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Abstract. We reveal three surprising properties of cosine families, distinguishing them from semigroups
of operators: (1) A single trajectory of a cosine family is either strongly continuous or not measurable. (2)
Pointwise convergence of a sequence of equibounded cosine families implies that the convergence is almost
uniform for time in the entire real line; in particular, cosine families cannot be perturbed in a singular way.
(3) A non-constant trajectory of a bounded cosine family does not have a limit at infinity; in particular,
the rich theory of asymptotic behaviour of semigroups does not have a counterpart for cosine families. In
addition, we show that equibounded cosine families that converge strongly and almost uniformly in time
may fail to converge uniformly.

1. Introduction

The theory of cosine families is in many aspects parallel to the theory of semi-
groups of operators [1,20]. For example, the fundamental theorem of Sova–DaPrato–
Giusti on the generation of cosine families is akin to the Hille–Yosida–Feller–Phillips–
Miyadera theorem on the generation of semigroups, and both results have in fact a
common source in the Henning–Neubrander representation theorem [1,4]. Similarly,
the classical form of the Trotter–Kato–Neveu theorem on the convergence of semi-
groups carries over to cosine families with only minor changes [4,19,20,25]. However,
despite similarities like those above, there are also fundamental differences between
the theory of cosine families and that of semigroups. This paper will expose a number
of differences between cosine families and semigroups which in our opinion are of
fundamental nature.

The first of the differences that we shall reveal is embedded into a wider context
of operator-valued functional equations. Functional equations satisfied by families of
bounded linear operators related to Cauchy problems imply that the trajectories of the
families exhibit surprising automatic continuity properties. A representative example
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here is the classic result due to Dunford, Hille, and Phillips [22, p. 305], asserting that
a strongly measurable semigroup on a Banach space is strongly continuous on (0,∞).
A semigroup which is strongly continuous on (0,∞) may fail to be continuous at the
origin, and this justifies the need for dividing semigroups into classes—such as Abel
summable and strongly continuous semigroups—according to their regularity at the
origin. A counterpart of the Dunford–Hille–Phillips result for cosine families is the
theorem of Fattorini (see [16, Lemma 5.2] and [18, pp. 24–28]) stating that a strongly
measurable cosine family on a Banach space is strongly continuous on R.

Referring to Fattorini’s theorem, some authors (see e.g. [28, p. 529] and [29, Propo-
sition 2.1.2]) cite—somewhat confusingly—a weaker and later result, namely the
theorem of Chander and Singh [13] (see also [26]) asserting that a strongly mea-
surable cosine family on a Banach space is strongly continuous on R\{0}. But this
is not a grave issue. Indeed, we show in Sect. 3, as the first result of this paper,
that Fattorini’s theorem can easily be deduced from Chander and Singh’s. Follow-
ing this, we show—in the same section—that Fattorini’s theorem can be further
extended, namely we prove that a single trajectory of a cosine family is either
continuous on R, or not measurable. Fattorini’s and our result together explain
why there is no need for a cosine family analogue of Abel summable and related
classes of semigroups—all measurable cosine families form just one class—and also
mark the first fundamental difference between the theories of cosine families and
semigroups.

Fattorini’s theorem and our refinement of it fit well with the theorem of Hille [16,
17,20,21] saying that for n ≥ 3 the nth order Cauchy problem is well posed if and
only if the generating operator of the problem is bounded: the solution families for the
higher-order Cauchy problems are uniformly continuous. In other words, the stronger
character of the automatic continuity results compared to the Dunford–Hille–Phillips
result is in line with the fact that the regularity of solutions of a Cauchy problem
increases with the order of the problem.

We exhibit further differences between cosine families and semigroups in Sect. 4
where we consider the question of convergence of sequences of cosine families and
semigroups. (In fact, this question was the main motivation for our study and led us
to consider the problem of automatic continuity of trajectories of cosine families.) To
explain our starting point, we recall that according to the classical form of the Trotter–
Kato theorem if, given a sequence of equibounded strongly continuous semigroups on a
Banach space X , the resolvents of the generators of the semigroups converge strongly
and the range R of the limit pseudo-resolvent is dense in X , then the semigroups
converge strongly and almost uniformly on [0,∞) [1,6,15,20]. If R is not dense
in X , then, in agreement with the extended form of the Trotter–Kato theorem, the
semigroups converge almost uniformly on [0,∞) merely on the closure of R, this
space being commonly referred to as the regularity space. However, especially in
the context of singular perturbations, it may happen that the semigroups do converge
outside the regularity space—the convergence is then almost uniform on (0,∞) and
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cannot be deduced from the sole convergence of resolvents; see e.g. [2,3,5,7–9,11]
and references given therein.

Strikingly, examples of such an irregular behaviour have not been observed for
cosine families. To discuss this in more detail, we first note that the Trotter–Kato
theorem in extended form also holds for cosine families, with the notion of a regularity
space playing a similar role as for semigroups [4]. We now point out that in [4] and [10]
sequences of equibounded cosine families were constructed such that (i) the regularity
space is a proper subset of X , (ii) the associated semigroups given by the abstract
Weierstrass formula converge also outside the regularity space, and (iii) the cosine
families do not converge outside the regularity space. These examples suggest that
cosine families by nature cannot converge in an irregular manner like that described
above with regard to semigroups. We give a precise statement of this assertion in
the main result of Sect. 4. The corresponding proof will draw on Fattorini’s theorem
mentioned earlier. One noteworthy consequence of our result is that there is no singular
perturbation theory for cosine families analogous to that for semigroups of operators.

As a final contribution in Sect. 3, we show that no non-constant trajectory of a
bounded cosine family has a limit at infinity. This result, generalising [1, Proposition
3.14.6], has the consequence that the important theory of asymptotic behaviour of
semigroups [15,27] does not have a cosine family analogue.

