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Abstract

Background: Indicators of cardiometabolic risk typically include non-clinical factors (e.g., smoking). While the
incorporation of non-clinical factors can improve absolute risk prediction, it is impossible to study the contribution
of non-clinical factors when they are both predictors and part of the outcome measure. Metabolic syndrome,
incorporating only clinical measures, seems a solution yet provides no information on risk severity. The aims of this
study were: 1) to construct two continuous clinical indices of cardiometabolic risk (cCICRs), and assess their accuracy
in predicting 10-year incident cardiovascular disease and/or type 2 diabetes; and 2) to compare the predictive
accuracies of these cCICRs with existing risk indicators that incorporate non-clinical factors (Framingham Risk Scores).

Methods: Data from a population-based biomedical cohort (n = 4056) were used to construct two cCICRs from waist
circumference, mean arteriole pressure, fasting glucose, triglycerides and high density lipoprotein: 1) the mean of
standardised risk factors (cCICR-Z); and 2) the weighted mean of the two first principal components from principal
component analysis (cCICR-PCA). The predictive accuracies of the two cCICRs and the Framingham Risk Scores were
assessed and compared using ROC curves.

Results: Both cCICRs demonstrated moderate accuracy (AUCs 0.72 – 0.76) in predicting incident cardiovascular disease
and/or type 2 diabetes, among men and women. There were no significant differences between the predictive
accuracies of the cCICRs and the Framingham Risk Scores.

Conclusions: cCICRs may be useful in research investigating associations between non-clinical factors and health by
providing suitable alternatives to current risk indicators which include non-clinical factors.
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Background
Various indicators of cardiometabolic risk are accepted
for use in population health studies. Well-known exam-
ples include the Framingham Risk Scores for cardiovas-
cular disease (CVD) and type 2 diabetes. While such
indicators can have both clinical and research utility,
composite indicators of risk typically include non-
clinical factors such as behaviour (e.g., smoking in the
Framingham 10-year General CVD Risk Score), family
history (e.g., ASSIGN, Framingham Diabetes Risk Score),
or area-level disadvantage (e.g., ASSIGN, QRISK) [1-4].
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The inclusion of these non-clinical factors in composite
outcomes usually improves absolute risk prediction. This
approach however, can have limitations for inferential
research.
For instance, in studies that evaluate the mechanisms

by which area-level characteristics (e.g., area-level disad-
vantage) influence cardiometabolic risk, non-clinical fac-
tors are often framed as mediators and thus must be
excluded from composite expressions of cardiometabolic
risk that are evaluated as outcomes [5]. A variable can-
not be both a predictor and an outcome. Adapting
established indicators of cardiometabolic risk by remov-
ing non-clinical components can reduce the utility of
such risk indicators and necessitate re-validation. Com-
posite measures incorporating only clinical factors to
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:suzanne.carroll@unisa.edu.au
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Carroll et al. BMC Cardiovascular Disorders 2014, 14:27 Page 2 of 9
http://www.biomedcentral.com/1471-2261/14/27
express cardiometabolic risk are required to support the
investigation of associations between cardiometabolic
risk and sociodemographic and behavioural factors.
One composite indicator of cardiometabolic risk based

solely on clinical risk factors is metabolic syndrome.
Current definitions of metabolic syndrome incorporate
counts of risk factors exceeding established threshold
values wherein individuals are classified as either having,
or not having the syndrome [6,7]. However, the under-
lying expression of each risk measure is continuous,
and cardiometabolic risk a progressive function of these
combined risk measures [8-10]. Using current methods
for defining metabolic syndrome, for example the Inter-
national Diabetes Federation (IDF) and Adult Treatment
Panel III (ATPIII) definitions [6,7], a minimal change in
risk measures can result in a change of classification sta-
tus [10], yet a large change may not. A continuous index
of risk constructed from clinical factors would eliminate
this issue and more closely approximate an individual’s
actual continuum of risk, providing information relating
to risk severity. Evidence supports the use of a continu-
ous clinical index of cardiometabolic risk (cCICR) in
health studies [11,12] and the use of such a measure has
been recommended by the American Diabetes Associ-
ation and the European Association for the Study of
Diabetes [8].
Different methods of constructing a cCICR, typically

