria diet on the offspring have 15 

led to a search for interventions to ameliorate these effects8, 9. There are currently 16 

limited studies which have attempted to separate the effects of prenatal and postnatal 17 

exposure to high-fat and high-sugar diets on the early life origins of food preferences. 18 

However, the results from these studies have provided evidence that nutritional 19 

exposures experienced in utero are likely to have distinct effects on the long term 20 

outcomes in the offspring from those experienced during the early postnatal period. In 21 

one such study, providing dams who consumed a cafeteria diet during pregnancy with 22 

a standard chow diet during lactation blunted the increased preference for fat and 23 

sugar in their adult offspring8. It has also been demonstrated that providing dams with 24 

the cafeteria diet only during lactation also resulted in an increased preference for the 25 

palatable diet in the adult offspring 10, 11. Exposure to a cafeteria diet during lactation 26 

has also been associated with increased perirenal fat mass in adult offspring 12, 27 

highlighting the importance of this period not only in establishing the regulation of 28 

food preferences but also in the programming of increased adiposity.  29 

Despite evidence suggesting that the lactation period has a particularly important role 30 

in the programming of future metabolic outcomes, nutritional manipulations during 31 

pregnancy alone have also been demonstrated to result in offspring hyperphagia later 32 
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in life13, 14. There are currently no studies which have directly compared, within the 33 

same experiment, the long term effects of exposure to a cafeteria diet exclusively 34 

during the prenatal or early postnatal period from those of exposure during the entire 35 

perinatal period. A cross-fostering paradigm, in which offspring are switched at birth 36 

from a dam consuming a cafeteria diet to a dam consuming a control diet, or vice 37 

versa, is the only way to adequately separate the effects of exposure to a cafeteria diet 38 

during lactation from the effects of exposure during pregnancy and avoid the carry-39 

over effects on maternal physiology that may exist when a dam consuming a cafeteria 40 

diet during pregnancy is switched onto standard rodent feed after the birth of her 41 

pups15. The ability to clearly delineate the long term effects of junk food exposure in 42 

either the pre or postnatal period, and establishing to what extent prenatal exposures 43 

can be ameliorated by altering postnatal nutrition, will be critical for determining the 44 

optimal timing for intervention. 45 

Therefore, the aim of the current study was to compare the effects of exposure to a 46 

cafeteria ‘junk food’ diet in utero or during the suckling period on food preferences 47 

and susceptibility to diet-induced obesity in the offspring. Specifically, we aimed to 48 

investigate the hypothesis that cross-fostering the offspring of mothers fed a cafeteria 49 

diet during pregnancy onto mothers fed a standard diet could prevent the 50 

establishment of an increased preference for junk food and decrease the susceptibility 51 

to diet induced obesity in the offspring.  52 

 Methods 53 

Animals and feeding regime 54 

This study was approved by the Adelaide University Animal Ethics Committee. 26 55 

female (200-250g) and 4 male (200-300g) Albino Wistar rats were used in this 56 

experiment. The animals were individually housed and allowed to acclimatise to the 57 

animal housing facility for at least 1 week before initiation of experimental procedure. 58 

During this time rats were fed ad libitum on standard laboratory rodent feed (Specialty 59 

Feeds, Glen Forrest, WA, Australia) with free access to water. After the 60 

acclimatisation period, the female rats were assigned to weight matched groups, 61 

designated as either control (control, n=14) or junk food (JF, n=12). Control rats were 62 

given free access to standard laboratory rodent feed while JF rats were fed a cafeteria 63 

diet comprising of peanut butter, hazelnut spread, chocolate biscuits, savory snacks, 64 
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sweetened cereal and a lard and chow mix. Detailed nutritional composition of this 65 

cafeteria diet has been published previously 7. Food intake was recorded every 2 days, 66 

by subtracting the amount that remained in the cage from the amount initially 67 

provided. All rats were individually housed under a 12 hour /12 hour light-dark cycle 68 

at a room temperature of 25°C throughout the experiment. 69 

After 4 to 6 weeks on their respective diets, vaginal smears were conducted daily to 70 

determine the stage of the estrous cycle. On the evening of diestrous/proestrous, 2 71 

female rats were placed with a male rat for 24 hours. Vaginal smears were performed 72 

the following morning. The presence of sperm was used as confirmation of successful 73 

mating and designated as gestation day 0. Female rats were maintained on the same 74 

diet as before mating throughout pregnancy and lactation and were weighed once per 75 

week throughout the experimental period.  76 

Cross-fostering 77 

Pups were born at day 21-22 of gestation. Within 24 hours of birth, all litters were 78 

culled to 8 pups, with 4 males and 4 females where possible. Pups were then cross-79 

fostered to another dam which had given birth within the same 24 hour period from 80 

either the same or different dietary treatment group. This resulted in 4 groups of 81 

offspring: offspring from a control dam cross-fostered onto another control dam (C-82 