The examples presented in [4] and [10] have led to the conjecture that if equi-
bounded cosine families converge strongly, they do so uniformly on R, and not just
almost uniformly. If true, the message conveyed in this conjecture would mark another
difference between semigroups and cosine families. However, as we show in the final
Sect. 5, the conjecture does not hold—equibounded cosine families like equibounded
semigroups may fail to converge uniformly. In particular, we give several examples of
cosine families, each of which is a common strong limit of two sequences of cosine
families, of which one converges uniformly and the other converges merely almost
uniformly on R.

2. Preliminaries

We first review some of the concepts and terminology used in the paper.
Let X be a Banach space. We denote by L (X) the space of all bounded linear

operators on X and by IX the identity operator on X . An L (X)-valued family is said
to be a cosine family on X if

(i) 2C(t)C(s) = C(t + s) + C(t − s) for all s, t ∈ R (d’Alembert’s functional
equation, also called the cosine functional equation),

(ii) C(0) = IX .

The concept of a cosine family on a Banach space is closely related to the more
familiar concept of a one-parameter semigroup of operators on a Banach space. A
family {S(t)}t≥0 of bounded linear operators on a Banach space X is a semigroup of
operators on X if
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(i) S(s)S(t) = S(s+t) for all s, t ≥ 0 (Cauchy’s equation, also called the exponential
equation),

(ii) S(0) = IX .

Our main focus throughout the paper will be on strongly continuous cosine families
and semigroups on a Banach space. We recall that a family F = {F(t)}t∈T of bounded
linear operators on a Banach space X indexed by T ⊂ R is strongly continuous if,
for each x ∈ X , the F-trajectory (or simply trajectory) associated with x, T � t �→
F(t)x ∈ X , is continuous in norm. We also recall that strongly continuous semigroups
and cosine families on a Banach space are uniquely characterised by their respective
generators. The generator A of a strongly continuous semigroup {S(t)}t≥0 on a Banach
space X is defined by

Ax = d

dt

∣
∣
∣
∣
0

S(t)x = lim
s→0

S(s)x − x

s
(x ∈ D(A)), (2.1)

where D(A), the domain of A, is the set of all x ∈ X for which the derivative (2.1)
exists. In turn, the generator A of a strongly continuous cosine family {C(t)}t∈R on X
is defined by

Ax = d2

dt2

∣
∣
∣
∣
0

C(t)x = lim
s→0

2

s2 (C(s)x − x) (x ∈ D(A)), (2.2)

where D(A) is the set of all x ∈ X for which the second derivative (2.2) exists. For
standard results concerning strongly continuous semigroups and cosine families and
their corresponding generators, the reader is referred to, e.g. [1,18], or [20].

Some of the cosine families and semigroups that we shall consider will be bounded.
We recall that a family F = {F(t)}t∈T of bounded linear operators on a Banach space
X indexed by T ⊂ R is bounded if supt∈T ‖F(t)‖ < ∞.

We shall also make use of the concept of a strongly measurable family of operators
on a Banach space. A family {F(t)}t∈T of linear bounded operators on a Banach space
X indexed by a measurable set T ⊂ R is strongly measurable if, for each x ∈ X , the
function t �→ F(t)x is Bochner measurable on T .

3. Measurability implies continuity

The following theorem of Fattorini, already mentioned in the Introduction, is fun-
damental to subsequent considerations, having a direct bearing on the issue of con-
vergence of cosine families which is of concern in this paper.

THEOREM 1 (Fattorini). A strongly measurable cosine family on a Banach space
is strongly continuous on R.

As it turns out, Fattorini’s theorem is an immediate consequence of the seemingly
weaker, but perhaps better known theorem of Chander and Singh, also already men-
tioned in the Introduction, stating that a strongly measurable cosine family on a Banach
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space is strongly continuous on R\{0}. The link between the two theorems is provided
by the following result:

PROPOSITION 1. Let {C(t)}t∈R be a cosine family on a Banach space X. Let
x ∈ X be such that the function t �→ C(t)x is continuous on (a,∞) for some a ∈ R.
Then the function t �→ C(t)x is continuous on R.

Proof. Fix t ∈ R arbitrarily. Choose h > 0 so that t + h > a + 1. We clearly have

C(τ )x = 2C(h)C(τ + h)x − C(τ + 2h)x

for each τ ∈ R. Noting that τ + h > a and τ + 2h > a whenever τ > t − 1 and
exploiting the assumption, we get

lim
τ→t

C(τ + h)x = C(t + h)x and lim
τ→t

C(τ + 2h)x = C(t + 2h)x .

As C(h) is a bounded operator, we also have

lim
τ→t

C(h)C(τ + h)x = C(h)C(t + h)x .

Therefore,

lim
τ→t

C(τ )x = 2C(h)C(t + h)x − C(t + 2h)x = C(t)x .

Since t was chosen arbitrarily, the result follows. �

We remark that the above proposition has analogues for solutions of other functional
equations (see e.g. the proof of [28, Thm. 2.1]), and these can in turn be used to establish
suitable counterparts of Theorem 1.

Fattorini’s theorem has a global flavour, in that it concerns the set of all trajectories
of a cosine family. Below, we establish a local version of Fattorini’s result pertaining
to any individual trajectory.

THEOREM 2. Let {C(t)}t∈R be a cosine family on a Banach space X. Let x ∈ X
be such that the function t �→ C(t)x is measurable on R. Then the function t �→ C(t)x
is continuous on R.