from metabolic syndrome components, have been
employed. These cCICRs include: a count of risk factors
exceeding recommended thresholds [13]; the sum of risk
factor points established by risk factor deciles [14]; the
sum or mean of z-scores [11,12,15]; and components de-
rived by principal component analysis [16,17]. While in-
corporating a count of risk factors improves the utility
of metabolic syndrome status as an expression of risk,
this strategy still does not account for the progressive
nature of risk within each risk factor. Using deciles to
express each risk factor is a progressive approach but
still compromises statistical power and distributional in-
formation due to categorisation [18]. Arguably, the most
progressive and efficient cCICRs are those involving the
summation of z-scores and principal component analysis
derived scores. A cCICR constructed as the mean of
standardised metabolic syndrome components has been
validated for use in children and adolescents [11,15],
though not in adult populations. However, an alternative
method utilising principal component analysis has been
validated for use in adult populations [16,17]. No study
thus far has constructed such cCICRs for use in adult
populations and evaluated their validity. The aims of this
study were: 1) to construct two cCICRs and assess their
accuracy in predicting 10-year incident CVD and/or
type 2 diabetes in a longitudinal adult cohort; and 2) to
compare these cCICR s with existing risk indicators
comprising clinical, sociodemographic and behavioural fac-
tors (Framingham CVD [F-CVD] and Diabetes [F-T2DM]
Scores).

Methods
This research study was part of the Place and Metabolic
Syndrome (PAMS) Project which aims to assess the
mechanisms that explain the relationships between
place, health behaviour and cardiometabolic health. The
PAMS Project received ethical approval from the Uni-
versity of South Australia, Central Northern Adelaide
Health Service, Queen Elizabeth Hospital, and South
Australian Department for Health and Aging Human
Research Ethics Committees.

Participants
The North West Adelaide Health study (NWAHS), a
10-year biomedical cohort comprised of 4056 randomly
selected men and women aged 18 years and over, pro-
vided data for this study. The NWAHS has involved
three waves of data collection thus far, Wave 1 (2000–
03, n = 4056), Wave 2 (2005–06, n = 3563), and Wave 3
(2008–10, n = 2871). Each wave has involved the collec-
tion of standardised measures using Computer-Assisted
Telephone Interviews, self-report paper questionnaires,
and clinic visits. Written informed consent was obtained
from all participants prior to each wave of data collec-
tion. Further information on recruitment has previously
been published [19].

Measures
Biomedical data
Biomedical data were collected during the hospital-
based clinic visits at each wave. Measures included blood
pressure (mean of two measures), height and weight,
waist and hip circumference (mean of three measures),
and a fasting blood sample which was used to determine
triglyceride, total cholesterol, high density lipoprotein
(HDL), glucose and glycosylated haemoglobin (HbA1c)
concentrations. Participants were asked about previously
diagnosed type 2 diabetes, heart attack, stroke, angina,
or transient ischaemic attack/mini stroke. Further details
of data collection are available elsewhere [19].

Risk scores
Risk factor measures used to construct cCICRs were
transformed (log 10) to improve their distribution. The
five factors used in the construction of the cCICRs were:
waist circumference, mean arteriole pressure (MAP =
[2DBP + SBP]/3), triglycerides, fasting blood glucose, and
HDL (multiplied by −1 to account for its protective ef-
fect). These risk factors have previously been used to
construct cCICRs [13,15] and represent cardiometabolic
risk components used to define metabolic syndrome
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[6,7]. Each risk factor was sex-standardised to account
for sex-related differences.

Mean of z-scores (cCICR-Z)
A cCICR was constructed as the mean of the standar-
dised risk factors. A higher score signifies greater cardio-
metabolic risk compared to the sample population.

Principal component analysis (cCICR-PCA)
A second cCICR was constructed using principal com-
ponent analysis (orthogonal rotation). Principal compo-
nent analysis was performed using the five standardised
risk factors, stratified by sex. The risk score, cCICR-
PCA, was constructed using the weighted sum of the
first two principal components with the proportion of
variance explained as weights following the methods of
Wijndaele and colleagues [16]. These first two compo-
nents explained a total of 61.69% of the variance (41.86%
and 19.83%; Eigenvalues 2.09 and 0.99) among men, and
60.14% of the variance (42.75% and 18.39%; Eigenvalues
2.14 and 0.92) among women.