C), offpring from a control dam cross-fostered onto a JF dam (C-JF), offspring from a 83 

JF dam cross-fostered onto control dam (JF-C) and offspring from a JF dam cross-84 

fostered onto another JF dam (JF-JF). 85 

Pups remained with their foster mothers until weaning (postnatal day (PND) 21). 86 

After weaning, the pups were group housed with same-sex littermates and fed with 87 

standard laboratory rat feed until 10 weeks of age (Fig. 1). Pups were weighed every 88 

second day until weaning and once per week thereafter until the end of the 89 

experiment.  90 

Determination of food preferences 91 

After all offspring had been consuming the control diet for 6 weeks post weaning, up 92 

to 2 males and 2 females per litter were randomly selected to study food preferences 93 

and susceptibility to diet induced obesity. These offspring were separated from the 94 

other offspring, housed with a same sex litter mate and given free access to both the 95 
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standard chow and cafeteria diet from 10 to 16 weeks (4 months) of age. Food intake 96 

was measured every 2 days by subtracting the amount left uneaten in the cage from 97 

the amount initially provided. The total intake of each food type was recorded and 98 

macronutrient preferences for each cage determined based on the nutritional 99 

composition of the foods consumed. The amount of food consumed was normalised to 100 

mean body weight. Food intake was divided by the number of offspring in the cage 101 

and normalised to the average of their weights.  102 

Post-mortem and tissue collection 103 

At 12 and 16 weeks of age, one male and one female pup from each litter were killed 104 

for the determination of body fat mass. The rats were not fasted prior to postmortem 105 

and all postmortems were conducted in light phase between 8 and 10 AM. All animals 106 

were weighed immediately prior to being killed with an overdose of CO2. Blood 107 

samples were collected by cardiac puncture, and blood was centrifuged at 3,500g, 4˚C 108 

for 15 minutes and plasma stored at -20˚C for subsequent analysis of hormone and 109 

metabolite concentrations. Individual fat depots including retroperitoneal fat, omental 110 

fat, gonadal fat, interscapular fat and subcutaneous fat were isolated and their 111 

respective weights recorded. All fat depots were snap frozen in liquid nitrogen and 112 

stored at -80°C for future molecular analyses. 113 

Determination of hormone and metabolite concentrations 114 

Plasma concentrations of glucose and non-esterified fatty acids (NEFA) were 115 

determined using the Infinity Glucose Hexokinase kit (Thermo Electron, Pittsburgh, 116 

PA, USA) and the Wako NEFA C kit (Wako Pure Chemical Industries Ltd, Osaka, 117 

Japan), respectively. Assays were conducted using Konelab 20 (Thermo Scientific, 118 

Vantaa, Finland). Plasma insulin and leptin concentrations were measured by 119 

immunoassay using the ALPCO Insulin (Rat) Ultrasensitive ELISA kit (ALPCO 120 

diagnostics, Salem, NH, USA) and the Crystal Chem Rat Leptin ELISA kit (Crystal 121 

Chem INC, Downers Grove, IL, USA). All assays were conducted according to 122 

manufacturer's instructions and intra- and inter-assay coefficients of variation were 123 

<10%. 124 

 125 

 126 
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Statistical analysis 127 

Comparison of maternal food intake and birth outcomes in the control and JF groups 128 

was performed using Student’s unpaired t-tests. The effect of maternal diet and sex on 129 

offspring food intake, body fat mass, plasma insulin, glucose, leptin and NEFA was 130 

analyzed using three-way ANOVA, with sex, prenatal and postnatal maternal diet as 131 

factors. Where there were significant differences between males and females, the data 132 

by sex and analysed by two-way ANOVA (prenatal and postnatal maternal diet as 133 

factors). Three-way ANOVA and Student’s unpaired t-tests were conducted using 134 

SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). Offspring body weight gain over 135 

time was analyzed by two-way repeated measures ANOVA using Stata 11 software 136 

(StataCorp.,TX, USA). The litter (mother) was used as the unit of analysis for all 137 

statistical tests. All data are presented as mean±SEM with a P value of <0.05 deemed 138 

statistically significant. 139 

Results 140 

Body weight and macronutrient intake of dams during pregnancy and lactation 141 

JF dams were heavier than control dams at mating (control 292.1±7.6g, JF 142 

343.4±9.4g, P<0.01) and remained heavier until the end of lactation (control 143 

348.4±6.7g, JF 397.3±10.3g, P<0.01).  144 

During pregnancy, JF dams consumed significantly more fat (control 3.2±0.2g/kg/d, 145 

JF 15.3±0.7g/kg/d, P<0.01) than controls, but had lower intakes of protein (control 146 

13.5±0.8g/kg/d, JF 6.6±0.2g/kg/d, P<0.01) and carbohydrate (control 41.4±2.4g/kg/d, 147 

JF 29.6±1.5g/kg/d, P<0.01). Average daily energy intake during pregnancy was not 148 

different between groups. During lactation, the higher fat intake (control 149 

6.8±0.4g/kg/d, JF 26.4±1.4g/kg/d, P<0.01) the reduced protein (control 150 

28.8±1.6g/kg/d, JF 12.4±0.6g/kg/d, P<0.01) and the reduced carbohydrate intake 151 

(control 88.8±4.8g/kg/d, JF 49.9±1.8g/kg/d, P<0.01) observed in JF dams during 152 

pregnancy were maintained. In addition, JF dams also consumed significantly less 153 

total energy during the lactation period compared to control dams (control 154 

2643.8±142.6kJ/g/d, JF 2001.6±82.1kJ/g/d, P<0.01).  155 

 156 

 157 
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Effect of cross-fostering on birth outcomes and pup growth 158 

Maternal diet had no effect on litter size (control 13±0.65, JF 13±0.68) or length of 159 

gestation (control 22±0.10 d, JF 22±0.00 d). JF litters had increased rates of pup 160 

death, with dead pups found in 5 out of 12 JF litters, but no pup deaths were observed 161 

in the control litters. All cross-fostered pups survived until weaning.  162 

At birth offspring of JF dams were significantly lighter than offspring of control dams 163 

for both males (control 7.7±0.2g, JF 6.2±0.1g, P<0.01) and females (control 7.3±0.2g, 164 

JF 6.0±0.1g, P<0.01). However there was no difference in body weights between 165 

groups from PND1 to PND 9. From PND 9 until weaning (PND 21), male offspring 166 

suckled by JF dams (C-JF, JF-JF) were lighter than those suckled by control dams (C-167 

C, JF-C), independent of maternal diet during pregnancy. In female offspring, a 168 

reduction in bodyweight was observed only in JF-JF offspring compared to controls 169 

(C-C) (Fig. 2). 170 

Offspring growth and food intake during the post-weaning period 171 

In males, there was an interaction between prenatal and postnatal dietary exposure on 172 

body weight at 10 weeks of age, such that exposure to junk food diet during lactation 173 

decreased the bodyweight of offspring born to control dams but not those born to JF 174 

dams (Fig 2). In females, offspring born to JF dams were significantly lighter at 10 175 

weeks compared to those born to control dams, independent of dietary exposure 176 

during the suckling period (Fig 2).  177 

There was no difference in the intake of the standard rodent feed between groups of 178 

offspring from weaning to 10 weeks of age in either males (C-C 1876.7±62.7kJ/kg/d, 179 

C-JF 2243.1±34.8kJ/kg/d, JF-C 1863.8±65.5kJ/kg/d, JF-JF 1968.6±50.8kJ/kg/d) or 180 

females (C-C 1950.8±68.4kJ/kg/d, C-JF 2170.9±58.2kJ/kg/d, JF-C 181 

2157.9±88.2kJ/kg/d, JF-JF 2058.843.7±kJ/kg/d). 182 

 183 

Effect of prenatal and postnatal maternal diet on offspring body composition at 12 184 

and 16 weeks of age  185 

At 12 weeks of age, after 3 weeks on the cafeteria diet, there were no longer any 186 

differences in bodyweight between groups in the male offspring (C-C 570.9±11.6g, 187 

C-JF 530.3±37.3g, JF-C 512.8±16.5g, JF-JF 539.5±21.3g). In females, however, 188 
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offspring exposed to the cafeteria diet before birth remained lighter than those born to 189 

control dams, independent of dietary exposure during the suckling period (C-C 190 