Proof. Let X0 be the set of all those y ∈ X for which t �→ C(t)y is measurable
on R. It is clear that X0 is a linear subspace of X . Since the pointwise limit of a
sequence of measurable functions is a measurable function, we see that X0 is closed.
Moreover, X0 is invariant for each operator C(s), s ∈ R; for if s ∈ R and y ∈ X0,
then t �→ C(t + s)y and t �→ C(t − s)y are both measurable, and consequently,
t �→ C(t)C(s)y = (C(t +s)x +C(t −s)y)/2 is measurable, too. Now, if we consider
the cosine family {C(t)|X0}t∈R on X0, where C(t)|X0 denotes the restriction of C(t) to
X0, then it is clear that this family is strongly measurable, and so, by Theorem 1, it is
in fact strongly continuous. Since x is in X0, it follows that t �→ C(t)x is continuous,
and the theorem is proved. �
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4. Convergence is regular

The Trotter–Kato theorem for cosine families, pertaining to the case where cosine
families converge to a cosine family strongly and uniformly on compact time intervals,
is completely analogous to the Trotter–Kato theorem for semigroups of operators
(cf. [20, §8.6]; see also [19] and [25]). Based on this analogy, one might think that
generally if cosine families converge, they do so in a fashion similar to that exhibited by
semigroups. However, as it turns out, there is a fundamental difference in the behaviour
of semigroups and cosine families with regard to convergence which reveals itself only
when one considers situations more general than that captured by the Trotter–Kato
theorem. Here, we expose this difference and show that the convergence of cosine
families is as a rule far more regular than that of semigroups.

We start by recalling the scenario that holds for semigroups. For each n ∈ N, let
An generate a strongly continuous semigroup Sn = {Sn(t)}t≥0 on a Banach space
X . Assume that the semigroups Sn are equibounded, i.e. there is a constant M > 0
such that

sup
n∈N, t≥0

‖Sn(t)‖ ≤ M,

and that, for each λ > 0, the resolvents of the generators An ,

(λ − An)−1 =
∫ ∞

0
e−λt Sn(t) dt, (4.1)

converge to an operator Rλ in the strong operator topology. The Rλ’s then form a
pseudo-resolvent—a family of operators satisfying the first resolvent equation, with a
common null space and a common range. Note that, if the Sn’s converge strongly (on
all of X ), then the convergence of the (λ− An)

−1 is a consequence of the representation
(4.1) and the Lebesgue dominated convergence theorem. Associated with the Sn’s are
two subspaces of X :

X s
point = {x ∈ X | lim

n→∞ Sn(t)x exists for each t ∈ [0,∞)},
X s

almost-unif = {x ∈ X | lim
n→∞ Sn(t)x exists for each t ∈ [0,∞)

and is almost uniform in t ∈ [0,∞)},
where the superscript “s” is reminiscent of the term “semigroup.” In other words,
X s

point consists of vectors for which the corresponding trajectories of the semigroups
converge pointwise, and X s

almost-unif consists of vectors for which the corresponding
trajectories of the semigroups converge almost uniformly on [0,∞). Clearly,

X s
almost-unif ⊂ X s

point.

As it turns out, X s
almost-unif coincides with the regularity space of the pseudo-resolvent

{Rλ}λ>0, which is defined as the closure of the common range R of the Rλ’s:

X s
almost-unif = R (4.2)
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with the bar denoting the set closure. Moreover, if the set X s
point\X s

almost-unif is non-
empty, then it consists of vectors for which the corresponding trajectories of the semi-
groups converge almost uniformly in t ∈ (0,∞), but not uniformly on any compact
interval in [0,∞) containing 0; see [5]. Of course, for vectors outside X s

point, the
corresponding trajectories of the semigroups do not converge at all. In the situation
treated in the classical version of the Trotter–Kato theorem, we have R = X and then
X s

almost-unif = X s
point = X , which is a rather special case. In general, X s

almost-unif is a
proper subspace of X s

point, and X s
point is a proper subspace of X .

For example, in the space C
3, the semigroups

Sn(t)

⎛

⎝

x
y
z

⎞

⎠ =
⎛

⎜
⎝

e−ant x

e−nt y

ei tn z

⎞

⎟
⎠ (4.3)

generated by

An

⎛

⎝

x
y
z

⎞

⎠ =
⎛

⎝

−an x
−ny
inz

⎞

⎠, (4.4)

where (an)n≥1 is a sequence of non-negative numbers converging to a ≥ 0, are equi-
bounded with bound M = 1, and the corresponding resolvents of the An’s converge:

lim
n→∞(λ − An)−1

⎛

⎝

x
y
z

⎞

⎠ = lim
n→∞

⎛

⎜
⎜
⎝

x
λ+an

y
λ+n

z
λ−in

⎞

⎟
⎟
⎠

=
⎛

⎜
⎝

x
λ+a

0

0

⎞

⎟
⎠ (λ > 0).

In this case, X s
almost-unif = C×{0}×{0} and X s

point = C×C×{0}. For more involved
examples, see e.g. [2,3,5,7–9,11] and the references given there.

It turns out that the above picture changes when semigroups are replaced by cosine
families: with the notation analogous to the one employed above and fully explained
below, we have

X c
point = X c

almost-unif.

In other words, the trajectories of equibounded cosine families either converge almost
uniformly in t ∈ R or do not converge at all. This dichotomy is the main point of
discussion in this section.

Proceeding to details, let (Cn)n∈N be a sequence of strongly continuous equibounded
cosine families on X—that is, such that supn∈N, t∈R ‖Cn(t)‖ < ∞. Let (An)n∈N be the
sequence of the corresponding generators. Furthermore, suppose that the resolvents
of the An’s,

(λ − An)−1 = λ−1/2
∫ ∞

0
e−√

λt Cn(t) dt (λ > 0), (4.5)
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converge strongly to a pseudo-resolvent {Rλ}λ>0. Again, we remark that the strong
convergence of the (λ − An)−1’s is a necessary condition for the strong convergence
of the Cn’s. Let

X c
point = {x ∈ X | lim

n→∞ Cn(t)x exists for each t ∈ R},
X c

almost-unif = {x ∈ X | lim
n→∞ Cn(t)x exists for each t ∈ R

and is almost uniform in t ∈ R}
= {x ∈ X | lim

n→∞ Cn(t)x exists for each t ∈ [0,∞)

and is almost uniform in t ∈ [0,∞)}.
Then, clearly,

X c
almost-unif ⊂ X c

point.