Framingham risk scores
General CVD risk (10-year risk) and type 2 diabetes risk
(8-year risk) were calculated using the relevant Framing-
ham Risk Score algorithm [1,3].

Incident type 2 diabetes and cardiovascular disease
Participants were considered to have type 2 diabetes if
they had HbA1c values ≥ 6.5% (48 mmol/mol) [20], fasting
plasma glucose level ≥ 7 mmol/L, or self-reported previous
diagnosis by a doctor. CVD was determined from self-
reported doctor diagnosis only. Incident CVD was coded
for participants who were CVD-free at baseline but deter-
mined to have CVD at Wave 2 or 3. Incident type 2 dia-
betes was similarly coded. A third outcome measure,
cardiometabolic disease, was constructed by combining
incident CVD and type 2 diabetes.

Analyses
The ability of the risk scores to predict 10-year incident
CVD and/or type 2 diabetes was assessed using odds ra-
tios, true positive rate, false positive rate, receiver oper-
ating characteristics (ROC) curves, and the area under
the curve (AUC). True positive rate (i.e., sensitivity) is
the probability of a positive test outcome for a diseased
individual while false positive rate (i.e., 1-specificity) is
the probability of a positive test outcome for a non-
diseased individual. A perfect risk score would have a
true positive rate of 1 and false positive rate of 0 [21].
Odds ratios were calculated to provide a measure of

the strength of association between indicators of risk
and incident CVD and/or type 2 diabetes. For metabolic
syndrome, odds ratios were calculated using two-by-two
frequencies tables. For the continuous risk scores (cCICRs
and Framingham Risk Scores), odds ratios were calculated
using sex-specific age-adjusted logistic regression models
predicting each outcome. Continuous risk scores were
standardised (by sex) prior to analysis to allow for compar-
isons of odds ratios across regression models.
As a strong association (e.g., a large odds ratio) be-

tween outcome and predictor does not necessarily imply
good predictive accuracy in correctly classifying an indi-
vidual [21], ROC curves were therefore generated by
plotting true positive rate by false positive rate across
the possible range of values for each risk score. The
AUCs were then calculated, providing a measure of pre-
dictive accuracy. An AUC of 0.5 represents prediction
equal to chance, an AUC of 1.0, perfect prediction [22].
Differences between the predictive accuracies of the

cCICRs and the Framingham Risk Scores were assessed by
statistically comparing the AUCs. For comparison pur-
poses, true positive rate for each of the risk scores was
calculated by fixing false positive rate at the levels for
metabolic syndrome (ATPIII definition [7]) in predicting
CVD and/or type 2 diabetes. False positive rate for each
score was similarly calculated. All analyses were con-
ducted in STATA (version 12.1, StataCorp, Texas, USA).

Results
At baseline, 1898 men and 2095 women (total n = 3993)
had complete clinical measures and information on
CVD and type 2 diabetes status (Table 1). Men demon-
strated worse profiles than women in regard to weight,
waist girth, proportion overweight, glucose, triglycerides,
HDL, blood pressure measures, and the proportion iden-
tified as having metabolic syndrome, type 2 diabetes,
and CVD. Women demonstrated a worse profile than
men in regard to proportion obese.
Sample loss and sample size used for models predict-

ing the different outcomes are shown in Table 2. The
AUCs, true positive rates, false positive rates, and odds
ratios for each of the risk scores in predicting 10-year
incident disease are shown in Table 3. As metabolic
syndrome status is categorical, direct comparison of the
odds ratios for metabolic syndrome status and the
continuous risk scores in predicting cardiometabolic
outcomes is not possible.
ROC curves are shown in Figure 1. Both cCICRs dem-

onstrated significant associations (odds ratios) with inci-
dent CVD among men and women, and AUCs for both
models reflect moderate predictive accuracy. In both
men and women, the F-CVD demonstrated moderate
predictive accuracy and was not significantly different to
the cCICRs in this regard. These similarities in predict-
ive accuracies were reflected in the true positive rate and
false positive rate for the different scores with similar
values for true positive rates at the fixed false positive