405.4±6.8g, C-JF 401.2±15.9g, JF-C 354.5±8.7g, JF-JF 388.4±17.7g, P<0.05). 191 

However, those female offspring who had been exposed to the cafeteria diet during 192 

the suckling period had significantly higher omental, epigonadal and total body fat 193 

mass as percentage of body weight after 3 weeks of access to the cafeteria diet, 194 

independent of dietary exposure before birth (Table 1). There were no differences 195 

between groups in body fat mass after 3 weeks on the cafeteria diet in the male 196 

offspring (Table 1). 197 

At 16 weeks of age, after all offspring had been exposed to the cafeteria diet for 7 198 

weeks, there was no difference in bodyweight between groups in either male or 199 

female offspring (Fig 2). There were also no differences between groups in total body 200 

fat mass or the relative weight of any individual fat depot in either males or females 201 

(Table 1). 202 

Effect of prenatal and postnatal maternal diet on offspring food preferences from 10 203 

to 12 weeks of age 204 

During the first 3 weeks of access to the cafeteria diet, male offspring that were 205 

suckled by JF dams had a higher intake of fat, carbohydrate and energy independent 206 

of whether they were exposed to the control or JF diet before birth (Fig 3A). There 207 

was no effect of maternal diet during pregnancy and/or lactation on the intake of fat, 208 

protein, carbohydrate or total energy in the female offspring (Fig 3B).  209 

Analysis of the intake of specific components of the cafeteria diet showed that in 210 

males, intake of hazelnut spread was significantly higher in offspring suckled by JF 211 

dams compared to those suckled by control dams, in line with the results observed for 212 

macronutrient intake (Fig 3C). Again, this effect was independent of whether they 213 

were born to a control or JF dam. There was no effect of nutritional exposure either 214 

before birth or during the suckling period on intake of other cafeteria diet components 215 

or standard rodent feed in either males or females (Fig 3C-D). 216 

 217 

 218 
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Effect of prenatal and postnatal maternal diet on offspring food preferences from 13 219 

to 16 weeks of age  220 

In the final 4 weeks of access to the cafeteria diet, male offspring suckled by JF dams 221 

continued to consume significantly more fat and total energy than those suckled by 222 

control mothers, independent of nutritional exposure before birth (Fig 4A). There was 223 

no effect of maternal diet on protein or carbohydrate intake in the male offspring 224 

during this 4 week period. There was no difference in macronutrient intake during this 225 

period between groups in female offspring (Fig 4B). 226 

Examination of the intake of specific foods, showed that male offspring suckled by JF 227 

dams consumed more peanut butter and hazelnut spread but less sweetened cereal 228 

than those offspring suckled by control dams, independent of nutritional exposure 229 

before birth (Fig 4C). In females, offspring exposed to the cafeteria diet during the 230 

suckling period exhibited an increased intake of the standard rodent feed and hazelnut 231 

spread compared to the offspring suckled by control dams (Fig 4D). There was no 232 

effect of maternal diet during either pregnancy or lactation on intake of any other 233 

components of the cafeteria diet in either males or females or the intake of standard 234 

rodent feed in male offspring.  235 

Effect of prenatal and postnatal maternal diet on blood hormones, glucose and NEFA 236 

at 12 and 16 weeks of age 237 

At 12 weeks of age, females exposed to the cafeteria diet during the suckling period 238 

had increased plasma leptin concentrations (Table 2), consistent with the increased fat 239 

mass observed in these offspring. Those females who were exposed to the JF diet 240 

before birth, however, exhibited higher plasma insulin concentrations and reduced 241 

plasma NEFA concentrations at 12 weeks of age, independent of the dietary exposure 242 

during the suckling period (Table 2). There was no effect of cafeteria diet exposure 243 

either before birth or during the suckling period on plasma concentrations of glucose, 244 