We also have, in analogy to (4.2),

X c
almost-unif = R, (4.6)

as we show next. We start by pointing out that the inclusion R ⊂ X c
almost-unif has

already been established in [4]. To prove the reverse inclusion, for each n ∈ N, let
Sn = {Sn(t)}t≥0 be the strongly continuous semigroup on X related to Cn by the
abstract Weierstrass formula

Sn(t)x = 1√
π t

∫ ∞

0
e−τ 2/4t Cn(τ )x dτ (t > 0, x ∈ X).

Then, as is well known, the generator of Sn coincides with An (see e.g. [1, proof of The-
orem 3.14.17] or [20, Theorem 8.7]). Now, if x is in X c

almost-unif so that limn→∞ Cn(t)x
exists for all t ∈ [0,∞) and is almost uniform in t ∈ [0,∞), then also limn→∞ Sn(t)x
exists for all t ∈ [0,∞) and is almost uniform in t ∈ [0,∞), meaning that x is a
member of the space X s

almost-unif associated with the Sn’s. But then, by (4.2), x is
automatically a member of R, proving that X c

almost-unif ⊂ R.
With (4.6) established, we are ready for the main result of this section.

THEOREM 3. For equibounded, strongly continuous cosine families Cn =
{Cn(t)}t∈R, n ∈ N, on a Banach space X, under the assumption of strong conver-
gence of the resolvents of the generators of the Cn’s, we have

X c
point = X c

almost-unif.

Proof. We only need to show that X c
point ⊂ X c

almost-unif. One possible proof of this
inclusion involves an argument similar to the one that leads to [5, Propositions 1 and
2]. Below, however, we shall present a much simpler proof based on (4.6).

In view of the equiboundedness of the Cn’s, X c
point is a closed subspace of X . For

each t ∈ R, define the bounded operator C(t) : X c
point → X by

C(t)x := lim
n→∞ Cn(t)x (x ∈ X c

point).
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Invoking the equiboundedness of the Cn’s again and taking into account that each
Cn satisfies the cosine functional equation, we deduce that for each t ∈ R, C(t) maps
X c

point into itself and C = {C(t)}t∈R satisfies the cosine functional equation. Thus, C is
a cosine family on X c

point. Being the strong limit of (Cn)n∈N, C is strongly measurable.
By Theorem 1, C is in fact strongly continuous in t ∈ R. Let A be the generator of C .
By the hypothesis, the definition of C , the representation (4.5), and its analogue for
A, and the Lebesgue dominated convergence theorem, we have

Rλx = lim
n→∞(λ − An)−1x = (λ − A)−1x

whenever x ∈ X c
point and λ > 0; here, of course, {Rλ}λ>0 is the limit pseudo-resolvent,

defined on all of X , corresponding to the resolvents of the generators An of the Cn’s.
Now, if x is in the domain D(A) of A, then x = (λ − A)−1 y, where y = (λ − A)x ∈
X c

point, and hence also x = Rλy. This means that D(A) ⊂ R. Invoking (4.6), we infer
that D(A) ⊂ X c

almost-unif. Since D(A) is dense in X c
point and both X c

point and X c
almost-unif

are closed, it follows that X c
point ⊂ X c

almost-unif. The proof is now complete. �

The above theorem may be phrased as follows: outside the regularity space, equi-
bounded cosine families always fail to converge strongly. In light of our earlier dis-
cussion, an analogous statement for semigroups of operators is not true. We illustrate
the situation with an example which is representative of the examples mentioned in
the Introduction that served as original motivation behind Theorem 3. Let (εn)n∈N

be a sequence of positive numbers converging to zero. In X = C[0,∞], the space
of continuous functions on [0,∞) with a limit at infinity, the operators An f = 1

2 f ′′
with domains D(An), composed of twice continuously differentiable functions f in
X with f ′′ in X such that f (0) = εn f ′(0) generate cosine families that are bounded
in norm by 3. The resolvents of the An’s converge strongly, and the closure of the
range of the limit pseudo-resolvent is the subspace C0(0,∞] of all those functions
in C[0,∞] that vanish at 0. In other words, the regularity space here is C0(0,∞].
We remark in passing that the semigroups generated by the An’s are related to elastic
Brownian motions [6,23,24], and the limit semigroup on C0(0,∞] is related to the
minimal Brownian motion. As it turns out, the semigroups generated by the An’s do
converge strongly outside C0(0,∞], with the convergence being almost uniform in
t > 0 [3,5]. However, as was shown in [10], the cosine families generated by the An’s
do not converge strongly outside C0(0,∞]. Theorem 3 makes it clear that this lack of
convergence is not an accidental occurrence, but a rule.

Here is another example illustrating the same phenomenon. For each n ∈ N, let Tn(t)
and Bn be the restrictions of Sn(t) and An given in (4.3) and (4.4) to C

2, respectively, i.e.

Tn(t)

(
x
y

)

=
(

e−ant x
e−nt y

)

and Bn

(
x
y

)

=
(−an x

−ny

)

.

Clearly, (Tn)n∈N is a sequence of equibounded semigroups generated by the Bn’s,
with X s

almost-unif = C × {0} and X s
point = C × C. The Bn’s also generate equibounded

cosine families,
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Cn(t)

(
x
y

)

=
(

cos(
√

ant) x

cos(
√

nt) y

)

,

but these, unlike the Tn’s, converge merely on X s
almost-unif (= X c

point = X c
almost-unif)

which is the regularity space for the limit pseudo-resolvent corresponding to the resol-
vents of the Bn’s. We remark that the disparity between X s

almost-unif and X s
point is related

to the “smoothing property” of the Weierstrass formula: the semigroups derived from
cosine families by means of this formula are much more “regular” than the cosine
families themselves, and therefore, their trajectories typically converge for a larger
sets of vectors than the trajectories of the cosine families.