Table 1 Baseline characteristics of the sample according to sex

Characteristic Men (n = 1898) Women (n = 2095) P value Total (n = 3993)

Age (years) 50.80 (16.76) 50.20 (16.05) 0.25 50.49 (16.39)

Weight (kg) 85.32 (15.98) 72.25 (15.74) <0.0001 78.46 (17.38)

Waist girth (cm) 98.43 (13.03) 87.09 (14.12) <0.0001 92.47 (14.74)

BMI (kg/m2) 27.89 (4.78) 27.75 (6.04) 0.41 27.82 (5.48)

Overweight (BMI 25.00 – 29.99 kg/m2)1 874 (46.05%) 663 (31.65%) <0.0001 1537 (38.49%)

Obese (BMI≥ 30 kg/m2)1 512 (26.98%) 632 (30.17%) 0.03 1144 (28.65%)

Glucose (mmol/L)2 5.1 (4.8-5.6) 4.9 (4.5-5.3) <0.0001 5.00 (4.6-5.5)

Triglycerides (mmol/L)2 1.3 (0.9-2.0) 1.1 (0.8-1.6) <0.0001 1.20 (0.9-1.8)

HDL cholesterol (mmol/L)2 1.2 (1.0-1.4) 1.5 (1.2-1.7) <0.0001 1.30 (1.1-1.6)

Total cholesterol (mmol/L)2 5.1 (4.4-5.8) 5.2 (4.6-6.0) 0.0001 5.2 (4.5-5.9)

Systolic blood pressure (mmHg) 130.90 (17.61) 125.50 (19.15) <0.0001 128.03 (18.63)

Diastolic blood pressure (mmHg) 82.65 (9.96) 78.79 (10.04) <0.0001 80.63 (10.19)

Mean arteriole pressure (mmHg) 98.72 (11.20) 94.35 (11.89) <0.0001 96.43 (11.77)

Metabolic syndrome (ATPIII)1 553 (29.14%) 461 (22.00%) <0.0001 1014 (25.39%)

Type 2 diabetes1 218 (11.49%) 170 (8.11%) 0.0003 388 (9.72%)

Cardiovascular disease1 199 (10.48%) 120 (5.73%) <0.0001 319 (7.99%)

Cardiometabolic disease1 363 (19.13%) 251 (11.98%) <0.0001 614 (15.38%)

Mean (SD) t-test; 1proportions and Chi square; 2median (Q1-Q3) and Wilcoxon Signed Rank.
Abbreviations: BMI Body mass index, ATPIII Adult Treatment Panel III definition.
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rate of 0.27 (the rate for metabolic syndrome), and simi-
lar false positive rates with true positive rate fixed at
0.41.
For type 2 diabetes, the cCICRs were significantly as-

sociated with disease incidence in both sexes, and dem-
onstrated moderate predictive accuracies. Higher odds
ratios were evident between the cCICRs and incident
type 2 diabetes than for incident CVD. The F-T2DM
also demonstrated moderate predictive accuracy. The
true positive rate for F-T2DM was slightly higher, and
false positive rate slightly lower than the rates for the
cCICRs. This was reflected in the slightly higher AUCs
in predicting incident type 2 diabetes among both men
and women. However, the difference in AUCs between
models was not significant.
Both cCICRs were significantly associated with incident

cardiometabolic disease among men and women, again
Table 2 Sample loss and sample used in models predicting ea

Men

CVD T2DM

Disease free at baseline 1699 1680

Loss due to no 10-year incident data 563 648

Loss due to incomplete FRS data 12 98

Total sample 1124 934

Incidence 130 106

Incidence rate (%) 11.57 11.35

Abbreviations: CVD Cardiovascular disease, T2DM Type 2 diabetes, CM Cardiometabo
demonstrating moderate predictive accuracies. Similarly,
the F-CVD and F-T2DM demonstrated moderate predict-
ive accuracies. There were no statistically significant differ-
ences in predictive accuracies of the risk scores in
predicting incident cardiometabolic disease among men
or women. The true positive rates and false positive rates
were again similar for each of the risk scores for both
sexes.