NEFA, leptin or insulin in male offspring.  245 

At 16 weeks of age, male offspring suckled by JF dams (C-JF, JF-JF) had increased 246 

plasma glucose and insulin concentrations compared to those suckled by control 247 

dams, independent of dietary exposure before birth. There was no effect of exposure 248 

to the cafeteria diet either before birth and/or during the lactation period on plasma 249 
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concentrations of glucose and insulin in females and leptin or NEFA in either male or 250 

female offspring at 4 months of age (Table 2).  251 

Discussion 252 

The findings of this study have demonstrated that there are differing effects of 253 

exposure to a high-fat, high-sugar cafeteria diet during the prenatal and early postnatal 254 

period on subsequent regulation of palatable food intake, body weight and body fat 255 

mass in the adult offspring, and that these effects are sex-specific. Exposure to the 256 

cafeteria diet during the suckling period, independent of dietary exposure before birth, 257 

was associated with an increased propensity to develop diet-induced obesity in 258 

females and an increased preference for palatable foods in male offspring in young 259 

adulthood. Importantly, these effects of exposure to a cafeteria diet before birth were 260 

ameliorated by cross-fostering offspring to a dam consuming a nutritionally balanced 261 

diet. This study is the first to use a cross-fostering approach to isolate the effect of 262 

prenatal and early postnatal exposure to a cafeteria diet on the food preferences of the 263 

offspring, and adds to the growing body of evidence that there is potential to reverse 264 

at least some of the negative effects of inappropriate prenatal nutrition by 265 

interventions in the early postnatal period.  266 

Early life exposure to a junk food diet inhibits pup growth pre-weaning 267 

Consistent with previous studies 7, 8, we found that both male and female offspring of 268 

JF dams were lighter at birth than offspring of control dams. This may be attributed to 269 

the reduced protein intake or micronutrient deficiencies in the cafeteria diet compared 270 

to the standard chow diet16. JF offspring cross-fostered onto control dams were no 271 

longer lighter than offspring of control dams during the early suckling period, this 272 

could suggest that growth deficits in these offspring were overcome by providing 273 

access to milk from dams consuming a nutritionally balanced diet. These data suggest 274 

that the effect of the maternal diet on milk composition and/or supply plays a central 275 

role in the early programming of food preferences, and it will be important in future 276 

studies to undertake measurements of milk composition to better explore this. It is 277 

also important to note that offspring weights during the suckling period were not 278 

recorded separately for individual pups in the current study, and it will be useful to 279 

undertake individual assessments in future studies to determine to what extent the 280 

growth profiles vary between littermates. 281 
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Clear sex differences in the growth profile of the offspring emerged after the first 9 282 

days of postnatal life. In males, offspring suckled by JF dams were lighter at weaning 283 

than those suckled by control dams independent of maternal diet before birth.  In 284 

females, however, weight at weaning was only significantly reduced in offspring 285 

exposed to the cafeteria diet during both the prenatal and suckling periods, suggesting 286 

that an improved nutritional environment during the suckling period was not sufficient 287 

to overcome the growth deficits induced by maternal junk food intake during 288 

pregnancy. 289 

Interestingly, and in contrast to males, female offspring born to JF dams were lighter 290 

than those born to control dams after consuming the standard rat chow for 6 weeks 291 

after weaning and remained lighter even after 3 weeks of access to the cafeteria diet. 292 

It therefore appears that, in females, growth deficits programmed by exposure to a 293 

cafeteria diet, which are potentially lacking in protein and key micronutrients, before 294 

birth cannot be readily overcome by postnatal nutritional interventions. This result is 295 

consistent with the low protein model in which maternal consumption of a low protein 296 

diet during pregnancy alone has been demonstrated to impact the growth of female 297 

but not male offspring17, 18.  298 

Maternal junk food consumption during lactation increases susceptibility to diet 299 

induced obesity in female offspring 300 

In contrast to overall growth, exposure to a maternal junk food diet during the 301 

suckling period appeared to play the dominant role in the programming of adipose 302 

tissue in female offspring. After 3 weeks of free access to the cafeteria diet, female 303 

offspring suckled by JF dams had increased fat mass compared to those offspring 304 

suckled by control dams, independent of the diet their mother had consumed during 305 

pregnancy. Importantly, this occurred in the absence of a higher food intake, 306 

suggesting that these animals had an increased propensity to accumulate body fat.   307 

This increased susceptibility to diet-induced obesity was not observed in offspring of 308 