We note that Theorem 3 gives information on individual trajectories as well: if, for
some x ∈ X, limn→∞ Cn(t)x exists for all t ∈ R, then x ∈ X c

point = X c
almost-unif, and

so the convergence is in fact almost uniform in t ∈ R.
One noteworthy consequence of Theorem 3 is that—in contrast to the rich theory of

singular perturbations of semigroups—the theory of singular perturbations of cosine
families has no objects of study: there are no sequences of cosine families that converge
in an irregular way.

We conclude this section with two supplementary results. The first of these asserts
that, unlike in the case of semigroups (see e.g. [27]), there is only one cosine family, a
trivial cosine family, for which the strong limit limt→∞ C(t) exists. The proof relies
on an argument involving a strongly convergent sequence of cosine families, hence
the inclusion of the result in this section. The second result is a local version of the first
result and asserts that if a trajectory of a bounded cosine family has limits at infinity,
then it is constant. An immediate consequence of this last result is that the important
theory of asymptotic behaviour of semigroups [15,27] does not have a counterpart for
cosine families.

We say that a cosine family C = {C(t)}t∈R on a Banach space X is trivial if C(t) =
IX for all t ∈ R. If C is strongly continuous, then C is trivial if and only if the generator
of C is the zero operator.

PROPOSITION 2. Let C = {C(t)}t∈R be a (non-necessarily strongly continuous)
cosine family on a Banach space X such that the limit

Px := lim
t→∞ C(t)x

exists for all x ∈ X. Then C is trivial and P = IX .

Proof. For each n ∈ N, let Cn = {Cn(t)}t∈R be the cosine family defined by Cn(t) =
C(nt). By assumption, (Cn(t))n∈N converges strongly to P for t > 0. Since C(−t) =
C(t) for every t ∈ R, it follows that (Cn(t))n∈N converges strongly to P also for
t < 0. Since, in addition, Cn(0) = IX for all n ∈ N, we see that (Cn(t))n∈N converges
strongly for all t ∈ R, and the limit C∞(t) of (Cn(t))n∈N is equal to P for t = 0 and
to IX for t = 0. Since, by the Banach–Steinhaus theorem, supn∈N ‖Cn(t)‖ < ∞ for
every t ∈ R and since each Cn satisfies the cosine functional equation, we immediately
conclude that C∞ = {C∞(t)}t∈R satisfies the cosine functional equation. Now, if we
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fix s = 0 and substitute first 2s for t and next s for t in the formula 2C∞(t)C∞(s) =
C∞(t +s)+C∞(t −s), then we get 2P2 = 2P and 2P2 = P + IX , respectively. This
implies P = IX . On the other hand, letting s → ∞ in the formula 2C(t)C(s)x =
C(t + s)x + C(t − s)x , we obtain 2C(t)x = 2C(t)Px = Px + Px = 2x . Since this
holds for all t ∈ R and all x ∈ X , the proposition is established. �

We remark that if C in the above proposition is assumed to be strongly continuous,
then the equality P = IX can be established differently, in a much simpler way. Indeed,
C∞ is then strongly measurable, being the strong limit of the strongly continuous
families Cn , and hence, by Theorem 1, C∞ is in fact strongly continuous. Now, P = IX

is a consequence of the strong continuity of C∞ and the fact that C∞(t) = P for t = 0
and C∞(0) = IX .

The following corollary generalises [1, Proposition 3.14.6].

COROLLARY 1. Let C = {C(t)}t∈R be a bounded cosine family on a Banach
space X, and let x ∈ X be such that the limit limt→∞ C(t)x exists. Then C(t)x = x
for all t ∈ R.

Proof. Let X0 be composed of those elements y of X for which limt→∞ C(t)y exists.
By the boundedness of C, X0 is a closed linear subspace of X . Exploiting the cosine
functional equation, we readily deduce that each C(t), t ∈ R, leaves X0 invariant.
Since the restriction C|X0 = {C|X0(t)}t∈R of C to X0 satisfies the assumptions of
Proposition 2, it follows that C(t)|X0 = IX0 for all t ∈ R. As x is in X0, we have
C(t)x = x for all t ∈ R, and the corollary is proved. �

5. Convergence may fail to be uniform

We now turn our attention to another problem related to convergence of cosine
families. As shown in [10], on C0(0,∞], the cosine families related to elastic Brownian
motions described in the previous section converge uniformly and not merely almost
uniformly on R. A similar (and more elementary) example of uniform convergence
was described in [4]. Based on these results, it was conjectured that equibounded
cosine families, if they converge, do so uniformly on R. If true, this would expose
yet another difference between convergence of semigroups and convergence of cosine
families. However, the conjecture turns out to be false, and here we show that it fails
with the aid of a certain general result and two specific examples of its use, and also
by means of an independent result of a slightly different nature.

A continuous function f on R with values in a Banach space X is said to be
(uniformly) almost periodic if the set of its translates {Tt f }t∈R is relatively compact
in the metric ρ( f, g) = supt∈R ‖ f (t) − g(t)‖; the translate Tt f of f by t ∈ R is
given by the definition Tt f (s) = f (t + s), s ∈ R. Let AP(R, X) be the space of all
X -valued almost periodic functions on R. For any f ∈ AP(R, X) and any α ∈ R, the
mean value
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Mt {e−iαt f (t)} = lim
T →∞

1

2T

∫ T

−T
e−iαt f (t) dt

exists and defines the Fourier–Bohr coefficient of f for the Fourier exponent α, f̂ (α).
The Fourier–Bohr coefficients of f vanish for all but at most countably many Fourier
exponents. The set

�( f ) = {α ∈ R | f̂ (α) = 0}
constitutes the Bohr spectrum of f and is non-empty if f is non-zero. The function f
is uniquely determined by its Fourier–Bohr coefficients, this property being implicitly
meant when one refers to f via its expansion into a formal Fourier–Bohr series

f (t) ∼
∑

α∈�( f )

eiαt f̂ (α).