Discussion
The objective of this study was to validate two cCICRs,
developed to address limitations of dichotomous risk mea-
sures such as metabolic syndrome, and continuous indica-
tors of cardiometabolic risk that include non-clinical
factors such as behaviour. This study constructed two
cCICRs that had previously been validated in either chil-
dren or adult populations, and assessed their accuracies in
ch outcome among men and women

Women

CM disease CVD T2DM CM disease

1535 1975 1925 1844

603 618 722 717

97 9 113 103

835 1348 1091 1024

153 122 96 159

18.32 9.05 8.80 15.53

lic, FRS Framingham Risk Score.



Table 3 Associations and predictive accuracies (95% CIs) for indicators of risk predicting disease incidence
(age-adjusted models)

CVD T2DM CM disease

AUC TPR1 FPR2 OR AUC TPR1 FPR2 OR AUC TPR1 FPR2 OR

Men n = 1124 n = 934 n = 835

MetS 3 - 0.41 0.27 1.90 - 0.52 0.22 3.72 - 0.42 0.21 2.69

(0.32–0.50) (0.24–0.29) (1.31–2.78) (0.42–0.61) (0.20–0.25) (2.46–5.63) (0.34–0.50) (0.18–0.24) (1.86–3.89)

cCICR-Z 0.73 0.54 0.16 1.62 0.76 0.59 0.17 2.48 0.75 0.50 0.15 2.03

(0.69–0.77) (0.44–0.64) (0.08–0.24) (1.33–1.99) (0.71–0.81) (0.49–0.70) (0.11–0.23) (1.90–3.25) (0.71–0.79) (0.40–0.59) (0.10–0.20) (1.62–2.55)

cCICR-PCA 0.73 0.59 0.15 1.65 0.75 0.60 0.20 2.32 0.75 0.54 0.16 2.01

(0.69–0.78) (0.49–0.69) (0.09–0.22) (1.35–2.03) (0.71–0.80) (0.48–0.73) (0.16–0.25) (1.79–3.00) (0.71–0.79) (0.44–0.63) (0.12–0.20) (1.61–2.51)

F-CVD 0.73 0.55 0.16 2.45 - - - - 0.72 0.49 0.16 2.71

(0.69–0.77) (0.46–0.65) (0.10–0.22) (1.63–3.68) (0.68–0.77) (0.40–0.58) (0.11–0.22) (1.78–4.13)

F-T2DM - - - - 0.79 0.68 0.15 2.27 0.75 0.54 0.15 1.81

(0.74–0.83) (0.57–0.79) (0.09–0.20) (1.84–2.80) (0.71–0.79) (0.45–0.64) (0.08–0.21) (1.51–2.16)

Women n = 1348 n = 1091 n = 1024

MetS 3 - 0.27 0.19 1.54 - 0.40 0.13 4.21 - 0.28 0.13 2.68

(0.19–0.36) (0.17–0.22) (1.01–2.35) (0.30–0.49) (0.11–0.16) (2.69–6.58) (0.21–0.34) (0.11–0.15) (1.80–3.99)

cCICR-Z 0.76 0.57 0.06 1.24 0.73 0.40 0.14 2.04 0.74 0.43 0.06 1.66

(0.71–0.80) (0.47–0.66) (0.03–0.09) (1.03–1.51) (0.68–0.79) (0.28–0.52) (0.09–0.19) (1.62–2.58) (0.69–0.78) (0.35–0.52) (0.03–0.09) (1.37–2.02)

cCICR–PCA 0.76 0.58 0.06 1.28 0.73 0.35 0.14 1.97 0.73 0.43 0.06 1.63

(0.72–0.80) (0.49–0.68) (0.02–0.09) (1.05–1.56) (0.67–0.78) (0.24–0.47) (0.09–0.19) (1.56–2.48) (0.69–0.78) (0.34–0.52) (0.04–0.09) (1.34–1.97)