JF dams cross-fostered onto a control dam, suggesting that the susceptibility to diet-309 

induced obesity in female offspring exposed to a high-fat, high-sugar diet before birth 310 

can be prevented by nutritional interventions in the early postnatal period. 311 

Interestingly, there was no longer any difference between groups after the offspring 312 

had been exposed to the junk food diet for the full 10 weeks. This suggests that whilst 313 
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being exposed to an ‘optimal’ nutritional environment in the perinatal period may 314 

render an individual less susceptible to diet induced weight gain and fat deposition, 315 

this advantage is negated by persistent overconsumption of a high calorie diet in 316 

postnatal life 19 20.   317 

Maternal junk food consumption during lactation alters the food preferences of male 318 

offspring 319 

In males, offspring suckled by JF dams had a greater intake of fat, carbohydrate and 320 

total energy compared to offspring suckled by control dams when all offspring were 321 

the provided with the cafeteria diet in adulthood, independent of whether they were 322 

born to a control or JF dam. Importantly, there were no differences between groups in 323 

the intake of standard rodent feed during this time, indicating that the increased 324 

energy intake was the consequence of increased consumption of the cafeteria diet (i.e. 325 

an increased preference for this palatable diet). We chose to measure food preferences 326 

in the animals home cage, rather than a metabolic chamber in this study, due to the 327 

potential impact of the stress associated with moving the animal to an unfamiliar 328 

environment on habitual food intake. However, it will clearly be important in future 329 

studies to confirm our findings by conducting more intensive monitoring of metabolic balance 330 

in the offspring. 331 

Maternal consumption of a palatable diet throughout both pregnancy and lactation has 332 

been shown to  induce hyperphagia in the adult offspring 21 and increase offspring 333 

preference for a cafeteria diet 7, 8. This is the first study; however, to demonstrate that 334 

exposure to a maternal junk food diet during the suckling period alone is associated 335 

with increases in the preference for a palatable diet equivalent to exposure during the 336 

entire perinatal period. The results of the present study are in agreement with the work 337 

of Gorski et al who also used a cross-fostering approach, and showed that exposure to 338 

a high-fat diet during lactation increased offspring consumption of the same high-fat 339 

diet in adulthood 9. However, unlike the present study, Gorski and colleagues only 340 

provided the offspring with access to a high fat diet, and therefore were not able to 341 

determine food preferences. 342 

There was no significant effect of exposure to a cafeteria diet either before birth or 343 

during the suckling period on macronutrient intake in adulthood in female offspring in 344 

the present study. This is somewhat different to the results of our previous study, in 345 
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which both male and female offspring of dams fed on the same cafeteria diet as in the 346 

present study exhibited an increased preference for fat intake from weaning until 347 

adulthood7. However, unlike our previous study, the offspring in the current 348 

experiment were provided with a standard rodent chow for 3 weeks after weaning, 349 

which may have influenced the development of their food preferences. One possibility 350 

to explain the sex differences in the programming of food preferences, is that the 351 

timing of development of two key systems known to play a central role in the 352 

regulation of palatable food intake, i.e. the central appetite-regulating and reward 353 

pathways7, 22 9, 13, 23, is different in male and female offspring 24.  The findings of our 354 

study suggest that the suckling period is the critical period for the development of the 355 

reward system in males, but not in females. To the best of our knowledge there are no 356 

studies which have directly compared the development of the reward pathway in male 357 

and female offspring and this is clearly an important area for future research.  358 

Early life exposure to a junk food diet alters plasma insulin concentrations in adult 359 

offspring in a sex specific manner 360 

The effect of maternal cafeteria diet consumption on insulin concentrations in the 361 

adult offspring was dependent on both the sex of the offspring and the period of 362 

dietary exposure. In females, offspring born to JF dams had higher plasma insulin 363 

concentrations, in the absence of higher plasma glucose, after 3 weeks on a cafeteria 364 

diet compared to those born to control dams, independent of dietary exposure during 365 

the suckling period. The presence of higher insulin concentrations at any given 366 

concentration of glucose provides evidence of reduced insulin sensitivity; although 367 

this will need to be confirmed by direct assessment of insulin sensitivity in future 368 

studies.  In males, on the other hand, higher glucose and insulin concentrations were 369 

only observed after 7 weeks of exposure to the cafeteria diet in offspring suckled by 370 

JF dams, independent of dietary exposure before birth, consistent with previous 371 

studies25, 26. These results imply that the impact of cafeteria diet exposure during 372 

development on glucose-insulin metabolism is sex-specific. Shelley and colleagues 373 

reported that changes to the insulin signaling pathway in skeletal muscle in 3-month 374 

old offspring of dams fed a cafeteria diet during pregnancy and lactation, was indeed 375 

different in males and females, with male offspring exhibiting increased expression of 376 

Akt2 and reduced Akt activity, and female offspring having reduced expression of 377 

IRS-1 and P13K.27 It appears that in females, but not in males the effects of exposure 378 
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to a cafeteria diet before birth on the development of glucose homeostatic pathways 379 

cannot be reversed by nutritional interventions applied in the early postnatal period.  380 