For a function f defined on R and λ ∈ R, we denote by f[λ] the function on R

given by
f[λ](t) = f (λt) (x ∈ R).

THEOREM 4. Let f ∈ AP(R, X) be non-constant, where X is a Banach space,
and let (λn)n∈N be a sequence of real numbers converging to λ ∈ R and such that
λn = λ for each n ∈ N. Then ( f[λn ])n∈N converges to f[λ] almost uniformly but not
uniformly on R.

Proof. The almost uniform convergence of ( f[λn ])n∈N to f[λ] stems from the fact that
f is uniformly continuous and the fact that the functions t �→ λnt converge to t �→ λt
almost uniformly on R. All we then need is to show that the convergence of ( f[λn ])n∈N

is not uniform on R.
Since f is non-zero, �( f ) is non-empty. Let (αk)k∈[K ] be an enumeration of �( f ),

where [K ] denotes the interval of positive integers between 1 and K , with K being
finite or infinite. According to Bochner’s theorem [12] (see also [14, Thm. 1.24]),
there exists a sequence of trigonometric polynomials

σm(t) =
Km∑

k=1

rk,meiαk t f̂ (αk) (t ∈ R, m ∈ N)

which converges uniformly to f on R in the norm topology of X , as m → ∞, with
rk,m being rational numbers that depend on αk and m, but not on f̂ (αk), and satisfy

lim
m→∞ rk,m = 1

for every k ∈ N. Let ε > 0 and let k0 be an arbitrary member of [K ] such that αk0 = 0.
Choose m ∈ N so that

‖ f (t) − σm(t)‖ < ε

for each t ∈ R and

rk0,m ≥ 1

2
. (5.1)
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Suppose, on the contrary, that ( f[λn ])n∈N converges to f[λ] uniformly on R. Then, there
exists N0 ∈ N such that if n > N0, then

‖ f[λn ](t) − f[λ](t)‖ < ε

for each t ∈ R. Consequently,
∥
∥
∥
∥
∥

Km∑

k=1

rk,m(eiαkλn t − eiαkλt ) f̂ (αk)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

Km∑

k=1

rk,meiαkλn t f̂ (αk) − f[λn ](t)
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

Km∑

k=1

rk,meiαkλt f̂ (αk) − f[λ](t)
∥
∥
∥
∥
∥

+‖ f[λn ](t) − f[λ](t)‖ < 3ε (5.2)

for each n > N0 and each t ∈ R.
Note that, λn = 0 for all sufficiently large n (i.e. for all n > N for some N ). Indeed,

when λ = 0, this is obvious, and when λ = 0, this follows from the assumption that
λn = λ for all n. Consequently, if k ∈ {1, . . . , Km}\{k0}, then

αkλn − αk0λn = 0 (5.3)

for eventually all n.
Moreover, if k ∈ {1, . . . , Km}, then

αkλ − αk0λn = 0 (5.4)

for eventually all n. For if k = k0 and λ = 0, then this is clear since then limn→∞ αkλ−
αk0λn = (αk − αk0)λ = 0. If λ = 0, then (5.4) reduces to αk0λn = 0, and this holds
because of αk0 = 0 and the assumption that λn = λ for all n which now reads λn = 0
for all n. Similarly, if k = k0, then (5.4) holds by virtue of αk0 = 0 and λn = λ for all n.

Let N1 > N0 be such that (5.3) and (5.4) hold for n > N1. Taking into account that

Mt {eiαt } =
{

1 if α = 0,

0 otherwise,

we see that if n > N1, then

Mt {ei(αkλn−αk0 λn)t } = 0

whenever k ∈ {1, . . . , Km}\{k0} and

Mt {ei(αkλ−αk0 λn)t } = 0

whenever k ∈ {1, . . . , Km}. Consequently, fixing n > N1 arbitrarily, we have

Mt

{

e−iαk0 λn t

( Km∑

k=1

rk,m(eiαkλn t − eiαkλt ) f̂ (αk)

)}

= rk0,m f̂ (αk0)

On the other hand, by (5.2),
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∥
∥
∥
∥
∥

Mt

{

e−iαk0 λn t

( Km∑

k=1

rk,m(eiαkλn t − eiαkλt ) f̂ (αk)

)}∥
∥
∥
∥
∥

≤ 3ε.

Taking into account (5.1), we see that ‖ f̂ (αk0)‖ ≤ 6ε. Hence f̂ (αk0) = 0, by the arbi-
trariness of ε. We have thus shown that �( f ) ⊂ {0}. This implies that f is constant,
a contradiction. �

Let C = {C(t)}t∈R be a strongly continuous cosine family on a Banach space X .
For any λ ∈ R, we denote by C[λ] the X -valued cosine family given by

C[λ](t) = C(λt) (t ∈ R). (5.5)

An element x ∈ X will be termed an almost periodic vector for C if the C-trajectory
associated with x is almost periodic.

We note that if (λn)n∈N is a sequence of real numbers converging to λ ∈ R, then
(C[λn ])n∈N converges to C[λ] strongly and almost uniformly in t ∈ R. Indeed, arguing
as in the proof of Theorem 4, this follows from the fact that, for each x ∈ X, t �→ C(t)x
is uniformly continuous on every compact subset of R and the fact that the functions
t �→ λnt converge to t �→ λt almost uniformly on R.

An immediate consequence of Theorem 4 and the above observation is the following.