F-CVD 0.76 0.56 0.08 1.59 - - - - 0.72 0.42 0.08 1.84

(0.72–0.80) (0.46–0.65) (0.05–0.10) (1.07–2.35) (0.67–0.76) (0.32–0.51) (0.05–0.11) (1.25–2.69)

F-T2DM - - - - 0.75 0.46 0.09 2.00 0.74 0.41 0.07 1.63

(0.70–0.81) (0.35–0.56) (0.05–0.14) (1.65–2.42) (0.70–0.78) (0.32–0.50) (0.04–0.11) (1.38–1.93)
1TPR with FPR fixed at MetS levels; 2FPR with TPR fixed at MetS levels; 3not age-adjusted.
Abbreviations: CVD Cardiovascular disease, T2DM Type 2 diabetes, CM Cardiometabolic, AUC Area under the curve, TPR True positive rate, FPR False positive rate, OR Odds ratio, MetS Metabolic syndrome, cCICR-Z
Continuous clinical index of cardiometabolic risk constructed as the mean of standardised risk scores, cCICR-PCA Continuous clinical index of cardiometabolic risk constructed using principal component analysis,
F-CVD Framingham 10-year General CVD Risk Score, FT2DM Framingham 8-year Diabetes Risk Score.
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Figure 1 ROC curves for models predicting CVD, type 2 diabetes (T2DM) and cardiometabolic (CM) disease among men and women.
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predicting 10-year incident CVD and/or type 2 diabetes.
The predictive accuracies of the cCICRs were then com-
pared with established risk scores that incorporate socio-
demographic and behavioural factors.
The two cCICRs constructed for use in this study

demonstrated statistically significant associations with
10-year incident CVD, type 2 diabetes and cardiometa-
bolic disease among men and women. Although the
odds ratios for men were higher than for women for
all outcomes, post-hoc analyses revealed that these
differences were not statistically significantly different
(p-values > 0.05).
Previous studies have assessed associations between a

cCICR constructed as the first principal component of
principal component analysis and incident CVD and
type 2 diabetes. In one study among men and women
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(44–84 years) the first principal component demon-
strated a hazard ratio of 1.65 (1.49-1.82) in models pre-
dicting 5.5-year CVD events, adjusted for age, sex and
ethnicity [10]. Another study using the first principal
component in sex-specific age-adjusted models demon-
strated odds ratios of 3.4 (2.6-4.4) and 5.1 (3.6-7.2) for
men and women (30–65 years) respectively in predicting
9-year incident type 2 diabetes – stronger associations
than those found in the current study [17]. Associations
were weaker in predicting 9-year incident CVD, with es-
timated odds ratios being 1.7 (1.4-2.1) and 1.7 (1.0-2.7)
for men and women respectively, similar to the levels of
association found in the current study. This pattern of
stronger associations when predicting type 2 diabetes
to weaker associations with CVD is not unexpected.
Studies have found clinical indicators of risk, including
metabolic syndrome status and a count of metabolic
syndrome risk components, to have stronger associa-
tions with incident type 2 diabetes than incident CVD
[23,24].
The differences in the strengths of associations in pre-

dicting incident type 2 diabetes between this study and
that of Hillier and colleagues [17] may be due to differ-
ences in the age range of study participants, the current
study including individuals as young as 18 years. Neither
previous study reported information on model fit or pre-
dictive accuracy. No study has yet examined the associ-
ation and accuracy of a cCICR constructed as a mean of
standardised risk factors in predicting incident CVD
and/or type 2 diabetes in adults.
Both cCICRs demonstrated moderate accuracy in pre-

dicting incident CVD, type 2 diabetes and cardiometabolic
disease, performing similarly well to the Framingham Risk
Scores. These findings are interesting as the F-CVD and
F-T2DM both include other well established risk factors
in their construction. However, differences in the strength
of association are noted for the F-CVD in predicting CVD
and may be attributed to the inclusion of smoking status
in the risk algorithm.
The two cCICRs constructed in this study performed