Summary and speculation 381 

 The present study is the first to show that exposure to a cafeteria diet exclusively 382 

during the suckling period is able to program an increased preference for fat and an 383 

increased susceptibility to diet induced obesity in the offspring to the same extent as 384 

exposure throughout the entire perinatal period. Importantly, these data suggest that 385 

the effects of exposure to a high-fat/high-sugar diet before birth on food preferences 386 

and susceptibility to diet induced obesity later in life, can be prevented by providing 387 

access to a nutritionally balanced diet during the suckling period. Interestingly, the 388 

relative contribution of the nutritional environment during the prenatal and suckling 389 

periods were different in males and females, suggesting that the timing of nutritional 390 

interventions aimed at ‘reprogramming’ the offspring may need to be sex-specific. 391 

We speculate that these sex-differences may be a consequence of differences between 392 

sexes in the timing of development of key metabolic systems, and this will be 393 

important to further investigate in future studies.  394 

It is important to exercise caution when extrapolating these results to the clinical 395 

context, since many of the developmental events which occur during the suckling 396 

period in rodents are already complete before birth in the human. Nevertheless, the 397 

data from this study provides evidence that there are critical windows of development 398 

during which exposure to a junk food diet is most detrimental to long term outcomes, 399 

and suggests that there may be an opportunity to prevent at least some of the adverse 400 

consequences of prenatal junk food exposure by interventions applied during the 401 

lactation period. Gaining a better understanding of the sex specific effect maternal diet 402 

has on the long term metabolic outcomes of the offspring will be crucial if targeted 403 

and effective interventions to reduce the incidence of overweight and obesity are to be 404 

designed.  405 
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Figure 1: Experimental design. Offspring of control (n=14 litters) and JF dams (n=12 

litters) were cross-fostered within 24 hrs of birth to a dam receiving either the same or 

different diet as their natural mother. Offspring were kept with their foster mother 

until weaning (PND 21), and then placed on the control diet until 10 weeks of age. 

From 10-16 weeks of age offspring were given access to both the control and junk 

food diet for the determination of food preferences.  

Figure 2: Body weight of male (A, C) and female (B,D) offspring during the suckling 

period (A,B) and at 9 and 16 weeks of age (C,D) which was immediately prior to and 

at the conclusion of the determination of food preferences. Control dams fostered onto 

control dams (C-C, open bars), offspring of control dams fostered onto JF dams (C-

JF, closed bars), offspring of JF dams fostered onto control dams (JF-C, striped bars) 

and offspring of JF dams fostered onto JF dams (JF-JF, grey bars), n=5-6/group. 

Results presented as mean±SEM. Different letters above bars denotes means that are 

significantly different P<0.05. Males and females analysed separately. 

Figure 3: Intake of total energy (A, C) and fat, protein, carbohydrate (B, D) in male 

(A, B) and female (C, D) offspring during postnatal weeks 10-12. Offspring of control 

dams fostered onto control dams (C-C, open bars), offspring of control dams fostered 

onto JF dams (C-JF, closed bars), offspring of JF dams fostered on to control dams 

(JF-C, striped bars) and offspring of JF dams fostered onto JF dams (JF-JF, grey 

bars). Results presented as mean±SEM. n=5-6/group Different letters above bars 

denotes means that are significantly different within each sex, P<0.05.  

Figure 4: Intake of fat, protein, carbohydrate and total energy (A, B) and individual 

components of the cafeteria diet (C, D) in male (A, C) and female (B, D) offspring 

during postnatal weeks 13-16. Offspring of control dams fostered onto control dams 

(C-C, open bars), offspring of control dams fostered onto JF dams (C-JF, closed bars), 

offspring of JF dams fostered on to control dams (JF-C, striped bars) and offspring of 

JF dams fostered onto JF dams (JF-JF, grey bars). n=3-6/group. Results presented as 

mean±SEM. Different letters above bars denotes means that are significantly different 

within each sex, P<0.05.  
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                                   3 months  4 months 

Sex Parameter 
C-C C-JF JF-C JF-JF  C-C C-JF JF-C JF-JF 

Male 

Omental fat 2.1±0.15 2.4±0.18 2.3±0.18 2.5±0.20  3.2±0.22 3.0±0.46 3.1±0.27 3.4±1.90 