THEOREM 5. Let C = {C(t)}t∈R be a strongly continuous cosine family on a
Banach space X. Suppose that there exists an almost periodic vector for C such that
the C-trajectory associated with this vector is non-constant. Let (λn)n∈N be a sequence
of real numbers converging to λ ∈ R and such that λn = λ for each n ∈ N. Then
(C[λn ])n∈N converges to C[λ] strongly and almost uniformly but not uniformly in t ∈ R.

We now present two instances of use of the above result. In the first case, we let
X = C and C(t) = cos t for each t ∈ R and further observe that x = 1 is an almost
periodic vector for C ; then, an application of Theorem 5 leads to the following result:

EXAMPLE 1. If (λn)n∈N is a sequence of real numbers converging to λ ∈ R and
such that λn = λ for each n ∈ N, then the sequence ({cos λnt}t∈R)n∈N of the scalar-
valued cosine families converges to the scalar-valued cosine family {cos λt}t∈R almost
uniformly but not uniformly on R.

Before discussing the other case, we introduce a class C of cosine families as
follows: a cosine family C = {C(t)}t∈R on a Banach space X is in C if only if the
following conditions are satisfied:

(C1) there exists a sequence (Cn)n∈N, Cn = {Cn(t)}t∈R, of cosine families on X
converging to C strongly and uniformly in t ∈ R and such that Cn = C for
every n ∈ N;

(C2) there exists a sequence (C̃n)n∈N, C̃n = {C̃n(t)}t∈R, of cosine families on X
converging to C strongly and almost uniformly but not uniformly in t ∈ R.
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With this definition in hand, we can now proceed to the other instance of use of
Theorem 5. Based on Theorem 5, Example 2 below reveals that the class C is non-
void. The significance of this result is that it demonstrates that the question of whether
or not the limit of a sequence of cosine families is uniform or almost uniform cannot,
in general, be answered in terms of the limit cosine family alone.

EXAMPLE 2. Let c0 be the space of all complex sequences ξ = (ξk)k∈N convergent
to 0, equipped with the usual supremum norm

‖ξ‖∞ = sup
k∈N

|ξk |.

For each n ∈ N, let en be the element of c0 such that

(en)k =
{

1 if k = n;
0 otherwise.

Every ξ = (ξk)k∈N in c0 can conveniently be represented as the series

ξ =
∞
∑

k=1

ξkek

convergent in the norm of c0. For each t ∈ R and each n ∈ N, let Cn(t) be the linear
operator on c0 defined by

Cn(t)ξ =
n

∑

k=1

(cos kt)ξkek +
∞
∑

k=n+1

ξkek,

and, for each t ∈ R, let C(t) be the linear operator on c0 given by

C(t)ξ =
∞
∑

k=1

(cos kt)ξkek, (5.6)

with ξ = (ξk)k∈N being an arbitrary member of c0. Clearly, for each n ∈ N, Cn =
{Cn(t)}t∈R is a strongly continuous cosine family of contractions on c0, and also
C = {C(t)}t∈R is a strongly continuous cosine family of contractions on c0. Given
λ ∈ R and n ∈ N, we shall write Cn,[λ] in lieu of (Cn)[λ]. For any n ∈ N, any t, λ ∈ R,
and any ξ ∈ c0, we have

‖C[λ](t)ξ − Cn,[λ](t)ξ‖∞ ≤
∥
∥
∥
∥
∥

∞
∑

k=n+1

ξkek

∥
∥
∥
∥
∥

∞
+

∥
∥
∥
∥
∥

∞
∑

k=n+1

(cos λkt)ξkek

∥
∥
∥
∥
∥

∞
≤ sup

k>n
|ξk | + sup

k>n
|(cos λkt)ξk |

≤ 2 sup
k>n

|ξk |,

whence
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sup
t∈R

‖C[λ](t)ξ − Cn,[λ](t)ξ‖∞ = 0.

Thus, for each λ ∈ R, the sequence (Cn,[λ])n∈N converges to C[λ] strongly and uni-
formly on R.

On the other hand, the representation (5.6) implies that every ξ ∈ c0 is an almost
periodic vector for C , and moreover, the function t �→ C(t)ξ, t ∈ R, is non-constant
whenever ξ = 0. Therefore, by Theorem 5, if, for a given λ ∈ R, (λn)n∈N is a sequence
of real numbers converging to λ ∈ R and such that λn = λ for each n ∈ N, then the
sequence (C[λn ])n∈N converges to C[λ] almost uniformly but not uniformly on R in
the strong operator topology. Actually, invoking Theorem 4 directly, we can infer a
bit more: for every non-zero ξ in c0 the functions t �→ C[λn ](t)ξ, n ∈ N, converge to
t �→ C[λ](t)ξ almost uniformly but not uniformly in t ∈ R.

We thus see that for each λ ∈ R, C[λ] is the limit of two sequences of cosine
families, each comprising cosine families different from C[λ], such that one sequence
converges uniformly, while the other converges almost uniformly but not uniformly
on R; in other words, C[λ] is a member of C .

The final result of this section, namely Example 3 below, will show that for a cosine
family C to belong to C it is not necessary to possess an almost periodic vector for
which the C-trajectory associated with this vector is non-constant. In particular, it will
become clear that membership in C can be established by means other than Theorem 5.

EXAMPLE 3. We consider C0(0,∞] as being equipped with the uniform norm
‖ f ‖∞ = supx≥0 | f (x)|.Let C = {C(t)}t∈R be the cosine family on C0(0,∞]given by

C(t) f (x) = 1

2
( f (x + t) + f̃ (x − t)) ( f ∈ C0(0,∞], x ≥ 0)

for each t ≥ 0, with f̃ being the odd extension of f on the whole of R. We claim that
C is a member of C and that C has no non-zero almost periodic vector.

To prove the first assertion, let F be a real even continuous function on R with a
limit at infinity. Then, in particular, F is bounded. For each ε ∈ R, let MεF be the
operator of multiplication by eεF on C0(0,∞]:

MεF f = eεF f ( f ∈ C0(0,∞]).