similarly well to the Framingham Risk Scores and thus
constitute viable expressions of cardiometabolic risk.
Furthermore, these cCICRs can be used to represent a
combined CVD and type 2 diabetes risk (i.e., cardiomet-
abolic risk) though associations are stronger for type 2
diabetes alone. As such, cCICRs may be useful in re-
search studies that require a cardiometabolic risk meas-
ure that is constructed solely from clinical measures.
This study found little difference in the performance

of the two differently constructed cCICRs. Therefore,
the choice of which measure to use within a study may
depend on the design and intent of the study. The
cCICR-Z places equal weight on each of the risk factors
included in its construction though each of these factors
may have a greater or lesser association with cardiomet-
abolic risk. However, this does not appear to have nega-
tively impacted the index’s performance when compared
to cCICR-PCA which weights the components based on
a principal component analysis variance matrix. This
may, however, make the cCICR-Z the more useful meas-
ure for tracking change in risk over time. Unlike the
cCICR-PCA, the weightings of the components that are
used to construct the cCICR-Z will not change each
time the score is constructed, for example, at each time
point in a longitudinal study.
A number of limitations of this study should be con-

sidered. This study made use of self-reported CVD sta-
tus; type 2 diabetes status was determined based on
combined self-reported status and clinical measures.
However, any effect this may have had on the strengths
of associations and predictive accuracies of the indica-
tors in predicting incident CVD and type 2 diabetes will
apply equally for each of the risk indicators.
The analyses in this study featured age-adjusted

models. Other potential risk factors may also affect the
associations reported, notably smoking status. The ex-
clusion of models adjusting for such behavioural (and
other) factors is intentional as the purpose of this study
was to assess the predictive accuracy of indicators of car-
diometabolic risk constructed solely from clinical risk
factors. Studies intending to use cCICRs can adjust for
additional factors as deemed appropriate.
In addition to the above, other clinical risk factors have

demonstrated associations with cardiometabolic risk in-
cluding proinflammatory and prothrombotic markers [8].
The inclusion of such risk factors may improve the accur-
acies of cCICRs in predicting incident cardiometabolic
disease. However, these measures were not available for
the current study.
Medication status (being on antihypertensive or lipid-

lowering medications) was not considered in the construc-
tion and analyses of the cCICRs. Only a small number of
participants were taking these medications, providing only
small sample sizes for analyses of predictive accuracy. For
example, models predicting cardiometabolic disease inci-
dence amongst men taking medications (antihypertensive
or lipid-lowering medications) would have included a
sample of only 94 individuals. As such analyses stratified
by medication status were not performed. However, post-
hoc sensitivity analyses excluding individuals on antihy-
pertensive or lipid-lowering medications suggested no
notable difference in the AUCs for any of the models
(results not reported). This is consistent with results from
two studies validating a cCICR constructed using principal
component analysis among adults [10,17] which both con-
cluded that patterns of association were similar when per-
forming sensitivity analyses excluding participants taking
antihypertensive or lipid-lowering medications.
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The cCICRs constructed in this study are sample spe-
cific, providing a relative measure of risk, each individ-
ual’s risk being compared to the population sample
being assessed. The Framingham Risk Scores provide es-
timates of absolute risk and would be the preferred
choice of measures wherever absolute CVD or type 2
diabetes risk is the objective. The relative nature of the
cCICRs may limit comparison across studies in different
populations. This may also have implications for their
use in longitudinal studies where the sample may change
over time due to loss to follow-up.

Conclusions
This study constructed two cCICRs and assessed their
associations with, and accuracy in prediction of 10-year in-
cident CVD and/or type 2 diabetes. The predictive accur-
acies of these indices were compared with Framingham
Risk Scores which include clinical, sociodemographic and
behavioural factors in their risk algorithms. The cCICRs
demonstrated similar abilities to the Framingham Risk
Scores in predicting incident CVD, type 2 diabetes, and
cardiometabolic disease. Little difference was noted in the
performance of the two cCICRs constructed using differ-
ent methods, however the cCICR-Z may be easier to use
and interpret. Either cCICR may be useful in research in-
vestigating associations between cardiometabolic risk and
sociodemographic or behavioural factors. Both cCICRs
provide a suitable alternative to current indicators of risk
which either include non-clinical factors or lack informa-
tion on risk severity.
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