Retroperitoneal fat 2.8±0.23 3.1±0.11 3.0±0.13 3.5±0.34  4.5±0.32 3.2±0.60 3.9±0.34 4.6±0.25 

Epigonadal fat 2.4±0.19 2.6±0.14 2.9±0.32 3.2±0.30  3.7±0.25 3.2±0.55 3.5±0.15 4.5±0.19 

Interscapular fat 0.3±0.04 0.5±0.04 0.4±0.04 0.5±0.02  0.3±0.02 0.3±0.06 0.3±0.04 0.4±0.02 

Subcutaneous fat 7.3±0.44 7.8±0.37 7.6±0.58 8.1±0.99  11.0±0.78 10.3±2.15 9.6±1.07 11.6±0.74 

 Total fat 14.9±0.95 16.2±0.63 16.2±1.16 17.7±1.77  22.6±1.42 20.9±3.60 20.5±1.70 24.6±1.13 

          

Female 

Omental fat 2.7±0.25a 3.6±0.31b 2.4±0.12a 3.3±.16b  4.0±0.19 4.3±0.42 3.8±0.31 4.3±0.22 

Retroperitoneal fat 4.2±0.53 4.2±0.54 3.4±0.34 4.6±0.17  4.9±0.24 5.6±0.39 4.9±0.37 5.4±0.35 

Epigonadal fat 3.2±0.43a 4.7±0.38b 4.0±0.16a 5.2±4.9b  5.1±0.12 4.9±0.44 5.2±0.20 5.7±0.45 

Interscapular fat 0.6±0.07 0.5±0.13 0.5±0.07 0.6±0.09  0.4±0.03 0.5±0.10 0.5±0.04 0.4±0.02 

Subcutaneous fat 9.3±0.60a 9.8±0.67a 7.2±0.49b 8.3±0.49b  10.7±0.29 10.8±1.22 9.6±0.83 10.5±0.53 

Total fat 19.9±1.33a 22.8±1.57b 17.4±1.03a 22.0±1.10b  25.1±0.48 26.2±1.88 24.0±1.06 26.4±0.86 

Table 1 Fat depots as percentage of body weight in male and female offspring at 3 and 4 months of age 

Values expressed as mean±SEM, n=5-6/group at 3 months, n=3-6/group at 4 months. Different superscript letters 

denote values which are significantly different within each timepoint and sex, P<0.05. 
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                         3 months  4 months 

Sex Parameter 
C-C C-JF JF-C JF-JF  C-C C-JF JF-C JF-JF 

Male 

Glucose  

(mM) 
20.5±1.43 20.9±1.97 21.9±1.57 25.3±2.47  18.3±0.83a 25.2±0.75b 18.3±1.54a 21.8±2.53b 

NEFA 

(meq/ml) 
0.6±0.12 0.8±0.12 0.9±0.22 0.4±0.06  0.4±0.03 0.4±0.06 0.5±0.07 0.4±0.04 

Leptin 

(µg/ml) 
31.2±2.04 28.8±2.34 31.1±2.12 34.7±5.42  34.0±3.30 33.1±6.91 31.1±2.34 38.7±3.96 

Insulin 

(µU/ml) 
2.2±0.81 1.1±0.67 1.1±0.40 3.5±0.89  3.6±0.71a 7.8±3.64b 1.8±0.50a 5.3±0.96b 

           

Female 

Glucose  

(mM) 
18.5±1.20 20.3±1.36 15.5±0.74 20.1±3.10  19.2±0.74 20.5±1.86 17.9±0.80 18.3±1.59 

NEFA 

(meq/ml) 
0.6±0.05a 0.6±0.09a 0.4±0.10b 0.4±0.07b  0.4±0.03 0.5±0.06 0.4±0.03 0.5±0.06 

Leptin 

(µg/ml) 
29.9±1.68a 37.3±6.23b 23.5±3.58a 31.7±2.67b  28.9±2.44 35.6±5.72 31.7±3.31 37.0±5.75 

Insulin 

(µU/ml) 
1.6±0.44a 1.1±0.55a 2.2±0.48b 3.2±0.64b  2.5±0.49 2.6±0.51 2.5±0.49 2.7±0.40 

Table 2 Plasma concentrations of glucose, NEFA, leptin and insulin in male and female offspring at 3 and 4 months 

of age 

Values expressed as mean±SEM, n=5-6/group at 3 months, n=3-6/group at 4 months. Different superscript letters 

denote values which are significantly different within each timepoint and sex, P<0.05. 
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