Clearly, MεF is bounded, with ‖MεF‖ ≤ e|ε|‖F‖∞ , and the inverse of MεF coincides
with M−εF . For each ε ∈ R and each t ∈ R, set

C(ε)(t) = M−εF C(t)MεF .

In view of the evenness of F , we have the following explicit expression

C(ε)(t) f (x) = 1

2

(

f (x + t)eε(F(x+t)−F(x)) + f̃ (x − t)eε(F(x−t)−F(x))
)

( f ∈ C0(0,∞], x ≥ 0)
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for every t ≥ 0. We remark that it is only for the purpose of obtaining this elegant
formula that we assumed F to be even—this assumption may be well dispensed with
without detriment to the argument that follows. It is clear that for any ε ∈ R, C(ε)(t)
is a linear bounded operator on C0(0,∞] with ‖C(ε)(t)‖ ≤ e2|ε|‖F‖∞ for every t ∈ R,
and C(ε) = {C(ε)(t)}t∈R is a strongly continuous cosine family on C0(0,∞]. Let
(εn)n∈N be a sequence of real numbers converging to 0 and let ε = supn∈N |εn|.
Then, (C(εn))n∈N is a sequence of equibounded cosine families on C0(0,∞], with
‖C(εn)(t)‖ ≤ e2ε‖F‖∞ for each n ∈ N and each t ∈ R. Since (M−εn F )n∈N and
(Mεn F )n∈N tend to the identity operator on X in operator norm, we see that (C(εn))n∈N

converges to C in operator norm uniformly on R. Thus, to finish the proof that C
is a member of C , it suffices to find a sequence of cosine families on C0(0,∞]
that converges to C strongly and almost uniformly but not uniformly on R. We will
show that for any sequence (λn)n∈N of positive numbers converging to 1 and such
that λn = 1 for each n ∈ N, (C[λn ])n∈N furnishes the desired sequence [we use the
notation as per (5.5)].

As (C[λn ])n∈N converges to C strongly and almost uniformly on R, it suffices to
show that the convergence is not uniform. We shall establish the following stronger
statement: for any non-zero f in C0(0,∞], the functions t �→ C[λn ](t) f, n ∈ N, fail
to converge uniformly to t �→ C(t) f . To this end, given f ∈ C0(0,∞]\{0}, we first
observe that for any t ≥ 0 and n ∈ N, the right-hand side of the formula

C(t) f (x) − C[λn ](t) f (x)

= 1

2
( f (x + t) − f (x + λnt)) + 1

2
( f̃ (x − t) − f̃ (x − λnt)) (x ≥ 0)

reduces to
1

2
( f (2t) − f ((1 + λn)t)) − 1

2
f̃ ((1 − λn)t)

if we let x = t . Thus, setting

fn(t) = 1

2
( f (2t) − f ((1 + λn)t)) ,

we have

‖C(t) f − C[λn ](t) f ‖∞ ≥
∣
∣
∣
∣

fn(t) − 1

2
f̃ ((1 − λn)t)

∣
∣
∣
∣
.

As supt≥0 | f̃ ((1 − λn)t)| = ‖ f ‖∞, our task will be complete once we show that
limn→∞ ‖ fn‖∞ = 0.

For any ε > 0, choose T > 0 so that | f (t) − f (∞)| < ε whenever t > T .
Then, clearly, supt>T | fn(t)| ≤ ε for all n. On the other hand, if t ∈ [0, T ], then
|2t − (1 +λn)t | ≤ |1 −λn|T , and this in conjunction with the fact that f is uniformly
continuous on [0, T ] implies that supt∈[0,T ] | fn(t)| ≤ ε for all sufficiently large n.
Thus, ‖ fn‖∞ ≤ ε for all sufficiently large n, which finishes the proof that C is in C .

Passing to the proof of the second assertion, note that

lim
t→∞ C(t) f (x) = lim

t→−∞ C(t) f (x) = 0
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for any f ∈ C0(0,∞] and any x ≥ 0. Suppose now that f ∈ C0(0,∞] is an almost
periodic vector for C . Then, in view of the above equalities,

[

lim
T →∞

1

2T

∫ T

−T
e−iαt C(t) f dt

]

(x) = lim
T →∞

1

2T

∫ T

−T
e−iαt C(t) f (x) dt = 0

for each α ∈ R and each x ≥ 0. Thus, all the Fourier–Bohr coefficients of t �→ C(t) f
vanish and consequently f = 0. The second assertion and the claim are established.

We conclude this section and the paper with two remarks. First, as it was already
indicated at the beginning of this section, the operators An specified in the paragraph
following Theorem 3 generate cosine families Cn on C[0,∞] that converge to C on
C0(0,∞] strongly and uniformly in t ∈ R (see [10, Theorem 4.3]). Critically, the
families Cn do not have C0(0,∞] for an invariant space, and hence, the restrictions of
these families to C0(0,∞] are not genuine cosine families on C0(0,∞]. This explains
why a sequence of cosine families different from (Cn)n∈N, namely (C(εn))n∈N, was
used to prove that C falls into C in the example above.

Second, we note that the same family C considered as acting on the larger Banach
space BUC0(0,∞) of bounded, uniformly continuous functions on [0,∞) vanishing
at 0, belongs to C , too. This can be directly deduced from Theorem 5 by observing
that the sine function belongs to BUC0(0,∞) and is an almost periodic vector (in fact
a periodic vector, with the obvious meaning of the term) for C . While this result and
that of Example 3 are similar in content, there is a difference between the arguments
used for their establishment. The argument for the first result hinges on an application
of Theorem 5 and proves the existence of a sequence of trajectories associated with
a single vector for which the convergence is not uniform on R. In contrast, the other
argument, just as the argument underpinning Example 2, shows that for no non-zero
vector, the corresponding trajectories converge.
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